core.c revision c4a4d603796c727b9555867571f89483be9c565e
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86
87#define CREATE_TRACE_POINTS
88#include <trace/events/sched.h>
89
90void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91{
92	unsigned long delta;
93	ktime_t soft, hard, now;
94
95	for (;;) {
96		if (hrtimer_active(period_timer))
97			break;
98
99		now = hrtimer_cb_get_time(period_timer);
100		hrtimer_forward(period_timer, now, period);
101
102		soft = hrtimer_get_softexpires(period_timer);
103		hard = hrtimer_get_expires(period_timer);
104		delta = ktime_to_ns(ktime_sub(hard, soft));
105		__hrtimer_start_range_ns(period_timer, soft, delta,
106					 HRTIMER_MODE_ABS_PINNED, 0);
107	}
108}
109
110DEFINE_MUTEX(sched_domains_mutex);
111DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112
113static void update_rq_clock_task(struct rq *rq, s64 delta);
114
115void update_rq_clock(struct rq *rq)
116{
117	s64 delta;
118
119	if (rq->skip_clock_update > 0)
120		return;
121
122	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123	rq->clock += delta;
124	update_rq_clock_task(rq, delta);
125}
126
127/*
128 * Debugging: various feature bits
129 */
130
131#define SCHED_FEAT(name, enabled)	\
132	(1UL << __SCHED_FEAT_##name) * enabled |
133
134const_debug unsigned int sysctl_sched_features =
135#include "features.h"
136	0;
137
138#undef SCHED_FEAT
139
140#ifdef CONFIG_SCHED_DEBUG
141#define SCHED_FEAT(name, enabled)	\
142	#name ,
143
144static __read_mostly char *sched_feat_names[] = {
145#include "features.h"
146	NULL
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197		size_t cnt, loff_t *ppos)
198{
199	char buf[64];
200	char *cmp;
201	int neg = 0;
202	int i;
203
204	if (cnt > 63)
205		cnt = 63;
206
207	if (copy_from_user(&buf, ubuf, cnt))
208		return -EFAULT;
209
210	buf[cnt] = 0;
211	cmp = strstrip(buf);
212
213	if (strncmp(cmp, "NO_", 3) == 0) {
214		neg = 1;
215		cmp += 3;
216	}
217
218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220			if (neg) {
221				sysctl_sched_features &= ~(1UL << i);
222				sched_feat_disable(i);
223			} else {
224				sysctl_sched_features |= (1UL << i);
225				sched_feat_enable(i);
226			}
227			break;
228		}
229	}
230
231	if (i == __SCHED_FEAT_NR)
232		return -EINVAL;
233
234	*ppos += cnt;
235
236	return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241	return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245	.open		= sched_feat_open,
246	.write		= sched_feat_write,
247	.read		= seq_read,
248	.llseek		= seq_lseek,
249	.release	= single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254	debugfs_create_file("sched_features", 0644, NULL, NULL,
255			&sched_feat_fops);
256
257	return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296	__acquires(rq->lock)
297{
298	struct rq *rq;
299
300	lockdep_assert_held(&p->pi_lock);
301
302	for (;;) {
303		rq = task_rq(p);
304		raw_spin_lock(&rq->lock);
305		if (likely(rq == task_rq(p)))
306			return rq;
307		raw_spin_unlock(&rq->lock);
308	}
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315	__acquires(p->pi_lock)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	for (;;) {
321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322		rq = task_rq(p);
323		raw_spin_lock(&rq->lock);
324		if (likely(rq == task_rq(p)))
325			return rq;
326		raw_spin_unlock(&rq->lock);
327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328	}
329}
330
331static void __task_rq_unlock(struct rq *rq)
332	__releases(rq->lock)
333{
334	raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339	__releases(rq->lock)
340	__releases(p->pi_lock)
341{
342	raw_spin_unlock(&rq->lock);
343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	local_irq_disable();
355	rq = this_rq();
356	raw_spin_lock(&rq->lock);
357
358	return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403	struct rq *rq = arg;
404
405	raw_spin_lock(&rq->lock);
406	hrtimer_restart(&rq->hrtick_timer);
407	rq->hrtick_csd_pending = 0;
408	raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421	hrtimer_set_expires(timer, time);
422
423	if (rq == this_rq()) {
424		hrtimer_restart(timer);
425	} else if (!rq->hrtick_csd_pending) {
426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427		rq->hrtick_csd_pending = 1;
428	}
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434	int cpu = (int)(long)hcpu;
435
436	switch (action) {
437	case CPU_UP_CANCELED:
438	case CPU_UP_CANCELED_FROZEN:
439	case CPU_DOWN_PREPARE:
440	case CPU_DOWN_PREPARE_FROZEN:
441	case CPU_DEAD:
442	case CPU_DEAD_FROZEN:
443		hrtick_clear(cpu_rq(cpu));
444		return NOTIFY_OK;
445	}
446
447	return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452	hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463			HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474	rq->hrtick_csd_pending = 0;
475
476	rq->hrtick_csd.flags = 0;
477	rq->hrtick_csd.func = __hrtick_start;
478	rq->hrtick_csd.info = rq;
479#endif
480
481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482	rq->hrtick_timer.function = hrtick;
483}
484#else	/* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif	/* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
511void resched_task(struct task_struct *p)
512{
513	int cpu;
514
515	assert_raw_spin_locked(&task_rq(p)->lock);
516
517	if (test_tsk_need_resched(p))
518		return;
519
520	set_tsk_need_resched(p);
521
522	cpu = task_cpu(p);
523	if (cpu == smp_processor_id())
524		return;
525
526	/* NEED_RESCHED must be visible before we test polling */
527	smp_mb();
528	if (!tsk_is_polling(p))
529		smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534	struct rq *rq = cpu_rq(cpu);
535	unsigned long flags;
536
537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538		return;
539	resched_task(cpu_curr(cpu));
540	raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu.  This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554	int cpu = smp_processor_id();
555	int i;
556	struct sched_domain *sd;
557
558	rcu_read_lock();
559	for_each_domain(cpu, sd) {
560		for_each_cpu(i, sched_domain_span(sd)) {
561			if (!idle_cpu(i)) {
562				cpu = i;
563				goto unlock;
564			}
565		}
566	}
567unlock:
568	rcu_read_unlock();
569	return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583	struct rq *rq = cpu_rq(cpu);
584
585	if (cpu == smp_processor_id())
586		return;
587
588	/*
589	 * This is safe, as this function is called with the timer
590	 * wheel base lock of (cpu) held. When the CPU is on the way
591	 * to idle and has not yet set rq->curr to idle then it will
592	 * be serialized on the timer wheel base lock and take the new
593	 * timer into account automatically.
594	 */
595	if (rq->curr != rq->idle)
596		return;
597
598	/*
599	 * We can set TIF_RESCHED on the idle task of the other CPU
600	 * lockless. The worst case is that the other CPU runs the
601	 * idle task through an additional NOOP schedule()
602	 */
603	set_tsk_need_resched(rq->idle);
604
605	/* NEED_RESCHED must be visible before we test polling */
606	smp_mb();
607	if (!tsk_is_polling(rq->idle))
608		smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613	int cpu = smp_processor_id();
614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621	return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628	s64 period = sched_avg_period();
629
630	while ((s64)(rq->clock - rq->age_stamp) > period) {
631		/*
632		 * Inline assembly required to prevent the compiler
633		 * optimising this loop into a divmod call.
634		 * See __iter_div_u64_rem() for another example of this.
635		 */
636		asm("" : "+rm" (rq->age_stamp));
637		rq->age_stamp += period;
638		rq->rt_avg /= 2;
639	}
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645	assert_raw_spin_locked(&task_rq(p)->lock);
646	set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659			     tg_visitor down, tg_visitor up, void *data)
660{
661	struct task_group *parent, *child;
662	int ret;
663
664	parent = from;
665
666down:
667	ret = (*down)(parent, data);
668	if (ret)
669		goto out;
670	list_for_each_entry_rcu(child, &parent->children, siblings) {
671		parent = child;
672		goto down;
673
674up:
675		continue;
676	}
677	ret = (*up)(parent, data);
678	if (ret || parent == from)
679		goto out;
680
681	child = parent;
682	parent = parent->parent;
683	if (parent)
684		goto up;
685out:
686	return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691	return 0;
692}
693#endif
694
695void update_cpu_load(struct rq *this_rq);
696
697static void set_load_weight(struct task_struct *p)
698{
699	int prio = p->static_prio - MAX_RT_PRIO;
700	struct load_weight *load = &p->se.load;
701
702	/*
703	 * SCHED_IDLE tasks get minimal weight:
704	 */
705	if (p->policy == SCHED_IDLE) {
706		load->weight = scale_load(WEIGHT_IDLEPRIO);
707		load->inv_weight = WMULT_IDLEPRIO;
708		return;
709	}
710
711	load->weight = scale_load(prio_to_weight[prio]);
712	load->inv_weight = prio_to_wmult[prio];
713}
714
715static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716{
717	update_rq_clock(rq);
718	sched_info_queued(p);
719	p->sched_class->enqueue_task(rq, p, flags);
720}
721
722static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723{
724	update_rq_clock(rq);
725	sched_info_dequeued(p);
726	p->sched_class->dequeue_task(rq, p, flags);
727}
728
729void activate_task(struct rq *rq, struct task_struct *p, int flags)
730{
731	if (task_contributes_to_load(p))
732		rq->nr_uninterruptible--;
733
734	enqueue_task(rq, p, flags);
735}
736
737void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738{
739	if (task_contributes_to_load(p))
740		rq->nr_uninterruptible++;
741
742	dequeue_task(rq, p, flags);
743}
744
745#ifdef CONFIG_IRQ_TIME_ACCOUNTING
746
747/*
748 * There are no locks covering percpu hardirq/softirq time.
749 * They are only modified in account_system_vtime, on corresponding CPU
750 * with interrupts disabled. So, writes are safe.
751 * They are read and saved off onto struct rq in update_rq_clock().
752 * This may result in other CPU reading this CPU's irq time and can
753 * race with irq/account_system_vtime on this CPU. We would either get old
754 * or new value with a side effect of accounting a slice of irq time to wrong
755 * task when irq is in progress while we read rq->clock. That is a worthy
756 * compromise in place of having locks on each irq in account_system_time.
757 */
758static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759static DEFINE_PER_CPU(u64, cpu_softirq_time);
760
761static DEFINE_PER_CPU(u64, irq_start_time);
762static int sched_clock_irqtime;
763
764void enable_sched_clock_irqtime(void)
765{
766	sched_clock_irqtime = 1;
767}
768
769void disable_sched_clock_irqtime(void)
770{
771	sched_clock_irqtime = 0;
772}
773
774#ifndef CONFIG_64BIT
775static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776
777static inline void irq_time_write_begin(void)
778{
779	__this_cpu_inc(irq_time_seq.sequence);
780	smp_wmb();
781}
782
783static inline void irq_time_write_end(void)
784{
785	smp_wmb();
786	__this_cpu_inc(irq_time_seq.sequence);
787}
788
789static inline u64 irq_time_read(int cpu)
790{
791	u64 irq_time;
792	unsigned seq;
793
794	do {
795		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796		irq_time = per_cpu(cpu_softirq_time, cpu) +
797			   per_cpu(cpu_hardirq_time, cpu);
798	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799
800	return irq_time;
801}
802#else /* CONFIG_64BIT */
803static inline void irq_time_write_begin(void)
804{
805}
806
807static inline void irq_time_write_end(void)
808{
809}
810
811static inline u64 irq_time_read(int cpu)
812{
813	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814}
815#endif /* CONFIG_64BIT */
816
817/*
818 * Called before incrementing preempt_count on {soft,}irq_enter
819 * and before decrementing preempt_count on {soft,}irq_exit.
820 */
821void account_system_vtime(struct task_struct *curr)
822{
823	unsigned long flags;
824	s64 delta;
825	int cpu;
826
827	if (!sched_clock_irqtime)
828		return;
829
830	local_irq_save(flags);
831
832	cpu = smp_processor_id();
833	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834	__this_cpu_add(irq_start_time, delta);
835
836	irq_time_write_begin();
837	/*
838	 * We do not account for softirq time from ksoftirqd here.
839	 * We want to continue accounting softirq time to ksoftirqd thread
840	 * in that case, so as not to confuse scheduler with a special task
841	 * that do not consume any time, but still wants to run.
842	 */
843	if (hardirq_count())
844		__this_cpu_add(cpu_hardirq_time, delta);
845	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846		__this_cpu_add(cpu_softirq_time, delta);
847
848	irq_time_write_end();
849	local_irq_restore(flags);
850}
851EXPORT_SYMBOL_GPL(account_system_vtime);
852
853#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854
855#ifdef CONFIG_PARAVIRT
856static inline u64 steal_ticks(u64 steal)
857{
858	if (unlikely(steal > NSEC_PER_SEC))
859		return div_u64(steal, TICK_NSEC);
860
861	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862}
863#endif
864
865static void update_rq_clock_task(struct rq *rq, s64 delta)
866{
867/*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872	s64 steal = 0, irq_delta = 0;
873#endif
874#ifdef CONFIG_IRQ_TIME_ACCOUNTING
875	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876
877	/*
878	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879	 * this case when a previous update_rq_clock() happened inside a
880	 * {soft,}irq region.
881	 *
882	 * When this happens, we stop ->clock_task and only update the
883	 * prev_irq_time stamp to account for the part that fit, so that a next
884	 * update will consume the rest. This ensures ->clock_task is
885	 * monotonic.
886	 *
887	 * It does however cause some slight miss-attribution of {soft,}irq
888	 * time, a more accurate solution would be to update the irq_time using
889	 * the current rq->clock timestamp, except that would require using
890	 * atomic ops.
891	 */
892	if (irq_delta > delta)
893		irq_delta = delta;
894
895	rq->prev_irq_time += irq_delta;
896	delta -= irq_delta;
897#endif
898#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899	if (static_key_false((&paravirt_steal_rq_enabled))) {
900		u64 st;
901
902		steal = paravirt_steal_clock(cpu_of(rq));
903		steal -= rq->prev_steal_time_rq;
904
905		if (unlikely(steal > delta))
906			steal = delta;
907
908		st = steal_ticks(steal);
909		steal = st * TICK_NSEC;
910
911		rq->prev_steal_time_rq += steal;
912
913		delta -= steal;
914	}
915#endif
916
917	rq->clock_task += delta;
918
919#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921		sched_rt_avg_update(rq, irq_delta + steal);
922#endif
923}
924
925#ifdef CONFIG_IRQ_TIME_ACCOUNTING
926static int irqtime_account_hi_update(void)
927{
928	u64 *cpustat = kcpustat_this_cpu->cpustat;
929	unsigned long flags;
930	u64 latest_ns;
931	int ret = 0;
932
933	local_irq_save(flags);
934	latest_ns = this_cpu_read(cpu_hardirq_time);
935	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936		ret = 1;
937	local_irq_restore(flags);
938	return ret;
939}
940
941static int irqtime_account_si_update(void)
942{
943	u64 *cpustat = kcpustat_this_cpu->cpustat;
944	unsigned long flags;
945	u64 latest_ns;
946	int ret = 0;
947
948	local_irq_save(flags);
949	latest_ns = this_cpu_read(cpu_softirq_time);
950	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951		ret = 1;
952	local_irq_restore(flags);
953	return ret;
954}
955
956#else /* CONFIG_IRQ_TIME_ACCOUNTING */
957
958#define sched_clock_irqtime	(0)
959
960#endif
961
962void sched_set_stop_task(int cpu, struct task_struct *stop)
963{
964	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965	struct task_struct *old_stop = cpu_rq(cpu)->stop;
966
967	if (stop) {
968		/*
969		 * Make it appear like a SCHED_FIFO task, its something
970		 * userspace knows about and won't get confused about.
971		 *
972		 * Also, it will make PI more or less work without too
973		 * much confusion -- but then, stop work should not
974		 * rely on PI working anyway.
975		 */
976		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977
978		stop->sched_class = &stop_sched_class;
979	}
980
981	cpu_rq(cpu)->stop = stop;
982
983	if (old_stop) {
984		/*
985		 * Reset it back to a normal scheduling class so that
986		 * it can die in pieces.
987		 */
988		old_stop->sched_class = &rt_sched_class;
989	}
990}
991
992/*
993 * __normal_prio - return the priority that is based on the static prio
994 */
995static inline int __normal_prio(struct task_struct *p)
996{
997	return p->static_prio;
998}
999
1000/*
1001 * Calculate the expected normal priority: i.e. priority
1002 * without taking RT-inheritance into account. Might be
1003 * boosted by interactivity modifiers. Changes upon fork,
1004 * setprio syscalls, and whenever the interactivity
1005 * estimator recalculates.
1006 */
1007static inline int normal_prio(struct task_struct *p)
1008{
1009	int prio;
1010
1011	if (task_has_rt_policy(p))
1012		prio = MAX_RT_PRIO-1 - p->rt_priority;
1013	else
1014		prio = __normal_prio(p);
1015	return prio;
1016}
1017
1018/*
1019 * Calculate the current priority, i.e. the priority
1020 * taken into account by the scheduler. This value might
1021 * be boosted by RT tasks, or might be boosted by
1022 * interactivity modifiers. Will be RT if the task got
1023 * RT-boosted. If not then it returns p->normal_prio.
1024 */
1025static int effective_prio(struct task_struct *p)
1026{
1027	p->normal_prio = normal_prio(p);
1028	/*
1029	 * If we are RT tasks or we were boosted to RT priority,
1030	 * keep the priority unchanged. Otherwise, update priority
1031	 * to the normal priority:
1032	 */
1033	if (!rt_prio(p->prio))
1034		return p->normal_prio;
1035	return p->prio;
1036}
1037
1038/**
1039 * task_curr - is this task currently executing on a CPU?
1040 * @p: the task in question.
1041 */
1042inline int task_curr(const struct task_struct *p)
1043{
1044	return cpu_curr(task_cpu(p)) == p;
1045}
1046
1047static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048				       const struct sched_class *prev_class,
1049				       int oldprio)
1050{
1051	if (prev_class != p->sched_class) {
1052		if (prev_class->switched_from)
1053			prev_class->switched_from(rq, p);
1054		p->sched_class->switched_to(rq, p);
1055	} else if (oldprio != p->prio)
1056		p->sched_class->prio_changed(rq, p, oldprio);
1057}
1058
1059void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060{
1061	const struct sched_class *class;
1062
1063	if (p->sched_class == rq->curr->sched_class) {
1064		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065	} else {
1066		for_each_class(class) {
1067			if (class == rq->curr->sched_class)
1068				break;
1069			if (class == p->sched_class) {
1070				resched_task(rq->curr);
1071				break;
1072			}
1073		}
1074	}
1075
1076	/*
1077	 * A queue event has occurred, and we're going to schedule.  In
1078	 * this case, we can save a useless back to back clock update.
1079	 */
1080	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081		rq->skip_clock_update = 1;
1082}
1083
1084#ifdef CONFIG_SMP
1085void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1086{
1087#ifdef CONFIG_SCHED_DEBUG
1088	/*
1089	 * We should never call set_task_cpu() on a blocked task,
1090	 * ttwu() will sort out the placement.
1091	 */
1092	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094
1095#ifdef CONFIG_LOCKDEP
1096	/*
1097	 * The caller should hold either p->pi_lock or rq->lock, when changing
1098	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099	 *
1100	 * sched_move_task() holds both and thus holding either pins the cgroup,
1101	 * see set_task_rq().
1102	 *
1103	 * Furthermore, all task_rq users should acquire both locks, see
1104	 * task_rq_lock().
1105	 */
1106	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107				      lockdep_is_held(&task_rq(p)->lock)));
1108#endif
1109#endif
1110
1111	trace_sched_migrate_task(p, new_cpu);
1112
1113	if (task_cpu(p) != new_cpu) {
1114		p->se.nr_migrations++;
1115		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116	}
1117
1118	__set_task_cpu(p, new_cpu);
1119}
1120
1121struct migration_arg {
1122	struct task_struct *task;
1123	int dest_cpu;
1124};
1125
1126static int migration_cpu_stop(void *data);
1127
1128/*
1129 * wait_task_inactive - wait for a thread to unschedule.
1130 *
1131 * If @match_state is nonzero, it's the @p->state value just checked and
1132 * not expected to change.  If it changes, i.e. @p might have woken up,
1133 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1134 * we return a positive number (its total switch count).  If a second call
1135 * a short while later returns the same number, the caller can be sure that
1136 * @p has remained unscheduled the whole time.
1137 *
1138 * The caller must ensure that the task *will* unschedule sometime soon,
1139 * else this function might spin for a *long* time. This function can't
1140 * be called with interrupts off, or it may introduce deadlock with
1141 * smp_call_function() if an IPI is sent by the same process we are
1142 * waiting to become inactive.
1143 */
1144unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1145{
1146	unsigned long flags;
1147	int running, on_rq;
1148	unsigned long ncsw;
1149	struct rq *rq;
1150
1151	for (;;) {
1152		/*
1153		 * We do the initial early heuristics without holding
1154		 * any task-queue locks at all. We'll only try to get
1155		 * the runqueue lock when things look like they will
1156		 * work out!
1157		 */
1158		rq = task_rq(p);
1159
1160		/*
1161		 * If the task is actively running on another CPU
1162		 * still, just relax and busy-wait without holding
1163		 * any locks.
1164		 *
1165		 * NOTE! Since we don't hold any locks, it's not
1166		 * even sure that "rq" stays as the right runqueue!
1167		 * But we don't care, since "task_running()" will
1168		 * return false if the runqueue has changed and p
1169		 * is actually now running somewhere else!
1170		 */
1171		while (task_running(rq, p)) {
1172			if (match_state && unlikely(p->state != match_state))
1173				return 0;
1174			cpu_relax();
1175		}
1176
1177		/*
1178		 * Ok, time to look more closely! We need the rq
1179		 * lock now, to be *sure*. If we're wrong, we'll
1180		 * just go back and repeat.
1181		 */
1182		rq = task_rq_lock(p, &flags);
1183		trace_sched_wait_task(p);
1184		running = task_running(rq, p);
1185		on_rq = p->on_rq;
1186		ncsw = 0;
1187		if (!match_state || p->state == match_state)
1188			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189		task_rq_unlock(rq, p, &flags);
1190
1191		/*
1192		 * If it changed from the expected state, bail out now.
1193		 */
1194		if (unlikely(!ncsw))
1195			break;
1196
1197		/*
1198		 * Was it really running after all now that we
1199		 * checked with the proper locks actually held?
1200		 *
1201		 * Oops. Go back and try again..
1202		 */
1203		if (unlikely(running)) {
1204			cpu_relax();
1205			continue;
1206		}
1207
1208		/*
1209		 * It's not enough that it's not actively running,
1210		 * it must be off the runqueue _entirely_, and not
1211		 * preempted!
1212		 *
1213		 * So if it was still runnable (but just not actively
1214		 * running right now), it's preempted, and we should
1215		 * yield - it could be a while.
1216		 */
1217		if (unlikely(on_rq)) {
1218			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219
1220			set_current_state(TASK_UNINTERRUPTIBLE);
1221			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222			continue;
1223		}
1224
1225		/*
1226		 * Ahh, all good. It wasn't running, and it wasn't
1227		 * runnable, which means that it will never become
1228		 * running in the future either. We're all done!
1229		 */
1230		break;
1231	}
1232
1233	return ncsw;
1234}
1235
1236/***
1237 * kick_process - kick a running thread to enter/exit the kernel
1238 * @p: the to-be-kicked thread
1239 *
1240 * Cause a process which is running on another CPU to enter
1241 * kernel-mode, without any delay. (to get signals handled.)
1242 *
1243 * NOTE: this function doesn't have to take the runqueue lock,
1244 * because all it wants to ensure is that the remote task enters
1245 * the kernel. If the IPI races and the task has been migrated
1246 * to another CPU then no harm is done and the purpose has been
1247 * achieved as well.
1248 */
1249void kick_process(struct task_struct *p)
1250{
1251	int cpu;
1252
1253	preempt_disable();
1254	cpu = task_cpu(p);
1255	if ((cpu != smp_processor_id()) && task_curr(p))
1256		smp_send_reschedule(cpu);
1257	preempt_enable();
1258}
1259EXPORT_SYMBOL_GPL(kick_process);
1260#endif /* CONFIG_SMP */
1261
1262#ifdef CONFIG_SMP
1263/*
1264 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265 */
1266static int select_fallback_rq(int cpu, struct task_struct *p)
1267{
1268	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269	enum { cpuset, possible, fail } state = cpuset;
1270	int dest_cpu;
1271
1272	/* Look for allowed, online CPU in same node. */
1273	for_each_cpu(dest_cpu, nodemask) {
1274		if (!cpu_online(dest_cpu))
1275			continue;
1276		if (!cpu_active(dest_cpu))
1277			continue;
1278		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279			return dest_cpu;
1280	}
1281
1282	for (;;) {
1283		/* Any allowed, online CPU? */
1284		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1285			if (!cpu_online(dest_cpu))
1286				continue;
1287			if (!cpu_active(dest_cpu))
1288				continue;
1289			goto out;
1290		}
1291
1292		switch (state) {
1293		case cpuset:
1294			/* No more Mr. Nice Guy. */
1295			cpuset_cpus_allowed_fallback(p);
1296			state = possible;
1297			break;
1298
1299		case possible:
1300			do_set_cpus_allowed(p, cpu_possible_mask);
1301			state = fail;
1302			break;
1303
1304		case fail:
1305			BUG();
1306			break;
1307		}
1308	}
1309
1310out:
1311	if (state != cpuset) {
1312		/*
1313		 * Don't tell them about moving exiting tasks or
1314		 * kernel threads (both mm NULL), since they never
1315		 * leave kernel.
1316		 */
1317		if (p->mm && printk_ratelimit()) {
1318			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1319					task_pid_nr(p), p->comm, cpu);
1320		}
1321	}
1322
1323	return dest_cpu;
1324}
1325
1326/*
1327 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1328 */
1329static inline
1330int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1331{
1332	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333
1334	/*
1335	 * In order not to call set_task_cpu() on a blocking task we need
1336	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1337	 * cpu.
1338	 *
1339	 * Since this is common to all placement strategies, this lives here.
1340	 *
1341	 * [ this allows ->select_task() to simply return task_cpu(p) and
1342	 *   not worry about this generic constraint ]
1343	 */
1344	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1345		     !cpu_online(cpu)))
1346		cpu = select_fallback_rq(task_cpu(p), p);
1347
1348	return cpu;
1349}
1350
1351static void update_avg(u64 *avg, u64 sample)
1352{
1353	s64 diff = sample - *avg;
1354	*avg += diff >> 3;
1355}
1356#endif
1357
1358static void
1359ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1360{
1361#ifdef CONFIG_SCHEDSTATS
1362	struct rq *rq = this_rq();
1363
1364#ifdef CONFIG_SMP
1365	int this_cpu = smp_processor_id();
1366
1367	if (cpu == this_cpu) {
1368		schedstat_inc(rq, ttwu_local);
1369		schedstat_inc(p, se.statistics.nr_wakeups_local);
1370	} else {
1371		struct sched_domain *sd;
1372
1373		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1374		rcu_read_lock();
1375		for_each_domain(this_cpu, sd) {
1376			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1377				schedstat_inc(sd, ttwu_wake_remote);
1378				break;
1379			}
1380		}
1381		rcu_read_unlock();
1382	}
1383
1384	if (wake_flags & WF_MIGRATED)
1385		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1386
1387#endif /* CONFIG_SMP */
1388
1389	schedstat_inc(rq, ttwu_count);
1390	schedstat_inc(p, se.statistics.nr_wakeups);
1391
1392	if (wake_flags & WF_SYNC)
1393		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1394
1395#endif /* CONFIG_SCHEDSTATS */
1396}
1397
1398static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1399{
1400	activate_task(rq, p, en_flags);
1401	p->on_rq = 1;
1402
1403	/* if a worker is waking up, notify workqueue */
1404	if (p->flags & PF_WQ_WORKER)
1405		wq_worker_waking_up(p, cpu_of(rq));
1406}
1407
1408/*
1409 * Mark the task runnable and perform wakeup-preemption.
