core.c revision c3c186403c6abd32e719f005f0af950155a9e54d
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_sched.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
517#define tsk_is_polling(t) 0
518#endif
519
520void resched_task(struct task_struct *p)
521{
522	int cpu;
523
524	assert_raw_spin_locked(&task_rq(p)->lock);
525
526	if (test_tsk_need_resched(p))
527		return;
528
529	set_tsk_need_resched(p);
530
531	cpu = task_cpu(p);
532	if (cpu == smp_processor_id())
533		return;
534
535	/* NEED_RESCHED must be visible before we test polling */
536	smp_mb();
537	if (!tsk_is_polling(p))
538		smp_send_reschedule(cpu);
539}
540
541void resched_cpu(int cpu)
542{
543	struct rq *rq = cpu_rq(cpu);
544	unsigned long flags;
545
546	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547		return;
548	resched_task(cpu_curr(cpu));
549	raw_spin_unlock_irqrestore(&rq->lock, flags);
550}
551
552#ifdef CONFIG_NO_HZ
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu.  This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563	int cpu = smp_processor_id();
564	int i;
565	struct sched_domain *sd;
566
567	rcu_read_lock();
568	for_each_domain(cpu, sd) {
569		for_each_cpu(i, sched_domain_span(sd)) {
570			if (!idle_cpu(i)) {
571				cpu = i;
572				goto unlock;
573			}
574		}
575	}
576unlock:
577	rcu_read_unlock();
578	return cpu;
579}
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592	struct rq *rq = cpu_rq(cpu);
593
594	if (cpu == smp_processor_id())
595		return;
596
597	/*
598	 * This is safe, as this function is called with the timer
599	 * wheel base lock of (cpu) held. When the CPU is on the way
600	 * to idle and has not yet set rq->curr to idle then it will
601	 * be serialized on the timer wheel base lock and take the new
602	 * timer into account automatically.
603	 */
604	if (rq->curr != rq->idle)
605		return;
606
607	/*
608	 * We can set TIF_RESCHED on the idle task of the other CPU
609	 * lockless. The worst case is that the other CPU runs the
610	 * idle task through an additional NOOP schedule()
611	 */
612	set_tsk_need_resched(rq->idle);
613
614	/* NEED_RESCHED must be visible before we test polling */
615	smp_mb();
616	if (!tsk_is_polling(rq->idle))
617		smp_send_reschedule(cpu);
618}
619
620static inline bool got_nohz_idle_kick(void)
621{
622	int cpu = smp_processor_id();
623	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624}
625
626#else /* CONFIG_NO_HZ */
627
628static inline bool got_nohz_idle_kick(void)
629{
630	return false;
631}
632
633#endif /* CONFIG_NO_HZ */
634
635void sched_avg_update(struct rq *rq)
636{
637	s64 period = sched_avg_period();
638
639	while ((s64)(rq->clock - rq->age_stamp) > period) {
640		/*
641		 * Inline assembly required to prevent the compiler
642		 * optimising this loop into a divmod call.
643		 * See __iter_div_u64_rem() for another example of this.
644		 */
645		asm("" : "+rm" (rq->age_stamp));
646		rq->age_stamp += period;
647		rq->rt_avg /= 2;
648	}
649}
650
651#else /* !CONFIG_SMP */
652void resched_task(struct task_struct *p)
653{
654	assert_raw_spin_locked(&task_rq(p)->lock);
655	set_tsk_need_resched(p);
656}
657#endif /* CONFIG_SMP */
658
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661/*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667int walk_tg_tree_from(struct task_group *from,
668			     tg_visitor down, tg_visitor up, void *data)
669{
670	struct task_group *parent, *child;
671	int ret;
672
673	parent = from;
674
675down:
676	ret = (*down)(parent, data);
677	if (ret)
678		goto out;
679	list_for_each_entry_rcu(child, &parent->children, siblings) {
680		parent = child;
681		goto down;
682
683up:
684		continue;
685	}
686	ret = (*up)(parent, data);
687	if (ret || parent == from)
688		goto out;
689
690	child = parent;
691	parent = parent->parent;
692	if (parent)
693		goto up;
694out:
695	return ret;
696}
697
698int tg_nop(struct task_group *tg, void *data)
699{
700	return 0;
701}
702#endif
703
704static void set_load_weight(struct task_struct *p)
705{
706	int prio = p->static_prio - MAX_RT_PRIO;
707	struct load_weight *load = &p->se.load;
708
709	/*
710	 * SCHED_IDLE tasks get minimal weight:
711	 */
712	if (p->policy == SCHED_IDLE) {
713		load->weight = scale_load(WEIGHT_IDLEPRIO);
714		load->inv_weight = WMULT_IDLEPRIO;
715		return;
716	}
717
718	load->weight = scale_load(prio_to_weight[prio]);
719	load->inv_weight = prio_to_wmult[prio];
720}
721
722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723{
724	update_rq_clock(rq);
725	sched_info_queued(p);
726	p->sched_class->enqueue_task(rq, p, flags);
727}
728
729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730{
731	update_rq_clock(rq);
732	sched_info_dequeued(p);
733	p->sched_class->dequeue_task(rq, p, flags);
734}
735
736void activate_task(struct rq *rq, struct task_struct *p, int flags)
737{
738	if (task_contributes_to_load(p))
739		rq->nr_uninterruptible--;
740
741	enqueue_task(rq, p, flags);
742}
743
744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745{
746	if (task_contributes_to_load(p))
747		rq->nr_uninterruptible++;
748
749	dequeue_task(rq, p, flags);
750}
751
752static void update_rq_clock_task(struct rq *rq, s64 delta)
753{
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759	s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764	/*
765	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766	 * this case when a previous update_rq_clock() happened inside a
767	 * {soft,}irq region.
768	 *
769	 * When this happens, we stop ->clock_task and only update the
770	 * prev_irq_time stamp to account for the part that fit, so that a next
771	 * update will consume the rest. This ensures ->clock_task is
772	 * monotonic.
773	 *
774	 * It does however cause some slight miss-attribution of {soft,}irq
775	 * time, a more accurate solution would be to update the irq_time using
776	 * the current rq->clock timestamp, except that would require using
777	 * atomic ops.
778	 */
779	if (irq_delta > delta)
780		irq_delta = delta;
781
782	rq->prev_irq_time += irq_delta;
783	delta -= irq_delta;
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786	if (static_key_false((&paravirt_steal_rq_enabled))) {
787		u64 st;
788
789		steal = paravirt_steal_clock(cpu_of(rq));
790		steal -= rq->prev_steal_time_rq;
791
792		if (unlikely(steal > delta))
793			steal = delta;
794
795		st = steal_ticks(steal);
796		steal = st * TICK_NSEC;
797
798		rq->prev_steal_time_rq += steal;
799
800		delta -= steal;
801	}
802#endif
803
804	rq->clock_task += delta;
805
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808		sched_rt_avg_update(rq, irq_delta + steal);
809#endif
810}
811
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815	struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817	if (stop) {
818		/*
819		 * Make it appear like a SCHED_FIFO task, its something
820		 * userspace knows about and won't get confused about.
821		 *
822		 * Also, it will make PI more or less work without too
823		 * much confusion -- but then, stop work should not
824		 * rely on PI working anyway.
825		 */
826		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828		stop->sched_class = &stop_sched_class;
829	}
830
831	cpu_rq(cpu)->stop = stop;
832
833	if (old_stop) {
834		/*
835		 * Reset it back to a normal scheduling class so that
836		 * it can die in pieces.
837		 */
838		old_stop->sched_class = &rt_sched_class;
839	}
840}
841
842/*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845static inline int __normal_prio(struct task_struct *p)
846{
847	return p->static_prio;
848}
849
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857static inline int normal_prio(struct task_struct *p)
858{
859	int prio;
860
861	if (task_has_rt_policy(p))
862		prio = MAX_RT_PRIO-1 - p->rt_priority;
863	else
864		prio = __normal_prio(p);
865	return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875static int effective_prio(struct task_struct *p)
876{
877	p->normal_prio = normal_prio(p);
878	/*
879	 * If we are RT tasks or we were boosted to RT priority,
880	 * keep the priority unchanged. Otherwise, update priority
881	 * to the normal priority:
882	 */
883	if (!rt_prio(p->prio))
884		return p->normal_prio;
885	return p->prio;
886}
887
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892inline int task_curr(const struct task_struct *p)
893{
894	return cpu_curr(task_cpu(p)) == p;
895}
896
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898				       const struct sched_class *prev_class,
899				       int oldprio)
900{
901	if (prev_class != p->sched_class) {
902		if (prev_class->switched_from)
903			prev_class->switched_from(rq, p);
904		p->sched_class->switched_to(rq, p);
905	} else if (oldprio != p->prio)
906		p->sched_class->prio_changed(rq, p, oldprio);
907}
908
909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910{
911	const struct sched_class *class;
912
913	if (p->sched_class == rq->curr->sched_class) {
914		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915	} else {
916		for_each_class(class) {
917			if (class == rq->curr->sched_class)
918				break;
919			if (class == p->sched_class) {
920				resched_task(rq->curr);
921				break;
922			}
923		}
924	}
925
926	/*
927	 * A queue event has occurred, and we're going to schedule.  In
928	 * this case, we can save a useless back to back clock update.
929	 */
930	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931		rq->skip_clock_update = 1;
932}
933
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938	atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
941#ifdef CONFIG_SMP
942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943{
944#ifdef CONFIG_SCHED_DEBUG
945	/*
946	 * We should never call set_task_cpu() on a blocked task,
947	 * ttwu() will sort out the placement.
948	 */
949	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952#ifdef CONFIG_LOCKDEP
953	/*
954	 * The caller should hold either p->pi_lock or rq->lock, when changing
955	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956	 *
957	 * sched_move_task() holds both and thus holding either pins the cgroup,
958	 * see task_group().
959	 *
960	 * Furthermore, all task_rq users should acquire both locks, see
961	 * task_rq_lock().
962	 */
963	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964				      lockdep_is_held(&task_rq(p)->lock)));
965#endif
966#endif
967
968	trace_sched_migrate_task(p, new_cpu);
969
970	if (task_cpu(p) != new_cpu) {
971		struct task_migration_notifier tmn;
972
973		if (p->sched_class->migrate_task_rq)
974			p->sched_class->migrate_task_rq(p, new_cpu);
975		p->se.nr_migrations++;
976		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978		tmn.task = p;
979		tmn.from_cpu = task_cpu(p);
980		tmn.to_cpu = new_cpu;
981
982		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983	}
984
985	__set_task_cpu(p, new_cpu);
986}
987
988struct migration_arg {
989	struct task_struct *task;
990	int dest_cpu;
991};
992
993static int migration_cpu_stop(void *data);
994
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change.  If it changes, i.e. @p might have woken up,
1000 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count).  If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012{
1013	unsigned long flags;
1014	int running, on_rq;
1015	unsigned long ncsw;
1016	struct rq *rq;
1017
1018	for (;;) {
1019		/*
1020		 * We do the initial early heuristics without holding
1021		 * any task-queue locks at all. We'll only try to get
1022		 * the runqueue lock when things look like they will
1023		 * work out!
1024		 */
1025		rq = task_rq(p);
1026
1027		/*
1028		 * If the task is actively running on another CPU
1029		 * still, just relax and busy-wait without holding
1030		 * any locks.
1031		 *
1032		 * NOTE! Since we don't hold any locks, it's not
1033		 * even sure that "rq" stays as the right runqueue!
1034		 * But we don't care, since "task_running()" will
1035		 * return false if the runqueue has changed and p
1036		 * is actually now running somewhere else!
1037		 */
1038		while (task_running(rq, p)) {
1039			if (match_state && unlikely(p->state != match_state))
1040				return 0;
1041			cpu_relax();
1042		}
1043
1044		/*
1045		 * Ok, time to look more closely! We need the rq
1046		 * lock now, to be *sure*. If we're wrong, we'll
1047		 * just go back and repeat.
1048		 */
1049		rq = task_rq_lock(p, &flags);
1050		trace_sched_wait_task(p);
1051		running = task_running(rq, p);
1052		on_rq = p->on_rq;
1053		ncsw = 0;
1054		if (!match_state || p->state == match_state)
1055			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056		task_rq_unlock(rq, p, &flags);
1057
1058		/*
1059		 * If it changed from the expected state, bail out now.
1060		 */
1061		if (unlikely(!ncsw))
1062			break;
1063
1064		/*
1065		 * Was it really running after all now that we
1066		 * checked with the proper locks actually held?
1067		 *
1068		 * Oops. Go back and try again..
1069		 */
1070		if (unlikely(running)) {
1071			cpu_relax();
1072			continue;
1073		}
1074
1075		/*
1076		 * It's not enough that it's not actively running,
1077		 * it must be off the runqueue _entirely_, and not
1078		 * preempted!
1079		 *
1080		 * So if it was still runnable (but just not actively
1081		 * running right now), it's preempted, and we should
1082		 * yield - it could be a while.
1083		 */
1084		if (unlikely(on_rq)) {
1085			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087			set_current_state(TASK_UNINTERRUPTIBLE);
1088			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089			continue;
1090		}
1091
1092		/*
1093		 * Ahh, all good. It wasn't running, and it wasn't
1094		 * runnable, which means that it will never become
1095		 * running in the future either. We're all done!
1096		 */
1097		break;
1098	}
1099
1100	return ncsw;
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116void kick_process(struct task_struct *p)
1117{
1118	int cpu;
1119
1120	preempt_disable();
1121	cpu = task_cpu(p);
1122	if ((cpu != smp_processor_id()) && task_curr(p))
1123		smp_send_reschedule(cpu);
1124	preempt_enable();
1125}
1126EXPORT_SYMBOL_GPL(kick_process);
1127#endif /* CONFIG_SMP */
1128
1129#ifdef CONFIG_SMP
1130/*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
1135	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136	enum { cpuset, possible, fail } state = cpuset;
1137	int dest_cpu;
1138
1139	/* Look for allowed, online CPU in same node. */
1140	for_each_cpu(dest_cpu, nodemask) {
1141		if (!cpu_online(dest_cpu))
1142			continue;
1143		if (!cpu_active(dest_cpu))
1144			continue;
1145		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146			return dest_cpu;
1147	}
1148
1149	for (;;) {
1150		/* Any allowed, online CPU? */
1151		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152			if (!cpu_online(dest_cpu))
1153				continue;
1154			if (!cpu_active(dest_cpu))
1155				continue;
1156			goto out;
1157		}
1158
1159		switch (state) {
1160		case cpuset:
1161			/* No more Mr. Nice Guy. */
1162			cpuset_cpus_allowed_fallback(p);
1163			state = possible;
1164			break;
1165
1166		case possible:
1167			do_set_cpus_allowed(p, cpu_possible_mask);
1168			state = fail;
1169			break;
1170
1171		case fail:
1172			BUG();
1173			break;
1174		}
1175	}
1176
1177out:
1178	if (state != cpuset) {
1179		/*
1180		 * Don't tell them about moving exiting tasks or
1181		 * kernel threads (both mm NULL), since they never
1182		 * leave kernel.
1183		 */
1184		if (p->mm && printk_ratelimit()) {
1185			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186					task_pid_nr(p), p->comm, cpu);
1187		}
1188	}
1189
1190	return dest_cpu;
1191}
1192
1193/*
1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195 */
1196static inline
1197int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198{
1199	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200
1201	/*
1202	 * In order not to call set_task_cpu() on a blocking task we need
1203	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204	 * cpu.
1205	 *
1206	 * Since this is common to all placement strategies, this lives here.
1207	 *
1208	 * [ this allows ->select_task() to simply return task_cpu(p) and
1209	 *   not worry about this generic constraint ]
1210	 */
1211	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1212		     !cpu_online(cpu)))
1213		cpu = select_fallback_rq(task_cpu(p), p);
1214
1215	return cpu;
1216}
1217
1218static void update_avg(u64 *avg, u64 sample)
1219{
1220	s64 diff = sample - *avg;
1221	*avg += diff >> 3;
1222}
1223#endif
1224
1225static void
1226ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1227{
1228#ifdef CONFIG_SCHEDSTATS
1229	struct rq *rq = this_rq();
1230
1231#ifdef CONFIG_SMP
1232	int this_cpu = smp_processor_id();
1233
1234	if (cpu == this_cpu) {
1235		schedstat_inc(rq, ttwu_local);
1236		schedstat_inc(p, se.statistics.nr_wakeups_local);
1237	} else {
1238		struct sched_domain *sd;
1239
1240		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241		rcu_read_lock();
1242		for_each_domain(this_cpu, sd) {
1243			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244				schedstat_inc(sd, ttwu_wake_remote);
1245				break;
1246			}
1247		}
1248		rcu_read_unlock();
1249	}
1250
1251	if (wake_flags & WF_MIGRATED)
1252		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253
1254#endif /* CONFIG_SMP */
1255
1256	schedstat_inc(rq, ttwu_count);
1257	schedstat_inc(p, se.statistics.nr_wakeups);
1258
1259	if (wake_flags & WF_SYNC)
1260		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1261
1262#endif /* CONFIG_SCHEDSTATS */
1263}
1264
1265static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266{
1267	activate_task(rq, p, en_flags);
1268	p->on_rq = 1;
1269
1270	/* if a worker is waking up, notify workqueue */
1271	if (p->flags & PF_WQ_WORKER)
1272		wq_worker_waking_up(p, cpu_of(rq));
1273}
1274
1275/*
1276 * Mark the task runnable and perform wakeup-preemption.
1277 */
1278static void
1279ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1280{
1281	trace_sched_wakeup(p, true);
1282	check_preempt_curr(rq, p, wake_flags);
1283
1284	p->state = TASK_RUNNING;
1285#ifdef CONFIG_SMP
1286	if (p->sched_class->task_woken)
1287		p->sched_class->task_woken(rq, p);
1288
1289	if (rq->idle_stamp) {
1290		u64 delta = rq->clock - rq->idle_stamp;
1291		u64 max = 2*sysctl_sched_migration_cost;
1292
1293		if (delta > max)
1294			rq->avg_idle = max;
1295		else
1296			update_avg(&rq->avg_idle, delta);
1297		rq->idle_stamp = 0;
1298	}
1299#endif
1300}
1301
1302static void
1303ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304{
1305#ifdef CONFIG_SMP
1306	if (p->sched_contributes_to_load)
1307		rq->nr_uninterruptible--;
1308#endif
1309
1310	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311	ttwu_do_wakeup(rq, p, wake_flags);
1312}
1313
1314/*
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1319 */
1320static int ttwu_remote(struct task_struct *p, int wake_flags)
1321{
1322	struct rq *rq;
1323	int ret = 0;
1324
1325	rq = __task_rq_lock(p);
1326	if (p->on_rq) {
1327		ttwu_do_wakeup(rq, p, wake_flags);
1328		ret = 1;
1329	}
1330	__task_rq_unlock(rq);
1331
1332	return ret;
1333}
1334
1335#ifdef CONFIG_SMP
1336static void sched_ttwu_pending(void)
1337{
1338	struct rq *rq = this_rq();
1339	struct llist_node *llist = llist_del_all(&rq->wake_list);
1340	struct task_struct *p;
1341
1342	raw_spin_lock(&rq->lock);
1343
1344	while (llist) {
1345		p = llist_entry(llist, struct task_struct, wake_entry);
1346		llist = llist_next(llist);
1347		ttwu_do_activate(rq, p, 0);
1348	}
1349
1350	raw_spin_unlock(&rq->lock);
1351}
1352
1353void scheduler_ipi(void)
1354{
1355	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356		return;
1357
1358	/*
1359	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360	 * traditionally all their work was done from the interrupt return
1361	 * path. Now that we actually do some work, we need to make sure
1362	 * we do call them.
1363	 *
1364	 * Some archs already do call them, luckily irq_enter/exit nest
1365	 * properly.
1366	 *
1367	 * Arguably we should visit all archs and update all handlers,
1368	 * however a fair share of IPIs are still resched only so this would
1369	 * somewhat pessimize the simple resched case.
1370	 */
1371	irq_enter();
1372	sched_ttwu_pending();
1373
1374	/*
1375	 * Check if someone kicked us for doing the nohz idle load balance.
1376	 */
1377	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378		this_rq()->idle_balance = 1;
1379		raise_softirq_irqoff(SCHED_SOFTIRQ);
1380	}
1381	irq_exit();
1382}
1383
1384static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385{
1386	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387		smp_send_reschedule(cpu);
1388}
1389
1390bool cpus_share_cache(int this_cpu, int that_cpu)
1391{
1392	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393}
1394#endif /* CONFIG_SMP */
1395
1396static void ttwu_queue(struct task_struct *p, int cpu)
1397{
1398	struct rq *rq = cpu_rq(cpu);
1399
1400#if defined(CONFIG_SMP)
1401	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403		ttwu_queue_remote(p, cpu);
1404		return;
1405	}
1406#endif
1407
1408	raw_spin_lock(&rq->lock);
1409	ttwu_do_activate(rq, p, 0);
1410	raw_spin_unlock(&rq->lock);
1411}
1412
1413/**
1414 * try_to_wake_up - wake up a thread
1415 * @p: the thread to be awakened
1416 * @state: the mask of task states that can be woken
1417 * @wake_flags: wake modifier flags (WF_*)
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1427 */
1428static int
1429try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1430{
1431	unsigned long flags;
1432	int cpu, success = 0;
1433
1434	smp_wmb();
1435	raw_spin_lock_irqsave(&p->pi_lock, flags);
1436	if (!(p->state & state))
1437		goto out;
1438
1439	success = 1; /* we're going to change ->state */
1440	cpu = task_cpu(p);
1441
1442	if (p->on_rq && ttwu_remote(p, wake_flags))
1443		goto stat;
1444
1445#ifdef CONFIG_SMP
1446	/*
1447	 * If the owning (remote) cpu is still in the middle of schedule() with
1448	 * this task as prev, wait until its done referencing the task.
1449	 */
1450	while (p->on_cpu)
1451		cpu_relax();
1452	/*
1453	 * Pairs with the smp_wmb() in finish_lock_switch().
1454	 */
1455	smp_rmb();
1456
1457	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1458	p->state = TASK_WAKING;
1459
1460	if (p->sched_class->task_waking)
1461		p->sched_class->task_waking(p);
1462
1463	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464	if (task_cpu(p) != cpu) {
1465		wake_flags |= WF_MIGRATED;
1466		set_task_cpu(p, cpu);
1467	}
1468#endif /* CONFIG_SMP */
1469
1470	ttwu_queue(p, cpu);
1471stat:
1472	ttwu_stat(p, cpu, wake_flags);
1473out:
1474	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1475
1476	return success;
1477}
1478
1479/**
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1482 *
1483 * Put @p on the run-queue if it's not already there. The caller must
1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485 * the current task.
1486 */
1487static void try_to_wake_up_local(struct task_struct *p)
1488{
1489	struct rq *rq = task_rq(p);
1490
1491	BUG_ON(rq != this_rq());
1492	BUG_ON(p == current);
1493	lockdep_assert_held(&rq->lock);
1494
1495	if (!raw_spin_trylock(&p->pi_lock)) {
1496		raw_spin_unlock(&rq->lock);
1497		raw_spin_lock(&p->pi_lock);
1498		raw_spin_lock(&rq->lock);
1499	}
1500
1501	if (!(p->state & TASK_NORMAL))
1502		goto out;
1503
1504	if (!p->on_rq)
1505		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1506
1507	ttwu_do_wakeup(rq, p, 0);
1508	ttwu_stat(p, smp_processor_id(), 0);
1509out:
1510	raw_spin_unlock(&p->pi_lock);
1511}
1512
1513/**
1514 * wake_up_process - Wake up a specific process
1515 * @p: The process to be woken up.
1516 *
1517 * Attempt to wake up the nominated process and move it to the set of runnable
1518 * processes.  Returns 1 if the process was woken up, 0 if it was already
1519 * running.
1520 *
1521 * It may be assumed that this function implies a write memory barrier before
1522 * changing the task state if and only if any tasks are woken up.
1523 */
1524int wake_up_process(struct task_struct *p)
1525{
1526	WARN_ON(task_is_stopped_or_traced(p));
1527	return try_to_wake_up(p, TASK_NORMAL, 0);
1528}
1529EXPORT_SYMBOL(wake_up_process);
1530
1531int wake_up_state(struct task_struct *p, unsigned int state)
1532{
1533	return try_to_wake_up(p, state, 0);
1534}
1535
1536/*
1537 * Perform scheduler related setup for a newly forked process p.
1538 * p is forked by current.
1539 *
1540 * __sched_fork() is basic setup used by init_idle() too:
1541 */
1542static void __sched_fork(struct task_struct *p)
1543{
1544	p->on_rq			= 0;
1545
1546	p->se.on_rq			= 0;
1547	p->se.exec_start		= 0;
1548	p->se.sum_exec_runtime		= 0;
1549	p->se.prev_sum_exec_runtime	= 0;
1550	p->se.nr_migrations		= 0;
1551	p->se.vruntime			= 0;
1552	INIT_LIST_HEAD(&p->se.group_node);
1553
1554/*
1555 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1556 * removed when useful for applications beyond shares distribution (e.g.
1557 * load-balance).
1558 */
1559#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1560	p->se.avg.runnable_avg_period = 0;
1561	p->se.avg.runnable_avg_sum = 0;
1562#endif
1563#ifdef CONFIG_SCHEDSTATS
1564	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1565#endif
1566
1567	INIT_LIST_HEAD(&p->rt.run_list);
1568
1569#ifdef CONFIG_PREEMPT_NOTIFIERS
1570	INIT_HLIST_HEAD(&p->preempt_notifiers);
1571#endif
1572
1573#ifdef CONFIG_NUMA_BALANCING
1574	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1575		p->mm->numa_next_scan = jiffies;
1576		p->mm->numa_next_reset = jiffies;
1577		p->mm->numa_scan_seq = 0;
1578	}
1579
1580	p->node_stamp = 0ULL;
1581	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1582	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1583	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1584	p->numa_work.next = &p->numa_work;
1585#endif /* CONFIG_NUMA_BALANCING */
1586}
1587
1588#ifdef CONFIG_NUMA_BALANCING
1589#ifdef CONFIG_SCHED_DEBUG
1590void set_numabalancing_state(bool enabled)
1591{
1592	if (enabled)
1593		sched_feat_set("NUMA");
1594	else
1595		sched_feat_set("NO_NUMA");
1596}
1597#else
1598__read_mostly bool numabalancing_enabled;
1599
1600void set_numabalancing_state(bool enabled)
1601{
1602	numabalancing_enabled = enabled;
1603}
1604#endif /* CONFIG_SCHED_DEBUG */
1605#endif /* CONFIG_NUMA_BALANCING */
1606
1607/*
1608 * fork()/clone()-time setup:
1609 */
1610void sched_fork(struct task_struct *p)
1611{
1612	unsigned long flags;
1613	int cpu = get_cpu();
1614
1615	__sched_fork(p);
1616	/*
1617	 * We mark the process as running here. This guarantees that
1618	 * nobody will actually run it, and a signal or other external
1619	 * event cannot wake it up and insert it on the runqueue either.
