core.c revision cb04ff9ac424d0e689d9b612e9f73cb443ab4b7e
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86
87#define CREATE_TRACE_POINTS
88#include <trace/events/sched.h>
89
90void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91{
92	unsigned long delta;
93	ktime_t soft, hard, now;
94
95	for (;;) {
96		if (hrtimer_active(period_timer))
97			break;
98
99		now = hrtimer_cb_get_time(period_timer);
100		hrtimer_forward(period_timer, now, period);
101
102		soft = hrtimer_get_softexpires(period_timer);
103		hard = hrtimer_get_expires(period_timer);
104		delta = ktime_to_ns(ktime_sub(hard, soft));
105		__hrtimer_start_range_ns(period_timer, soft, delta,
106					 HRTIMER_MODE_ABS_PINNED, 0);
107	}
108}
109
110DEFINE_MUTEX(sched_domains_mutex);
111DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112
113static void update_rq_clock_task(struct rq *rq, s64 delta);
114
115void update_rq_clock(struct rq *rq)
116{
117	s64 delta;
118
119	if (rq->skip_clock_update > 0)
120		return;
121
122	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123	rq->clock += delta;
124	update_rq_clock_task(rq, delta);
125}
126
127/*
128 * Debugging: various feature bits
129 */
130
131#define SCHED_FEAT(name, enabled)	\
132	(1UL << __SCHED_FEAT_##name) * enabled |
133
134const_debug unsigned int sysctl_sched_features =
135#include "features.h"
136	0;
137
138#undef SCHED_FEAT
139
140#ifdef CONFIG_SCHED_DEBUG
141#define SCHED_FEAT(name, enabled)	\
142	#name ,
143
144static __read_mostly char *sched_feat_names[] = {
145#include "features.h"
146	NULL
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197		size_t cnt, loff_t *ppos)
198{
199	char buf[64];
200	char *cmp;
201	int neg = 0;
202	int i;
203
204	if (cnt > 63)
205		cnt = 63;
206
207	if (copy_from_user(&buf, ubuf, cnt))
208		return -EFAULT;
209
210	buf[cnt] = 0;
211	cmp = strstrip(buf);
212
213	if (strncmp(cmp, "NO_", 3) == 0) {
214		neg = 1;
215		cmp += 3;
216	}
217
218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220			if (neg) {
221				sysctl_sched_features &= ~(1UL << i);
222				sched_feat_disable(i);
223			} else {
224				sysctl_sched_features |= (1UL << i);
225				sched_feat_enable(i);
226			}
227			break;
228		}
229	}
230
231	if (i == __SCHED_FEAT_NR)
232		return -EINVAL;
233
234	*ppos += cnt;
235
236	return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241	return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245	.open		= sched_feat_open,
246	.write		= sched_feat_write,
247	.read		= seq_read,
248	.llseek		= seq_lseek,
249	.release	= single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254	debugfs_create_file("sched_features", 0644, NULL, NULL,
255			&sched_feat_fops);
256
257	return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296	__acquires(rq->lock)
297{
298	struct rq *rq;
299
300	lockdep_assert_held(&p->pi_lock);
301
302	for (;;) {
303		rq = task_rq(p);
304		raw_spin_lock(&rq->lock);
305		if (likely(rq == task_rq(p)))
306			return rq;
307		raw_spin_unlock(&rq->lock);
308	}
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315	__acquires(p->pi_lock)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	for (;;) {
321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322		rq = task_rq(p);
323		raw_spin_lock(&rq->lock);
324		if (likely(rq == task_rq(p)))
325			return rq;
326		raw_spin_unlock(&rq->lock);
327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328	}
329}
330
331static void __task_rq_unlock(struct rq *rq)
332	__releases(rq->lock)
333{
334	raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339	__releases(rq->lock)
340	__releases(p->pi_lock)
341{
342	raw_spin_unlock(&rq->lock);
343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	local_irq_disable();
355	rq = this_rq();
356	raw_spin_lock(&rq->lock);
357
358	return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403	struct rq *rq = arg;
404
405	raw_spin_lock(&rq->lock);
406	hrtimer_restart(&rq->hrtick_timer);
407	rq->hrtick_csd_pending = 0;
408	raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421	hrtimer_set_expires(timer, time);
422
423	if (rq == this_rq()) {
424		hrtimer_restart(timer);
425	} else if (!rq->hrtick_csd_pending) {
426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427		rq->hrtick_csd_pending = 1;
428	}
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434	int cpu = (int)(long)hcpu;
435
436	switch (action) {
437	case CPU_UP_CANCELED:
438	case CPU_UP_CANCELED_FROZEN:
439	case CPU_DOWN_PREPARE:
440	case CPU_DOWN_PREPARE_FROZEN:
441	case CPU_DEAD:
442	case CPU_DEAD_FROZEN:
443		hrtick_clear(cpu_rq(cpu));
444		return NOTIFY_OK;
445	}
446
447	return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452	hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463			HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474	rq->hrtick_csd_pending = 0;
475
476	rq->hrtick_csd.flags = 0;
477	rq->hrtick_csd.func = __hrtick_start;
478	rq->hrtick_csd.info = rq;
479#endif
480
481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482	rq->hrtick_timer.function = hrtick;
483}
484#else	/* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif	/* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
511void resched_task(struct task_struct *p)
512{
513	int cpu;
514
515	assert_raw_spin_locked(&task_rq(p)->lock);
516
517	if (test_tsk_need_resched(p))
518		return;
519
520	set_tsk_need_resched(p);
521
522	cpu = task_cpu(p);
523	if (cpu == smp_processor_id())
524		return;
525
526	/* NEED_RESCHED must be visible before we test polling */
527	smp_mb();
528	if (!tsk_is_polling(p))
529		smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534	struct rq *rq = cpu_rq(cpu);
535	unsigned long flags;
536
537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538		return;
539	resched_task(cpu_curr(cpu));
540	raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu.  This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554	int cpu = smp_processor_id();
555	int i;
556	struct sched_domain *sd;
557
558	rcu_read_lock();
559	for_each_domain(cpu, sd) {
560		for_each_cpu(i, sched_domain_span(sd)) {
561			if (!idle_cpu(i)) {
562				cpu = i;
563				goto unlock;
564			}
565		}
566	}
567unlock:
568	rcu_read_unlock();
569	return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583	struct rq *rq = cpu_rq(cpu);
584
585	if (cpu == smp_processor_id())
586		return;
587
588	/*
589	 * This is safe, as this function is called with the timer
590	 * wheel base lock of (cpu) held. When the CPU is on the way
591	 * to idle and has not yet set rq->curr to idle then it will
592	 * be serialized on the timer wheel base lock and take the new
593	 * timer into account automatically.
594	 */
595	if (rq->curr != rq->idle)
596		return;
597
598	/*
599	 * We can set TIF_RESCHED on the idle task of the other CPU
600	 * lockless. The worst case is that the other CPU runs the
601	 * idle task through an additional NOOP schedule()
602	 */
603	set_tsk_need_resched(rq->idle);
604
605	/* NEED_RESCHED must be visible before we test polling */
606	smp_mb();
607	if (!tsk_is_polling(rq->idle))
608		smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613	int cpu = smp_processor_id();
614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621	return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628	s64 period = sched_avg_period();
629
630	while ((s64)(rq->clock - rq->age_stamp) > period) {
631		/*
632		 * Inline assembly required to prevent the compiler
633		 * optimising this loop into a divmod call.
634		 * See __iter_div_u64_rem() for another example of this.
635		 */
636		asm("" : "+rm" (rq->age_stamp));
637		rq->age_stamp += period;
638		rq->rt_avg /= 2;
639	}
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645	assert_raw_spin_locked(&task_rq(p)->lock);
646	set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659			     tg_visitor down, tg_visitor up, void *data)
660{
661	struct task_group *parent, *child;
662	int ret;
663
664	parent = from;
665
666down:
667	ret = (*down)(parent, data);
668	if (ret)
669		goto out;
670	list_for_each_entry_rcu(child, &parent->children, siblings) {
671		parent = child;
672		goto down;
673
674up:
675		continue;
676	}
677	ret = (*up)(parent, data);
678	if (ret || parent == from)
679		goto out;
680
681	child = parent;
682	parent = parent->parent;
683	if (parent)
684		goto up;
685out:
686	return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691	return 0;
692}
693#endif
694
695void update_cpu_load(struct rq *this_rq);
696
697static void set_load_weight(struct task_struct *p)
698{
699	int prio = p->static_prio - MAX_RT_PRIO;
700	struct load_weight *load = &p->se.load;
701
702	/*
703	 * SCHED_IDLE tasks get minimal weight:
704	 */
705	if (p->policy == SCHED_IDLE) {
706		load->weight = scale_load(WEIGHT_IDLEPRIO);
707		load->inv_weight = WMULT_IDLEPRIO;
708		return;
709	}
710
711	load->weight = scale_load(prio_to_weight[prio]);
712	load->inv_weight = prio_to_wmult[prio];
713}
714
715static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716{
717	update_rq_clock(rq);
718	sched_info_queued(p);
719	p->sched_class->enqueue_task(rq, p, flags);
720}
721
722static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723{
724	update_rq_clock(rq);
725	sched_info_dequeued(p);
726	p->sched_class->dequeue_task(rq, p, flags);
727}
728
729void activate_task(struct rq *rq, struct task_struct *p, int flags)
730{
731	if (task_contributes_to_load(p))
732		rq->nr_uninterruptible--;
733
734	enqueue_task(rq, p, flags);
735}
736
737void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738{
739	if (task_contributes_to_load(p))
740		rq->nr_uninterruptible++;
741
742	dequeue_task(rq, p, flags);
743}
744
745#ifdef CONFIG_IRQ_TIME_ACCOUNTING
746
747/*
748 * There are no locks covering percpu hardirq/softirq time.
749 * They are only modified in account_system_vtime, on corresponding CPU
750 * with interrupts disabled. So, writes are safe.
751 * They are read and saved off onto struct rq in update_rq_clock().
752 * This may result in other CPU reading this CPU's irq time and can
753 * race with irq/account_system_vtime on this CPU. We would either get old
754 * or new value with a side effect of accounting a slice of irq time to wrong
755 * task when irq is in progress while we read rq->clock. That is a worthy
756 * compromise in place of having locks on each irq in account_system_time.
757 */
758static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759static DEFINE_PER_CPU(u64, cpu_softirq_time);
760
761static DEFINE_PER_CPU(u64, irq_start_time);
762static int sched_clock_irqtime;
763
764void enable_sched_clock_irqtime(void)
765{
766	sched_clock_irqtime = 1;
767}
768
769void disable_sched_clock_irqtime(void)
770{
771	sched_clock_irqtime = 0;
772}
773
774#ifndef CONFIG_64BIT
775static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776
777static inline void irq_time_write_begin(void)
778{
779	__this_cpu_inc(irq_time_seq.sequence);
780	smp_wmb();
781}
782
783static inline void irq_time_write_end(void)
784{
785	smp_wmb();
786	__this_cpu_inc(irq_time_seq.sequence);
787}
788
789static inline u64 irq_time_read(int cpu)
790{
791	u64 irq_time;
792	unsigned seq;
793
794	do {
795		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796		irq_time = per_cpu(cpu_softirq_time, cpu) +
797			   per_cpu(cpu_hardirq_time, cpu);
798	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799
800	return irq_time;
801}
802#else /* CONFIG_64BIT */
803static inline void irq_time_write_begin(void)
804{
805}
806
807static inline void irq_time_write_end(void)
808{
809}
810
811static inline u64 irq_time_read(int cpu)
812{
813	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814}
815#endif /* CONFIG_64BIT */
816
817/*
818 * Called before incrementing preempt_count on {soft,}irq_enter
819 * and before decrementing preempt_count on {soft,}irq_exit.
820 */
821void account_system_vtime(struct task_struct *curr)
822{
823	unsigned long flags;
824	s64 delta;
825	int cpu;
826
827	if (!sched_clock_irqtime)
828		return;
829
830	local_irq_save(flags);
831
832	cpu = smp_processor_id();
833	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834	__this_cpu_add(irq_start_time, delta);
835
836	irq_time_write_begin();
837	/*
838	 * We do not account for softirq time from ksoftirqd here.
839	 * We want to continue accounting softirq time to ksoftirqd thread
840	 * in that case, so as not to confuse scheduler with a special task
841	 * that do not consume any time, but still wants to run.
842	 */
843	if (hardirq_count())
844		__this_cpu_add(cpu_hardirq_time, delta);
845	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846		__this_cpu_add(cpu_softirq_time, delta);
847
848	irq_time_write_end();
849	local_irq_restore(flags);
850}
851EXPORT_SYMBOL_GPL(account_system_vtime);
852
853#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854
855#ifdef CONFIG_PARAVIRT
856static inline u64 steal_ticks(u64 steal)
857{
858	if (unlikely(steal > NSEC_PER_SEC))
859		return div_u64(steal, TICK_NSEC);
860
861	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862}
863#endif
864
865static void update_rq_clock_task(struct rq *rq, s64 delta)
866{
867/*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872	s64 steal = 0, irq_delta = 0;
873#endif
874#ifdef CONFIG_IRQ_TIME_ACCOUNTING
875	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876
877	/*
878	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879	 * this case when a previous update_rq_clock() happened inside a
880	 * {soft,}irq region.
881	 *
882	 * When this happens, we stop ->clock_task and only update the
883	 * prev_irq_time stamp to account for the part that fit, so that a next
884	 * update will consume the rest. This ensures ->clock_task is
885	 * monotonic.
886	 *
887	 * It does however cause some slight miss-attribution of {soft,}irq
888	 * time, a more accurate solution would be to update the irq_time using
889	 * the current rq->clock timestamp, except that would require using
890	 * atomic ops.
891	 */
892	if (irq_delta > delta)
893		irq_delta = delta;
894
895	rq->prev_irq_time += irq_delta;
896	delta -= irq_delta;
897#endif
898#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899	if (static_key_false((&paravirt_steal_rq_enabled))) {
900		u64 st;
901
902		steal = paravirt_steal_clock(cpu_of(rq));
903		steal -= rq->prev_steal_time_rq;
904
905		if (unlikely(steal > delta))
906			steal = delta;
907
908		st = steal_ticks(steal);
909		steal = st * TICK_NSEC;
910
911		rq->prev_steal_time_rq += steal;
912
913		delta -= steal;
914	}
915#endif
916
917	rq->clock_task += delta;
918
919#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921		sched_rt_avg_update(rq, irq_delta + steal);
922#endif
923}
924
925#ifdef CONFIG_IRQ_TIME_ACCOUNTING
926static int irqtime_account_hi_update(void)
927{
928	u64 *cpustat = kcpustat_this_cpu->cpustat;
929	unsigned long flags;
930	u64 latest_ns;
931	int ret = 0;
932
933	local_irq_save(flags);
934	latest_ns = this_cpu_read(cpu_hardirq_time);
935	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936		ret = 1;
937	local_irq_restore(flags);
938	return ret;
939}
940
941static int irqtime_account_si_update(void)
942{
943	u64 *cpustat = kcpustat_this_cpu->cpustat;
944	unsigned long flags;
945	u64 latest_ns;
946	int ret = 0;
947
948	local_irq_save(flags);
949	latest_ns = this_cpu_read(cpu_softirq_time);
950	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951		ret = 1;
952	local_irq_restore(flags);
953	return ret;
954}
955
956#else /* CONFIG_IRQ_TIME_ACCOUNTING */
957
958#define sched_clock_irqtime	(0)
959
960#endif
961
962void sched_set_stop_task(int cpu, struct task_struct *stop)
963{
964	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965	struct task_struct *old_stop = cpu_rq(cpu)->stop;
966
967	if (stop) {
968		/*
969		 * Make it appear like a SCHED_FIFO task, its something
970		 * userspace knows about and won't get confused about.
971		 *
972		 * Also, it will make PI more or less work without too
973		 * much confusion -- but then, stop work should not
974		 * rely on PI working anyway.
975		 */
976		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977
978		stop->sched_class = &stop_sched_class;
979	}
980
981	cpu_rq(cpu)->stop = stop;
982
983	if (old_stop) {
984		/*
985		 * Reset it back to a normal scheduling class so that
986		 * it can die in pieces.
987		 */
988		old_stop->sched_class = &rt_sched_class;
989	}
990}
991
992/*
993 * __normal_prio - return the priority that is based on the static prio
994 */
995static inline int __normal_prio(struct task_struct *p)
996{
997	return p->static_prio;
998}
999
1000/*
1001 * Calculate the expected normal priority: i.e. priority
1002 * without taking RT-inheritance into account. Might be
1003 * boosted by interactivity modifiers. Changes upon fork,
1004 * setprio syscalls, and whenever the interactivity
1005 * estimator recalculates.
1006 */
1007static inline int normal_prio(struct task_struct *p)
1008{
1009	int prio;
1010
1011	if (task_has_rt_policy(p))
1012		prio = MAX_RT_PRIO-1 - p->rt_priority;
1013	else
1014		prio = __normal_prio(p);
1015	return prio;
1016}
1017
1018/*
1019 * Calculate the current priority, i.e. the priority
1020 * taken into account by the scheduler. This value might
1021 * be boosted by RT tasks, or might be boosted by
1022 * interactivity modifiers. Will be RT if the task got
1023 * RT-boosted. If not then it returns p->normal_prio.
1024 */
1025static int effective_prio(struct task_struct *p)
1026{
1027	p->normal_prio = normal_prio(p);
1028	/*
1029	 * If we are RT tasks or we were boosted to RT priority,
1030	 * keep the priority unchanged. Otherwise, update priority
1031	 * to the normal priority:
1032	 */
1033	if (!rt_prio(p->prio))
1034		return p->normal_prio;
1035	return p->prio;
1036}
1037
1038/**
1039 * task_curr - is this task currently executing on a CPU?
1040 * @p: the task in question.
1041 */
1042inline int task_curr(const struct task_struct *p)
1043{
1044	return cpu_curr(task_cpu(p)) == p;
1045}
1046
1047static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048				       const struct sched_class *prev_class,
1049				       int oldprio)
1050{
1051	if (prev_class != p->sched_class) {
1052		if (prev_class->switched_from)
1053			prev_class->switched_from(rq, p);
1054		p->sched_class->switched_to(rq, p);
1055	} else if (oldprio != p->prio)
1056		p->sched_class->prio_changed(rq, p, oldprio);
1057}
1058
1059void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060{
1061	const struct sched_class *class;
1062
1063	if (p->sched_class == rq->curr->sched_class) {
1064		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065	} else {
1066		for_each_class(class) {
1067			if (class == rq->curr->sched_class)
1068				break;
1069			if (class == p->sched_class) {
1070				resched_task(rq->curr);
1071				break;
1072			}
1073		}
1074	}
1075
1076	/*
1077	 * A queue event has occurred, and we're going to schedule.  In
1078	 * this case, we can save a useless back to back clock update.
1079	 */
1080	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081		rq->skip_clock_update = 1;
1082}
1083
1084#ifdef CONFIG_SMP
1085void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1086{
1087#ifdef CONFIG_SCHED_DEBUG
1088	/*
1089	 * We should never call set_task_cpu() on a blocked task,
1090	 * ttwu() will sort out the placement.
1091	 */
1092	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094
1095#ifdef CONFIG_LOCKDEP
1096	/*
1097	 * The caller should hold either p->pi_lock or rq->lock, when changing
1098	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099	 *
1100	 * sched_move_task() holds both and thus holding either pins the cgroup,
1101	 * see set_task_rq().
1102	 *
1103	 * Furthermore, all task_rq users should acquire both locks, see
1104	 * task_rq_lock().
1105	 */
1106	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107				      lockdep_is_held(&task_rq(p)->lock)));
1108#endif
1109#endif
1110
1111	trace_sched_migrate_task(p, new_cpu);
1112
1113	if (task_cpu(p) != new_cpu) {
1114		p->se.nr_migrations++;
1115		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116	}
1117
1118	__set_task_cpu(p, new_cpu);
1119}
1120
1121struct migration_arg {
1122	struct task_struct *task;
1123	int dest_cpu;
1124};
1125
1126static int migration_cpu_stop(void *data);
1127
1128/*
1129 * wait_task_inactive - wait for a thread to unschedule.
1130 *
1131 * If @match_state is nonzero, it's the @p->state value just checked and
1132 * not expected to change.  If it changes, i.e. @p might have woken up,
1133 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1134 * we return a positive number (its total switch count).  If a second call
1135 * a short while later returns the same number, the caller can be sure that
1136 * @p has remained unscheduled the whole time.
1137 *
1138 * The caller must ensure that the task *will* unschedule sometime soon,
1139 * else this function might spin for a *long* time. This function can't
1140 * be called with interrupts off, or it may introduce deadlock with
1141 * smp_call_function() if an IPI is sent by the same process we are
1142 * waiting to become inactive.
1143 */
1144unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1145{
1146	unsigned long flags;
1147	int running, on_rq;
1148	unsigned long ncsw;
1149	struct rq *rq;
1150
1151	for (;;) {
1152		/*
1153		 * We do the initial early heuristics without holding
1154		 * any task-queue locks at all. We'll only try to get
1155		 * the runqueue lock when things look like they will
1156		 * work out!
1157		 */
1158		rq = task_rq(p);
1159
1160		/*
1161		 * If the task is actively running on another CPU
1162		 * still, just relax and busy-wait without holding
1163		 * any locks.
1164		 *
1165		 * NOTE! Since we don't hold any locks, it's not
1166		 * even sure that "rq" stays as the right runqueue!
1167		 * But we don't care, since "task_running()" will
1168		 * return false if the runqueue has changed and p
1169		 * is actually now running somewhere else!