1410 */
1411static void
1412ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1413{
1414	trace_sched_wakeup(p, true);
1415	check_preempt_curr(rq, p, wake_flags);
1416
1417	p->state = TASK_RUNNING;
1418#ifdef CONFIG_SMP
1419	if (p->sched_class->task_woken)
1420		p->sched_class->task_woken(rq, p);
1421
1422	if (rq->idle_stamp) {
1423		u64 delta = rq->clock - rq->idle_stamp;
1424		u64 max = 2*sysctl_sched_migration_cost;
1425
1426		if (delta > max)
1427			rq->avg_idle = max;
1428		else
1429			update_avg(&rq->avg_idle, delta);
1430		rq->idle_stamp = 0;
1431	}
1432#endif
1433}
1434
1435static void
1436ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1437{
1438#ifdef CONFIG_SMP
1439	if (p->sched_contributes_to_load)
1440		rq->nr_uninterruptible--;
1441#endif
1442
1443	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1444	ttwu_do_wakeup(rq, p, wake_flags);
1445}
1446
1447/*
1448 * Called in case the task @p isn't fully descheduled from its runqueue,
1449 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1450 * since all we need to do is flip p->state to TASK_RUNNING, since
1451 * the task is still ->on_rq.
1452 */
1453static int ttwu_remote(struct task_struct *p, int wake_flags)
1454{
1455	struct rq *rq;
1456	int ret = 0;
1457
1458	rq = __task_rq_lock(p);
1459	if (p->on_rq) {
1460		ttwu_do_wakeup(rq, p, wake_flags);
1461		ret = 1;
1462	}
1463	__task_rq_unlock(rq);
1464
1465	return ret;
1466}
1467
1468#ifdef CONFIG_SMP
1469static void sched_ttwu_pending(void)
1470{
1471	struct rq *rq = this_rq();
1472	struct llist_node *llist = llist_del_all(&rq->wake_list);
1473	struct task_struct *p;
1474
1475	raw_spin_lock(&rq->lock);
1476
1477	while (llist) {
1478		p = llist_entry(llist, struct task_struct, wake_entry);
1479		llist = llist_next(llist);
1480		ttwu_do_activate(rq, p, 0);
1481	}
1482
1483	raw_spin_unlock(&rq->lock);
1484}
1485
1486void scheduler_ipi(void)
1487{
1488	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1489		return;
1490
1491	/*
1492	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1493	 * traditionally all their work was done from the interrupt return
1494	 * path. Now that we actually do some work, we need to make sure
1495	 * we do call them.
1496	 *
1497	 * Some archs already do call them, luckily irq_enter/exit nest
1498	 * properly.
1499	 *
1500	 * Arguably we should visit all archs and update all handlers,
1501	 * however a fair share of IPIs are still resched only so this would
1502	 * somewhat pessimize the simple resched case.
1503	 */
1504	irq_enter();
1505	sched_ttwu_pending();
1506
1507	/*
1508	 * Check if someone kicked us for doing the nohz idle load balance.
1509	 */
1510	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1511		this_rq()->idle_balance = 1;
1512		raise_softirq_irqoff(SCHED_SOFTIRQ);
1513	}
1514	irq_exit();
1515}
1516
1517static void ttwu_queue_remote(struct task_struct *p, int cpu)
1518{
1519	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1520		smp_send_reschedule(cpu);
1521}
1522
1523#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1524static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1525{
1526	struct rq *rq;
1527	int ret = 0;
1528
1529	rq = __task_rq_lock(p);
1530	if (p->on_cpu) {
1531		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1532		ttwu_do_wakeup(rq, p, wake_flags);
1533		ret = 1;
1534	}
1535	__task_rq_unlock(rq);
1536
1537	return ret;
1538
1539}
1540#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1541
1542bool cpus_share_cache(int this_cpu, int that_cpu)
1543{
1544	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545}
1546#endif /* CONFIG_SMP */
1547
1548static void ttwu_queue(struct task_struct *p, int cpu)
1549{
1550	struct rq *rq = cpu_rq(cpu);
1551
1552#if defined(CONFIG_SMP)
1553	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555		ttwu_queue_remote(p, cpu);
1556		return;
1557	}
1558#endif
1559
1560	raw_spin_lock(&rq->lock);
1561	ttwu_do_activate(rq, p, 0);
1562	raw_spin_unlock(&rq->lock);
1563}
1564
1565/**
1566 * try_to_wake_up - wake up a thread
1567 * @p: the thread to be awakened
1568 * @state: the mask of task states that can be woken
1569 * @wake_flags: wake modifier flags (WF_*)
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
1577 * Returns %true if @p was woken up, %false if it was already running
1578 * or @state didn't match @p's state.
1579 */
1580static int
1581try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1582{
1583	unsigned long flags;
1584	int cpu, success = 0;
1585
1586	smp_wmb();
1587	raw_spin_lock_irqsave(&p->pi_lock, flags);
1588	if (!(p->state & state))
1589		goto out;
1590
1591	success = 1; /* we're going to change ->state */
1592	cpu = task_cpu(p);
1593
1594	if (p->on_rq && ttwu_remote(p, wake_flags))
1595		goto stat;
1596
1597#ifdef CONFIG_SMP
1598	/*
1599	 * If the owning (remote) cpu is still in the middle of schedule() with
1600	 * this task as prev, wait until its done referencing the task.
1601	 */
1602	while (p->on_cpu) {
1603#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1604		/*
1605		 * In case the architecture enables interrupts in
1606		 * context_switch(), we cannot busy wait, since that
1607		 * would lead to deadlocks when an interrupt hits and
1608		 * tries to wake up @prev. So bail and do a complete
1609		 * remote wakeup.
1610		 */
1611		if (ttwu_activate_remote(p, wake_flags))
1612			goto stat;
1613#else
1614		cpu_relax();
1615#endif
1616	}
1617	/*
1618	 * Pairs with the smp_wmb() in finish_lock_switch().
1619	 */
1620	smp_rmb();
1621
1622	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1623	p->state = TASK_WAKING;
1624
1625	if (p->sched_class->task_waking)
1626		p->sched_class->task_waking(p);
1627
1628	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1629	if (task_cpu(p) != cpu) {
1630		wake_flags |= WF_MIGRATED;
1631		set_task_cpu(p, cpu);
1632	}
1633#endif /* CONFIG_SMP */
1634
1635	ttwu_queue(p, cpu);
1636stat:
1637	ttwu_stat(p, cpu, wake_flags);
1638out:
1639	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1640
1641	return success;
1642}
1643
1644/**
1645 * try_to_wake_up_local - try to wake up a local task with rq lock held
1646 * @p: the thread to be awakened
1647 *
1648 * Put @p on the run-queue if it's not already there. The caller must
1649 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1650 * the current task.
1651 */
1652static void try_to_wake_up_local(struct task_struct *p)
1653{
1654	struct rq *rq = task_rq(p);
1655
1656	BUG_ON(rq != this_rq());
1657	BUG_ON(p == current);
1658	lockdep_assert_held(&rq->lock);
1659
1660	if (!raw_spin_trylock(&p->pi_lock)) {
1661		raw_spin_unlock(&rq->lock);
1662		raw_spin_lock(&p->pi_lock);
1663		raw_spin_lock(&rq->lock);
1664	}
1665
1666	if (!(p->state & TASK_NORMAL))
1667		goto out;
1668
1669	if (!p->on_rq)
1670		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1671
1672	ttwu_do_wakeup(rq, p, 0);
1673	ttwu_stat(p, smp_processor_id(), 0);
1674out:
1675	raw_spin_unlock(&p->pi_lock);
1676}
1677
1678/**
1679 * wake_up_process - Wake up a specific process
1680 * @p: The process to be woken up.
1681 *
1682 * Attempt to wake up the nominated process and move it to the set of runnable
1683 * processes.  Returns 1 if the process was woken up, 0 if it was already
1684 * running.
1685 *
1686 * It may be assumed that this function implies a write memory barrier before
1687 * changing the task state if and only if any tasks are woken up.
1688 */
1689int wake_up_process(struct task_struct *p)
1690{
1691	return try_to_wake_up(p, TASK_ALL, 0);
1692}
1693EXPORT_SYMBOL(wake_up_process);
1694
1695int wake_up_state(struct task_struct *p, unsigned int state)
1696{
1697	return try_to_wake_up(p, state, 0);
1698}
1699
1700/*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
1706static void __sched_fork(struct task_struct *p)
1707{
1708	p->on_rq			= 0;
1709
1710	p->se.on_rq			= 0;
1711	p->se.exec_start		= 0;
1712	p->se.sum_exec_runtime		= 0;
1713	p->se.prev_sum_exec_runtime	= 0;
1714	p->se.nr_migrations		= 0;
1715	p->se.vruntime			= 0;
1716	INIT_LIST_HEAD(&p->se.group_node);
1717
1718#ifdef CONFIG_SCHEDSTATS
1719	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1720#endif
1721
1722	INIT_LIST_HEAD(&p->rt.run_list);
1723
1724#ifdef CONFIG_PREEMPT_NOTIFIERS
1725	INIT_HLIST_HEAD(&p->preempt_notifiers);
1726#endif
1727}
1728
1729/*
1730 * fork()/clone()-time setup:
1731 */
1732void sched_fork(struct task_struct *p)
1733{
1734	unsigned long flags;
1735	int cpu = get_cpu();
1736
1737	__sched_fork(p);
1738	/*
1739	 * We mark the process as running here. This guarantees that
1740	 * nobody will actually run it, and a signal or other external
1741	 * event cannot wake it up and insert it on the runqueue either.
1742	 */
1743	p->state = TASK_RUNNING;
1744
1745	/*
1746	 * Make sure we do not leak PI boosting priority to the child.
1747	 */
1748	p->prio = current->normal_prio;
1749
1750	/*
1751	 * Revert to default priority/policy on fork if requested.
1752	 */
1753	if (unlikely(p->sched_reset_on_fork)) {
1754		if (task_has_rt_policy(p)) {
1755			p->policy = SCHED_NORMAL;
1756			p->static_prio = NICE_TO_PRIO(0);
1757			p->rt_priority = 0;
1758		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1759			p->static_prio = NICE_TO_PRIO(0);
1760
1761		p->prio = p->normal_prio = __normal_prio(p);
1762		set_load_weight(p);
1763
1764		/*
1765		 * We don't need the reset flag anymore after the fork. It has
1766		 * fulfilled its duty:
1767		 */
1768		p->sched_reset_on_fork = 0;
1769	}
1770
1771	if (!rt_prio(p->prio))
1772		p->sched_class = &fair_sched_class;
1773
1774	if (p->sched_class->task_fork)
1775		p->sched_class->task_fork(p);
1776
1777	/*
1778	 * The child is not yet in the pid-hash so no cgroup attach races,
1779	 * and the cgroup is pinned to this child due to cgroup_fork()
1780	 * is ran before sched_fork().
1781	 *
1782	 * Silence PROVE_RCU.
1783	 */
1784	raw_spin_lock_irqsave(&p->pi_lock, flags);
1785	set_task_cpu(p, cpu);
1786	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1787
1788#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1789	if (likely(sched_info_on()))
1790		memset(&p->sched_info, 0, sizeof(p->sched_info));
1791#endif
1792#if defined(CONFIG_SMP)
1793	p->on_cpu = 0;
1794#endif
1795#ifdef CONFIG_PREEMPT_COUNT
1796	/* Want to start with kernel preemption disabled. */
1797	task_thread_info(p)->preempt_count = 1;
1798#endif
1799#ifdef CONFIG_SMP
1800	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1801#endif
1802
1803	put_cpu();
1804}
1805
1806/*
1807 * wake_up_new_task - wake up a newly created task for the first time.
1808 *
1809 * This function will do some initial scheduler statistics housekeeping
1810 * that must be done for every newly created context, then puts the task
1811 * on the runqueue and wakes it.
1812 */
1813void wake_up_new_task(struct task_struct *p)
1814{
1815	unsigned long flags;
1816	struct rq *rq;
1817
1818	raw_spin_lock_irqsave(&p->pi_lock, flags);
1819#ifdef CONFIG_SMP
1820	/*
1821	 * Fork balancing, do it here and not earlier because:
1822	 *  - cpus_allowed can change in the fork path
1823	 *  - any previously selected cpu might disappear through hotplug
1824	 */
1825	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1826#endif
1827
1828	rq = __task_rq_lock(p);
1829	activate_task(rq, p, 0);
1830	p->on_rq = 1;
1831	trace_sched_wakeup_new(p, true);
1832	check_preempt_curr(rq, p, WF_FORK);
1833#ifdef CONFIG_SMP
1834	if (p->sched_class->task_woken)
1835		p->sched_class->task_woken(rq, p);
1836#endif
1837	task_rq_unlock(rq, p, &flags);
1838}
1839
1840#ifdef CONFIG_PREEMPT_NOTIFIERS
1841
1842/**
1843 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1844 * @notifier: notifier struct to register
1845 */
1846void preempt_notifier_register(struct preempt_notifier *notifier)
1847{
1848	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1849}
1850EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851
1852/**
1853 * preempt_notifier_unregister - no longer interested in preemption notifications
1854 * @notifier: notifier struct to unregister
1855 *
1856 * This is safe to call from within a preemption notifier.
1857 */
1858void preempt_notifier_unregister(struct preempt_notifier *notifier)
1859{
1860	hlist_del(&notifier->link);
1861}
1862EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1863
1864static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865{
1866	struct preempt_notifier *notifier;
1867	struct hlist_node *node;
1868
1869	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1870		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871}
1872
1873static void
1874fire_sched_out_preempt_notifiers(struct task_struct *curr,
1875				 struct task_struct *next)
1876{
1877	struct preempt_notifier *notifier;
1878	struct hlist_node *node;
1879
1880	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1881		notifier->ops->sched_out(notifier, next);
1882}
1883
1884#else /* !CONFIG_PREEMPT_NOTIFIERS */
1885
1886static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1887{
1888}
1889
1890static void
1891fire_sched_out_preempt_notifiers(struct task_struct *curr,
1892				 struct task_struct *next)
1893{
1894}
1895
1896#endif /* CONFIG_PREEMPT_NOTIFIERS */
1897
1898/**
1899 * prepare_task_switch - prepare to switch tasks
1900 * @rq: the runqueue preparing to switch
1901 * @prev: the current task that is being switched out
1902 * @next: the task we are going to switch to.
1903 *
1904 * This is called with the rq lock held and interrupts off. It must
1905 * be paired with a subsequent finish_task_switch after the context
1906 * switch.
1907 *
1908 * prepare_task_switch sets up locking and calls architecture specific
1909 * hooks.
1910 */
1911static inline void
1912prepare_task_switch(struct rq *rq, struct task_struct *prev,
1913		    struct task_struct *next)
1914{
1915	sched_info_switch(prev, next);
1916	perf_event_task_sched_out(prev, next);
1917	fire_sched_out_preempt_notifiers(prev, next);
1918	prepare_lock_switch(rq, next);
1919	prepare_arch_switch(next);
1920	trace_sched_switch(prev, next);
1921}
1922
1923/**
1924 * finish_task_switch - clean up after a task-switch
1925 * @rq: runqueue associated with task-switch
1926 * @prev: the thread we just switched away from.
1927 *
1928 * finish_task_switch must be called after the context switch, paired
1929 * with a prepare_task_switch call before the context switch.
1930 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1931 * and do any other architecture-specific cleanup actions.
1932 *
1933 * Note that we may have delayed dropping an mm in context_switch(). If
1934 * so, we finish that here outside of the runqueue lock. (Doing it
1935 * with the lock held can cause deadlocks; see schedule() for
1936 * details.)
1937 */
1938static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1939	__releases(rq->lock)
1940{
1941	struct mm_struct *mm = rq->prev_mm;
1942	long prev_state;
1943
1944	rq->prev_mm = NULL;
1945
1946	/*
1947	 * A task struct has one reference for the use as "current".
1948	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1949	 * schedule one last time. The schedule call will never return, and
1950	 * the scheduled task must drop that reference.
1951	 * The test for TASK_DEAD must occur while the runqueue locks are
1952	 * still held, otherwise prev could be scheduled on another cpu, die
1953	 * there before we look at prev->state, and then the reference would
1954	 * be dropped twice.
1955	 *		Manfred Spraul <manfred@colorfullife.com>
1956	 */
1957	prev_state = prev->state;
1958	finish_arch_switch(prev);
1959#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1960	local_irq_disable();
1961#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1962	perf_event_task_sched_in(prev, current);
1963#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1964	local_irq_enable();
1965#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1966	finish_lock_switch(rq, prev);
1967	finish_arch_post_lock_switch();
1968
1969	fire_sched_in_preempt_notifiers(current);
1970	if (mm)
1971		mmdrop(mm);
1972	if (unlikely(prev_state == TASK_DEAD)) {
1973		/*
1974		 * Remove function-return probe instances associated with this
1975		 * task and put them back on the free list.
1976		 */
1977		kprobe_flush_task(prev);
1978		put_task_struct(prev);
1979	}
1980}
1981
1982#ifdef CONFIG_SMP
1983
1984/* assumes rq->lock is held */
1985static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1986{
1987	if (prev->sched_class->pre_schedule)
1988		prev->sched_class->pre_schedule(rq, prev);
1989}
1990
1991/* rq->lock is NOT held, but preemption is disabled */
1992static inline void post_schedule(struct rq *rq)
1993{
1994	if (rq->post_schedule) {
1995		unsigned long flags;
1996
1997		raw_spin_lock_irqsave(&rq->lock, flags);
1998		if (rq->curr->sched_class->post_schedule)
1999			rq->curr->sched_class->post_schedule(rq);
2000		raw_spin_unlock_irqrestore(&rq->lock, flags);
2001
2002		rq->post_schedule = 0;
2003	}
2004}
2005
2006#else
2007
2008static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2009{
2010}
2011
2012static inline void post_schedule(struct rq *rq)
2013{
2014}
2015
2016#endif
2017
2018/**
2019 * schedule_tail - first thing a freshly forked thread must call.
2020 * @prev: the thread we just switched away from.
2021 */
2022asmlinkage void schedule_tail(struct task_struct *prev)
2023	__releases(rq->lock)
2024{
2025	struct rq *rq = this_rq();
2026
2027	finish_task_switch(rq, prev);
2028
2029	/*
2030	 * FIXME: do we need to worry about rq being invalidated by the
2031	 * task_switch?
2032	 */
2033	post_schedule(rq);
2034
2035#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2036	/* In this case, finish_task_switch does not reenable preemption */
2037	preempt_enable();
2038#endif
2039	if (current->set_child_tid)
2040		put_user(task_pid_vnr(current), current->set_child_tid);
2041}
2042
2043/*
2044 * context_switch - switch to the new MM and the new
2045 * thread's register state.
2046 */
2047static inline void
2048context_switch(struct rq *rq, struct task_struct *prev,
2049	       struct task_struct *next)
2050{
2051	struct mm_struct *mm, *oldmm;
2052
2053	prepare_task_switch(rq, prev, next);
2054
2055	mm = next->mm;
2056	oldmm = prev->active_mm;
2057	/*
2058	 * For paravirt, this is coupled with an exit in switch_to to
2059	 * combine the page table reload and the switch backend into
2060	 * one hypercall.
2061	 */
2062	arch_start_context_switch(prev);
2063
2064	if (!mm) {
2065		next->active_mm = oldmm;
2066		atomic_inc(&oldmm->mm_count);
2067		enter_lazy_tlb(oldmm, next);
2068	} else
2069		switch_mm(oldmm, mm, next);
2070
2071	if (!prev->mm) {
2072		prev->active_mm = NULL;
2073		rq->prev_mm = oldmm;
2074	}
2075	/*
2076	 * Since the runqueue lock will be released by the next
2077	 * task (which is an invalid locking op but in the case
2078	 * of the scheduler it's an obvious special-case), so we
2079	 * do an early lockdep release here:
2080	 */
2081#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2082	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2083#endif
2084
2085	/* Here we just switch the register state and the stack. */
2086	switch_to(prev, next, prev);
2087
2088	barrier();
2089	/*
2090	 * this_rq must be evaluated again because prev may have moved
2091	 * CPUs since it called schedule(), thus the 'rq' on its stack
2092	 * frame will be invalid.
2093	 */
2094	finish_task_switch(this_rq(), prev);
2095}
2096
2097/*
2098 * nr_running, nr_uninterruptible and nr_context_switches:
2099 *
2100 * externally visible scheduler statistics: current number of runnable
2101 * threads, current number of uninterruptible-sleeping threads, total
2102 * number of context switches performed since bootup.
2103 */
2104unsigned long nr_running(void)
2105{
2106	unsigned long i, sum = 0;
2107
2108	for_each_online_cpu(i)
2109		sum += cpu_rq(i)->nr_running;
2110
2111	return sum;
2112}
2113
2114unsigned long nr_uninterruptible(void)
2115{
2116	unsigned long i, sum = 0;
2117
2118	for_each_possible_cpu(i)
2119		sum += cpu_rq(i)->nr_uninterruptible;
2120
2121	/*
2122	 * Since we read the counters lockless, it might be slightly
2123	 * inaccurate. Do not allow it to go below zero though:
2124	 */
2125	if (unlikely((long)sum < 0))
2126		sum = 0;
2127
2128	return sum;
2129}
2130
2131unsigned long long nr_context_switches(void)
2132{
2133	int i;
2134	unsigned long long sum = 0;
2135
2136	for_each_possible_cpu(i)
2137		sum += cpu_rq(i)->nr_switches;
2138
2139	return sum;
2140}
2141
2142unsigned long nr_iowait(void)
2143{
2144	unsigned long i, sum = 0;
2145
2146	for_each_possible_cpu(i)
2147		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148
2149	return sum;
2150}
2151
2152unsigned long nr_iowait_cpu(int cpu)
2153{
2154	struct rq *this = cpu_rq(cpu);
2155	return atomic_read(&this->nr_iowait);
2156}
2157
2158unsigned long this_cpu_load(void)
2159{
2160	struct rq *this = this_rq();
2161	return this->cpu_load[0];
2162}
2163
2164
2165/* Variables and functions for calc_load */
2166static atomic_long_t calc_load_tasks;
2167static unsigned long calc_load_update;
2168unsigned long avenrun[3];
2169EXPORT_SYMBOL(avenrun);
2170
2171static long calc_load_fold_active(struct rq *this_rq)
2172{
2173	long nr_active, delta = 0;
2174
2175	nr_active = this_rq->nr_running;
2176	nr_active += (long) this_rq->nr_uninterruptible;
2177
2178	if (nr_active != this_rq->calc_load_active) {
2179		delta = nr_active - this_rq->calc_load_active;
2180		this_rq->calc_load_active = nr_active;
2181	}
2182
2183	return delta;
2184}
2185
2186static unsigned long
2187calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188{
2189	load *= exp;
2190	load += active * (FIXED_1 - exp);
2191	load += 1UL << (FSHIFT - 1);
2192	return load >> FSHIFT;
2193}
2194
2195#ifdef CONFIG_NO_HZ
2196/*
2197 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198 *
2199 * When making the ILB scale, we should try to pull this in as well.
2200 */
2201static atomic_long_t calc_load_tasks_idle;
2202
2203void calc_load_account_idle(struct rq *this_rq)
2204{
2205	long delta;
2206
2207	delta = calc_load_fold_active(this_rq);
2208	if (delta)
2209		atomic_long_add(delta, &calc_load_tasks_idle);
2210}
2211
2212static long calc_load_fold_idle(void)
2213{
2214	long delta = 0;
2215
2216	/*
2217	 * Its got a race, we don't care...
2218	 */
2219	if (atomic_long_read(&calc_load_tasks_idle))
2220		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221
2222	return delta;
2223}
2224
2225/**
2226 * fixed_power_int - compute: x^n, in O(log n) time
2227 *
2228 * @x:         base of the power
2229 * @frac_bits: fractional bits of @x
2230 * @n:         power to raise @x to.
2231 *
2232 * By exploiting the relation between the definition of the natural power
2233 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235 * (where: n_i \elem {0, 1}, the binary vector representing n),
2236 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237 * of course trivially computable in O(log_2 n), the length of our binary
2238 * vector.
2239 */
2240static unsigned long
2241fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242{
2243	unsigned long result = 1UL << frac_bits;
2244
2245	if (n) for (;;) {
2246		if (n & 1) {
2247			result *= x;
2248			result += 1UL << (frac_bits - 1);
2249			result >>= frac_bits;
2250		}
2251		n >>= 1;
2252		if (!n)
2253			break;
2254		x *= x;
2255		x += 1UL << (frac_bits - 1);
2256		x >>= frac_bits;
2257	}
2258
2259	return result;
2260}
2261
2262/*
2263 * a1 = a0 * e + a * (1 - e)
2264 *
2265 * a2 = a1 * e + a * (1 - e)
2266 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2268 *
2269 * a3 = a2 * e + a * (1 - e)
2270 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272 *
2273 *  ...
2274 *
2275 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277 *    = a0 * e^n + a * (1 - e^n)
2278 *
2279 * [1] application of the geometric series:
2280 *
2281 *              n         1 - x^(n+1)
2282 *     S_n := \Sum x^i = -------------
2283 *             i=0          1 - x
2284 */
2285static unsigned long
2286calc_load_n(unsigned long load, unsigned long exp,
2287	    unsigned long active, unsigned int n)
2288{
2289
2290	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291}
2292
2293/*
2294 * NO_HZ can leave us missing all per-cpu ticks calling
2295 * calc_load_account_active(), but since an idle CPU folds its delta into
2296 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297 * in the pending idle delta if our idle period crossed a load cycle boundary.
2298 *
2299 * Once we've updated the global active value, we need to apply the exponential
2300 * weights adjusted to the number of cycles missed.
2301 */
2302static void calc_global_nohz(void)
2303{
2304	long delta, active, n;
2305
2306	/*
2307	 * If we crossed a calc_load_update boundary, make sure to fold
2308	 * any pending idle changes, the respective CPUs might have
2309	 * missed the tick driven calc_load_account_active() update
2310	 * due to NO_HZ.
2311	 */
2312	delta = calc_load_fold_idle();
2313	if (delta)
2314		atomic_long_add(delta, &calc_load_tasks);
2315
2316	/*
2317	 * It could be the one fold was all it took, we done!
2318	 */
2319	if (time_before(jiffies, calc_load_update + 10))
2320		return;
2321
2322	/*
2323	 * Catch-up, fold however many we are behind still
2324	 */
2325	delta = jiffies - calc_load_update - 10;
2326	n = 1 + (delta / LOAD_FREQ);
2327
2328	active = atomic_long_read(&calc_load_tasks);
2329	active = active > 0 ? active * FIXED_1 : 0;
2330
2331	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334
2335	calc_load_update += n * LOAD_FREQ;
2336}
2337#else
2338void calc_load_account_idle(struct rq *this_rq)
2339{
2340}
2341
2342static inline long calc_load_fold_idle(void)
2343{
2344	return 0;
2345}
2346
2347static void calc_global_nohz(void)
2348{
2349}
2350#endif
2351
2352/**
2353 * get_avenrun - get the load average array
2354 * @loads:	pointer to dest load array
2355 * @offset:	offset to add
2356 * @shift:	shift count to shift the result left
2357 *
2358 * These values are estimates at best, so no need for locking.