1620	 */
1621	p->state = TASK_RUNNING;
1622
1623	/*
1624	 * Make sure we do not leak PI boosting priority to the child.
1625	 */
1626	p->prio = current->normal_prio;
1627
1628	/*
1629	 * Revert to default priority/policy on fork if requested.
1630	 */
1631	if (unlikely(p->sched_reset_on_fork)) {
1632		if (task_has_rt_policy(p)) {
1633			p->policy = SCHED_NORMAL;
1634			p->static_prio = NICE_TO_PRIO(0);
1635			p->rt_priority = 0;
1636		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1637			p->static_prio = NICE_TO_PRIO(0);
1638
1639		p->prio = p->normal_prio = __normal_prio(p);
1640		set_load_weight(p);
1641
1642		/*
1643		 * We don't need the reset flag anymore after the fork. It has
1644		 * fulfilled its duty:
1645		 */
1646		p->sched_reset_on_fork = 0;
1647	}
1648
1649	if (!rt_prio(p->prio))
1650		p->sched_class = &fair_sched_class;
1651
1652	if (p->sched_class->task_fork)
1653		p->sched_class->task_fork(p);
1654
1655	/*
1656	 * The child is not yet in the pid-hash so no cgroup attach races,
1657	 * and the cgroup is pinned to this child due to cgroup_fork()
1658	 * is ran before sched_fork().
1659	 *
1660	 * Silence PROVE_RCU.
1661	 */
1662	raw_spin_lock_irqsave(&p->pi_lock, flags);
1663	set_task_cpu(p, cpu);
1664	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1665
1666#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1667	if (likely(sched_info_on()))
1668		memset(&p->sched_info, 0, sizeof(p->sched_info));
1669#endif
1670#if defined(CONFIG_SMP)
1671	p->on_cpu = 0;
1672#endif
1673#ifdef CONFIG_PREEMPT_COUNT
1674	/* Want to start with kernel preemption disabled. */
1675	task_thread_info(p)->preempt_count = 1;
1676#endif
1677#ifdef CONFIG_SMP
1678	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1679#endif
1680
1681	put_cpu();
1682}
1683
1684/*
1685 * wake_up_new_task - wake up a newly created task for the first time.
1686 *
1687 * This function will do some initial scheduler statistics housekeeping
1688 * that must be done for every newly created context, then puts the task
1689 * on the runqueue and wakes it.
1690 */
1691void wake_up_new_task(struct task_struct *p)
1692{
1693	unsigned long flags;
1694	struct rq *rq;
1695
1696	raw_spin_lock_irqsave(&p->pi_lock, flags);
1697#ifdef CONFIG_SMP
1698	/*
1699	 * Fork balancing, do it here and not earlier because:
1700	 *  - cpus_allowed can change in the fork path
1701	 *  - any previously selected cpu might disappear through hotplug
1702	 */
1703	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1704#endif
1705
1706	rq = __task_rq_lock(p);
1707	activate_task(rq, p, 0);
1708	p->on_rq = 1;
1709	trace_sched_wakeup_new(p, true);
1710	check_preempt_curr(rq, p, WF_FORK);
1711#ifdef CONFIG_SMP
1712	if (p->sched_class->task_woken)
1713		p->sched_class->task_woken(rq, p);
1714#endif
1715	task_rq_unlock(rq, p, &flags);
1716}
1717
1718#ifdef CONFIG_PREEMPT_NOTIFIERS
1719
1720/**
1721 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1722 * @notifier: notifier struct to register
1723 */
1724void preempt_notifier_register(struct preempt_notifier *notifier)
1725{
1726	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1727}
1728EXPORT_SYMBOL_GPL(preempt_notifier_register);
1729
1730/**
1731 * preempt_notifier_unregister - no longer interested in preemption notifications
1732 * @notifier: notifier struct to unregister
1733 *
1734 * This is safe to call from within a preemption notifier.
1735 */
1736void preempt_notifier_unregister(struct preempt_notifier *notifier)
1737{
1738	hlist_del(&notifier->link);
1739}
1740EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1741
1742static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1743{
1744	struct preempt_notifier *notifier;
1745	struct hlist_node *node;
1746
1747	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1748		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1749}
1750
1751static void
1752fire_sched_out_preempt_notifiers(struct task_struct *curr,
1753				 struct task_struct *next)
1754{
1755	struct preempt_notifier *notifier;
1756	struct hlist_node *node;
1757
1758	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759		notifier->ops->sched_out(notifier, next);
1760}
1761
1762#else /* !CONFIG_PREEMPT_NOTIFIERS */
1763
1764static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1765{
1766}
1767
1768static void
1769fire_sched_out_preempt_notifiers(struct task_struct *curr,
1770				 struct task_struct *next)
1771{
1772}
1773
1774#endif /* CONFIG_PREEMPT_NOTIFIERS */
1775
1776/**
1777 * prepare_task_switch - prepare to switch tasks
1778 * @rq: the runqueue preparing to switch
1779 * @prev: the current task that is being switched out
1780 * @next: the task we are going to switch to.
1781 *
1782 * This is called with the rq lock held and interrupts off. It must
1783 * be paired with a subsequent finish_task_switch after the context
1784 * switch.
1785 *
1786 * prepare_task_switch sets up locking and calls architecture specific
1787 * hooks.
1788 */
1789static inline void
1790prepare_task_switch(struct rq *rq, struct task_struct *prev,
1791		    struct task_struct *next)
1792{
1793	trace_sched_switch(prev, next);
1794	sched_info_switch(prev, next);
1795	perf_event_task_sched_out(prev, next);
1796	fire_sched_out_preempt_notifiers(prev, next);
1797	prepare_lock_switch(rq, next);
1798	prepare_arch_switch(next);
1799}
1800
1801/**
1802 * finish_task_switch - clean up after a task-switch
1803 * @rq: runqueue associated with task-switch
1804 * @prev: the thread we just switched away from.
1805 *
1806 * finish_task_switch must be called after the context switch, paired
1807 * with a prepare_task_switch call before the context switch.
1808 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1809 * and do any other architecture-specific cleanup actions.
1810 *
1811 * Note that we may have delayed dropping an mm in context_switch(). If
1812 * so, we finish that here outside of the runqueue lock. (Doing it
1813 * with the lock held can cause deadlocks; see schedule() for
1814 * details.)
1815 */
1816static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1817	__releases(rq->lock)
1818{
1819	struct mm_struct *mm = rq->prev_mm;
1820	long prev_state;
1821
1822	rq->prev_mm = NULL;
1823
1824	/*
1825	 * A task struct has one reference for the use as "current".
1826	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1827	 * schedule one last time. The schedule call will never return, and
1828	 * the scheduled task must drop that reference.
1829	 * The test for TASK_DEAD must occur while the runqueue locks are
1830	 * still held, otherwise prev could be scheduled on another cpu, die
1831	 * there before we look at prev->state, and then the reference would
1832	 * be dropped twice.
1833	 *		Manfred Spraul <manfred@colorfullife.com>
1834	 */
1835	prev_state = prev->state;
1836	vtime_task_switch(prev);
1837	finish_arch_switch(prev);
1838	perf_event_task_sched_in(prev, current);
1839	finish_lock_switch(rq, prev);
1840	finish_arch_post_lock_switch();
1841
1842	fire_sched_in_preempt_notifiers(current);
1843	if (mm)
1844		mmdrop(mm);
1845	if (unlikely(prev_state == TASK_DEAD)) {
1846		/*
1847		 * Remove function-return probe instances associated with this
1848		 * task and put them back on the free list.
1849		 */
1850		kprobe_flush_task(prev);
1851		put_task_struct(prev);
1852	}
1853}
1854
1855#ifdef CONFIG_SMP
1856
1857/* assumes rq->lock is held */
1858static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1859{
1860	if (prev->sched_class->pre_schedule)
1861		prev->sched_class->pre_schedule(rq, prev);
1862}
1863
1864/* rq->lock is NOT held, but preemption is disabled */
1865static inline void post_schedule(struct rq *rq)
1866{
1867	if (rq->post_schedule) {
1868		unsigned long flags;
1869
1870		raw_spin_lock_irqsave(&rq->lock, flags);
1871		if (rq->curr->sched_class->post_schedule)
1872			rq->curr->sched_class->post_schedule(rq);
1873		raw_spin_unlock_irqrestore(&rq->lock, flags);
1874
1875		rq->post_schedule = 0;
1876	}
1877}
1878
1879#else
1880
1881static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1882{
1883}
1884
1885static inline void post_schedule(struct rq *rq)
1886{
1887}
1888
1889#endif
1890
1891/**
1892 * schedule_tail - first thing a freshly forked thread must call.
1893 * @prev: the thread we just switched away from.
1894 */
1895asmlinkage void schedule_tail(struct task_struct *prev)
1896	__releases(rq->lock)
1897{
1898	struct rq *rq = this_rq();
1899
1900	finish_task_switch(rq, prev);
1901
1902	/*
1903	 * FIXME: do we need to worry about rq being invalidated by the
1904	 * task_switch?
1905	 */
1906	post_schedule(rq);
1907
1908#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1909	/* In this case, finish_task_switch does not reenable preemption */
1910	preempt_enable();
1911#endif
1912	if (current->set_child_tid)
1913		put_user(task_pid_vnr(current), current->set_child_tid);
1914}
1915
1916/*
1917 * context_switch - switch to the new MM and the new
1918 * thread's register state.
1919 */
1920static inline void
1921context_switch(struct rq *rq, struct task_struct *prev,
1922	       struct task_struct *next)
1923{
1924	struct mm_struct *mm, *oldmm;
1925
1926	prepare_task_switch(rq, prev, next);
1927
1928	mm = next->mm;
1929	oldmm = prev->active_mm;
1930	/*
1931	 * For paravirt, this is coupled with an exit in switch_to to
1932	 * combine the page table reload and the switch backend into
1933	 * one hypercall.
1934	 */
1935	arch_start_context_switch(prev);
1936
1937	if (!mm) {
1938		next->active_mm = oldmm;
1939		atomic_inc(&oldmm->mm_count);
1940		enter_lazy_tlb(oldmm, next);
1941	} else
1942		switch_mm(oldmm, mm, next);
1943
1944	if (!prev->mm) {
1945		prev->active_mm = NULL;
1946		rq->prev_mm = oldmm;
1947	}
1948	/*
1949	 * Since the runqueue lock will be released by the next
1950	 * task (which is an invalid locking op but in the case
1951	 * of the scheduler it's an obvious special-case), so we
1952	 * do an early lockdep release here:
1953	 */
1954#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1955	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1956#endif
1957
1958	context_tracking_task_switch(prev, next);
1959	/* Here we just switch the register state and the stack. */
1960	switch_to(prev, next, prev);
1961
1962	barrier();
1963	/*
1964	 * this_rq must be evaluated again because prev may have moved
1965	 * CPUs since it called schedule(), thus the 'rq' on its stack
1966	 * frame will be invalid.
1967	 */
1968	finish_task_switch(this_rq(), prev);
1969}
1970
1971/*
1972 * nr_running, nr_uninterruptible and nr_context_switches:
1973 *
1974 * externally visible scheduler statistics: current number of runnable
1975 * threads, current number of uninterruptible-sleeping threads, total
1976 * number of context switches performed since bootup.
1977 */
1978unsigned long nr_running(void)
1979{
1980	unsigned long i, sum = 0;
1981
1982	for_each_online_cpu(i)
1983		sum += cpu_rq(i)->nr_running;
1984
1985	return sum;
1986}
1987
1988unsigned long nr_uninterruptible(void)
1989{
1990	unsigned long i, sum = 0;
1991
1992	for_each_possible_cpu(i)
1993		sum += cpu_rq(i)->nr_uninterruptible;
1994
1995	/*
1996	 * Since we read the counters lockless, it might be slightly
1997	 * inaccurate. Do not allow it to go below zero though:
1998	 */
1999	if (unlikely((long)sum < 0))
2000		sum = 0;
2001
2002	return sum;
2003}
2004
2005unsigned long long nr_context_switches(void)
2006{
2007	int i;
2008	unsigned long long sum = 0;
2009
2010	for_each_possible_cpu(i)
2011		sum += cpu_rq(i)->nr_switches;
2012
2013	return sum;
2014}
2015
2016unsigned long nr_iowait(void)
2017{
2018	unsigned long i, sum = 0;
2019
2020	for_each_possible_cpu(i)
2021		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2022
2023	return sum;
2024}
2025
2026unsigned long nr_iowait_cpu(int cpu)
2027{
2028	struct rq *this = cpu_rq(cpu);
2029	return atomic_read(&this->nr_iowait);
2030}
2031
2032unsigned long this_cpu_load(void)
2033{
2034	struct rq *this = this_rq();
2035	return this->cpu_load[0];
2036}
2037
2038
2039/*
2040 * Global load-average calculations
2041 *
2042 * We take a distributed and async approach to calculating the global load-avg
2043 * in order to minimize overhead.
2044 *
2045 * The global load average is an exponentially decaying average of nr_running +
2046 * nr_uninterruptible.
2047 *
2048 * Once every LOAD_FREQ:
2049 *
2050 *   nr_active = 0;
2051 *   for_each_possible_cpu(cpu)
2052 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2053 *
2054 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2055 *
2056 * Due to a number of reasons the above turns in the mess below:
2057 *
2058 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2059 *    serious number of cpus, therefore we need to take a distributed approach
2060 *    to calculating nr_active.
2061 *
2062 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2063 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2064 *
2065 *    So assuming nr_active := 0 when we start out -- true per definition, we
2066 *    can simply take per-cpu deltas and fold those into a global accumulate
2067 *    to obtain the same result. See calc_load_fold_active().
2068 *
2069 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2070 *    across the machine, we assume 10 ticks is sufficient time for every
2071 *    cpu to have completed this task.
2072 *
2073 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2074 *    again, being late doesn't loose the delta, just wrecks the sample.
2075 *
2076 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2077 *    this would add another cross-cpu cacheline miss and atomic operation
2078 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2079 *    when it went into uninterruptible state and decrement on whatever cpu
2080 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2081 *    all cpus yields the correct result.
2082 *
2083 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2084 */
2085
2086/* Variables and functions for calc_load */
2087static atomic_long_t calc_load_tasks;
2088static unsigned long calc_load_update;
2089unsigned long avenrun[3];
2090EXPORT_SYMBOL(avenrun); /* should be removed */
2091
2092/**
2093 * get_avenrun - get the load average array
2094 * @loads:	pointer to dest load array
2095 * @offset:	offset to add
2096 * @shift:	shift count to shift the result left
2097 *
2098 * These values are estimates at best, so no need for locking.
2099 */
2100void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2101{
2102	loads[0] = (avenrun[0] + offset) << shift;
2103	loads[1] = (avenrun[1] + offset) << shift;
2104	loads[2] = (avenrun[2] + offset) << shift;
2105}
2106
2107static long calc_load_fold_active(struct rq *this_rq)
2108{
2109	long nr_active, delta = 0;
2110
2111	nr_active = this_rq->nr_running;
2112	nr_active += (long) this_rq->nr_uninterruptible;
2113
2114	if (nr_active != this_rq->calc_load_active) {
2115		delta = nr_active - this_rq->calc_load_active;
2116		this_rq->calc_load_active = nr_active;
2117	}
2118
2119	return delta;
2120}
2121
2122/*
2123 * a1 = a0 * e + a * (1 - e)
2124 */
2125static unsigned long
2126calc_load(unsigned long load, unsigned long exp, unsigned long active)
2127{
2128	load *= exp;
2129	load += active * (FIXED_1 - exp);
2130	load += 1UL << (FSHIFT - 1);
2131	return load >> FSHIFT;
2132}
2133
2134#ifdef CONFIG_NO_HZ
2135/*
2136 * Handle NO_HZ for the global load-average.
2137 *
2138 * Since the above described distributed algorithm to compute the global
2139 * load-average relies on per-cpu sampling from the tick, it is affected by
2140 * NO_HZ.
2141 *
2142 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2143 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2144 * when we read the global state.
2145 *
2146 * Obviously reality has to ruin such a delightfully simple scheme:
2147 *
2148 *  - When we go NO_HZ idle during the window, we can negate our sample
2149 *    contribution, causing under-accounting.
2150 *
2151 *    We avoid this by keeping two idle-delta counters and flipping them
2152 *    when the window starts, thus separating old and new NO_HZ load.
2153 *
2154 *    The only trick is the slight shift in index flip for read vs write.
2155 *
2156 *        0s            5s            10s           15s
2157 *          +10           +10           +10           +10
2158 *        |-|-----------|-|-----------|-|-----------|-|
2159 *    r:0 0 1           1 0           0 1           1 0
2160 *    w:0 1 1           0 0           1 1           0 0
2161 *
2162 *    This ensures we'll fold the old idle contribution in this window while
2163 *    accumlating the new one.
2164 *
2165 *  - When we wake up from NO_HZ idle during the window, we push up our
2166 *    contribution, since we effectively move our sample point to a known
2167 *    busy state.
2168 *
2169 *    This is solved by pushing the window forward, and thus skipping the
2170 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2171 *    was in effect at the time the window opened). This also solves the issue
2172 *    of having to deal with a cpu having been in NOHZ idle for multiple
2173 *    LOAD_FREQ intervals.
2174 *
2175 * When making the ILB scale, we should try to pull this in as well.
2176 */
2177static atomic_long_t calc_load_idle[2];
2178static int calc_load_idx;
2179
2180static inline int calc_load_write_idx(void)
2181{
2182	int idx = calc_load_idx;
2183
2184	/*
2185	 * See calc_global_nohz(), if we observe the new index, we also
2186	 * need to observe the new update time.
2187	 */
2188	smp_rmb();
2189
2190	/*
2191	 * If the folding window started, make sure we start writing in the
2192	 * next idle-delta.
2193	 */
2194	if (!time_before(jiffies, calc_load_update))
2195		idx++;
2196
2197	return idx & 1;
2198}
2199
2200static inline int calc_load_read_idx(void)
2201{
2202	return calc_load_idx & 1;
2203}
2204
2205void calc_load_enter_idle(void)
2206{
2207	struct rq *this_rq = this_rq();
2208	long delta;
2209
2210	/*
2211	 * We're going into NOHZ mode, if there's any pending delta, fold it
2212	 * into the pending idle delta.
2213	 */
2214	delta = calc_load_fold_active(this_rq);
2215	if (delta) {
2216		int idx = calc_load_write_idx();
2217		atomic_long_add(delta, &calc_load_idle[idx]);
2218	}
2219}
2220
2221void calc_load_exit_idle(void)
2222{
2223	struct rq *this_rq = this_rq();
2224
2225	/*
2226	 * If we're still before the sample window, we're done.
2227	 */
2228	if (time_before(jiffies, this_rq->calc_load_update))
2229		return;
2230
2231	/*
2232	 * We woke inside or after the sample window, this means we're already
2233	 * accounted through the nohz accounting, so skip the entire deal and
2234	 * sync up for the next window.
2235	 */
2236	this_rq->calc_load_update = calc_load_update;
2237	if (time_before(jiffies, this_rq->calc_load_update + 10))
2238		this_rq->calc_load_update += LOAD_FREQ;
2239}
2240
2241static long calc_load_fold_idle(void)
2242{
2243	int idx = calc_load_read_idx();
2244	long delta = 0;
2245
2246	if (atomic_long_read(&calc_load_idle[idx]))
2247		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2248
2249	return delta;
2250}
2251
2252/**
2253 * fixed_power_int - compute: x^n, in O(log n) time
2254 *
2255 * @x:         base of the power
2256 * @frac_bits: fractional bits of @x
2257 * @n:         power to raise @x to.
2258 *
2259 * By exploiting the relation between the definition of the natural power
2260 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2261 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2262 * (where: n_i \elem {0, 1}, the binary vector representing n),
2263 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2264 * of course trivially computable in O(log_2 n), the length of our binary
2265 * vector.
2266 */
2267static unsigned long
2268fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2269{
2270	unsigned long result = 1UL << frac_bits;
2271
2272	if (n) for (;;) {
2273		if (n & 1) {
2274			result *= x;
2275			result += 1UL << (frac_bits - 1);
2276			result >>= frac_bits;
2277		}
2278		n >>= 1;
2279		if (!n)
2280			break;
2281		x *= x;
2282		x += 1UL << (frac_bits - 1);
2283		x >>= frac_bits;
2284	}
2285
2286	return result;
2287}
2288
2289/*
2290 * a1 = a0 * e + a * (1 - e)
2291 *
2292 * a2 = a1 * e + a * (1 - e)
2293 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2294 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2295 *
2296 * a3 = a2 * e + a * (1 - e)
2297 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2298 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2299 *
2300 *  ...
2301 *
2302 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2303 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2304 *    = a0 * e^n + a * (1 - e^n)
2305 *
2306 * [1] application of the geometric series:
2307 *
2308 *              n         1 - x^(n+1)
2309 *     S_n := \Sum x^i = -------------
2310 *             i=0          1 - x
2311 */
2312static unsigned long
2313calc_load_n(unsigned long load, unsigned long exp,
2314	    unsigned long active, unsigned int n)
2315{
2316
2317	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2318}
2319
2320/*
2321 * NO_HZ can leave us missing all per-cpu ticks calling
2322 * calc_load_account_active(), but since an idle CPU folds its delta into
2323 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2324 * in the pending idle delta if our idle period crossed a load cycle boundary.
2325 *
2326 * Once we've updated the global active value, we need to apply the exponential
2327 * weights adjusted to the number of cycles missed.
2328 */
2329static void calc_global_nohz(void)
2330{
2331	long delta, active, n;
2332
2333	if (!time_before(jiffies, calc_load_update + 10)) {
2334		/*
2335		 * Catch-up, fold however many we are behind still
2336		 */
2337		delta = jiffies - calc_load_update - 10;
2338		n = 1 + (delta / LOAD_FREQ);
2339
2340		active = atomic_long_read(&calc_load_tasks);
2341		active = active > 0 ? active * FIXED_1 : 0;
2342
2343		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2344		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2345		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2346
2347		calc_load_update += n * LOAD_FREQ;
2348	}
2349
2350	/*
2351	 * Flip the idle index...
2352	 *
2353	 * Make sure we first write the new time then flip the index, so that
2354	 * calc_load_write_idx() will see the new time when it reads the new
2355	 * index, this avoids a double flip messing things up.
2356	 */
2357	smp_wmb();
2358	calc_load_idx++;
2359}
2360#else /* !CONFIG_NO_HZ */
2361
2362static inline long calc_load_fold_idle(void) { return 0; }
2363static inline void calc_global_nohz(void) { }
2364
2365#endif /* CONFIG_NO_HZ */
2366
2367/*
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
2370 */
2371void calc_global_load(unsigned long ticks)
2372{
2373	long active, delta;
2374
2375	if (time_before(jiffies, calc_load_update + 10))
2376		return;
2377
2378	/*
2379	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2380	 */
2381	delta = calc_load_fold_idle();
2382	if (delta)
2383		atomic_long_add(delta, &calc_load_tasks);
2384
2385	active = atomic_long_read(&calc_load_tasks);
2386	active = active > 0 ? active * FIXED_1 : 0;
2387
2388	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2389	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2390	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2391
2392	calc_load_update += LOAD_FREQ;
2393
2394	/*
2395	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2396	 */
2397	calc_global_nohz();
2398}
2399
2400/*
2401 * Called from update_cpu_load() to periodically update this CPU's
2402 * active count.
2403 */
2404static void calc_load_account_active(struct rq *this_rq)
2405{
2406	long delta;
2407
2408	if (time_before(jiffies, this_rq->calc_load_update))
2409		return;
2410
2411	delta  = calc_load_fold_active(this_rq);
2412	if (delta)
2413		atomic_long_add(delta, &calc_load_tasks);
2414
2415	this_rq->calc_load_update += LOAD_FREQ;
2416}
2417
2418/*
2419 * End of global load-average stuff
2420 */
2421
2422/*
2423 * The exact cpuload at various idx values, calculated at every tick would be
2424 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2425 *
2426 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2427 * on nth tick when cpu may be busy, then we have:
2428 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2429 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2430 *
2431 * decay_load_missed() below does efficient calculation of
2432 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2433 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2434 *
2435 * The calculation is approximated on a 128 point scale.
2436 * degrade_zero_ticks is the number of ticks after which load at any
2437 * particular idx is approximated to be zero.
2438 * degrade_factor is a precomputed table, a row for each load idx.
2439 * Each column corresponds to degradation factor for a power of two ticks,
2440 * based on 128 point scale.
2441 * Example:
2442 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2443 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2444 *
2445 * With this power of 2 load factors, we can degrade the load n times
2446 * by looking at 1 bits in n and doing as many mult/shift instead of
2447 * n mult/shifts needed by the exact degradation.
2448 */
2449#define DEGRADE_SHIFT		7
2450static const unsigned char
2451		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2452static const unsigned char
2453		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2454					{0, 0, 0, 0, 0, 0, 0, 0},
2455					{64, 32, 8, 0, 0, 0, 0, 0},
2456					{96, 72, 40, 12, 1, 0, 0},
2457					{112, 98, 75, 43, 15, 1, 0},
2458					{120, 112, 98, 76, 45, 16, 2} };
2459
2460/*
2461 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2462 * would be when CPU is idle and so we just decay the old load without
2463 * adding any new load.
2464 */
2465static unsigned long
2466decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2467{
2468	int j = 0;
2469
2470	if (!missed_updates)
2471		return load;
2472
2473	if (missed_updates >= degrade_zero_ticks[idx])
2474		return 0;
2475
2476	if (idx == 1)
2477		return load >> missed_updates;
2478
2479	while (missed_updates) {
2480		if (missed_updates % 2)
2481			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2482
2483		missed_updates >>= 1;
2484		j++;
2485	}
2486	return load;
2487}
2488
2489/*
2490 * Update rq->cpu_load[] statistics. This function is usually called every
2491 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2492 * every tick. We fix it up based on jiffies.
2493 */
2494static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2495			      unsigned long pending_updates)
2496{
2497	int i, scale;
2498
2499	this_rq->nr_load_updates++;
2500
2501	/* Update our load: */
2502	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2503	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2504		unsigned long old_load, new_load;
2505
2506		/* scale is effectively 1 << i now, and >> i divides by scale */
2507
2508		old_load = this_rq->cpu_load[i];
2509		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2510		new_load = this_load;
2511		/*
2512		 * Round up the averaging division if load is increasing. This
2513		 * prevents us from getting stuck on 9 if the load is 10, for
2514		 * example.
2515		 */
2516		if (new_load > old_load)
2517			new_load += scale - 1;
2518
2519		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2520	}
2521
2522	sched_avg_update(this_rq);
2523}
2524
2525#ifdef CONFIG_NO_HZ
2526/*
2527 * There is no sane way to deal with nohz on smp when using jiffies because the
2528 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2529 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2530 *
2531 * Therefore we cannot use the delta approach from the regular tick since that
2532 * would seriously skew the load calculation. However we'll make do for those
2533 * updates happening while idle (nohz_idle_balance) or coming out of idle
2534 * (tick_nohz_idle_exit).