1170		 */
1171		while (task_running(rq, p)) {
1172			if (match_state && unlikely(p->state != match_state))
1173				return 0;
1174			cpu_relax();
1175		}
1176
1177		/*
1178		 * Ok, time to look more closely! We need the rq
1179		 * lock now, to be *sure*. If we're wrong, we'll
1180		 * just go back and repeat.
1181		 */
1182		rq = task_rq_lock(p, &flags);
1183		trace_sched_wait_task(p);
1184		running = task_running(rq, p);
1185		on_rq = p->on_rq;
1186		ncsw = 0;
1187		if (!match_state || p->state == match_state)
1188			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189		task_rq_unlock(rq, p, &flags);
1190
1191		/*
1192		 * If it changed from the expected state, bail out now.
1193		 */
1194		if (unlikely(!ncsw))
1195			break;
1196
1197		/*
1198		 * Was it really running after all now that we
1199		 * checked with the proper locks actually held?
1200		 *
1201		 * Oops. Go back and try again..
1202		 */
1203		if (unlikely(running)) {
1204			cpu_relax();
1205			continue;
1206		}
1207
1208		/*
1209		 * It's not enough that it's not actively running,
1210		 * it must be off the runqueue _entirely_, and not
1211		 * preempted!
1212		 *
1213		 * So if it was still runnable (but just not actively
1214		 * running right now), it's preempted, and we should
1215		 * yield - it could be a while.
1216		 */
1217		if (unlikely(on_rq)) {
1218			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219
1220			set_current_state(TASK_UNINTERRUPTIBLE);
1221			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222			continue;
1223		}
1224
1225		/*
1226		 * Ahh, all good. It wasn't running, and it wasn't
1227		 * runnable, which means that it will never become
1228		 * running in the future either. We're all done!
1229		 */
1230		break;
1231	}
1232
1233	return ncsw;
1234}
1235
1236/***
1237 * kick_process - kick a running thread to enter/exit the kernel
1238 * @p: the to-be-kicked thread
1239 *
1240 * Cause a process which is running on another CPU to enter
1241 * kernel-mode, without any delay. (to get signals handled.)
1242 *
1243 * NOTE: this function doesn't have to take the runqueue lock,
1244 * because all it wants to ensure is that the remote task enters
1245 * the kernel. If the IPI races and the task has been migrated
1246 * to another CPU then no harm is done and the purpose has been
1247 * achieved as well.
1248 */
1249void kick_process(struct task_struct *p)
1250{
1251	int cpu;
1252
1253	preempt_disable();
1254	cpu = task_cpu(p);
1255	if ((cpu != smp_processor_id()) && task_curr(p))
1256		smp_send_reschedule(cpu);
1257	preempt_enable();
1258}
1259EXPORT_SYMBOL_GPL(kick_process);
1260#endif /* CONFIG_SMP */
1261
1262#ifdef CONFIG_SMP
1263/*
1264 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265 */
1266static int select_fallback_rq(int cpu, struct task_struct *p)
1267{
1268	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269	enum { cpuset, possible, fail } state = cpuset;
1270	int dest_cpu;
1271
1272	/* Look for allowed, online CPU in same node. */
1273	for_each_cpu(dest_cpu, nodemask) {
1274		if (!cpu_online(dest_cpu))
1275			continue;
1276		if (!cpu_active(dest_cpu))
1277			continue;
1278		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279			return dest_cpu;
1280	}
1281
1282	for (;;) {
1283		/* Any allowed, online CPU? */
1284		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1285			if (!cpu_online(dest_cpu))
1286				continue;
1287			if (!cpu_active(dest_cpu))
1288				continue;
1289			goto out;
1290		}
1291
1292		switch (state) {
1293		case cpuset:
1294			/* No more Mr. Nice Guy. */
1295			cpuset_cpus_allowed_fallback(p);
1296			state = possible;
1297			break;
1298
1299		case possible:
1300			do_set_cpus_allowed(p, cpu_possible_mask);
1301			state = fail;
1302			break;
1303
1304		case fail:
1305			BUG();
1306			break;
1307		}
1308	}
1309
1310out:
1311	if (state != cpuset) {
1312		/*
1313		 * Don't tell them about moving exiting tasks or
1314		 * kernel threads (both mm NULL), since they never
1315		 * leave kernel.
1316		 */
1317		if (p->mm && printk_ratelimit()) {
1318			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1319					task_pid_nr(p), p->comm, cpu);
1320		}
1321	}
1322
1323	return dest_cpu;
1324}
1325
1326/*
1327 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1328 */
1329static inline
1330int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1331{
1332	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333
1334	/*
1335	 * In order not to call set_task_cpu() on a blocking task we need
1336	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1337	 * cpu.
1338	 *
1339	 * Since this is common to all placement strategies, this lives here.
1340	 *
1341	 * [ this allows ->select_task() to simply return task_cpu(p) and
1342	 *   not worry about this generic constraint ]
1343	 */
1344	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1345		     !cpu_online(cpu)))
1346		cpu = select_fallback_rq(task_cpu(p), p);
1347
1348	return cpu;
1349}
1350
1351static void update_avg(u64 *avg, u64 sample)
1352{
1353	s64 diff = sample - *avg;
1354	*avg += diff >> 3;
1355}
1356#endif
1357
1358static void
1359ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1360{
1361#ifdef CONFIG_SCHEDSTATS
1362	struct rq *rq = this_rq();
1363
1364#ifdef CONFIG_SMP
1365	int this_cpu = smp_processor_id();
1366
1367	if (cpu == this_cpu) {
1368		schedstat_inc(rq, ttwu_local);
1369		schedstat_inc(p, se.statistics.nr_wakeups_local);
1370	} else {
1371		struct sched_domain *sd;
1372
1373		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1374		rcu_read_lock();
1375		for_each_domain(this_cpu, sd) {
1376			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1377				schedstat_inc(sd, ttwu_wake_remote);
1378				break;
1379			}
1380		}
1381		rcu_read_unlock();
1382	}
1383
1384	if (wake_flags & WF_MIGRATED)
1385		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1386
1387#endif /* CONFIG_SMP */
1388
1389	schedstat_inc(rq, ttwu_count);
1390	schedstat_inc(p, se.statistics.nr_wakeups);
1391
1392	if (wake_flags & WF_SYNC)
1393		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1394
1395#endif /* CONFIG_SCHEDSTATS */
1396}
1397
1398static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1399{
1400	activate_task(rq, p, en_flags);
1401	p->on_rq = 1;
1402
1403	/* if a worker is waking up, notify workqueue */
1404	if (p->flags & PF_WQ_WORKER)
1405		wq_worker_waking_up(p, cpu_of(rq));
1406}
1407
1408/*
1409 * Mark the task runnable and perform wakeup-preemption.
1410 */
1411static void
1412ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1413{
1414	trace_sched_wakeup(p, true);
1415	check_preempt_curr(rq, p, wake_flags);
1416
1417	p->state = TASK_RUNNING;
1418#ifdef CONFIG_SMP
1419	if (p->sched_class->task_woken)
1420		p->sched_class->task_woken(rq, p);
1421
1422	if (rq->idle_stamp) {
1423		u64 delta = rq->clock - rq->idle_stamp;
1424		u64 max = 2*sysctl_sched_migration_cost;
1425
1426		if (delta > max)
1427			rq->avg_idle = max;
1428		else
1429			update_avg(&rq->avg_idle, delta);
1430		rq->idle_stamp = 0;
1431	}
1432#endif
1433}
1434
1435static void
1436ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1437{
1438#ifdef CONFIG_SMP
1439	if (p->sched_contributes_to_load)
1440		rq->nr_uninterruptible--;
1441#endif
1442
1443	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1444	ttwu_do_wakeup(rq, p, wake_flags);
1445}
1446
1447/*
1448 * Called in case the task @p isn't fully descheduled from its runqueue,
1449 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1450 * since all we need to do is flip p->state to TASK_RUNNING, since
1451 * the task is still ->on_rq.
1452 */
1453static int ttwu_remote(struct task_struct *p, int wake_flags)
1454{
1455	struct rq *rq;
1456	int ret = 0;
1457
1458	rq = __task_rq_lock(p);
1459	if (p->on_rq) {
1460		ttwu_do_wakeup(rq, p, wake_flags);
1461		ret = 1;
1462	}
1463	__task_rq_unlock(rq);
1464
1465	return ret;
1466}
1467
1468#ifdef CONFIG_SMP
1469static void sched_ttwu_pending(void)
1470{
1471	struct rq *rq = this_rq();
1472	struct llist_node *llist = llist_del_all(&rq->wake_list);
1473	struct task_struct *p;
1474
1475	raw_spin_lock(&rq->lock);
1476
1477	while (llist) {
1478		p = llist_entry(llist, struct task_struct, wake_entry);
1479		llist = llist_next(llist);
1480		ttwu_do_activate(rq, p, 0);
1481	}
1482
1483	raw_spin_unlock(&rq->lock);
1484}
1485
1486void scheduler_ipi(void)
1487{
1488	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1489		return;
1490
1491	/*
1492	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1493	 * traditionally all their work was done from the interrupt return
1494	 * path. Now that we actually do some work, we need to make sure
1495	 * we do call them.
1496	 *
1497	 * Some archs already do call them, luckily irq_enter/exit nest
1498	 * properly.
1499	 *
1500	 * Arguably we should visit all archs and update all handlers,
1501	 * however a fair share of IPIs are still resched only so this would
1502	 * somewhat pessimize the simple resched case.
1503	 */
1504	irq_enter();
1505	sched_ttwu_pending();
1506
1507	/*
1508	 * Check if someone kicked us for doing the nohz idle load balance.
1509	 */
1510	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1511		this_rq()->idle_balance = 1;
1512		raise_softirq_irqoff(SCHED_SOFTIRQ);
1513	}
1514	irq_exit();
1515}
1516
1517static void ttwu_queue_remote(struct task_struct *p, int cpu)
1518{
1519	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1520		smp_send_reschedule(cpu);
1521}
1522
1523#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1524static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1525{
1526	struct rq *rq;
1527	int ret = 0;
1528
1529	rq = __task_rq_lock(p);
1530	if (p->on_cpu) {
1531		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1532		ttwu_do_wakeup(rq, p, wake_flags);
1533		ret = 1;
1534	}
1535	__task_rq_unlock(rq);
1536
1537	return ret;
1538
1539}
1540#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1541
1542bool cpus_share_cache(int this_cpu, int that_cpu)
1543{
1544	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545}
1546#endif /* CONFIG_SMP */
1547
1548static void ttwu_queue(struct task_struct *p, int cpu)
1549{
1550	struct rq *rq = cpu_rq(cpu);
1551
1552#if defined(CONFIG_SMP)
1553	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555		ttwu_queue_remote(p, cpu);
1556		return;
1557	}
1558#endif
1559
1560	raw_spin_lock(&rq->lock);
1561	ttwu_do_activate(rq, p, 0);
1562	raw_spin_unlock(&rq->lock);
1563}
1564
1565/**
1566 * try_to_wake_up - wake up a thread
1567 * @p: the thread to be awakened
1568 * @state: the mask of task states that can be woken
1569 * @wake_flags: wake modifier flags (WF_*)
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
1577 * Returns %true if @p was woken up, %false if it was already running
1578 * or @state didn't match @p's state.
1579 */
1580static int
1581try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1582{
1583	unsigned long flags;
1584	int cpu, success = 0;
1585
1586	smp_wmb();
1587	raw_spin_lock_irqsave(&p->pi_lock, flags);
1588	if (!(p->state & state))
1589		goto out;
1590
1591	success = 1; /* we're going to change ->state */
1592	cpu = task_cpu(p);
1593
1594	if (p->on_rq && ttwu_remote(p, wake_flags))
1595		goto stat;
1596
1597#ifdef CONFIG_SMP
1598	/*
1599	 * If the owning (remote) cpu is still in the middle of schedule() with
1600	 * this task as prev, wait until its done referencing the task.
1601	 */
1602	while (p->on_cpu) {
1603#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1604		/*
1605		 * In case the architecture enables interrupts in
1606		 * context_switch(), we cannot busy wait, since that
1607		 * would lead to deadlocks when an interrupt hits and
1608		 * tries to wake up @prev. So bail and do a complete
1609		 * remote wakeup.
1610		 */
1611		if (ttwu_activate_remote(p, wake_flags))
1612			goto stat;
1613#else
1614		cpu_relax();
1615#endif
1616	}
1617	/*
1618	 * Pairs with the smp_wmb() in finish_lock_switch().
1619	 */
1620	smp_rmb();
1621
1622	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1623	p->state = TASK_WAKING;
1624
1625	if (p->sched_class->task_waking)
1626		p->sched_class->task_waking(p);
1627
1628	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1629	if (task_cpu(p) != cpu) {
1630		wake_flags |= WF_MIGRATED;
1631		set_task_cpu(p, cpu);
1632	}
1633#endif /* CONFIG_SMP */
1634
1635	ttwu_queue(p, cpu);
1636stat:
1637	ttwu_stat(p, cpu, wake_flags);
1638out:
1639	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1640
1641	return success;
1642}
1643
1644/**
1645 * try_to_wake_up_local - try to wake up a local task with rq lock held
1646 * @p: the thread to be awakened
1647 *
1648 * Put @p on the run-queue if it's not already there. The caller must
1649 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1650 * the current task.
1651 */
1652static void try_to_wake_up_local(struct task_struct *p)
1653{
1654	struct rq *rq = task_rq(p);
1655
1656	BUG_ON(rq != this_rq());
1657	BUG_ON(p == current);
1658	lockdep_assert_held(&rq->lock);
1659
1660	if (!raw_spin_trylock(&p->pi_lock)) {
1661		raw_spin_unlock(&rq->lock);
1662		raw_spin_lock(&p->pi_lock);
1663		raw_spin_lock(&rq->lock);
1664	}
1665
1666	if (!(p->state & TASK_NORMAL))
1667		goto out;
1668
1669	if (!p->on_rq)
1670		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1671
1672	ttwu_do_wakeup(rq, p, 0);
1673	ttwu_stat(p, smp_processor_id(), 0);
1674out:
1675	raw_spin_unlock(&p->pi_lock);
1676}
1677
1678/**
1679 * wake_up_process - Wake up a specific process
1680 * @p: The process to be woken up.
1681 *
1682 * Attempt to wake up the nominated process and move it to the set of runnable
1683 * processes.  Returns 1 if the process was woken up, 0 if it was already
1684 * running.
1685 *
1686 * It may be assumed that this function implies a write memory barrier before
1687 * changing the task state if and only if any tasks are woken up.
1688 */
1689int wake_up_process(struct task_struct *p)
1690{
1691	return try_to_wake_up(p, TASK_ALL, 0);
1692}
1693EXPORT_SYMBOL(wake_up_process);
1694
1695int wake_up_state(struct task_struct *p, unsigned int state)
1696{
1697	return try_to_wake_up(p, state, 0);
1698}
1699
1700/*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
1706static void __sched_fork(struct task_struct *p)
1707{
1708	p->on_rq			= 0;
1709
1710	p->se.on_rq			= 0;
1711	p->se.exec_start		= 0;
1712	p->se.sum_exec_runtime		= 0;
1713	p->se.prev_sum_exec_runtime	= 0;
1714	p->se.nr_migrations		= 0;
1715	p->se.vruntime			= 0;
1716	INIT_LIST_HEAD(&p->se.group_node);
1717
1718#ifdef CONFIG_SCHEDSTATS
1719	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1720#endif
1721
1722	INIT_LIST_HEAD(&p->rt.run_list);
1723
1724#ifdef CONFIG_PREEMPT_NOTIFIERS
1725	INIT_HLIST_HEAD(&p->preempt_notifiers);
1726#endif
1727}
1728
1729/*
1730 * fork()/clone()-time setup:
1731 */
1732void sched_fork(struct task_struct *p)
1733{
1734	unsigned long flags;
1735	int cpu = get_cpu();
1736
1737	__sched_fork(p);
1738	/*
1739	 * We mark the process as running here. This guarantees that
1740	 * nobody will actually run it, and a signal or other external
1741	 * event cannot wake it up and insert it on the runqueue either.
1742	 */
1743	p->state = TASK_RUNNING;
1744
1745	/*
1746	 * Make sure we do not leak PI boosting priority to the child.
1747	 */
1748	p->prio = current->normal_prio;
1749
1750	/*
1751	 * Revert to default priority/policy on fork if requested.
1752	 */
1753	if (unlikely(p->sched_reset_on_fork)) {
1754		if (task_has_rt_policy(p)) {
1755			p->policy = SCHED_NORMAL;
1756			p->static_prio = NICE_TO_PRIO(0);
1757			p->rt_priority = 0;
1758		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1759			p->static_prio = NICE_TO_PRIO(0);
1760
1761		p->prio = p->normal_prio = __normal_prio(p);
1762		set_load_weight(p);
1763
1764		/*
1765		 * We don't need the reset flag anymore after the fork. It has
1766		 * fulfilled its duty:
1767		 */
1768		p->sched_reset_on_fork = 0;
1769	}
1770
1771	if (!rt_prio(p->prio))
1772		p->sched_class = &fair_sched_class;
1773
1774	if (p->sched_class->task_fork)
1775		p->sched_class->task_fork(p);
1776
1777	/*
1778	 * The child is not yet in the pid-hash so no cgroup attach races,
1779	 * and the cgroup is pinned to this child due to cgroup_fork()
1780	 * is ran before sched_fork().
1781	 *
1782	 * Silence PROVE_RCU.
1783	 */
1784	raw_spin_lock_irqsave(&p->pi_lock, flags);
1785	set_task_cpu(p, cpu);
1786	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1787
1788#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1789	if (likely(sched_info_on()))
1790		memset(&p->sched_info, 0, sizeof(p->sched_info));
1791#endif
1792#if defined(CONFIG_SMP)
1793	p->on_cpu = 0;
1794#endif
1795#ifdef CONFIG_PREEMPT_COUNT
1796	/* Want to start with kernel preemption disabled. */
1797	task_thread_info(p)->preempt_count = 1;
1798#endif
1799#ifdef CONFIG_SMP
1800	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1801#endif
1802
1803	put_cpu();
1804}
1805
1806/*
1807 * wake_up_new_task - wake up a newly created task for the first time.
1808 *
1809 * This function will do some initial scheduler statistics housekeeping
1810 * that must be done for every newly created context, then puts the task
1811 * on the runqueue and wakes it.
1812 */
1813void wake_up_new_task(struct task_struct *p)
1814{
1815	unsigned long flags;
1816	struct rq *rq;
1817
1818	raw_spin_lock_irqsave(&p->pi_lock, flags);
1819#ifdef CONFIG_SMP
1820	/*
1821	 * Fork balancing, do it here and not earlier because:
1822	 *  - cpus_allowed can change in the fork path
1823	 *  - any previously selected cpu might disappear through hotplug
1824	 */
1825	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1826#endif
1827
1828	rq = __task_rq_lock(p);
1829	activate_task(rq, p, 0);
1830	p->on_rq = 1;
1831	trace_sched_wakeup_new(p, true);
1832	check_preempt_curr(rq, p, WF_FORK);
1833#ifdef CONFIG_SMP
1834	if (p->sched_class->task_woken)
1835		p->sched_class->task_woken(rq, p);
1836#endif
1837	task_rq_unlock(rq, p, &flags);
1838}
1839
1840#ifdef CONFIG_PREEMPT_NOTIFIERS
1841
1842/**
1843 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1844 * @notifier: notifier struct to register
1845 */
1846void preempt_notifier_register(struct preempt_notifier *notifier)
1847{
1848	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1849}
1850EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851
1852/**
1853 * preempt_notifier_unregister - no longer interested in preemption notifications
1854 * @notifier: notifier struct to unregister
1855 *
1856 * This is safe to call from within a preemption notifier.
1857 */
1858void preempt_notifier_unregister(struct preempt_notifier *notifier)
1859{
1860	hlist_del(&notifier->link);
1861}
1862EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1863
1864static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865{
1866	struct preempt_notifier *notifier;
1867	struct hlist_node *node;
1868
1869	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1870		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871}
1872
1873static void
1874fire_sched_out_preempt_notifiers(struct task_struct *curr,
1875				 struct task_struct *next)
1876{
1877	struct preempt_notifier *notifier;
1878	struct hlist_node *node;
1879
1880	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1881		notifier->ops->sched_out(notifier, next);
1882}
1883
1884#else /* !CONFIG_PREEMPT_NOTIFIERS */
1885
1886static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1887{
1888}
1889
1890static void
1891fire_sched_out_preempt_notifiers(struct task_struct *curr,
1892				 struct task_struct *next)
1893{
1894}
1895
1896#endif /* CONFIG_PREEMPT_NOTIFIERS */
1897
1898/**
1899 * prepare_task_switch - prepare to switch tasks
1900 * @rq: the runqueue preparing to switch
1901 * @prev: the current task that is being switched out
1902 * @next: the task we are going to switch to.
1903 *
1904 * This is called with the rq lock held and interrupts off. It must
1905 * be paired with a subsequent finish_task_switch after the context
1906 * switch.
1907 *
1908 * prepare_task_switch sets up locking and calls architecture specific
1909 * hooks.
1910 */
1911static inline void
1912prepare_task_switch(struct rq *rq, struct task_struct *prev,
1913		    struct task_struct *next)
1914{
1915	sched_info_switch(prev, next);
1916	perf_event_task_sched(prev, next);
1917	fire_sched_out_preempt_notifiers(prev, next);
1918	prepare_lock_switch(rq, next);
1919	prepare_arch_switch(next);
1920	trace_sched_switch(prev, next);
1921}
1922
1923/**
1924 * finish_task_switch - clean up after a task-switch
1925 * @rq: runqueue associated with task-switch
1926 * @prev: the thread we just switched away from.
1927 *
1928 * finish_task_switch must be called after the context switch, paired
1929 * with a prepare_task_switch call before the context switch.