2359 */
2360void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361{
2362	loads[0] = (avenrun[0] + offset) << shift;
2363	loads[1] = (avenrun[1] + offset) << shift;
2364	loads[2] = (avenrun[2] + offset) << shift;
2365}
2366
2367/*
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
2370 */
2371void calc_global_load(unsigned long ticks)
2372{
2373	long active;
2374
2375	if (time_before(jiffies, calc_load_update + 10))
2376		return;
2377
2378	active = atomic_long_read(&calc_load_tasks);
2379	active = active > 0 ? active * FIXED_1 : 0;
2380
2381	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2384
2385	calc_load_update += LOAD_FREQ;
2386
2387	/*
2388	 * Account one period with whatever state we found before
2389	 * folding in the nohz state and ageing the entire idle period.
2390	 *
2391	 * This avoids loosing a sample when we go idle between
2392	 * calc_load_account_active() (10 ticks ago) and now and thus
2393	 * under-accounting.
2394	 */
2395	calc_global_nohz();
2396}
2397
2398/*
2399 * Called from update_cpu_load() to periodically update this CPU's
2400 * active count.
2401 */
2402static void calc_load_account_active(struct rq *this_rq)
2403{
2404	long delta;
2405
2406	if (time_before(jiffies, this_rq->calc_load_update))
2407		return;
2408
2409	delta  = calc_load_fold_active(this_rq);
2410	delta += calc_load_fold_idle();
2411	if (delta)
2412		atomic_long_add(delta, &calc_load_tasks);
2413
2414	this_rq->calc_load_update += LOAD_FREQ;
2415}
2416
2417/*
2418 * The exact cpuload at various idx values, calculated at every tick would be
2419 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420 *
2421 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422 * on nth tick when cpu may be busy, then we have:
2423 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425 *
2426 * decay_load_missed() below does efficient calculation of
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429 *
2430 * The calculation is approximated on a 128 point scale.
2431 * degrade_zero_ticks is the number of ticks after which load at any
2432 * particular idx is approximated to be zero.
2433 * degrade_factor is a precomputed table, a row for each load idx.
2434 * Each column corresponds to degradation factor for a power of two ticks,
2435 * based on 128 point scale.
2436 * Example:
2437 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439 *
2440 * With this power of 2 load factors, we can degrade the load n times
2441 * by looking at 1 bits in n and doing as many mult/shift instead of
2442 * n mult/shifts needed by the exact degradation.
2443 */
2444#define DEGRADE_SHIFT		7
2445static const unsigned char
2446		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447static const unsigned char
2448		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449					{0, 0, 0, 0, 0, 0, 0, 0},
2450					{64, 32, 8, 0, 0, 0, 0, 0},
2451					{96, 72, 40, 12, 1, 0, 0},
2452					{112, 98, 75, 43, 15, 1, 0},
2453					{120, 112, 98, 76, 45, 16, 2} };
2454
2455/*
2456 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457 * would be when CPU is idle and so we just decay the old load without
2458 * adding any new load.
2459 */
2460static unsigned long
2461decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462{
2463	int j = 0;
2464
2465	if (!missed_updates)
2466		return load;
2467
2468	if (missed_updates >= degrade_zero_ticks[idx])
2469		return 0;
2470
2471	if (idx == 1)
2472		return load >> missed_updates;
2473
2474	while (missed_updates) {
2475		if (missed_updates % 2)
2476			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477
2478		missed_updates >>= 1;
2479		j++;
2480	}
2481	return load;
2482}
2483
2484/*
2485 * Update rq->cpu_load[] statistics. This function is usually called every
2486 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487 * every tick. We fix it up based on jiffies.
2488 */
2489void update_cpu_load(struct rq *this_rq)
2490{
2491	unsigned long this_load = this_rq->load.weight;
2492	unsigned long curr_jiffies = jiffies;
2493	unsigned long pending_updates;
2494	int i, scale;
2495
2496	this_rq->nr_load_updates++;
2497
2498	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2499	if (curr_jiffies == this_rq->last_load_update_tick)
2500		return;
2501
2502	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2503	this_rq->last_load_update_tick = curr_jiffies;
2504
2505	/* Update our load: */
2506	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2507	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2508		unsigned long old_load, new_load;
2509
2510		/* scale is effectively 1 << i now, and >> i divides by scale */
2511
2512		old_load = this_rq->cpu_load[i];
2513		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2514		new_load = this_load;
2515		/*
2516		 * Round up the averaging division if load is increasing. This
2517		 * prevents us from getting stuck on 9 if the load is 10, for
2518		 * example.
2519		 */
2520		if (new_load > old_load)
2521			new_load += scale - 1;
2522
2523		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2524	}
2525
2526	sched_avg_update(this_rq);
2527}
2528
2529static void update_cpu_load_active(struct rq *this_rq)
2530{
2531	update_cpu_load(this_rq);
2532
2533	calc_load_account_active(this_rq);
2534}
2535
2536#ifdef CONFIG_SMP
2537
2538/*
2539 * sched_exec - execve() is a valuable balancing opportunity, because at
2540 * this point the task has the smallest effective memory and cache footprint.
2541 */
2542void sched_exec(void)
2543{
2544	struct task_struct *p = current;
2545	unsigned long flags;
2546	int dest_cpu;
2547
2548	raw_spin_lock_irqsave(&p->pi_lock, flags);
2549	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2550	if (dest_cpu == smp_processor_id())
2551		goto unlock;
2552
2553	if (likely(cpu_active(dest_cpu))) {
2554		struct migration_arg arg = { p, dest_cpu };
2555
2556		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2557		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2558		return;
2559	}
2560unlock:
2561	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2562}
2563
2564#endif
2565
2566DEFINE_PER_CPU(struct kernel_stat, kstat);
2567DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2568
2569EXPORT_PER_CPU_SYMBOL(kstat);
2570EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2571
2572/*
2573 * Return any ns on the sched_clock that have not yet been accounted in
2574 * @p in case that task is currently running.
2575 *
2576 * Called with task_rq_lock() held on @rq.
2577 */
2578static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2579{
2580	u64 ns = 0;
2581
2582	if (task_current(rq, p)) {
2583		update_rq_clock(rq);
2584		ns = rq->clock_task - p->se.exec_start;
2585		if ((s64)ns < 0)
2586			ns = 0;
2587	}
2588
2589	return ns;
2590}
2591
2592unsigned long long task_delta_exec(struct task_struct *p)
2593{
2594	unsigned long flags;
2595	struct rq *rq;
2596	u64 ns = 0;
2597
2598	rq = task_rq_lock(p, &flags);
2599	ns = do_task_delta_exec(p, rq);
2600	task_rq_unlock(rq, p, &flags);
2601
2602	return ns;
2603}
2604
2605/*
2606 * Return accounted runtime for the task.
2607 * In case the task is currently running, return the runtime plus current's
2608 * pending runtime that have not been accounted yet.
2609 */
2610unsigned long long task_sched_runtime(struct task_struct *p)
2611{
2612	unsigned long flags;
2613	struct rq *rq;
2614	u64 ns = 0;
2615
2616	rq = task_rq_lock(p, &flags);
2617	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2618	task_rq_unlock(rq, p, &flags);
2619
2620	return ns;
2621}
2622
2623#ifdef CONFIG_CGROUP_CPUACCT
2624struct cgroup_subsys cpuacct_subsys;
2625struct cpuacct root_cpuacct;
2626#endif
2627
2628static inline void task_group_account_field(struct task_struct *p, int index,
2629					    u64 tmp)
2630{
2631#ifdef CONFIG_CGROUP_CPUACCT
2632	struct kernel_cpustat *kcpustat;
2633	struct cpuacct *ca;
2634#endif
2635	/*
2636	 * Since all updates are sure to touch the root cgroup, we
2637	 * get ourselves ahead and touch it first. If the root cgroup
2638	 * is the only cgroup, then nothing else should be necessary.
2639	 *
2640	 */
2641	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2642
2643#ifdef CONFIG_CGROUP_CPUACCT
2644	if (unlikely(!cpuacct_subsys.active))
2645		return;
2646
2647	rcu_read_lock();
2648	ca = task_ca(p);
2649	while (ca && (ca != &root_cpuacct)) {
2650		kcpustat = this_cpu_ptr(ca->cpustat);
2651		kcpustat->cpustat[index] += tmp;
2652		ca = parent_ca(ca);
2653	}
2654	rcu_read_unlock();
2655#endif
2656}
2657
2658
2659/*
2660 * Account user cpu time to a process.
2661 * @p: the process that the cpu time gets accounted to
2662 * @cputime: the cpu time spent in user space since the last update
2663 * @cputime_scaled: cputime scaled by cpu frequency
2664 */
2665void account_user_time(struct task_struct *p, cputime_t cputime,
2666		       cputime_t cputime_scaled)
2667{
2668	int index;
2669
2670	/* Add user time to process. */
2671	p->utime += cputime;
2672	p->utimescaled += cputime_scaled;
2673	account_group_user_time(p, cputime);
2674
2675	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2676
2677	/* Add user time to cpustat. */
2678	task_group_account_field(p, index, (__force u64) cputime);
2679
2680	/* Account for user time used */
2681	acct_update_integrals(p);
2682}
2683
2684/*
2685 * Account guest cpu time to a process.
2686 * @p: the process that the cpu time gets accounted to
2687 * @cputime: the cpu time spent in virtual machine since the last update
2688 * @cputime_scaled: cputime scaled by cpu frequency
2689 */
2690static void account_guest_time(struct task_struct *p, cputime_t cputime,
2691			       cputime_t cputime_scaled)
2692{
2693	u64 *cpustat = kcpustat_this_cpu->cpustat;
2694
2695	/* Add guest time to process. */
2696	p->utime += cputime;
2697	p->utimescaled += cputime_scaled;
2698	account_group_user_time(p, cputime);
2699	p->gtime += cputime;
2700
2701	/* Add guest time to cpustat. */
2702	if (TASK_NICE(p) > 0) {
2703		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2704		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2705	} else {
2706		cpustat[CPUTIME_USER] += (__force u64) cputime;
2707		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2708	}
2709}
2710
2711/*
2712 * Account system cpu time to a process and desired cpustat field
2713 * @p: the process that the cpu time gets accounted to
2714 * @cputime: the cpu time spent in kernel space since the last update
2715 * @cputime_scaled: cputime scaled by cpu frequency
2716 * @target_cputime64: pointer to cpustat field that has to be updated
2717 */
2718static inline
2719void __account_system_time(struct task_struct *p, cputime_t cputime,
2720			cputime_t cputime_scaled, int index)
2721{
2722	/* Add system time to process. */
2723	p->stime += cputime;
2724	p->stimescaled += cputime_scaled;
2725	account_group_system_time(p, cputime);
2726
2727	/* Add system time to cpustat. */
2728	task_group_account_field(p, index, (__force u64) cputime);
2729
2730	/* Account for system time used */
2731	acct_update_integrals(p);
2732}
2733
2734/*
2735 * Account system cpu time to a process.
2736 * @p: the process that the cpu time gets accounted to
2737 * @hardirq_offset: the offset to subtract from hardirq_count()
2738 * @cputime: the cpu time spent in kernel space since the last update
2739 * @cputime_scaled: cputime scaled by cpu frequency
2740 */
2741void account_system_time(struct task_struct *p, int hardirq_offset,
2742			 cputime_t cputime, cputime_t cputime_scaled)
2743{
2744	int index;
2745
2746	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2747		account_guest_time(p, cputime, cputime_scaled);
2748		return;
2749	}
2750
2751	if (hardirq_count() - hardirq_offset)
2752		index = CPUTIME_IRQ;
2753	else if (in_serving_softirq())
2754		index = CPUTIME_SOFTIRQ;
2755	else
2756		index = CPUTIME_SYSTEM;
2757
2758	__account_system_time(p, cputime, cputime_scaled, index);
2759}
2760
2761/*
2762 * Account for involuntary wait time.
2763 * @cputime: the cpu time spent in involuntary wait
2764 */
2765void account_steal_time(cputime_t cputime)
2766{
2767	u64 *cpustat = kcpustat_this_cpu->cpustat;
2768
2769	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2770}
2771
2772/*
2773 * Account for idle time.
2774 * @cputime: the cpu time spent in idle wait
2775 */
2776void account_idle_time(cputime_t cputime)
2777{
2778	u64 *cpustat = kcpustat_this_cpu->cpustat;
2779	struct rq *rq = this_rq();
2780
2781	if (atomic_read(&rq->nr_iowait) > 0)
2782		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2783	else
2784		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2785}
2786
2787static __always_inline bool steal_account_process_tick(void)
2788{
2789#ifdef CONFIG_PARAVIRT
2790	if (static_key_false(&paravirt_steal_enabled)) {
2791		u64 steal, st = 0;
2792
2793		steal = paravirt_steal_clock(smp_processor_id());
2794		steal -= this_rq()->prev_steal_time;
2795
2796		st = steal_ticks(steal);
2797		this_rq()->prev_steal_time += st * TICK_NSEC;
2798
2799		account_steal_time(st);
2800		return st;
2801	}
2802#endif
2803	return false;
2804}
2805
2806#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2807
2808#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2809/*
2810 * Account a tick to a process and cpustat
2811 * @p: the process that the cpu time gets accounted to
2812 * @user_tick: is the tick from userspace
2813 * @rq: the pointer to rq
2814 *
2815 * Tick demultiplexing follows the order
2816 * - pending hardirq update
2817 * - pending softirq update
2818 * - user_time
2819 * - idle_time
2820 * - system time
2821 *   - check for guest_time
2822 *   - else account as system_time
2823 *
2824 * Check for hardirq is done both for system and user time as there is
2825 * no timer going off while we are on hardirq and hence we may never get an
2826 * opportunity to update it solely in system time.
2827 * p->stime and friends are only updated on system time and not on irq
2828 * softirq as those do not count in task exec_runtime any more.
2829 */
2830static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2831						struct rq *rq)
2832{
2833	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2834	u64 *cpustat = kcpustat_this_cpu->cpustat;
2835
2836	if (steal_account_process_tick())
2837		return;
2838
2839	if (irqtime_account_hi_update()) {
2840		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2841	} else if (irqtime_account_si_update()) {
2842		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2843	} else if (this_cpu_ksoftirqd() == p) {
2844		/*
2845		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2846		 * So, we have to handle it separately here.
2847		 * Also, p->stime needs to be updated for ksoftirqd.
2848		 */
2849		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2850					CPUTIME_SOFTIRQ);
2851	} else if (user_tick) {
2852		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2853	} else if (p == rq->idle) {
2854		account_idle_time(cputime_one_jiffy);
2855	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2856		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2857	} else {
2858		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2859					CPUTIME_SYSTEM);
2860	}
2861}
2862
2863static void irqtime_account_idle_ticks(int ticks)
2864{
2865	int i;
2866	struct rq *rq = this_rq();
2867
2868	for (i = 0; i < ticks; i++)
2869		irqtime_account_process_tick(current, 0, rq);
2870}
2871#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2872static void irqtime_account_idle_ticks(int ticks) {}
2873static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2874						struct rq *rq) {}
2875#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2876
2877/*
2878 * Account a single tick of cpu time.
2879 * @p: the process that the cpu time gets accounted to
2880 * @user_tick: indicates if the tick is a user or a system tick
2881 */
2882void account_process_tick(struct task_struct *p, int user_tick)
2883{
2884	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2885	struct rq *rq = this_rq();
2886
2887	if (sched_clock_irqtime) {
2888		irqtime_account_process_tick(p, user_tick, rq);
2889		return;
2890	}
2891
2892	if (steal_account_process_tick())
2893		return;
2894
2895	if (user_tick)
2896		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2897	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2898		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2899				    one_jiffy_scaled);
2900	else
2901		account_idle_time(cputime_one_jiffy);
2902}
2903
2904/*
2905 * Account multiple ticks of steal time.
2906 * @p: the process from which the cpu time has been stolen
2907 * @ticks: number of stolen ticks
2908 */
2909void account_steal_ticks(unsigned long ticks)
2910{
2911	account_steal_time(jiffies_to_cputime(ticks));
2912}
2913
2914/*
2915 * Account multiple ticks of idle time.
2916 * @ticks: number of stolen ticks
2917 */
2918void account_idle_ticks(unsigned long ticks)
2919{
2920
2921	if (sched_clock_irqtime) {
2922		irqtime_account_idle_ticks(ticks);
2923		return;
2924	}
2925
2926	account_idle_time(jiffies_to_cputime(ticks));
2927}
2928
2929#endif
2930
2931/*
2932 * Use precise platform statistics if available:
2933 */
2934#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2935void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2936{
2937	*ut = p->utime;
2938	*st = p->stime;
2939}
2940
2941void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2942{
2943	struct task_cputime cputime;
2944
2945	thread_group_cputime(p, &cputime);
2946
2947	*ut = cputime.utime;
2948	*st = cputime.stime;
2949}
2950#else
2951
2952#ifndef nsecs_to_cputime
2953# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2954#endif
2955
2956void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2957{
2958	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2959
2960	/*
2961	 * Use CFS's precise accounting:
2962	 */
2963	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2964
2965	if (total) {
2966		u64 temp = (__force u64) rtime;
2967
2968		temp *= (__force u64) utime;
2969		do_div(temp, (__force u32) total);
2970		utime = (__force cputime_t) temp;
2971	} else
2972		utime = rtime;
2973
2974	/*
2975	 * Compare with previous values, to keep monotonicity:
2976	 */
2977	p->prev_utime = max(p->prev_utime, utime);
2978	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2979
2980	*ut = p->prev_utime;
2981	*st = p->prev_stime;
2982}
2983
2984/*
2985 * Must be called with siglock held.
2986 */
2987void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2988{
2989	struct signal_struct *sig = p->signal;
2990	struct task_cputime cputime;
2991	cputime_t rtime, utime, total;
2992
2993	thread_group_cputime(p, &cputime);
2994
2995	total = cputime.utime + cputime.stime;
2996	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2997
2998	if (total) {
2999		u64 temp = (__force u64) rtime;
3000
3001		temp *= (__force u64) cputime.utime;
3002		do_div(temp, (__force u32) total);
3003		utime = (__force cputime_t) temp;
3004	} else
3005		utime = rtime;
3006
3007	sig->prev_utime = max(sig->prev_utime, utime);
3008	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3009
3010	*ut = sig->prev_utime;
3011	*st = sig->prev_stime;
3012}
3013#endif
3014
3015/*
3016 * This function gets called by the timer code, with HZ frequency.
3017 * We call it with interrupts disabled.
3018 */
3019void scheduler_tick(void)
3020{
3021	int cpu = smp_processor_id();
3022	struct rq *rq = cpu_rq(cpu);
3023	struct task_struct *curr = rq->curr;
3024
3025	sched_clock_tick();
3026
3027	raw_spin_lock(&rq->lock);
3028	update_rq_clock(rq);
3029	update_cpu_load_active(rq);
3030	curr->sched_class->task_tick(rq, curr, 0);
3031	raw_spin_unlock(&rq->lock);
3032
3033	perf_event_task_tick();
3034
3035#ifdef CONFIG_SMP
3036	rq->idle_balance = idle_cpu(cpu);
3037	trigger_load_balance(rq, cpu);
3038#endif
3039}
3040
3041notrace unsigned long get_parent_ip(unsigned long addr)
3042{
3043	if (in_lock_functions(addr)) {
3044		addr = CALLER_ADDR2;
3045		if (in_lock_functions(addr))
3046			addr = CALLER_ADDR3;
3047	}
3048	return addr;
3049}
3050
3051#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3052				defined(CONFIG_PREEMPT_TRACER))
3053
3054void __kprobes add_preempt_count(int val)
3055{
3056#ifdef CONFIG_DEBUG_PREEMPT
3057	/*
3058	 * Underflow?
3059	 */
3060	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3061		return;
3062#endif
3063	preempt_count() += val;
3064#ifdef CONFIG_DEBUG_PREEMPT
3065	/*
3066	 * Spinlock count overflowing soon?
3067	 */
3068	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3069				PREEMPT_MASK - 10);
3070#endif
3071	if (preempt_count() == val)
3072		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3073}
3074EXPORT_SYMBOL(add_preempt_count);
3075
3076void __kprobes sub_preempt_count(int val)
3077{
3078#ifdef CONFIG_DEBUG_PREEMPT
3079	/*
3080	 * Underflow?
3081	 */
3082	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3083		return;
3084	/*
3085	 * Is the spinlock portion underflowing?
3086	 */
3087	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3088			!(preempt_count() & PREEMPT_MASK)))
3089		return;
3090#endif
3091
3092	if (preempt_count() == val)
3093		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3094	preempt_count() -= val;
3095}
3096EXPORT_SYMBOL(sub_preempt_count);
3097
3098#endif
3099
3100/*
3101 * Print scheduling while atomic bug:
3102 */
3103static noinline void __schedule_bug(struct task_struct *prev)
3104{
3105	if (oops_in_progress)
3106		return;
3107
3108	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3109		prev->comm, prev->pid, preempt_count());
3110
3111	debug_show_held_locks(prev);
3112	print_modules();
3113	if (irqs_disabled())
3114		print_irqtrace_events(prev);
3115	dump_stack();
3116}
3117
3118/*
3119 * Various schedule()-time debugging checks and statistics:
3120 */
3121static inline void schedule_debug(struct task_struct *prev)
3122{
3123	/*
3124	 * Test if we are atomic. Since do_exit() needs to call into
3125	 * schedule() atomically, we ignore that path for now.
3126	 * Otherwise, whine if we are scheduling when we should not be.
3127	 */
3128	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3129		__schedule_bug(prev);
3130	rcu_sleep_check();
3131
3132	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3133
3134	schedstat_inc(this_rq(), sched_count);
3135}
3136
3137static void put_prev_task(struct rq *rq, struct task_struct *prev)
3138{
3139	if (prev->on_rq || rq->skip_clock_update < 0)
3140		update_rq_clock(rq);
3141	prev->sched_class->put_prev_task(rq, prev);
3142}
3143
3144/*
3145 * Pick up the highest-prio task:
3146 */
3147static inline struct task_struct *
3148pick_next_task(struct rq *rq)
3149{
3150	const struct sched_class *class;
3151	struct task_struct *p;
3152
3153	/*
3154	 * Optimization: we know that if all tasks are in
3155	 * the fair class we can call that function directly:
3156	 */
3157	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3158		p = fair_sched_class.pick_next_task(rq);
3159		if (likely(p))
3160			return p;
3161	}
3162
3163	for_each_class(class) {
3164		p = class->pick_next_task(rq);
3165		if (p)
3166			return p;
3167	}
3168
3169	BUG(); /* the idle class will always have a runnable task */
3170}
3171
3172/*
3173 * __schedule() is the main scheduler function.
3174 */
3175static void __sched __schedule(void)
3176{
3177	struct task_struct *prev, *next;
3178	unsigned long *switch_count;
3179	struct rq *rq;
3180	int cpu;
3181
3182need_resched:
3183	preempt_disable();
3184	cpu = smp_processor_id();
3185	rq = cpu_rq(cpu);
3186	rcu_note_context_switch(cpu);
3187	prev = rq->curr;
3188
3189	schedule_debug(prev);
3190
3191	if (sched_feat(HRTICK))
3192		hrtick_clear(rq);
3193
3194	raw_spin_lock_irq(&rq->lock);
3195
3196	switch_count = &prev->nivcsw;
3197	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3198		if (unlikely(signal_pending_state(prev->state, prev))) {
3199			prev->state = TASK_RUNNING;
3200		} else {
3201			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3202			prev->on_rq = 0;
3203
3204			/*
3205			 * If a worker went to sleep, notify and ask workqueue
3206			 * whether it wants to wake up a task to maintain
3207			 * concurrency.
3208			 */
3209			if (prev->flags & PF_WQ_WORKER) {
3210				struct task_struct *to_wakeup;
3211
3212				to_wakeup = wq_worker_sleeping(prev, cpu);
3213				if (to_wakeup)
3214					try_to_wake_up_local(to_wakeup);
3215			}
3216		}
3217		switch_count = &prev->nvcsw;
3218	}
3219
3220	pre_schedule(rq, prev);
3221
3222	if (unlikely(!rq->nr_running))
3223		idle_balance(cpu, rq);
3224
3225	put_prev_task(rq, prev);
3226	next = pick_next_task(rq);
3227	clear_tsk_need_resched(prev);
3228	rq->skip_clock_update = 0;
3229
3230	if (likely(prev != next)) {
3231		rq->nr_switches++;
3232		rq->curr = next;
3233		++*switch_count;
3234
3235		context_switch(rq, prev, next); /* unlocks the rq */
3236		/*
3237		 * The context switch have flipped the stack from under us
3238		 * and restored the local variables which were saved when
3239		 * this task called schedule() in the past. prev == current
3240		 * is still correct, but it can be moved to another cpu/rq.
3241		 */
3242		cpu = smp_processor_id();
3243		rq = cpu_rq(cpu);
3244	} else
3245		raw_spin_unlock_irq(&rq->lock);
3246
3247	post_schedule(rq);
3248
3249	sched_preempt_enable_no_resched();
3250	if (need_resched())
3251		goto need_resched;
3252}
3253
3254static inline void sched_submit_work(struct task_struct *tsk)
3255{
3256	if (!tsk->state || tsk_is_pi_blocked(tsk))
3257		return;
3258	/*
3259	 * If we are going to sleep and we have plugged IO queued,
3260	 * make sure to submit it to avoid deadlocks.
3261	 */
3262	if (blk_needs_flush_plug(tsk))
3263		blk_schedule_flush_plug(tsk);
3264}
3265
3266asmlinkage void __sched schedule(void)
3267{
3268	struct task_struct *tsk = current;
3269
3270	sched_submit_work(tsk);
3271	__schedule();
3272}
3273EXPORT_SYMBOL(schedule);
3274
3275/**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280void __sched schedule_preempt_disabled(void)
3281{
3282	sched_preempt_enable_no_resched();
3283	schedule();
3284	preempt_disable();
3285}
3286
3287#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3288
3289static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3290{
3291	if (lock->owner != owner)
3292		return false;
3293
3294	/*
3295	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3296	 * lock->owner still matches owner, if that fails, owner might
3297	 * point to free()d memory, if it still matches, the rcu_read_lock()
3298	 * ensures the memory stays valid.
3299	 */
3300	barrier();
3301
3302	return owner->on_cpu;
3303}
3304
3305/*
3306 * Look out! "owner" is an entirely speculative pointer
3307 * access and not reliable.
3308 */
3309int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3310{
3311	if (!sched_feat(OWNER_SPIN))
3312		return 0;
3313
3314	rcu_read_lock();
3315	while (owner_running(lock, owner)) {
3316		if (need_resched())
3317			break;
3318
3319		arch_mutex_cpu_relax();
3320	}
3321	rcu_read_unlock();
3322
3323	/*
3324	 * We break out the loop above on need_resched() and when the
3325	 * owner changed, which is a sign for heavy contention. Return
3326	 * success only when lock->owner is NULL.
3327	 */
3328	return lock->owner == NULL;
3329}
3330#endif
3331
3332#ifdef CONFIG_PREEMPT
3333/*
3334 * this is the entry point to schedule() from in-kernel preemption
3335 * off of preempt_enable. Kernel preemptions off return from interrupt
3336 * occur there and call schedule directly.
3337 */
3338asmlinkage void __sched notrace preempt_schedule(void)
3339{
3340	struct thread_info *ti = current_thread_info();
3341
3342	/*
3343	 * If there is a non-zero preempt_count or interrupts are disabled,
3344	 * we do not want to preempt the current task. Just return..
3345	 */
3346	if (likely(ti->preempt_count || irqs_disabled()))
3347		return;
3348
3349	do {
3350		add_preempt_count_notrace(PREEMPT_ACTIVE);
3351		__schedule();
3352		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3353
3354		/*
3355		 * Check again in case we missed a preemption opportunity
3356		 * between schedule and now.