2535 *
2536 * This means we might still be one tick off for nohz periods.
2537 */
2538
2539/*
2540 * Called from nohz_idle_balance() to update the load ratings before doing the
2541 * idle balance.
2542 */
2543void update_idle_cpu_load(struct rq *this_rq)
2544{
2545	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2546	unsigned long load = this_rq->load.weight;
2547	unsigned long pending_updates;
2548
2549	/*
2550	 * bail if there's load or we're actually up-to-date.
2551	 */
2552	if (load || curr_jiffies == this_rq->last_load_update_tick)
2553		return;
2554
2555	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2556	this_rq->last_load_update_tick = curr_jiffies;
2557
2558	__update_cpu_load(this_rq, load, pending_updates);
2559}
2560
2561/*
2562 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2563 */
2564void update_cpu_load_nohz(void)
2565{
2566	struct rq *this_rq = this_rq();
2567	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2568	unsigned long pending_updates;
2569
2570	if (curr_jiffies == this_rq->last_load_update_tick)
2571		return;
2572
2573	raw_spin_lock(&this_rq->lock);
2574	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2575	if (pending_updates) {
2576		this_rq->last_load_update_tick = curr_jiffies;
2577		/*
2578		 * We were idle, this means load 0, the current load might be
2579		 * !0 due to remote wakeups and the sort.
2580		 */
2581		__update_cpu_load(this_rq, 0, pending_updates);
2582	}
2583	raw_spin_unlock(&this_rq->lock);
2584}
2585#endif /* CONFIG_NO_HZ */
2586
2587/*
2588 * Called from scheduler_tick()
2589 */
2590static void update_cpu_load_active(struct rq *this_rq)
2591{
2592	/*
2593	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2594	 */
2595	this_rq->last_load_update_tick = jiffies;
2596	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2597
2598	calc_load_account_active(this_rq);
2599}
2600
2601#ifdef CONFIG_SMP
2602
2603/*
2604 * sched_exec - execve() is a valuable balancing opportunity, because at
2605 * this point the task has the smallest effective memory and cache footprint.
2606 */
2607void sched_exec(void)
2608{
2609	struct task_struct *p = current;
2610	unsigned long flags;
2611	int dest_cpu;
2612
2613	raw_spin_lock_irqsave(&p->pi_lock, flags);
2614	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2615	if (dest_cpu == smp_processor_id())
2616		goto unlock;
2617
2618	if (likely(cpu_active(dest_cpu))) {
2619		struct migration_arg arg = { p, dest_cpu };
2620
2621		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2622		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2623		return;
2624	}
2625unlock:
2626	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2627}
2628
2629#endif
2630
2631DEFINE_PER_CPU(struct kernel_stat, kstat);
2632DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2633
2634EXPORT_PER_CPU_SYMBOL(kstat);
2635EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2636
2637/*
2638 * Return any ns on the sched_clock that have not yet been accounted in
2639 * @p in case that task is currently running.
2640 *
2641 * Called with task_rq_lock() held on @rq.
2642 */
2643static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2644{
2645	u64 ns = 0;
2646
2647	if (task_current(rq, p)) {
2648		update_rq_clock(rq);
2649		ns = rq->clock_task - p->se.exec_start;
2650		if ((s64)ns < 0)
2651			ns = 0;
2652	}
2653
2654	return ns;
2655}
2656
2657unsigned long long task_delta_exec(struct task_struct *p)
2658{
2659	unsigned long flags;
2660	struct rq *rq;
2661	u64 ns = 0;
2662
2663	rq = task_rq_lock(p, &flags);
2664	ns = do_task_delta_exec(p, rq);
2665	task_rq_unlock(rq, p, &flags);
2666
2667	return ns;
2668}
2669
2670/*
2671 * Return accounted runtime for the task.
2672 * In case the task is currently running, return the runtime plus current's
2673 * pending runtime that have not been accounted yet.
2674 */
2675unsigned long long task_sched_runtime(struct task_struct *p)
2676{
2677	unsigned long flags;
2678	struct rq *rq;
2679	u64 ns = 0;
2680
2681	rq = task_rq_lock(p, &flags);
2682	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2683	task_rq_unlock(rq, p, &flags);
2684
2685	return ns;
2686}
2687
2688/*
2689 * This function gets called by the timer code, with HZ frequency.
2690 * We call it with interrupts disabled.
2691 */
2692void scheduler_tick(void)
2693{
2694	int cpu = smp_processor_id();
2695	struct rq *rq = cpu_rq(cpu);
2696	struct task_struct *curr = rq->curr;
2697
2698	sched_clock_tick();
2699
2700	raw_spin_lock(&rq->lock);
2701	update_rq_clock(rq);
2702	update_cpu_load_active(rq);
2703	curr->sched_class->task_tick(rq, curr, 0);
2704	raw_spin_unlock(&rq->lock);
2705
2706	perf_event_task_tick();
2707
2708#ifdef CONFIG_SMP
2709	rq->idle_balance = idle_cpu(cpu);
2710	trigger_load_balance(rq, cpu);
2711#endif
2712}
2713
2714notrace unsigned long get_parent_ip(unsigned long addr)
2715{
2716	if (in_lock_functions(addr)) {
2717		addr = CALLER_ADDR2;
2718		if (in_lock_functions(addr))
2719			addr = CALLER_ADDR3;
2720	}
2721	return addr;
2722}
2723
2724#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2725				defined(CONFIG_PREEMPT_TRACER))
2726
2727void __kprobes add_preempt_count(int val)
2728{
2729#ifdef CONFIG_DEBUG_PREEMPT
2730	/*
2731	 * Underflow?
2732	 */
2733	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2734		return;
2735#endif
2736	preempt_count() += val;
2737#ifdef CONFIG_DEBUG_PREEMPT
2738	/*
2739	 * Spinlock count overflowing soon?
2740	 */
2741	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2742				PREEMPT_MASK - 10);
2743#endif
2744	if (preempt_count() == val)
2745		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2746}
2747EXPORT_SYMBOL(add_preempt_count);
2748
2749void __kprobes sub_preempt_count(int val)
2750{
2751#ifdef CONFIG_DEBUG_PREEMPT
2752	/*
2753	 * Underflow?
2754	 */
2755	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2756		return;
2757	/*
2758	 * Is the spinlock portion underflowing?
2759	 */
2760	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2761			!(preempt_count() & PREEMPT_MASK)))
2762		return;
2763#endif
2764
2765	if (preempt_count() == val)
2766		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2767	preempt_count() -= val;
2768}
2769EXPORT_SYMBOL(sub_preempt_count);
2770
2771#endif
2772
2773/*
2774 * Print scheduling while atomic bug:
2775 */
2776static noinline void __schedule_bug(struct task_struct *prev)
2777{
2778	if (oops_in_progress)
2779		return;
2780
2781	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2782		prev->comm, prev->pid, preempt_count());
2783
2784	debug_show_held_locks(prev);
2785	print_modules();
2786	if (irqs_disabled())
2787		print_irqtrace_events(prev);
2788	dump_stack();
2789	add_taint(TAINT_WARN);
2790}
2791
2792/*
2793 * Various schedule()-time debugging checks and statistics:
2794 */
2795static inline void schedule_debug(struct task_struct *prev)
2796{
2797	/*
2798	 * Test if we are atomic. Since do_exit() needs to call into
2799	 * schedule() atomically, we ignore that path for now.
2800	 * Otherwise, whine if we are scheduling when we should not be.
2801	 */
2802	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2803		__schedule_bug(prev);
2804	rcu_sleep_check();
2805
2806	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2807
2808	schedstat_inc(this_rq(), sched_count);
2809}
2810
2811static void put_prev_task(struct rq *rq, struct task_struct *prev)
2812{
2813	if (prev->on_rq || rq->skip_clock_update < 0)
2814		update_rq_clock(rq);
2815	prev->sched_class->put_prev_task(rq, prev);
2816}
2817
2818/*
2819 * Pick up the highest-prio task:
2820 */
2821static inline struct task_struct *
2822pick_next_task(struct rq *rq)
2823{
2824	const struct sched_class *class;
2825	struct task_struct *p;
2826
2827	/*
2828	 * Optimization: we know that if all tasks are in
2829	 * the fair class we can call that function directly:
2830	 */
2831	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2832		p = fair_sched_class.pick_next_task(rq);
2833		if (likely(p))
2834			return p;
2835	}
2836
2837	for_each_class(class) {
2838		p = class->pick_next_task(rq);
2839		if (p)
2840			return p;
2841	}
2842
2843	BUG(); /* the idle class will always have a runnable task */
2844}
2845
2846/*
2847 * __schedule() is the main scheduler function.
2848 *
2849 * The main means of driving the scheduler and thus entering this function are:
2850 *
2851 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2852 *
2853 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2854 *      paths. For example, see arch/x86/entry_64.S.
2855 *
2856 *      To drive preemption between tasks, the scheduler sets the flag in timer
2857 *      interrupt handler scheduler_tick().
2858 *
2859 *   3. Wakeups don't really cause entry into schedule(). They add a
2860 *      task to the run-queue and that's it.
2861 *
2862 *      Now, if the new task added to the run-queue preempts the current
2863 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2864 *      called on the nearest possible occasion:
2865 *
2866 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2867 *
2868 *         - in syscall or exception context, at the next outmost
2869 *           preempt_enable(). (this might be as soon as the wake_up()'s
2870 *           spin_unlock()!)
2871 *
2872 *         - in IRQ context, return from interrupt-handler to
2873 *           preemptible context
2874 *
2875 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2876 *         then at the next:
2877 *
2878 *          - cond_resched() call
2879 *          - explicit schedule() call
2880 *          - return from syscall or exception to user-space
2881 *          - return from interrupt-handler to user-space
2882 */
2883static void __sched __schedule(void)
2884{
2885	struct task_struct *prev, *next;
2886	unsigned long *switch_count;
2887	struct rq *rq;
2888	int cpu;
2889
2890need_resched:
2891	preempt_disable();
2892	cpu = smp_processor_id();
2893	rq = cpu_rq(cpu);
2894	rcu_note_context_switch(cpu);
2895	prev = rq->curr;
2896
2897	schedule_debug(prev);
2898
2899	if (sched_feat(HRTICK))
2900		hrtick_clear(rq);
2901
2902	raw_spin_lock_irq(&rq->lock);
2903
2904	switch_count = &prev->nivcsw;
2905	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2906		if (unlikely(signal_pending_state(prev->state, prev))) {
2907			prev->state = TASK_RUNNING;
2908		} else {
2909			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2910			prev->on_rq = 0;
2911
2912			/*
2913			 * If a worker went to sleep, notify and ask workqueue
2914			 * whether it wants to wake up a task to maintain
2915			 * concurrency.
2916			 */
2917			if (prev->flags & PF_WQ_WORKER) {
2918				struct task_struct *to_wakeup;
2919
2920				to_wakeup = wq_worker_sleeping(prev, cpu);
2921				if (to_wakeup)
2922					try_to_wake_up_local(to_wakeup);
2923			}
2924		}
2925		switch_count = &prev->nvcsw;
2926	}
2927
2928	pre_schedule(rq, prev);
2929
2930	if (unlikely(!rq->nr_running))
2931		idle_balance(cpu, rq);
2932
2933	put_prev_task(rq, prev);
2934	next = pick_next_task(rq);
2935	clear_tsk_need_resched(prev);
2936	rq->skip_clock_update = 0;
2937
2938	if (likely(prev != next)) {
2939		rq->nr_switches++;
2940		rq->curr = next;
2941		++*switch_count;
2942
2943		context_switch(rq, prev, next); /* unlocks the rq */
2944		/*
2945		 * The context switch have flipped the stack from under us
2946		 * and restored the local variables which were saved when
2947		 * this task called schedule() in the past. prev == current
2948		 * is still correct, but it can be moved to another cpu/rq.
2949		 */
2950		cpu = smp_processor_id();
2951		rq = cpu_rq(cpu);
2952	} else
2953		raw_spin_unlock_irq(&rq->lock);
2954
2955	post_schedule(rq);
2956
2957	sched_preempt_enable_no_resched();
2958	if (need_resched())
2959		goto need_resched;
2960}
2961
2962static inline void sched_submit_work(struct task_struct *tsk)
2963{
2964	if (!tsk->state || tsk_is_pi_blocked(tsk))
2965		return;
2966	/*
2967	 * If we are going to sleep and we have plugged IO queued,
2968	 * make sure to submit it to avoid deadlocks.
2969	 */
2970	if (blk_needs_flush_plug(tsk))
2971		blk_schedule_flush_plug(tsk);
2972}
2973
2974asmlinkage void __sched schedule(void)
2975{
2976	struct task_struct *tsk = current;
2977
2978	sched_submit_work(tsk);
2979	__schedule();
2980}
2981EXPORT_SYMBOL(schedule);
2982
2983#ifdef CONFIG_CONTEXT_TRACKING
2984asmlinkage void __sched schedule_user(void)
2985{
2986	/*
2987	 * If we come here after a random call to set_need_resched(),
2988	 * or we have been woken up remotely but the IPI has not yet arrived,
2989	 * we haven't yet exited the RCU idle mode. Do it here manually until
2990	 * we find a better solution.
2991	 */
2992	user_exit();
2993	schedule();
2994	user_enter();
2995}
2996#endif
2997
2998/**
2999 * schedule_preempt_disabled - called with preemption disabled
3000 *
3001 * Returns with preemption disabled. Note: preempt_count must be 1
3002 */
3003void __sched schedule_preempt_disabled(void)
3004{
3005	sched_preempt_enable_no_resched();
3006	schedule();
3007	preempt_disable();
3008}
3009
3010#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3011
3012static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3013{
3014	if (lock->owner != owner)
3015		return false;
3016
3017	/*
3018	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3019	 * lock->owner still matches owner, if that fails, owner might
3020	 * point to free()d memory, if it still matches, the rcu_read_lock()
3021	 * ensures the memory stays valid.
3022	 */
3023	barrier();
3024
3025	return owner->on_cpu;
3026}
3027
3028/*
3029 * Look out! "owner" is an entirely speculative pointer
3030 * access and not reliable.
3031 */
3032int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3033{
3034	if (!sched_feat(OWNER_SPIN))
3035		return 0;
3036
3037	rcu_read_lock();
3038	while (owner_running(lock, owner)) {
3039		if (need_resched())
3040			break;
3041
3042		arch_mutex_cpu_relax();
3043	}
3044	rcu_read_unlock();
3045
3046	/*
3047	 * We break out the loop above on need_resched() and when the
3048	 * owner changed, which is a sign for heavy contention. Return
3049	 * success only when lock->owner is NULL.
3050	 */
3051	return lock->owner == NULL;
3052}
3053#endif
3054
3055#ifdef CONFIG_PREEMPT
3056/*
3057 * this is the entry point to schedule() from in-kernel preemption
3058 * off of preempt_enable. Kernel preemptions off return from interrupt
3059 * occur there and call schedule directly.
3060 */
3061asmlinkage void __sched notrace preempt_schedule(void)
3062{
3063	struct thread_info *ti = current_thread_info();
3064
3065	/*
3066	 * If there is a non-zero preempt_count or interrupts are disabled,
3067	 * we do not want to preempt the current task. Just return..
3068	 */
3069	if (likely(ti->preempt_count || irqs_disabled()))
3070		return;
3071
3072	do {
3073		add_preempt_count_notrace(PREEMPT_ACTIVE);
3074		__schedule();
3075		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3076
3077		/*
3078		 * Check again in case we missed a preemption opportunity
3079		 * between schedule and now.
3080		 */
3081		barrier();
3082	} while (need_resched());
3083}
3084EXPORT_SYMBOL(preempt_schedule);
3085
3086/*
3087 * this is the entry point to schedule() from kernel preemption
3088 * off of irq context.
3089 * Note, that this is called and return with irqs disabled. This will
3090 * protect us against recursive calling from irq.
3091 */
3092asmlinkage void __sched preempt_schedule_irq(void)
3093{
3094	struct thread_info *ti = current_thread_info();
3095
3096	/* Catch callers which need to be fixed */
3097	BUG_ON(ti->preempt_count || !irqs_disabled());
3098
3099	user_exit();
3100	do {
3101		add_preempt_count(PREEMPT_ACTIVE);
3102		local_irq_enable();
3103		__schedule();
3104		local_irq_disable();
3105		sub_preempt_count(PREEMPT_ACTIVE);
3106
3107		/*
3108		 * Check again in case we missed a preemption opportunity
3109		 * between schedule and now.
3110		 */
3111		barrier();
3112	} while (need_resched());
3113}
3114
3115#endif /* CONFIG_PREEMPT */
3116
3117int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3118			  void *key)
3119{
3120	return try_to_wake_up(curr->private, mode, wake_flags);
3121}
3122EXPORT_SYMBOL(default_wake_function);
3123
3124/*
3125 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3126 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3127 * number) then we wake all the non-exclusive tasks and one exclusive task.
3128 *
3129 * There are circumstances in which we can try to wake a task which has already
3130 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3131 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3132 */
3133static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3134			int nr_exclusive, int wake_flags, void *key)
3135{
3136	wait_queue_t *curr, *next;
3137
3138	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3139		unsigned flags = curr->flags;
3140
3141		if (curr->func(curr, mode, wake_flags, key) &&
3142				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3143			break;
3144	}
3145}
3146
3147/**
3148 * __wake_up - wake up threads blocked on a waitqueue.
3149 * @q: the waitqueue
3150 * @mode: which threads
3151 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3152 * @key: is directly passed to the wakeup function
3153 *
3154 * It may be assumed that this function implies a write memory barrier before
3155 * changing the task state if and only if any tasks are woken up.
3156 */
3157void __wake_up(wait_queue_head_t *q, unsigned int mode,
3158			int nr_exclusive, void *key)
3159{
3160	unsigned long flags;
3161
3162	spin_lock_irqsave(&q->lock, flags);
3163	__wake_up_common(q, mode, nr_exclusive, 0, key);
3164	spin_unlock_irqrestore(&q->lock, flags);
3165}
3166EXPORT_SYMBOL(__wake_up);
3167
3168/*
3169 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3170 */
3171void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3172{
3173	__wake_up_common(q, mode, nr, 0, NULL);
3174}
3175EXPORT_SYMBOL_GPL(__wake_up_locked);
3176
3177void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3178{
3179	__wake_up_common(q, mode, 1, 0, key);
3180}
3181EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3182
3183/**
3184 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3185 * @q: the waitqueue
3186 * @mode: which threads
3187 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3188 * @key: opaque value to be passed to wakeup targets
3189 *
3190 * The sync wakeup differs that the waker knows that it will schedule
3191 * away soon, so while the target thread will be woken up, it will not
3192 * be migrated to another CPU - ie. the two threads are 'synchronized'
3193 * with each other. This can prevent needless bouncing between CPUs.
3194 *
3195 * On UP it can prevent extra preemption.
3196 *
3197 * It may be assumed that this function implies a write memory barrier before
3198 * changing the task state if and only if any tasks are woken up.
3199 */
3200void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3201			int nr_exclusive, void *key)
3202{
3203	unsigned long flags;
3204	int wake_flags = WF_SYNC;
3205
3206	if (unlikely(!q))
3207		return;
3208
3209	if (unlikely(!nr_exclusive))
3210		wake_flags = 0;
3211
3212	spin_lock_irqsave(&q->lock, flags);
3213	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3214	spin_unlock_irqrestore(&q->lock, flags);
3215}
3216EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3217
3218/*
3219 * __wake_up_sync - see __wake_up_sync_key()
3220 */
3221void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3222{
3223	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3224}
3225EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3226
3227/**
3228 * complete: - signals a single thread waiting on this completion
3229 * @x:  holds the state of this particular completion
3230 *
3231 * This will wake up a single thread waiting on this completion. Threads will be
3232 * awakened in the same order in which they were queued.
3233 *
3234 * See also complete_all(), wait_for_completion() and related routines.
3235 *
3236 * It may be assumed that this function implies a write memory barrier before
3237 * changing the task state if and only if any tasks are woken up.
3238 */
3239void complete(struct completion *x)
3240{
3241	unsigned long flags;
3242
3243	spin_lock_irqsave(&x->wait.lock, flags);
3244	x->done++;
3245	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3246	spin_unlock_irqrestore(&x->wait.lock, flags);
3247}
3248EXPORT_SYMBOL(complete);
3249
3250/**
3251 * complete_all: - signals all threads waiting on this completion
3252 * @x:  holds the state of this particular completion
3253 *
3254 * This will wake up all threads waiting on this particular completion event.
3255 *
3256 * It may be assumed that this function implies a write memory barrier before
3257 * changing the task state if and only if any tasks are woken up.
3258 */
3259void complete_all(struct completion *x)
3260{
3261	unsigned long flags;
3262
3263	spin_lock_irqsave(&x->wait.lock, flags);
3264	x->done += UINT_MAX/2;
3265	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3266	spin_unlock_irqrestore(&x->wait.lock, flags);
3267}
3268EXPORT_SYMBOL(complete_all);
3269
3270static inline long __sched
3271do_wait_for_common(struct completion *x, long timeout, int state)
3272{
3273	if (!x->done) {
3274		DECLARE_WAITQUEUE(wait, current);
3275
3276		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3277		do {
3278			if (signal_pending_state(state, current)) {
3279				timeout = -ERESTARTSYS;
3280				break;
3281			}
3282			__set_current_state(state);
3283			spin_unlock_irq(&x->wait.lock);
3284			timeout = schedule_timeout(timeout);
3285			spin_lock_irq(&x->wait.lock);
3286		} while (!x->done && timeout);
3287		__remove_wait_queue(&x->wait, &wait);
3288		if (!x->done)
3289			return timeout;
3290	}
3291	x->done--;
3292	return timeout ?: 1;
3293}
3294
3295static long __sched
3296wait_for_common(struct completion *x, long timeout, int state)
3297{
3298	might_sleep();
3299
3300	spin_lock_irq(&x->wait.lock);
3301	timeout = do_wait_for_common(x, timeout, state);
3302	spin_unlock_irq(&x->wait.lock);
3303	return timeout;
3304}
3305
3306/**
3307 * wait_for_completion: - waits for completion of a task
3308 * @x:  holds the state of this particular completion
3309 *
3310 * This waits to be signaled for completion of a specific task. It is NOT
3311 * interruptible and there is no timeout.
3312 *
3313 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3314 * and interrupt capability. Also see complete().
3315 */
3316void __sched wait_for_completion(struct completion *x)
3317{
3318	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3319}
3320EXPORT_SYMBOL(wait_for_completion);
3321
3322/**
3323 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3324 * @x:  holds the state of this particular completion
3325 * @timeout:  timeout value in jiffies
3326 *
3327 * This waits for either a completion of a specific task to be signaled or for a
3328 * specified timeout to expire. The timeout is in jiffies. It is not
3329 * interruptible.
3330 *
3331 * The return value is 0 if timed out, and positive (at least 1, or number of
3332 * jiffies left till timeout) if completed.
3333 */
3334unsigned long __sched
3335wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3336{
3337	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3338}
3339EXPORT_SYMBOL(wait_for_completion_timeout);
3340
3341/**
3342 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3343 * @x:  holds the state of this particular completion
3344 *
3345 * This waits for completion of a specific task to be signaled. It is
3346 * interruptible.
3347 *
3348 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3349 */
3350int __sched wait_for_completion_interruptible(struct completion *x)
3351{
3352	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3353	if (t == -ERESTARTSYS)
3354		return t;
3355	return 0;
3356}
3357EXPORT_SYMBOL(wait_for_completion_interruptible);
3358
3359/**
3360 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3361 * @x:  holds the state of this particular completion
3362 * @timeout:  timeout value in jiffies
3363 *
3364 * This waits for either a completion of a specific task to be signaled or for a
3365 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3366 *
3367 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3368 * positive (at least 1, or number of jiffies left till timeout) if completed.
3369 */
3370long __sched
3371wait_for_completion_interruptible_timeout(struct completion *x,
3372					  unsigned long timeout)
3373{
3374	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3375}
3376EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3377
3378/**
3379 * wait_for_completion_killable: - waits for completion of a task (killable)
3380 * @x:  holds the state of this particular completion
3381 *
3382 * This waits to be signaled for completion of a specific task. It can be
3383 * interrupted by a kill signal.
3384 *
3385 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3386 */
3387int __sched wait_for_completion_killable(struct completion *x)
3388{
3389	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3390	if (t == -ERESTARTSYS)
3391		return t;
3392	return 0;
3393}
3394EXPORT_SYMBOL(wait_for_completion_killable);
3395
3396/**
3397 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3398 * @x:  holds the state of this particular completion
3399 * @timeout:  timeout value in jiffies
3400 *
3401 * This waits for either a completion of a specific task to be
3402 * signaled or for a specified timeout to expire. It can be
3403 * interrupted by a kill signal. The timeout is in jiffies.
3404 *
3405 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3406 * positive (at least 1, or number of jiffies left till timeout) if completed.
3407 */
3408long __sched
3409wait_for_completion_killable_timeout(struct completion *x,
3410				     unsigned long timeout)
3411{
3412	return wait_for_common(x, timeout, TASK_KILLABLE);
3413}
3414EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3415
3416/**
3417 *	try_wait_for_completion - try to decrement a completion without blocking
3418 *	@x:	completion structure
3419 *
3420 *	Returns: 0 if a decrement cannot be done without blocking
3421 *		 1 if a decrement succeeded.
3422 *
3423 *	If a completion is being used as a counting completion,
3424 *	attempt to decrement the counter without blocking. This
3425 *	enables us to avoid waiting if the resource the completion
3426 *	is protecting is not available.
3427 */
3428bool try_wait_for_completion(struct completion *x)
3429{
3430	unsigned long flags;
3431	int ret = 1;
3432
3433	spin_lock_irqsave(&x->wait.lock, flags);
3434	if (!x->done)
3435		ret = 0;
3436	else
3437		x->done--;
3438	spin_unlock_irqrestore(&x->wait.lock, flags);
3439	return ret;
3440}
3441EXPORT_SYMBOL(try_wait_for_completion);
3442
3443/**
3444 *	completion_done - Test to see if a completion has any waiters
3445 *	@x:	completion structure
3446 *
3447 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3448 *		 1 if there are no waiters.