1930 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1931 * and do any other architecture-specific cleanup actions.
1932 *
1933 * Note that we may have delayed dropping an mm in context_switch(). If
1934 * so, we finish that here outside of the runqueue lock. (Doing it
1935 * with the lock held can cause deadlocks; see schedule() for
1936 * details.)
1937 */
1938static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1939	__releases(rq->lock)
1940{
1941	struct mm_struct *mm = rq->prev_mm;
1942	long prev_state;
1943
1944	rq->prev_mm = NULL;
1945
1946	/*
1947	 * A task struct has one reference for the use as "current".
1948	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1949	 * schedule one last time. The schedule call will never return, and
1950	 * the scheduled task must drop that reference.
1951	 * The test for TASK_DEAD must occur while the runqueue locks are
1952	 * still held, otherwise prev could be scheduled on another cpu, die
1953	 * there before we look at prev->state, and then the reference would
1954	 * be dropped twice.
1955	 *		Manfred Spraul <manfred@colorfullife.com>
1956	 */
1957	prev_state = prev->state;
1958	finish_arch_switch(prev);
1959	finish_lock_switch(rq, prev);
1960	finish_arch_post_lock_switch();
1961
1962	fire_sched_in_preempt_notifiers(current);
1963	if (mm)
1964		mmdrop(mm);
1965	if (unlikely(prev_state == TASK_DEAD)) {
1966		/*
1967		 * Remove function-return probe instances associated with this
1968		 * task and put them back on the free list.
1969		 */
1970		kprobe_flush_task(prev);
1971		put_task_struct(prev);
1972	}
1973}
1974
1975#ifdef CONFIG_SMP
1976
1977/* assumes rq->lock is held */
1978static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1979{
1980	if (prev->sched_class->pre_schedule)
1981		prev->sched_class->pre_schedule(rq, prev);
1982}
1983
1984/* rq->lock is NOT held, but preemption is disabled */
1985static inline void post_schedule(struct rq *rq)
1986{
1987	if (rq->post_schedule) {
1988		unsigned long flags;
1989
1990		raw_spin_lock_irqsave(&rq->lock, flags);
1991		if (rq->curr->sched_class->post_schedule)
1992			rq->curr->sched_class->post_schedule(rq);
1993		raw_spin_unlock_irqrestore(&rq->lock, flags);
1994
1995		rq->post_schedule = 0;
1996	}
1997}
1998
1999#else
2000
2001static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2002{
2003}
2004
2005static inline void post_schedule(struct rq *rq)
2006{
2007}
2008
2009#endif
2010
2011/**
2012 * schedule_tail - first thing a freshly forked thread must call.
2013 * @prev: the thread we just switched away from.
2014 */
2015asmlinkage void schedule_tail(struct task_struct *prev)
2016	__releases(rq->lock)
2017{
2018	struct rq *rq = this_rq();
2019
2020	finish_task_switch(rq, prev);
2021
2022	/*
2023	 * FIXME: do we need to worry about rq being invalidated by the
2024	 * task_switch?
2025	 */
2026	post_schedule(rq);
2027
2028#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2029	/* In this case, finish_task_switch does not reenable preemption */
2030	preempt_enable();
2031#endif
2032	if (current->set_child_tid)
2033		put_user(task_pid_vnr(current), current->set_child_tid);
2034}
2035
2036/*
2037 * context_switch - switch to the new MM and the new
2038 * thread's register state.
2039 */
2040static inline void
2041context_switch(struct rq *rq, struct task_struct *prev,
2042	       struct task_struct *next)
2043{
2044	struct mm_struct *mm, *oldmm;
2045
2046	prepare_task_switch(rq, prev, next);
2047
2048	mm = next->mm;
2049	oldmm = prev->active_mm;
2050	/*
2051	 * For paravirt, this is coupled with an exit in switch_to to
2052	 * combine the page table reload and the switch backend into
2053	 * one hypercall.
2054	 */
2055	arch_start_context_switch(prev);
2056
2057	if (!mm) {
2058		next->active_mm = oldmm;
2059		atomic_inc(&oldmm->mm_count);
2060		enter_lazy_tlb(oldmm, next);
2061	} else
2062		switch_mm(oldmm, mm, next);
2063
2064	if (!prev->mm) {
2065		prev->active_mm = NULL;
2066		rq->prev_mm = oldmm;
2067	}
2068	/*
2069	 * Since the runqueue lock will be released by the next
2070	 * task (which is an invalid locking op but in the case
2071	 * of the scheduler it's an obvious special-case), so we
2072	 * do an early lockdep release here:
2073	 */
2074#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2075	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2076#endif
2077
2078	/* Here we just switch the register state and the stack. */
2079	switch_to(prev, next, prev);
2080
2081	barrier();
2082	/*
2083	 * this_rq must be evaluated again because prev may have moved
2084	 * CPUs since it called schedule(), thus the 'rq' on its stack
2085	 * frame will be invalid.
2086	 */
2087	finish_task_switch(this_rq(), prev);
2088}
2089
2090/*
2091 * nr_running, nr_uninterruptible and nr_context_switches:
2092 *
2093 * externally visible scheduler statistics: current number of runnable
2094 * threads, current number of uninterruptible-sleeping threads, total
2095 * number of context switches performed since bootup.
2096 */
2097unsigned long nr_running(void)
2098{
2099	unsigned long i, sum = 0;
2100
2101	for_each_online_cpu(i)
2102		sum += cpu_rq(i)->nr_running;
2103
2104	return sum;
2105}
2106
2107unsigned long nr_uninterruptible(void)
2108{
2109	unsigned long i, sum = 0;
2110
2111	for_each_possible_cpu(i)
2112		sum += cpu_rq(i)->nr_uninterruptible;
2113
2114	/*
2115	 * Since we read the counters lockless, it might be slightly
2116	 * inaccurate. Do not allow it to go below zero though:
2117	 */
2118	if (unlikely((long)sum < 0))
2119		sum = 0;
2120
2121	return sum;
2122}
2123
2124unsigned long long nr_context_switches(void)
2125{
2126	int i;
2127	unsigned long long sum = 0;
2128
2129	for_each_possible_cpu(i)
2130		sum += cpu_rq(i)->nr_switches;
2131
2132	return sum;
2133}
2134
2135unsigned long nr_iowait(void)
2136{
2137	unsigned long i, sum = 0;
2138
2139	for_each_possible_cpu(i)
2140		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2141
2142	return sum;
2143}
2144
2145unsigned long nr_iowait_cpu(int cpu)
2146{
2147	struct rq *this = cpu_rq(cpu);
2148	return atomic_read(&this->nr_iowait);
2149}
2150
2151unsigned long this_cpu_load(void)
2152{
2153	struct rq *this = this_rq();
2154	return this->cpu_load[0];
2155}
2156
2157
2158/* Variables and functions for calc_load */
2159static atomic_long_t calc_load_tasks;
2160static unsigned long calc_load_update;
2161unsigned long avenrun[3];
2162EXPORT_SYMBOL(avenrun);
2163
2164static long calc_load_fold_active(struct rq *this_rq)
2165{
2166	long nr_active, delta = 0;
2167
2168	nr_active = this_rq->nr_running;
2169	nr_active += (long) this_rq->nr_uninterruptible;
2170
2171	if (nr_active != this_rq->calc_load_active) {
2172		delta = nr_active - this_rq->calc_load_active;
2173		this_rq->calc_load_active = nr_active;
2174	}
2175
2176	return delta;
2177}
2178
2179static unsigned long
2180calc_load(unsigned long load, unsigned long exp, unsigned long active)
2181{
2182	load *= exp;
2183	load += active * (FIXED_1 - exp);
2184	load += 1UL << (FSHIFT - 1);
2185	return load >> FSHIFT;
2186}
2187
2188#ifdef CONFIG_NO_HZ
2189/*
2190 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2191 *
2192 * When making the ILB scale, we should try to pull this in as well.
2193 */
2194static atomic_long_t calc_load_tasks_idle;
2195
2196void calc_load_account_idle(struct rq *this_rq)
2197{
2198	long delta;
2199
2200	delta = calc_load_fold_active(this_rq);
2201	if (delta)
2202		atomic_long_add(delta, &calc_load_tasks_idle);
2203}
2204
2205static long calc_load_fold_idle(void)
2206{
2207	long delta = 0;
2208
2209	/*
2210	 * Its got a race, we don't care...
2211	 */
2212	if (atomic_long_read(&calc_load_tasks_idle))
2213		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2214
2215	return delta;
2216}
2217
2218/**
2219 * fixed_power_int - compute: x^n, in O(log n) time
2220 *
2221 * @x:         base of the power
2222 * @frac_bits: fractional bits of @x
2223 * @n:         power to raise @x to.
2224 *
2225 * By exploiting the relation between the definition of the natural power
2226 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2227 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2228 * (where: n_i \elem {0, 1}, the binary vector representing n),
2229 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2230 * of course trivially computable in O(log_2 n), the length of our binary
2231 * vector.
2232 */
2233static unsigned long
2234fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2235{
2236	unsigned long result = 1UL << frac_bits;
2237
2238	if (n) for (;;) {
2239		if (n & 1) {
2240			result *= x;
2241			result += 1UL << (frac_bits - 1);
2242			result >>= frac_bits;
2243		}
2244		n >>= 1;
2245		if (!n)
2246			break;
2247		x *= x;
2248		x += 1UL << (frac_bits - 1);
2249		x >>= frac_bits;
2250	}
2251
2252	return result;
2253}
2254
2255/*
2256 * a1 = a0 * e + a * (1 - e)
2257 *
2258 * a2 = a1 * e + a * (1 - e)
2259 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2260 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2261 *
2262 * a3 = a2 * e + a * (1 - e)
2263 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2264 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2265 *
2266 *  ...
2267 *
2268 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2269 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2270 *    = a0 * e^n + a * (1 - e^n)
2271 *
2272 * [1] application of the geometric series:
2273 *
2274 *              n         1 - x^(n+1)
2275 *     S_n := \Sum x^i = -------------
2276 *             i=0          1 - x
2277 */
2278static unsigned long
2279calc_load_n(unsigned long load, unsigned long exp,
2280	    unsigned long active, unsigned int n)
2281{
2282
2283	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2284}
2285
2286/*
2287 * NO_HZ can leave us missing all per-cpu ticks calling
2288 * calc_load_account_active(), but since an idle CPU folds its delta into
2289 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2290 * in the pending idle delta if our idle period crossed a load cycle boundary.
2291 *
2292 * Once we've updated the global active value, we need to apply the exponential
2293 * weights adjusted to the number of cycles missed.
2294 */
2295static void calc_global_nohz(void)
2296{
2297	long delta, active, n;
2298
2299	/*
2300	 * If we crossed a calc_load_update boundary, make sure to fold
2301	 * any pending idle changes, the respective CPUs might have
2302	 * missed the tick driven calc_load_account_active() update
2303	 * due to NO_HZ.
2304	 */
2305	delta = calc_load_fold_idle();
2306	if (delta)
2307		atomic_long_add(delta, &calc_load_tasks);
2308
2309	/*
2310	 * It could be the one fold was all it took, we done!
2311	 */
2312	if (time_before(jiffies, calc_load_update + 10))
2313		return;
2314
2315	/*
2316	 * Catch-up, fold however many we are behind still
2317	 */
2318	delta = jiffies - calc_load_update - 10;
2319	n = 1 + (delta / LOAD_FREQ);
2320
2321	active = atomic_long_read(&calc_load_tasks);
2322	active = active > 0 ? active * FIXED_1 : 0;
2323
2324	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2325	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2326	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2327
2328	calc_load_update += n * LOAD_FREQ;
2329}
2330#else
2331void calc_load_account_idle(struct rq *this_rq)
2332{
2333}
2334
2335static inline long calc_load_fold_idle(void)
2336{
2337	return 0;
2338}
2339
2340static void calc_global_nohz(void)
2341{
2342}
2343#endif
2344
2345/**
2346 * get_avenrun - get the load average array
2347 * @loads:	pointer to dest load array
2348 * @offset:	offset to add
2349 * @shift:	shift count to shift the result left
2350 *
2351 * These values are estimates at best, so no need for locking.
2352 */
2353void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2354{
2355	loads[0] = (avenrun[0] + offset) << shift;
2356	loads[1] = (avenrun[1] + offset) << shift;
2357	loads[2] = (avenrun[2] + offset) << shift;
2358}
2359
2360/*
2361 * calc_load - update the avenrun load estimates 10 ticks after the
2362 * CPUs have updated calc_load_tasks.
2363 */
2364void calc_global_load(unsigned long ticks)
2365{
2366	long active;
2367
2368	if (time_before(jiffies, calc_load_update + 10))
2369		return;
2370
2371	active = atomic_long_read(&calc_load_tasks);
2372	active = active > 0 ? active * FIXED_1 : 0;
2373
2374	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2375	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2376	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2377
2378	calc_load_update += LOAD_FREQ;
2379
2380	/*
2381	 * Account one period with whatever state we found before
2382	 * folding in the nohz state and ageing the entire idle period.
2383	 *
2384	 * This avoids loosing a sample when we go idle between
2385	 * calc_load_account_active() (10 ticks ago) and now and thus
2386	 * under-accounting.
2387	 */
2388	calc_global_nohz();
2389}
2390
2391/*
2392 * Called from update_cpu_load() to periodically update this CPU's
2393 * active count.
2394 */
2395static void calc_load_account_active(struct rq *this_rq)
2396{
2397	long delta;
2398
2399	if (time_before(jiffies, this_rq->calc_load_update))
2400		return;
2401
2402	delta  = calc_load_fold_active(this_rq);
2403	delta += calc_load_fold_idle();
2404	if (delta)
2405		atomic_long_add(delta, &calc_load_tasks);
2406
2407	this_rq->calc_load_update += LOAD_FREQ;
2408}
2409
2410/*
2411 * The exact cpuload at various idx values, calculated at every tick would be
2412 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2413 *
2414 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2415 * on nth tick when cpu may be busy, then we have:
2416 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2417 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2418 *
2419 * decay_load_missed() below does efficient calculation of
2420 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2421 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2422 *
2423 * The calculation is approximated on a 128 point scale.
2424 * degrade_zero_ticks is the number of ticks after which load at any
2425 * particular idx is approximated to be zero.
2426 * degrade_factor is a precomputed table, a row for each load idx.
2427 * Each column corresponds to degradation factor for a power of two ticks,
2428 * based on 128 point scale.
2429 * Example:
2430 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2431 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2432 *
2433 * With this power of 2 load factors, we can degrade the load n times
2434 * by looking at 1 bits in n and doing as many mult/shift instead of
2435 * n mult/shifts needed by the exact degradation.
2436 */
2437#define DEGRADE_SHIFT		7
2438static const unsigned char
2439		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2440static const unsigned char
2441		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2442					{0, 0, 0, 0, 0, 0, 0, 0},
2443					{64, 32, 8, 0, 0, 0, 0, 0},
2444					{96, 72, 40, 12, 1, 0, 0},
2445					{112, 98, 75, 43, 15, 1, 0},
2446					{120, 112, 98, 76, 45, 16, 2} };
2447
2448/*
2449 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2450 * would be when CPU is idle and so we just decay the old load without
2451 * adding any new load.
2452 */
2453static unsigned long
2454decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2455{
2456	int j = 0;
2457
2458	if (!missed_updates)
2459		return load;
2460
2461	if (missed_updates >= degrade_zero_ticks[idx])
2462		return 0;
2463
2464	if (idx == 1)
2465		return load >> missed_updates;
2466
2467	while (missed_updates) {
2468		if (missed_updates % 2)
2469			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2470
2471		missed_updates >>= 1;
2472		j++;
2473	}
2474	return load;
2475}
2476
2477/*
2478 * Update rq->cpu_load[] statistics. This function is usually called every
2479 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2480 * every tick. We fix it up based on jiffies.
2481 */
2482void update_cpu_load(struct rq *this_rq)
2483{
2484	unsigned long this_load = this_rq->load.weight;
2485	unsigned long curr_jiffies = jiffies;
2486	unsigned long pending_updates;
2487	int i, scale;
2488
2489	this_rq->nr_load_updates++;
2490
2491	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2492	if (curr_jiffies == this_rq->last_load_update_tick)
2493		return;
2494
2495	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2496	this_rq->last_load_update_tick = curr_jiffies;
2497
2498	/* Update our load: */
2499	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2500	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2501		unsigned long old_load, new_load;
2502
2503		/* scale is effectively 1 << i now, and >> i divides by scale */
2504
2505		old_load = this_rq->cpu_load[i];
2506		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2507		new_load = this_load;
2508		/*
2509		 * Round up the averaging division if load is increasing. This
2510		 * prevents us from getting stuck on 9 if the load is 10, for
2511		 * example.
2512		 */
2513		if (new_load > old_load)
2514			new_load += scale - 1;
2515
2516		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2517	}
2518
2519	sched_avg_update(this_rq);
2520}
2521
2522static void update_cpu_load_active(struct rq *this_rq)
2523{
2524	update_cpu_load(this_rq);
2525
2526	calc_load_account_active(this_rq);
2527}
2528
2529#ifdef CONFIG_SMP
2530
2531/*
2532 * sched_exec - execve() is a valuable balancing opportunity, because at
2533 * this point the task has the smallest effective memory and cache footprint.
2534 */
2535void sched_exec(void)
2536{
2537	struct task_struct *p = current;
2538	unsigned long flags;
2539	int dest_cpu;
2540
2541	raw_spin_lock_irqsave(&p->pi_lock, flags);
2542	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2543	if (dest_cpu == smp_processor_id())
2544		goto unlock;
2545
2546	if (likely(cpu_active(dest_cpu))) {
2547		struct migration_arg arg = { p, dest_cpu };
2548
2549		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2550		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2551		return;
2552	}
2553unlock:
2554	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2555}
2556
2557#endif
2558
2559DEFINE_PER_CPU(struct kernel_stat, kstat);
2560DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2561
2562EXPORT_PER_CPU_SYMBOL(kstat);
2563EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2564
2565/*
2566 * Return any ns on the sched_clock that have not yet been accounted in
2567 * @p in case that task is currently running.
2568 *
2569 * Called with task_rq_lock() held on @rq.
2570 */
2571static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2572{
2573	u64 ns = 0;
2574
2575	if (task_current(rq, p)) {
2576		update_rq_clock(rq);
2577		ns = rq->clock_task - p->se.exec_start;
2578		if ((s64)ns < 0)
2579			ns = 0;
2580	}
2581
2582	return ns;
2583}
2584
2585unsigned long long task_delta_exec(struct task_struct *p)
2586{
2587	unsigned long flags;
2588	struct rq *rq;
2589	u64 ns = 0;
2590
2591	rq = task_rq_lock(p, &flags);
2592	ns = do_task_delta_exec(p, rq);
2593	task_rq_unlock(rq, p, &flags);
2594
2595	return ns;
2596}
2597
2598/*
2599 * Return accounted runtime for the task.
2600 * In case the task is currently running, return the runtime plus current's
2601 * pending runtime that have not been accounted yet.
2602 */
2603unsigned long long task_sched_runtime(struct task_struct *p)
2604{
2605	unsigned long flags;
2606	struct rq *rq;
2607	u64 ns = 0;
2608
2609	rq = task_rq_lock(p, &flags);
2610	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2611	task_rq_unlock(rq, p, &flags);
2612
2613	return ns;
2614}
2615
2616#ifdef CONFIG_CGROUP_CPUACCT
2617struct cgroup_subsys cpuacct_subsys;
2618struct cpuacct root_cpuacct;
2619#endif
2620
2621static inline void task_group_account_field(struct task_struct *p, int index,
2622					    u64 tmp)
2623{
2624#ifdef CONFIG_CGROUP_CPUACCT
2625	struct kernel_cpustat *kcpustat;
2626	struct cpuacct *ca;
2627#endif
2628	/*
2629	 * Since all updates are sure to touch the root cgroup, we
2630	 * get ourselves ahead and touch it first. If the root cgroup
2631	 * is the only cgroup, then nothing else should be necessary.
2632	 *
2633	 */
2634	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2635
2636#ifdef CONFIG_CGROUP_CPUACCT
2637	if (unlikely(!cpuacct_subsys.active))
2638		return;
2639
2640	rcu_read_lock();
2641	ca = task_ca(p);
2642	while (ca && (ca != &root_cpuacct)) {
2643		kcpustat = this_cpu_ptr(ca->cpustat);
2644		kcpustat->cpustat[index] += tmp;
2645		ca = parent_ca(ca);
2646	}
2647	rcu_read_unlock();
2648#endif
2649}
2650
2651
2652/*
2653 * Account user cpu time to a process.
2654 * @p: the process that the cpu time gets accounted to
2655 * @cputime: the cpu time spent in user space since the last update
2656 * @cputime_scaled: cputime scaled by cpu frequency
2657 */
2658void account_user_time(struct task_struct *p, cputime_t cputime,
2659		       cputime_t cputime_scaled)
2660{
2661	int index;
2662
2663	/* Add user time to process. */
2664	p->utime += cputime;
2665	p->utimescaled += cputime_scaled;
2666	account_group_user_time(p, cputime);
2667
2668	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2669
2670	/* Add user time to cpustat. */
2671	task_group_account_field(p, index, (__force u64) cputime);
2672
2673	/* Account for user time used */
2674	acct_update_integrals(p);
2675}
2676
2677/*
2678 * Account guest cpu time to a process.