3357		 */
3358		barrier();
3359	} while (need_resched());
3360}
3361EXPORT_SYMBOL(preempt_schedule);
3362
3363/*
3364 * this is the entry point to schedule() from kernel preemption
3365 * off of irq context.
3366 * Note, that this is called and return with irqs disabled. This will
3367 * protect us against recursive calling from irq.
3368 */
3369asmlinkage void __sched preempt_schedule_irq(void)
3370{
3371	struct thread_info *ti = current_thread_info();
3372
3373	/* Catch callers which need to be fixed */
3374	BUG_ON(ti->preempt_count || !irqs_disabled());
3375
3376	do {
3377		add_preempt_count(PREEMPT_ACTIVE);
3378		local_irq_enable();
3379		__schedule();
3380		local_irq_disable();
3381		sub_preempt_count(PREEMPT_ACTIVE);
3382
3383		/*
3384		 * Check again in case we missed a preemption opportunity
3385		 * between schedule and now.
3386		 */
3387		barrier();
3388	} while (need_resched());
3389}
3390
3391#endif /* CONFIG_PREEMPT */
3392
3393int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3394			  void *key)
3395{
3396	return try_to_wake_up(curr->private, mode, wake_flags);
3397}
3398EXPORT_SYMBOL(default_wake_function);
3399
3400/*
3401 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3402 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3403 * number) then we wake all the non-exclusive tasks and one exclusive task.
3404 *
3405 * There are circumstances in which we can try to wake a task which has already
3406 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3407 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3408 */
3409static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3410			int nr_exclusive, int wake_flags, void *key)
3411{
3412	wait_queue_t *curr, *next;
3413
3414	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3415		unsigned flags = curr->flags;
3416
3417		if (curr->func(curr, mode, wake_flags, key) &&
3418				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3419			break;
3420	}
3421}
3422
3423/**
3424 * __wake_up - wake up threads blocked on a waitqueue.
3425 * @q: the waitqueue
3426 * @mode: which threads
3427 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3428 * @key: is directly passed to the wakeup function
3429 *
3430 * It may be assumed that this function implies a write memory barrier before
3431 * changing the task state if and only if any tasks are woken up.
3432 */
3433void __wake_up(wait_queue_head_t *q, unsigned int mode,
3434			int nr_exclusive, void *key)
3435{
3436	unsigned long flags;
3437
3438	spin_lock_irqsave(&q->lock, flags);
3439	__wake_up_common(q, mode, nr_exclusive, 0, key);
3440	spin_unlock_irqrestore(&q->lock, flags);
3441}
3442EXPORT_SYMBOL(__wake_up);
3443
3444/*
3445 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3446 */
3447void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3448{
3449	__wake_up_common(q, mode, nr, 0, NULL);
3450}
3451EXPORT_SYMBOL_GPL(__wake_up_locked);
3452
3453void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3454{
3455	__wake_up_common(q, mode, 1, 0, key);
3456}
3457EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3458
3459/**
3460 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3461 * @q: the waitqueue
3462 * @mode: which threads
3463 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3464 * @key: opaque value to be passed to wakeup targets
3465 *
3466 * The sync wakeup differs that the waker knows that it will schedule
3467 * away soon, so while the target thread will be woken up, it will not
3468 * be migrated to another CPU - ie. the two threads are 'synchronized'
3469 * with each other. This can prevent needless bouncing between CPUs.
3470 *
3471 * On UP it can prevent extra preemption.
3472 *
3473 * It may be assumed that this function implies a write memory barrier before
3474 * changing the task state if and only if any tasks are woken up.
3475 */
3476void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3477			int nr_exclusive, void *key)
3478{
3479	unsigned long flags;
3480	int wake_flags = WF_SYNC;
3481
3482	if (unlikely(!q))
3483		return;
3484
3485	if (unlikely(!nr_exclusive))
3486		wake_flags = 0;
3487
3488	spin_lock_irqsave(&q->lock, flags);
3489	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3490	spin_unlock_irqrestore(&q->lock, flags);
3491}
3492EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3493
3494/*
3495 * __wake_up_sync - see __wake_up_sync_key()
3496 */
3497void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3498{
3499	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3500}
3501EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3502
3503/**
3504 * complete: - signals a single thread waiting on this completion
3505 * @x:  holds the state of this particular completion
3506 *
3507 * This will wake up a single thread waiting on this completion. Threads will be
3508 * awakened in the same order in which they were queued.
3509 *
3510 * See also complete_all(), wait_for_completion() and related routines.
3511 *
3512 * It may be assumed that this function implies a write memory barrier before
3513 * changing the task state if and only if any tasks are woken up.
3514 */
3515void complete(struct completion *x)
3516{
3517	unsigned long flags;
3518
3519	spin_lock_irqsave(&x->wait.lock, flags);
3520	x->done++;
3521	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3522	spin_unlock_irqrestore(&x->wait.lock, flags);
3523}
3524EXPORT_SYMBOL(complete);
3525
3526/**
3527 * complete_all: - signals all threads waiting on this completion
3528 * @x:  holds the state of this particular completion
3529 *
3530 * This will wake up all threads waiting on this particular completion event.
3531 *
3532 * It may be assumed that this function implies a write memory barrier before
3533 * changing the task state if and only if any tasks are woken up.
3534 */
3535void complete_all(struct completion *x)
3536{
3537	unsigned long flags;
3538
3539	spin_lock_irqsave(&x->wait.lock, flags);
3540	x->done += UINT_MAX/2;
3541	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3542	spin_unlock_irqrestore(&x->wait.lock, flags);
3543}
3544EXPORT_SYMBOL(complete_all);
3545
3546static inline long __sched
3547do_wait_for_common(struct completion *x, long timeout, int state)
3548{
3549	if (!x->done) {
3550		DECLARE_WAITQUEUE(wait, current);
3551
3552		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3553		do {
3554			if (signal_pending_state(state, current)) {
3555				timeout = -ERESTARTSYS;
3556				break;
3557			}
3558			__set_current_state(state);
3559			spin_unlock_irq(&x->wait.lock);
3560			timeout = schedule_timeout(timeout);
3561			spin_lock_irq(&x->wait.lock);
3562		} while (!x->done && timeout);
3563		__remove_wait_queue(&x->wait, &wait);
3564		if (!x->done)
3565			return timeout;
3566	}
3567	x->done--;
3568	return timeout ?: 1;
3569}
3570
3571static long __sched
3572wait_for_common(struct completion *x, long timeout, int state)
3573{
3574	might_sleep();
3575
3576	spin_lock_irq(&x->wait.lock);
3577	timeout = do_wait_for_common(x, timeout, state);
3578	spin_unlock_irq(&x->wait.lock);
3579	return timeout;
3580}
3581
3582/**
3583 * wait_for_completion: - waits for completion of a task
3584 * @x:  holds the state of this particular completion
3585 *
3586 * This waits to be signaled for completion of a specific task. It is NOT
3587 * interruptible and there is no timeout.
3588 *
3589 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3590 * and interrupt capability. Also see complete().
3591 */
3592void __sched wait_for_completion(struct completion *x)
3593{
3594	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3595}
3596EXPORT_SYMBOL(wait_for_completion);
3597
3598/**
3599 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3600 * @x:  holds the state of this particular completion
3601 * @timeout:  timeout value in jiffies
3602 *
3603 * This waits for either a completion of a specific task to be signaled or for a
3604 * specified timeout to expire. The timeout is in jiffies. It is not
3605 * interruptible.
3606 *
3607 * The return value is 0 if timed out, and positive (at least 1, or number of
3608 * jiffies left till timeout) if completed.
3609 */
3610unsigned long __sched
3611wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3612{
3613	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3614}
3615EXPORT_SYMBOL(wait_for_completion_timeout);
3616
3617/**
3618 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3619 * @x:  holds the state of this particular completion
3620 *
3621 * This waits for completion of a specific task to be signaled. It is
3622 * interruptible.
3623 *
3624 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3625 */
3626int __sched wait_for_completion_interruptible(struct completion *x)
3627{
3628	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3629	if (t == -ERESTARTSYS)
3630		return t;
3631	return 0;
3632}
3633EXPORT_SYMBOL(wait_for_completion_interruptible);
3634
3635/**
3636 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3637 * @x:  holds the state of this particular completion
3638 * @timeout:  timeout value in jiffies
3639 *
3640 * This waits for either a completion of a specific task to be signaled or for a
3641 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3642 *
3643 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3644 * positive (at least 1, or number of jiffies left till timeout) if completed.
3645 */
3646long __sched
3647wait_for_completion_interruptible_timeout(struct completion *x,
3648					  unsigned long timeout)
3649{
3650	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3651}
3652EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3653
3654/**
3655 * wait_for_completion_killable: - waits for completion of a task (killable)
3656 * @x:  holds the state of this particular completion
3657 *
3658 * This waits to be signaled for completion of a specific task. It can be
3659 * interrupted by a kill signal.
3660 *
3661 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3662 */
3663int __sched wait_for_completion_killable(struct completion *x)
3664{
3665	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3666	if (t == -ERESTARTSYS)
3667		return t;
3668	return 0;
3669}
3670EXPORT_SYMBOL(wait_for_completion_killable);
3671
3672/**
3673 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3674 * @x:  holds the state of this particular completion
3675 * @timeout:  timeout value in jiffies
3676 *
3677 * This waits for either a completion of a specific task to be
3678 * signaled or for a specified timeout to expire. It can be
3679 * interrupted by a kill signal. The timeout is in jiffies.
3680 *
3681 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3682 * positive (at least 1, or number of jiffies left till timeout) if completed.
3683 */
3684long __sched
3685wait_for_completion_killable_timeout(struct completion *x,
3686				     unsigned long timeout)
3687{
3688	return wait_for_common(x, timeout, TASK_KILLABLE);
3689}
3690EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3691
3692/**
3693 *	try_wait_for_completion - try to decrement a completion without blocking
3694 *	@x:	completion structure
3695 *
3696 *	Returns: 0 if a decrement cannot be done without blocking
3697 *		 1 if a decrement succeeded.
3698 *
3699 *	If a completion is being used as a counting completion,
3700 *	attempt to decrement the counter without blocking. This
3701 *	enables us to avoid waiting if the resource the completion
3702 *	is protecting is not available.
3703 */
3704bool try_wait_for_completion(struct completion *x)
3705{
3706	unsigned long flags;
3707	int ret = 1;
3708
3709	spin_lock_irqsave(&x->wait.lock, flags);
3710	if (!x->done)
3711		ret = 0;
3712	else
3713		x->done--;
3714	spin_unlock_irqrestore(&x->wait.lock, flags);
3715	return ret;
3716}
3717EXPORT_SYMBOL(try_wait_for_completion);
3718
3719/**
3720 *	completion_done - Test to see if a completion has any waiters
3721 *	@x:	completion structure
3722 *
3723 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3724 *		 1 if there are no waiters.
3725 *
3726 */
3727bool completion_done(struct completion *x)
3728{
3729	unsigned long flags;
3730	int ret = 1;
3731
3732	spin_lock_irqsave(&x->wait.lock, flags);
3733	if (!x->done)
3734		ret = 0;
3735	spin_unlock_irqrestore(&x->wait.lock, flags);
3736	return ret;
3737}
3738EXPORT_SYMBOL(completion_done);
3739
3740static long __sched
3741sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3742{
3743	unsigned long flags;
3744	wait_queue_t wait;
3745
3746	init_waitqueue_entry(&wait, current);
3747
3748	__set_current_state(state);
3749
3750	spin_lock_irqsave(&q->lock, flags);
3751	__add_wait_queue(q, &wait);
3752	spin_unlock(&q->lock);
3753	timeout = schedule_timeout(timeout);
3754	spin_lock_irq(&q->lock);
3755	__remove_wait_queue(q, &wait);
3756	spin_unlock_irqrestore(&q->lock, flags);
3757
3758	return timeout;
3759}
3760
3761void __sched interruptible_sleep_on(wait_queue_head_t *q)
3762{
3763	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3764}
3765EXPORT_SYMBOL(interruptible_sleep_on);
3766
3767long __sched
3768interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3769{
3770	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3771}
3772EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3773
3774void __sched sleep_on(wait_queue_head_t *q)
3775{
3776	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3777}
3778EXPORT_SYMBOL(sleep_on);
3779
3780long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3781{
3782	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3783}
3784EXPORT_SYMBOL(sleep_on_timeout);
3785
3786#ifdef CONFIG_RT_MUTEXES
3787
3788/*
3789 * rt_mutex_setprio - set the current priority of a task
3790 * @p: task
3791 * @prio: prio value (kernel-internal form)
3792 *
3793 * This function changes the 'effective' priority of a task. It does
3794 * not touch ->normal_prio like __setscheduler().
3795 *
3796 * Used by the rt_mutex code to implement priority inheritance logic.
3797 */
3798void rt_mutex_setprio(struct task_struct *p, int prio)
3799{
3800	int oldprio, on_rq, running;
3801	struct rq *rq;
3802	const struct sched_class *prev_class;
3803
3804	BUG_ON(prio < 0 || prio > MAX_PRIO);
3805
3806	rq = __task_rq_lock(p);
3807
3808	/*
3809	 * Idle task boosting is a nono in general. There is one
3810	 * exception, when PREEMPT_RT and NOHZ is active:
3811	 *
3812	 * The idle task calls get_next_timer_interrupt() and holds
3813	 * the timer wheel base->lock on the CPU and another CPU wants
3814	 * to access the timer (probably to cancel it). We can safely
3815	 * ignore the boosting request, as the idle CPU runs this code
3816	 * with interrupts disabled and will complete the lock
3817	 * protected section without being interrupted. So there is no
3818	 * real need to boost.
3819	 */
3820	if (unlikely(p == rq->idle)) {
3821		WARN_ON(p != rq->curr);
3822		WARN_ON(p->pi_blocked_on);
3823		goto out_unlock;
3824	}
3825
3826	trace_sched_pi_setprio(p, prio);
3827	oldprio = p->prio;
3828	prev_class = p->sched_class;
3829	on_rq = p->on_rq;
3830	running = task_current(rq, p);
3831	if (on_rq)
3832		dequeue_task(rq, p, 0);
3833	if (running)
3834		p->sched_class->put_prev_task(rq, p);
3835
3836	if (rt_prio(prio))
3837		p->sched_class = &rt_sched_class;
3838	else
3839		p->sched_class = &fair_sched_class;
3840
3841	p->prio = prio;
3842
3843	if (running)
3844		p->sched_class->set_curr_task(rq);
3845	if (on_rq)
3846		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3847
3848	check_class_changed(rq, p, prev_class, oldprio);
3849out_unlock:
3850	__task_rq_unlock(rq);
3851}
3852#endif
3853void set_user_nice(struct task_struct *p, long nice)
3854{
3855	int old_prio, delta, on_rq;
3856	unsigned long flags;
3857	struct rq *rq;
3858
3859	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3860		return;
3861	/*
3862	 * We have to be careful, if called from sys_setpriority(),
3863	 * the task might be in the middle of scheduling on another CPU.
3864	 */
3865	rq = task_rq_lock(p, &flags);
3866	/*
3867	 * The RT priorities are set via sched_setscheduler(), but we still
3868	 * allow the 'normal' nice value to be set - but as expected
3869	 * it wont have any effect on scheduling until the task is
3870	 * SCHED_FIFO/SCHED_RR:
3871	 */
3872	if (task_has_rt_policy(p)) {
3873		p->static_prio = NICE_TO_PRIO(nice);
3874		goto out_unlock;
3875	}
3876	on_rq = p->on_rq;
3877	if (on_rq)
3878		dequeue_task(rq, p, 0);
3879
3880	p->static_prio = NICE_TO_PRIO(nice);
3881	set_load_weight(p);
3882	old_prio = p->prio;
3883	p->prio = effective_prio(p);
3884	delta = p->prio - old_prio;
3885
3886	if (on_rq) {
3887		enqueue_task(rq, p, 0);
3888		/*
3889		 * If the task increased its priority or is running and
3890		 * lowered its priority, then reschedule its CPU:
3891		 */
3892		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3893			resched_task(rq->curr);
3894	}
3895out_unlock:
3896	task_rq_unlock(rq, p, &flags);
3897}
3898EXPORT_SYMBOL(set_user_nice);
3899
3900/*
3901 * can_nice - check if a task can reduce its nice value
3902 * @p: task
3903 * @nice: nice value
3904 */
3905int can_nice(const struct task_struct *p, const int nice)
3906{
3907	/* convert nice value [19,-20] to rlimit style value [1,40] */
3908	int nice_rlim = 20 - nice;
3909
3910	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3911		capable(CAP_SYS_NICE));
3912}
3913
3914#ifdef __ARCH_WANT_SYS_NICE
3915
3916/*
3917 * sys_nice - change the priority of the current process.
3918 * @increment: priority increment
3919 *
3920 * sys_setpriority is a more generic, but much slower function that
3921 * does similar things.
3922 */
3923SYSCALL_DEFINE1(nice, int, increment)
3924{
3925	long nice, retval;
3926
3927	/*
3928	 * Setpriority might change our priority at the same moment.
3929	 * We don't have to worry. Conceptually one call occurs first
3930	 * and we have a single winner.
3931	 */
3932	if (increment < -40)
3933		increment = -40;
3934	if (increment > 40)
3935		increment = 40;
3936
3937	nice = TASK_NICE(current) + increment;
3938	if (nice < -20)
3939		nice = -20;
3940	if (nice > 19)
3941		nice = 19;
3942
3943	if (increment < 0 && !can_nice(current, nice))
3944		return -EPERM;
3945
3946	retval = security_task_setnice(current, nice);
3947	if (retval)
3948		return retval;
3949
3950	set_user_nice(current, nice);
3951	return 0;
3952}
3953
3954#endif
3955
3956/**
3957 * task_prio - return the priority value of a given task.
3958 * @p: the task in question.
3959 *
3960 * This is the priority value as seen by users in /proc.
3961 * RT tasks are offset by -200. Normal tasks are centered
3962 * around 0, value goes from -16 to +15.
3963 */
3964int task_prio(const struct task_struct *p)
3965{
3966	return p->prio - MAX_RT_PRIO;
3967}
3968
3969/**
3970 * task_nice - return the nice value of a given task.
3971 * @p: the task in question.
3972 */
3973int task_nice(const struct task_struct *p)
3974{
3975	return TASK_NICE(p);
3976}
3977EXPORT_SYMBOL(task_nice);
3978
3979/**
3980 * idle_cpu - is a given cpu idle currently?
3981 * @cpu: the processor in question.
3982 */
3983int idle_cpu(int cpu)
3984{
3985	struct rq *rq = cpu_rq(cpu);
3986
3987	if (rq->curr != rq->idle)
3988		return 0;
3989
3990	if (rq->nr_running)
3991		return 0;
3992
3993#ifdef CONFIG_SMP
3994	if (!llist_empty(&rq->wake_list))
3995		return 0;
3996#endif
3997
3998	return 1;
3999}
4000
4001/**
4002 * idle_task - return the idle task for a given cpu.
4003 * @cpu: the processor in question.
4004 */
4005struct task_struct *idle_task(int cpu)
4006{
4007	return cpu_rq(cpu)->idle;
4008}
4009
4010/**
4011 * find_process_by_pid - find a process with a matching PID value.
4012 * @pid: the pid in question.
4013 */
4014static struct task_struct *find_process_by_pid(pid_t pid)
4015{
4016	return pid ? find_task_by_vpid(pid) : current;
4017}
4018
4019/* Actually do priority change: must hold rq lock. */
4020static void
4021__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4022{
4023	p->policy = policy;
4024	p->rt_priority = prio;
4025	p->normal_prio = normal_prio(p);
4026	/* we are holding p->pi_lock already */
4027	p->prio = rt_mutex_getprio(p);
4028	if (rt_prio(p->prio))
4029		p->sched_class = &rt_sched_class;
4030	else
4031		p->sched_class = &fair_sched_class;
4032	set_load_weight(p);
4033}
4034
4035/*
4036 * check the target process has a UID that matches the current process's
4037 */
4038static bool check_same_owner(struct task_struct *p)
4039{
4040	const struct cred *cred = current_cred(), *pcred;
4041	bool match;
4042
4043	rcu_read_lock();
4044	pcred = __task_cred(p);
4045	if (cred->user_ns == pcred->user_ns)
4046		match = (cred->euid == pcred->euid ||
4047			 cred->euid == pcred->uid);
4048	else
4049		match = false;
4050	rcu_read_unlock();
4051	return match;
4052}
4053
4054static int __sched_setscheduler(struct task_struct *p, int policy,
4055				const struct sched_param *param, bool user)
4056{
4057	int retval, oldprio, oldpolicy = -1, on_rq, running;
4058	unsigned long flags;
4059	const struct sched_class *prev_class;
4060	struct rq *rq;
4061	int reset_on_fork;
4062
4063	/* may grab non-irq protected spin_locks */
4064	BUG_ON(in_interrupt());
4065recheck:
4066	/* double check policy once rq lock held */
4067	if (policy < 0) {
4068		reset_on_fork = p->sched_reset_on_fork;
4069		policy = oldpolicy = p->policy;
4070	} else {
4071		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4072		policy &= ~SCHED_RESET_ON_FORK;
4073
4074		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4075				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4076				policy != SCHED_IDLE)
4077			return -EINVAL;
4078	}
4079
4080	/*
4081	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4082	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4083	 * SCHED_BATCH and SCHED_IDLE is 0.
4084	 */
4085	if (param->sched_priority < 0 ||
4086	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4087	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4088		return -EINVAL;
4089	if (rt_policy(policy) != (param->sched_priority != 0))
4090		return -EINVAL;
4091
4092	/*
4093	 * Allow unprivileged RT tasks to decrease priority:
4094	 */
4095	if (user && !capable(CAP_SYS_NICE)) {
4096		if (rt_policy(policy)) {
4097			unsigned long rlim_rtprio =
4098					task_rlimit(p, RLIMIT_RTPRIO);
4099
4100			/* can't set/change the rt policy */
4101			if (policy != p->policy && !rlim_rtprio)
4102				return -EPERM;
4103
4104			/* can't increase priority */
4105			if (param->sched_priority > p->rt_priority &&
4106			    param->sched_priority > rlim_rtprio)
4107				return -EPERM;
4108		}
4109
4110		/*
4111		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4112		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4113		 */
4114		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4115			if (!can_nice(p, TASK_NICE(p)))
4116				return -EPERM;
4117		}
4118
4119		/* can't change other user's priorities */
4120		if (!check_same_owner(p))
4121			return -EPERM;
4122
4123		/* Normal users shall not reset the sched_reset_on_fork flag */
4124		if (p->sched_reset_on_fork && !reset_on_fork)
4125			return -EPERM;
4126	}
4127
4128	if (user) {
4129		retval = security_task_setscheduler(p);
4130		if (retval)
4131			return retval;
4132	}
4133
4134	/*
4135	 * make sure no PI-waiters arrive (or leave) while we are
4136	 * changing the priority of the task:
4137	 *
4138	 * To be able to change p->policy safely, the appropriate
4139	 * runqueue lock must be held.
4140	 */
4141	rq = task_rq_lock(p, &flags);
4142
4143	/*
4144	 * Changing the policy of the stop threads its a very bad idea
4145	 */
4146	if (p == rq->stop) {
4147		task_rq_unlock(rq, p, &flags);
4148		return -EINVAL;
4149	}
4150
4151	/*
4152	 * If not changing anything there's no need to proceed further:
4153	 */
4154	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4155			param->sched_priority == p->rt_priority))) {
4156
4157		__task_rq_unlock(rq);
4158		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4159		return 0;
4160	}
4161
4162#ifdef CONFIG_RT_GROUP_SCHED
4163	if (user) {
4164		/*
4165		 * Do not allow realtime tasks into groups that have no runtime
4166		 * assigned.
4167		 */
4168		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4169				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4170				!task_group_is_autogroup(task_group(p))) {
4171			task_rq_unlock(rq, p, &flags);
4172			return -EPERM;
4173		}
4174	}
4175#endif
4176
4177	/* recheck policy now with rq lock held */
4178	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4179		policy = oldpolicy = -1;
4180		task_rq_unlock(rq, p, &flags);
4181		goto recheck;
4182	}
4183	on_rq = p->on_rq;
4184	running = task_current(rq, p);
4185	if (on_rq)
4186		dequeue_task(rq, p, 0);
4187	if (running)
4188		p->sched_class->put_prev_task(rq, p);
4189
4190	p->sched_reset_on_fork = reset_on_fork;
4191
4192	oldprio = p->prio;
4193	prev_class = p->sched_class;
4194	__setscheduler(rq, p, policy, param->sched_priority);
4195
4196	if (running)
4197		p->sched_class->set_curr_task(rq);
4198	if (on_rq)
4199		enqueue_task(rq, p, 0);
4200
4201	check_class_changed(rq, p, prev_class, oldprio);
4202	task_rq_unlock(rq, p, &flags);
4203
4204	rt_mutex_adjust_pi(p);
4205
4206	return 0;
4207}
4208
4209/**
4210 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4211 * @p: the task in question.
4212 * @policy: new policy.
4213 * @param: structure containing the new RT priority.
4214 *
4215 * NOTE that the task may be already dead.
4216 */
4217int sched_setscheduler(struct task_struct *p, int policy,
4218		       const struct sched_param *param)
4219{
4220	return __sched_setscheduler(p, policy, param, true);
4221}
4222EXPORT_SYMBOL_GPL(sched_setscheduler);
4223
4224/**
4225 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4226 * @p: the task in question.
4227 * @policy: new policy.
4228 * @param: structure containing the new RT priority.
4229 *
4230 * Just like sched_setscheduler, only don't bother checking if the
4231 * current context has permission.  For example, this is needed in
4232 * stop_machine(): we create temporary high priority worker threads,
4233 * but our caller might not have that capability.
4234 */
4235int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4236			       const struct sched_param *param)
4237{
4238	return __sched_setscheduler(p, policy, param, false);
4239}
4240
4241static int
4242do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4243{
4244	struct sched_param lparam;
4245	struct task_struct *p;
4246	int retval;
4247
4248	if (!param || pid < 0)
4249		return -EINVAL;
4250	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4251		return -EFAULT;
4252
4253	rcu_read_lock();
4254	retval = -ESRCH;
4255	p = find_process_by_pid(pid);
4256	if (p != NULL)
4257		retval = sched_setscheduler(p, policy, &lparam);
4258	rcu_read_unlock();
4259
4260	return retval;
4261}
4262
4263/**
4264 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4265 * @pid: the pid in question.
4266 * @policy: new policy.
4267 * @param: structure containing the new RT priority.
4268 */
4269SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4270		struct sched_param __user *, param)
4271{
4272	/* negative values for policy are not valid */
4273	if (policy < 0)
4274		return -EINVAL;
4275
4276	return do_sched_setscheduler(pid, policy, param);
4277}
4278
4279/**
4280 * sys_sched_setparam - set/change the RT priority of a thread
4281 * @pid: the pid in question.
4282 * @param: structure containing the new RT priority.
4283 */
4284SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4285{
4286	return do_sched_setscheduler(pid, -1, param);
4287}
4288
4289/**
4290 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4291 * @pid: the pid in question.
4292 */
4293SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4294{
4295	struct task_struct *p;
4296	int retval;
4297
4298	if (pid < 0)
4299		return -EINVAL;
4300
4301	retval = -ESRCH;
4302	rcu_read_lock();
4303	p = find_process_by_pid(pid);
4304	if (p) {
4305		retval = security_task_getscheduler(p);
4306		if (!retval)
4307			retval = p->policy
4308				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4309	}
4310	rcu_read_unlock();
4311	return retval;
4312}
4313
4314/**
4315 * sys_sched_getparam - get the RT priority of a thread
4316 * @pid: the pid in question.
4317 * @param: structure containing the RT priority.