3449 *
3450 */
3451bool completion_done(struct completion *x)
3452{
3453	unsigned long flags;
3454	int ret = 1;
3455
3456	spin_lock_irqsave(&x->wait.lock, flags);
3457	if (!x->done)
3458		ret = 0;
3459	spin_unlock_irqrestore(&x->wait.lock, flags);
3460	return ret;
3461}
3462EXPORT_SYMBOL(completion_done);
3463
3464static long __sched
3465sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3466{
3467	unsigned long flags;
3468	wait_queue_t wait;
3469
3470	init_waitqueue_entry(&wait, current);
3471
3472	__set_current_state(state);
3473
3474	spin_lock_irqsave(&q->lock, flags);
3475	__add_wait_queue(q, &wait);
3476	spin_unlock(&q->lock);
3477	timeout = schedule_timeout(timeout);
3478	spin_lock_irq(&q->lock);
3479	__remove_wait_queue(q, &wait);
3480	spin_unlock_irqrestore(&q->lock, flags);
3481
3482	return timeout;
3483}
3484
3485void __sched interruptible_sleep_on(wait_queue_head_t *q)
3486{
3487	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3488}
3489EXPORT_SYMBOL(interruptible_sleep_on);
3490
3491long __sched
3492interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3493{
3494	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3495}
3496EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3497
3498void __sched sleep_on(wait_queue_head_t *q)
3499{
3500	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3501}
3502EXPORT_SYMBOL(sleep_on);
3503
3504long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3505{
3506	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3507}
3508EXPORT_SYMBOL(sleep_on_timeout);
3509
3510#ifdef CONFIG_RT_MUTEXES
3511
3512/*
3513 * rt_mutex_setprio - set the current priority of a task
3514 * @p: task
3515 * @prio: prio value (kernel-internal form)
3516 *
3517 * This function changes the 'effective' priority of a task. It does
3518 * not touch ->normal_prio like __setscheduler().
3519 *
3520 * Used by the rt_mutex code to implement priority inheritance logic.
3521 */
3522void rt_mutex_setprio(struct task_struct *p, int prio)
3523{
3524	int oldprio, on_rq, running;
3525	struct rq *rq;
3526	const struct sched_class *prev_class;
3527
3528	BUG_ON(prio < 0 || prio > MAX_PRIO);
3529
3530	rq = __task_rq_lock(p);
3531
3532	/*
3533	 * Idle task boosting is a nono in general. There is one
3534	 * exception, when PREEMPT_RT and NOHZ is active:
3535	 *
3536	 * The idle task calls get_next_timer_interrupt() and holds
3537	 * the timer wheel base->lock on the CPU and another CPU wants
3538	 * to access the timer (probably to cancel it). We can safely
3539	 * ignore the boosting request, as the idle CPU runs this code
3540	 * with interrupts disabled and will complete the lock
3541	 * protected section without being interrupted. So there is no
3542	 * real need to boost.
3543	 */
3544	if (unlikely(p == rq->idle)) {
3545		WARN_ON(p != rq->curr);
3546		WARN_ON(p->pi_blocked_on);
3547		goto out_unlock;
3548	}
3549
3550	trace_sched_pi_setprio(p, prio);
3551	oldprio = p->prio;
3552	prev_class = p->sched_class;
3553	on_rq = p->on_rq;
3554	running = task_current(rq, p);
3555	if (on_rq)
3556		dequeue_task(rq, p, 0);
3557	if (running)
3558		p->sched_class->put_prev_task(rq, p);
3559
3560	if (rt_prio(prio))
3561		p->sched_class = &rt_sched_class;
3562	else
3563		p->sched_class = &fair_sched_class;
3564
3565	p->prio = prio;
3566
3567	if (running)
3568		p->sched_class->set_curr_task(rq);
3569	if (on_rq)
3570		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3571
3572	check_class_changed(rq, p, prev_class, oldprio);
3573out_unlock:
3574	__task_rq_unlock(rq);
3575}
3576#endif
3577void set_user_nice(struct task_struct *p, long nice)
3578{
3579	int old_prio, delta, on_rq;
3580	unsigned long flags;
3581	struct rq *rq;
3582
3583	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3584		return;
3585	/*
3586	 * We have to be careful, if called from sys_setpriority(),
3587	 * the task might be in the middle of scheduling on another CPU.
3588	 */
3589	rq = task_rq_lock(p, &flags);
3590	/*
3591	 * The RT priorities are set via sched_setscheduler(), but we still
3592	 * allow the 'normal' nice value to be set - but as expected
3593	 * it wont have any effect on scheduling until the task is
3594	 * SCHED_FIFO/SCHED_RR:
3595	 */
3596	if (task_has_rt_policy(p)) {
3597		p->static_prio = NICE_TO_PRIO(nice);
3598		goto out_unlock;
3599	}
3600	on_rq = p->on_rq;
3601	if (on_rq)
3602		dequeue_task(rq, p, 0);
3603
3604	p->static_prio = NICE_TO_PRIO(nice);
3605	set_load_weight(p);
3606	old_prio = p->prio;
3607	p->prio = effective_prio(p);
3608	delta = p->prio - old_prio;
3609
3610	if (on_rq) {
3611		enqueue_task(rq, p, 0);
3612		/*
3613		 * If the task increased its priority or is running and
3614		 * lowered its priority, then reschedule its CPU:
3615		 */
3616		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3617			resched_task(rq->curr);
3618	}
3619out_unlock:
3620	task_rq_unlock(rq, p, &flags);
3621}
3622EXPORT_SYMBOL(set_user_nice);
3623
3624/*
3625 * can_nice - check if a task can reduce its nice value
3626 * @p: task
3627 * @nice: nice value
3628 */
3629int can_nice(const struct task_struct *p, const int nice)
3630{
3631	/* convert nice value [19,-20] to rlimit style value [1,40] */
3632	int nice_rlim = 20 - nice;
3633
3634	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3635		capable(CAP_SYS_NICE));
3636}
3637
3638#ifdef __ARCH_WANT_SYS_NICE
3639
3640/*
3641 * sys_nice - change the priority of the current process.
3642 * @increment: priority increment
3643 *
3644 * sys_setpriority is a more generic, but much slower function that
3645 * does similar things.
3646 */
3647SYSCALL_DEFINE1(nice, int, increment)
3648{
3649	long nice, retval;
3650
3651	/*
3652	 * Setpriority might change our priority at the same moment.
3653	 * We don't have to worry. Conceptually one call occurs first
3654	 * and we have a single winner.
3655	 */
3656	if (increment < -40)
3657		increment = -40;
3658	if (increment > 40)
3659		increment = 40;
3660
3661	nice = TASK_NICE(current) + increment;
3662	if (nice < -20)
3663		nice = -20;
3664	if (nice > 19)
3665		nice = 19;
3666
3667	if (increment < 0 && !can_nice(current, nice))
3668		return -EPERM;
3669
3670	retval = security_task_setnice(current, nice);
3671	if (retval)
3672		return retval;
3673
3674	set_user_nice(current, nice);
3675	return 0;
3676}
3677
3678#endif
3679
3680/**
3681 * task_prio - return the priority value of a given task.
3682 * @p: the task in question.
3683 *
3684 * This is the priority value as seen by users in /proc.
3685 * RT tasks are offset by -200. Normal tasks are centered
3686 * around 0, value goes from -16 to +15.
3687 */
3688int task_prio(const struct task_struct *p)
3689{
3690	return p->prio - MAX_RT_PRIO;
3691}
3692
3693/**
3694 * task_nice - return the nice value of a given task.
3695 * @p: the task in question.
3696 */
3697int task_nice(const struct task_struct *p)
3698{
3699	return TASK_NICE(p);
3700}
3701EXPORT_SYMBOL(task_nice);
3702
3703/**
3704 * idle_cpu - is a given cpu idle currently?
3705 * @cpu: the processor in question.
3706 */
3707int idle_cpu(int cpu)
3708{
3709	struct rq *rq = cpu_rq(cpu);
3710
3711	if (rq->curr != rq->idle)
3712		return 0;
3713
3714	if (rq->nr_running)
3715		return 0;
3716
3717#ifdef CONFIG_SMP
3718	if (!llist_empty(&rq->wake_list))
3719		return 0;
3720#endif
3721
3722	return 1;
3723}
3724
3725/**
3726 * idle_task - return the idle task for a given cpu.
3727 * @cpu: the processor in question.
3728 */
3729struct task_struct *idle_task(int cpu)
3730{
3731	return cpu_rq(cpu)->idle;
3732}
3733
3734/**
3735 * find_process_by_pid - find a process with a matching PID value.
3736 * @pid: the pid in question.
3737 */
3738static struct task_struct *find_process_by_pid(pid_t pid)
3739{
3740	return pid ? find_task_by_vpid(pid) : current;
3741}
3742
3743/* Actually do priority change: must hold rq lock. */
3744static void
3745__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3746{
3747	p->policy = policy;
3748	p->rt_priority = prio;
3749	p->normal_prio = normal_prio(p);
3750	/* we are holding p->pi_lock already */
3751	p->prio = rt_mutex_getprio(p);
3752	if (rt_prio(p->prio))
3753		p->sched_class = &rt_sched_class;
3754	else
3755		p->sched_class = &fair_sched_class;
3756	set_load_weight(p);
3757}
3758
3759/*
3760 * check the target process has a UID that matches the current process's
3761 */
3762static bool check_same_owner(struct task_struct *p)
3763{
3764	const struct cred *cred = current_cred(), *pcred;
3765	bool match;
3766
3767	rcu_read_lock();
3768	pcred = __task_cred(p);
3769	match = (uid_eq(cred->euid, pcred->euid) ||
3770		 uid_eq(cred->euid, pcred->uid));
3771	rcu_read_unlock();
3772	return match;
3773}
3774
3775static int __sched_setscheduler(struct task_struct *p, int policy,
3776				const struct sched_param *param, bool user)
3777{
3778	int retval, oldprio, oldpolicy = -1, on_rq, running;
3779	unsigned long flags;
3780	const struct sched_class *prev_class;
3781	struct rq *rq;
3782	int reset_on_fork;
3783
3784	/* may grab non-irq protected spin_locks */
3785	BUG_ON(in_interrupt());
3786recheck:
3787	/* double check policy once rq lock held */
3788	if (policy < 0) {
3789		reset_on_fork = p->sched_reset_on_fork;
3790		policy = oldpolicy = p->policy;
3791	} else {
3792		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3793		policy &= ~SCHED_RESET_ON_FORK;
3794
3795		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3796				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3797				policy != SCHED_IDLE)
3798			return -EINVAL;
3799	}
3800
3801	/*
3802	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3803	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3804	 * SCHED_BATCH and SCHED_IDLE is 0.
3805	 */
3806	if (param->sched_priority < 0 ||
3807	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3808	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3809		return -EINVAL;
3810	if (rt_policy(policy) != (param->sched_priority != 0))
3811		return -EINVAL;
3812
3813	/*
3814	 * Allow unprivileged RT tasks to decrease priority:
3815	 */
3816	if (user && !capable(CAP_SYS_NICE)) {
3817		if (rt_policy(policy)) {
3818			unsigned long rlim_rtprio =
3819					task_rlimit(p, RLIMIT_RTPRIO);
3820
3821			/* can't set/change the rt policy */
3822			if (policy != p->policy && !rlim_rtprio)
3823				return -EPERM;
3824
3825			/* can't increase priority */
3826			if (param->sched_priority > p->rt_priority &&
3827			    param->sched_priority > rlim_rtprio)
3828				return -EPERM;
3829		}
3830
3831		/*
3832		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3833		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3834		 */
3835		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3836			if (!can_nice(p, TASK_NICE(p)))
3837				return -EPERM;
3838		}
3839
3840		/* can't change other user's priorities */
3841		if (!check_same_owner(p))
3842			return -EPERM;
3843
3844		/* Normal users shall not reset the sched_reset_on_fork flag */
3845		if (p->sched_reset_on_fork && !reset_on_fork)
3846			return -EPERM;
3847	}
3848
3849	if (user) {
3850		retval = security_task_setscheduler(p);
3851		if (retval)
3852			return retval;
3853	}
3854
3855	/*
3856	 * make sure no PI-waiters arrive (or leave) while we are
3857	 * changing the priority of the task:
3858	 *
3859	 * To be able to change p->policy safely, the appropriate
3860	 * runqueue lock must be held.
3861	 */
3862	rq = task_rq_lock(p, &flags);
3863
3864	/*
3865	 * Changing the policy of the stop threads its a very bad idea
3866	 */
3867	if (p == rq->stop) {
3868		task_rq_unlock(rq, p, &flags);
3869		return -EINVAL;
3870	}
3871
3872	/*
3873	 * If not changing anything there's no need to proceed further:
3874	 */
3875	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3876			param->sched_priority == p->rt_priority))) {
3877		task_rq_unlock(rq, p, &flags);
3878		return 0;
3879	}
3880
3881#ifdef CONFIG_RT_GROUP_SCHED
3882	if (user) {
3883		/*
3884		 * Do not allow realtime tasks into groups that have no runtime
3885		 * assigned.
3886		 */
3887		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3888				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3889				!task_group_is_autogroup(task_group(p))) {
3890			task_rq_unlock(rq, p, &flags);
3891			return -EPERM;
3892		}
3893	}
3894#endif
3895
3896	/* recheck policy now with rq lock held */
3897	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3898		policy = oldpolicy = -1;
3899		task_rq_unlock(rq, p, &flags);
3900		goto recheck;
3901	}
3902	on_rq = p->on_rq;
3903	running = task_current(rq, p);
3904	if (on_rq)
3905		dequeue_task(rq, p, 0);
3906	if (running)
3907		p->sched_class->put_prev_task(rq, p);
3908
3909	p->sched_reset_on_fork = reset_on_fork;
3910
3911	oldprio = p->prio;
3912	prev_class = p->sched_class;
3913	__setscheduler(rq, p, policy, param->sched_priority);
3914
3915	if (running)
3916		p->sched_class->set_curr_task(rq);
3917	if (on_rq)
3918		enqueue_task(rq, p, 0);
3919
3920	check_class_changed(rq, p, prev_class, oldprio);
3921	task_rq_unlock(rq, p, &flags);
3922
3923	rt_mutex_adjust_pi(p);
3924
3925	return 0;
3926}
3927
3928/**
3929 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3930 * @p: the task in question.
3931 * @policy: new policy.
3932 * @param: structure containing the new RT priority.
3933 *
3934 * NOTE that the task may be already dead.
3935 */
3936int sched_setscheduler(struct task_struct *p, int policy,
3937		       const struct sched_param *param)
3938{
3939	return __sched_setscheduler(p, policy, param, true);
3940}
3941EXPORT_SYMBOL_GPL(sched_setscheduler);
3942
3943/**
3944 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3945 * @p: the task in question.
3946 * @policy: new policy.
3947 * @param: structure containing the new RT priority.
3948 *
3949 * Just like sched_setscheduler, only don't bother checking if the
3950 * current context has permission.  For example, this is needed in
3951 * stop_machine(): we create temporary high priority worker threads,
3952 * but our caller might not have that capability.
3953 */
3954int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3955			       const struct sched_param *param)
3956{
3957	return __sched_setscheduler(p, policy, param, false);
3958}
3959
3960static int
3961do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3962{
3963	struct sched_param lparam;
3964	struct task_struct *p;
3965	int retval;
3966
3967	if (!param || pid < 0)
3968		return -EINVAL;
3969	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3970		return -EFAULT;
3971
3972	rcu_read_lock();
3973	retval = -ESRCH;
3974	p = find_process_by_pid(pid);
3975	if (p != NULL)
3976		retval = sched_setscheduler(p, policy, &lparam);
3977	rcu_read_unlock();
3978
3979	return retval;
3980}
3981
3982/**
3983 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3984 * @pid: the pid in question.
3985 * @policy: new policy.
3986 * @param: structure containing the new RT priority.
3987 */
3988SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3989		struct sched_param __user *, param)
3990{
3991	/* negative values for policy are not valid */
3992	if (policy < 0)
3993		return -EINVAL;
3994
3995	return do_sched_setscheduler(pid, policy, param);
3996}
3997
3998/**
3999 * sys_sched_setparam - set/change the RT priority of a thread
4000 * @pid: the pid in question.
4001 * @param: structure containing the new RT priority.
4002 */
4003SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4004{
4005	return do_sched_setscheduler(pid, -1, param);
4006}
4007
4008/**
4009 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4010 * @pid: the pid in question.
4011 */
4012SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4013{
4014	struct task_struct *p;
4015	int retval;
4016
4017	if (pid < 0)
4018		return -EINVAL;
4019
4020	retval = -ESRCH;
4021	rcu_read_lock();
4022	p = find_process_by_pid(pid);
4023	if (p) {
4024		retval = security_task_getscheduler(p);
4025		if (!retval)
4026			retval = p->policy
4027				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4028	}
4029	rcu_read_unlock();
4030	return retval;
4031}
4032
4033/**
4034 * sys_sched_getparam - get the RT priority of a thread
4035 * @pid: the pid in question.
4036 * @param: structure containing the RT priority.
4037 */
4038SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4039{
4040	struct sched_param lp;
4041	struct task_struct *p;
4042	int retval;
4043
4044	if (!param || pid < 0)
4045		return -EINVAL;
4046
4047	rcu_read_lock();
4048	p = find_process_by_pid(pid);
4049	retval = -ESRCH;
4050	if (!p)
4051		goto out_unlock;
4052
4053	retval = security_task_getscheduler(p);
4054	if (retval)
4055		goto out_unlock;
4056
4057	lp.sched_priority = p->rt_priority;
4058	rcu_read_unlock();
4059
4060	/*
4061	 * This one might sleep, we cannot do it with a spinlock held ...
4062	 */
4063	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4064
4065	return retval;
4066
4067out_unlock:
4068	rcu_read_unlock();
4069	return retval;
4070}
4071
4072long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4073{
4074	cpumask_var_t cpus_allowed, new_mask;
4075	struct task_struct *p;
4076	int retval;
4077
4078	get_online_cpus();
4079	rcu_read_lock();
4080
4081	p = find_process_by_pid(pid);
4082	if (!p) {
4083		rcu_read_unlock();
4084		put_online_cpus();
4085		return -ESRCH;
4086	}
4087
4088	/* Prevent p going away */
4089	get_task_struct(p);
4090	rcu_read_unlock();
4091
4092	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4093		retval = -ENOMEM;
4094		goto out_put_task;
4095	}
4096	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4097		retval = -ENOMEM;
4098		goto out_free_cpus_allowed;
4099	}
4100	retval = -EPERM;
4101	if (!check_same_owner(p)) {
4102		rcu_read_lock();
4103		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4104			rcu_read_unlock();
4105			goto out_unlock;
4106		}
4107		rcu_read_unlock();
4108	}
4109
4110	retval = security_task_setscheduler(p);
4111	if (retval)
4112		goto out_unlock;
4113
4114	cpuset_cpus_allowed(p, cpus_allowed);
4115	cpumask_and(new_mask, in_mask, cpus_allowed);
4116again:
4117	retval = set_cpus_allowed_ptr(p, new_mask);
4118
4119	if (!retval) {
4120		cpuset_cpus_allowed(p, cpus_allowed);
4121		if (!cpumask_subset(new_mask, cpus_allowed)) {
4122			/*
4123			 * We must have raced with a concurrent cpuset
4124			 * update. Just reset the cpus_allowed to the
4125			 * cpuset's cpus_allowed
4126			 */
4127			cpumask_copy(new_mask, cpus_allowed);
4128			goto again;
4129		}
4130	}
4131out_unlock:
4132	free_cpumask_var(new_mask);
4133out_free_cpus_allowed:
4134	free_cpumask_var(cpus_allowed);
4135out_put_task:
4136	put_task_struct(p);
4137	put_online_cpus();
4138	return retval;
4139}
4140
4141static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4142			     struct cpumask *new_mask)
4143{
4144	if (len < cpumask_size())
4145		cpumask_clear(new_mask);
4146	else if (len > cpumask_size())
4147		len = cpumask_size();
4148
4149	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4150}
4151
4152/**
4153 * sys_sched_setaffinity - set the cpu affinity of a process
4154 * @pid: pid of the process
4155 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4156 * @user_mask_ptr: user-space pointer to the new cpu mask
4157 */
4158SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4159		unsigned long __user *, user_mask_ptr)
4160{
4161	cpumask_var_t new_mask;
4162	int retval;
4163
4164	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4165		return -ENOMEM;
4166
4167	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4168	if (retval == 0)
4169		retval = sched_setaffinity(pid, new_mask);
4170	free_cpumask_var(new_mask);
4171	return retval;
4172}
4173
4174long sched_getaffinity(pid_t pid, struct cpumask *mask)
4175{
4176	struct task_struct *p;
4177	unsigned long flags;
4178	int retval;
4179
4180	get_online_cpus();
4181	rcu_read_lock();
4182
4183	retval = -ESRCH;
4184	p = find_process_by_pid(pid);
4185	if (!p)
4186		goto out_unlock;
4187
4188	retval = security_task_getscheduler(p);
4189	if (retval)
4190		goto out_unlock;
4191
4192	raw_spin_lock_irqsave(&p->pi_lock, flags);
4193	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4194	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4195
4196out_unlock:
4197	rcu_read_unlock();
4198	put_online_cpus();
4199
4200	return retval;
4201}
4202
4203/**
4204 * sys_sched_getaffinity - get the cpu affinity of a process
4205 * @pid: pid of the process
4206 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4207 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4208 */
4209SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4210		unsigned long __user *, user_mask_ptr)
4211{
4212	int ret;
4213	cpumask_var_t mask;
4214
4215	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4216		return -EINVAL;
4217	if (len & (sizeof(unsigned long)-1))
4218		return -EINVAL;
4219
4220	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4221		return -ENOMEM;
4222
4223	ret = sched_getaffinity(pid, mask);
4224	if (ret == 0) {
4225		size_t retlen = min_t(size_t, len, cpumask_size());
4226
4227		if (copy_to_user(user_mask_ptr, mask, retlen))
4228			ret = -EFAULT;
4229		else
4230			ret = retlen;
4231	}
4232	free_cpumask_var(mask);
4233
4234	return ret;
4235}
4236
4237/**
4238 * sys_sched_yield - yield the current processor to other threads.
4239 *
4240 * This function yields the current CPU to other tasks. If there are no
4241 * other threads running on this CPU then this function will return.
4242 */
4243SYSCALL_DEFINE0(sched_yield)
4244{
4245	struct rq *rq = this_rq_lock();
4246
4247	schedstat_inc(rq, yld_count);
4248	current->sched_class->yield_task(rq);
4249
4250	/*
4251	 * Since we are going to call schedule() anyway, there's
4252	 * no need to preempt or enable interrupts:
4253	 */
4254	__release(rq->lock);
4255	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4256	do_raw_spin_unlock(&rq->lock);
4257	sched_preempt_enable_no_resched();
4258
4259	schedule();
4260
4261	return 0;
4262}
4263
4264static inline int should_resched(void)
4265{
4266	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4267}
4268
4269static void __cond_resched(void)
4270{
4271	add_preempt_count(PREEMPT_ACTIVE);
4272	__schedule();
4273	sub_preempt_count(PREEMPT_ACTIVE);
4274}
4275
4276int __sched _cond_resched(void)
4277{
4278	if (should_resched()) {
4279		__cond_resched();
4280		return 1;
4281	}
4282	return 0;
4283}
4284EXPORT_SYMBOL(_cond_resched);
4285
4286/*
4287 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4288 * call schedule, and on return reacquire the lock.
4289 *
4290 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4291 * operations here to prevent schedule() from being called twice (once via
4292 * spin_unlock(), once by hand).
4293 */
4294int __cond_resched_lock(spinlock_t *lock)
4295{
4296	int resched = should_resched();
4297	int ret = 0;
4298
4299	lockdep_assert_held(lock);
4300
4301	if (spin_needbreak(lock) || resched) {
4302		spin_unlock(lock);
4303		if (resched)
4304			__cond_resched();
4305		else
4306			cpu_relax();
4307		ret = 1;
4308		spin_lock(lock);
4309	}
4310	return ret;
4311}
4312EXPORT_SYMBOL(__cond_resched_lock);
4313
4314int __sched __cond_resched_softirq(void)
4315{
4316	BUG_ON(!in_softirq());
4317
4318	if (should_resched()) {
4319		local_bh_enable();
4320		__cond_resched();
4321		local_bh_disable();
4322		return 1;
4323	}
4324	return 0;
4325}
4326EXPORT_SYMBOL(__cond_resched_softirq);
4327
4328/**
4329 * yield - yield the current processor to other threads.
4330 *
4331 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4332 *
4333 * The scheduler is at all times free to pick the calling task as the most
4334 * eligible task to run, if removing the yield() call from your code breaks
4335 * it, its already broken.
4336 *
4337 * Typical broken usage is:
4338 *
4339 * while (!event)
4340 * 	yield();
4341 *
4342 * where one assumes that yield() will let 'the other' process run that will
4343 * make event true. If the current task is a SCHED_FIFO task that will never
4344 * happen. Never use yield() as a progress guarantee!!
4345 *
4346 * If you want to use yield() to wait for something, use wait_event().
4347 * If you want to use yield() to be 'nice' for others, use cond_resched().
4348 * If you still want to use yield(), do not!
4349 */
4350void __sched yield(void)
4351{
4352	set_current_state(TASK_RUNNING);
4353	sys_sched_yield();
4354}
4355EXPORT_SYMBOL(yield);
4356
4357/**
4358 * yield_to - yield the current processor to another thread in
4359 * your thread group, or accelerate that thread toward the
4360 * processor it's on.
4361 * @p: target task
4362 * @preempt: whether task preemption is allowed or not
4363 *
4364 * It's the caller's job to ensure that the target task struct
4365 * can't go away on us before we can do any checks.
4366 *
4367 * Returns true if we indeed boosted the target task.
4368 */
4369bool __sched yield_to(struct task_struct *p, bool preempt)
4370{
4371	struct task_struct *curr = current;
4372	struct rq *rq, *p_rq;
4373	unsigned long flags;
4374	int yielded = 0;
4375
4376	local_irq_save(flags);
4377	rq = this_rq();
4378
4379again:
4380	p_rq = task_rq(p);
4381	double_rq_lock(rq, p_rq);
4382	while (task_rq(p) != p_rq) {
4383		double_rq_unlock(rq, p_rq);
4384		goto again;
4385	}
4386
4387	if (!curr->sched_class->yield_to_task)
4388		goto out;
4389
4390	if (curr->sched_class != p->sched_class)
4391		goto out;
4392
4393	if (task_running(p_rq, p) || p->state)
4394		goto out;
4395
4396	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4397	if (yielded) {
4398		schedstat_inc(rq, yld_count);
4399		/*
4400		 * Make p's CPU reschedule; pick_next_entity takes care of
4401		 * fairness.
4402		 */
4403		if (preempt && rq != p_rq)
4404			resched_task(p_rq->curr);
4405	}
4406
4407out:
4408	double_rq_unlock(rq, p_rq);
4409	local_irq_restore(flags);
4410
4411	if (yielded)
4412		schedule();
4413
4414	return yielded;
4415}
4416EXPORT_SYMBOL_GPL(yield_to);
4417
4418/*
4419 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4420 * that process accounting knows that this is a task in IO wait state.