2679 * @p: the process that the cpu time gets accounted to
2680 * @cputime: the cpu time spent in virtual machine since the last update
2681 * @cputime_scaled: cputime scaled by cpu frequency
2682 */
2683static void account_guest_time(struct task_struct *p, cputime_t cputime,
2684			       cputime_t cputime_scaled)
2685{
2686	u64 *cpustat = kcpustat_this_cpu->cpustat;
2687
2688	/* Add guest time to process. */
2689	p->utime += cputime;
2690	p->utimescaled += cputime_scaled;
2691	account_group_user_time(p, cputime);
2692	p->gtime += cputime;
2693
2694	/* Add guest time to cpustat. */
2695	if (TASK_NICE(p) > 0) {
2696		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2697		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2698	} else {
2699		cpustat[CPUTIME_USER] += (__force u64) cputime;
2700		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2701	}
2702}
2703
2704/*
2705 * Account system cpu time to a process and desired cpustat field
2706 * @p: the process that the cpu time gets accounted to
2707 * @cputime: the cpu time spent in kernel space since the last update
2708 * @cputime_scaled: cputime scaled by cpu frequency
2709 * @target_cputime64: pointer to cpustat field that has to be updated
2710 */
2711static inline
2712void __account_system_time(struct task_struct *p, cputime_t cputime,
2713			cputime_t cputime_scaled, int index)
2714{
2715	/* Add system time to process. */
2716	p->stime += cputime;
2717	p->stimescaled += cputime_scaled;
2718	account_group_system_time(p, cputime);
2719
2720	/* Add system time to cpustat. */
2721	task_group_account_field(p, index, (__force u64) cputime);
2722
2723	/* Account for system time used */
2724	acct_update_integrals(p);
2725}
2726
2727/*
2728 * Account system cpu time to a process.
2729 * @p: the process that the cpu time gets accounted to
2730 * @hardirq_offset: the offset to subtract from hardirq_count()
2731 * @cputime: the cpu time spent in kernel space since the last update
2732 * @cputime_scaled: cputime scaled by cpu frequency
2733 */
2734void account_system_time(struct task_struct *p, int hardirq_offset,
2735			 cputime_t cputime, cputime_t cputime_scaled)
2736{
2737	int index;
2738
2739	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2740		account_guest_time(p, cputime, cputime_scaled);
2741		return;
2742	}
2743
2744	if (hardirq_count() - hardirq_offset)
2745		index = CPUTIME_IRQ;
2746	else if (in_serving_softirq())
2747		index = CPUTIME_SOFTIRQ;
2748	else
2749		index = CPUTIME_SYSTEM;
2750
2751	__account_system_time(p, cputime, cputime_scaled, index);
2752}
2753
2754/*
2755 * Account for involuntary wait time.
2756 * @cputime: the cpu time spent in involuntary wait
2757 */
2758void account_steal_time(cputime_t cputime)
2759{
2760	u64 *cpustat = kcpustat_this_cpu->cpustat;
2761
2762	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2763}
2764
2765/*
2766 * Account for idle time.
2767 * @cputime: the cpu time spent in idle wait
2768 */
2769void account_idle_time(cputime_t cputime)
2770{
2771	u64 *cpustat = kcpustat_this_cpu->cpustat;
2772	struct rq *rq = this_rq();
2773
2774	if (atomic_read(&rq->nr_iowait) > 0)
2775		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2776	else
2777		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2778}
2779
2780static __always_inline bool steal_account_process_tick(void)
2781{
2782#ifdef CONFIG_PARAVIRT
2783	if (static_key_false(&paravirt_steal_enabled)) {
2784		u64 steal, st = 0;
2785
2786		steal = paravirt_steal_clock(smp_processor_id());
2787		steal -= this_rq()->prev_steal_time;
2788
2789		st = steal_ticks(steal);
2790		this_rq()->prev_steal_time += st * TICK_NSEC;
2791
2792		account_steal_time(st);
2793		return st;
2794	}
2795#endif
2796	return false;
2797}
2798
2799#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2800
2801#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2802/*
2803 * Account a tick to a process and cpustat
2804 * @p: the process that the cpu time gets accounted to
2805 * @user_tick: is the tick from userspace
2806 * @rq: the pointer to rq
2807 *
2808 * Tick demultiplexing follows the order
2809 * - pending hardirq update
2810 * - pending softirq update
2811 * - user_time
2812 * - idle_time
2813 * - system time
2814 *   - check for guest_time
2815 *   - else account as system_time
2816 *
2817 * Check for hardirq is done both for system and user time as there is
2818 * no timer going off while we are on hardirq and hence we may never get an
2819 * opportunity to update it solely in system time.
2820 * p->stime and friends are only updated on system time and not on irq
2821 * softirq as those do not count in task exec_runtime any more.
2822 */
2823static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2824						struct rq *rq)
2825{
2826	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2827	u64 *cpustat = kcpustat_this_cpu->cpustat;
2828
2829	if (steal_account_process_tick())
2830		return;
2831
2832	if (irqtime_account_hi_update()) {
2833		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2834	} else if (irqtime_account_si_update()) {
2835		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2836	} else if (this_cpu_ksoftirqd() == p) {
2837		/*
2838		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2839		 * So, we have to handle it separately here.
2840		 * Also, p->stime needs to be updated for ksoftirqd.
2841		 */
2842		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2843					CPUTIME_SOFTIRQ);
2844	} else if (user_tick) {
2845		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2846	} else if (p == rq->idle) {
2847		account_idle_time(cputime_one_jiffy);
2848	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2849		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2850	} else {
2851		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2852					CPUTIME_SYSTEM);
2853	}
2854}
2855
2856static void irqtime_account_idle_ticks(int ticks)
2857{
2858	int i;
2859	struct rq *rq = this_rq();
2860
2861	for (i = 0; i < ticks; i++)
2862		irqtime_account_process_tick(current, 0, rq);
2863}
2864#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2865static void irqtime_account_idle_ticks(int ticks) {}
2866static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2867						struct rq *rq) {}
2868#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2869
2870/*
2871 * Account a single tick of cpu time.
2872 * @p: the process that the cpu time gets accounted to
2873 * @user_tick: indicates if the tick is a user or a system tick
2874 */
2875void account_process_tick(struct task_struct *p, int user_tick)
2876{
2877	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2878	struct rq *rq = this_rq();
2879
2880	if (sched_clock_irqtime) {
2881		irqtime_account_process_tick(p, user_tick, rq);
2882		return;
2883	}
2884
2885	if (steal_account_process_tick())
2886		return;
2887
2888	if (user_tick)
2889		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2890	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2891		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2892				    one_jiffy_scaled);
2893	else
2894		account_idle_time(cputime_one_jiffy);
2895}
2896
2897/*
2898 * Account multiple ticks of steal time.
2899 * @p: the process from which the cpu time has been stolen
2900 * @ticks: number of stolen ticks
2901 */
2902void account_steal_ticks(unsigned long ticks)
2903{
2904	account_steal_time(jiffies_to_cputime(ticks));
2905}
2906
2907/*
2908 * Account multiple ticks of idle time.
2909 * @ticks: number of stolen ticks
2910 */
2911void account_idle_ticks(unsigned long ticks)
2912{
2913
2914	if (sched_clock_irqtime) {
2915		irqtime_account_idle_ticks(ticks);
2916		return;
2917	}
2918
2919	account_idle_time(jiffies_to_cputime(ticks));
2920}
2921
2922#endif
2923
2924/*
2925 * Use precise platform statistics if available:
2926 */
2927#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2928void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2929{
2930	*ut = p->utime;
2931	*st = p->stime;
2932}
2933
2934void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2935{
2936	struct task_cputime cputime;
2937
2938	thread_group_cputime(p, &cputime);
2939
2940	*ut = cputime.utime;
2941	*st = cputime.stime;
2942}
2943#else
2944
2945#ifndef nsecs_to_cputime
2946# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2947#endif
2948
2949void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2950{
2951	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2952
2953	/*
2954	 * Use CFS's precise accounting:
2955	 */
2956	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2957
2958	if (total) {
2959		u64 temp = (__force u64) rtime;
2960
2961		temp *= (__force u64) utime;
2962		do_div(temp, (__force u32) total);
2963		utime = (__force cputime_t) temp;
2964	} else
2965		utime = rtime;
2966
2967	/*
2968	 * Compare with previous values, to keep monotonicity:
2969	 */
2970	p->prev_utime = max(p->prev_utime, utime);
2971	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2972
2973	*ut = p->prev_utime;
2974	*st = p->prev_stime;
2975}
2976
2977/*
2978 * Must be called with siglock held.
2979 */
2980void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2981{
2982	struct signal_struct *sig = p->signal;
2983	struct task_cputime cputime;
2984	cputime_t rtime, utime, total;
2985
2986	thread_group_cputime(p, &cputime);
2987
2988	total = cputime.utime + cputime.stime;
2989	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2990
2991	if (total) {
2992		u64 temp = (__force u64) rtime;
2993
2994		temp *= (__force u64) cputime.utime;
2995		do_div(temp, (__force u32) total);
2996		utime = (__force cputime_t) temp;
2997	} else
2998		utime = rtime;
2999
3000	sig->prev_utime = max(sig->prev_utime, utime);
3001	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3002
3003	*ut = sig->prev_utime;
3004	*st = sig->prev_stime;
3005}
3006#endif
3007
3008/*
3009 * This function gets called by the timer code, with HZ frequency.
3010 * We call it with interrupts disabled.
3011 */
3012void scheduler_tick(void)
3013{
3014	int cpu = smp_processor_id();
3015	struct rq *rq = cpu_rq(cpu);
3016	struct task_struct *curr = rq->curr;
3017
3018	sched_clock_tick();
3019
3020	raw_spin_lock(&rq->lock);
3021	update_rq_clock(rq);
3022	update_cpu_load_active(rq);
3023	curr->sched_class->task_tick(rq, curr, 0);
3024	raw_spin_unlock(&rq->lock);
3025
3026	perf_event_task_tick();
3027
3028#ifdef CONFIG_SMP
3029	rq->idle_balance = idle_cpu(cpu);
3030	trigger_load_balance(rq, cpu);
3031#endif
3032}
3033
3034notrace unsigned long get_parent_ip(unsigned long addr)
3035{
3036	if (in_lock_functions(addr)) {
3037		addr = CALLER_ADDR2;
3038		if (in_lock_functions(addr))
3039			addr = CALLER_ADDR3;
3040	}
3041	return addr;
3042}
3043
3044#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3045				defined(CONFIG_PREEMPT_TRACER))
3046
3047void __kprobes add_preempt_count(int val)
3048{
3049#ifdef CONFIG_DEBUG_PREEMPT
3050	/*
3051	 * Underflow?
3052	 */
3053	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3054		return;
3055#endif
3056	preempt_count() += val;
3057#ifdef CONFIG_DEBUG_PREEMPT
3058	/*
3059	 * Spinlock count overflowing soon?
3060	 */
3061	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3062				PREEMPT_MASK - 10);
3063#endif
3064	if (preempt_count() == val)
3065		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3066}
3067EXPORT_SYMBOL(add_preempt_count);
3068
3069void __kprobes sub_preempt_count(int val)
3070{
3071#ifdef CONFIG_DEBUG_PREEMPT
3072	/*
3073	 * Underflow?
3074	 */
3075	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3076		return;
3077	/*
3078	 * Is the spinlock portion underflowing?
3079	 */
3080	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3081			!(preempt_count() & PREEMPT_MASK)))
3082		return;
3083#endif
3084
3085	if (preempt_count() == val)
3086		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3087	preempt_count() -= val;
3088}
3089EXPORT_SYMBOL(sub_preempt_count);
3090
3091#endif
3092
3093/*
3094 * Print scheduling while atomic bug:
3095 */
3096static noinline void __schedule_bug(struct task_struct *prev)
3097{
3098	if (oops_in_progress)
3099		return;
3100
3101	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3102		prev->comm, prev->pid, preempt_count());
3103
3104	debug_show_held_locks(prev);
3105	print_modules();
3106	if (irqs_disabled())
3107		print_irqtrace_events(prev);
3108	dump_stack();
3109}
3110
3111/*
3112 * Various schedule()-time debugging checks and statistics:
3113 */
3114static inline void schedule_debug(struct task_struct *prev)
3115{
3116	/*
3117	 * Test if we are atomic. Since do_exit() needs to call into
3118	 * schedule() atomically, we ignore that path for now.
3119	 * Otherwise, whine if we are scheduling when we should not be.
3120	 */
3121	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3122		__schedule_bug(prev);
3123	rcu_sleep_check();
3124
3125	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3126
3127	schedstat_inc(this_rq(), sched_count);
3128}
3129
3130static void put_prev_task(struct rq *rq, struct task_struct *prev)
3131{
3132	if (prev->on_rq || rq->skip_clock_update < 0)
3133		update_rq_clock(rq);
3134	prev->sched_class->put_prev_task(rq, prev);
3135}
3136
3137/*
3138 * Pick up the highest-prio task:
3139 */
3140static inline struct task_struct *
3141pick_next_task(struct rq *rq)
3142{
3143	const struct sched_class *class;
3144	struct task_struct *p;
3145
3146	/*
3147	 * Optimization: we know that if all tasks are in
3148	 * the fair class we can call that function directly:
3149	 */
3150	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3151		p = fair_sched_class.pick_next_task(rq);
3152		if (likely(p))
3153			return p;
3154	}
3155
3156	for_each_class(class) {
3157		p = class->pick_next_task(rq);
3158		if (p)
3159			return p;
3160	}
3161
3162	BUG(); /* the idle class will always have a runnable task */
3163}
3164
3165/*
3166 * __schedule() is the main scheduler function.
3167 */
3168static void __sched __schedule(void)
3169{
3170	struct task_struct *prev, *next;
3171	unsigned long *switch_count;
3172	struct rq *rq;
3173	int cpu;
3174
3175need_resched:
3176	preempt_disable();
3177	cpu = smp_processor_id();
3178	rq = cpu_rq(cpu);
3179	rcu_note_context_switch(cpu);
3180	prev = rq->curr;
3181
3182	schedule_debug(prev);
3183
3184	if (sched_feat(HRTICK))
3185		hrtick_clear(rq);
3186
3187	raw_spin_lock_irq(&rq->lock);
3188
3189	switch_count = &prev->nivcsw;
3190	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3191		if (unlikely(signal_pending_state(prev->state, prev))) {
3192			prev->state = TASK_RUNNING;
3193		} else {
3194			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3195			prev->on_rq = 0;
3196
3197			/*
3198			 * If a worker went to sleep, notify and ask workqueue
3199			 * whether it wants to wake up a task to maintain
3200			 * concurrency.
3201			 */
3202			if (prev->flags & PF_WQ_WORKER) {
3203				struct task_struct *to_wakeup;
3204
3205				to_wakeup = wq_worker_sleeping(prev, cpu);
3206				if (to_wakeup)
3207					try_to_wake_up_local(to_wakeup);
3208			}
3209		}
3210		switch_count = &prev->nvcsw;
3211	}
3212
3213	pre_schedule(rq, prev);
3214
3215	if (unlikely(!rq->nr_running))
3216		idle_balance(cpu, rq);
3217
3218	put_prev_task(rq, prev);
3219	next = pick_next_task(rq);
3220	clear_tsk_need_resched(prev);
3221	rq->skip_clock_update = 0;
3222
3223	if (likely(prev != next)) {
3224		rq->nr_switches++;
3225		rq->curr = next;
3226		++*switch_count;
3227
3228		context_switch(rq, prev, next); /* unlocks the rq */
3229		/*
3230		 * The context switch have flipped the stack from under us
3231		 * and restored the local variables which were saved when
3232		 * this task called schedule() in the past. prev == current
3233		 * is still correct, but it can be moved to another cpu/rq.
3234		 */
3235		cpu = smp_processor_id();
3236		rq = cpu_rq(cpu);
3237	} else
3238		raw_spin_unlock_irq(&rq->lock);
3239
3240	post_schedule(rq);
3241
3242	sched_preempt_enable_no_resched();
3243	if (need_resched())
3244		goto need_resched;
3245}
3246
3247static inline void sched_submit_work(struct task_struct *tsk)
3248{
3249	if (!tsk->state || tsk_is_pi_blocked(tsk))
3250		return;
3251	/*
3252	 * If we are going to sleep and we have plugged IO queued,
3253	 * make sure to submit it to avoid deadlocks.
3254	 */
3255	if (blk_needs_flush_plug(tsk))
3256		blk_schedule_flush_plug(tsk);
3257}
3258
3259asmlinkage void __sched schedule(void)
3260{
3261	struct task_struct *tsk = current;
3262
3263	sched_submit_work(tsk);
3264	__schedule();
3265}
3266EXPORT_SYMBOL(schedule);
3267
3268/**
3269 * schedule_preempt_disabled - called with preemption disabled
3270 *
3271 * Returns with preemption disabled. Note: preempt_count must be 1
3272 */
3273void __sched schedule_preempt_disabled(void)
3274{
3275	sched_preempt_enable_no_resched();
3276	schedule();
3277	preempt_disable();
3278}
3279
3280#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3281
3282static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3283{
3284	if (lock->owner != owner)
3285		return false;
3286
3287	/*
3288	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3289	 * lock->owner still matches owner, if that fails, owner might
3290	 * point to free()d memory, if it still matches, the rcu_read_lock()
3291	 * ensures the memory stays valid.
3292	 */
3293	barrier();
3294
3295	return owner->on_cpu;
3296}
3297
3298/*
3299 * Look out! "owner" is an entirely speculative pointer
3300 * access and not reliable.
3301 */
3302int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3303{
3304	if (!sched_feat(OWNER_SPIN))
3305		return 0;
3306
3307	rcu_read_lock();
3308	while (owner_running(lock, owner)) {
3309		if (need_resched())
3310			break;
3311
3312		arch_mutex_cpu_relax();
3313	}
3314	rcu_read_unlock();
3315
3316	/*
3317	 * We break out the loop above on need_resched() and when the
3318	 * owner changed, which is a sign for heavy contention. Return
3319	 * success only when lock->owner is NULL.
3320	 */
3321	return lock->owner == NULL;
3322}
3323#endif
3324
3325#ifdef CONFIG_PREEMPT
3326/*
3327 * this is the entry point to schedule() from in-kernel preemption
3328 * off of preempt_enable. Kernel preemptions off return from interrupt
3329 * occur there and call schedule directly.
3330 */
3331asmlinkage void __sched notrace preempt_schedule(void)
3332{
3333	struct thread_info *ti = current_thread_info();
3334
3335	/*
3336	 * If there is a non-zero preempt_count or interrupts are disabled,
3337	 * we do not want to preempt the current task. Just return..
3338	 */
3339	if (likely(ti->preempt_count || irqs_disabled()))
3340		return;
3341
3342	do {
3343		add_preempt_count_notrace(PREEMPT_ACTIVE);
3344		__schedule();
3345		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3346
3347		/*
3348		 * Check again in case we missed a preemption opportunity
3349		 * between schedule and now.
3350		 */
3351		barrier();
3352	} while (need_resched());
3353}
3354EXPORT_SYMBOL(preempt_schedule);
3355
3356/*
3357 * this is the entry point to schedule() from kernel preemption
3358 * off of irq context.
3359 * Note, that this is called and return with irqs disabled. This will
3360 * protect us against recursive calling from irq.
3361 */
3362asmlinkage void __sched preempt_schedule_irq(void)
3363{
3364	struct thread_info *ti = current_thread_info();
3365
3366	/* Catch callers which need to be fixed */
3367	BUG_ON(ti->preempt_count || !irqs_disabled());
3368
3369	do {
3370		add_preempt_count(PREEMPT_ACTIVE);
3371		local_irq_enable();
3372		__schedule();
3373		local_irq_disable();
3374		sub_preempt_count(PREEMPT_ACTIVE);
3375
3376		/*
3377		 * Check again in case we missed a preemption opportunity
3378		 * between schedule and now.
3379		 */
3380		barrier();
3381	} while (need_resched());
3382}
3383
3384#endif /* CONFIG_PREEMPT */
3385
3386int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3387			  void *key)
3388{
3389	return try_to_wake_up(curr->private, mode, wake_flags);
3390}
3391EXPORT_SYMBOL(default_wake_function);
3392
3393/*
3394 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3395 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3396 * number) then we wake all the non-exclusive tasks and one exclusive task.
3397 *
3398 * There are circumstances in which we can try to wake a task which has already
3399 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3400 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3401 */
3402static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3403			int nr_exclusive, int wake_flags, void *key)
3404{
3405	wait_queue_t *curr, *next;
3406
3407	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3408		unsigned flags = curr->flags;
3409
3410		if (curr->func(curr, mode, wake_flags, key) &&
3411				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3412			break;
3413	}
3414}
3415
3416/**
3417 * __wake_up - wake up threads blocked on a waitqueue.
3418 * @q: the waitqueue
3419 * @mode: which threads
3420 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3421 * @key: is directly passed to the wakeup function
3422 *
3423 * It may be assumed that this function implies a write memory barrier before
3424 * changing the task state if and only if any tasks are woken up.
3425 */
3426void __wake_up(wait_queue_head_t *q, unsigned int mode,
3427			int nr_exclusive, void *key)
3428{
3429	unsigned long flags;
3430
3431	spin_lock_irqsave(&q->lock, flags);
3432	__wake_up_common(q, mode, nr_exclusive, 0, key);
3433	spin_unlock_irqrestore(&q->lock, flags);
3434}
3435EXPORT_SYMBOL(__wake_up);
3436
3437/*
3438 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3439 */
3440void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3441{
3442	__wake_up_common(q, mode, nr, 0, NULL);
3443}
3444EXPORT_SYMBOL_GPL(__wake_up_locked);
3445
3446void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3447{
3448	__wake_up_common(q, mode, 1, 0, key);
3449}
3450EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3451
3452/**
3453 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3454 * @q: the waitqueue
3455 * @mode: which threads
3456 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3457 * @key: opaque value to be passed to wakeup targets
3458 *
3459 * The sync wakeup differs that the waker knows that it will schedule
3460 * away soon, so while the target thread will be woken up, it will not
3461 * be migrated to another CPU - ie. the two threads are 'synchronized'
3462 * with each other. This can prevent needless bouncing between CPUs.