4318 */
4319SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4320{
4321	struct sched_param lp;
4322	struct task_struct *p;
4323	int retval;
4324
4325	if (!param || pid < 0)
4326		return -EINVAL;
4327
4328	rcu_read_lock();
4329	p = find_process_by_pid(pid);
4330	retval = -ESRCH;
4331	if (!p)
4332		goto out_unlock;
4333
4334	retval = security_task_getscheduler(p);
4335	if (retval)
4336		goto out_unlock;
4337
4338	lp.sched_priority = p->rt_priority;
4339	rcu_read_unlock();
4340
4341	/*
4342	 * This one might sleep, we cannot do it with a spinlock held ...
4343	 */
4344	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4345
4346	return retval;
4347
4348out_unlock:
4349	rcu_read_unlock();
4350	return retval;
4351}
4352
4353long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4354{
4355	cpumask_var_t cpus_allowed, new_mask;
4356	struct task_struct *p;
4357	int retval;
4358
4359	get_online_cpus();
4360	rcu_read_lock();
4361
4362	p = find_process_by_pid(pid);
4363	if (!p) {
4364		rcu_read_unlock();
4365		put_online_cpus();
4366		return -ESRCH;
4367	}
4368
4369	/* Prevent p going away */
4370	get_task_struct(p);
4371	rcu_read_unlock();
4372
4373	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4374		retval = -ENOMEM;
4375		goto out_put_task;
4376	}
4377	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4378		retval = -ENOMEM;
4379		goto out_free_cpus_allowed;
4380	}
4381	retval = -EPERM;
4382	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4383		goto out_unlock;
4384
4385	retval = security_task_setscheduler(p);
4386	if (retval)
4387		goto out_unlock;
4388
4389	cpuset_cpus_allowed(p, cpus_allowed);
4390	cpumask_and(new_mask, in_mask, cpus_allowed);
4391again:
4392	retval = set_cpus_allowed_ptr(p, new_mask);
4393
4394	if (!retval) {
4395		cpuset_cpus_allowed(p, cpus_allowed);
4396		if (!cpumask_subset(new_mask, cpus_allowed)) {
4397			/*
4398			 * We must have raced with a concurrent cpuset
4399			 * update. Just reset the cpus_allowed to the
4400			 * cpuset's cpus_allowed
4401			 */
4402			cpumask_copy(new_mask, cpus_allowed);
4403			goto again;
4404		}
4405	}
4406out_unlock:
4407	free_cpumask_var(new_mask);
4408out_free_cpus_allowed:
4409	free_cpumask_var(cpus_allowed);
4410out_put_task:
4411	put_task_struct(p);
4412	put_online_cpus();
4413	return retval;
4414}
4415
4416static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4417			     struct cpumask *new_mask)
4418{
4419	if (len < cpumask_size())
4420		cpumask_clear(new_mask);
4421	else if (len > cpumask_size())
4422		len = cpumask_size();
4423
4424	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4425}
4426
4427/**
4428 * sys_sched_setaffinity - set the cpu affinity of a process
4429 * @pid: pid of the process
4430 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4431 * @user_mask_ptr: user-space pointer to the new cpu mask
4432 */
4433SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4434		unsigned long __user *, user_mask_ptr)
4435{
4436	cpumask_var_t new_mask;
4437	int retval;
4438
4439	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4440		return -ENOMEM;
4441
4442	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4443	if (retval == 0)
4444		retval = sched_setaffinity(pid, new_mask);
4445	free_cpumask_var(new_mask);
4446	return retval;
4447}
4448
4449long sched_getaffinity(pid_t pid, struct cpumask *mask)
4450{
4451	struct task_struct *p;
4452	unsigned long flags;
4453	int retval;
4454
4455	get_online_cpus();
4456	rcu_read_lock();
4457
4458	retval = -ESRCH;
4459	p = find_process_by_pid(pid);
4460	if (!p)
4461		goto out_unlock;
4462
4463	retval = security_task_getscheduler(p);
4464	if (retval)
4465		goto out_unlock;
4466
4467	raw_spin_lock_irqsave(&p->pi_lock, flags);
4468	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4469	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4470
4471out_unlock:
4472	rcu_read_unlock();
4473	put_online_cpus();
4474
4475	return retval;
4476}
4477
4478/**
4479 * sys_sched_getaffinity - get the cpu affinity of a process
4480 * @pid: pid of the process
4481 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4482 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4483 */
4484SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4485		unsigned long __user *, user_mask_ptr)
4486{
4487	int ret;
4488	cpumask_var_t mask;
4489
4490	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4491		return -EINVAL;
4492	if (len & (sizeof(unsigned long)-1))
4493		return -EINVAL;
4494
4495	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4496		return -ENOMEM;
4497
4498	ret = sched_getaffinity(pid, mask);
4499	if (ret == 0) {
4500		size_t retlen = min_t(size_t, len, cpumask_size());
4501
4502		if (copy_to_user(user_mask_ptr, mask, retlen))
4503			ret = -EFAULT;
4504		else
4505			ret = retlen;
4506	}
4507	free_cpumask_var(mask);
4508
4509	return ret;
4510}
4511
4512/**
4513 * sys_sched_yield - yield the current processor to other threads.
4514 *
4515 * This function yields the current CPU to other tasks. If there are no
4516 * other threads running on this CPU then this function will return.
4517 */
4518SYSCALL_DEFINE0(sched_yield)
4519{
4520	struct rq *rq = this_rq_lock();
4521
4522	schedstat_inc(rq, yld_count);
4523	current->sched_class->yield_task(rq);
4524
4525	/*
4526	 * Since we are going to call schedule() anyway, there's
4527	 * no need to preempt or enable interrupts:
4528	 */
4529	__release(rq->lock);
4530	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4531	do_raw_spin_unlock(&rq->lock);
4532	sched_preempt_enable_no_resched();
4533
4534	schedule();
4535
4536	return 0;
4537}
4538
4539static inline int should_resched(void)
4540{
4541	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4542}
4543
4544static void __cond_resched(void)
4545{
4546	add_preempt_count(PREEMPT_ACTIVE);
4547	__schedule();
4548	sub_preempt_count(PREEMPT_ACTIVE);
4549}
4550
4551int __sched _cond_resched(void)
4552{
4553	if (should_resched()) {
4554		__cond_resched();
4555		return 1;
4556	}
4557	return 0;
4558}
4559EXPORT_SYMBOL(_cond_resched);
4560
4561/*
4562 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4563 * call schedule, and on return reacquire the lock.
4564 *
4565 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4566 * operations here to prevent schedule() from being called twice (once via
4567 * spin_unlock(), once by hand).
4568 */
4569int __cond_resched_lock(spinlock_t *lock)
4570{
4571	int resched = should_resched();
4572	int ret = 0;
4573
4574	lockdep_assert_held(lock);
4575
4576	if (spin_needbreak(lock) || resched) {
4577		spin_unlock(lock);
4578		if (resched)
4579			__cond_resched();
4580		else
4581			cpu_relax();
4582		ret = 1;
4583		spin_lock(lock);
4584	}
4585	return ret;
4586}
4587EXPORT_SYMBOL(__cond_resched_lock);
4588
4589int __sched __cond_resched_softirq(void)
4590{
4591	BUG_ON(!in_softirq());
4592
4593	if (should_resched()) {
4594		local_bh_enable();
4595		__cond_resched();
4596		local_bh_disable();
4597		return 1;
4598	}
4599	return 0;
4600}
4601EXPORT_SYMBOL(__cond_resched_softirq);
4602
4603/**
4604 * yield - yield the current processor to other threads.
4605 *
4606 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4607 *
4608 * The scheduler is at all times free to pick the calling task as the most
4609 * eligible task to run, if removing the yield() call from your code breaks
4610 * it, its already broken.
4611 *
4612 * Typical broken usage is:
4613 *
4614 * while (!event)
4615 * 	yield();
4616 *
4617 * where one assumes that yield() will let 'the other' process run that will
4618 * make event true. If the current task is a SCHED_FIFO task that will never
4619 * happen. Never use yield() as a progress guarantee!!
4620 *
4621 * If you want to use yield() to wait for something, use wait_event().
4622 * If you want to use yield() to be 'nice' for others, use cond_resched().
4623 * If you still want to use yield(), do not!
4624 */
4625void __sched yield(void)
4626{
4627	set_current_state(TASK_RUNNING);
4628	sys_sched_yield();
4629}
4630EXPORT_SYMBOL(yield);
4631
4632/**
4633 * yield_to - yield the current processor to another thread in
4634 * your thread group, or accelerate that thread toward the
4635 * processor it's on.
4636 * @p: target task
4637 * @preempt: whether task preemption is allowed or not
4638 *
4639 * It's the caller's job to ensure that the target task struct
4640 * can't go away on us before we can do any checks.
4641 *
4642 * Returns true if we indeed boosted the target task.
4643 */
4644bool __sched yield_to(struct task_struct *p, bool preempt)
4645{
4646	struct task_struct *curr = current;
4647	struct rq *rq, *p_rq;
4648	unsigned long flags;
4649	bool yielded = 0;
4650
4651	local_irq_save(flags);
4652	rq = this_rq();
4653
4654again:
4655	p_rq = task_rq(p);
4656	double_rq_lock(rq, p_rq);
4657	while (task_rq(p) != p_rq) {
4658		double_rq_unlock(rq, p_rq);
4659		goto again;
4660	}
4661
4662	if (!curr->sched_class->yield_to_task)
4663		goto out;
4664
4665	if (curr->sched_class != p->sched_class)
4666		goto out;
4667
4668	if (task_running(p_rq, p) || p->state)
4669		goto out;
4670
4671	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4672	if (yielded) {
4673		schedstat_inc(rq, yld_count);
4674		/*
4675		 * Make p's CPU reschedule; pick_next_entity takes care of
4676		 * fairness.
4677		 */
4678		if (preempt && rq != p_rq)
4679			resched_task(p_rq->curr);
4680	} else {
4681		/*
4682		 * We might have set it in task_yield_fair(), but are
4683		 * not going to schedule(), so don't want to skip
4684		 * the next update.
4685		 */
4686		rq->skip_clock_update = 0;
4687	}
4688
4689out:
4690	double_rq_unlock(rq, p_rq);
4691	local_irq_restore(flags);
4692
4693	if (yielded)
4694		schedule();
4695
4696	return yielded;
4697}
4698EXPORT_SYMBOL_GPL(yield_to);
4699
4700/*
4701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4702 * that process accounting knows that this is a task in IO wait state.
4703 */
4704void __sched io_schedule(void)
4705{
4706	struct rq *rq = raw_rq();
4707
4708	delayacct_blkio_start();
4709	atomic_inc(&rq->nr_iowait);
4710	blk_flush_plug(current);
4711	current->in_iowait = 1;
4712	schedule();
4713	current->in_iowait = 0;
4714	atomic_dec(&rq->nr_iowait);
4715	delayacct_blkio_end();
4716}
4717EXPORT_SYMBOL(io_schedule);
4718
4719long __sched io_schedule_timeout(long timeout)
4720{
4721	struct rq *rq = raw_rq();
4722	long ret;
4723
4724	delayacct_blkio_start();
4725	atomic_inc(&rq->nr_iowait);
4726	blk_flush_plug(current);
4727	current->in_iowait = 1;
4728	ret = schedule_timeout(timeout);
4729	current->in_iowait = 0;
4730	atomic_dec(&rq->nr_iowait);
4731	delayacct_blkio_end();
4732	return ret;
4733}
4734
4735/**
4736 * sys_sched_get_priority_max - return maximum RT priority.
4737 * @policy: scheduling class.
4738 *
4739 * this syscall returns the maximum rt_priority that can be used
4740 * by a given scheduling class.
4741 */
4742SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4743{
4744	int ret = -EINVAL;
4745
4746	switch (policy) {
4747	case SCHED_FIFO:
4748	case SCHED_RR:
4749		ret = MAX_USER_RT_PRIO-1;
4750		break;
4751	case SCHED_NORMAL:
4752	case SCHED_BATCH:
4753	case SCHED_IDLE:
4754		ret = 0;
4755		break;
4756	}
4757	return ret;
4758}
4759
4760/**
4761 * sys_sched_get_priority_min - return minimum RT priority.
4762 * @policy: scheduling class.
4763 *
4764 * this syscall returns the minimum rt_priority that can be used
4765 * by a given scheduling class.
4766 */
4767SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4768{
4769	int ret = -EINVAL;
4770
4771	switch (policy) {
4772	case SCHED_FIFO:
4773	case SCHED_RR:
4774		ret = 1;
4775		break;
4776	case SCHED_NORMAL:
4777	case SCHED_BATCH:
4778	case SCHED_IDLE:
4779		ret = 0;
4780	}
4781	return ret;
4782}
4783
4784/**
4785 * sys_sched_rr_get_interval - return the default timeslice of a process.
4786 * @pid: pid of the process.
4787 * @interval: userspace pointer to the timeslice value.
4788 *
4789 * this syscall writes the default timeslice value of a given process
4790 * into the user-space timespec buffer. A value of '0' means infinity.
4791 */
4792SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4793		struct timespec __user *, interval)
4794{
4795	struct task_struct *p;
4796	unsigned int time_slice;
4797	unsigned long flags;
4798	struct rq *rq;
4799	int retval;
4800	struct timespec t;
4801
4802	if (pid < 0)
4803		return -EINVAL;
4804
4805	retval = -ESRCH;
4806	rcu_read_lock();
4807	p = find_process_by_pid(pid);
4808	if (!p)
4809		goto out_unlock;
4810
4811	retval = security_task_getscheduler(p);
4812	if (retval)
4813		goto out_unlock;
4814
4815	rq = task_rq_lock(p, &flags);
4816	time_slice = p->sched_class->get_rr_interval(rq, p);
4817	task_rq_unlock(rq, p, &flags);
4818
4819	rcu_read_unlock();
4820	jiffies_to_timespec(time_slice, &t);
4821	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4822	return retval;
4823
4824out_unlock:
4825	rcu_read_unlock();
4826	return retval;
4827}
4828
4829static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4830
4831void sched_show_task(struct task_struct *p)
4832{
4833	unsigned long free = 0;
4834	unsigned state;
4835
4836	state = p->state ? __ffs(p->state) + 1 : 0;
4837	printk(KERN_INFO "%-15.15s %c", p->comm,
4838		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4839#if BITS_PER_LONG == 32
4840	if (state == TASK_RUNNING)
4841		printk(KERN_CONT " running  ");
4842	else
4843		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4844#else
4845	if (state == TASK_RUNNING)
4846		printk(KERN_CONT "  running task    ");
4847	else
4848		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4849#endif
4850#ifdef CONFIG_DEBUG_STACK_USAGE
4851	free = stack_not_used(p);
4852#endif
4853	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4854		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4855		(unsigned long)task_thread_info(p)->flags);
4856
4857	show_stack(p, NULL);
4858}
4859
4860void show_state_filter(unsigned long state_filter)
4861{
4862	struct task_struct *g, *p;
4863
4864#if BITS_PER_LONG == 32
4865	printk(KERN_INFO
4866		"  task                PC stack   pid father\n");
4867#else
4868	printk(KERN_INFO
4869		"  task                        PC stack   pid father\n");
4870#endif
4871	rcu_read_lock();
4872	do_each_thread(g, p) {
4873		/*
4874		 * reset the NMI-timeout, listing all files on a slow
4875		 * console might take a lot of time:
4876		 */
4877		touch_nmi_watchdog();
4878		if (!state_filter || (p->state & state_filter))
4879			sched_show_task(p);
4880	} while_each_thread(g, p);
4881
4882	touch_all_softlockup_watchdogs();
4883
4884#ifdef CONFIG_SCHED_DEBUG
4885	sysrq_sched_debug_show();
4886#endif
4887	rcu_read_unlock();
4888	/*
4889	 * Only show locks if all tasks are dumped:
4890	 */
4891	if (!state_filter)
4892		debug_show_all_locks();
4893}
4894
4895void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4896{
4897	idle->sched_class = &idle_sched_class;
4898}
4899
4900/**
4901 * init_idle - set up an idle thread for a given CPU
4902 * @idle: task in question
4903 * @cpu: cpu the idle task belongs to
4904 *
4905 * NOTE: this function does not set the idle thread's NEED_RESCHED
4906 * flag, to make booting more robust.
4907 */
4908void __cpuinit init_idle(struct task_struct *idle, int cpu)
4909{
4910	struct rq *rq = cpu_rq(cpu);
4911	unsigned long flags;
4912
4913	raw_spin_lock_irqsave(&rq->lock, flags);
4914
4915	__sched_fork(idle);
4916	idle->state = TASK_RUNNING;
4917	idle->se.exec_start = sched_clock();
4918
4919	do_set_cpus_allowed(idle, cpumask_of(cpu));
4920	/*
4921	 * We're having a chicken and egg problem, even though we are
4922	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4923	 * lockdep check in task_group() will fail.
4924	 *
4925	 * Similar case to sched_fork(). / Alternatively we could
4926	 * use task_rq_lock() here and obtain the other rq->lock.
4927	 *
4928	 * Silence PROVE_RCU
4929	 */
4930	rcu_read_lock();
4931	__set_task_cpu(idle, cpu);
4932	rcu_read_unlock();
4933
4934	rq->curr = rq->idle = idle;
4935#if defined(CONFIG_SMP)
4936	idle->on_cpu = 1;
4937#endif
4938	raw_spin_unlock_irqrestore(&rq->lock, flags);
4939
4940	/* Set the preempt count _outside_ the spinlocks! */
4941	task_thread_info(idle)->preempt_count = 0;
4942
4943	/*
4944	 * The idle tasks have their own, simple scheduling class:
4945	 */
4946	idle->sched_class = &idle_sched_class;
4947	ftrace_graph_init_idle_task(idle, cpu);
4948#if defined(CONFIG_SMP)
4949	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4950#endif
4951}
4952
4953#ifdef CONFIG_SMP
4954void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4955{
4956	if (p->sched_class && p->sched_class->set_cpus_allowed)
4957		p->sched_class->set_cpus_allowed(p, new_mask);
4958
4959	cpumask_copy(&p->cpus_allowed, new_mask);
4960	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4961}
4962
4963/*
4964 * This is how migration works:
4965 *
4966 * 1) we invoke migration_cpu_stop() on the target CPU using
4967 *    stop_one_cpu().
4968 * 2) stopper starts to run (implicitly forcing the migrated thread
4969 *    off the CPU)
4970 * 3) it checks whether the migrated task is still in the wrong runqueue.
4971 * 4) if it's in the wrong runqueue then the migration thread removes
4972 *    it and puts it into the right queue.
4973 * 5) stopper completes and stop_one_cpu() returns and the migration
4974 *    is done.
4975 */
4976
4977/*
4978 * Change a given task's CPU affinity. Migrate the thread to a
4979 * proper CPU and schedule it away if the CPU it's executing on
4980 * is removed from the allowed bitmask.
4981 *
4982 * NOTE: the caller must have a valid reference to the task, the
4983 * task must not exit() & deallocate itself prematurely. The
4984 * call is not atomic; no spinlocks may be held.
4985 */
4986int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4987{
4988	unsigned long flags;
4989	struct rq *rq;
4990	unsigned int dest_cpu;
4991	int ret = 0;
4992
4993	rq = task_rq_lock(p, &flags);
4994
4995	if (cpumask_equal(&p->cpus_allowed, new_mask))
4996		goto out;
4997
4998	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4999		ret = -EINVAL;
5000		goto out;
5001	}
5002
5003	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5004		ret = -EINVAL;
5005		goto out;
5006	}
5007
5008	do_set_cpus_allowed(p, new_mask);
5009
5010	/* Can the task run on the task's current CPU? If so, we're done */
5011	if (cpumask_test_cpu(task_cpu(p), new_mask))
5012		goto out;
5013
5014	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5015	if (p->on_rq) {
5016		struct migration_arg arg = { p, dest_cpu };
5017		/* Need help from migration thread: drop lock and wait. */
5018		task_rq_unlock(rq, p, &flags);
5019		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5020		tlb_migrate_finish(p->mm);
5021		return 0;
5022	}
5023out:
5024	task_rq_unlock(rq, p, &flags);
5025
5026	return ret;
5027}
5028EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5029
5030/*
5031 * Move (not current) task off this cpu, onto dest cpu. We're doing
5032 * this because either it can't run here any more (set_cpus_allowed()
5033 * away from this CPU, or CPU going down), or because we're
5034 * attempting to rebalance this task on exec (sched_exec).
5035 *
5036 * So we race with normal scheduler movements, but that's OK, as long
5037 * as the task is no longer on this CPU.
5038 *
5039 * Returns non-zero if task was successfully migrated.
5040 */
5041static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5042{
5043	struct rq *rq_dest, *rq_src;
5044	int ret = 0;
5045
5046	if (unlikely(!cpu_active(dest_cpu)))
5047		return ret;
5048
5049	rq_src = cpu_rq(src_cpu);
5050	rq_dest = cpu_rq(dest_cpu);
5051
5052	raw_spin_lock(&p->pi_lock);
5053	double_rq_lock(rq_src, rq_dest);
5054	/* Already moved. */
5055	if (task_cpu(p) != src_cpu)
5056		goto done;
5057	/* Affinity changed (again). */
5058	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5059		goto fail;
5060
5061	/*
5062	 * If we're not on a rq, the next wake-up will ensure we're
5063	 * placed properly.
5064	 */
5065	if (p->on_rq) {
5066		dequeue_task(rq_src, p, 0);
5067		set_task_cpu(p, dest_cpu);
5068		enqueue_task(rq_dest, p, 0);
5069		check_preempt_curr(rq_dest, p, 0);
5070	}
5071done:
5072	ret = 1;
5073fail:
5074	double_rq_unlock(rq_src, rq_dest);
5075	raw_spin_unlock(&p->pi_lock);
5076	return ret;
5077}
5078
5079/*
5080 * migration_cpu_stop - this will be executed by a highprio stopper thread
5081 * and performs thread migration by bumping thread off CPU then
5082 * 'pushing' onto another runqueue.
5083 */
5084static int migration_cpu_stop(void *data)
5085{
5086	struct migration_arg *arg = data;
5087
5088	/*
5089	 * The original target cpu might have gone down and we might
5090	 * be on another cpu but it doesn't matter.
5091	 */
5092	local_irq_disable();
5093	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5094	local_irq_enable();
5095	return 0;
5096}
5097
5098#ifdef CONFIG_HOTPLUG_CPU
5099
5100/*
5101 * Ensures that the idle task is using init_mm right before its cpu goes
5102 * offline.
5103 */
5104void idle_task_exit(void)
5105{
5106	struct mm_struct *mm = current->active_mm;
5107
5108	BUG_ON(cpu_online(smp_processor_id()));
5109
5110	if (mm != &init_mm)
5111		switch_mm(mm, &init_mm, current);
5112	mmdrop(mm);
5113}
5114
5115/*
5116 * While a dead CPU has no uninterruptible tasks queued at this point,
5117 * it might still have a nonzero ->nr_uninterruptible counter, because
5118 * for performance reasons the counter is not stricly tracking tasks to
5119 * their home CPUs. So we just add the counter to another CPU's counter,
5120 * to keep the global sum constant after CPU-down:
5121 */
5122static void migrate_nr_uninterruptible(struct rq *rq_src)
5123{
5124	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5125
5126	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5127	rq_src->nr_uninterruptible = 0;
5128}
5129
5130/*
5131 * remove the tasks which were accounted by rq from calc_load_tasks.
5132 */
5133static void calc_global_load_remove(struct rq *rq)
5134{
5135	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5136	rq->calc_load_active = 0;
5137}
5138
5139/*
5140 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5141 * try_to_wake_up()->select_task_rq().
5142 *
5143 * Called with rq->lock held even though we'er in stop_machine() and
5144 * there's no concurrency possible, we hold the required locks anyway
5145 * because of lock validation efforts.
5146 */
5147static void migrate_tasks(unsigned int dead_cpu)
5148{
5149	struct rq *rq = cpu_rq(dead_cpu);
5150	struct task_struct *next, *stop = rq->stop;
5151	int dest_cpu;
5152
5153	/*
5154	 * Fudge the rq selection such that the below task selection loop
5155	 * doesn't get stuck on the currently eligible stop task.
5156	 *
5157	 * We're currently inside stop_machine() and the rq is either stuck
5158	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5159	 * either way we should never end up calling schedule() until we're
5160	 * done here.
5161	 */
5162	rq->stop = NULL;
5163
5164	/* Ensure any throttled groups are reachable by pick_next_task */
5165	unthrottle_offline_cfs_rqs(rq);
5166
5167	for ( ; ; ) {
5168		/*
5169		 * There's this thread running, bail when that's the only
5170		 * remaining thread.
5171		 */
5172		if (rq->nr_running == 1)
5173			break;
5174
5175		next = pick_next_task(rq);
5176		BUG_ON(!next);
5177		next->sched_class->put_prev_task(rq, next);
5178
5179		/* Find suitable destination for @next, with force if needed. */
5180		dest_cpu = select_fallback_rq(dead_cpu, next);
5181		raw_spin_unlock(&rq->lock);
5182
5183		__migrate_task(next, dead_cpu, dest_cpu);
5184
5185		raw_spin_lock(&rq->lock);
5186	}
5187
5188	rq->stop = stop;
5189}
5190
5191#endif /* CONFIG_HOTPLUG_CPU */
5192
5193#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5194
5195static struct ctl_table sd_ctl_dir[] = {
5196	{
5197		.procname	= "sched_domain",
5198		.mode		= 0555,
5199	},
5200	{}
5201};
5202
5203static struct ctl_table sd_ctl_root[] = {
5204	{
5205		.procname	= "kernel",
5206		.mode		= 0555,
5207		.child		= sd_ctl_dir,
5208	},
5209	{}
5210};
5211
5212static struct ctl_table *sd_alloc_ctl_entry(int n)
5213{
5214	struct ctl_table *entry =
5215		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5216
5217	return entry;
5218}
5219
5220static void sd_free_ctl_entry(struct ctl_table **tablep)
5221{
5222	struct ctl_table *entry;
5223
5224	/*
5225	 * In the intermediate directories, both the child directory and
5226	 * procname are dynamically allocated and could fail but the mode
5227	 * will always be set. In the lowest directory the names are
5228	 * static strings and all have proc handlers.