4421 */
4422void __sched io_schedule(void)
4423{
4424	struct rq *rq = raw_rq();
4425
4426	delayacct_blkio_start();
4427	atomic_inc(&rq->nr_iowait);
4428	blk_flush_plug(current);
4429	current->in_iowait = 1;
4430	schedule();
4431	current->in_iowait = 0;
4432	atomic_dec(&rq->nr_iowait);
4433	delayacct_blkio_end();
4434}
4435EXPORT_SYMBOL(io_schedule);
4436
4437long __sched io_schedule_timeout(long timeout)
4438{
4439	struct rq *rq = raw_rq();
4440	long ret;
4441
4442	delayacct_blkio_start();
4443	atomic_inc(&rq->nr_iowait);
4444	blk_flush_plug(current);
4445	current->in_iowait = 1;
4446	ret = schedule_timeout(timeout);
4447	current->in_iowait = 0;
4448	atomic_dec(&rq->nr_iowait);
4449	delayacct_blkio_end();
4450	return ret;
4451}
4452
4453/**
4454 * sys_sched_get_priority_max - return maximum RT priority.
4455 * @policy: scheduling class.
4456 *
4457 * this syscall returns the maximum rt_priority that can be used
4458 * by a given scheduling class.
4459 */
4460SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4461{
4462	int ret = -EINVAL;
4463
4464	switch (policy) {
4465	case SCHED_FIFO:
4466	case SCHED_RR:
4467		ret = MAX_USER_RT_PRIO-1;
4468		break;
4469	case SCHED_NORMAL:
4470	case SCHED_BATCH:
4471	case SCHED_IDLE:
4472		ret = 0;
4473		break;
4474	}
4475	return ret;
4476}
4477
4478/**
4479 * sys_sched_get_priority_min - return minimum RT priority.
4480 * @policy: scheduling class.
4481 *
4482 * this syscall returns the minimum rt_priority that can be used
4483 * by a given scheduling class.
4484 */
4485SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4486{
4487	int ret = -EINVAL;
4488
4489	switch (policy) {
4490	case SCHED_FIFO:
4491	case SCHED_RR:
4492		ret = 1;
4493		break;
4494	case SCHED_NORMAL:
4495	case SCHED_BATCH:
4496	case SCHED_IDLE:
4497		ret = 0;
4498	}
4499	return ret;
4500}
4501
4502/**
4503 * sys_sched_rr_get_interval - return the default timeslice of a process.
4504 * @pid: pid of the process.
4505 * @interval: userspace pointer to the timeslice value.
4506 *
4507 * this syscall writes the default timeslice value of a given process
4508 * into the user-space timespec buffer. A value of '0' means infinity.
4509 */
4510SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4511		struct timespec __user *, interval)
4512{
4513	struct task_struct *p;
4514	unsigned int time_slice;
4515	unsigned long flags;
4516	struct rq *rq;
4517	int retval;
4518	struct timespec t;
4519
4520	if (pid < 0)
4521		return -EINVAL;
4522
4523	retval = -ESRCH;
4524	rcu_read_lock();
4525	p = find_process_by_pid(pid);
4526	if (!p)
4527		goto out_unlock;
4528
4529	retval = security_task_getscheduler(p);
4530	if (retval)
4531		goto out_unlock;
4532
4533	rq = task_rq_lock(p, &flags);
4534	time_slice = p->sched_class->get_rr_interval(rq, p);
4535	task_rq_unlock(rq, p, &flags);
4536
4537	rcu_read_unlock();
4538	jiffies_to_timespec(time_slice, &t);
4539	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4540	return retval;
4541
4542out_unlock:
4543	rcu_read_unlock();
4544	return retval;
4545}
4546
4547static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4548
4549void sched_show_task(struct task_struct *p)
4550{
4551	unsigned long free = 0;
4552	int ppid;
4553	unsigned state;
4554
4555	state = p->state ? __ffs(p->state) + 1 : 0;
4556	printk(KERN_INFO "%-15.15s %c", p->comm,
4557		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4558#if BITS_PER_LONG == 32
4559	if (state == TASK_RUNNING)
4560		printk(KERN_CONT " running  ");
4561	else
4562		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4563#else
4564	if (state == TASK_RUNNING)
4565		printk(KERN_CONT "  running task    ");
4566	else
4567		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4568#endif
4569#ifdef CONFIG_DEBUG_STACK_USAGE
4570	free = stack_not_used(p);
4571#endif
4572	rcu_read_lock();
4573	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4574	rcu_read_unlock();
4575	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4576		task_pid_nr(p), ppid,
4577		(unsigned long)task_thread_info(p)->flags);
4578
4579	show_stack(p, NULL);
4580}
4581
4582void show_state_filter(unsigned long state_filter)
4583{
4584	struct task_struct *g, *p;
4585
4586#if BITS_PER_LONG == 32
4587	printk(KERN_INFO
4588		"  task                PC stack   pid father\n");
4589#else
4590	printk(KERN_INFO
4591		"  task                        PC stack   pid father\n");
4592#endif
4593	rcu_read_lock();
4594	do_each_thread(g, p) {
4595		/*
4596		 * reset the NMI-timeout, listing all files on a slow
4597		 * console might take a lot of time:
4598		 */
4599		touch_nmi_watchdog();
4600		if (!state_filter || (p->state & state_filter))
4601			sched_show_task(p);
4602	} while_each_thread(g, p);
4603
4604	touch_all_softlockup_watchdogs();
4605
4606#ifdef CONFIG_SCHED_DEBUG
4607	sysrq_sched_debug_show();
4608#endif
4609	rcu_read_unlock();
4610	/*
4611	 * Only show locks if all tasks are dumped:
4612	 */
4613	if (!state_filter)
4614		debug_show_all_locks();
4615}
4616
4617void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4618{
4619	idle->sched_class = &idle_sched_class;
4620}
4621
4622/**
4623 * init_idle - set up an idle thread for a given CPU
4624 * @idle: task in question
4625 * @cpu: cpu the idle task belongs to
4626 *
4627 * NOTE: this function does not set the idle thread's NEED_RESCHED
4628 * flag, to make booting more robust.
4629 */
4630void __cpuinit init_idle(struct task_struct *idle, int cpu)
4631{
4632	struct rq *rq = cpu_rq(cpu);
4633	unsigned long flags;
4634
4635	raw_spin_lock_irqsave(&rq->lock, flags);
4636
4637	__sched_fork(idle);
4638	idle->state = TASK_RUNNING;
4639	idle->se.exec_start = sched_clock();
4640
4641	do_set_cpus_allowed(idle, cpumask_of(cpu));
4642	/*
4643	 * We're having a chicken and egg problem, even though we are
4644	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4645	 * lockdep check in task_group() will fail.
4646	 *
4647	 * Similar case to sched_fork(). / Alternatively we could
4648	 * use task_rq_lock() here and obtain the other rq->lock.
4649	 *
4650	 * Silence PROVE_RCU
4651	 */
4652	rcu_read_lock();
4653	__set_task_cpu(idle, cpu);
4654	rcu_read_unlock();
4655
4656	rq->curr = rq->idle = idle;
4657#if defined(CONFIG_SMP)
4658	idle->on_cpu = 1;
4659#endif
4660	raw_spin_unlock_irqrestore(&rq->lock, flags);
4661
4662	/* Set the preempt count _outside_ the spinlocks! */
4663	task_thread_info(idle)->preempt_count = 0;
4664
4665	/*
4666	 * The idle tasks have their own, simple scheduling class:
4667	 */
4668	idle->sched_class = &idle_sched_class;
4669	ftrace_graph_init_idle_task(idle, cpu);
4670#if defined(CONFIG_SMP)
4671	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4672#endif
4673}
4674
4675#ifdef CONFIG_SMP
4676void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4677{
4678	if (p->sched_class && p->sched_class->set_cpus_allowed)
4679		p->sched_class->set_cpus_allowed(p, new_mask);
4680
4681	cpumask_copy(&p->cpus_allowed, new_mask);
4682	p->nr_cpus_allowed = cpumask_weight(new_mask);
4683}
4684
4685/*
4686 * This is how migration works:
4687 *
4688 * 1) we invoke migration_cpu_stop() on the target CPU using
4689 *    stop_one_cpu().
4690 * 2) stopper starts to run (implicitly forcing the migrated thread
4691 *    off the CPU)
4692 * 3) it checks whether the migrated task is still in the wrong runqueue.
4693 * 4) if it's in the wrong runqueue then the migration thread removes
4694 *    it and puts it into the right queue.
4695 * 5) stopper completes and stop_one_cpu() returns and the migration
4696 *    is done.
4697 */
4698
4699/*
4700 * Change a given task's CPU affinity. Migrate the thread to a
4701 * proper CPU and schedule it away if the CPU it's executing on
4702 * is removed from the allowed bitmask.
4703 *
4704 * NOTE: the caller must have a valid reference to the task, the
4705 * task must not exit() & deallocate itself prematurely. The
4706 * call is not atomic; no spinlocks may be held.
4707 */
4708int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4709{
4710	unsigned long flags;
4711	struct rq *rq;
4712	unsigned int dest_cpu;
4713	int ret = 0;
4714
4715	rq = task_rq_lock(p, &flags);
4716
4717	if (cpumask_equal(&p->cpus_allowed, new_mask))
4718		goto out;
4719
4720	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4721		ret = -EINVAL;
4722		goto out;
4723	}
4724
4725	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4726		ret = -EINVAL;
4727		goto out;
4728	}
4729
4730	do_set_cpus_allowed(p, new_mask);
4731
4732	/* Can the task run on the task's current CPU? If so, we're done */
4733	if (cpumask_test_cpu(task_cpu(p), new_mask))
4734		goto out;
4735
4736	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4737	if (p->on_rq) {
4738		struct migration_arg arg = { p, dest_cpu };
4739		/* Need help from migration thread: drop lock and wait. */
4740		task_rq_unlock(rq, p, &flags);
4741		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4742		tlb_migrate_finish(p->mm);
4743		return 0;
4744	}
4745out:
4746	task_rq_unlock(rq, p, &flags);
4747
4748	return ret;
4749}
4750EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4751
4752/*
4753 * Move (not current) task off this cpu, onto dest cpu. We're doing
4754 * this because either it can't run here any more (set_cpus_allowed()
4755 * away from this CPU, or CPU going down), or because we're
4756 * attempting to rebalance this task on exec (sched_exec).
4757 *
4758 * So we race with normal scheduler movements, but that's OK, as long
4759 * as the task is no longer on this CPU.
4760 *
4761 * Returns non-zero if task was successfully migrated.
4762 */
4763static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4764{
4765	struct rq *rq_dest, *rq_src;
4766	int ret = 0;
4767
4768	if (unlikely(!cpu_active(dest_cpu)))
4769		return ret;
4770
4771	rq_src = cpu_rq(src_cpu);
4772	rq_dest = cpu_rq(dest_cpu);
4773
4774	raw_spin_lock(&p->pi_lock);
4775	double_rq_lock(rq_src, rq_dest);
4776	/* Already moved. */
4777	if (task_cpu(p) != src_cpu)
4778		goto done;
4779	/* Affinity changed (again). */
4780	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4781		goto fail;
4782
4783	/*
4784	 * If we're not on a rq, the next wake-up will ensure we're
4785	 * placed properly.
4786	 */
4787	if (p->on_rq) {
4788		dequeue_task(rq_src, p, 0);
4789		set_task_cpu(p, dest_cpu);
4790		enqueue_task(rq_dest, p, 0);
4791		check_preempt_curr(rq_dest, p, 0);
4792	}
4793done:
4794	ret = 1;
4795fail:
4796	double_rq_unlock(rq_src, rq_dest);
4797	raw_spin_unlock(&p->pi_lock);
4798	return ret;
4799}
4800
4801/*
4802 * migration_cpu_stop - this will be executed by a highprio stopper thread
4803 * and performs thread migration by bumping thread off CPU then
4804 * 'pushing' onto another runqueue.
4805 */
4806static int migration_cpu_stop(void *data)
4807{
4808	struct migration_arg *arg = data;
4809
4810	/*
4811	 * The original target cpu might have gone down and we might
4812	 * be on another cpu but it doesn't matter.
4813	 */
4814	local_irq_disable();
4815	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4816	local_irq_enable();
4817	return 0;
4818}
4819
4820#ifdef CONFIG_HOTPLUG_CPU
4821
4822/*
4823 * Ensures that the idle task is using init_mm right before its cpu goes
4824 * offline.
4825 */
4826void idle_task_exit(void)
4827{
4828	struct mm_struct *mm = current->active_mm;
4829
4830	BUG_ON(cpu_online(smp_processor_id()));
4831
4832	if (mm != &init_mm)
4833		switch_mm(mm, &init_mm, current);
4834	mmdrop(mm);
4835}
4836
4837/*
4838 * Since this CPU is going 'away' for a while, fold any nr_active delta
4839 * we might have. Assumes we're called after migrate_tasks() so that the
4840 * nr_active count is stable.
4841 *
4842 * Also see the comment "Global load-average calculations".
4843 */
4844static void calc_load_migrate(struct rq *rq)
4845{
4846	long delta = calc_load_fold_active(rq);
4847	if (delta)
4848		atomic_long_add(delta, &calc_load_tasks);
4849}
4850
4851/*
4852 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4853 * try_to_wake_up()->select_task_rq().
4854 *
4855 * Called with rq->lock held even though we'er in stop_machine() and
4856 * there's no concurrency possible, we hold the required locks anyway
4857 * because of lock validation efforts.
4858 */
4859static void migrate_tasks(unsigned int dead_cpu)
4860{
4861	struct rq *rq = cpu_rq(dead_cpu);
4862	struct task_struct *next, *stop = rq->stop;
4863	int dest_cpu;
4864
4865	/*
4866	 * Fudge the rq selection such that the below task selection loop
4867	 * doesn't get stuck on the currently eligible stop task.
4868	 *
4869	 * We're currently inside stop_machine() and the rq is either stuck
4870	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4871	 * either way we should never end up calling schedule() until we're
4872	 * done here.
4873	 */
4874	rq->stop = NULL;
4875
4876	for ( ; ; ) {
4877		/*
4878		 * There's this thread running, bail when that's the only
4879		 * remaining thread.
4880		 */
4881		if (rq->nr_running == 1)
4882			break;
4883
4884		next = pick_next_task(rq);
4885		BUG_ON(!next);
4886		next->sched_class->put_prev_task(rq, next);
4887
4888		/* Find suitable destination for @next, with force if needed. */
4889		dest_cpu = select_fallback_rq(dead_cpu, next);
4890		raw_spin_unlock(&rq->lock);
4891
4892		__migrate_task(next, dead_cpu, dest_cpu);
4893
4894		raw_spin_lock(&rq->lock);
4895	}
4896
4897	rq->stop = stop;
4898}
4899
4900#endif /* CONFIG_HOTPLUG_CPU */
4901
4902#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4903
4904static struct ctl_table sd_ctl_dir[] = {
4905	{
4906		.procname	= "sched_domain",
4907		.mode		= 0555,
4908	},
4909	{}
4910};
4911
4912static struct ctl_table sd_ctl_root[] = {
4913	{
4914		.procname	= "kernel",
4915		.mode		= 0555,
4916		.child		= sd_ctl_dir,
4917	},
4918	{}
4919};
4920
4921static struct ctl_table *sd_alloc_ctl_entry(int n)
4922{
4923	struct ctl_table *entry =
4924		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4925
4926	return entry;
4927}
4928
4929static void sd_free_ctl_entry(struct ctl_table **tablep)
4930{
4931	struct ctl_table *entry;
4932
4933	/*
4934	 * In the intermediate directories, both the child directory and
4935	 * procname are dynamically allocated and could fail but the mode
4936	 * will always be set. In the lowest directory the names are
4937	 * static strings and all have proc handlers.
4938	 */
4939	for (entry = *tablep; entry->mode; entry++) {
4940		if (entry->child)
4941			sd_free_ctl_entry(&entry->child);
4942		if (entry->proc_handler == NULL)
4943			kfree(entry->procname);
4944	}
4945
4946	kfree(*tablep);
4947	*tablep = NULL;
4948}
4949
4950static int min_load_idx = 0;
4951static int max_load_idx = CPU_LOAD_IDX_MAX;
4952
4953static void
4954set_table_entry(struct ctl_table *entry,
4955		const char *procname, void *data, int maxlen,
4956		umode_t mode, proc_handler *proc_handler,
4957		bool load_idx)
4958{
4959	entry->procname = procname;
4960	entry->data = data;
4961	entry->maxlen = maxlen;
4962	entry->mode = mode;
4963	entry->proc_handler = proc_handler;
4964
4965	if (load_idx) {
4966		entry->extra1 = &min_load_idx;
4967		entry->extra2 = &max_load_idx;
4968	}
4969}
4970
4971static struct ctl_table *
4972sd_alloc_ctl_domain_table(struct sched_domain *sd)
4973{
4974	struct ctl_table *table = sd_alloc_ctl_entry(13);
4975
4976	if (table == NULL)
4977		return NULL;
4978
4979	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4980		sizeof(long), 0644, proc_doulongvec_minmax, false);
4981	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4982		sizeof(long), 0644, proc_doulongvec_minmax, false);
4983	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4984		sizeof(int), 0644, proc_dointvec_minmax, true);
4985	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4986		sizeof(int), 0644, proc_dointvec_minmax, true);
4987	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4988		sizeof(int), 0644, proc_dointvec_minmax, true);
4989	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4990		sizeof(int), 0644, proc_dointvec_minmax, true);
4991	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4992		sizeof(int), 0644, proc_dointvec_minmax, true);
4993	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4994		sizeof(int), 0644, proc_dointvec_minmax, false);
4995	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4996		sizeof(int), 0644, proc_dointvec_minmax, false);
4997	set_table_entry(&table[9], "cache_nice_tries",
4998		&sd->cache_nice_tries,
4999		sizeof(int), 0644, proc_dointvec_minmax, false);
5000	set_table_entry(&table[10], "flags", &sd->flags,
5001		sizeof(int), 0644, proc_dointvec_minmax, false);
5002	set_table_entry(&table[11], "name", sd->name,
5003		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5004	/* &table[12] is terminator */
5005
5006	return table;
5007}
5008
5009static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5010{
5011	struct ctl_table *entry, *table;
5012	struct sched_domain *sd;
5013	int domain_num = 0, i;
5014	char buf[32];
5015
5016	for_each_domain(cpu, sd)
5017		domain_num++;
5018	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5019	if (table == NULL)
5020		return NULL;
5021
5022	i = 0;
5023	for_each_domain(cpu, sd) {
5024		snprintf(buf, 32, "domain%d", i);
5025		entry->procname = kstrdup(buf, GFP_KERNEL);
5026		entry->mode = 0555;
5027		entry->child = sd_alloc_ctl_domain_table(sd);
5028		entry++;
5029		i++;
5030	}
5031	return table;
5032}
5033
5034static struct ctl_table_header *sd_sysctl_header;
5035static void register_sched_domain_sysctl(void)
5036{
5037	int i, cpu_num = num_possible_cpus();
5038	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5039	char buf[32];
5040
5041	WARN_ON(sd_ctl_dir[0].child);
5042	sd_ctl_dir[0].child = entry;
5043
5044	if (entry == NULL)
5045		return;
5046
5047	for_each_possible_cpu(i) {
5048		snprintf(buf, 32, "cpu%d", i);
5049		entry->procname = kstrdup(buf, GFP_KERNEL);
5050		entry->mode = 0555;
5051		entry->child = sd_alloc_ctl_cpu_table(i);
5052		entry++;
5053	}
5054
5055	WARN_ON(sd_sysctl_header);
5056	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5057}
5058
5059/* may be called multiple times per register */
5060static void unregister_sched_domain_sysctl(void)
5061{
5062	if (sd_sysctl_header)
5063		unregister_sysctl_table(sd_sysctl_header);
5064	sd_sysctl_header = NULL;
5065	if (sd_ctl_dir[0].child)
5066		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5067}
5068#else
5069static void register_sched_domain_sysctl(void)
5070{
5071}
5072static void unregister_sched_domain_sysctl(void)
5073{
5074}
5075#endif
5076
5077static void set_rq_online(struct rq *rq)
5078{
5079	if (!rq->online) {
5080		const struct sched_class *class;
5081
5082		cpumask_set_cpu(rq->cpu, rq->rd->online);
5083		rq->online = 1;
5084
5085		for_each_class(class) {
5086			if (class->rq_online)
5087				class->rq_online(rq);
5088		}
5089	}
5090}
5091
5092static void set_rq_offline(struct rq *rq)
5093{
5094	if (rq->online) {
5095		const struct sched_class *class;
5096
5097		for_each_class(class) {
5098			if (class->rq_offline)
5099				class->rq_offline(rq);
5100		}
5101
5102		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5103		rq->online = 0;
5104	}
5105}
5106
5107/*
5108 * migration_call - callback that gets triggered when a CPU is added.
5109 * Here we can start up the necessary migration thread for the new CPU.
5110 */
5111static int __cpuinit
5112migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5113{
5114	int cpu = (long)hcpu;
5115	unsigned long flags;
5116	struct rq *rq = cpu_rq(cpu);
5117
5118	switch (action & ~CPU_TASKS_FROZEN) {
5119
5120	case CPU_UP_PREPARE:
5121		rq->calc_load_update = calc_load_update;
5122		break;
5123
5124	case CPU_ONLINE:
5125		/* Update our root-domain */
5126		raw_spin_lock_irqsave(&rq->lock, flags);
5127		if (rq->rd) {
5128			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5129
5130			set_rq_online(rq);
5131		}
5132		raw_spin_unlock_irqrestore(&rq->lock, flags);
5133		break;
5134
5135#ifdef CONFIG_HOTPLUG_CPU
5136	case CPU_DYING:
5137		sched_ttwu_pending();
5138		/* Update our root-domain */
5139		raw_spin_lock_irqsave(&rq->lock, flags);
5140		if (rq->rd) {
5141			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5142			set_rq_offline(rq);
5143		}
5144		migrate_tasks(cpu);
5145		BUG_ON(rq->nr_running != 1); /* the migration thread */
5146		raw_spin_unlock_irqrestore(&rq->lock, flags);
5147		break;
5148
5149	case CPU_DEAD:
5150		calc_load_migrate(rq);
5151		break;
5152#endif
5153	}
5154
5155	update_max_interval();
5156
5157	return NOTIFY_OK;
5158}
5159
5160/*
5161 * Register at high priority so that task migration (migrate_all_tasks)
5162 * happens before everything else.  This has to be lower priority than
5163 * the notifier in the perf_event subsystem, though.
5164 */
5165static struct notifier_block __cpuinitdata migration_notifier = {
5166	.notifier_call = migration_call,
5167	.priority = CPU_PRI_MIGRATION,
5168};
5169
5170static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5171				      unsigned long action, void *hcpu)
5172{
5173	switch (action & ~CPU_TASKS_FROZEN) {
5174	case CPU_STARTING:
5175	case CPU_DOWN_FAILED:
5176		set_cpu_active((long)hcpu, true);
5177		return NOTIFY_OK;
5178	default:
5179		return NOTIFY_DONE;
5180	}
5181}
5182
5183static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5184					unsigned long action, void *hcpu)
5185{
5186	switch (action & ~CPU_TASKS_FROZEN) {
5187	case CPU_DOWN_PREPARE:
5188		set_cpu_active((long)hcpu, false);
5189		return NOTIFY_OK;
5190	default:
5191		return NOTIFY_DONE;
5192	}
5193}
5194
5195static int __init migration_init(void)
5196{
5197	void *cpu = (void *)(long)smp_processor_id();
5198	int err;
5199
5200	/* Initialize migration for the boot CPU */
5201	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5202	BUG_ON(err == NOTIFY_BAD);
5203	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5204	register_cpu_notifier(&migration_notifier);
5205
5206	/* Register cpu active notifiers */
5207	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5208	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5209
5210	return 0;
5211}
5212early_initcall(migration_init);
5213#endif
5214
5215#ifdef CONFIG_SMP
5216
5217static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5218
5219#ifdef CONFIG_SCHED_DEBUG
5220
5221static __read_mostly int sched_debug_enabled;
5222
5223static int __init sched_debug_setup(char *str)
5224{
5225	sched_debug_enabled = 1;
5226
5227	return 0;
5228}
5229early_param("sched_debug", sched_debug_setup);
5230
5231static inline bool sched_debug(void)
5232{
5233	return sched_debug_enabled;
5234}
5235
5236static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5237				  struct cpumask *groupmask)
5238{
5239	struct sched_group *group = sd->groups;
5240	char str[256];
5241
5242	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5243	cpumask_clear(groupmask);
5244
5245	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5246
5247	if (!(sd->flags & SD_LOAD_BALANCE)) {
5248		printk("does not load-balance\n");
5249		if (sd->parent)
5250			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5251					" has parent");
5252		return -1;
5253	}
5254
5255	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5256
5257	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5258		printk(KERN_ERR "ERROR: domain->span does not contain "
5259				"CPU%d\n", cpu);
5260	}
5261	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5262		printk(KERN_ERR "ERROR: domain->groups does not contain"
5263				" CPU%d\n", cpu);
5264	}
5265
5266	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5267	do {
5268		if (!group) {
5269			printk("\n");
5270			printk(KERN_ERR "ERROR: group is NULL\n");
5271			break;
5272		}
5273
5274		/*
5275		 * Even though we initialize ->power to something semi-sane,
5276		 * we leave power_orig unset. This allows us to detect if
5277		 * domain iteration is still funny without causing /0 traps.