3463 *
3464 * On UP it can prevent extra preemption.
3465 *
3466 * It may be assumed that this function implies a write memory barrier before
3467 * changing the task state if and only if any tasks are woken up.
3468 */
3469void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3470			int nr_exclusive, void *key)
3471{
3472	unsigned long flags;
3473	int wake_flags = WF_SYNC;
3474
3475	if (unlikely(!q))
3476		return;
3477
3478	if (unlikely(!nr_exclusive))
3479		wake_flags = 0;
3480
3481	spin_lock_irqsave(&q->lock, flags);
3482	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3483	spin_unlock_irqrestore(&q->lock, flags);
3484}
3485EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3486
3487/*
3488 * __wake_up_sync - see __wake_up_sync_key()
3489 */
3490void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3491{
3492	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3493}
3494EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3495
3496/**
3497 * complete: - signals a single thread waiting on this completion
3498 * @x:  holds the state of this particular completion
3499 *
3500 * This will wake up a single thread waiting on this completion. Threads will be
3501 * awakened in the same order in which they were queued.
3502 *
3503 * See also complete_all(), wait_for_completion() and related routines.
3504 *
3505 * It may be assumed that this function implies a write memory barrier before
3506 * changing the task state if and only if any tasks are woken up.
3507 */
3508void complete(struct completion *x)
3509{
3510	unsigned long flags;
3511
3512	spin_lock_irqsave(&x->wait.lock, flags);
3513	x->done++;
3514	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3515	spin_unlock_irqrestore(&x->wait.lock, flags);
3516}
3517EXPORT_SYMBOL(complete);
3518
3519/**
3520 * complete_all: - signals all threads waiting on this completion
3521 * @x:  holds the state of this particular completion
3522 *
3523 * This will wake up all threads waiting on this particular completion event.
3524 *
3525 * It may be assumed that this function implies a write memory barrier before
3526 * changing the task state if and only if any tasks are woken up.
3527 */
3528void complete_all(struct completion *x)
3529{
3530	unsigned long flags;
3531
3532	spin_lock_irqsave(&x->wait.lock, flags);
3533	x->done += UINT_MAX/2;
3534	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3535	spin_unlock_irqrestore(&x->wait.lock, flags);
3536}
3537EXPORT_SYMBOL(complete_all);
3538
3539static inline long __sched
3540do_wait_for_common(struct completion *x, long timeout, int state)
3541{
3542	if (!x->done) {
3543		DECLARE_WAITQUEUE(wait, current);
3544
3545		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3546		do {
3547			if (signal_pending_state(state, current)) {
3548				timeout = -ERESTARTSYS;
3549				break;
3550			}
3551			__set_current_state(state);
3552			spin_unlock_irq(&x->wait.lock);
3553			timeout = schedule_timeout(timeout);
3554			spin_lock_irq(&x->wait.lock);
3555		} while (!x->done && timeout);
3556		__remove_wait_queue(&x->wait, &wait);
3557		if (!x->done)
3558			return timeout;
3559	}
3560	x->done--;
3561	return timeout ?: 1;
3562}
3563
3564static long __sched
3565wait_for_common(struct completion *x, long timeout, int state)
3566{
3567	might_sleep();
3568
3569	spin_lock_irq(&x->wait.lock);
3570	timeout = do_wait_for_common(x, timeout, state);
3571	spin_unlock_irq(&x->wait.lock);
3572	return timeout;
3573}
3574
3575/**
3576 * wait_for_completion: - waits for completion of a task
3577 * @x:  holds the state of this particular completion
3578 *
3579 * This waits to be signaled for completion of a specific task. It is NOT
3580 * interruptible and there is no timeout.
3581 *
3582 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3583 * and interrupt capability. Also see complete().
3584 */
3585void __sched wait_for_completion(struct completion *x)
3586{
3587	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3588}
3589EXPORT_SYMBOL(wait_for_completion);
3590
3591/**
3592 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3593 * @x:  holds the state of this particular completion
3594 * @timeout:  timeout value in jiffies
3595 *
3596 * This waits for either a completion of a specific task to be signaled or for a
3597 * specified timeout to expire. The timeout is in jiffies. It is not
3598 * interruptible.
3599 *
3600 * The return value is 0 if timed out, and positive (at least 1, or number of
3601 * jiffies left till timeout) if completed.
3602 */
3603unsigned long __sched
3604wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3605{
3606	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3607}
3608EXPORT_SYMBOL(wait_for_completion_timeout);
3609
3610/**
3611 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3612 * @x:  holds the state of this particular completion
3613 *
3614 * This waits for completion of a specific task to be signaled. It is
3615 * interruptible.
3616 *
3617 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3618 */
3619int __sched wait_for_completion_interruptible(struct completion *x)
3620{
3621	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3622	if (t == -ERESTARTSYS)
3623		return t;
3624	return 0;
3625}
3626EXPORT_SYMBOL(wait_for_completion_interruptible);
3627
3628/**
3629 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3630 * @x:  holds the state of this particular completion
3631 * @timeout:  timeout value in jiffies
3632 *
3633 * This waits for either a completion of a specific task to be signaled or for a
3634 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3635 *
3636 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3637 * positive (at least 1, or number of jiffies left till timeout) if completed.
3638 */
3639long __sched
3640wait_for_completion_interruptible_timeout(struct completion *x,
3641					  unsigned long timeout)
3642{
3643	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3644}
3645EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3646
3647/**
3648 * wait_for_completion_killable: - waits for completion of a task (killable)
3649 * @x:  holds the state of this particular completion
3650 *
3651 * This waits to be signaled for completion of a specific task. It can be
3652 * interrupted by a kill signal.
3653 *
3654 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3655 */
3656int __sched wait_for_completion_killable(struct completion *x)
3657{
3658	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3659	if (t == -ERESTARTSYS)
3660		return t;
3661	return 0;
3662}
3663EXPORT_SYMBOL(wait_for_completion_killable);
3664
3665/**
3666 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3667 * @x:  holds the state of this particular completion
3668 * @timeout:  timeout value in jiffies
3669 *
3670 * This waits for either a completion of a specific task to be
3671 * signaled or for a specified timeout to expire. It can be
3672 * interrupted by a kill signal. The timeout is in jiffies.
3673 *
3674 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3675 * positive (at least 1, or number of jiffies left till timeout) if completed.
3676 */
3677long __sched
3678wait_for_completion_killable_timeout(struct completion *x,
3679				     unsigned long timeout)
3680{
3681	return wait_for_common(x, timeout, TASK_KILLABLE);
3682}
3683EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3684
3685/**
3686 *	try_wait_for_completion - try to decrement a completion without blocking
3687 *	@x:	completion structure
3688 *
3689 *	Returns: 0 if a decrement cannot be done without blocking
3690 *		 1 if a decrement succeeded.
3691 *
3692 *	If a completion is being used as a counting completion,
3693 *	attempt to decrement the counter without blocking. This
3694 *	enables us to avoid waiting if the resource the completion
3695 *	is protecting is not available.
3696 */
3697bool try_wait_for_completion(struct completion *x)
3698{
3699	unsigned long flags;
3700	int ret = 1;
3701
3702	spin_lock_irqsave(&x->wait.lock, flags);
3703	if (!x->done)
3704		ret = 0;
3705	else
3706		x->done--;
3707	spin_unlock_irqrestore(&x->wait.lock, flags);
3708	return ret;
3709}
3710EXPORT_SYMBOL(try_wait_for_completion);
3711
3712/**
3713 *	completion_done - Test to see if a completion has any waiters
3714 *	@x:	completion structure
3715 *
3716 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3717 *		 1 if there are no waiters.
3718 *
3719 */
3720bool completion_done(struct completion *x)
3721{
3722	unsigned long flags;
3723	int ret = 1;
3724
3725	spin_lock_irqsave(&x->wait.lock, flags);
3726	if (!x->done)
3727		ret = 0;
3728	spin_unlock_irqrestore(&x->wait.lock, flags);
3729	return ret;
3730}
3731EXPORT_SYMBOL(completion_done);
3732
3733static long __sched
3734sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3735{
3736	unsigned long flags;
3737	wait_queue_t wait;
3738
3739	init_waitqueue_entry(&wait, current);
3740
3741	__set_current_state(state);
3742
3743	spin_lock_irqsave(&q->lock, flags);
3744	__add_wait_queue(q, &wait);
3745	spin_unlock(&q->lock);
3746	timeout = schedule_timeout(timeout);
3747	spin_lock_irq(&q->lock);
3748	__remove_wait_queue(q, &wait);
3749	spin_unlock_irqrestore(&q->lock, flags);
3750
3751	return timeout;
3752}
3753
3754void __sched interruptible_sleep_on(wait_queue_head_t *q)
3755{
3756	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3757}
3758EXPORT_SYMBOL(interruptible_sleep_on);
3759
3760long __sched
3761interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3762{
3763	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3764}
3765EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3766
3767void __sched sleep_on(wait_queue_head_t *q)
3768{
3769	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3770}
3771EXPORT_SYMBOL(sleep_on);
3772
3773long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3774{
3775	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3776}
3777EXPORT_SYMBOL(sleep_on_timeout);
3778
3779#ifdef CONFIG_RT_MUTEXES
3780
3781/*
3782 * rt_mutex_setprio - set the current priority of a task
3783 * @p: task
3784 * @prio: prio value (kernel-internal form)
3785 *
3786 * This function changes the 'effective' priority of a task. It does
3787 * not touch ->normal_prio like __setscheduler().
3788 *
3789 * Used by the rt_mutex code to implement priority inheritance logic.
3790 */
3791void rt_mutex_setprio(struct task_struct *p, int prio)
3792{
3793	int oldprio, on_rq, running;
3794	struct rq *rq;
3795	const struct sched_class *prev_class;
3796
3797	BUG_ON(prio < 0 || prio > MAX_PRIO);
3798
3799	rq = __task_rq_lock(p);
3800
3801	/*
3802	 * Idle task boosting is a nono in general. There is one
3803	 * exception, when PREEMPT_RT and NOHZ is active:
3804	 *
3805	 * The idle task calls get_next_timer_interrupt() and holds
3806	 * the timer wheel base->lock on the CPU and another CPU wants
3807	 * to access the timer (probably to cancel it). We can safely
3808	 * ignore the boosting request, as the idle CPU runs this code
3809	 * with interrupts disabled and will complete the lock
3810	 * protected section without being interrupted. So there is no
3811	 * real need to boost.
3812	 */
3813	if (unlikely(p == rq->idle)) {
3814		WARN_ON(p != rq->curr);
3815		WARN_ON(p->pi_blocked_on);
3816		goto out_unlock;
3817	}
3818
3819	trace_sched_pi_setprio(p, prio);
3820	oldprio = p->prio;
3821	prev_class = p->sched_class;
3822	on_rq = p->on_rq;
3823	running = task_current(rq, p);
3824	if (on_rq)
3825		dequeue_task(rq, p, 0);
3826	if (running)
3827		p->sched_class->put_prev_task(rq, p);
3828
3829	if (rt_prio(prio))
3830		p->sched_class = &rt_sched_class;
3831	else
3832		p->sched_class = &fair_sched_class;
3833
3834	p->prio = prio;
3835
3836	if (running)
3837		p->sched_class->set_curr_task(rq);
3838	if (on_rq)
3839		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3840
3841	check_class_changed(rq, p, prev_class, oldprio);
3842out_unlock:
3843	__task_rq_unlock(rq);
3844}
3845#endif
3846void set_user_nice(struct task_struct *p, long nice)
3847{
3848	int old_prio, delta, on_rq;
3849	unsigned long flags;
3850	struct rq *rq;
3851
3852	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3853		return;
3854	/*
3855	 * We have to be careful, if called from sys_setpriority(),
3856	 * the task might be in the middle of scheduling on another CPU.
3857	 */
3858	rq = task_rq_lock(p, &flags);
3859	/*
3860	 * The RT priorities are set via sched_setscheduler(), but we still
3861	 * allow the 'normal' nice value to be set - but as expected
3862	 * it wont have any effect on scheduling until the task is
3863	 * SCHED_FIFO/SCHED_RR:
3864	 */
3865	if (task_has_rt_policy(p)) {
3866		p->static_prio = NICE_TO_PRIO(nice);
3867		goto out_unlock;
3868	}
3869	on_rq = p->on_rq;
3870	if (on_rq)
3871		dequeue_task(rq, p, 0);
3872
3873	p->static_prio = NICE_TO_PRIO(nice);
3874	set_load_weight(p);
3875	old_prio = p->prio;
3876	p->prio = effective_prio(p);
3877	delta = p->prio - old_prio;
3878
3879	if (on_rq) {
3880		enqueue_task(rq, p, 0);
3881		/*
3882		 * If the task increased its priority or is running and
3883		 * lowered its priority, then reschedule its CPU:
3884		 */
3885		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3886			resched_task(rq->curr);
3887	}
3888out_unlock:
3889	task_rq_unlock(rq, p, &flags);
3890}
3891EXPORT_SYMBOL(set_user_nice);
3892
3893/*
3894 * can_nice - check if a task can reduce its nice value
3895 * @p: task
3896 * @nice: nice value
3897 */
3898int can_nice(const struct task_struct *p, const int nice)
3899{
3900	/* convert nice value [19,-20] to rlimit style value [1,40] */
3901	int nice_rlim = 20 - nice;
3902
3903	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3904		capable(CAP_SYS_NICE));
3905}
3906
3907#ifdef __ARCH_WANT_SYS_NICE
3908
3909/*
3910 * sys_nice - change the priority of the current process.
3911 * @increment: priority increment
3912 *
3913 * sys_setpriority is a more generic, but much slower function that
3914 * does similar things.
3915 */
3916SYSCALL_DEFINE1(nice, int, increment)
3917{
3918	long nice, retval;
3919
3920	/*
3921	 * Setpriority might change our priority at the same moment.
3922	 * We don't have to worry. Conceptually one call occurs first
3923	 * and we have a single winner.
3924	 */
3925	if (increment < -40)
3926		increment = -40;
3927	if (increment > 40)
3928		increment = 40;
3929
3930	nice = TASK_NICE(current) + increment;
3931	if (nice < -20)
3932		nice = -20;
3933	if (nice > 19)
3934		nice = 19;
3935
3936	if (increment < 0 && !can_nice(current, nice))
3937		return -EPERM;
3938
3939	retval = security_task_setnice(current, nice);
3940	if (retval)
3941		return retval;
3942
3943	set_user_nice(current, nice);
3944	return 0;
3945}
3946
3947#endif
3948
3949/**
3950 * task_prio - return the priority value of a given task.
3951 * @p: the task in question.
3952 *
3953 * This is the priority value as seen by users in /proc.
3954 * RT tasks are offset by -200. Normal tasks are centered
3955 * around 0, value goes from -16 to +15.
3956 */
3957int task_prio(const struct task_struct *p)
3958{
3959	return p->prio - MAX_RT_PRIO;
3960}
3961
3962/**
3963 * task_nice - return the nice value of a given task.
3964 * @p: the task in question.
3965 */
3966int task_nice(const struct task_struct *p)
3967{
3968	return TASK_NICE(p);
3969}
3970EXPORT_SYMBOL(task_nice);
3971
3972/**
3973 * idle_cpu - is a given cpu idle currently?
3974 * @cpu: the processor in question.
3975 */
3976int idle_cpu(int cpu)
3977{
3978	struct rq *rq = cpu_rq(cpu);
3979
3980	if (rq->curr != rq->idle)
3981		return 0;
3982
3983	if (rq->nr_running)
3984		return 0;
3985
3986#ifdef CONFIG_SMP
3987	if (!llist_empty(&rq->wake_list))
3988		return 0;
3989#endif
3990
3991	return 1;
3992}
3993
3994/**
3995 * idle_task - return the idle task for a given cpu.
3996 * @cpu: the processor in question.
3997 */
3998struct task_struct *idle_task(int cpu)
3999{
4000	return cpu_rq(cpu)->idle;
4001}
4002
4003/**
4004 * find_process_by_pid - find a process with a matching PID value.
4005 * @pid: the pid in question.
4006 */
4007static struct task_struct *find_process_by_pid(pid_t pid)
4008{
4009	return pid ? find_task_by_vpid(pid) : current;
4010}
4011
4012/* Actually do priority change: must hold rq lock. */
4013static void
4014__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4015{
4016	p->policy = policy;
4017	p->rt_priority = prio;
4018	p->normal_prio = normal_prio(p);
4019	/* we are holding p->pi_lock already */
4020	p->prio = rt_mutex_getprio(p);
4021	if (rt_prio(p->prio))
4022		p->sched_class = &rt_sched_class;
4023	else
4024		p->sched_class = &fair_sched_class;
4025	set_load_weight(p);
4026}
4027
4028/*
4029 * check the target process has a UID that matches the current process's
4030 */
4031static bool check_same_owner(struct task_struct *p)
4032{
4033	const struct cred *cred = current_cred(), *pcred;
4034	bool match;
4035
4036	rcu_read_lock();
4037	pcred = __task_cred(p);
4038	if (cred->user->user_ns == pcred->user->user_ns)
4039		match = (cred->euid == pcred->euid ||
4040			 cred->euid == pcred->uid);
4041	else
4042		match = false;
4043	rcu_read_unlock();
4044	return match;
4045}
4046
4047static int __sched_setscheduler(struct task_struct *p, int policy,
4048				const struct sched_param *param, bool user)
4049{
4050	int retval, oldprio, oldpolicy = -1, on_rq, running;
4051	unsigned long flags;
4052	const struct sched_class *prev_class;
4053	struct rq *rq;
4054	int reset_on_fork;
4055
4056	/* may grab non-irq protected spin_locks */
4057	BUG_ON(in_interrupt());
4058recheck:
4059	/* double check policy once rq lock held */
4060	if (policy < 0) {
4061		reset_on_fork = p->sched_reset_on_fork;
4062		policy = oldpolicy = p->policy;
4063	} else {
4064		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4065		policy &= ~SCHED_RESET_ON_FORK;
4066
4067		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4068				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4069				policy != SCHED_IDLE)
4070			return -EINVAL;
4071	}
4072
4073	/*
4074	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4075	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4076	 * SCHED_BATCH and SCHED_IDLE is 0.
4077	 */
4078	if (param->sched_priority < 0 ||
4079	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4080	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4081		return -EINVAL;
4082	if (rt_policy(policy) != (param->sched_priority != 0))
4083		return -EINVAL;
4084
4085	/*
4086	 * Allow unprivileged RT tasks to decrease priority:
4087	 */
4088	if (user && !capable(CAP_SYS_NICE)) {
4089		if (rt_policy(policy)) {
4090			unsigned long rlim_rtprio =
4091					task_rlimit(p, RLIMIT_RTPRIO);
4092
4093			/* can't set/change the rt policy */
4094			if (policy != p->policy && !rlim_rtprio)
4095				return -EPERM;
4096
4097			/* can't increase priority */
4098			if (param->sched_priority > p->rt_priority &&
4099			    param->sched_priority > rlim_rtprio)
4100				return -EPERM;
4101		}
4102
4103		/*
4104		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4105		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4106		 */
4107		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4108			if (!can_nice(p, TASK_NICE(p)))
4109				return -EPERM;
4110		}
4111
4112		/* can't change other user's priorities */
4113		if (!check_same_owner(p))
4114			return -EPERM;
4115
4116		/* Normal users shall not reset the sched_reset_on_fork flag */
4117		if (p->sched_reset_on_fork && !reset_on_fork)
4118			return -EPERM;
4119	}
4120
4121	if (user) {
4122		retval = security_task_setscheduler(p);
4123		if (retval)
4124			return retval;
4125	}
4126
4127	/*
4128	 * make sure no PI-waiters arrive (or leave) while we are
4129	 * changing the priority of the task:
4130	 *
4131	 * To be able to change p->policy safely, the appropriate
4132	 * runqueue lock must be held.
4133	 */
4134	rq = task_rq_lock(p, &flags);
4135
4136	/*
4137	 * Changing the policy of the stop threads its a very bad idea
4138	 */
4139	if (p == rq->stop) {
4140		task_rq_unlock(rq, p, &flags);
4141		return -EINVAL;
4142	}
4143
4144	/*
4145	 * If not changing anything there's no need to proceed further:
4146	 */
4147	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4148			param->sched_priority == p->rt_priority))) {
4149
4150		__task_rq_unlock(rq);
4151		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4152		return 0;
4153	}
4154
4155#ifdef CONFIG_RT_GROUP_SCHED
4156	if (user) {
4157		/*
4158		 * Do not allow realtime tasks into groups that have no runtime
4159		 * assigned.
4160		 */
4161		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4162				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4163				!task_group_is_autogroup(task_group(p))) {
4164			task_rq_unlock(rq, p, &flags);
4165			return -EPERM;
4166		}
4167	}
4168#endif
4169
4170	/* recheck policy now with rq lock held */
4171	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4172		policy = oldpolicy = -1;
4173		task_rq_unlock(rq, p, &flags);
4174		goto recheck;
4175	}
4176	on_rq = p->on_rq;
4177	running = task_current(rq, p);
4178	if (on_rq)
4179		dequeue_task(rq, p, 0);
4180	if (running)
4181		p->sched_class->put_prev_task(rq, p);
4182
4183	p->sched_reset_on_fork = reset_on_fork;
4184
4185	oldprio = p->prio;
4186	prev_class = p->sched_class;
4187	__setscheduler(rq, p, policy, param->sched_priority);
4188
4189	if (running)
4190		p->sched_class->set_curr_task(rq);
4191	if (on_rq)
4192		enqueue_task(rq, p, 0);
4193
4194	check_class_changed(rq, p, prev_class, oldprio);
4195	task_rq_unlock(rq, p, &flags);
4196
4197	rt_mutex_adjust_pi(p);
4198
4199	return 0;
4200}
4201
4202/**
4203 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4204 * @p: the task in question.