5229	 */
5230	for (entry = *tablep; entry->mode; entry++) {
5231		if (entry->child)
5232			sd_free_ctl_entry(&entry->child);
5233		if (entry->proc_handler == NULL)
5234			kfree(entry->procname);
5235	}
5236
5237	kfree(*tablep);
5238	*tablep = NULL;
5239}
5240
5241static void
5242set_table_entry(struct ctl_table *entry,
5243		const char *procname, void *data, int maxlen,
5244		umode_t mode, proc_handler *proc_handler)
5245{
5246	entry->procname = procname;
5247	entry->data = data;
5248	entry->maxlen = maxlen;
5249	entry->mode = mode;
5250	entry->proc_handler = proc_handler;
5251}
5252
5253static struct ctl_table *
5254sd_alloc_ctl_domain_table(struct sched_domain *sd)
5255{
5256	struct ctl_table *table = sd_alloc_ctl_entry(13);
5257
5258	if (table == NULL)
5259		return NULL;
5260
5261	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5262		sizeof(long), 0644, proc_doulongvec_minmax);
5263	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5264		sizeof(long), 0644, proc_doulongvec_minmax);
5265	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5266		sizeof(int), 0644, proc_dointvec_minmax);
5267	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5268		sizeof(int), 0644, proc_dointvec_minmax);
5269	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5270		sizeof(int), 0644, proc_dointvec_minmax);
5271	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5272		sizeof(int), 0644, proc_dointvec_minmax);
5273	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5274		sizeof(int), 0644, proc_dointvec_minmax);
5275	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5276		sizeof(int), 0644, proc_dointvec_minmax);
5277	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5278		sizeof(int), 0644, proc_dointvec_minmax);
5279	set_table_entry(&table[9], "cache_nice_tries",
5280		&sd->cache_nice_tries,
5281		sizeof(int), 0644, proc_dointvec_minmax);
5282	set_table_entry(&table[10], "flags", &sd->flags,
5283		sizeof(int), 0644, proc_dointvec_minmax);
5284	set_table_entry(&table[11], "name", sd->name,
5285		CORENAME_MAX_SIZE, 0444, proc_dostring);
5286	/* &table[12] is terminator */
5287
5288	return table;
5289}
5290
5291static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5292{
5293	struct ctl_table *entry, *table;
5294	struct sched_domain *sd;
5295	int domain_num = 0, i;
5296	char buf[32];
5297
5298	for_each_domain(cpu, sd)
5299		domain_num++;
5300	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5301	if (table == NULL)
5302		return NULL;
5303
5304	i = 0;
5305	for_each_domain(cpu, sd) {
5306		snprintf(buf, 32, "domain%d", i);
5307		entry->procname = kstrdup(buf, GFP_KERNEL);
5308		entry->mode = 0555;
5309		entry->child = sd_alloc_ctl_domain_table(sd);
5310		entry++;
5311		i++;
5312	}
5313	return table;
5314}
5315
5316static struct ctl_table_header *sd_sysctl_header;
5317static void register_sched_domain_sysctl(void)
5318{
5319	int i, cpu_num = num_possible_cpus();
5320	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5321	char buf[32];
5322
5323	WARN_ON(sd_ctl_dir[0].child);
5324	sd_ctl_dir[0].child = entry;
5325
5326	if (entry == NULL)
5327		return;
5328
5329	for_each_possible_cpu(i) {
5330		snprintf(buf, 32, "cpu%d", i);
5331		entry->procname = kstrdup(buf, GFP_KERNEL);
5332		entry->mode = 0555;
5333		entry->child = sd_alloc_ctl_cpu_table(i);
5334		entry++;
5335	}
5336
5337	WARN_ON(sd_sysctl_header);
5338	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5339}
5340
5341/* may be called multiple times per register */
5342static void unregister_sched_domain_sysctl(void)
5343{
5344	if (sd_sysctl_header)
5345		unregister_sysctl_table(sd_sysctl_header);
5346	sd_sysctl_header = NULL;
5347	if (sd_ctl_dir[0].child)
5348		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5349}
5350#else
5351static void register_sched_domain_sysctl(void)
5352{
5353}
5354static void unregister_sched_domain_sysctl(void)
5355{
5356}
5357#endif
5358
5359static void set_rq_online(struct rq *rq)
5360{
5361	if (!rq->online) {
5362		const struct sched_class *class;
5363
5364		cpumask_set_cpu(rq->cpu, rq->rd->online);
5365		rq->online = 1;
5366
5367		for_each_class(class) {
5368			if (class->rq_online)
5369				class->rq_online(rq);
5370		}
5371	}
5372}
5373
5374static void set_rq_offline(struct rq *rq)
5375{
5376	if (rq->online) {
5377		const struct sched_class *class;
5378
5379		for_each_class(class) {
5380			if (class->rq_offline)
5381				class->rq_offline(rq);
5382		}
5383
5384		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5385		rq->online = 0;
5386	}
5387}
5388
5389/*
5390 * migration_call - callback that gets triggered when a CPU is added.
5391 * Here we can start up the necessary migration thread for the new CPU.
5392 */
5393static int __cpuinit
5394migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5395{
5396	int cpu = (long)hcpu;
5397	unsigned long flags;
5398	struct rq *rq = cpu_rq(cpu);
5399
5400	switch (action & ~CPU_TASKS_FROZEN) {
5401
5402	case CPU_UP_PREPARE:
5403		rq->calc_load_update = calc_load_update;
5404		break;
5405
5406	case CPU_ONLINE:
5407		/* Update our root-domain */
5408		raw_spin_lock_irqsave(&rq->lock, flags);
5409		if (rq->rd) {
5410			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5411
5412			set_rq_online(rq);
5413		}
5414		raw_spin_unlock_irqrestore(&rq->lock, flags);
5415		break;
5416
5417#ifdef CONFIG_HOTPLUG_CPU
5418	case CPU_DYING:
5419		sched_ttwu_pending();
5420		/* Update our root-domain */
5421		raw_spin_lock_irqsave(&rq->lock, flags);
5422		if (rq->rd) {
5423			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5424			set_rq_offline(rq);
5425		}
5426		migrate_tasks(cpu);
5427		BUG_ON(rq->nr_running != 1); /* the migration thread */
5428		raw_spin_unlock_irqrestore(&rq->lock, flags);
5429
5430		migrate_nr_uninterruptible(rq);
5431		calc_global_load_remove(rq);
5432		break;
5433#endif
5434	}
5435
5436	update_max_interval();
5437
5438	return NOTIFY_OK;
5439}
5440
5441/*
5442 * Register at high priority so that task migration (migrate_all_tasks)
5443 * happens before everything else.  This has to be lower priority than
5444 * the notifier in the perf_event subsystem, though.
5445 */
5446static struct notifier_block __cpuinitdata migration_notifier = {
5447	.notifier_call = migration_call,
5448	.priority = CPU_PRI_MIGRATION,
5449};
5450
5451static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5452				      unsigned long action, void *hcpu)
5453{
5454	switch (action & ~CPU_TASKS_FROZEN) {
5455	case CPU_STARTING:
5456	case CPU_DOWN_FAILED:
5457		set_cpu_active((long)hcpu, true);
5458		return NOTIFY_OK;
5459	default:
5460		return NOTIFY_DONE;
5461	}
5462}
5463
5464static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5465					unsigned long action, void *hcpu)
5466{
5467	switch (action & ~CPU_TASKS_FROZEN) {
5468	case CPU_DOWN_PREPARE:
5469		set_cpu_active((long)hcpu, false);
5470		return NOTIFY_OK;
5471	default:
5472		return NOTIFY_DONE;
5473	}
5474}
5475
5476static int __init migration_init(void)
5477{
5478	void *cpu = (void *)(long)smp_processor_id();
5479	int err;
5480
5481	/* Initialize migration for the boot CPU */
5482	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5483	BUG_ON(err == NOTIFY_BAD);
5484	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5485	register_cpu_notifier(&migration_notifier);
5486
5487	/* Register cpu active notifiers */
5488	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5489	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5490
5491	return 0;
5492}
5493early_initcall(migration_init);
5494#endif
5495
5496#ifdef CONFIG_SMP
5497
5498static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5499
5500#ifdef CONFIG_SCHED_DEBUG
5501
5502static __read_mostly int sched_domain_debug_enabled;
5503
5504static int __init sched_domain_debug_setup(char *str)
5505{
5506	sched_domain_debug_enabled = 1;
5507
5508	return 0;
5509}
5510early_param("sched_debug", sched_domain_debug_setup);
5511
5512static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5513				  struct cpumask *groupmask)
5514{
5515	struct sched_group *group = sd->groups;
5516	char str[256];
5517
5518	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5519	cpumask_clear(groupmask);
5520
5521	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5522
5523	if (!(sd->flags & SD_LOAD_BALANCE)) {
5524		printk("does not load-balance\n");
5525		if (sd->parent)
5526			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5527					" has parent");
5528		return -1;
5529	}
5530
5531	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5532
5533	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5534		printk(KERN_ERR "ERROR: domain->span does not contain "
5535				"CPU%d\n", cpu);
5536	}
5537	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5538		printk(KERN_ERR "ERROR: domain->groups does not contain"
5539				" CPU%d\n", cpu);
5540	}
5541
5542	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5543	do {
5544		if (!group) {
5545			printk("\n");
5546			printk(KERN_ERR "ERROR: group is NULL\n");
5547			break;
5548		}
5549
5550		if (!group->sgp->power) {
5551			printk(KERN_CONT "\n");
5552			printk(KERN_ERR "ERROR: domain->cpu_power not "
5553					"set\n");
5554			break;
5555		}
5556
5557		if (!cpumask_weight(sched_group_cpus(group))) {
5558			printk(KERN_CONT "\n");
5559			printk(KERN_ERR "ERROR: empty group\n");
5560			break;
5561		}
5562
5563		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5564			printk(KERN_CONT "\n");
5565			printk(KERN_ERR "ERROR: repeated CPUs\n");
5566			break;
5567		}
5568
5569		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5570
5571		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5572
5573		printk(KERN_CONT " %s", str);
5574		if (group->sgp->power != SCHED_POWER_SCALE) {
5575			printk(KERN_CONT " (cpu_power = %d)",
5576				group->sgp->power);
5577		}
5578
5579		group = group->next;
5580	} while (group != sd->groups);
5581	printk(KERN_CONT "\n");
5582
5583	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585
5586	if (sd->parent &&
5587	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588		printk(KERN_ERR "ERROR: parent span is not a superset "
5589			"of domain->span\n");
5590	return 0;
5591}
5592
5593static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594{
5595	int level = 0;
5596
5597	if (!sched_domain_debug_enabled)
5598		return;
5599
5600	if (!sd) {
5601		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602		return;
5603	}
5604
5605	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606
5607	for (;;) {
5608		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609			break;
5610		level++;
5611		sd = sd->parent;
5612		if (!sd)
5613			break;
5614	}
5615}
5616#else /* !CONFIG_SCHED_DEBUG */
5617# define sched_domain_debug(sd, cpu) do { } while (0)
5618#endif /* CONFIG_SCHED_DEBUG */
5619
5620static int sd_degenerate(struct sched_domain *sd)
5621{
5622	if (cpumask_weight(sched_domain_span(sd)) == 1)
5623		return 1;
5624
5625	/* Following flags need at least 2 groups */
5626	if (sd->flags & (SD_LOAD_BALANCE |
5627			 SD_BALANCE_NEWIDLE |
5628			 SD_BALANCE_FORK |
5629			 SD_BALANCE_EXEC |
5630			 SD_SHARE_CPUPOWER |
5631			 SD_SHARE_PKG_RESOURCES)) {
5632		if (sd->groups != sd->groups->next)
5633			return 0;
5634	}
5635
5636	/* Following flags don't use groups */
5637	if (sd->flags & (SD_WAKE_AFFINE))
5638		return 0;
5639
5640	return 1;
5641}
5642
5643static int
5644sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5645{
5646	unsigned long cflags = sd->flags, pflags = parent->flags;
5647
5648	if (sd_degenerate(parent))
5649		return 1;
5650
5651	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5652		return 0;
5653
5654	/* Flags needing groups don't count if only 1 group in parent */
5655	if (parent->groups == parent->groups->next) {
5656		pflags &= ~(SD_LOAD_BALANCE |
5657				SD_BALANCE_NEWIDLE |
5658				SD_BALANCE_FORK |
5659				SD_BALANCE_EXEC |
5660				SD_SHARE_CPUPOWER |
5661				SD_SHARE_PKG_RESOURCES);
5662		if (nr_node_ids == 1)
5663			pflags &= ~SD_SERIALIZE;
5664	}
5665	if (~cflags & pflags)
5666		return 0;
5667
5668	return 1;
5669}
5670
5671static void free_rootdomain(struct rcu_head *rcu)
5672{
5673	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5674
5675	cpupri_cleanup(&rd->cpupri);
5676	free_cpumask_var(rd->rto_mask);
5677	free_cpumask_var(rd->online);
5678	free_cpumask_var(rd->span);
5679	kfree(rd);
5680}
5681
5682static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5683{
5684	struct root_domain *old_rd = NULL;
5685	unsigned long flags;
5686
5687	raw_spin_lock_irqsave(&rq->lock, flags);
5688
5689	if (rq->rd) {
5690		old_rd = rq->rd;
5691
5692		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5693			set_rq_offline(rq);
5694
5695		cpumask_clear_cpu(rq->cpu, old_rd->span);
5696
5697		/*
5698		 * If we dont want to free the old_rt yet then
5699		 * set old_rd to NULL to skip the freeing later
5700		 * in this function:
5701		 */
5702		if (!atomic_dec_and_test(&old_rd->refcount))
5703			old_rd = NULL;
5704	}
5705
5706	atomic_inc(&rd->refcount);
5707	rq->rd = rd;
5708
5709	cpumask_set_cpu(rq->cpu, rd->span);
5710	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5711		set_rq_online(rq);
5712
5713	raw_spin_unlock_irqrestore(&rq->lock, flags);
5714
5715	if (old_rd)
5716		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5717}
5718
5719static int init_rootdomain(struct root_domain *rd)
5720{
5721	memset(rd, 0, sizeof(*rd));
5722
5723	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5724		goto out;
5725	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5726		goto free_span;
5727	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5728		goto free_online;
5729
5730	if (cpupri_init(&rd->cpupri) != 0)
5731		goto free_rto_mask;
5732	return 0;
5733
5734free_rto_mask:
5735	free_cpumask_var(rd->rto_mask);
5736free_online:
5737	free_cpumask_var(rd->online);
5738free_span:
5739	free_cpumask_var(rd->span);
5740out:
5741	return -ENOMEM;
5742}
5743
5744/*
5745 * By default the system creates a single root-domain with all cpus as
5746 * members (mimicking the global state we have today).
5747 */
5748struct root_domain def_root_domain;
5749
5750static void init_defrootdomain(void)
5751{
5752	init_rootdomain(&def_root_domain);
5753
5754	atomic_set(&def_root_domain.refcount, 1);
5755}
5756
5757static struct root_domain *alloc_rootdomain(void)
5758{
5759	struct root_domain *rd;
5760
5761	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5762	if (!rd)
5763		return NULL;
5764
5765	if (init_rootdomain(rd) != 0) {
5766		kfree(rd);
5767		return NULL;
5768	}
5769
5770	return rd;
5771}
5772
5773static void free_sched_groups(struct sched_group *sg, int free_sgp)
5774{
5775	struct sched_group *tmp, *first;
5776
5777	if (!sg)
5778		return;
5779
5780	first = sg;
5781	do {
5782		tmp = sg->next;
5783
5784		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5785			kfree(sg->sgp);
5786
5787		kfree(sg);
5788		sg = tmp;
5789	} while (sg != first);
5790}
5791
5792static void free_sched_domain(struct rcu_head *rcu)
5793{
5794	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5795
5796	/*
5797	 * If its an overlapping domain it has private groups, iterate and
5798	 * nuke them all.
5799	 */
5800	if (sd->flags & SD_OVERLAP) {
5801		free_sched_groups(sd->groups, 1);
5802	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5803		kfree(sd->groups->sgp);
5804		kfree(sd->groups);
5805	}
5806	kfree(sd);
5807}
5808
5809static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5810{
5811	call_rcu(&sd->rcu, free_sched_domain);
5812}
5813
5814static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5815{
5816	for (; sd; sd = sd->parent)
5817		destroy_sched_domain(sd, cpu);
5818}
5819
5820/*
5821 * Keep a special pointer to the highest sched_domain that has
5822 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5823 * allows us to avoid some pointer chasing select_idle_sibling().
5824 *
5825 * Also keep a unique ID per domain (we use the first cpu number in
5826 * the cpumask of the domain), this allows us to quickly tell if
5827 * two cpus are in the same cache domain, see cpus_share_cache().
5828 */
5829DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5830DEFINE_PER_CPU(int, sd_llc_id);
5831
5832static void update_top_cache_domain(int cpu)
5833{
5834	struct sched_domain *sd;
5835	int id = cpu;
5836
5837	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5838	if (sd)
5839		id = cpumask_first(sched_domain_span(sd));
5840
5841	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5842	per_cpu(sd_llc_id, cpu) = id;
5843}
5844
5845/*
5846 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5847 * hold the hotplug lock.
5848 */
5849static void
5850cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5851{
5852	struct rq *rq = cpu_rq(cpu);
5853	struct sched_domain *tmp;
5854
5855	/* Remove the sched domains which do not contribute to scheduling. */
5856	for (tmp = sd; tmp; ) {
5857		struct sched_domain *parent = tmp->parent;
5858		if (!parent)
5859			break;
5860
5861		if (sd_parent_degenerate(tmp, parent)) {
5862			tmp->parent = parent->parent;
5863			if (parent->parent)
5864				parent->parent->child = tmp;
5865			destroy_sched_domain(parent, cpu);
5866		} else
5867			tmp = tmp->parent;
5868	}
5869
5870	if (sd && sd_degenerate(sd)) {
5871		tmp = sd;
5872		sd = sd->parent;
5873		destroy_sched_domain(tmp, cpu);
5874		if (sd)
5875			sd->child = NULL;
5876	}
5877
5878	sched_domain_debug(sd, cpu);
5879
5880	rq_attach_root(rq, rd);
5881	tmp = rq->sd;
5882	rcu_assign_pointer(rq->sd, sd);
5883	destroy_sched_domains(tmp, cpu);
5884
5885	update_top_cache_domain(cpu);
5886}
5887
5888/* cpus with isolated domains */
5889static cpumask_var_t cpu_isolated_map;
5890
5891/* Setup the mask of cpus configured for isolated domains */
5892static int __init isolated_cpu_setup(char *str)
5893{
5894	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5895	cpulist_parse(str, cpu_isolated_map);
5896	return 1;
5897}
5898
5899__setup("isolcpus=", isolated_cpu_setup);
5900
5901#ifdef CONFIG_NUMA
5902
5903/**
5904 * find_next_best_node - find the next node to include in a sched_domain
5905 * @node: node whose sched_domain we're building
5906 * @used_nodes: nodes already in the sched_domain
5907 *
5908 * Find the next node to include in a given scheduling domain. Simply
5909 * finds the closest node not already in the @used_nodes map.
5910 *
5911 * Should use nodemask_t.
5912 */
5913static int find_next_best_node(int node, nodemask_t *used_nodes)
5914{
5915	int i, n, val, min_val, best_node = -1;
5916
5917	min_val = INT_MAX;
5918
5919	for (i = 0; i < nr_node_ids; i++) {
5920		/* Start at @node */
5921		n = (node + i) % nr_node_ids;
5922
5923		if (!nr_cpus_node(n))
5924			continue;
5925
5926		/* Skip already used nodes */
5927		if (node_isset(n, *used_nodes))
5928			continue;
5929
5930		/* Simple min distance search */
5931		val = node_distance(node, n);
5932
5933		if (val < min_val) {
5934			min_val = val;
5935			best_node = n;
5936		}
5937	}
5938
5939	if (best_node != -1)
5940		node_set(best_node, *used_nodes);
5941	return best_node;
5942}
5943
5944/**
5945 * sched_domain_node_span - get a cpumask for a node's sched_domain
5946 * @node: node whose cpumask we're constructing
5947 * @span: resulting cpumask
5948 *
5949 * Given a node, construct a good cpumask for its sched_domain to span. It
5950 * should be one that prevents unnecessary balancing, but also spreads tasks
5951 * out optimally.
5952 */
5953static void sched_domain_node_span(int node, struct cpumask *span)
5954{
5955	nodemask_t used_nodes;
5956	int i;
5957
5958	cpumask_clear(span);
5959	nodes_clear(used_nodes);
5960
5961	cpumask_or(span, span, cpumask_of_node(node));
5962	node_set(node, used_nodes);
5963
5964	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5965		int next_node = find_next_best_node(node, &used_nodes);
5966		if (next_node < 0)
5967			break;
5968		cpumask_or(span, span, cpumask_of_node(next_node));
5969	}
5970}
5971
5972static const struct cpumask *cpu_node_mask(int cpu)
5973{
5974	lockdep_assert_held(&sched_domains_mutex);
5975
5976	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5977
5978	return sched_domains_tmpmask;
5979}
5980
5981static const struct cpumask *cpu_allnodes_mask(int cpu)
5982{
5983	return cpu_possible_mask;
5984}
5985#endif /* CONFIG_NUMA */
5986
5987static const struct cpumask *cpu_cpu_mask(int cpu)
5988{
5989	return cpumask_of_node(cpu_to_node(cpu));
5990}
5991
5992int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5993
5994struct sd_data {
5995	struct sched_domain **__percpu sd;
5996	struct sched_group **__percpu sg;
5997	struct sched_group_power **__percpu sgp;
5998};
5999
6000struct s_data {
6001	struct sched_domain ** __percpu sd;
6002	struct root_domain	*rd;
6003};
6004
6005enum s_alloc {
6006	sa_rootdomain,
6007	sa_sd,
6008	sa_sd_storage,
6009	sa_none,
6010};
6011
6012struct sched_domain_topology_level;
6013
6014typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6015typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6016
6017#define SDTL_OVERLAP	0x01
6018
6019struct sched_domain_topology_level {
6020	sched_domain_init_f init;
6021	sched_domain_mask_f mask;
6022	int		    flags;
6023	struct sd_data      data;
6024};
6025
6026static int
6027build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6028{
6029	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6030	const struct cpumask *span = sched_domain_span(sd);
6031	struct cpumask *covered = sched_domains_tmpmask;
6032	struct sd_data *sdd = sd->private;
6033	struct sched_domain *child;
6034	int i;
6035
6036	cpumask_clear(covered);
6037
6038	for_each_cpu(i, span) {
6039		struct cpumask *sg_span;
6040
6041		if (cpumask_test_cpu(i, covered))
6042			continue;
6043
6044		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6045				GFP_KERNEL, cpu_to_node(cpu));
6046
6047		if (!sg)
6048			goto fail;
6049
6050		sg_span = sched_group_cpus(sg);
6051
6052		child = *per_cpu_ptr(sdd->sd, i);
6053		if (child->child) {
6054			child = child->child;
6055			cpumask_copy(sg_span, sched_domain_span(child));
6056		} else
6057			cpumask_set_cpu(i, sg_span);
6058
6059		cpumask_or(covered, covered, sg_span);
6060
6061		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6062		atomic_inc(&sg->sgp->ref);
6063
6064		if (cpumask_test_cpu(cpu, sg_span))
6065			groups = sg;
6066
6067		if (!first)
6068			first = sg;
6069		if (last)
6070			last->next = sg;
6071		last = sg;
6072		last->next = first;
6073	}
6074	sd->groups = groups;
6075
6076	return 0;
6077
6078fail:
6079	free_sched_groups(first, 0);
6080
6081	return -ENOMEM;
6082}
6083
6084static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6085{
6086	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6087	struct sched_domain *child = sd->child;
6088
6089	if (child)
6090		cpu = cpumask_first(sched_domain_span(child));
6091
6092	if (sg) {
6093		*sg = *per_cpu_ptr(sdd->sg, cpu);
6094		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6095		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6096	}
6097
6098	return cpu;
6099}
6100
6101/*
6102 * build_sched_groups will build a circular linked list of the groups
6103 * covered by the given span, and will set each group's ->cpumask correctly,
6104 * and ->cpu_power to 0.
6105 *
6106 * Assumes the sched_domain tree is fully constructed
6107 */
6108static int
6109build_sched_groups(struct sched_domain *sd, int cpu)
6110{
6111	struct sched_group *first = NULL, *last = NULL;
6112	struct sd_data *sdd = sd->private;
6113	const struct cpumask *span = sched_domain_span(sd);
6114	struct cpumask *covered;
6115	int i;
6116
6117	get_group(cpu, sdd, &sd->groups);
6118	atomic_inc(&sd->groups->ref);
6119
6120	if (cpu != cpumask_first(sched_domain_span(sd)))
6121		return 0;
6122
6123	lockdep_assert_held(&sched_domains_mutex);
6124	covered = sched_domains_tmpmask;
6125
6126	cpumask_clear(covered);
6127
6128	for_each_cpu(i, span) {
6129		struct sched_group *sg;
6130		int group = get_group(i, sdd, &sg);
6131		int j;
6132
6133		if (cpumask_test_cpu(i, covered))
6134			continue;
6135
6136		cpumask_clear(sched_group_cpus(sg));
6137		sg->sgp->power = 0;
6138
6139		for_each_cpu(j, span) {
6140			if (get_group(j, sdd, NULL) != group)
6141				continue;
6142
6143			cpumask_set_cpu(j, covered);
6144			cpumask_set_cpu(j, sched_group_cpus(sg));
6145		}
6146
6147		if (!first)
6148			first = sg;
6149		if (last)
6150			last->next = sg;
6151		last = sg;
6152	}
6153	last->next = first;
6154
6155	return 0;
6156}
6157
6158/*
6159 * Initialize sched groups cpu_power.
6160 *
6161 * cpu_power indicates the capacity of sched group, which is used while
6162 * distributing the load between different sched groups in a sched domain.
6163 * Typically cpu_power for all the groups in a sched domain will be same unless
6164 * there are asymmetries in the topology. If there are asymmetries, group
6165 * having more cpu_power will pickup more load compared to the group having
6166 * less cpu_power.
6167 */
6168static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6169{
6170	struct sched_group *sg = sd->groups;
6171
6172	WARN_ON(!sd || !sg);
6173
6174	do {
6175		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6176		sg = sg->next;
6177	} while (sg != sd->groups);
6178
6179	if (cpu != group_first_cpu(sg))
6180		return;
6181
6182	update_group_power(sd, cpu);
6183	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6184}
6185
6186int __weak arch_sd_sibling_asym_packing(void)
6187{
6188       return 0*SD_ASYM_PACKING;
6189}
6190
6191/*
6192 * Initializers for schedule domains
6193 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6194 */
6195
6196#ifdef CONFIG_SCHED_DEBUG
6197# define SD_INIT_NAME(sd, type)		sd->name = #type
6198#else
6199# define SD_INIT_NAME(sd, type)		do { } while (0)
6200#endif
6201
6202#define SD_INIT_FUNC(type)						\
6203static noinline struct sched_domain *					\
6204sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6205{									\
6206	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6207	*sd = SD_##type##_INIT;						\
6208	SD_INIT_NAME(sd, type);						\
6209	sd->private = &tl->data;					\
6210	return sd;							\
6211}
6212
6213SD_INIT_FUNC(CPU)
6214#ifdef CONFIG_NUMA
6215 SD_INIT_FUNC(ALLNODES)
6216 SD_INIT_FUNC(NODE)
6217#endif
6218#ifdef CONFIG_SCHED_SMT
6219 SD_INIT_FUNC(SIBLING)
6220#endif
6221#ifdef CONFIG_SCHED_MC
6222 SD_INIT_FUNC(MC)
6223#endif
6224#ifdef CONFIG_SCHED_BOOK
6225 SD_INIT_FUNC(BOOK)
6226#endif
6227
6228static int default_relax_domain_level = -1;
6229int sched_domain_level_max;
6230
6231static int __init setup_relax_domain_level(char *str)
6232{
6233	unsigned long val;
6234
6235	val = simple_strtoul(str, NULL, 0);
6236	if (val < sched_domain_level_max)
6237		default_relax_domain_level = val;
6238
6239	return 1;
6240}
6241__setup("relax_domain_level=", setup_relax_domain_level);
6242
6243static void set_domain_attribute(struct sched_domain *sd,
6244				 struct sched_domain_attr *attr)
6245{
6246	int request;
6247
6248	if (!attr || attr->relax_domain_level < 0) {
6249		if (default_relax_domain_level < 0)
6250			return;
6251		else
6252			request = default_relax_domain_level;
6253	} else
6254		request = attr->relax_domain_level;
6255	if (request < sd->level) {
6256		/* turn off idle balance on this domain */
6257		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6258	} else {
6259		/* turn on idle balance on this domain */
6260		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6261	}
6262}
6263
6264static void __sdt_free(const struct cpumask *cpu_map);
6265static int __sdt_alloc(const struct cpumask *cpu_map);
6266
6267static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6268				 const struct cpumask *cpu_map)
6269{
6270	switch (what) {
6271	case sa_rootdomain:
6272		if (!atomic_read(&d->rd->refcount))
6273			free_rootdomain(&d->rd->rcu); /* fall through */
6274	case sa_sd:
6275		free_percpu(d->sd); /* fall through */
6276	case sa_sd_storage:
6277		__sdt_free(cpu_map); /* fall through */
6278	case sa_none:
6279		break;
6280	}
6281}
6282
6283static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6284						   const struct cpumask *cpu_map)
6285{
6286	memset(d, 0, sizeof(*d));
6287
6288	if (__sdt_alloc(cpu_map))
6289		return sa_sd_storage;
6290	d->sd = alloc_percpu(struct sched_domain *);
6291	if (!d->sd)
6292		return sa_sd_storage;
6293	d->rd = alloc_rootdomain();
6294	if (!d->rd)
6295		return sa_sd;
6296	return sa_rootdomain;
6297}
6298
6299/*
6300 * NULL the sd_data elements we've used to build the sched_domain and
6301 * sched_group structure so that the subsequent __free_domain_allocs()
6302 * will not free the data we're using.