5278		 */
5279		if (!group->sgp->power_orig) {
5280			printk(KERN_CONT "\n");
5281			printk(KERN_ERR "ERROR: domain->cpu_power not "
5282					"set\n");
5283			break;
5284		}
5285
5286		if (!cpumask_weight(sched_group_cpus(group))) {
5287			printk(KERN_CONT "\n");
5288			printk(KERN_ERR "ERROR: empty group\n");
5289			break;
5290		}
5291
5292		if (!(sd->flags & SD_OVERLAP) &&
5293		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5294			printk(KERN_CONT "\n");
5295			printk(KERN_ERR "ERROR: repeated CPUs\n");
5296			break;
5297		}
5298
5299		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5300
5301		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5302
5303		printk(KERN_CONT " %s", str);
5304		if (group->sgp->power != SCHED_POWER_SCALE) {
5305			printk(KERN_CONT " (cpu_power = %d)",
5306				group->sgp->power);
5307		}
5308
5309		group = group->next;
5310	} while (group != sd->groups);
5311	printk(KERN_CONT "\n");
5312
5313	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5314		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5315
5316	if (sd->parent &&
5317	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5318		printk(KERN_ERR "ERROR: parent span is not a superset "
5319			"of domain->span\n");
5320	return 0;
5321}
5322
5323static void sched_domain_debug(struct sched_domain *sd, int cpu)
5324{
5325	int level = 0;
5326
5327	if (!sched_debug_enabled)
5328		return;
5329
5330	if (!sd) {
5331		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5332		return;
5333	}
5334
5335	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5336
5337	for (;;) {
5338		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5339			break;
5340		level++;
5341		sd = sd->parent;
5342		if (!sd)
5343			break;
5344	}
5345}
5346#else /* !CONFIG_SCHED_DEBUG */
5347# define sched_domain_debug(sd, cpu) do { } while (0)
5348static inline bool sched_debug(void)
5349{
5350	return false;
5351}
5352#endif /* CONFIG_SCHED_DEBUG */
5353
5354static int sd_degenerate(struct sched_domain *sd)
5355{
5356	if (cpumask_weight(sched_domain_span(sd)) == 1)
5357		return 1;
5358
5359	/* Following flags need at least 2 groups */
5360	if (sd->flags & (SD_LOAD_BALANCE |
5361			 SD_BALANCE_NEWIDLE |
5362			 SD_BALANCE_FORK |
5363			 SD_BALANCE_EXEC |
5364			 SD_SHARE_CPUPOWER |
5365			 SD_SHARE_PKG_RESOURCES)) {
5366		if (sd->groups != sd->groups->next)
5367			return 0;
5368	}
5369
5370	/* Following flags don't use groups */
5371	if (sd->flags & (SD_WAKE_AFFINE))
5372		return 0;
5373
5374	return 1;
5375}
5376
5377static int
5378sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5379{
5380	unsigned long cflags = sd->flags, pflags = parent->flags;
5381
5382	if (sd_degenerate(parent))
5383		return 1;
5384
5385	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5386		return 0;
5387
5388	/* Flags needing groups don't count if only 1 group in parent */
5389	if (parent->groups == parent->groups->next) {
5390		pflags &= ~(SD_LOAD_BALANCE |
5391				SD_BALANCE_NEWIDLE |
5392				SD_BALANCE_FORK |
5393				SD_BALANCE_EXEC |
5394				SD_SHARE_CPUPOWER |
5395				SD_SHARE_PKG_RESOURCES);
5396		if (nr_node_ids == 1)
5397			pflags &= ~SD_SERIALIZE;
5398	}
5399	if (~cflags & pflags)
5400		return 0;
5401
5402	return 1;
5403}
5404
5405static void free_rootdomain(struct rcu_head *rcu)
5406{
5407	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5408
5409	cpupri_cleanup(&rd->cpupri);
5410	free_cpumask_var(rd->rto_mask);
5411	free_cpumask_var(rd->online);
5412	free_cpumask_var(rd->span);
5413	kfree(rd);
5414}
5415
5416static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5417{
5418	struct root_domain *old_rd = NULL;
5419	unsigned long flags;
5420
5421	raw_spin_lock_irqsave(&rq->lock, flags);
5422
5423	if (rq->rd) {
5424		old_rd = rq->rd;
5425
5426		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5427			set_rq_offline(rq);
5428
5429		cpumask_clear_cpu(rq->cpu, old_rd->span);
5430
5431		/*
5432		 * If we dont want to free the old_rt yet then
5433		 * set old_rd to NULL to skip the freeing later
5434		 * in this function:
5435		 */
5436		if (!atomic_dec_and_test(&old_rd->refcount))
5437			old_rd = NULL;
5438	}
5439
5440	atomic_inc(&rd->refcount);
5441	rq->rd = rd;
5442
5443	cpumask_set_cpu(rq->cpu, rd->span);
5444	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5445		set_rq_online(rq);
5446
5447	raw_spin_unlock_irqrestore(&rq->lock, flags);
5448
5449	if (old_rd)
5450		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5451}
5452
5453static int init_rootdomain(struct root_domain *rd)
5454{
5455	memset(rd, 0, sizeof(*rd));
5456
5457	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5458		goto out;
5459	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5460		goto free_span;
5461	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5462		goto free_online;
5463
5464	if (cpupri_init(&rd->cpupri) != 0)
5465		goto free_rto_mask;
5466	return 0;
5467
5468free_rto_mask:
5469	free_cpumask_var(rd->rto_mask);
5470free_online:
5471	free_cpumask_var(rd->online);
5472free_span:
5473	free_cpumask_var(rd->span);
5474out:
5475	return -ENOMEM;
5476}
5477
5478/*
5479 * By default the system creates a single root-domain with all cpus as
5480 * members (mimicking the global state we have today).
5481 */
5482struct root_domain def_root_domain;
5483
5484static void init_defrootdomain(void)
5485{
5486	init_rootdomain(&def_root_domain);
5487
5488	atomic_set(&def_root_domain.refcount, 1);
5489}
5490
5491static struct root_domain *alloc_rootdomain(void)
5492{
5493	struct root_domain *rd;
5494
5495	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5496	if (!rd)
5497		return NULL;
5498
5499	if (init_rootdomain(rd) != 0) {
5500		kfree(rd);
5501		return NULL;
5502	}
5503
5504	return rd;
5505}
5506
5507static void free_sched_groups(struct sched_group *sg, int free_sgp)
5508{
5509	struct sched_group *tmp, *first;
5510
5511	if (!sg)
5512		return;
5513
5514	first = sg;
5515	do {
5516		tmp = sg->next;
5517
5518		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5519			kfree(sg->sgp);
5520
5521		kfree(sg);
5522		sg = tmp;
5523	} while (sg != first);
5524}
5525
5526static void free_sched_domain(struct rcu_head *rcu)
5527{
5528	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5529
5530	/*
5531	 * If its an overlapping domain it has private groups, iterate and
5532	 * nuke them all.
5533	 */
5534	if (sd->flags & SD_OVERLAP) {
5535		free_sched_groups(sd->groups, 1);
5536	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5537		kfree(sd->groups->sgp);
5538		kfree(sd->groups);
5539	}
5540	kfree(sd);
5541}
5542
5543static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5544{
5545	call_rcu(&sd->rcu, free_sched_domain);
5546}
5547
5548static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5549{
5550	for (; sd; sd = sd->parent)
5551		destroy_sched_domain(sd, cpu);
5552}
5553
5554/*
5555 * Keep a special pointer to the highest sched_domain that has
5556 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5557 * allows us to avoid some pointer chasing select_idle_sibling().
5558 *
5559 * Also keep a unique ID per domain (we use the first cpu number in
5560 * the cpumask of the domain), this allows us to quickly tell if
5561 * two cpus are in the same cache domain, see cpus_share_cache().
5562 */
5563DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5564DEFINE_PER_CPU(int, sd_llc_id);
5565
5566static void update_top_cache_domain(int cpu)
5567{
5568	struct sched_domain *sd;
5569	int id = cpu;
5570
5571	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5572	if (sd)
5573		id = cpumask_first(sched_domain_span(sd));
5574
5575	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5576	per_cpu(sd_llc_id, cpu) = id;
5577}
5578
5579/*
5580 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5581 * hold the hotplug lock.
5582 */
5583static void
5584cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5585{
5586	struct rq *rq = cpu_rq(cpu);
5587	struct sched_domain *tmp;
5588
5589	/* Remove the sched domains which do not contribute to scheduling. */
5590	for (tmp = sd; tmp; ) {
5591		struct sched_domain *parent = tmp->parent;
5592		if (!parent)
5593			break;
5594
5595		if (sd_parent_degenerate(tmp, parent)) {
5596			tmp->parent = parent->parent;
5597			if (parent->parent)
5598				parent->parent->child = tmp;
5599			destroy_sched_domain(parent, cpu);
5600		} else
5601			tmp = tmp->parent;
5602	}
5603
5604	if (sd && sd_degenerate(sd)) {
5605		tmp = sd;
5606		sd = sd->parent;
5607		destroy_sched_domain(tmp, cpu);
5608		if (sd)
5609			sd->child = NULL;
5610	}
5611
5612	sched_domain_debug(sd, cpu);
5613
5614	rq_attach_root(rq, rd);
5615	tmp = rq->sd;
5616	rcu_assign_pointer(rq->sd, sd);
5617	destroy_sched_domains(tmp, cpu);
5618
5619	update_top_cache_domain(cpu);
5620}
5621
5622/* cpus with isolated domains */
5623static cpumask_var_t cpu_isolated_map;
5624
5625/* Setup the mask of cpus configured for isolated domains */
5626static int __init isolated_cpu_setup(char *str)
5627{
5628	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5629	cpulist_parse(str, cpu_isolated_map);
5630	return 1;
5631}
5632
5633__setup("isolcpus=", isolated_cpu_setup);
5634
5635static const struct cpumask *cpu_cpu_mask(int cpu)
5636{
5637	return cpumask_of_node(cpu_to_node(cpu));
5638}
5639
5640struct sd_data {
5641	struct sched_domain **__percpu sd;
5642	struct sched_group **__percpu sg;
5643	struct sched_group_power **__percpu sgp;
5644};
5645
5646struct s_data {
5647	struct sched_domain ** __percpu sd;
5648	struct root_domain	*rd;
5649};
5650
5651enum s_alloc {
5652	sa_rootdomain,
5653	sa_sd,
5654	sa_sd_storage,
5655	sa_none,
5656};
5657
5658struct sched_domain_topology_level;
5659
5660typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5661typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5662
5663#define SDTL_OVERLAP	0x01
5664
5665struct sched_domain_topology_level {
5666	sched_domain_init_f init;
5667	sched_domain_mask_f mask;
5668	int		    flags;
5669	int		    numa_level;
5670	struct sd_data      data;
5671};
5672
5673/*
5674 * Build an iteration mask that can exclude certain CPUs from the upwards
5675 * domain traversal.
5676 *
5677 * Asymmetric node setups can result in situations where the domain tree is of
5678 * unequal depth, make sure to skip domains that already cover the entire
5679 * range.
5680 *
5681 * In that case build_sched_domains() will have terminated the iteration early
5682 * and our sibling sd spans will be empty. Domains should always include the
5683 * cpu they're built on, so check that.
5684 *
5685 */
5686static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5687{
5688	const struct cpumask *span = sched_domain_span(sd);
5689	struct sd_data *sdd = sd->private;
5690	struct sched_domain *sibling;
5691	int i;
5692
5693	for_each_cpu(i, span) {
5694		sibling = *per_cpu_ptr(sdd->sd, i);
5695		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5696			continue;
5697
5698		cpumask_set_cpu(i, sched_group_mask(sg));
5699	}
5700}
5701
5702/*
5703 * Return the canonical balance cpu for this group, this is the first cpu
5704 * of this group that's also in the iteration mask.
5705 */
5706int group_balance_cpu(struct sched_group *sg)
5707{
5708	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5709}
5710
5711static int
5712build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5713{
5714	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5715	const struct cpumask *span = sched_domain_span(sd);
5716	struct cpumask *covered = sched_domains_tmpmask;
5717	struct sd_data *sdd = sd->private;
5718	struct sched_domain *child;
5719	int i;
5720
5721	cpumask_clear(covered);
5722
5723	for_each_cpu(i, span) {
5724		struct cpumask *sg_span;
5725
5726		if (cpumask_test_cpu(i, covered))
5727			continue;
5728
5729		child = *per_cpu_ptr(sdd->sd, i);
5730
5731		/* See the comment near build_group_mask(). */
5732		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5733			continue;
5734
5735		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5736				GFP_KERNEL, cpu_to_node(cpu));
5737
5738		if (!sg)
5739			goto fail;
5740
5741		sg_span = sched_group_cpus(sg);
5742		if (child->child) {
5743			child = child->child;
5744			cpumask_copy(sg_span, sched_domain_span(child));
5745		} else
5746			cpumask_set_cpu(i, sg_span);
5747
5748		cpumask_or(covered, covered, sg_span);
5749
5750		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5751		if (atomic_inc_return(&sg->sgp->ref) == 1)
5752			build_group_mask(sd, sg);
5753
5754		/*
5755		 * Initialize sgp->power such that even if we mess up the
5756		 * domains and no possible iteration will get us here, we won't
5757		 * die on a /0 trap.
5758		 */
5759		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5760
5761		/*
5762		 * Make sure the first group of this domain contains the
5763		 * canonical balance cpu. Otherwise the sched_domain iteration
5764		 * breaks. See update_sg_lb_stats().
5765		 */
5766		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5767		    group_balance_cpu(sg) == cpu)
5768			groups = sg;
5769
5770		if (!first)
5771			first = sg;
5772		if (last)
5773			last->next = sg;
5774		last = sg;
5775		last->next = first;
5776	}
5777	sd->groups = groups;
5778
5779	return 0;
5780
5781fail:
5782	free_sched_groups(first, 0);
5783
5784	return -ENOMEM;
5785}
5786
5787static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5788{
5789	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5790	struct sched_domain *child = sd->child;
5791
5792	if (child)
5793		cpu = cpumask_first(sched_domain_span(child));
5794
5795	if (sg) {
5796		*sg = *per_cpu_ptr(sdd->sg, cpu);
5797		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5798		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5799	}
5800
5801	return cpu;
5802}
5803
5804/*
5805 * build_sched_groups will build a circular linked list of the groups
5806 * covered by the given span, and will set each group's ->cpumask correctly,
5807 * and ->cpu_power to 0.
5808 *
5809 * Assumes the sched_domain tree is fully constructed
5810 */
5811static int
5812build_sched_groups(struct sched_domain *sd, int cpu)
5813{
5814	struct sched_group *first = NULL, *last = NULL;
5815	struct sd_data *sdd = sd->private;
5816	const struct cpumask *span = sched_domain_span(sd);
5817	struct cpumask *covered;
5818	int i;
5819
5820	get_group(cpu, sdd, &sd->groups);
5821	atomic_inc(&sd->groups->ref);
5822
5823	if (cpu != cpumask_first(sched_domain_span(sd)))
5824		return 0;
5825
5826	lockdep_assert_held(&sched_domains_mutex);
5827	covered = sched_domains_tmpmask;
5828
5829	cpumask_clear(covered);
5830
5831	for_each_cpu(i, span) {
5832		struct sched_group *sg;
5833		int group = get_group(i, sdd, &sg);
5834		int j;
5835
5836		if (cpumask_test_cpu(i, covered))
5837			continue;
5838
5839		cpumask_clear(sched_group_cpus(sg));
5840		sg->sgp->power = 0;
5841		cpumask_setall(sched_group_mask(sg));
5842
5843		for_each_cpu(j, span) {
5844			if (get_group(j, sdd, NULL) != group)
5845				continue;
5846
5847			cpumask_set_cpu(j, covered);
5848			cpumask_set_cpu(j, sched_group_cpus(sg));
5849		}
5850
5851		if (!first)
5852			first = sg;
5853		if (last)
5854			last->next = sg;
5855		last = sg;
5856	}
5857	last->next = first;
5858
5859	return 0;
5860}
5861
5862/*
5863 * Initialize sched groups cpu_power.
5864 *
5865 * cpu_power indicates the capacity of sched group, which is used while
5866 * distributing the load between different sched groups in a sched domain.
5867 * Typically cpu_power for all the groups in a sched domain will be same unless
5868 * there are asymmetries in the topology. If there are asymmetries, group
5869 * having more cpu_power will pickup more load compared to the group having
5870 * less cpu_power.
5871 */
5872static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5873{
5874	struct sched_group *sg = sd->groups;
5875
5876	WARN_ON(!sd || !sg);
5877
5878	do {
5879		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5880		sg = sg->next;
5881	} while (sg != sd->groups);
5882
5883	if (cpu != group_balance_cpu(sg))
5884		return;
5885
5886	update_group_power(sd, cpu);
5887	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5888}
5889
5890int __weak arch_sd_sibling_asym_packing(void)
5891{
5892       return 0*SD_ASYM_PACKING;
5893}
5894
5895/*
5896 * Initializers for schedule domains
5897 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5898 */
5899
5900#ifdef CONFIG_SCHED_DEBUG
5901# define SD_INIT_NAME(sd, type)		sd->name = #type
5902#else
5903# define SD_INIT_NAME(sd, type)		do { } while (0)
5904#endif
5905
5906#define SD_INIT_FUNC(type)						\
5907static noinline struct sched_domain *					\
5908sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5909{									\
5910	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5911	*sd = SD_##type##_INIT;						\
5912	SD_INIT_NAME(sd, type);						\
5913	sd->private = &tl->data;					\
5914	return sd;							\
5915}
5916
5917SD_INIT_FUNC(CPU)
5918#ifdef CONFIG_SCHED_SMT
5919 SD_INIT_FUNC(SIBLING)
5920#endif
5921#ifdef CONFIG_SCHED_MC
5922 SD_INIT_FUNC(MC)
5923#endif
5924#ifdef CONFIG_SCHED_BOOK
5925 SD_INIT_FUNC(BOOK)
5926#endif
5927
5928static int default_relax_domain_level = -1;
5929int sched_domain_level_max;
5930
5931static int __init setup_relax_domain_level(char *str)
5932{
5933	if (kstrtoint(str, 0, &default_relax_domain_level))
5934		pr_warn("Unable to set relax_domain_level\n");
5935
5936	return 1;
5937}
5938__setup("relax_domain_level=", setup_relax_domain_level);
5939
5940static void set_domain_attribute(struct sched_domain *sd,
5941				 struct sched_domain_attr *attr)
5942{
5943	int request;
5944
5945	if (!attr || attr->relax_domain_level < 0) {
5946		if (default_relax_domain_level < 0)
5947			return;
5948		else
5949			request = default_relax_domain_level;
5950	} else
5951		request = attr->relax_domain_level;
5952	if (request < sd->level) {
5953		/* turn off idle balance on this domain */
5954		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5955	} else {
5956		/* turn on idle balance on this domain */
5957		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5958	}
5959}
5960
5961static void __sdt_free(const struct cpumask *cpu_map);
5962static int __sdt_alloc(const struct cpumask *cpu_map);
5963
5964static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5965				 const struct cpumask *cpu_map)
5966{
5967	switch (what) {
5968	case sa_rootdomain:
5969		if (!atomic_read(&d->rd->refcount))
5970			free_rootdomain(&d->rd->rcu); /* fall through */
5971	case sa_sd:
5972		free_percpu(d->sd); /* fall through */
5973	case sa_sd_storage:
5974		__sdt_free(cpu_map); /* fall through */
5975	case sa_none:
5976		break;
5977	}
5978}
5979
5980static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5981						   const struct cpumask *cpu_map)
5982{
5983	memset(d, 0, sizeof(*d));
5984
5985	if (__sdt_alloc(cpu_map))
5986		return sa_sd_storage;
5987	d->sd = alloc_percpu(struct sched_domain *);
5988	if (!d->sd)
5989		return sa_sd_storage;
5990	d->rd = alloc_rootdomain();
5991	if (!d->rd)
5992		return sa_sd;
5993	return sa_rootdomain;
5994}
5995
5996/*
5997 * NULL the sd_data elements we've used to build the sched_domain and
5998 * sched_group structure so that the subsequent __free_domain_allocs()
5999 * will not free the data we're using.
6000 */
6001static void claim_allocations(int cpu, struct sched_domain *sd)
6002{
6003	struct sd_data *sdd = sd->private;
6004
6005	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6006	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6007
6008	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6009		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6010
6011	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6012		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6013}
6014
6015#ifdef CONFIG_SCHED_SMT
6016static const struct cpumask *cpu_smt_mask(int cpu)
6017{
6018	return topology_thread_cpumask(cpu);
6019}
6020#endif
6021
6022/*
6023 * Topology list, bottom-up.
6024 */
6025static struct sched_domain_topology_level default_topology[] = {
6026#ifdef CONFIG_SCHED_SMT
6027	{ sd_init_SIBLING, cpu_smt_mask, },
6028#endif
6029#ifdef CONFIG_SCHED_MC
6030	{ sd_init_MC, cpu_coregroup_mask, },
6031#endif
6032#ifdef CONFIG_SCHED_BOOK
6033	{ sd_init_BOOK, cpu_book_mask, },
6034#endif
6035	{ sd_init_CPU, cpu_cpu_mask, },
6036	{ NULL, },
6037};
6038
6039static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6040
6041#ifdef CONFIG_NUMA
6042
6043static int sched_domains_numa_levels;
6044static int *sched_domains_numa_distance;
6045static struct cpumask ***sched_domains_numa_masks;
6046static int sched_domains_curr_level;
6047
6048static inline int sd_local_flags(int level)
6049{
6050	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6051		return 0;
6052
6053	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6054}
6055
6056static struct sched_domain *
6057sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6058{
6059	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6060	int level = tl->numa_level;
6061	int sd_weight = cpumask_weight(
6062			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6063
6064	*sd = (struct sched_domain){
6065		.min_interval		= sd_weight,
6066		.max_interval		= 2*sd_weight,
6067		.busy_factor		= 32,
6068		.imbalance_pct		= 125,
6069		.cache_nice_tries	= 2,
6070		.busy_idx		= 3,
6071		.idle_idx		= 2,
6072		.newidle_idx		= 0,
6073		.wake_idx		= 0,
6074		.forkexec_idx		= 0,
6075
6076		.flags			= 1*SD_LOAD_BALANCE
6077					| 1*SD_BALANCE_NEWIDLE
6078					| 0*SD_BALANCE_EXEC
6079					| 0*SD_BALANCE_FORK
6080					| 0*SD_BALANCE_WAKE
6081					| 0*SD_WAKE_AFFINE
6082					| 0*SD_SHARE_CPUPOWER
6083					| 0*SD_SHARE_PKG_RESOURCES
6084					| 1*SD_SERIALIZE
6085					| 0*SD_PREFER_SIBLING
6086					| sd_local_flags(level)
6087					,
6088		.last_balance		= jiffies,
6089		.balance_interval	= sd_weight,
6090	};
6091	SD_INIT_NAME(sd, NUMA);
6092	sd->private = &tl->data;
6093
6094	/*
6095	 * Ugly hack to pass state to sd_numa_mask()...
6096	 */
6097	sched_domains_curr_level = tl->numa_level;
6098
6099	return sd;
6100}
6101
6102static const struct cpumask *sd_numa_mask(int cpu)
6103{
6104	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6105}
6106
6107static void sched_numa_warn(const char *str)
6108{
6109	static int done = false;
6110	int i,j;
6111
6112	if (done)
6113		return;
6114
6115	done = true;
6116
6117	printk(KERN_WARNING "ERROR: %s\n\n", str);
6118
6119	for (i = 0; i < nr_node_ids; i++) {
6120		printk(KERN_WARNING "  ");
6121		for (j = 0; j < nr_node_ids; j++)
6122			printk(KERN_CONT "%02d ", node_distance(i,j));
6123		printk(KERN_CONT "\n");
6124	}
6125	printk(KERN_WARNING "\n");
6126}
6127
6128static bool find_numa_distance(int distance)
6129{
6130	int i;
6131
6132	if (distance == node_distance(0, 0))
6133		return true;
6134
6135	for (i = 0; i < sched_domains_numa_levels; i++) {
6136		if (sched_domains_numa_distance[i] == distance)
6137			return true;
6138	}
6139
6140	return false;
6141}
6142
6143static void sched_init_numa(void)
6144{
6145	int next_distance, curr_distance = node_distance(0, 0);
6146	struct sched_domain_topology_level *tl;
6147	int level = 0;
6148	int i, j, k;
6149
6150	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6151	if (!sched_domains_numa_distance)
6152		return;
6153
6154	/*
6155	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6156	 * unique distances in the node_distance() table.
6157	 *
6158	 * Assumes node_distance(0,j) includes all distances in
6159	 * node_distance(i,j) in order to avoid cubic time.
6160	 */
6161	next_distance = curr_distance;
6162	for (i = 0; i < nr_node_ids; i++) {
6163		for (j = 0; j < nr_node_ids; j++) {
6164			for (k = 0; k < nr_node_ids; k++) {
6165				int distance = node_distance(i, k);
6166
6167				if (distance > curr_distance &&
6168				    (distance < next_distance ||
6169				     next_distance == curr_distance))
6170					next_distance = distance;
6171
6172				/*
6173				 * While not a strong assumption it would be nice to know
6174				 * about cases where if node A is connected to B, B is not
6175				 * equally connected to A.
6176				 */
6177				if (sched_debug() && node_distance(k, i) != distance)
6178					sched_numa_warn("Node-distance not symmetric");
6179
6180				if (sched_debug() && i && !find_numa_distance(distance))
6181					sched_numa_warn("Node-0 not representative");
6182			}
6183			if (next_distance != curr_distance) {
6184				sched_domains_numa_distance[level++] = next_distance;
6185				sched_domains_numa_levels = level;
6186				curr_distance = next_distance;
6187			} else break;
6188		}
6189
6190		/*
6191		 * In case of sched_debug() we verify the above assumption.
6192		 */
6193		if (!sched_debug())
6194			break;
6195	}
6196	/*
6197	 * 'level' contains the number of unique distances, excluding the
6198	 * identity distance node_distance(i,i).
6199	 *
6200	 * The sched_domains_nume_distance[] array includes the actual distance
6201	 * numbers.
6202	 */
6203
6204	/*
6205	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6206	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6207	 * the array will contain less then 'level' members. This could be
6208	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6209	 * in other functions.
6210	 *
6211	 * We reset it to 'level' at the end of this function.
6212	 */
6213	sched_domains_numa_levels = 0;
6214
6215	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6216	if (!sched_domains_numa_masks)
6217		return;
6218
6219	/*
6220	 * Now for each level, construct a mask per node which contains all
6221	 * cpus of nodes that are that many hops away from us.
6222	 */
6223	for (i = 0; i < level; i++) {
6224		sched_domains_numa_masks[i] =
6225			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6226		if (!sched_domains_numa_masks[i])
6227			return;
6228
6229		for (j = 0; j < nr_node_ids; j++) {
6230			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6231			if (!mask)
6232				return;
6233
6234			sched_domains_numa_masks[i][j] = mask;
6235
6236			for (k = 0; k < nr_node_ids; k++) {
6237				if (node_distance(j, k) > sched_domains_numa_distance[i])
6238					continue;
6239
6240				cpumask_or(mask, mask, cpumask_of_node(k));
6241			}
6242		}
6243	}
6244
6245	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6246			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6247	if (!tl)
6248		return;
6249
6250	/*
6251	 * Copy the default topology bits..
6252	 */
6253	for (i = 0; default_topology[i].init; i++)
6254		tl[i] = default_topology[i];
6255
6256	/*
6257	 * .. and append 'j' levels of NUMA goodness.
6258	 */
6259	for (j = 0; j < level; i++, j++) {
6260		tl[i] = (struct sched_domain_topology_level){
6261			.init = sd_numa_init,
6262			.mask = sd_numa_mask,
6263			.flags = SDTL_OVERLAP,
6264			.numa_level = j,
6265		};
6266	}
6267
6268	sched_domain_topology = tl;
6269
6270	sched_domains_numa_levels = level;
6271}
6272
6273static void sched_domains_numa_masks_set(int cpu)
6274{
6275	int i, j;
6276	int node = cpu_to_node(cpu);
6277
6278	for (i = 0; i < sched_domains_numa_levels; i++) {
6279		for (j = 0; j < nr_node_ids; j++) {
6280			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6281				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6282		}
6283	}
6284}
6285
6286static void sched_domains_numa_masks_clear(int cpu)
6287{
6288	int i, j;
6289	for (i = 0; i < sched_domains_numa_levels; i++) {
6290		for (j = 0; j < nr_node_ids; j++)
6291			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6292	}
6293}
6294
6295/*
6296 * Update sched_domains_numa_masks[level][node] array when new cpus
6297 * are onlined.