4205 * @policy: new policy.
4206 * @param: structure containing the new RT priority.
4207 *
4208 * NOTE that the task may be already dead.
4209 */
4210int sched_setscheduler(struct task_struct *p, int policy,
4211		       const struct sched_param *param)
4212{
4213	return __sched_setscheduler(p, policy, param, true);
4214}
4215EXPORT_SYMBOL_GPL(sched_setscheduler);
4216
4217/**
4218 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4219 * @p: the task in question.
4220 * @policy: new policy.
4221 * @param: structure containing the new RT priority.
4222 *
4223 * Just like sched_setscheduler, only don't bother checking if the
4224 * current context has permission.  For example, this is needed in
4225 * stop_machine(): we create temporary high priority worker threads,
4226 * but our caller might not have that capability.
4227 */
4228int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4229			       const struct sched_param *param)
4230{
4231	return __sched_setscheduler(p, policy, param, false);
4232}
4233
4234static int
4235do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4236{
4237	struct sched_param lparam;
4238	struct task_struct *p;
4239	int retval;
4240
4241	if (!param || pid < 0)
4242		return -EINVAL;
4243	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4244		return -EFAULT;
4245
4246	rcu_read_lock();
4247	retval = -ESRCH;
4248	p = find_process_by_pid(pid);
4249	if (p != NULL)
4250		retval = sched_setscheduler(p, policy, &lparam);
4251	rcu_read_unlock();
4252
4253	return retval;
4254}
4255
4256/**
4257 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4258 * @pid: the pid in question.
4259 * @policy: new policy.
4260 * @param: structure containing the new RT priority.
4261 */
4262SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4263		struct sched_param __user *, param)
4264{
4265	/* negative values for policy are not valid */
4266	if (policy < 0)
4267		return -EINVAL;
4268
4269	return do_sched_setscheduler(pid, policy, param);
4270}
4271
4272/**
4273 * sys_sched_setparam - set/change the RT priority of a thread
4274 * @pid: the pid in question.
4275 * @param: structure containing the new RT priority.
4276 */
4277SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4278{
4279	return do_sched_setscheduler(pid, -1, param);
4280}
4281
4282/**
4283 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4284 * @pid: the pid in question.
4285 */
4286SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4287{
4288	struct task_struct *p;
4289	int retval;
4290
4291	if (pid < 0)
4292		return -EINVAL;
4293
4294	retval = -ESRCH;
4295	rcu_read_lock();
4296	p = find_process_by_pid(pid);
4297	if (p) {
4298		retval = security_task_getscheduler(p);
4299		if (!retval)
4300			retval = p->policy
4301				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4302	}
4303	rcu_read_unlock();
4304	return retval;
4305}
4306
4307/**
4308 * sys_sched_getparam - get the RT priority of a thread
4309 * @pid: the pid in question.
4310 * @param: structure containing the RT priority.
4311 */
4312SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4313{
4314	struct sched_param lp;
4315	struct task_struct *p;
4316	int retval;
4317
4318	if (!param || pid < 0)
4319		return -EINVAL;
4320
4321	rcu_read_lock();
4322	p = find_process_by_pid(pid);
4323	retval = -ESRCH;
4324	if (!p)
4325		goto out_unlock;
4326
4327	retval = security_task_getscheduler(p);
4328	if (retval)
4329		goto out_unlock;
4330
4331	lp.sched_priority = p->rt_priority;
4332	rcu_read_unlock();
4333
4334	/*
4335	 * This one might sleep, we cannot do it with a spinlock held ...
4336	 */
4337	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4338
4339	return retval;
4340
4341out_unlock:
4342	rcu_read_unlock();
4343	return retval;
4344}
4345
4346long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4347{
4348	cpumask_var_t cpus_allowed, new_mask;
4349	struct task_struct *p;
4350	int retval;
4351
4352	get_online_cpus();
4353	rcu_read_lock();
4354
4355	p = find_process_by_pid(pid);
4356	if (!p) {
4357		rcu_read_unlock();
4358		put_online_cpus();
4359		return -ESRCH;
4360	}
4361
4362	/* Prevent p going away */
4363	get_task_struct(p);
4364	rcu_read_unlock();
4365
4366	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4367		retval = -ENOMEM;
4368		goto out_put_task;
4369	}
4370	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4371		retval = -ENOMEM;
4372		goto out_free_cpus_allowed;
4373	}
4374	retval = -EPERM;
4375	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4376		goto out_unlock;
4377
4378	retval = security_task_setscheduler(p);
4379	if (retval)
4380		goto out_unlock;
4381
4382	cpuset_cpus_allowed(p, cpus_allowed);
4383	cpumask_and(new_mask, in_mask, cpus_allowed);
4384again:
4385	retval = set_cpus_allowed_ptr(p, new_mask);
4386
4387	if (!retval) {
4388		cpuset_cpus_allowed(p, cpus_allowed);
4389		if (!cpumask_subset(new_mask, cpus_allowed)) {
4390			/*
4391			 * We must have raced with a concurrent cpuset
4392			 * update. Just reset the cpus_allowed to the
4393			 * cpuset's cpus_allowed
4394			 */
4395			cpumask_copy(new_mask, cpus_allowed);
4396			goto again;
4397		}
4398	}
4399out_unlock:
4400	free_cpumask_var(new_mask);
4401out_free_cpus_allowed:
4402	free_cpumask_var(cpus_allowed);
4403out_put_task:
4404	put_task_struct(p);
4405	put_online_cpus();
4406	return retval;
4407}
4408
4409static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4410			     struct cpumask *new_mask)
4411{
4412	if (len < cpumask_size())
4413		cpumask_clear(new_mask);
4414	else if (len > cpumask_size())
4415		len = cpumask_size();
4416
4417	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4418}
4419
4420/**
4421 * sys_sched_setaffinity - set the cpu affinity of a process
4422 * @pid: pid of the process
4423 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4424 * @user_mask_ptr: user-space pointer to the new cpu mask
4425 */
4426SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4427		unsigned long __user *, user_mask_ptr)
4428{
4429	cpumask_var_t new_mask;
4430	int retval;
4431
4432	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4433		return -ENOMEM;
4434
4435	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4436	if (retval == 0)
4437		retval = sched_setaffinity(pid, new_mask);
4438	free_cpumask_var(new_mask);
4439	return retval;
4440}
4441
4442long sched_getaffinity(pid_t pid, struct cpumask *mask)
4443{
4444	struct task_struct *p;
4445	unsigned long flags;
4446	int retval;
4447
4448	get_online_cpus();
4449	rcu_read_lock();
4450
4451	retval = -ESRCH;
4452	p = find_process_by_pid(pid);
4453	if (!p)
4454		goto out_unlock;
4455
4456	retval = security_task_getscheduler(p);
4457	if (retval)
4458		goto out_unlock;
4459
4460	raw_spin_lock_irqsave(&p->pi_lock, flags);
4461	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4462	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4463
4464out_unlock:
4465	rcu_read_unlock();
4466	put_online_cpus();
4467
4468	return retval;
4469}
4470
4471/**
4472 * sys_sched_getaffinity - get the cpu affinity of a process
4473 * @pid: pid of the process
4474 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4475 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4476 */
4477SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4478		unsigned long __user *, user_mask_ptr)
4479{
4480	int ret;
4481	cpumask_var_t mask;
4482
4483	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4484		return -EINVAL;
4485	if (len & (sizeof(unsigned long)-1))
4486		return -EINVAL;
4487
4488	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4489		return -ENOMEM;
4490
4491	ret = sched_getaffinity(pid, mask);
4492	if (ret == 0) {
4493		size_t retlen = min_t(size_t, len, cpumask_size());
4494
4495		if (copy_to_user(user_mask_ptr, mask, retlen))
4496			ret = -EFAULT;
4497		else
4498			ret = retlen;
4499	}
4500	free_cpumask_var(mask);
4501
4502	return ret;
4503}
4504
4505/**
4506 * sys_sched_yield - yield the current processor to other threads.
4507 *
4508 * This function yields the current CPU to other tasks. If there are no
4509 * other threads running on this CPU then this function will return.
4510 */
4511SYSCALL_DEFINE0(sched_yield)
4512{
4513	struct rq *rq = this_rq_lock();
4514
4515	schedstat_inc(rq, yld_count);
4516	current->sched_class->yield_task(rq);
4517
4518	/*
4519	 * Since we are going to call schedule() anyway, there's
4520	 * no need to preempt or enable interrupts:
4521	 */
4522	__release(rq->lock);
4523	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4524	do_raw_spin_unlock(&rq->lock);
4525	sched_preempt_enable_no_resched();
4526
4527	schedule();
4528
4529	return 0;
4530}
4531
4532static inline int should_resched(void)
4533{
4534	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4535}
4536
4537static void __cond_resched(void)
4538{
4539	add_preempt_count(PREEMPT_ACTIVE);
4540	__schedule();
4541	sub_preempt_count(PREEMPT_ACTIVE);
4542}
4543
4544int __sched _cond_resched(void)
4545{
4546	if (should_resched()) {
4547		__cond_resched();
4548		return 1;
4549	}
4550	return 0;
4551}
4552EXPORT_SYMBOL(_cond_resched);
4553
4554/*
4555 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4556 * call schedule, and on return reacquire the lock.
4557 *
4558 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4559 * operations here to prevent schedule() from being called twice (once via
4560 * spin_unlock(), once by hand).
4561 */
4562int __cond_resched_lock(spinlock_t *lock)
4563{
4564	int resched = should_resched();
4565	int ret = 0;
4566
4567	lockdep_assert_held(lock);
4568
4569	if (spin_needbreak(lock) || resched) {
4570		spin_unlock(lock);
4571		if (resched)
4572			__cond_resched();
4573		else
4574			cpu_relax();
4575		ret = 1;
4576		spin_lock(lock);
4577	}
4578	return ret;
4579}
4580EXPORT_SYMBOL(__cond_resched_lock);
4581
4582int __sched __cond_resched_softirq(void)
4583{
4584	BUG_ON(!in_softirq());
4585
4586	if (should_resched()) {
4587		local_bh_enable();
4588		__cond_resched();
4589		local_bh_disable();
4590		return 1;
4591	}
4592	return 0;
4593}
4594EXPORT_SYMBOL(__cond_resched_softirq);
4595
4596/**
4597 * yield - yield the current processor to other threads.
4598 *
4599 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4600 *
4601 * The scheduler is at all times free to pick the calling task as the most
4602 * eligible task to run, if removing the yield() call from your code breaks
4603 * it, its already broken.
4604 *
4605 * Typical broken usage is:
4606 *
4607 * while (!event)
4608 * 	yield();
4609 *
4610 * where one assumes that yield() will let 'the other' process run that will
4611 * make event true. If the current task is a SCHED_FIFO task that will never
4612 * happen. Never use yield() as a progress guarantee!!
4613 *
4614 * If you want to use yield() to wait for something, use wait_event().
4615 * If you want to use yield() to be 'nice' for others, use cond_resched().
4616 * If you still want to use yield(), do not!
4617 */
4618void __sched yield(void)
4619{
4620	set_current_state(TASK_RUNNING);
4621	sys_sched_yield();
4622}
4623EXPORT_SYMBOL(yield);
4624
4625/**
4626 * yield_to - yield the current processor to another thread in
4627 * your thread group, or accelerate that thread toward the
4628 * processor it's on.
4629 * @p: target task
4630 * @preempt: whether task preemption is allowed or not
4631 *
4632 * It's the caller's job to ensure that the target task struct
4633 * can't go away on us before we can do any checks.
4634 *
4635 * Returns true if we indeed boosted the target task.
4636 */
4637bool __sched yield_to(struct task_struct *p, bool preempt)
4638{
4639	struct task_struct *curr = current;
4640	struct rq *rq, *p_rq;
4641	unsigned long flags;
4642	bool yielded = 0;
4643
4644	local_irq_save(flags);
4645	rq = this_rq();
4646
4647again:
4648	p_rq = task_rq(p);
4649	double_rq_lock(rq, p_rq);
4650	while (task_rq(p) != p_rq) {
4651		double_rq_unlock(rq, p_rq);
4652		goto again;
4653	}
4654
4655	if (!curr->sched_class->yield_to_task)
4656		goto out;
4657
4658	if (curr->sched_class != p->sched_class)
4659		goto out;
4660
4661	if (task_running(p_rq, p) || p->state)
4662		goto out;
4663
4664	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4665	if (yielded) {
4666		schedstat_inc(rq, yld_count);
4667		/*
4668		 * Make p's CPU reschedule; pick_next_entity takes care of
4669		 * fairness.
4670		 */
4671		if (preempt && rq != p_rq)
4672			resched_task(p_rq->curr);
4673	} else {
4674		/*
4675		 * We might have set it in task_yield_fair(), but are
4676		 * not going to schedule(), so don't want to skip
4677		 * the next update.
4678		 */
4679		rq->skip_clock_update = 0;
4680	}
4681
4682out:
4683	double_rq_unlock(rq, p_rq);
4684	local_irq_restore(flags);
4685
4686	if (yielded)
4687		schedule();
4688
4689	return yielded;
4690}
4691EXPORT_SYMBOL_GPL(yield_to);
4692
4693/*
4694 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4695 * that process accounting knows that this is a task in IO wait state.
4696 */
4697void __sched io_schedule(void)
4698{
4699	struct rq *rq = raw_rq();
4700
4701	delayacct_blkio_start();
4702	atomic_inc(&rq->nr_iowait);
4703	blk_flush_plug(current);
4704	current->in_iowait = 1;
4705	schedule();
4706	current->in_iowait = 0;
4707	atomic_dec(&rq->nr_iowait);
4708	delayacct_blkio_end();
4709}
4710EXPORT_SYMBOL(io_schedule);
4711
4712long __sched io_schedule_timeout(long timeout)
4713{
4714	struct rq *rq = raw_rq();
4715	long ret;
4716
4717	delayacct_blkio_start();
4718	atomic_inc(&rq->nr_iowait);
4719	blk_flush_plug(current);
4720	current->in_iowait = 1;
4721	ret = schedule_timeout(timeout);
4722	current->in_iowait = 0;
4723	atomic_dec(&rq->nr_iowait);
4724	delayacct_blkio_end();
4725	return ret;
4726}
4727
4728/**
4729 * sys_sched_get_priority_max - return maximum RT priority.
4730 * @policy: scheduling class.
4731 *
4732 * this syscall returns the maximum rt_priority that can be used
4733 * by a given scheduling class.
4734 */
4735SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4736{
4737	int ret = -EINVAL;
4738
4739	switch (policy) {
4740	case SCHED_FIFO:
4741	case SCHED_RR:
4742		ret = MAX_USER_RT_PRIO-1;
4743		break;
4744	case SCHED_NORMAL:
4745	case SCHED_BATCH:
4746	case SCHED_IDLE:
4747		ret = 0;
4748		break;
4749	}
4750	return ret;
4751}
4752
4753/**
4754 * sys_sched_get_priority_min - return minimum RT priority.
4755 * @policy: scheduling class.
4756 *
4757 * this syscall returns the minimum rt_priority that can be used
4758 * by a given scheduling class.
4759 */
4760SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4761{
4762	int ret = -EINVAL;
4763
4764	switch (policy) {
4765	case SCHED_FIFO:
4766	case SCHED_RR:
4767		ret = 1;
4768		break;
4769	case SCHED_NORMAL:
4770	case SCHED_BATCH:
4771	case SCHED_IDLE:
4772		ret = 0;
4773	}
4774	return ret;
4775}
4776
4777/**
4778 * sys_sched_rr_get_interval - return the default timeslice of a process.
4779 * @pid: pid of the process.
4780 * @interval: userspace pointer to the timeslice value.
4781 *
4782 * this syscall writes the default timeslice value of a given process
4783 * into the user-space timespec buffer. A value of '0' means infinity.
4784 */
4785SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4786		struct timespec __user *, interval)
4787{
4788	struct task_struct *p;
4789	unsigned int time_slice;
4790	unsigned long flags;
4791	struct rq *rq;
4792	int retval;
4793	struct timespec t;
4794
4795	if (pid < 0)
4796		return -EINVAL;
4797
4798	retval = -ESRCH;
4799	rcu_read_lock();
4800	p = find_process_by_pid(pid);
4801	if (!p)
4802		goto out_unlock;
4803
4804	retval = security_task_getscheduler(p);
4805	if (retval)
4806		goto out_unlock;
4807
4808	rq = task_rq_lock(p, &flags);
4809	time_slice = p->sched_class->get_rr_interval(rq, p);
4810	task_rq_unlock(rq, p, &flags);
4811
4812	rcu_read_unlock();
4813	jiffies_to_timespec(time_slice, &t);
4814	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4815	return retval;
4816
4817out_unlock:
4818	rcu_read_unlock();
4819	return retval;
4820}
4821
4822static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4823
4824void sched_show_task(struct task_struct *p)
4825{
4826	unsigned long free = 0;
4827	unsigned state;
4828
4829	state = p->state ? __ffs(p->state) + 1 : 0;
4830	printk(KERN_INFO "%-15.15s %c", p->comm,
4831		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4832#if BITS_PER_LONG == 32
4833	if (state == TASK_RUNNING)
4834		printk(KERN_CONT " running  ");
4835	else
4836		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4837#else
4838	if (state == TASK_RUNNING)
4839		printk(KERN_CONT "  running task    ");
4840	else
4841		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4842#endif
4843#ifdef CONFIG_DEBUG_STACK_USAGE
4844	free = stack_not_used(p);
4845#endif
4846	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4847		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4848		(unsigned long)task_thread_info(p)->flags);
4849
4850	show_stack(p, NULL);
4851}
4852
4853void show_state_filter(unsigned long state_filter)
4854{
4855	struct task_struct *g, *p;
4856
4857#if BITS_PER_LONG == 32
4858	printk(KERN_INFO
4859		"  task                PC stack   pid father\n");
4860#else
4861	printk(KERN_INFO
4862		"  task                        PC stack   pid father\n");
4863#endif
4864	rcu_read_lock();
4865	do_each_thread(g, p) {
4866		/*
4867		 * reset the NMI-timeout, listing all files on a slow
4868		 * console might take a lot of time:
4869		 */
4870		touch_nmi_watchdog();
4871		if (!state_filter || (p->state & state_filter))
4872			sched_show_task(p);
4873	} while_each_thread(g, p);
4874
4875	touch_all_softlockup_watchdogs();
4876
4877#ifdef CONFIG_SCHED_DEBUG
4878	sysrq_sched_debug_show();
4879#endif
4880	rcu_read_unlock();
4881	/*
4882	 * Only show locks if all tasks are dumped:
4883	 */
4884	if (!state_filter)
4885		debug_show_all_locks();
4886}
4887
4888void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4889{
4890	idle->sched_class = &idle_sched_class;
4891}
4892
4893/**
4894 * init_idle - set up an idle thread for a given CPU
4895 * @idle: task in question
4896 * @cpu: cpu the idle task belongs to
4897 *
4898 * NOTE: this function does not set the idle thread's NEED_RESCHED
4899 * flag, to make booting more robust.
4900 */
4901void __cpuinit init_idle(struct task_struct *idle, int cpu)
4902{
4903	struct rq *rq = cpu_rq(cpu);
4904	unsigned long flags;
4905
4906	raw_spin_lock_irqsave(&rq->lock, flags);
4907
4908	__sched_fork(idle);
4909	idle->state = TASK_RUNNING;
4910	idle->se.exec_start = sched_clock();
4911
4912	do_set_cpus_allowed(idle, cpumask_of(cpu));
4913	/*
4914	 * We're having a chicken and egg problem, even though we are
4915	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4916	 * lockdep check in task_group() will fail.
4917	 *
4918	 * Similar case to sched_fork(). / Alternatively we could
4919	 * use task_rq_lock() here and obtain the other rq->lock.
4920	 *
4921	 * Silence PROVE_RCU
4922	 */
4923	rcu_read_lock();
4924	__set_task_cpu(idle, cpu);
4925	rcu_read_unlock();
4926
4927	rq->curr = rq->idle = idle;
4928#if defined(CONFIG_SMP)
4929	idle->on_cpu = 1;
4930#endif
4931	raw_spin_unlock_irqrestore(&rq->lock, flags);
4932
4933	/* Set the preempt count _outside_ the spinlocks! */
4934	task_thread_info(idle)->preempt_count = 0;
4935
4936	/*
4937	 * The idle tasks have their own, simple scheduling class:
4938	 */
4939	idle->sched_class = &idle_sched_class;
4940	ftrace_graph_init_idle_task(idle, cpu);
4941#if defined(CONFIG_SMP)
4942	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4943#endif
4944}
4945
4946#ifdef CONFIG_SMP
4947void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4948{
4949	if (p->sched_class && p->sched_class->set_cpus_allowed)
4950		p->sched_class->set_cpus_allowed(p, new_mask);
4951
4952	cpumask_copy(&p->cpus_allowed, new_mask);
4953	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4954}
4955
4956/*
4957 * This is how migration works:
4958 *
4959 * 1) we invoke migration_cpu_stop() on the target CPU using
4960 *    stop_one_cpu().
4961 * 2) stopper starts to run (implicitly forcing the migrated thread
4962 *    off the CPU)
4963 * 3) it checks whether the migrated task is still in the wrong runqueue.
4964 * 4) if it's in the wrong runqueue then the migration thread removes
4965 *    it and puts it into the right queue.
4966 * 5) stopper completes and stop_one_cpu() returns and the migration
4967 *    is done.