6303 */
6304static void claim_allocations(int cpu, struct sched_domain *sd)
6305{
6306	struct sd_data *sdd = sd->private;
6307
6308	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6309	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6310
6311	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6312		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6313
6314	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6315		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6316}
6317
6318#ifdef CONFIG_SCHED_SMT
6319static const struct cpumask *cpu_smt_mask(int cpu)
6320{
6321	return topology_thread_cpumask(cpu);
6322}
6323#endif
6324
6325/*
6326 * Topology list, bottom-up.
6327 */
6328static struct sched_domain_topology_level default_topology[] = {
6329#ifdef CONFIG_SCHED_SMT
6330	{ sd_init_SIBLING, cpu_smt_mask, },
6331#endif
6332#ifdef CONFIG_SCHED_MC
6333	{ sd_init_MC, cpu_coregroup_mask, },
6334#endif
6335#ifdef CONFIG_SCHED_BOOK
6336	{ sd_init_BOOK, cpu_book_mask, },
6337#endif
6338	{ sd_init_CPU, cpu_cpu_mask, },
6339#ifdef CONFIG_NUMA
6340	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6341	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6342#endif
6343	{ NULL, },
6344};
6345
6346static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6347
6348static int __sdt_alloc(const struct cpumask *cpu_map)
6349{
6350	struct sched_domain_topology_level *tl;
6351	int j;
6352
6353	for (tl = sched_domain_topology; tl->init; tl++) {
6354		struct sd_data *sdd = &tl->data;
6355
6356		sdd->sd = alloc_percpu(struct sched_domain *);
6357		if (!sdd->sd)
6358			return -ENOMEM;
6359
6360		sdd->sg = alloc_percpu(struct sched_group *);
6361		if (!sdd->sg)
6362			return -ENOMEM;
6363
6364		sdd->sgp = alloc_percpu(struct sched_group_power *);
6365		if (!sdd->sgp)
6366			return -ENOMEM;
6367
6368		for_each_cpu(j, cpu_map) {
6369			struct sched_domain *sd;
6370			struct sched_group *sg;
6371			struct sched_group_power *sgp;
6372
6373		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6374					GFP_KERNEL, cpu_to_node(j));
6375			if (!sd)
6376				return -ENOMEM;
6377
6378			*per_cpu_ptr(sdd->sd, j) = sd;
6379
6380			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6381					GFP_KERNEL, cpu_to_node(j));
6382			if (!sg)
6383				return -ENOMEM;
6384
6385			*per_cpu_ptr(sdd->sg, j) = sg;
6386
6387			sgp = kzalloc_node(sizeof(struct sched_group_power),
6388					GFP_KERNEL, cpu_to_node(j));
6389			if (!sgp)
6390				return -ENOMEM;
6391
6392			*per_cpu_ptr(sdd->sgp, j) = sgp;
6393		}
6394	}
6395
6396	return 0;
6397}
6398
6399static void __sdt_free(const struct cpumask *cpu_map)
6400{
6401	struct sched_domain_topology_level *tl;
6402	int j;
6403
6404	for (tl = sched_domain_topology; tl->init; tl++) {
6405		struct sd_data *sdd = &tl->data;
6406
6407		for_each_cpu(j, cpu_map) {
6408			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6409			if (sd && (sd->flags & SD_OVERLAP))
6410				free_sched_groups(sd->groups, 0);
6411			kfree(*per_cpu_ptr(sdd->sd, j));
6412			kfree(*per_cpu_ptr(sdd->sg, j));
6413			kfree(*per_cpu_ptr(sdd->sgp, j));
6414		}
6415		free_percpu(sdd->sd);
6416		free_percpu(sdd->sg);
6417		free_percpu(sdd->sgp);
6418	}
6419}
6420
6421struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6422		struct s_data *d, const struct cpumask *cpu_map,
6423		struct sched_domain_attr *attr, struct sched_domain *child,
6424		int cpu)
6425{
6426	struct sched_domain *sd = tl->init(tl, cpu);
6427	if (!sd)
6428		return child;
6429
6430	set_domain_attribute(sd, attr);
6431	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6432	if (child) {
6433		sd->level = child->level + 1;
6434		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6435		child->parent = sd;
6436	}
6437	sd->child = child;
6438
6439	return sd;
6440}
6441
6442/*
6443 * Build sched domains for a given set of cpus and attach the sched domains
6444 * to the individual cpus
6445 */
6446static int build_sched_domains(const struct cpumask *cpu_map,
6447			       struct sched_domain_attr *attr)
6448{
6449	enum s_alloc alloc_state = sa_none;
6450	struct sched_domain *sd;
6451	struct s_data d;
6452	int i, ret = -ENOMEM;
6453
6454	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6455	if (alloc_state != sa_rootdomain)
6456		goto error;
6457
6458	/* Set up domains for cpus specified by the cpu_map. */
6459	for_each_cpu(i, cpu_map) {
6460		struct sched_domain_topology_level *tl;
6461
6462		sd = NULL;
6463		for (tl = sched_domain_topology; tl->init; tl++) {
6464			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6465			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6466				sd->flags |= SD_OVERLAP;
6467			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6468				break;
6469		}
6470
6471		while (sd->child)
6472			sd = sd->child;
6473
6474		*per_cpu_ptr(d.sd, i) = sd;
6475	}
6476
6477	/* Build the groups for the domains */
6478	for_each_cpu(i, cpu_map) {
6479		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6480			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6481			if (sd->flags & SD_OVERLAP) {
6482				if (build_overlap_sched_groups(sd, i))
6483					goto error;
6484			} else {
6485				if (build_sched_groups(sd, i))
6486					goto error;
6487			}
6488		}
6489	}
6490
6491	/* Calculate CPU power for physical packages and nodes */
6492	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6493		if (!cpumask_test_cpu(i, cpu_map))
6494			continue;
6495
6496		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6497			claim_allocations(i, sd);
6498			init_sched_groups_power(i, sd);
6499		}
6500	}
6501
6502	/* Attach the domains */
6503	rcu_read_lock();
6504	for_each_cpu(i, cpu_map) {
6505		sd = *per_cpu_ptr(d.sd, i);
6506		cpu_attach_domain(sd, d.rd, i);
6507	}
6508	rcu_read_unlock();
6509
6510	ret = 0;
6511error:
6512	__free_domain_allocs(&d, alloc_state, cpu_map);
6513	return ret;
6514}
6515
6516static cpumask_var_t *doms_cur;	/* current sched domains */
6517static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6518static struct sched_domain_attr *dattr_cur;
6519				/* attribues of custom domains in 'doms_cur' */
6520
6521/*
6522 * Special case: If a kmalloc of a doms_cur partition (array of
6523 * cpumask) fails, then fallback to a single sched domain,
6524 * as determined by the single cpumask fallback_doms.
6525 */
6526static cpumask_var_t fallback_doms;
6527
6528/*
6529 * arch_update_cpu_topology lets virtualized architectures update the
6530 * cpu core maps. It is supposed to return 1 if the topology changed
6531 * or 0 if it stayed the same.
6532 */
6533int __attribute__((weak)) arch_update_cpu_topology(void)
6534{
6535	return 0;
6536}
6537
6538cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6539{
6540	int i;
6541	cpumask_var_t *doms;
6542
6543	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6544	if (!doms)
6545		return NULL;
6546	for (i = 0; i < ndoms; i++) {
6547		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6548			free_sched_domains(doms, i);
6549			return NULL;
6550		}
6551	}
6552	return doms;
6553}
6554
6555void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6556{
6557	unsigned int i;
6558	for (i = 0; i < ndoms; i++)
6559		free_cpumask_var(doms[i]);
6560	kfree(doms);
6561}
6562
6563/*
6564 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6565 * For now this just excludes isolated cpus, but could be used to
6566 * exclude other special cases in the future.
6567 */
6568static int init_sched_domains(const struct cpumask *cpu_map)
6569{
6570	int err;
6571
6572	arch_update_cpu_topology();
6573	ndoms_cur = 1;
6574	doms_cur = alloc_sched_domains(ndoms_cur);
6575	if (!doms_cur)
6576		doms_cur = &fallback_doms;
6577	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6578	dattr_cur = NULL;
6579	err = build_sched_domains(doms_cur[0], NULL);
6580	register_sched_domain_sysctl();
6581
6582	return err;
6583}
6584
6585/*
6586 * Detach sched domains from a group of cpus specified in cpu_map
6587 * These cpus will now be attached to the NULL domain
6588 */
6589static void detach_destroy_domains(const struct cpumask *cpu_map)
6590{
6591	int i;
6592
6593	rcu_read_lock();
6594	for_each_cpu(i, cpu_map)
6595		cpu_attach_domain(NULL, &def_root_domain, i);
6596	rcu_read_unlock();
6597}
6598
6599/* handle null as "default" */
6600static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6601			struct sched_domain_attr *new, int idx_new)
6602{
6603	struct sched_domain_attr tmp;
6604
6605	/* fast path */
6606	if (!new && !cur)
6607		return 1;
6608
6609	tmp = SD_ATTR_INIT;
6610	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6611			new ? (new + idx_new) : &tmp,
6612			sizeof(struct sched_domain_attr));
6613}
6614
6615/*
6616 * Partition sched domains as specified by the 'ndoms_new'
6617 * cpumasks in the array doms_new[] of cpumasks. This compares
6618 * doms_new[] to the current sched domain partitioning, doms_cur[].
6619 * It destroys each deleted domain and builds each new domain.
6620 *
6621 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6622 * The masks don't intersect (don't overlap.) We should setup one
6623 * sched domain for each mask. CPUs not in any of the cpumasks will
6624 * not be load balanced. If the same cpumask appears both in the
6625 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6626 * it as it is.
6627 *
6628 * The passed in 'doms_new' should be allocated using
6629 * alloc_sched_domains.  This routine takes ownership of it and will
6630 * free_sched_domains it when done with it. If the caller failed the
6631 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6632 * and partition_sched_domains() will fallback to the single partition
6633 * 'fallback_doms', it also forces the domains to be rebuilt.
6634 *
6635 * If doms_new == NULL it will be replaced with cpu_online_mask.
6636 * ndoms_new == 0 is a special case for destroying existing domains,
6637 * and it will not create the default domain.
6638 *
6639 * Call with hotplug lock held
6640 */
6641void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6642			     struct sched_domain_attr *dattr_new)
6643{
6644	int i, j, n;
6645	int new_topology;
6646
6647	mutex_lock(&sched_domains_mutex);
6648
6649	/* always unregister in case we don't destroy any domains */
6650	unregister_sched_domain_sysctl();
6651
6652	/* Let architecture update cpu core mappings. */
6653	new_topology = arch_update_cpu_topology();
6654
6655	n = doms_new ? ndoms_new : 0;
6656
6657	/* Destroy deleted domains */
6658	for (i = 0; i < ndoms_cur; i++) {
6659		for (j = 0; j < n && !new_topology; j++) {
6660			if (cpumask_equal(doms_cur[i], doms_new[j])
6661			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6662				goto match1;
6663		}
6664		/* no match - a current sched domain not in new doms_new[] */
6665		detach_destroy_domains(doms_cur[i]);
6666match1:
6667		;
6668	}
6669
6670	if (doms_new == NULL) {
6671		ndoms_cur = 0;
6672		doms_new = &fallback_doms;
6673		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6674		WARN_ON_ONCE(dattr_new);
6675	}
6676
6677	/* Build new domains */
6678	for (i = 0; i < ndoms_new; i++) {
6679		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6680			if (cpumask_equal(doms_new[i], doms_cur[j])
6681			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6682				goto match2;
6683		}
6684		/* no match - add a new doms_new */
6685		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6686match2:
6687		;
6688	}
6689
6690	/* Remember the new sched domains */
6691	if (doms_cur != &fallback_doms)
6692		free_sched_domains(doms_cur, ndoms_cur);
6693	kfree(dattr_cur);	/* kfree(NULL) is safe */
6694	doms_cur = doms_new;
6695	dattr_cur = dattr_new;
6696	ndoms_cur = ndoms_new;
6697
6698	register_sched_domain_sysctl();
6699
6700	mutex_unlock(&sched_domains_mutex);
6701}
6702
6703#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6704static void reinit_sched_domains(void)
6705{
6706	get_online_cpus();
6707
6708	/* Destroy domains first to force the rebuild */
6709	partition_sched_domains(0, NULL, NULL);
6710
6711	rebuild_sched_domains();
6712	put_online_cpus();
6713}
6714
6715static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6716{
6717	unsigned int level = 0;
6718
6719	if (sscanf(buf, "%u", &level) != 1)
6720		return -EINVAL;
6721
6722	/*
6723	 * level is always be positive so don't check for
6724	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6725	 * What happens on 0 or 1 byte write,
6726	 * need to check for count as well?
6727	 */
6728
6729	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6730		return -EINVAL;
6731
6732	if (smt)
6733		sched_smt_power_savings = level;
6734	else
6735		sched_mc_power_savings = level;
6736
6737	reinit_sched_domains();
6738
6739	return count;
6740}
6741
6742#ifdef CONFIG_SCHED_MC
6743static ssize_t sched_mc_power_savings_show(struct device *dev,
6744					   struct device_attribute *attr,
6745					   char *buf)
6746{
6747	return sprintf(buf, "%u\n", sched_mc_power_savings);
6748}
6749static ssize_t sched_mc_power_savings_store(struct device *dev,
6750					    struct device_attribute *attr,
6751					    const char *buf, size_t count)
6752{
6753	return sched_power_savings_store(buf, count, 0);
6754}
6755static DEVICE_ATTR(sched_mc_power_savings, 0644,
6756		   sched_mc_power_savings_show,
6757		   sched_mc_power_savings_store);
6758#endif
6759
6760#ifdef CONFIG_SCHED_SMT
6761static ssize_t sched_smt_power_savings_show(struct device *dev,
6762					    struct device_attribute *attr,
6763					    char *buf)
6764{
6765	return sprintf(buf, "%u\n", sched_smt_power_savings);
6766}
6767static ssize_t sched_smt_power_savings_store(struct device *dev,
6768					    struct device_attribute *attr,
6769					     const char *buf, size_t count)
6770{
6771	return sched_power_savings_store(buf, count, 1);
6772}
6773static DEVICE_ATTR(sched_smt_power_savings, 0644,
6774		   sched_smt_power_savings_show,
6775		   sched_smt_power_savings_store);
6776#endif
6777
6778int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6779{
6780	int err = 0;
6781
6782#ifdef CONFIG_SCHED_SMT
6783	if (smt_capable())
6784		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6785#endif
6786#ifdef CONFIG_SCHED_MC
6787	if (!err && mc_capable())
6788		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6789#endif
6790	return err;
6791}
6792#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6793
6794/*
6795 * Update cpusets according to cpu_active mask.  If cpusets are
6796 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6797 * around partition_sched_domains().
6798 */
6799static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6800			     void *hcpu)
6801{
6802	switch (action & ~CPU_TASKS_FROZEN) {
6803	case CPU_ONLINE:
6804	case CPU_DOWN_FAILED:
6805		cpuset_update_active_cpus();
6806		return NOTIFY_OK;
6807	default:
6808		return NOTIFY_DONE;
6809	}
6810}
6811
6812static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6813			       void *hcpu)
6814{
6815	switch (action & ~CPU_TASKS_FROZEN) {
6816	case CPU_DOWN_PREPARE:
6817		cpuset_update_active_cpus();
6818		return NOTIFY_OK;
6819	default:
6820		return NOTIFY_DONE;
6821	}
6822}
6823
6824void __init sched_init_smp(void)
6825{
6826	cpumask_var_t non_isolated_cpus;
6827
6828	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6829	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6830
6831	get_online_cpus();
6832	mutex_lock(&sched_domains_mutex);
6833	init_sched_domains(cpu_active_mask);
6834	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6835	if (cpumask_empty(non_isolated_cpus))
6836		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6837	mutex_unlock(&sched_domains_mutex);
6838	put_online_cpus();
6839
6840	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6841	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6842
6843	/* RT runtime code needs to handle some hotplug events */
6844	hotcpu_notifier(update_runtime, 0);
6845
6846	init_hrtick();
6847
6848	/* Move init over to a non-isolated CPU */
6849	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6850		BUG();
6851	sched_init_granularity();
6852	free_cpumask_var(non_isolated_cpus);
6853
6854	init_sched_rt_class();
6855}
6856#else
6857void __init sched_init_smp(void)
6858{
6859	sched_init_granularity();
6860}
6861#endif /* CONFIG_SMP */
6862
6863const_debug unsigned int sysctl_timer_migration = 1;
6864
6865int in_sched_functions(unsigned long addr)
6866{
6867	return in_lock_functions(addr) ||
6868		(addr >= (unsigned long)__sched_text_start
6869		&& addr < (unsigned long)__sched_text_end);
6870}
6871
6872#ifdef CONFIG_CGROUP_SCHED
6873struct task_group root_task_group;
6874#endif
6875
6876DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6877
6878void __init sched_init(void)
6879{
6880	int i, j;
6881	unsigned long alloc_size = 0, ptr;
6882
6883#ifdef CONFIG_FAIR_GROUP_SCHED
6884	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6885#endif
6886#ifdef CONFIG_RT_GROUP_SCHED
6887	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6888#endif
6889#ifdef CONFIG_CPUMASK_OFFSTACK
6890	alloc_size += num_possible_cpus() * cpumask_size();
6891#endif
6892	if (alloc_size) {
6893		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6894
6895#ifdef CONFIG_FAIR_GROUP_SCHED
6896		root_task_group.se = (struct sched_entity **)ptr;
6897		ptr += nr_cpu_ids * sizeof(void **);
6898
6899		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6900		ptr += nr_cpu_ids * sizeof(void **);
6901
6902#endif /* CONFIG_FAIR_GROUP_SCHED */
6903#ifdef CONFIG_RT_GROUP_SCHED
6904		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6905		ptr += nr_cpu_ids * sizeof(void **);
6906
6907		root_task_group.rt_rq = (struct rt_rq **)ptr;
6908		ptr += nr_cpu_ids * sizeof(void **);
6909
6910#endif /* CONFIG_RT_GROUP_SCHED */
6911#ifdef CONFIG_CPUMASK_OFFSTACK
6912		for_each_possible_cpu(i) {
6913			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6914			ptr += cpumask_size();
6915		}
6916#endif /* CONFIG_CPUMASK_OFFSTACK */
6917	}
6918
6919#ifdef CONFIG_SMP
6920	init_defrootdomain();
6921#endif
6922
6923	init_rt_bandwidth(&def_rt_bandwidth,
6924			global_rt_period(), global_rt_runtime());
6925
6926#ifdef CONFIG_RT_GROUP_SCHED
6927	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6928			global_rt_period(), global_rt_runtime());
6929#endif /* CONFIG_RT_GROUP_SCHED */
6930
6931#ifdef CONFIG_CGROUP_SCHED
6932	list_add(&root_task_group.list, &task_groups);
6933	INIT_LIST_HEAD(&root_task_group.children);
6934	INIT_LIST_HEAD(&root_task_group.siblings);
6935	autogroup_init(&init_task);
6936
6937#endif /* CONFIG_CGROUP_SCHED */
6938
6939#ifdef CONFIG_CGROUP_CPUACCT
6940	root_cpuacct.cpustat = &kernel_cpustat;
6941	root_cpuacct.cpuusage = alloc_percpu(u64);
6942	/* Too early, not expected to fail */
6943	BUG_ON(!root_cpuacct.cpuusage);
6944#endif
6945	for_each_possible_cpu(i) {
6946		struct rq *rq;
6947
6948		rq = cpu_rq(i);
6949		raw_spin_lock_init(&rq->lock);
6950		rq->nr_running = 0;
6951		rq->calc_load_active = 0;
6952		rq->calc_load_update = jiffies + LOAD_FREQ;
6953		init_cfs_rq(&rq->cfs);
6954		init_rt_rq(&rq->rt, rq);
6955#ifdef CONFIG_FAIR_GROUP_SCHED
6956		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6957		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6958		/*
6959		 * How much cpu bandwidth does root_task_group get?
6960		 *
6961		 * In case of task-groups formed thr' the cgroup filesystem, it
6962		 * gets 100% of the cpu resources in the system. This overall
6963		 * system cpu resource is divided among the tasks of
6964		 * root_task_group and its child task-groups in a fair manner,
6965		 * based on each entity's (task or task-group's) weight
6966		 * (se->load.weight).
6967		 *
6968		 * In other words, if root_task_group has 10 tasks of weight
6969		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6970		 * then A0's share of the cpu resource is:
6971		 *
6972		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6973		 *
6974		 * We achieve this by letting root_task_group's tasks sit
6975		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6976		 */
6977		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6978		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6979#endif /* CONFIG_FAIR_GROUP_SCHED */
6980
6981		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6982#ifdef CONFIG_RT_GROUP_SCHED
6983		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6984		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6985#endif
6986
6987		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6988			rq->cpu_load[j] = 0;
6989
6990		rq->last_load_update_tick = jiffies;
6991
6992#ifdef CONFIG_SMP
6993		rq->sd = NULL;
6994		rq->rd = NULL;
6995		rq->cpu_power = SCHED_POWER_SCALE;
6996		rq->post_schedule = 0;
6997		rq->active_balance = 0;
6998		rq->next_balance = jiffies;
6999		rq->push_cpu = 0;
7000		rq->cpu = i;
7001		rq->online = 0;
7002		rq->idle_stamp = 0;
7003		rq->avg_idle = 2*sysctl_sched_migration_cost;
7004
7005		INIT_LIST_HEAD(&rq->cfs_tasks);
7006
7007		rq_attach_root(rq, &def_root_domain);
7008#ifdef CONFIG_NO_HZ
7009		rq->nohz_flags = 0;
7010#endif
7011#endif
7012		init_rq_hrtick(rq);
7013		atomic_set(&rq->nr_iowait, 0);
7014	}
7015
7016	set_load_weight(&init_task);
7017
7018#ifdef CONFIG_PREEMPT_NOTIFIERS
7019	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7020#endif
7021
7022#ifdef CONFIG_RT_MUTEXES
7023	plist_head_init(&init_task.pi_waiters);
7024#endif
7025
7026	/*
7027	 * The boot idle thread does lazy MMU switching as well:
7028	 */
7029	atomic_inc(&init_mm.mm_count);
7030	enter_lazy_tlb(&init_mm, current);
7031
7032	/*
7033	 * Make us the idle thread. Technically, schedule() should not be
7034	 * called from this thread, however somewhere below it might be,
7035	 * but because we are the idle thread, we just pick up running again
7036	 * when this runqueue becomes "idle".
7037	 */
7038	init_idle(current, smp_processor_id());
7039
7040	calc_load_update = jiffies + LOAD_FREQ;
7041
7042	/*
7043	 * During early bootup we pretend to be a normal task:
7044	 */
7045	current->sched_class = &fair_sched_class;
7046
7047#ifdef CONFIG_SMP
7048	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7049	/* May be allocated at isolcpus cmdline parse time */
7050	if (cpu_isolated_map == NULL)
7051		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7052#endif
7053	init_sched_fair_class();
7054
7055	scheduler_running = 1;
7056}
7057
7058#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7059static inline int preempt_count_equals(int preempt_offset)
7060{
7061	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7062
7063	return (nested == preempt_offset);
7064}
7065
7066void __might_sleep(const char *file, int line, int preempt_offset)
7067{
7068	static unsigned long prev_jiffy;	/* ratelimiting */
7069
7070	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7071	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7072	    system_state != SYSTEM_RUNNING || oops_in_progress)
7073		return;
7074	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7075		return;
7076	prev_jiffy = jiffies;
7077
7078	printk(KERN_ERR
7079		"BUG: sleeping function called from invalid context at %s:%d\n",
7080			file, line);
7081	printk(KERN_ERR
7082		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7083			in_atomic(), irqs_disabled(),
7084			current->pid, current->comm);
7085
7086	debug_show_held_locks(current);
7087	if (irqs_disabled())
7088		print_irqtrace_events(current);
7089	dump_stack();
7090}
7091EXPORT_SYMBOL(__might_sleep);
7092#endif
7093
7094#ifdef CONFIG_MAGIC_SYSRQ
7095static void normalize_task(struct rq *rq, struct task_struct *p)
7096{
7097	const struct sched_class *prev_class = p->sched_class;
7098	int old_prio = p->prio;
7099	int on_rq;
7100
7101	on_rq = p->on_rq;
7102	if (on_rq)
7103		dequeue_task(rq, p, 0);
7104	__setscheduler(rq, p, SCHED_NORMAL, 0);
7105	if (on_rq) {
7106		enqueue_task(rq, p, 0);
7107		resched_task(rq->curr);
7108	}
7109
7110	check_class_changed(rq, p, prev_class, old_prio);
7111}
7112
7113void normalize_rt_tasks(void)
7114{
7115	struct task_struct *g, *p;
7116	unsigned long flags;
7117	struct rq *rq;
7118
7119	read_lock_irqsave(&tasklist_lock, flags);
7120	do_each_thread(g, p) {
7121		/*
7122		 * Only normalize user tasks:
7123		 */
7124		if (!p->mm)
7125			continue;
7126
7127		p->se.exec_start		= 0;
7128#ifdef CONFIG_SCHEDSTATS
7129		p->se.statistics.wait_start	= 0;
7130		p->se.statistics.sleep_start	= 0;
7131		p->se.statistics.block_start	= 0;
7132#endif
7133
7134		if (!rt_task(p)) {
7135			/*
7136			 * Renice negative nice level userspace
7137			 * tasks back to 0:
7138			 */
7139			if (TASK_NICE(p) < 0 && p->mm)
7140				set_user_nice(p, 0);
7141			continue;
7142		}
7143
7144		raw_spin_lock(&p->pi_lock);
7145		rq = __task_rq_lock(p);
7146
7147		normalize_task(rq, p);
7148
7149		__task_rq_unlock(rq);
7150		raw_spin_unlock(&p->pi_lock);
7151	} while_each_thread(g, p);
7152
7153	read_unlock_irqrestore(&tasklist_lock, flags);
7154}
7155
7156#endif /* CONFIG_MAGIC_SYSRQ */
7157
7158#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7159/*
7160 * These functions are only useful for the IA64 MCA handling, or kdb.
7161 *
7162 * They can only be called when the whole system has been
7163 * stopped - every CPU needs to be quiescent, and no scheduling
7164 * activity can take place. Using them for anything else would
7165 * be a serious bug, and as a result, they aren't even visible
7166 * under any other configuration.
7167 */
7168
7169/**
7170 * curr_task - return the current task for a given cpu.
7171 * @cpu: the processor in question.
7172 *
7173 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7174 */
7175struct task_struct *curr_task(int cpu)
7176{
7177	return cpu_curr(cpu);
7178}
7179
7180#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7181
7182#ifdef CONFIG_IA64
7183/**
7184 * set_curr_task - set the current task for a given cpu.
7185 * @cpu: the processor in question.
7186 * @p: the task pointer to set.