6298 */
6299static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6300					   unsigned long action,
6301					   void *hcpu)
6302{
6303	int cpu = (long)hcpu;
6304
6305	switch (action & ~CPU_TASKS_FROZEN) {
6306	case CPU_ONLINE:
6307		sched_domains_numa_masks_set(cpu);
6308		break;
6309
6310	case CPU_DEAD:
6311		sched_domains_numa_masks_clear(cpu);
6312		break;
6313
6314	default:
6315		return NOTIFY_DONE;
6316	}
6317
6318	return NOTIFY_OK;
6319}
6320#else
6321static inline void sched_init_numa(void)
6322{
6323}
6324
6325static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6326					   unsigned long action,
6327					   void *hcpu)
6328{
6329	return 0;
6330}
6331#endif /* CONFIG_NUMA */
6332
6333static int __sdt_alloc(const struct cpumask *cpu_map)
6334{
6335	struct sched_domain_topology_level *tl;
6336	int j;
6337
6338	for (tl = sched_domain_topology; tl->init; tl++) {
6339		struct sd_data *sdd = &tl->data;
6340
6341		sdd->sd = alloc_percpu(struct sched_domain *);
6342		if (!sdd->sd)
6343			return -ENOMEM;
6344
6345		sdd->sg = alloc_percpu(struct sched_group *);
6346		if (!sdd->sg)
6347			return -ENOMEM;
6348
6349		sdd->sgp = alloc_percpu(struct sched_group_power *);
6350		if (!sdd->sgp)
6351			return -ENOMEM;
6352
6353		for_each_cpu(j, cpu_map) {
6354			struct sched_domain *sd;
6355			struct sched_group *sg;
6356			struct sched_group_power *sgp;
6357
6358		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6359					GFP_KERNEL, cpu_to_node(j));
6360			if (!sd)
6361				return -ENOMEM;
6362
6363			*per_cpu_ptr(sdd->sd, j) = sd;
6364
6365			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6366					GFP_KERNEL, cpu_to_node(j));
6367			if (!sg)
6368				return -ENOMEM;
6369
6370			sg->next = sg;
6371
6372			*per_cpu_ptr(sdd->sg, j) = sg;
6373
6374			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6375					GFP_KERNEL, cpu_to_node(j));
6376			if (!sgp)
6377				return -ENOMEM;
6378
6379			*per_cpu_ptr(sdd->sgp, j) = sgp;
6380		}
6381	}
6382
6383	return 0;
6384}
6385
6386static void __sdt_free(const struct cpumask *cpu_map)
6387{
6388	struct sched_domain_topology_level *tl;
6389	int j;
6390
6391	for (tl = sched_domain_topology; tl->init; tl++) {
6392		struct sd_data *sdd = &tl->data;
6393
6394		for_each_cpu(j, cpu_map) {
6395			struct sched_domain *sd;
6396
6397			if (sdd->sd) {
6398				sd = *per_cpu_ptr(sdd->sd, j);
6399				if (sd && (sd->flags & SD_OVERLAP))
6400					free_sched_groups(sd->groups, 0);
6401				kfree(*per_cpu_ptr(sdd->sd, j));
6402			}
6403
6404			if (sdd->sg)
6405				kfree(*per_cpu_ptr(sdd->sg, j));
6406			if (sdd->sgp)
6407				kfree(*per_cpu_ptr(sdd->sgp, j));
6408		}
6409		free_percpu(sdd->sd);
6410		sdd->sd = NULL;
6411		free_percpu(sdd->sg);
6412		sdd->sg = NULL;
6413		free_percpu(sdd->sgp);
6414		sdd->sgp = NULL;
6415	}
6416}
6417
6418struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6419		struct s_data *d, const struct cpumask *cpu_map,
6420		struct sched_domain_attr *attr, struct sched_domain *child,
6421		int cpu)
6422{
6423	struct sched_domain *sd = tl->init(tl, cpu);
6424	if (!sd)
6425		return child;
6426
6427	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6428	if (child) {
6429		sd->level = child->level + 1;
6430		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6431		child->parent = sd;
6432	}
6433	sd->child = child;
6434	set_domain_attribute(sd, attr);
6435
6436	return sd;
6437}
6438
6439/*
6440 * Build sched domains for a given set of cpus and attach the sched domains
6441 * to the individual cpus
6442 */
6443static int build_sched_domains(const struct cpumask *cpu_map,
6444			       struct sched_domain_attr *attr)
6445{
6446	enum s_alloc alloc_state = sa_none;
6447	struct sched_domain *sd;
6448	struct s_data d;
6449	int i, ret = -ENOMEM;
6450
6451	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6452	if (alloc_state != sa_rootdomain)
6453		goto error;
6454
6455	/* Set up domains for cpus specified by the cpu_map. */
6456	for_each_cpu(i, cpu_map) {
6457		struct sched_domain_topology_level *tl;
6458
6459		sd = NULL;
6460		for (tl = sched_domain_topology; tl->init; tl++) {
6461			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6462			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6463				sd->flags |= SD_OVERLAP;
6464			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6465				break;
6466		}
6467
6468		while (sd->child)
6469			sd = sd->child;
6470
6471		*per_cpu_ptr(d.sd, i) = sd;
6472	}
6473
6474	/* Build the groups for the domains */
6475	for_each_cpu(i, cpu_map) {
6476		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6477			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6478			if (sd->flags & SD_OVERLAP) {
6479				if (build_overlap_sched_groups(sd, i))
6480					goto error;
6481			} else {
6482				if (build_sched_groups(sd, i))
6483					goto error;
6484			}
6485		}
6486	}
6487
6488	/* Calculate CPU power for physical packages and nodes */
6489	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6490		if (!cpumask_test_cpu(i, cpu_map))
6491			continue;
6492
6493		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6494			claim_allocations(i, sd);
6495			init_sched_groups_power(i, sd);
6496		}
6497	}
6498
6499	/* Attach the domains */
6500	rcu_read_lock();
6501	for_each_cpu(i, cpu_map) {
6502		sd = *per_cpu_ptr(d.sd, i);
6503		cpu_attach_domain(sd, d.rd, i);
6504	}
6505	rcu_read_unlock();
6506
6507	ret = 0;
6508error:
6509	__free_domain_allocs(&d, alloc_state, cpu_map);
6510	return ret;
6511}
6512
6513static cpumask_var_t *doms_cur;	/* current sched domains */
6514static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6515static struct sched_domain_attr *dattr_cur;
6516				/* attribues of custom domains in 'doms_cur' */
6517
6518/*
6519 * Special case: If a kmalloc of a doms_cur partition (array of
6520 * cpumask) fails, then fallback to a single sched domain,
6521 * as determined by the single cpumask fallback_doms.
6522 */
6523static cpumask_var_t fallback_doms;
6524
6525/*
6526 * arch_update_cpu_topology lets virtualized architectures update the
6527 * cpu core maps. It is supposed to return 1 if the topology changed
6528 * or 0 if it stayed the same.
6529 */
6530int __attribute__((weak)) arch_update_cpu_topology(void)
6531{
6532	return 0;
6533}
6534
6535cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6536{
6537	int i;
6538	cpumask_var_t *doms;
6539
6540	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6541	if (!doms)
6542		return NULL;
6543	for (i = 0; i < ndoms; i++) {
6544		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6545			free_sched_domains(doms, i);
6546			return NULL;
6547		}
6548	}
6549	return doms;
6550}
6551
6552void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6553{
6554	unsigned int i;
6555	for (i = 0; i < ndoms; i++)
6556		free_cpumask_var(doms[i]);
6557	kfree(doms);
6558}
6559
6560/*
6561 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6562 * For now this just excludes isolated cpus, but could be used to
6563 * exclude other special cases in the future.
6564 */
6565static int init_sched_domains(const struct cpumask *cpu_map)
6566{
6567	int err;
6568
6569	arch_update_cpu_topology();
6570	ndoms_cur = 1;
6571	doms_cur = alloc_sched_domains(ndoms_cur);
6572	if (!doms_cur)
6573		doms_cur = &fallback_doms;
6574	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6575	err = build_sched_domains(doms_cur[0], NULL);
6576	register_sched_domain_sysctl();
6577
6578	return err;
6579}
6580
6581/*
6582 * Detach sched domains from a group of cpus specified in cpu_map
6583 * These cpus will now be attached to the NULL domain
6584 */
6585static void detach_destroy_domains(const struct cpumask *cpu_map)
6586{
6587	int i;
6588
6589	rcu_read_lock();
6590	for_each_cpu(i, cpu_map)
6591		cpu_attach_domain(NULL, &def_root_domain, i);
6592	rcu_read_unlock();
6593}
6594
6595/* handle null as "default" */
6596static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6597			struct sched_domain_attr *new, int idx_new)
6598{
6599	struct sched_domain_attr tmp;
6600
6601	/* fast path */
6602	if (!new && !cur)
6603		return 1;
6604
6605	tmp = SD_ATTR_INIT;
6606	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6607			new ? (new + idx_new) : &tmp,
6608			sizeof(struct sched_domain_attr));
6609}
6610
6611/*
6612 * Partition sched domains as specified by the 'ndoms_new'
6613 * cpumasks in the array doms_new[] of cpumasks. This compares
6614 * doms_new[] to the current sched domain partitioning, doms_cur[].
6615 * It destroys each deleted domain and builds each new domain.
6616 *
6617 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6618 * The masks don't intersect (don't overlap.) We should setup one
6619 * sched domain for each mask. CPUs not in any of the cpumasks will
6620 * not be load balanced. If the same cpumask appears both in the
6621 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6622 * it as it is.
6623 *
6624 * The passed in 'doms_new' should be allocated using
6625 * alloc_sched_domains.  This routine takes ownership of it and will
6626 * free_sched_domains it when done with it. If the caller failed the
6627 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6628 * and partition_sched_domains() will fallback to the single partition
6629 * 'fallback_doms', it also forces the domains to be rebuilt.
6630 *
6631 * If doms_new == NULL it will be replaced with cpu_online_mask.
6632 * ndoms_new == 0 is a special case for destroying existing domains,
6633 * and it will not create the default domain.
6634 *
6635 * Call with hotplug lock held
6636 */
6637void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6638			     struct sched_domain_attr *dattr_new)
6639{
6640	int i, j, n;
6641	int new_topology;
6642
6643	mutex_lock(&sched_domains_mutex);
6644
6645	/* always unregister in case we don't destroy any domains */
6646	unregister_sched_domain_sysctl();
6647
6648	/* Let architecture update cpu core mappings. */
6649	new_topology = arch_update_cpu_topology();
6650
6651	n = doms_new ? ndoms_new : 0;
6652
6653	/* Destroy deleted domains */
6654	for (i = 0; i < ndoms_cur; i++) {
6655		for (j = 0; j < n && !new_topology; j++) {
6656			if (cpumask_equal(doms_cur[i], doms_new[j])
6657			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6658				goto match1;
6659		}
6660		/* no match - a current sched domain not in new doms_new[] */
6661		detach_destroy_domains(doms_cur[i]);
6662match1:
6663		;
6664	}
6665
6666	if (doms_new == NULL) {
6667		ndoms_cur = 0;
6668		doms_new = &fallback_doms;
6669		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6670		WARN_ON_ONCE(dattr_new);
6671	}
6672
6673	/* Build new domains */
6674	for (i = 0; i < ndoms_new; i++) {
6675		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6676			if (cpumask_equal(doms_new[i], doms_cur[j])
6677			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6678				goto match2;
6679		}
6680		/* no match - add a new doms_new */
6681		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6682match2:
6683		;
6684	}
6685
6686	/* Remember the new sched domains */
6687	if (doms_cur != &fallback_doms)
6688		free_sched_domains(doms_cur, ndoms_cur);
6689	kfree(dattr_cur);	/* kfree(NULL) is safe */
6690	doms_cur = doms_new;
6691	dattr_cur = dattr_new;
6692	ndoms_cur = ndoms_new;
6693
6694	register_sched_domain_sysctl();
6695
6696	mutex_unlock(&sched_domains_mutex);
6697}
6698
6699static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6700
6701/*
6702 * Update cpusets according to cpu_active mask.  If cpusets are
6703 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6704 * around partition_sched_domains().
6705 *
6706 * If we come here as part of a suspend/resume, don't touch cpusets because we
6707 * want to restore it back to its original state upon resume anyway.
6708 */
6709static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6710			     void *hcpu)
6711{
6712	switch (action) {
6713	case CPU_ONLINE_FROZEN:
6714	case CPU_DOWN_FAILED_FROZEN:
6715
6716		/*
6717		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6718		 * resume sequence. As long as this is not the last online
6719		 * operation in the resume sequence, just build a single sched
6720		 * domain, ignoring cpusets.
6721		 */
6722		num_cpus_frozen--;
6723		if (likely(num_cpus_frozen)) {
6724			partition_sched_domains(1, NULL, NULL);
6725			break;
6726		}
6727
6728		/*
6729		 * This is the last CPU online operation. So fall through and
6730		 * restore the original sched domains by considering the
6731		 * cpuset configurations.
6732		 */
6733
6734	case CPU_ONLINE:
6735	case CPU_DOWN_FAILED:
6736		cpuset_update_active_cpus(true);
6737		break;
6738	default:
6739		return NOTIFY_DONE;
6740	}
6741	return NOTIFY_OK;
6742}
6743
6744static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6745			       void *hcpu)
6746{
6747	switch (action) {
6748	case CPU_DOWN_PREPARE:
6749		cpuset_update_active_cpus(false);
6750		break;
6751	case CPU_DOWN_PREPARE_FROZEN:
6752		num_cpus_frozen++;
6753		partition_sched_domains(1, NULL, NULL);
6754		break;
6755	default:
6756		return NOTIFY_DONE;
6757	}
6758	return NOTIFY_OK;
6759}
6760
6761void __init sched_init_smp(void)
6762{
6763	cpumask_var_t non_isolated_cpus;
6764
6765	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6766	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6767
6768	sched_init_numa();
6769
6770	get_online_cpus();
6771	mutex_lock(&sched_domains_mutex);
6772	init_sched_domains(cpu_active_mask);
6773	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6774	if (cpumask_empty(non_isolated_cpus))
6775		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6776	mutex_unlock(&sched_domains_mutex);
6777	put_online_cpus();
6778
6779	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6780	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6781	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6782
6783	/* RT runtime code needs to handle some hotplug events */
6784	hotcpu_notifier(update_runtime, 0);
6785
6786	init_hrtick();
6787
6788	/* Move init over to a non-isolated CPU */
6789	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6790		BUG();
6791	sched_init_granularity();
6792	free_cpumask_var(non_isolated_cpus);
6793
6794	init_sched_rt_class();
6795}
6796#else
6797void __init sched_init_smp(void)
6798{
6799	sched_init_granularity();
6800}
6801#endif /* CONFIG_SMP */
6802
6803const_debug unsigned int sysctl_timer_migration = 1;
6804
6805int in_sched_functions(unsigned long addr)
6806{
6807	return in_lock_functions(addr) ||
6808		(addr >= (unsigned long)__sched_text_start
6809		&& addr < (unsigned long)__sched_text_end);
6810}
6811
6812#ifdef CONFIG_CGROUP_SCHED
6813struct task_group root_task_group;
6814LIST_HEAD(task_groups);
6815#endif
6816
6817DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6818
6819void __init sched_init(void)
6820{
6821	int i, j;
6822	unsigned long alloc_size = 0, ptr;
6823
6824#ifdef CONFIG_FAIR_GROUP_SCHED
6825	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6826#endif
6827#ifdef CONFIG_RT_GROUP_SCHED
6828	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6829#endif
6830#ifdef CONFIG_CPUMASK_OFFSTACK
6831	alloc_size += num_possible_cpus() * cpumask_size();
6832#endif
6833	if (alloc_size) {
6834		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6835
6836#ifdef CONFIG_FAIR_GROUP_SCHED
6837		root_task_group.se = (struct sched_entity **)ptr;
6838		ptr += nr_cpu_ids * sizeof(void **);
6839
6840		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6841		ptr += nr_cpu_ids * sizeof(void **);
6842
6843#endif /* CONFIG_FAIR_GROUP_SCHED */
6844#ifdef CONFIG_RT_GROUP_SCHED
6845		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6846		ptr += nr_cpu_ids * sizeof(void **);
6847
6848		root_task_group.rt_rq = (struct rt_rq **)ptr;
6849		ptr += nr_cpu_ids * sizeof(void **);
6850
6851#endif /* CONFIG_RT_GROUP_SCHED */
6852#ifdef CONFIG_CPUMASK_OFFSTACK
6853		for_each_possible_cpu(i) {
6854			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6855			ptr += cpumask_size();
6856		}
6857#endif /* CONFIG_CPUMASK_OFFSTACK */
6858	}
6859
6860#ifdef CONFIG_SMP
6861	init_defrootdomain();
6862#endif
6863
6864	init_rt_bandwidth(&def_rt_bandwidth,
6865			global_rt_period(), global_rt_runtime());
6866
6867#ifdef CONFIG_RT_GROUP_SCHED
6868	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6869			global_rt_period(), global_rt_runtime());
6870#endif /* CONFIG_RT_GROUP_SCHED */
6871
6872#ifdef CONFIG_CGROUP_SCHED
6873	list_add(&root_task_group.list, &task_groups);
6874	INIT_LIST_HEAD(&root_task_group.children);
6875	INIT_LIST_HEAD(&root_task_group.siblings);
6876	autogroup_init(&init_task);
6877
6878#endif /* CONFIG_CGROUP_SCHED */
6879
6880#ifdef CONFIG_CGROUP_CPUACCT
6881	root_cpuacct.cpustat = &kernel_cpustat;
6882	root_cpuacct.cpuusage = alloc_percpu(u64);
6883	/* Too early, not expected to fail */
6884	BUG_ON(!root_cpuacct.cpuusage);
6885#endif
6886	for_each_possible_cpu(i) {
6887		struct rq *rq;
6888
6889		rq = cpu_rq(i);
6890		raw_spin_lock_init(&rq->lock);
6891		rq->nr_running = 0;
6892		rq->calc_load_active = 0;
6893		rq->calc_load_update = jiffies + LOAD_FREQ;
6894		init_cfs_rq(&rq->cfs);
6895		init_rt_rq(&rq->rt, rq);
6896#ifdef CONFIG_FAIR_GROUP_SCHED
6897		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6898		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6899		/*
6900		 * How much cpu bandwidth does root_task_group get?
6901		 *
6902		 * In case of task-groups formed thr' the cgroup filesystem, it
6903		 * gets 100% of the cpu resources in the system. This overall
6904		 * system cpu resource is divided among the tasks of
6905		 * root_task_group and its child task-groups in a fair manner,
6906		 * based on each entity's (task or task-group's) weight
6907		 * (se->load.weight).
6908		 *
6909		 * In other words, if root_task_group has 10 tasks of weight
6910		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6911		 * then A0's share of the cpu resource is:
6912		 *
6913		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6914		 *
6915		 * We achieve this by letting root_task_group's tasks sit
6916		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6917		 */
6918		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6919		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6920#endif /* CONFIG_FAIR_GROUP_SCHED */
6921
6922		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6923#ifdef CONFIG_RT_GROUP_SCHED
6924		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6925		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6926#endif
6927
6928		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6929			rq->cpu_load[j] = 0;
6930
6931		rq->last_load_update_tick = jiffies;
6932
6933#ifdef CONFIG_SMP
6934		rq->sd = NULL;
6935		rq->rd = NULL;
6936		rq->cpu_power = SCHED_POWER_SCALE;
6937		rq->post_schedule = 0;
6938		rq->active_balance = 0;
6939		rq->next_balance = jiffies;
6940		rq->push_cpu = 0;
6941		rq->cpu = i;
6942		rq->online = 0;
6943		rq->idle_stamp = 0;
6944		rq->avg_idle = 2*sysctl_sched_migration_cost;
6945
6946		INIT_LIST_HEAD(&rq->cfs_tasks);
6947
6948		rq_attach_root(rq, &def_root_domain);
6949#ifdef CONFIG_NO_HZ
6950		rq->nohz_flags = 0;
6951#endif
6952#endif
6953		init_rq_hrtick(rq);
6954		atomic_set(&rq->nr_iowait, 0);
6955	}
6956
6957	set_load_weight(&init_task);
6958
6959#ifdef CONFIG_PREEMPT_NOTIFIERS
6960	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6961#endif
6962
6963#ifdef CONFIG_RT_MUTEXES
6964	plist_head_init(&init_task.pi_waiters);
6965#endif
6966
6967	/*
6968	 * The boot idle thread does lazy MMU switching as well:
6969	 */
6970	atomic_inc(&init_mm.mm_count);
6971	enter_lazy_tlb(&init_mm, current);
6972
6973	/*
6974	 * Make us the idle thread. Technically, schedule() should not be
6975	 * called from this thread, however somewhere below it might be,
6976	 * but because we are the idle thread, we just pick up running again
6977	 * when this runqueue becomes "idle".
6978	 */
6979	init_idle(current, smp_processor_id());
6980
6981	calc_load_update = jiffies + LOAD_FREQ;
6982
6983	/*
6984	 * During early bootup we pretend to be a normal task:
6985	 */
6986	current->sched_class = &fair_sched_class;
6987
6988#ifdef CONFIG_SMP
6989	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6990	/* May be allocated at isolcpus cmdline parse time */
6991	if (cpu_isolated_map == NULL)
6992		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6993	idle_thread_set_boot_cpu();
6994#endif
6995	init_sched_fair_class();
6996
6997	scheduler_running = 1;
6998}
6999
7000#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7001static inline int preempt_count_equals(int preempt_offset)
7002{
7003	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7004
7005	return (nested == preempt_offset);
7006}
7007
7008void __might_sleep(const char *file, int line, int preempt_offset)
7009{
7010	static unsigned long prev_jiffy;	/* ratelimiting */
7011
7012	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7013	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7014	    system_state != SYSTEM_RUNNING || oops_in_progress)
7015		return;
7016	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7017		return;
7018	prev_jiffy = jiffies;
7019
7020	printk(KERN_ERR
7021		"BUG: sleeping function called from invalid context at %s:%d\n",
7022			file, line);
7023	printk(KERN_ERR
7024		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7025			in_atomic(), irqs_disabled(),
7026			current->pid, current->comm);
7027
7028	debug_show_held_locks(current);
7029	if (irqs_disabled())
7030		print_irqtrace_events(current);
7031	dump_stack();
7032}
7033EXPORT_SYMBOL(__might_sleep);
7034#endif
7035
7036#ifdef CONFIG_MAGIC_SYSRQ
7037static void normalize_task(struct rq *rq, struct task_struct *p)
7038{
7039	const struct sched_class *prev_class = p->sched_class;
7040	int old_prio = p->prio;
7041	int on_rq;
7042
7043	on_rq = p->on_rq;
7044	if (on_rq)
7045		dequeue_task(rq, p, 0);
7046	__setscheduler(rq, p, SCHED_NORMAL, 0);
7047	if (on_rq) {
7048		enqueue_task(rq, p, 0);
7049		resched_task(rq->curr);
7050	}
7051
7052	check_class_changed(rq, p, prev_class, old_prio);
7053}
7054
7055void normalize_rt_tasks(void)
7056{
7057	struct task_struct *g, *p;
7058	unsigned long flags;
7059	struct rq *rq;
7060
7061	read_lock_irqsave(&tasklist_lock, flags);
7062	do_each_thread(g, p) {
7063		/*
7064		 * Only normalize user tasks:
7065		 */
7066		if (!p->mm)
7067			continue;
7068
7069		p->se.exec_start		= 0;
7070#ifdef CONFIG_SCHEDSTATS
7071		p->se.statistics.wait_start	= 0;
7072		p->se.statistics.sleep_start	= 0;
7073		p->se.statistics.block_start	= 0;
7074#endif
7075
7076		if (!rt_task(p)) {
7077			/*
7078			 * Renice negative nice level userspace
7079			 * tasks back to 0:
7080			 */
7081			if (TASK_NICE(p) < 0 && p->mm)
7082				set_user_nice(p, 0);
7083			continue;
7084		}
7085
7086		raw_spin_lock(&p->pi_lock);
7087		rq = __task_rq_lock(p);
7088
7089		normalize_task(rq, p);
7090
7091		__task_rq_unlock(rq);
7092		raw_spin_unlock(&p->pi_lock);
7093	} while_each_thread(g, p);
7094
7095	read_unlock_irqrestore(&tasklist_lock, flags);
7096}
7097
7098#endif /* CONFIG_MAGIC_SYSRQ */
7099
7100#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7101/*
7102 * These functions are only useful for the IA64 MCA handling, or kdb.
7103 *
7104 * They can only be called when the whole system has been
7105 * stopped - every CPU needs to be quiescent, and no scheduling
7106 * activity can take place. Using them for anything else would
7107 * be a serious bug, and as a result, they aren't even visible
7108 * under any other configuration.
7109 */
7110
7111/**
7112 * curr_task - return the current task for a given cpu.
7113 * @cpu: the processor in question.
7114 *
7115 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7116 */
7117struct task_struct *curr_task(int cpu)
7118{
7119	return cpu_curr(cpu);
7120}
7121
7122#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7123
7124#ifdef CONFIG_IA64
7125/**
7126 * set_curr_task - set the current task for a given cpu.
7127 * @cpu: the processor in question.
7128 * @p: the task pointer to set.
7129 *
7130 * Description: This function must only be used when non-maskable interrupts
7131 * are serviced on a separate stack. It allows the architecture to switch the
7132 * notion of the current task on a cpu in a non-blocking manner. This function
7133 * must be called with all CPU's synchronized, and interrupts disabled, the
7134 * and caller must save the original value of the current task (see
7135 * curr_task() above) and restore that value before reenabling interrupts and
7136 * re-starting the system.