4968 */
4969
4970/*
4971 * Change a given task's CPU affinity. Migrate the thread to a
4972 * proper CPU and schedule it away if the CPU it's executing on
4973 * is removed from the allowed bitmask.
4974 *
4975 * NOTE: the caller must have a valid reference to the task, the
4976 * task must not exit() & deallocate itself prematurely. The
4977 * call is not atomic; no spinlocks may be held.
4978 */
4979int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4980{
4981	unsigned long flags;
4982	struct rq *rq;
4983	unsigned int dest_cpu;
4984	int ret = 0;
4985
4986	rq = task_rq_lock(p, &flags);
4987
4988	if (cpumask_equal(&p->cpus_allowed, new_mask))
4989		goto out;
4990
4991	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4992		ret = -EINVAL;
4993		goto out;
4994	}
4995
4996	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4997		ret = -EINVAL;
4998		goto out;
4999	}
5000
5001	do_set_cpus_allowed(p, new_mask);
5002
5003	/* Can the task run on the task's current CPU? If so, we're done */
5004	if (cpumask_test_cpu(task_cpu(p), new_mask))
5005		goto out;
5006
5007	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5008	if (p->on_rq) {
5009		struct migration_arg arg = { p, dest_cpu };
5010		/* Need help from migration thread: drop lock and wait. */
5011		task_rq_unlock(rq, p, &flags);
5012		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5013		tlb_migrate_finish(p->mm);
5014		return 0;
5015	}
5016out:
5017	task_rq_unlock(rq, p, &flags);
5018
5019	return ret;
5020}
5021EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5022
5023/*
5024 * Move (not current) task off this cpu, onto dest cpu. We're doing
5025 * this because either it can't run here any more (set_cpus_allowed()
5026 * away from this CPU, or CPU going down), or because we're
5027 * attempting to rebalance this task on exec (sched_exec).
5028 *
5029 * So we race with normal scheduler movements, but that's OK, as long
5030 * as the task is no longer on this CPU.
5031 *
5032 * Returns non-zero if task was successfully migrated.
5033 */
5034static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5035{
5036	struct rq *rq_dest, *rq_src;
5037	int ret = 0;
5038
5039	if (unlikely(!cpu_active(dest_cpu)))
5040		return ret;
5041
5042	rq_src = cpu_rq(src_cpu);
5043	rq_dest = cpu_rq(dest_cpu);
5044
5045	raw_spin_lock(&p->pi_lock);
5046	double_rq_lock(rq_src, rq_dest);
5047	/* Already moved. */
5048	if (task_cpu(p) != src_cpu)
5049		goto done;
5050	/* Affinity changed (again). */
5051	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5052		goto fail;
5053
5054	/*
5055	 * If we're not on a rq, the next wake-up will ensure we're
5056	 * placed properly.
5057	 */
5058	if (p->on_rq) {
5059		dequeue_task(rq_src, p, 0);
5060		set_task_cpu(p, dest_cpu);
5061		enqueue_task(rq_dest, p, 0);
5062		check_preempt_curr(rq_dest, p, 0);
5063	}
5064done:
5065	ret = 1;
5066fail:
5067	double_rq_unlock(rq_src, rq_dest);
5068	raw_spin_unlock(&p->pi_lock);
5069	return ret;
5070}
5071
5072/*
5073 * migration_cpu_stop - this will be executed by a highprio stopper thread
5074 * and performs thread migration by bumping thread off CPU then
5075 * 'pushing' onto another runqueue.
5076 */
5077static int migration_cpu_stop(void *data)
5078{
5079	struct migration_arg *arg = data;
5080
5081	/*
5082	 * The original target cpu might have gone down and we might
5083	 * be on another cpu but it doesn't matter.
5084	 */
5085	local_irq_disable();
5086	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5087	local_irq_enable();
5088	return 0;
5089}
5090
5091#ifdef CONFIG_HOTPLUG_CPU
5092
5093/*
5094 * Ensures that the idle task is using init_mm right before its cpu goes
5095 * offline.
5096 */
5097void idle_task_exit(void)
5098{
5099	struct mm_struct *mm = current->active_mm;
5100
5101	BUG_ON(cpu_online(smp_processor_id()));
5102
5103	if (mm != &init_mm)
5104		switch_mm(mm, &init_mm, current);
5105	mmdrop(mm);
5106}
5107
5108/*
5109 * While a dead CPU has no uninterruptible tasks queued at this point,
5110 * it might still have a nonzero ->nr_uninterruptible counter, because
5111 * for performance reasons the counter is not stricly tracking tasks to
5112 * their home CPUs. So we just add the counter to another CPU's counter,
5113 * to keep the global sum constant after CPU-down:
5114 */
5115static void migrate_nr_uninterruptible(struct rq *rq_src)
5116{
5117	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5118
5119	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5120	rq_src->nr_uninterruptible = 0;
5121}
5122
5123/*
5124 * remove the tasks which were accounted by rq from calc_load_tasks.
5125 */
5126static void calc_global_load_remove(struct rq *rq)
5127{
5128	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5129	rq->calc_load_active = 0;
5130}
5131
5132/*
5133 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5134 * try_to_wake_up()->select_task_rq().
5135 *
5136 * Called with rq->lock held even though we'er in stop_machine() and
5137 * there's no concurrency possible, we hold the required locks anyway
5138 * because of lock validation efforts.
5139 */
5140static void migrate_tasks(unsigned int dead_cpu)
5141{
5142	struct rq *rq = cpu_rq(dead_cpu);
5143	struct task_struct *next, *stop = rq->stop;
5144	int dest_cpu;
5145
5146	/*
5147	 * Fudge the rq selection such that the below task selection loop
5148	 * doesn't get stuck on the currently eligible stop task.
5149	 *
5150	 * We're currently inside stop_machine() and the rq is either stuck
5151	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5152	 * either way we should never end up calling schedule() until we're
5153	 * done here.
5154	 */
5155	rq->stop = NULL;
5156
5157	/* Ensure any throttled groups are reachable by pick_next_task */
5158	unthrottle_offline_cfs_rqs(rq);
5159
5160	for ( ; ; ) {
5161		/*
5162		 * There's this thread running, bail when that's the only
5163		 * remaining thread.
5164		 */
5165		if (rq->nr_running == 1)
5166			break;
5167
5168		next = pick_next_task(rq);
5169		BUG_ON(!next);
5170		next->sched_class->put_prev_task(rq, next);
5171
5172		/* Find suitable destination for @next, with force if needed. */
5173		dest_cpu = select_fallback_rq(dead_cpu, next);
5174		raw_spin_unlock(&rq->lock);
5175
5176		__migrate_task(next, dead_cpu, dest_cpu);
5177
5178		raw_spin_lock(&rq->lock);
5179	}
5180
5181	rq->stop = stop;
5182}
5183
5184#endif /* CONFIG_HOTPLUG_CPU */
5185
5186#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5187
5188static struct ctl_table sd_ctl_dir[] = {
5189	{
5190		.procname	= "sched_domain",
5191		.mode		= 0555,
5192	},
5193	{}
5194};
5195
5196static struct ctl_table sd_ctl_root[] = {
5197	{
5198		.procname	= "kernel",
5199		.mode		= 0555,
5200		.child		= sd_ctl_dir,
5201	},
5202	{}
5203};
5204
5205static struct ctl_table *sd_alloc_ctl_entry(int n)
5206{
5207	struct ctl_table *entry =
5208		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5209
5210	return entry;
5211}
5212
5213static void sd_free_ctl_entry(struct ctl_table **tablep)
5214{
5215	struct ctl_table *entry;
5216
5217	/*
5218	 * In the intermediate directories, both the child directory and
5219	 * procname are dynamically allocated and could fail but the mode
5220	 * will always be set. In the lowest directory the names are
5221	 * static strings and all have proc handlers.
5222	 */
5223	for (entry = *tablep; entry->mode; entry++) {
5224		if (entry->child)
5225			sd_free_ctl_entry(&entry->child);
5226		if (entry->proc_handler == NULL)
5227			kfree(entry->procname);
5228	}
5229
5230	kfree(*tablep);
5231	*tablep = NULL;
5232}
5233
5234static void
5235set_table_entry(struct ctl_table *entry,
5236		const char *procname, void *data, int maxlen,
5237		umode_t mode, proc_handler *proc_handler)
5238{
5239	entry->procname = procname;
5240	entry->data = data;
5241	entry->maxlen = maxlen;
5242	entry->mode = mode;
5243	entry->proc_handler = proc_handler;
5244}
5245
5246static struct ctl_table *
5247sd_alloc_ctl_domain_table(struct sched_domain *sd)
5248{
5249	struct ctl_table *table = sd_alloc_ctl_entry(13);
5250
5251	if (table == NULL)
5252		return NULL;
5253
5254	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5255		sizeof(long), 0644, proc_doulongvec_minmax);
5256	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5257		sizeof(long), 0644, proc_doulongvec_minmax);
5258	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5259		sizeof(int), 0644, proc_dointvec_minmax);
5260	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5261		sizeof(int), 0644, proc_dointvec_minmax);
5262	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5263		sizeof(int), 0644, proc_dointvec_minmax);
5264	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5265		sizeof(int), 0644, proc_dointvec_minmax);
5266	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5267		sizeof(int), 0644, proc_dointvec_minmax);
5268	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5269		sizeof(int), 0644, proc_dointvec_minmax);
5270	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5271		sizeof(int), 0644, proc_dointvec_minmax);
5272	set_table_entry(&table[9], "cache_nice_tries",
5273		&sd->cache_nice_tries,
5274		sizeof(int), 0644, proc_dointvec_minmax);
5275	set_table_entry(&table[10], "flags", &sd->flags,
5276		sizeof(int), 0644, proc_dointvec_minmax);
5277	set_table_entry(&table[11], "name", sd->name,
5278		CORENAME_MAX_SIZE, 0444, proc_dostring);
5279	/* &table[12] is terminator */
5280
5281	return table;
5282}
5283
5284static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5285{
5286	struct ctl_table *entry, *table;
5287	struct sched_domain *sd;
5288	int domain_num = 0, i;
5289	char buf[32];
5290
5291	for_each_domain(cpu, sd)
5292		domain_num++;
5293	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5294	if (table == NULL)
5295		return NULL;
5296
5297	i = 0;
5298	for_each_domain(cpu, sd) {
5299		snprintf(buf, 32, "domain%d", i);
5300		entry->procname = kstrdup(buf, GFP_KERNEL);
5301		entry->mode = 0555;
5302		entry->child = sd_alloc_ctl_domain_table(sd);
5303		entry++;
5304		i++;
5305	}
5306	return table;
5307}
5308
5309static struct ctl_table_header *sd_sysctl_header;
5310static void register_sched_domain_sysctl(void)
5311{
5312	int i, cpu_num = num_possible_cpus();
5313	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5314	char buf[32];
5315
5316	WARN_ON(sd_ctl_dir[0].child);
5317	sd_ctl_dir[0].child = entry;
5318
5319	if (entry == NULL)
5320		return;
5321
5322	for_each_possible_cpu(i) {
5323		snprintf(buf, 32, "cpu%d", i);
5324		entry->procname = kstrdup(buf, GFP_KERNEL);
5325		entry->mode = 0555;
5326		entry->child = sd_alloc_ctl_cpu_table(i);
5327		entry++;
5328	}
5329
5330	WARN_ON(sd_sysctl_header);
5331	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5332}
5333
5334/* may be called multiple times per register */
5335static void unregister_sched_domain_sysctl(void)
5336{
5337	if (sd_sysctl_header)
5338		unregister_sysctl_table(sd_sysctl_header);
5339	sd_sysctl_header = NULL;
5340	if (sd_ctl_dir[0].child)
5341		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5342}
5343#else
5344static void register_sched_domain_sysctl(void)
5345{
5346}
5347static void unregister_sched_domain_sysctl(void)
5348{
5349}
5350#endif
5351
5352static void set_rq_online(struct rq *rq)
5353{
5354	if (!rq->online) {
5355		const struct sched_class *class;
5356
5357		cpumask_set_cpu(rq->cpu, rq->rd->online);
5358		rq->online = 1;
5359
5360		for_each_class(class) {
5361			if (class->rq_online)
5362				class->rq_online(rq);
5363		}
5364	}
5365}
5366
5367static void set_rq_offline(struct rq *rq)
5368{
5369	if (rq->online) {
5370		const struct sched_class *class;
5371
5372		for_each_class(class) {
5373			if (class->rq_offline)
5374				class->rq_offline(rq);
5375		}
5376
5377		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5378		rq->online = 0;
5379	}
5380}
5381
5382/*
5383 * migration_call - callback that gets triggered when a CPU is added.
5384 * Here we can start up the necessary migration thread for the new CPU.
5385 */
5386static int __cpuinit
5387migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5388{
5389	int cpu = (long)hcpu;
5390	unsigned long flags;
5391	struct rq *rq = cpu_rq(cpu);
5392
5393	switch (action & ~CPU_TASKS_FROZEN) {
5394
5395	case CPU_UP_PREPARE:
5396		rq->calc_load_update = calc_load_update;
5397		break;
5398
5399	case CPU_ONLINE:
5400		/* Update our root-domain */
5401		raw_spin_lock_irqsave(&rq->lock, flags);
5402		if (rq->rd) {
5403			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5404
5405			set_rq_online(rq);
5406		}
5407		raw_spin_unlock_irqrestore(&rq->lock, flags);
5408		break;
5409
5410#ifdef CONFIG_HOTPLUG_CPU
5411	case CPU_DYING:
5412		sched_ttwu_pending();
5413		/* Update our root-domain */
5414		raw_spin_lock_irqsave(&rq->lock, flags);
5415		if (rq->rd) {
5416			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5417			set_rq_offline(rq);
5418		}
5419		migrate_tasks(cpu);
5420		BUG_ON(rq->nr_running != 1); /* the migration thread */
5421		raw_spin_unlock_irqrestore(&rq->lock, flags);
5422
5423		migrate_nr_uninterruptible(rq);
5424		calc_global_load_remove(rq);
5425		break;
5426#endif
5427	}
5428
5429	update_max_interval();
5430
5431	return NOTIFY_OK;
5432}
5433
5434/*
5435 * Register at high priority so that task migration (migrate_all_tasks)
5436 * happens before everything else.  This has to be lower priority than
5437 * the notifier in the perf_event subsystem, though.
5438 */
5439static struct notifier_block __cpuinitdata migration_notifier = {
5440	.notifier_call = migration_call,
5441	.priority = CPU_PRI_MIGRATION,
5442};
5443
5444static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5445				      unsigned long action, void *hcpu)
5446{
5447	switch (action & ~CPU_TASKS_FROZEN) {
5448	case CPU_STARTING:
5449	case CPU_DOWN_FAILED:
5450		set_cpu_active((long)hcpu, true);
5451		return NOTIFY_OK;
5452	default:
5453		return NOTIFY_DONE;
5454	}
5455}
5456
5457static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5458					unsigned long action, void *hcpu)
5459{
5460	switch (action & ~CPU_TASKS_FROZEN) {
5461	case CPU_DOWN_PREPARE:
5462		set_cpu_active((long)hcpu, false);
5463		return NOTIFY_OK;
5464	default:
5465		return NOTIFY_DONE;
5466	}
5467}
5468
5469static int __init migration_init(void)
5470{
5471	void *cpu = (void *)(long)smp_processor_id();
5472	int err;
5473
5474	/* Initialize migration for the boot CPU */
5475	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5476	BUG_ON(err == NOTIFY_BAD);
5477	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5478	register_cpu_notifier(&migration_notifier);
5479
5480	/* Register cpu active notifiers */
5481	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5482	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5483
5484	return 0;
5485}
5486early_initcall(migration_init);
5487#endif
5488
5489#ifdef CONFIG_SMP
5490
5491static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5492
5493#ifdef CONFIG_SCHED_DEBUG
5494
5495static __read_mostly int sched_domain_debug_enabled;
5496
5497static int __init sched_domain_debug_setup(char *str)
5498{
5499	sched_domain_debug_enabled = 1;
5500
5501	return 0;
5502}
5503early_param("sched_debug", sched_domain_debug_setup);
5504
5505static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5506				  struct cpumask *groupmask)
5507{
5508	struct sched_group *group = sd->groups;
5509	char str[256];
5510
5511	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5512	cpumask_clear(groupmask);
5513
5514	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5515
5516	if (!(sd->flags & SD_LOAD_BALANCE)) {
5517		printk("does not load-balance\n");
5518		if (sd->parent)
5519			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5520					" has parent");
5521		return -1;
5522	}
5523
5524	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5525
5526	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5527		printk(KERN_ERR "ERROR: domain->span does not contain "
5528				"CPU%d\n", cpu);
5529	}
5530	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5531		printk(KERN_ERR "ERROR: domain->groups does not contain"
5532				" CPU%d\n", cpu);
5533	}
5534
5535	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5536	do {
5537		if (!group) {
5538			printk("\n");
5539			printk(KERN_ERR "ERROR: group is NULL\n");
5540			break;
5541		}
5542
5543		if (!group->sgp->power) {
5544			printk(KERN_CONT "\n");
5545			printk(KERN_ERR "ERROR: domain->cpu_power not "
5546					"set\n");
5547			break;
5548		}
5549
5550		if (!cpumask_weight(sched_group_cpus(group))) {
5551			printk(KERN_CONT "\n");
5552			printk(KERN_ERR "ERROR: empty group\n");
5553			break;
5554		}
5555
5556		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5557			printk(KERN_CONT "\n");
5558			printk(KERN_ERR "ERROR: repeated CPUs\n");
5559			break;
5560		}
5561
5562		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5563
5564		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5565
5566		printk(KERN_CONT " %s", str);
5567		if (group->sgp->power != SCHED_POWER_SCALE) {
5568			printk(KERN_CONT " (cpu_power = %d)",
5569				group->sgp->power);
5570		}
5571
5572		group = group->next;
5573	} while (group != sd->groups);
5574	printk(KERN_CONT "\n");
5575
5576	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5577		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5578
5579	if (sd->parent &&
5580	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5581		printk(KERN_ERR "ERROR: parent span is not a superset "
5582			"of domain->span\n");
5583	return 0;
5584}
5585
5586static void sched_domain_debug(struct sched_domain *sd, int cpu)
5587{
5588	int level = 0;
5589
5590	if (!sched_domain_debug_enabled)
5591		return;
5592
5593	if (!sd) {
5594		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5595		return;
5596	}
5597
5598	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5599
5600	for (;;) {
5601		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5602			break;
5603		level++;
5604		sd = sd->parent;
5605		if (!sd)
5606			break;
5607	}
5608}
5609#else /* !CONFIG_SCHED_DEBUG */
5610# define sched_domain_debug(sd, cpu) do { } while (0)
5611#endif /* CONFIG_SCHED_DEBUG */
5612
5613static int sd_degenerate(struct sched_domain *sd)
5614{
5615	if (cpumask_weight(sched_domain_span(sd)) == 1)
5616		return 1;
5617
5618	/* Following flags need at least 2 groups */
5619	if (sd->flags & (SD_LOAD_BALANCE |
5620			 SD_BALANCE_NEWIDLE |
5621			 SD_BALANCE_FORK |
5622			 SD_BALANCE_EXEC |
5623			 SD_SHARE_CPUPOWER |
5624			 SD_SHARE_PKG_RESOURCES)) {
5625		if (sd->groups != sd->groups->next)
5626			return 0;
5627	}
5628
5629	/* Following flags don't use groups */
5630	if (sd->flags & (SD_WAKE_AFFINE))
5631		return 0;
5632
5633	return 1;
5634}
5635
5636static int
5637sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5638{
5639	unsigned long cflags = sd->flags, pflags = parent->flags;
5640
5641	if (sd_degenerate(parent))
5642		return 1;
5643
5644	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5645		return 0;
5646
5647	/* Flags needing groups don't count if only 1 group in parent */
5648	if (parent->groups == parent->groups->next) {
5649		pflags &= ~(SD_LOAD_BALANCE |
5650				SD_BALANCE_NEWIDLE |
5651				SD_BALANCE_FORK |
5652				SD_BALANCE_EXEC |
5653				SD_SHARE_CPUPOWER |
5654				SD_SHARE_PKG_RESOURCES);
5655		if (nr_node_ids == 1)
5656			pflags &= ~SD_SERIALIZE;
5657	}
5658	if (~cflags & pflags)
5659		return 0;
5660
5661	return 1;
5662}
5663
5664static void free_rootdomain(struct rcu_head *rcu)
5665{
5666	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5667
5668	cpupri_cleanup(&rd->cpupri);
5669	free_cpumask_var(rd->rto_mask);
5670	free_cpumask_var(rd->online);
5671	free_cpumask_var(rd->span);
5672	kfree(rd);
5673}
5674
5675static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5676{
5677	struct root_domain *old_rd = NULL;
5678	unsigned long flags;
5679
5680	raw_spin_lock_irqsave(&rq->lock, flags);
5681
5682	if (rq->rd) {
5683		old_rd = rq->rd;
5684
5685		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5686			set_rq_offline(rq);
5687
5688		cpumask_clear_cpu(rq->cpu, old_rd->span);
5689
5690		/*
5691		 * If we dont want to free the old_rt yet then
5692		 * set old_rd to NULL to skip the freeing later
5693		 * in this function:
5694		 */
5695		if (!atomic_dec_and_test(&old_rd->refcount))
5696			old_rd = NULL;
5697	}
5698
5699	atomic_inc(&rd->refcount);
5700	rq->rd = rd;
5701
5702	cpumask_set_cpu(rq->cpu, rd->span);
5703	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5704		set_rq_online(rq);
5705
5706	raw_spin_unlock_irqrestore(&rq->lock, flags);
5707
5708	if (old_rd)
5709		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5710}
5711
5712static int init_rootdomain(struct root_domain *rd)
5713{
5714	memset(rd, 0, sizeof(*rd));
5715
5716	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5717		goto out;
5718	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5719		goto free_span;
5720	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5721		goto free_online;
5722
5723	if (cpupri_init(&rd->cpupri) != 0)
5724		goto free_rto_mask;
5725	return 0;
5726
5727free_rto_mask:
5728	free_cpumask_var(rd->rto_mask);
5729free_online:
5730	free_cpumask_var(rd->online);
5731free_span:
5732	free_cpumask_var(rd->span);
5733out:
5734	return -ENOMEM;
5735}
5736
5737/*
5738 * By default the system creates a single root-domain with all cpus as
5739 * members (mimicking the global state we have today).