7187 *
7188 * Description: This function must only be used when non-maskable interrupts
7189 * are serviced on a separate stack. It allows the architecture to switch the
7190 * notion of the current task on a cpu in a non-blocking manner. This function
7191 * must be called with all CPU's synchronized, and interrupts disabled, the
7192 * and caller must save the original value of the current task (see
7193 * curr_task() above) and restore that value before reenabling interrupts and
7194 * re-starting the system.
7195 *
7196 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7197 */
7198void set_curr_task(int cpu, struct task_struct *p)
7199{
7200	cpu_curr(cpu) = p;
7201}
7202
7203#endif
7204
7205#ifdef CONFIG_CGROUP_SCHED
7206/* task_group_lock serializes the addition/removal of task groups */
7207static DEFINE_SPINLOCK(task_group_lock);
7208
7209static void free_sched_group(struct task_group *tg)
7210{
7211	free_fair_sched_group(tg);
7212	free_rt_sched_group(tg);
7213	autogroup_free(tg);
7214	kfree(tg);
7215}
7216
7217/* allocate runqueue etc for a new task group */
7218struct task_group *sched_create_group(struct task_group *parent)
7219{
7220	struct task_group *tg;
7221	unsigned long flags;
7222
7223	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7224	if (!tg)
7225		return ERR_PTR(-ENOMEM);
7226
7227	if (!alloc_fair_sched_group(tg, parent))
7228		goto err;
7229
7230	if (!alloc_rt_sched_group(tg, parent))
7231		goto err;
7232
7233	spin_lock_irqsave(&task_group_lock, flags);
7234	list_add_rcu(&tg->list, &task_groups);
7235
7236	WARN_ON(!parent); /* root should already exist */
7237
7238	tg->parent = parent;
7239	INIT_LIST_HEAD(&tg->children);
7240	list_add_rcu(&tg->siblings, &parent->children);
7241	spin_unlock_irqrestore(&task_group_lock, flags);
7242
7243	return tg;
7244
7245err:
7246	free_sched_group(tg);
7247	return ERR_PTR(-ENOMEM);
7248}
7249
7250/* rcu callback to free various structures associated with a task group */
7251static void free_sched_group_rcu(struct rcu_head *rhp)
7252{
7253	/* now it should be safe to free those cfs_rqs */
7254	free_sched_group(container_of(rhp, struct task_group, rcu));
7255}
7256
7257/* Destroy runqueue etc associated with a task group */
7258void sched_destroy_group(struct task_group *tg)
7259{
7260	unsigned long flags;
7261	int i;
7262
7263	/* end participation in shares distribution */
7264	for_each_possible_cpu(i)
7265		unregister_fair_sched_group(tg, i);
7266
7267	spin_lock_irqsave(&task_group_lock, flags);
7268	list_del_rcu(&tg->list);
7269	list_del_rcu(&tg->siblings);
7270	spin_unlock_irqrestore(&task_group_lock, flags);
7271
7272	/* wait for possible concurrent references to cfs_rqs complete */
7273	call_rcu(&tg->rcu, free_sched_group_rcu);
7274}
7275
7276/* change task's runqueue when it moves between groups.
7277 *	The caller of this function should have put the task in its new group
7278 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7279 *	reflect its new group.
7280 */
7281void sched_move_task(struct task_struct *tsk)
7282{
7283	int on_rq, running;
7284	unsigned long flags;
7285	struct rq *rq;
7286
7287	rq = task_rq_lock(tsk, &flags);
7288
7289	running = task_current(rq, tsk);
7290	on_rq = tsk->on_rq;
7291
7292	if (on_rq)
7293		dequeue_task(rq, tsk, 0);
7294	if (unlikely(running))
7295		tsk->sched_class->put_prev_task(rq, tsk);
7296
7297#ifdef CONFIG_FAIR_GROUP_SCHED
7298	if (tsk->sched_class->task_move_group)
7299		tsk->sched_class->task_move_group(tsk, on_rq);
7300	else
7301#endif
7302		set_task_rq(tsk, task_cpu(tsk));
7303
7304	if (unlikely(running))
7305		tsk->sched_class->set_curr_task(rq);
7306	if (on_rq)
7307		enqueue_task(rq, tsk, 0);
7308
7309	task_rq_unlock(rq, tsk, &flags);
7310}
7311#endif /* CONFIG_CGROUP_SCHED */
7312
7313#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7314static unsigned long to_ratio(u64 period, u64 runtime)
7315{
7316	if (runtime == RUNTIME_INF)
7317		return 1ULL << 20;
7318
7319	return div64_u64(runtime << 20, period);
7320}
7321#endif
7322
7323#ifdef CONFIG_RT_GROUP_SCHED
7324/*
7325 * Ensure that the real time constraints are schedulable.
7326 */
7327static DEFINE_MUTEX(rt_constraints_mutex);
7328
7329/* Must be called with tasklist_lock held */
7330static inline int tg_has_rt_tasks(struct task_group *tg)
7331{
7332	struct task_struct *g, *p;
7333
7334	do_each_thread(g, p) {
7335		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7336			return 1;
7337	} while_each_thread(g, p);
7338
7339	return 0;
7340}
7341
7342struct rt_schedulable_data {
7343	struct task_group *tg;
7344	u64 rt_period;
7345	u64 rt_runtime;
7346};
7347
7348static int tg_rt_schedulable(struct task_group *tg, void *data)
7349{
7350	struct rt_schedulable_data *d = data;
7351	struct task_group *child;
7352	unsigned long total, sum = 0;
7353	u64 period, runtime;
7354
7355	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7356	runtime = tg->rt_bandwidth.rt_runtime;
7357
7358	if (tg == d->tg) {
7359		period = d->rt_period;
7360		runtime = d->rt_runtime;
7361	}
7362
7363	/*
7364	 * Cannot have more runtime than the period.
7365	 */
7366	if (runtime > period && runtime != RUNTIME_INF)
7367		return -EINVAL;
7368
7369	/*
7370	 * Ensure we don't starve existing RT tasks.
7371	 */
7372	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7373		return -EBUSY;
7374
7375	total = to_ratio(period, runtime);
7376
7377	/*
7378	 * Nobody can have more than the global setting allows.
7379	 */
7380	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7381		return -EINVAL;
7382
7383	/*
7384	 * The sum of our children's runtime should not exceed our own.
7385	 */
7386	list_for_each_entry_rcu(child, &tg->children, siblings) {
7387		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7388		runtime = child->rt_bandwidth.rt_runtime;
7389
7390		if (child == d->tg) {
7391			period = d->rt_period;
7392			runtime = d->rt_runtime;
7393		}
7394
7395		sum += to_ratio(period, runtime);
7396	}
7397
7398	if (sum > total)
7399		return -EINVAL;
7400
7401	return 0;
7402}
7403
7404static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7405{
7406	int ret;
7407
7408	struct rt_schedulable_data data = {
7409		.tg = tg,
7410		.rt_period = period,
7411		.rt_runtime = runtime,
7412	};
7413
7414	rcu_read_lock();
7415	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7416	rcu_read_unlock();
7417
7418	return ret;
7419}
7420
7421static int tg_set_rt_bandwidth(struct task_group *tg,
7422		u64 rt_period, u64 rt_runtime)
7423{
7424	int i, err = 0;
7425
7426	mutex_lock(&rt_constraints_mutex);
7427	read_lock(&tasklist_lock);
7428	err = __rt_schedulable(tg, rt_period, rt_runtime);
7429	if (err)
7430		goto unlock;
7431
7432	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7433	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7434	tg->rt_bandwidth.rt_runtime = rt_runtime;
7435
7436	for_each_possible_cpu(i) {
7437		struct rt_rq *rt_rq = tg->rt_rq[i];
7438
7439		raw_spin_lock(&rt_rq->rt_runtime_lock);
7440		rt_rq->rt_runtime = rt_runtime;
7441		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7442	}
7443	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7444unlock:
7445	read_unlock(&tasklist_lock);
7446	mutex_unlock(&rt_constraints_mutex);
7447
7448	return err;
7449}
7450
7451int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7452{
7453	u64 rt_runtime, rt_period;
7454
7455	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7456	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7457	if (rt_runtime_us < 0)
7458		rt_runtime = RUNTIME_INF;
7459
7460	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7461}
7462
7463long sched_group_rt_runtime(struct task_group *tg)
7464{
7465	u64 rt_runtime_us;
7466
7467	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7468		return -1;
7469
7470	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7471	do_div(rt_runtime_us, NSEC_PER_USEC);
7472	return rt_runtime_us;
7473}
7474
7475int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7476{
7477	u64 rt_runtime, rt_period;
7478
7479	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7480	rt_runtime = tg->rt_bandwidth.rt_runtime;
7481
7482	if (rt_period == 0)
7483		return -EINVAL;
7484
7485	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7486}
7487
7488long sched_group_rt_period(struct task_group *tg)
7489{
7490	u64 rt_period_us;
7491
7492	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7493	do_div(rt_period_us, NSEC_PER_USEC);
7494	return rt_period_us;
7495}
7496
7497static int sched_rt_global_constraints(void)
7498{
7499	u64 runtime, period;
7500	int ret = 0;
7501
7502	if (sysctl_sched_rt_period <= 0)
7503		return -EINVAL;
7504
7505	runtime = global_rt_runtime();
7506	period = global_rt_period();
7507
7508	/*
7509	 * Sanity check on the sysctl variables.
7510	 */
7511	if (runtime > period && runtime != RUNTIME_INF)
7512		return -EINVAL;
7513
7514	mutex_lock(&rt_constraints_mutex);
7515	read_lock(&tasklist_lock);
7516	ret = __rt_schedulable(NULL, 0, 0);
7517	read_unlock(&tasklist_lock);
7518	mutex_unlock(&rt_constraints_mutex);
7519
7520	return ret;
7521}
7522
7523int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7524{
7525	/* Don't accept realtime tasks when there is no way for them to run */
7526	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7527		return 0;
7528
7529	return 1;
7530}
7531
7532#else /* !CONFIG_RT_GROUP_SCHED */
7533static int sched_rt_global_constraints(void)
7534{
7535	unsigned long flags;
7536	int i;
7537
7538	if (sysctl_sched_rt_period <= 0)
7539		return -EINVAL;
7540
7541	/*
7542	 * There's always some RT tasks in the root group
7543	 * -- migration, kstopmachine etc..
7544	 */
7545	if (sysctl_sched_rt_runtime == 0)
7546		return -EBUSY;
7547
7548	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7549	for_each_possible_cpu(i) {
7550		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7551
7552		raw_spin_lock(&rt_rq->rt_runtime_lock);
7553		rt_rq->rt_runtime = global_rt_runtime();
7554		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7555	}
7556	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7557
7558	return 0;
7559}
7560#endif /* CONFIG_RT_GROUP_SCHED */
7561
7562int sched_rt_handler(struct ctl_table *table, int write,
7563		void __user *buffer, size_t *lenp,
7564		loff_t *ppos)
7565{
7566	int ret;
7567	int old_period, old_runtime;
7568	static DEFINE_MUTEX(mutex);
7569
7570	mutex_lock(&mutex);
7571	old_period = sysctl_sched_rt_period;
7572	old_runtime = sysctl_sched_rt_runtime;
7573
7574	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7575
7576	if (!ret && write) {
7577		ret = sched_rt_global_constraints();
7578		if (ret) {
7579			sysctl_sched_rt_period = old_period;
7580			sysctl_sched_rt_runtime = old_runtime;
7581		} else {
7582			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7583			def_rt_bandwidth.rt_period =
7584				ns_to_ktime(global_rt_period());
7585		}
7586	}
7587	mutex_unlock(&mutex);
7588
7589	return ret;
7590}
7591
7592#ifdef CONFIG_CGROUP_SCHED
7593
7594/* return corresponding task_group object of a cgroup */
7595static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7596{
7597	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7598			    struct task_group, css);
7599}
7600
7601static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7602{
7603	struct task_group *tg, *parent;
7604
7605	if (!cgrp->parent) {
7606		/* This is early initialization for the top cgroup */
7607		return &root_task_group.css;
7608	}
7609
7610	parent = cgroup_tg(cgrp->parent);
7611	tg = sched_create_group(parent);
7612	if (IS_ERR(tg))
7613		return ERR_PTR(-ENOMEM);
7614
7615	return &tg->css;
7616}
7617
7618static void cpu_cgroup_destroy(struct cgroup *cgrp)
7619{
7620	struct task_group *tg = cgroup_tg(cgrp);
7621
7622	sched_destroy_group(tg);
7623}
7624
7625static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7626				 struct cgroup_taskset *tset)
7627{
7628	struct task_struct *task;
7629
7630	cgroup_taskset_for_each(task, cgrp, tset) {
7631#ifdef CONFIG_RT_GROUP_SCHED
7632		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7633			return -EINVAL;
7634#else
7635		/* We don't support RT-tasks being in separate groups */
7636		if (task->sched_class != &fair_sched_class)
7637			return -EINVAL;
7638#endif
7639	}
7640	return 0;
7641}
7642
7643static void cpu_cgroup_attach(struct cgroup *cgrp,
7644			      struct cgroup_taskset *tset)
7645{
7646	struct task_struct *task;
7647
7648	cgroup_taskset_for_each(task, cgrp, tset)
7649		sched_move_task(task);
7650}
7651
7652static void
7653cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7654		struct task_struct *task)
7655{
7656	/*
7657	 * cgroup_exit() is called in the copy_process() failure path.
7658	 * Ignore this case since the task hasn't ran yet, this avoids
7659	 * trying to poke a half freed task state from generic code.
7660	 */
7661	if (!(task->flags & PF_EXITING))
7662		return;
7663
7664	sched_move_task(task);
7665}
7666
7667#ifdef CONFIG_FAIR_GROUP_SCHED
7668static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7669				u64 shareval)
7670{
7671	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7672}
7673
7674static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7675{
7676	struct task_group *tg = cgroup_tg(cgrp);
7677
7678	return (u64) scale_load_down(tg->shares);
7679}
7680
7681#ifdef CONFIG_CFS_BANDWIDTH
7682static DEFINE_MUTEX(cfs_constraints_mutex);
7683
7684const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7685const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7686
7687static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7688
7689static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7690{
7691	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7692	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7693
7694	if (tg == &root_task_group)
7695		return -EINVAL;
7696
7697	/*
7698	 * Ensure we have at some amount of bandwidth every period.  This is
7699	 * to prevent reaching a state of large arrears when throttled via
7700	 * entity_tick() resulting in prolonged exit starvation.
7701	 */
7702	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7703		return -EINVAL;
7704
7705	/*
7706	 * Likewise, bound things on the otherside by preventing insane quota
7707	 * periods.  This also allows us to normalize in computing quota
7708	 * feasibility.
7709	 */
7710	if (period > max_cfs_quota_period)
7711		return -EINVAL;
7712
7713	mutex_lock(&cfs_constraints_mutex);
7714	ret = __cfs_schedulable(tg, period, quota);
7715	if (ret)
7716		goto out_unlock;
7717
7718	runtime_enabled = quota != RUNTIME_INF;
7719	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7720	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7721	raw_spin_lock_irq(&cfs_b->lock);
7722	cfs_b->period = ns_to_ktime(period);
7723	cfs_b->quota = quota;
7724
7725	__refill_cfs_bandwidth_runtime(cfs_b);
7726	/* restart the period timer (if active) to handle new period expiry */
7727	if (runtime_enabled && cfs_b->timer_active) {
7728		/* force a reprogram */
7729		cfs_b->timer_active = 0;
7730		__start_cfs_bandwidth(cfs_b);
7731	}
7732	raw_spin_unlock_irq(&cfs_b->lock);
7733
7734	for_each_possible_cpu(i) {
7735		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7736		struct rq *rq = cfs_rq->rq;
7737
7738		raw_spin_lock_irq(&rq->lock);
7739		cfs_rq->runtime_enabled = runtime_enabled;
7740		cfs_rq->runtime_remaining = 0;
7741
7742		if (cfs_rq->throttled)
7743			unthrottle_cfs_rq(cfs_rq);
7744		raw_spin_unlock_irq(&rq->lock);
7745	}
7746out_unlock:
7747	mutex_unlock(&cfs_constraints_mutex);
7748
7749	return ret;
7750}
7751
7752int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7753{
7754	u64 quota, period;
7755
7756	period = ktime_to_ns(tg->cfs_bandwidth.period);
7757	if (cfs_quota_us < 0)
7758		quota = RUNTIME_INF;
7759	else
7760		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7761
7762	return tg_set_cfs_bandwidth(tg, period, quota);
7763}
7764
7765long tg_get_cfs_quota(struct task_group *tg)
7766{
7767	u64 quota_us;
7768
7769	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7770		return -1;
7771
7772	quota_us = tg->cfs_bandwidth.quota;
7773	do_div(quota_us, NSEC_PER_USEC);
7774
7775	return quota_us;
7776}
7777
7778int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7779{
7780	u64 quota, period;
7781
7782	period = (u64)cfs_period_us * NSEC_PER_USEC;
7783	quota = tg->cfs_bandwidth.quota;
7784
7785	return tg_set_cfs_bandwidth(tg, period, quota);
7786}
7787
7788long tg_get_cfs_period(struct task_group *tg)
7789{
7790	u64 cfs_period_us;
7791
7792	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7793	do_div(cfs_period_us, NSEC_PER_USEC);
7794
7795	return cfs_period_us;
7796}
7797
7798static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7799{
7800	return tg_get_cfs_quota(cgroup_tg(cgrp));
7801}
7802
7803static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7804				s64 cfs_quota_us)
7805{
7806	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7807}
7808
7809static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7810{
7811	return tg_get_cfs_period(cgroup_tg(cgrp));
7812}
7813
7814static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7815				u64 cfs_period_us)
7816{
7817	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7818}
7819
7820struct cfs_schedulable_data {
7821	struct task_group *tg;
7822	u64 period, quota;
7823};
7824
7825/*
7826 * normalize group quota/period to be quota/max_period
7827 * note: units are usecs
7828 */
7829static u64 normalize_cfs_quota(struct task_group *tg,
7830			       struct cfs_schedulable_data *d)
7831{
7832	u64 quota, period;
7833
7834	if (tg == d->tg) {
7835		period = d->period;
7836		quota = d->quota;
7837	} else {
7838		period = tg_get_cfs_period(tg);
7839		quota = tg_get_cfs_quota(tg);
7840	}
7841
7842	/* note: these should typically be equivalent */
7843	if (quota == RUNTIME_INF || quota == -1)
7844		return RUNTIME_INF;
7845
7846	return to_ratio(period, quota);
7847}
7848
7849static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7850{
7851	struct cfs_schedulable_data *d = data;
7852	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7853	s64 quota = 0, parent_quota = -1;
7854
7855	if (!tg->parent) {
7856		quota = RUNTIME_INF;
7857	} else {
7858		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7859
7860		quota = normalize_cfs_quota(tg, d);
7861		parent_quota = parent_b->hierarchal_quota;
7862
7863		/*
7864		 * ensure max(child_quota) <= parent_quota, inherit when no
7865		 * limit is set
7866		 */
7867		if (quota == RUNTIME_INF)
7868			quota = parent_quota;
7869		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7870			return -EINVAL;
7871	}
7872	cfs_b->hierarchal_quota = quota;
7873
7874	return 0;
7875}
7876
7877static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7878{
7879	int ret;
7880	struct cfs_schedulable_data data = {
7881		.tg = tg,
7882		.period = period,
7883		.quota = quota,
7884	};
7885
7886	if (quota != RUNTIME_INF) {
7887		do_div(data.period, NSEC_PER_USEC);
7888		do_div(data.quota, NSEC_PER_USEC);
7889	}
7890
7891	rcu_read_lock();
7892	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7893	rcu_read_unlock();
7894
7895	return ret;
7896}
7897
7898static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7899		struct cgroup_map_cb *cb)
7900{
7901	struct task_group *tg = cgroup_tg(cgrp);
7902	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7903
7904	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7905	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7906	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7907
7908	return 0;
7909}
7910#endif /* CONFIG_CFS_BANDWIDTH */
7911#endif /* CONFIG_FAIR_GROUP_SCHED */
7912
7913#ifdef CONFIG_RT_GROUP_SCHED
7914static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7915				s64 val)
7916{
7917	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7918}
7919
7920static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7921{
7922	return sched_group_rt_runtime(cgroup_tg(cgrp));
7923}
7924
7925static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7926		u64 rt_period_us)
7927{
7928	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7929}
7930
7931static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7932{
7933	return sched_group_rt_period(cgroup_tg(cgrp));
7934}
7935#endif /* CONFIG_RT_GROUP_SCHED */
7936
7937static struct cftype cpu_files[] = {
7938#ifdef CONFIG_FAIR_GROUP_SCHED
7939	{
7940		.name = "shares",
7941		.read_u64 = cpu_shares_read_u64,
7942		.write_u64 = cpu_shares_write_u64,
7943	},
7944#endif
7945#ifdef CONFIG_CFS_BANDWIDTH
7946	{
7947		.name = "cfs_quota_us",
7948		.read_s64 = cpu_cfs_quota_read_s64,
7949		.write_s64 = cpu_cfs_quota_write_s64,
7950	},
7951	{
7952		.name = "cfs_period_us",
7953		.read_u64 = cpu_cfs_period_read_u64,
7954		.write_u64 = cpu_cfs_period_write_u64,
7955	},
7956	{
7957		.name = "stat",
7958		.read_map = cpu_stats_show,
7959	},
7960#endif
7961#ifdef CONFIG_RT_GROUP_SCHED
7962	{
7963		.name = "rt_runtime_us",
7964		.read_s64 = cpu_rt_runtime_read,
7965		.write_s64 = cpu_rt_runtime_write,
7966	},
7967	{
7968		.name = "rt_period_us",
7969		.read_u64 = cpu_rt_period_read_uint,
7970		.write_u64 = cpu_rt_period_write_uint,
7971	},
7972#endif
7973};
7974
7975static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7976{
7977	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7978}
7979
7980struct cgroup_subsys cpu_cgroup_subsys = {
7981	.name		= "cpu",
7982	.create		= cpu_cgroup_create,
7983	.destroy	= cpu_cgroup_destroy,
7984	.can_attach	= cpu_cgroup_can_attach,
7985	.attach		= cpu_cgroup_attach,
7986	.exit		= cpu_cgroup_exit,
7987	.populate	= cpu_cgroup_populate,
7988	.subsys_id	= cpu_cgroup_subsys_id,
7989	.early_init	= 1,
7990};
7991
7992#endif	/* CONFIG_CGROUP_SCHED */
7993
7994#ifdef CONFIG_CGROUP_CPUACCT
7995
7996/*
7997 * CPU accounting code for task groups.
7998 *
7999 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8000 * (balbir@in.ibm.com).
8001 */
8002
8003/* create a new cpu accounting group */
8004static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8005{
8006	struct cpuacct *ca;
8007
8008	if (!cgrp->parent)
8009		return &root_cpuacct.css;
8010
8011	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8012	if (!ca)
8013		goto out;
8014
8015	ca->cpuusage = alloc_percpu(u64);
8016	if (!ca->cpuusage)
8017		goto out_free_ca;
8018
8019	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8020	if (!ca->cpustat)
8021		goto out_free_cpuusage;
8022
8023	return &ca->css;
8024
8025out_free_cpuusage:
8026	free_percpu(ca->cpuusage);
8027out_free_ca:
8028	kfree(ca);
8029out:
8030	return ERR_PTR(-ENOMEM);
8031}
8032
8033/* destroy an existing cpu accounting group */
8034static void cpuacct_destroy(struct cgroup *cgrp)
8035{
8036	struct cpuacct *ca = cgroup_ca(cgrp);
8037
8038	free_percpu(ca->cpustat);
8039	free_percpu(ca->cpuusage);
8040	kfree(ca);
8041}
8042
8043static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8044{
8045	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8046	u64 data;
8047
8048#ifndef CONFIG_64BIT
8049	/*
8050	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8051	 */
8052	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8053	data = *cpuusage;
8054	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8055#else
8056	data = *cpuusage;
8057#endif
8058
8059	return data;
8060}
8061
8062static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8063{
8064	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8065
8066#ifndef CONFIG_64BIT
8067	/*
8068	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8069	 */
8070	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8071	*cpuusage = val;
8072	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8073#else
8074	*cpuusage = val;
8075#endif
8076}
8077
8078/* return total cpu usage (in nanoseconds) of a group */
8079static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8080{
8081	struct cpuacct *ca = cgroup_ca(cgrp);
8082	u64 totalcpuusage = 0;
8083	int i;
8084
8085	for_each_present_cpu(i)
8086		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8087
8088	return totalcpuusage;
8089}
8090
8091static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8092								u64 reset)
8093{
8094	struct cpuacct *ca = cgroup_ca(cgrp);
8095	int err = 0;
8096	int i;
8097
8098	if (reset) {
8099		err = -EINVAL;
8100		goto out;
8101	}
8102
8103	for_each_present_cpu(i)
8104		cpuacct_cpuusage_write(ca, i, 0);
8105
8106out:
8107	return err;
8108}
8109
8110static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8111				   struct seq_file *m)
8112{
8113	struct cpuacct *ca = cgroup_ca(cgroup);
8114	u64 percpu;
8115	int i;
8116
8117	for_each_present_cpu(i) {
8118		percpu = cpuacct_cpuusage_read(ca, i);
8119		seq_printf(m, "%llu ", (unsigned long long) percpu);
8120	}
8121	seq_printf(m, "\n");
8122	return 0;
8123}
8124
8125static const char *cpuacct_stat_desc[] = {
8126	[CPUACCT_STAT_USER] = "user",
8127	[CPUACCT_STAT_SYSTEM] = "system",
8128};
8129
8130static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8131			      struct cgroup_map_cb *cb)
8132{
8133	struct cpuacct *ca = cgroup_ca(cgrp);
8134	int cpu;
8135	s64 val = 0;
8136
8137	for_each_online_cpu(cpu) {
8138		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8139		val += kcpustat->cpustat[CPUTIME_USER];
8140		val += kcpustat->cpustat[CPUTIME_NICE];
8141	}
8142	val = cputime64_to_clock_t(val);
8143	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8144
8145	val = 0;
8146	for_each_online_cpu(cpu) {
8147		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8148		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8149		val += kcpustat->cpustat[CPUTIME_IRQ];
8150		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8151	}
8152
8153	val = cputime64_to_clock_t(val);
8154	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8155
8156	return 0;
8157}
8158
8159static struct cftype files[] = {
8160	{
8161		.name = "usage",
8162		.read_u64 = cpuusage_read,
8163		.write_u64 = cpuusage_write,
8164	},
8165	{
8166		.name = "usage_percpu",
8167		.read_seq_string = cpuacct_percpu_seq_read,
8168	},
8169	{
8170		.name = "stat",
8171		.read_map = cpuacct_stats_show,
8172	},
8173};
8174
8175static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8176{
8177	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8178}
8179
8180/*
8181 * charge this task's execution time to its accounting group.
8182 *
8183 * called with rq->lock held.
8184 */
8185void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8186{
8187	struct cpuacct *ca;
8188	int cpu;
8189
8190	if (unlikely(!cpuacct_subsys.active))
8191		return;
8192
8193	cpu = task_cpu(tsk);
8194
8195	rcu_read_lock();
8196
8197	ca = task_ca(tsk);
8198
8199	for (; ca; ca = parent_ca(ca)) {
8200		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8201		*cpuusage += cputime;
8202	}
8203
8204	rcu_read_unlock();
8205}
8206
8207struct cgroup_subsys cpuacct_subsys = {
8208	.name = "cpuacct",
8209	.create = cpuacct_create,
8210	.destroy = cpuacct_destroy,
8211	.populate = cpuacct_populate,
8212	.subsys_id = cpuacct_subsys_id,
8213};
8214#endif	/* CONFIG_CGROUP_CPUACCT */
8215