7137 *
7138 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7139 */
7140void set_curr_task(int cpu, struct task_struct *p)
7141{
7142	cpu_curr(cpu) = p;
7143}
7144
7145#endif
7146
7147#ifdef CONFIG_CGROUP_SCHED
7148/* task_group_lock serializes the addition/removal of task groups */
7149static DEFINE_SPINLOCK(task_group_lock);
7150
7151static void free_sched_group(struct task_group *tg)
7152{
7153	free_fair_sched_group(tg);
7154	free_rt_sched_group(tg);
7155	autogroup_free(tg);
7156	kfree(tg);
7157}
7158
7159/* allocate runqueue etc for a new task group */
7160struct task_group *sched_create_group(struct task_group *parent)
7161{
7162	struct task_group *tg;
7163	unsigned long flags;
7164
7165	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7166	if (!tg)
7167		return ERR_PTR(-ENOMEM);
7168
7169	if (!alloc_fair_sched_group(tg, parent))
7170		goto err;
7171
7172	if (!alloc_rt_sched_group(tg, parent))
7173		goto err;
7174
7175	spin_lock_irqsave(&task_group_lock, flags);
7176	list_add_rcu(&tg->list, &task_groups);
7177
7178	WARN_ON(!parent); /* root should already exist */
7179
7180	tg->parent = parent;
7181	INIT_LIST_HEAD(&tg->children);
7182	list_add_rcu(&tg->siblings, &parent->children);
7183	spin_unlock_irqrestore(&task_group_lock, flags);
7184
7185	return tg;
7186
7187err:
7188	free_sched_group(tg);
7189	return ERR_PTR(-ENOMEM);
7190}
7191
7192/* rcu callback to free various structures associated with a task group */
7193static void free_sched_group_rcu(struct rcu_head *rhp)
7194{
7195	/* now it should be safe to free those cfs_rqs */
7196	free_sched_group(container_of(rhp, struct task_group, rcu));
7197}
7198
7199/* Destroy runqueue etc associated with a task group */
7200void sched_destroy_group(struct task_group *tg)
7201{
7202	unsigned long flags;
7203	int i;
7204
7205	/* end participation in shares distribution */
7206	for_each_possible_cpu(i)
7207		unregister_fair_sched_group(tg, i);
7208
7209	spin_lock_irqsave(&task_group_lock, flags);
7210	list_del_rcu(&tg->list);
7211	list_del_rcu(&tg->siblings);
7212	spin_unlock_irqrestore(&task_group_lock, flags);
7213
7214	/* wait for possible concurrent references to cfs_rqs complete */
7215	call_rcu(&tg->rcu, free_sched_group_rcu);
7216}
7217
7218/* change task's runqueue when it moves between groups.
7219 *	The caller of this function should have put the task in its new group
7220 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7221 *	reflect its new group.
7222 */
7223void sched_move_task(struct task_struct *tsk)
7224{
7225	struct task_group *tg;
7226	int on_rq, running;
7227	unsigned long flags;
7228	struct rq *rq;
7229
7230	rq = task_rq_lock(tsk, &flags);
7231
7232	running = task_current(rq, tsk);
7233	on_rq = tsk->on_rq;
7234
7235	if (on_rq)
7236		dequeue_task(rq, tsk, 0);
7237	if (unlikely(running))
7238		tsk->sched_class->put_prev_task(rq, tsk);
7239
7240	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7241				lockdep_is_held(&tsk->sighand->siglock)),
7242			  struct task_group, css);
7243	tg = autogroup_task_group(tsk, tg);
7244	tsk->sched_task_group = tg;
7245
7246#ifdef CONFIG_FAIR_GROUP_SCHED
7247	if (tsk->sched_class->task_move_group)
7248		tsk->sched_class->task_move_group(tsk, on_rq);
7249	else
7250#endif
7251		set_task_rq(tsk, task_cpu(tsk));
7252
7253	if (unlikely(running))
7254		tsk->sched_class->set_curr_task(rq);
7255	if (on_rq)
7256		enqueue_task(rq, tsk, 0);
7257
7258	task_rq_unlock(rq, tsk, &flags);
7259}
7260#endif /* CONFIG_CGROUP_SCHED */
7261
7262#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7263static unsigned long to_ratio(u64 period, u64 runtime)
7264{
7265	if (runtime == RUNTIME_INF)
7266		return 1ULL << 20;
7267
7268	return div64_u64(runtime << 20, period);
7269}
7270#endif
7271
7272#ifdef CONFIG_RT_GROUP_SCHED
7273/*
7274 * Ensure that the real time constraints are schedulable.
7275 */
7276static DEFINE_MUTEX(rt_constraints_mutex);
7277
7278/* Must be called with tasklist_lock held */
7279static inline int tg_has_rt_tasks(struct task_group *tg)
7280{
7281	struct task_struct *g, *p;
7282
7283	do_each_thread(g, p) {
7284		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7285			return 1;
7286	} while_each_thread(g, p);
7287
7288	return 0;
7289}
7290
7291struct rt_schedulable_data {
7292	struct task_group *tg;
7293	u64 rt_period;
7294	u64 rt_runtime;
7295};
7296
7297static int tg_rt_schedulable(struct task_group *tg, void *data)
7298{
7299	struct rt_schedulable_data *d = data;
7300	struct task_group *child;
7301	unsigned long total, sum = 0;
7302	u64 period, runtime;
7303
7304	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7305	runtime = tg->rt_bandwidth.rt_runtime;
7306
7307	if (tg == d->tg) {
7308		period = d->rt_period;
7309		runtime = d->rt_runtime;
7310	}
7311
7312	/*
7313	 * Cannot have more runtime than the period.
7314	 */
7315	if (runtime > period && runtime != RUNTIME_INF)
7316		return -EINVAL;
7317
7318	/*
7319	 * Ensure we don't starve existing RT tasks.
7320	 */
7321	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7322		return -EBUSY;
7323
7324	total = to_ratio(period, runtime);
7325
7326	/*
7327	 * Nobody can have more than the global setting allows.
7328	 */
7329	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7330		return -EINVAL;
7331
7332	/*
7333	 * The sum of our children's runtime should not exceed our own.
7334	 */
7335	list_for_each_entry_rcu(child, &tg->children, siblings) {
7336		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7337		runtime = child->rt_bandwidth.rt_runtime;
7338
7339		if (child == d->tg) {
7340			period = d->rt_period;
7341			runtime = d->rt_runtime;
7342		}
7343
7344		sum += to_ratio(period, runtime);
7345	}
7346
7347	if (sum > total)
7348		return -EINVAL;
7349
7350	return 0;
7351}
7352
7353static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7354{
7355	int ret;
7356
7357	struct rt_schedulable_data data = {
7358		.tg = tg,
7359		.rt_period = period,
7360		.rt_runtime = runtime,
7361	};
7362
7363	rcu_read_lock();
7364	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7365	rcu_read_unlock();
7366
7367	return ret;
7368}
7369
7370static int tg_set_rt_bandwidth(struct task_group *tg,
7371		u64 rt_period, u64 rt_runtime)
7372{
7373	int i, err = 0;
7374
7375	mutex_lock(&rt_constraints_mutex);
7376	read_lock(&tasklist_lock);
7377	err = __rt_schedulable(tg, rt_period, rt_runtime);
7378	if (err)
7379		goto unlock;
7380
7381	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7382	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7383	tg->rt_bandwidth.rt_runtime = rt_runtime;
7384
7385	for_each_possible_cpu(i) {
7386		struct rt_rq *rt_rq = tg->rt_rq[i];
7387
7388		raw_spin_lock(&rt_rq->rt_runtime_lock);
7389		rt_rq->rt_runtime = rt_runtime;
7390		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7391	}
7392	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7393unlock:
7394	read_unlock(&tasklist_lock);
7395	mutex_unlock(&rt_constraints_mutex);
7396
7397	return err;
7398}
7399
7400int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7401{
7402	u64 rt_runtime, rt_period;
7403
7404	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7405	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7406	if (rt_runtime_us < 0)
7407		rt_runtime = RUNTIME_INF;
7408
7409	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7410}
7411
7412long sched_group_rt_runtime(struct task_group *tg)
7413{
7414	u64 rt_runtime_us;
7415
7416	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7417		return -1;
7418
7419	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7420	do_div(rt_runtime_us, NSEC_PER_USEC);
7421	return rt_runtime_us;
7422}
7423
7424int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7425{
7426	u64 rt_runtime, rt_period;
7427
7428	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7429	rt_runtime = tg->rt_bandwidth.rt_runtime;
7430
7431	if (rt_period == 0)
7432		return -EINVAL;
7433
7434	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7435}
7436
7437long sched_group_rt_period(struct task_group *tg)
7438{
7439	u64 rt_period_us;
7440
7441	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7442	do_div(rt_period_us, NSEC_PER_USEC);
7443	return rt_period_us;
7444}
7445
7446static int sched_rt_global_constraints(void)
7447{
7448	u64 runtime, period;
7449	int ret = 0;
7450
7451	if (sysctl_sched_rt_period <= 0)
7452		return -EINVAL;
7453
7454	runtime = global_rt_runtime();
7455	period = global_rt_period();
7456
7457	/*
7458	 * Sanity check on the sysctl variables.
7459	 */
7460	if (runtime > period && runtime != RUNTIME_INF)
7461		return -EINVAL;
7462
7463	mutex_lock(&rt_constraints_mutex);
7464	read_lock(&tasklist_lock);
7465	ret = __rt_schedulable(NULL, 0, 0);
7466	read_unlock(&tasklist_lock);
7467	mutex_unlock(&rt_constraints_mutex);
7468
7469	return ret;
7470}
7471
7472int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7473{
7474	/* Don't accept realtime tasks when there is no way for them to run */
7475	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7476		return 0;
7477
7478	return 1;
7479}
7480
7481#else /* !CONFIG_RT_GROUP_SCHED */
7482static int sched_rt_global_constraints(void)
7483{
7484	unsigned long flags;
7485	int i;
7486
7487	if (sysctl_sched_rt_period <= 0)
7488		return -EINVAL;
7489
7490	/*
7491	 * There's always some RT tasks in the root group
7492	 * -- migration, kstopmachine etc..
7493	 */
7494	if (sysctl_sched_rt_runtime == 0)
7495		return -EBUSY;
7496
7497	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7498	for_each_possible_cpu(i) {
7499		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7500
7501		raw_spin_lock(&rt_rq->rt_runtime_lock);
7502		rt_rq->rt_runtime = global_rt_runtime();
7503		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7504	}
7505	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7506
7507	return 0;
7508}
7509#endif /* CONFIG_RT_GROUP_SCHED */
7510
7511int sched_rt_handler(struct ctl_table *table, int write,
7512		void __user *buffer, size_t *lenp,
7513		loff_t *ppos)
7514{
7515	int ret;
7516	int old_period, old_runtime;
7517	static DEFINE_MUTEX(mutex);
7518
7519	mutex_lock(&mutex);
7520	old_period = sysctl_sched_rt_period;
7521	old_runtime = sysctl_sched_rt_runtime;
7522
7523	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7524
7525	if (!ret && write) {
7526		ret = sched_rt_global_constraints();
7527		if (ret) {
7528			sysctl_sched_rt_period = old_period;
7529			sysctl_sched_rt_runtime = old_runtime;
7530		} else {
7531			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7532			def_rt_bandwidth.rt_period =
7533				ns_to_ktime(global_rt_period());
7534		}
7535	}
7536	mutex_unlock(&mutex);
7537
7538	return ret;
7539}
7540
7541#ifdef CONFIG_CGROUP_SCHED
7542
7543/* return corresponding task_group object of a cgroup */
7544static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7545{
7546	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7547			    struct task_group, css);
7548}
7549
7550static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7551{
7552	struct task_group *tg, *parent;
7553
7554	if (!cgrp->parent) {
7555		/* This is early initialization for the top cgroup */
7556		return &root_task_group.css;
7557	}
7558
7559	parent = cgroup_tg(cgrp->parent);
7560	tg = sched_create_group(parent);
7561	if (IS_ERR(tg))
7562		return ERR_PTR(-ENOMEM);
7563
7564	return &tg->css;
7565}
7566
7567static void cpu_cgroup_css_free(struct cgroup *cgrp)
7568{
7569	struct task_group *tg = cgroup_tg(cgrp);
7570
7571	sched_destroy_group(tg);
7572}
7573
7574static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7575				 struct cgroup_taskset *tset)
7576{
7577	struct task_struct *task;
7578
7579	cgroup_taskset_for_each(task, cgrp, tset) {
7580#ifdef CONFIG_RT_GROUP_SCHED
7581		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7582			return -EINVAL;
7583#else
7584		/* We don't support RT-tasks being in separate groups */
7585		if (task->sched_class != &fair_sched_class)
7586			return -EINVAL;
7587#endif
7588	}
7589	return 0;
7590}
7591
7592static void cpu_cgroup_attach(struct cgroup *cgrp,
7593			      struct cgroup_taskset *tset)
7594{
7595	struct task_struct *task;
7596
7597	cgroup_taskset_for_each(task, cgrp, tset)
7598		sched_move_task(task);
7599}
7600
7601static void
7602cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7603		struct task_struct *task)
7604{
7605	/*
7606	 * cgroup_exit() is called in the copy_process() failure path.
7607	 * Ignore this case since the task hasn't ran yet, this avoids
7608	 * trying to poke a half freed task state from generic code.
7609	 */
7610	if (!(task->flags & PF_EXITING))
7611		return;
7612
7613	sched_move_task(task);
7614}
7615
7616#ifdef CONFIG_FAIR_GROUP_SCHED
7617static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7618				u64 shareval)
7619{
7620	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7621}
7622
7623static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7624{
7625	struct task_group *tg = cgroup_tg(cgrp);
7626
7627	return (u64) scale_load_down(tg->shares);
7628}
7629
7630#ifdef CONFIG_CFS_BANDWIDTH
7631static DEFINE_MUTEX(cfs_constraints_mutex);
7632
7633const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7634const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7635
7636static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7637
7638static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7639{
7640	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7641	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7642
7643	if (tg == &root_task_group)
7644		return -EINVAL;
7645
7646	/*
7647	 * Ensure we have at some amount of bandwidth every period.  This is
7648	 * to prevent reaching a state of large arrears when throttled via
7649	 * entity_tick() resulting in prolonged exit starvation.
7650	 */
7651	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7652		return -EINVAL;
7653
7654	/*
7655	 * Likewise, bound things on the otherside by preventing insane quota
7656	 * periods.  This also allows us to normalize in computing quota
7657	 * feasibility.
7658	 */
7659	if (period > max_cfs_quota_period)
7660		return -EINVAL;
7661
7662	mutex_lock(&cfs_constraints_mutex);
7663	ret = __cfs_schedulable(tg, period, quota);
7664	if (ret)
7665		goto out_unlock;
7666
7667	runtime_enabled = quota != RUNTIME_INF;
7668	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7669	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7670	raw_spin_lock_irq(&cfs_b->lock);
7671	cfs_b->period = ns_to_ktime(period);
7672	cfs_b->quota = quota;
7673
7674	__refill_cfs_bandwidth_runtime(cfs_b);
7675	/* restart the period timer (if active) to handle new period expiry */
7676	if (runtime_enabled && cfs_b->timer_active) {
7677		/* force a reprogram */
7678		cfs_b->timer_active = 0;
7679		__start_cfs_bandwidth(cfs_b);
7680	}
7681	raw_spin_unlock_irq(&cfs_b->lock);
7682
7683	for_each_possible_cpu(i) {
7684		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7685		struct rq *rq = cfs_rq->rq;
7686
7687		raw_spin_lock_irq(&rq->lock);
7688		cfs_rq->runtime_enabled = runtime_enabled;
7689		cfs_rq->runtime_remaining = 0;
7690
7691		if (cfs_rq->throttled)
7692			unthrottle_cfs_rq(cfs_rq);
7693		raw_spin_unlock_irq(&rq->lock);
7694	}
7695out_unlock:
7696	mutex_unlock(&cfs_constraints_mutex);
7697
7698	return ret;
7699}
7700
7701int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7702{
7703	u64 quota, period;
7704
7705	period = ktime_to_ns(tg->cfs_bandwidth.period);
7706	if (cfs_quota_us < 0)
7707		quota = RUNTIME_INF;
7708	else
7709		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7710
7711	return tg_set_cfs_bandwidth(tg, period, quota);
7712}
7713
7714long tg_get_cfs_quota(struct task_group *tg)
7715{
7716	u64 quota_us;
7717
7718	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7719		return -1;
7720
7721	quota_us = tg->cfs_bandwidth.quota;
7722	do_div(quota_us, NSEC_PER_USEC);
7723
7724	return quota_us;
7725}
7726
7727int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7728{
7729	u64 quota, period;
7730
7731	period = (u64)cfs_period_us * NSEC_PER_USEC;
7732	quota = tg->cfs_bandwidth.quota;
7733
7734	return tg_set_cfs_bandwidth(tg, period, quota);
7735}
7736
7737long tg_get_cfs_period(struct task_group *tg)
7738{
7739	u64 cfs_period_us;
7740
7741	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7742	do_div(cfs_period_us, NSEC_PER_USEC);
7743
7744	return cfs_period_us;
7745}
7746
7747static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7748{
7749	return tg_get_cfs_quota(cgroup_tg(cgrp));
7750}
7751
7752static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7753				s64 cfs_quota_us)
7754{
7755	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7756}
7757
7758static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7759{
7760	return tg_get_cfs_period(cgroup_tg(cgrp));
7761}
7762
7763static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7764				u64 cfs_period_us)
7765{
7766	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7767}
7768
7769struct cfs_schedulable_data {
7770	struct task_group *tg;
7771	u64 period, quota;
7772};
7773
7774/*
7775 * normalize group quota/period to be quota/max_period
7776 * note: units are usecs
7777 */
7778static u64 normalize_cfs_quota(struct task_group *tg,
7779			       struct cfs_schedulable_data *d)
7780{
7781	u64 quota, period;
7782
7783	if (tg == d->tg) {
7784		period = d->period;
7785		quota = d->quota;
7786	} else {
7787		period = tg_get_cfs_period(tg);
7788		quota = tg_get_cfs_quota(tg);
7789	}
7790
7791	/* note: these should typically be equivalent */
7792	if (quota == RUNTIME_INF || quota == -1)
7793		return RUNTIME_INF;
7794
7795	return to_ratio(period, quota);
7796}
7797
7798static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7799{
7800	struct cfs_schedulable_data *d = data;
7801	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7802	s64 quota = 0, parent_quota = -1;
7803
7804	if (!tg->parent) {
7805		quota = RUNTIME_INF;
7806	} else {
7807		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7808
7809		quota = normalize_cfs_quota(tg, d);
7810		parent_quota = parent_b->hierarchal_quota;
7811
7812		/*
7813		 * ensure max(child_quota) <= parent_quota, inherit when no
7814		 * limit is set
7815		 */
7816		if (quota == RUNTIME_INF)
7817			quota = parent_quota;
7818		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7819			return -EINVAL;
7820	}
7821	cfs_b->hierarchal_quota = quota;
7822
7823	return 0;
7824}
7825
7826static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7827{
7828	int ret;
7829	struct cfs_schedulable_data data = {
7830		.tg = tg,
7831		.period = period,
7832		.quota = quota,
7833	};
7834
7835	if (quota != RUNTIME_INF) {
7836		do_div(data.period, NSEC_PER_USEC);
7837		do_div(data.quota, NSEC_PER_USEC);
7838	}
7839
7840	rcu_read_lock();
7841	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7842	rcu_read_unlock();
7843
7844	return ret;
7845}
7846
7847static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7848		struct cgroup_map_cb *cb)
7849{
7850	struct task_group *tg = cgroup_tg(cgrp);
7851	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7852
7853	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7854	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7855	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7856
7857	return 0;
7858}
7859#endif /* CONFIG_CFS_BANDWIDTH */
7860#endif /* CONFIG_FAIR_GROUP_SCHED */
7861
7862#ifdef CONFIG_RT_GROUP_SCHED
7863static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7864				s64 val)
7865{
7866	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7867}
7868
7869static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7870{
7871	return sched_group_rt_runtime(cgroup_tg(cgrp));
7872}
7873
7874static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7875		u64 rt_period_us)
7876{
7877	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7878}
7879
7880static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7881{
7882	return sched_group_rt_period(cgroup_tg(cgrp));
7883}
7884#endif /* CONFIG_RT_GROUP_SCHED */
7885
7886static struct cftype cpu_files[] = {
7887#ifdef CONFIG_FAIR_GROUP_SCHED
7888	{
7889		.name = "shares",
7890		.read_u64 = cpu_shares_read_u64,
7891		.write_u64 = cpu_shares_write_u64,
7892	},
7893#endif
7894#ifdef CONFIG_CFS_BANDWIDTH
7895	{
7896		.name = "cfs_quota_us",
7897		.read_s64 = cpu_cfs_quota_read_s64,
7898		.write_s64 = cpu_cfs_quota_write_s64,
7899	},
7900	{
7901		.name = "cfs_period_us",
7902		.read_u64 = cpu_cfs_period_read_u64,
7903		.write_u64 = cpu_cfs_period_write_u64,
7904	},
7905	{
7906		.name = "stat",
7907		.read_map = cpu_stats_show,
7908	},
7909#endif
7910#ifdef CONFIG_RT_GROUP_SCHED
7911	{
7912		.name = "rt_runtime_us",
7913		.read_s64 = cpu_rt_runtime_read,
7914		.write_s64 = cpu_rt_runtime_write,
7915	},
7916	{
7917		.name = "rt_period_us",
7918		.read_u64 = cpu_rt_period_read_uint,
7919		.write_u64 = cpu_rt_period_write_uint,
7920	},
7921#endif
7922	{ }	/* terminate */
7923};
7924
7925struct cgroup_subsys cpu_cgroup_subsys = {
7926	.name		= "cpu",
7927	.css_alloc	= cpu_cgroup_css_alloc,
7928	.css_free	= cpu_cgroup_css_free,
7929	.can_attach	= cpu_cgroup_can_attach,
7930	.attach		= cpu_cgroup_attach,
7931	.exit		= cpu_cgroup_exit,
7932	.subsys_id	= cpu_cgroup_subsys_id,
7933	.base_cftypes	= cpu_files,
7934	.early_init	= 1,
7935};
7936
7937#endif	/* CONFIG_CGROUP_SCHED */
7938
7939#ifdef CONFIG_CGROUP_CPUACCT
7940
7941/*
7942 * CPU accounting code for task groups.
7943 *
7944 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7945 * (balbir@in.ibm.com).
7946 */
7947
7948struct cpuacct root_cpuacct;
7949
7950/* create a new cpu accounting group */
7951static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7952{
7953	struct cpuacct *ca;
7954
7955	if (!cgrp->parent)
7956		return &root_cpuacct.css;
7957
7958	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7959	if (!ca)
7960		goto out;
7961
7962	ca->cpuusage = alloc_percpu(u64);
7963	if (!ca->cpuusage)
7964		goto out_free_ca;
7965
7966	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7967	if (!ca->cpustat)
7968		goto out_free_cpuusage;
7969
7970	return &ca->css;
7971
7972out_free_cpuusage:
7973	free_percpu(ca->cpuusage);
7974out_free_ca:
7975	kfree(ca);
7976out:
7977	return ERR_PTR(-ENOMEM);
7978}
7979
7980/* destroy an existing cpu accounting group */
7981static void cpuacct_css_free(struct cgroup *cgrp)
7982{
7983	struct cpuacct *ca = cgroup_ca(cgrp);
7984
7985	free_percpu(ca->cpustat);
7986	free_percpu(ca->cpuusage);
7987	kfree(ca);
7988}
7989
7990static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7991{
7992	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7993	u64 data;
7994
7995#ifndef CONFIG_64BIT
7996	/*
7997	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7998	 */
7999	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8000	data = *cpuusage;
8001	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8002#else
8003	data = *cpuusage;
8004#endif
8005
8006	return data;
8007}
8008
8009static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8010{
8011	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8012
8013#ifndef CONFIG_64BIT
8014	/*
8015	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8016	 */
8017	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8018	*cpuusage = val;
8019	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8020#else
8021	*cpuusage = val;
8022#endif
8023}
8024
8025/* return total cpu usage (in nanoseconds) of a group */
8026static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8027{
8028	struct cpuacct *ca = cgroup_ca(cgrp);
8029	u64 totalcpuusage = 0;
8030	int i;
8031
8032	for_each_present_cpu(i)
8033		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8034
8035	return totalcpuusage;
8036}
8037
8038static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8039								u64 reset)
8040{
8041	struct cpuacct *ca = cgroup_ca(cgrp);
8042	int err = 0;
8043	int i;
8044
8045	if (reset) {
8046		err = -EINVAL;
8047		goto out;
8048	}
8049
8050	for_each_present_cpu(i)
8051		cpuacct_cpuusage_write(ca, i, 0);
8052
8053out:
8054	return err;
8055}
8056
8057static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8058				   struct seq_file *m)
8059{
8060	struct cpuacct *ca = cgroup_ca(cgroup);
8061	u64 percpu;
8062	int i;
8063
8064	for_each_present_cpu(i) {
8065		percpu = cpuacct_cpuusage_read(ca, i);
8066		seq_printf(m, "%llu ", (unsigned long long) percpu);
8067	}
8068	seq_printf(m, "\n");
8069	return 0;
8070}
8071
8072static const char *cpuacct_stat_desc[] = {
8073	[CPUACCT_STAT_USER] = "user",
8074	[CPUACCT_STAT_SYSTEM] = "system",
8075};
8076
8077static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8078			      struct cgroup_map_cb *cb)
8079{
8080	struct cpuacct *ca = cgroup_ca(cgrp);
8081	int cpu;
8082	s64 val = 0;
8083
8084	for_each_online_cpu(cpu) {
8085		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8086		val += kcpustat->cpustat[CPUTIME_USER];
8087		val += kcpustat->cpustat[CPUTIME_NICE];
8088	}
8089	val = cputime64_to_clock_t(val);
8090	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8091
8092	val = 0;
8093	for_each_online_cpu(cpu) {
8094		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8095		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8096		val += kcpustat->cpustat[CPUTIME_IRQ];
8097		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8098	}
8099
8100	val = cputime64_to_clock_t(val);
8101	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8102
8103	return 0;
8104}
8105
8106static struct cftype files[] = {
8107	{
8108		.name = "usage",
8109		.read_u64 = cpuusage_read,
8110		.write_u64 = cpuusage_write,
8111	},
8112	{
8113		.name = "usage_percpu",
8114		.read_seq_string = cpuacct_percpu_seq_read,
8115	},
8116	{
8117		.name = "stat",
8118		.read_map = cpuacct_stats_show,
8119	},
8120	{ }	/* terminate */
8121};
8122
8123/*
8124 * charge this task's execution time to its accounting group.
8125 *
8126 * called with rq->lock held.
8127 */
8128void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8129{
8130	struct cpuacct *ca;
8131	int cpu;
8132
8133	if (unlikely(!cpuacct_subsys.active))
8134		return;
8135
8136	cpu = task_cpu(tsk);
8137
8138	rcu_read_lock();
8139
8140	ca = task_ca(tsk);
8141
8142	for (; ca; ca = parent_ca(ca)) {
8143		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8144		*cpuusage += cputime;
8145	}
8146
8147	rcu_read_unlock();
8148}
8149
8150struct cgroup_subsys cpuacct_subsys = {
8151	.name = "cpuacct",
8152	.css_alloc = cpuacct_css_alloc,
8153	.css_free = cpuacct_css_free,
8154	.subsys_id = cpuacct_subsys_id,
8155	.base_cftypes = files,
8156};
8157#endif	/* CONFIG_CGROUP_CPUACCT */
8158
8159void dump_cpu_task(int cpu)
8160{
8161	pr_info("Task dump for CPU %d:\n", cpu);
8162	sched_show_task(cpu_curr(cpu));
8163}
8164