5740 */
5741struct root_domain def_root_domain;
5742
5743static void init_defrootdomain(void)
5744{
5745	init_rootdomain(&def_root_domain);
5746
5747	atomic_set(&def_root_domain.refcount, 1);
5748}
5749
5750static struct root_domain *alloc_rootdomain(void)
5751{
5752	struct root_domain *rd;
5753
5754	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5755	if (!rd)
5756		return NULL;
5757
5758	if (init_rootdomain(rd) != 0) {
5759		kfree(rd);
5760		return NULL;
5761	}
5762
5763	return rd;
5764}
5765
5766static void free_sched_groups(struct sched_group *sg, int free_sgp)
5767{
5768	struct sched_group *tmp, *first;
5769
5770	if (!sg)
5771		return;
5772
5773	first = sg;
5774	do {
5775		tmp = sg->next;
5776
5777		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5778			kfree(sg->sgp);
5779
5780		kfree(sg);
5781		sg = tmp;
5782	} while (sg != first);
5783}
5784
5785static void free_sched_domain(struct rcu_head *rcu)
5786{
5787	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5788
5789	/*
5790	 * If its an overlapping domain it has private groups, iterate and
5791	 * nuke them all.
5792	 */
5793	if (sd->flags & SD_OVERLAP) {
5794		free_sched_groups(sd->groups, 1);
5795	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5796		kfree(sd->groups->sgp);
5797		kfree(sd->groups);
5798	}
5799	kfree(sd);
5800}
5801
5802static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5803{
5804	call_rcu(&sd->rcu, free_sched_domain);
5805}
5806
5807static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5808{
5809	for (; sd; sd = sd->parent)
5810		destroy_sched_domain(sd, cpu);
5811}
5812
5813/*
5814 * Keep a special pointer to the highest sched_domain that has
5815 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5816 * allows us to avoid some pointer chasing select_idle_sibling().
5817 *
5818 * Also keep a unique ID per domain (we use the first cpu number in
5819 * the cpumask of the domain), this allows us to quickly tell if
5820 * two cpus are in the same cache domain, see cpus_share_cache().
5821 */
5822DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5823DEFINE_PER_CPU(int, sd_llc_id);
5824
5825static void update_top_cache_domain(int cpu)
5826{
5827	struct sched_domain *sd;
5828	int id = cpu;
5829
5830	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5831	if (sd)
5832		id = cpumask_first(sched_domain_span(sd));
5833
5834	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5835	per_cpu(sd_llc_id, cpu) = id;
5836}
5837
5838/*
5839 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5840 * hold the hotplug lock.
5841 */
5842static void
5843cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5844{
5845	struct rq *rq = cpu_rq(cpu);
5846	struct sched_domain *tmp;
5847
5848	/* Remove the sched domains which do not contribute to scheduling. */
5849	for (tmp = sd; tmp; ) {
5850		struct sched_domain *parent = tmp->parent;
5851		if (!parent)
5852			break;
5853
5854		if (sd_parent_degenerate(tmp, parent)) {
5855			tmp->parent = parent->parent;
5856			if (parent->parent)
5857				parent->parent->child = tmp;
5858			destroy_sched_domain(parent, cpu);
5859		} else
5860			tmp = tmp->parent;
5861	}
5862
5863	if (sd && sd_degenerate(sd)) {
5864		tmp = sd;
5865		sd = sd->parent;
5866		destroy_sched_domain(tmp, cpu);
5867		if (sd)
5868			sd->child = NULL;
5869	}
5870
5871	sched_domain_debug(sd, cpu);
5872
5873	rq_attach_root(rq, rd);
5874	tmp = rq->sd;
5875	rcu_assign_pointer(rq->sd, sd);
5876	destroy_sched_domains(tmp, cpu);
5877
5878	update_top_cache_domain(cpu);
5879}
5880
5881/* cpus with isolated domains */
5882static cpumask_var_t cpu_isolated_map;
5883
5884/* Setup the mask of cpus configured for isolated domains */
5885static int __init isolated_cpu_setup(char *str)
5886{
5887	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5888	cpulist_parse(str, cpu_isolated_map);
5889	return 1;
5890}
5891
5892__setup("isolcpus=", isolated_cpu_setup);
5893
5894#ifdef CONFIG_NUMA
5895
5896/**
5897 * find_next_best_node - find the next node to include in a sched_domain
5898 * @node: node whose sched_domain we're building
5899 * @used_nodes: nodes already in the sched_domain
5900 *
5901 * Find the next node to include in a given scheduling domain. Simply
5902 * finds the closest node not already in the @used_nodes map.
5903 *
5904 * Should use nodemask_t.
5905 */
5906static int find_next_best_node(int node, nodemask_t *used_nodes)
5907{
5908	int i, n, val, min_val, best_node = -1;
5909
5910	min_val = INT_MAX;
5911
5912	for (i = 0; i < nr_node_ids; i++) {
5913		/* Start at @node */
5914		n = (node + i) % nr_node_ids;
5915
5916		if (!nr_cpus_node(n))
5917			continue;
5918
5919		/* Skip already used nodes */
5920		if (node_isset(n, *used_nodes))
5921			continue;
5922
5923		/* Simple min distance search */
5924		val = node_distance(node, n);
5925
5926		if (val < min_val) {
5927			min_val = val;
5928			best_node = n;
5929		}
5930	}
5931
5932	if (best_node != -1)
5933		node_set(best_node, *used_nodes);
5934	return best_node;
5935}
5936
5937/**
5938 * sched_domain_node_span - get a cpumask for a node's sched_domain
5939 * @node: node whose cpumask we're constructing
5940 * @span: resulting cpumask
5941 *
5942 * Given a node, construct a good cpumask for its sched_domain to span. It
5943 * should be one that prevents unnecessary balancing, but also spreads tasks
5944 * out optimally.
5945 */
5946static void sched_domain_node_span(int node, struct cpumask *span)
5947{
5948	nodemask_t used_nodes;
5949	int i;
5950
5951	cpumask_clear(span);
5952	nodes_clear(used_nodes);
5953
5954	cpumask_or(span, span, cpumask_of_node(node));
5955	node_set(node, used_nodes);
5956
5957	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5958		int next_node = find_next_best_node(node, &used_nodes);
5959		if (next_node < 0)
5960			break;
5961		cpumask_or(span, span, cpumask_of_node(next_node));
5962	}
5963}
5964
5965static const struct cpumask *cpu_node_mask(int cpu)
5966{
5967	lockdep_assert_held(&sched_domains_mutex);
5968
5969	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5970
5971	return sched_domains_tmpmask;
5972}
5973
5974static const struct cpumask *cpu_allnodes_mask(int cpu)
5975{
5976	return cpu_possible_mask;
5977}
5978#endif /* CONFIG_NUMA */
5979
5980static const struct cpumask *cpu_cpu_mask(int cpu)
5981{
5982	return cpumask_of_node(cpu_to_node(cpu));
5983}
5984
5985int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5986
5987struct sd_data {
5988	struct sched_domain **__percpu sd;
5989	struct sched_group **__percpu sg;
5990	struct sched_group_power **__percpu sgp;
5991};
5992
5993struct s_data {
5994	struct sched_domain ** __percpu sd;
5995	struct root_domain	*rd;
5996};
5997
5998enum s_alloc {
5999	sa_rootdomain,
6000	sa_sd,
6001	sa_sd_storage,
6002	sa_none,
6003};
6004
6005struct sched_domain_topology_level;
6006
6007typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6008typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6009
6010#define SDTL_OVERLAP	0x01
6011
6012struct sched_domain_topology_level {
6013	sched_domain_init_f init;
6014	sched_domain_mask_f mask;
6015	int		    flags;
6016	struct sd_data      data;
6017};
6018
6019static int
6020build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6021{
6022	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6023	const struct cpumask *span = sched_domain_span(sd);
6024	struct cpumask *covered = sched_domains_tmpmask;
6025	struct sd_data *sdd = sd->private;
6026	struct sched_domain *child;
6027	int i;
6028
6029	cpumask_clear(covered);
6030
6031	for_each_cpu(i, span) {
6032		struct cpumask *sg_span;
6033
6034		if (cpumask_test_cpu(i, covered))
6035			continue;
6036
6037		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6038				GFP_KERNEL, cpu_to_node(cpu));
6039
6040		if (!sg)
6041			goto fail;
6042
6043		sg_span = sched_group_cpus(sg);
6044
6045		child = *per_cpu_ptr(sdd->sd, i);
6046		if (child->child) {
6047			child = child->child;
6048			cpumask_copy(sg_span, sched_domain_span(child));
6049		} else
6050			cpumask_set_cpu(i, sg_span);
6051
6052		cpumask_or(covered, covered, sg_span);
6053
6054		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6055		atomic_inc(&sg->sgp->ref);
6056
6057		if (cpumask_test_cpu(cpu, sg_span))
6058			groups = sg;
6059
6060		if (!first)
6061			first = sg;
6062		if (last)
6063			last->next = sg;
6064		last = sg;
6065		last->next = first;
6066	}
6067	sd->groups = groups;
6068
6069	return 0;
6070
6071fail:
6072	free_sched_groups(first, 0);
6073
6074	return -ENOMEM;
6075}
6076
6077static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6078{
6079	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6080	struct sched_domain *child = sd->child;
6081
6082	if (child)
6083		cpu = cpumask_first(sched_domain_span(child));
6084
6085	if (sg) {
6086		*sg = *per_cpu_ptr(sdd->sg, cpu);
6087		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6088		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6089	}
6090
6091	return cpu;
6092}
6093
6094/*
6095 * build_sched_groups will build a circular linked list of the groups
6096 * covered by the given span, and will set each group's ->cpumask correctly,
6097 * and ->cpu_power to 0.
6098 *
6099 * Assumes the sched_domain tree is fully constructed
6100 */
6101static int
6102build_sched_groups(struct sched_domain *sd, int cpu)
6103{
6104	struct sched_group *first = NULL, *last = NULL;
6105	struct sd_data *sdd = sd->private;
6106	const struct cpumask *span = sched_domain_span(sd);
6107	struct cpumask *covered;
6108	int i;
6109
6110	get_group(cpu, sdd, &sd->groups);
6111	atomic_inc(&sd->groups->ref);
6112
6113	if (cpu != cpumask_first(sched_domain_span(sd)))
6114		return 0;
6115
6116	lockdep_assert_held(&sched_domains_mutex);
6117	covered = sched_domains_tmpmask;
6118
6119	cpumask_clear(covered);
6120
6121	for_each_cpu(i, span) {
6122		struct sched_group *sg;
6123		int group = get_group(i, sdd, &sg);
6124		int j;
6125
6126		if (cpumask_test_cpu(i, covered))
6127			continue;
6128
6129		cpumask_clear(sched_group_cpus(sg));
6130		sg->sgp->power = 0;
6131
6132		for_each_cpu(j, span) {
6133			if (get_group(j, sdd, NULL) != group)
6134				continue;
6135
6136			cpumask_set_cpu(j, covered);
6137			cpumask_set_cpu(j, sched_group_cpus(sg));
6138		}
6139
6140		if (!first)
6141			first = sg;
6142		if (last)
6143			last->next = sg;
6144		last = sg;
6145	}
6146	last->next = first;
6147
6148	return 0;
6149}
6150
6151/*
6152 * Initialize sched groups cpu_power.
6153 *
6154 * cpu_power indicates the capacity of sched group, which is used while
6155 * distributing the load between different sched groups in a sched domain.
6156 * Typically cpu_power for all the groups in a sched domain will be same unless
6157 * there are asymmetries in the topology. If there are asymmetries, group
6158 * having more cpu_power will pickup more load compared to the group having
6159 * less cpu_power.
6160 */
6161static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6162{
6163	struct sched_group *sg = sd->groups;
6164
6165	WARN_ON(!sd || !sg);
6166
6167	do {
6168		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6169		sg = sg->next;
6170	} while (sg != sd->groups);
6171
6172	if (cpu != group_first_cpu(sg))
6173		return;
6174
6175	update_group_power(sd, cpu);
6176	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6177}
6178
6179int __weak arch_sd_sibling_asym_packing(void)
6180{
6181       return 0*SD_ASYM_PACKING;
6182}
6183
6184/*
6185 * Initializers for schedule domains
6186 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6187 */
6188
6189#ifdef CONFIG_SCHED_DEBUG
6190# define SD_INIT_NAME(sd, type)		sd->name = #type
6191#else
6192# define SD_INIT_NAME(sd, type)		do { } while (0)
6193#endif
6194
6195#define SD_INIT_FUNC(type)						\
6196static noinline struct sched_domain *					\
6197sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6198{									\
6199	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6200	*sd = SD_##type##_INIT;						\
6201	SD_INIT_NAME(sd, type);						\
6202	sd->private = &tl->data;					\
6203	return sd;							\
6204}
6205
6206SD_INIT_FUNC(CPU)
6207#ifdef CONFIG_NUMA
6208 SD_INIT_FUNC(ALLNODES)
6209 SD_INIT_FUNC(NODE)
6210#endif
6211#ifdef CONFIG_SCHED_SMT
6212 SD_INIT_FUNC(SIBLING)
6213#endif
6214#ifdef CONFIG_SCHED_MC
6215 SD_INIT_FUNC(MC)
6216#endif
6217#ifdef CONFIG_SCHED_BOOK
6218 SD_INIT_FUNC(BOOK)
6219#endif
6220
6221static int default_relax_domain_level = -1;
6222int sched_domain_level_max;
6223
6224static int __init setup_relax_domain_level(char *str)
6225{
6226	unsigned long val;
6227
6228	val = simple_strtoul(str, NULL, 0);
6229	if (val < sched_domain_level_max)
6230		default_relax_domain_level = val;
6231
6232	return 1;
6233}
6234__setup("relax_domain_level=", setup_relax_domain_level);
6235
6236static void set_domain_attribute(struct sched_domain *sd,
6237				 struct sched_domain_attr *attr)
6238{
6239	int request;
6240
6241	if (!attr || attr->relax_domain_level < 0) {
6242		if (default_relax_domain_level < 0)
6243			return;
6244		else
6245			request = default_relax_domain_level;
6246	} else
6247		request = attr->relax_domain_level;
6248	if (request < sd->level) {
6249		/* turn off idle balance on this domain */
6250		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6251	} else {
6252		/* turn on idle balance on this domain */
6253		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6254	}
6255}
6256
6257static void __sdt_free(const struct cpumask *cpu_map);
6258static int __sdt_alloc(const struct cpumask *cpu_map);
6259
6260static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6261				 const struct cpumask *cpu_map)
6262{
6263	switch (what) {
6264	case sa_rootdomain:
6265		if (!atomic_read(&d->rd->refcount))
6266			free_rootdomain(&d->rd->rcu); /* fall through */
6267	case sa_sd:
6268		free_percpu(d->sd); /* fall through */
6269	case sa_sd_storage:
6270		__sdt_free(cpu_map); /* fall through */
6271	case sa_none:
6272		break;
6273	}
6274}
6275
6276static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6277						   const struct cpumask *cpu_map)
6278{
6279	memset(d, 0, sizeof(*d));
6280
6281	if (__sdt_alloc(cpu_map))
6282		return sa_sd_storage;
6283	d->sd = alloc_percpu(struct sched_domain *);
6284	if (!d->sd)
6285		return sa_sd_storage;
6286	d->rd = alloc_rootdomain();
6287	if (!d->rd)
6288		return sa_sd;
6289	return sa_rootdomain;
6290}
6291
6292/*
6293 * NULL the sd_data elements we've used to build the sched_domain and
6294 * sched_group structure so that the subsequent __free_domain_allocs()
6295 * will not free the data we're using.
6296 */
6297static void claim_allocations(int cpu, struct sched_domain *sd)
6298{
6299	struct sd_data *sdd = sd->private;
6300
6301	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6302	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6303
6304	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6305		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6306
6307	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6308		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6309}
6310
6311#ifdef CONFIG_SCHED_SMT
6312static const struct cpumask *cpu_smt_mask(int cpu)
6313{
6314	return topology_thread_cpumask(cpu);
6315}
6316#endif
6317
6318/*
6319 * Topology list, bottom-up.
6320 */
6321static struct sched_domain_topology_level default_topology[] = {
6322#ifdef CONFIG_SCHED_SMT
6323	{ sd_init_SIBLING, cpu_smt_mask, },
6324#endif
6325#ifdef CONFIG_SCHED_MC
6326	{ sd_init_MC, cpu_coregroup_mask, },
6327#endif
6328#ifdef CONFIG_SCHED_BOOK
6329	{ sd_init_BOOK, cpu_book_mask, },
6330#endif
6331	{ sd_init_CPU, cpu_cpu_mask, },
6332#ifdef CONFIG_NUMA
6333	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6334	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6335#endif
6336	{ NULL, },
6337};
6338
6339static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6340
6341static int __sdt_alloc(const struct cpumask *cpu_map)
6342{
6343	struct sched_domain_topology_level *tl;
6344	int j;
6345
6346	for (tl = sched_domain_topology; tl->init; tl++) {
6347		struct sd_data *sdd = &tl->data;
6348
6349		sdd->sd = alloc_percpu(struct sched_domain *);
6350		if (!sdd->sd)
6351			return -ENOMEM;
6352
6353		sdd->sg = alloc_percpu(struct sched_group *);
6354		if (!sdd->sg)
6355			return -ENOMEM;
6356
6357		sdd->sgp = alloc_percpu(struct sched_group_power *);
6358		if (!sdd->sgp)
6359			return -ENOMEM;
6360
6361		for_each_cpu(j, cpu_map) {
6362			struct sched_domain *sd;
6363			struct sched_group *sg;
6364			struct sched_group_power *sgp;
6365
6366		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6367					GFP_KERNEL, cpu_to_node(j));
6368			if (!sd)
6369				return -ENOMEM;
6370
6371			*per_cpu_ptr(sdd->sd, j) = sd;
6372
6373			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6374					GFP_KERNEL, cpu_to_node(j));
6375			if (!sg)
6376				return -ENOMEM;
6377
6378			*per_cpu_ptr(sdd->sg, j) = sg;
6379
6380			sgp = kzalloc_node(sizeof(struct sched_group_power),
6381					GFP_KERNEL, cpu_to_node(j));
6382			if (!sgp)
6383				return -ENOMEM;
6384
6385			*per_cpu_ptr(sdd->sgp, j) = sgp;
6386		}
6387	}
6388
6389	return 0;
6390}
6391
6392static void __sdt_free(const struct cpumask *cpu_map)
6393{
6394	struct sched_domain_topology_level *tl;
6395	int j;
6396
6397	for (tl = sched_domain_topology; tl->init; tl++) {
6398		struct sd_data *sdd = &tl->data;
6399
6400		for_each_cpu(j, cpu_map) {
6401			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6402			if (sd && (sd->flags & SD_OVERLAP))
6403				free_sched_groups(sd->groups, 0);
6404			kfree(*per_cpu_ptr(sdd->sd, j));
6405			kfree(*per_cpu_ptr(sdd->sg, j));
6406			kfree(*per_cpu_ptr(sdd->sgp, j));
6407		}
6408		free_percpu(sdd->sd);
6409		free_percpu(sdd->sg);
6410		free_percpu(sdd->sgp);
6411	}
6412}
6413
6414struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6415		struct s_data *d, const struct cpumask *cpu_map,
6416		struct sched_domain_attr *attr, struct sched_domain *child,
6417		int cpu)
6418{
6419	struct sched_domain *sd = tl->init(tl, cpu);
6420	if (!sd)
6421		return child;
6422
6423	set_domain_attribute(sd, attr);
6424	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6425	if (child) {
6426		sd->level = child->level + 1;
6427		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6428		child->parent = sd;
6429	}
6430	sd->child = child;
6431
6432	return sd;
6433}
6434
6435/*
6436 * Build sched domains for a given set of cpus and attach the sched domains
6437 * to the individual cpus
6438 */
6439static int build_sched_domains(const struct cpumask *cpu_map,
6440			       struct sched_domain_attr *attr)
6441{
6442	enum s_alloc alloc_state = sa_none;
6443	struct sched_domain *sd;
6444	struct s_data d;
6445	int i, ret = -ENOMEM;
6446
6447	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6448	if (alloc_state != sa_rootdomain)
6449		goto error;
6450
6451	/* Set up domains for cpus specified by the cpu_map. */
6452	for_each_cpu(i, cpu_map) {
6453		struct sched_domain_topology_level *tl;
6454
6455		sd = NULL;
6456		for (tl = sched_domain_topology; tl->init; tl++) {
6457			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6458			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6459				sd->flags |= SD_OVERLAP;
6460			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6461				break;
6462		}
6463
6464		while (sd->child)
6465			sd = sd->child;
6466
6467		*per_cpu_ptr(d.sd, i) = sd;
6468	}
6469
6470	/* Build the groups for the domains */
6471	for_each_cpu(i, cpu_map) {
6472		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6473			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6474			if (sd->flags & SD_OVERLAP) {
6475				if (build_overlap_sched_groups(sd, i))
6476					goto error;
6477			} else {
6478				if (build_sched_groups(sd, i))
6479					goto error;
6480			}
6481		}
6482	}
6483
6484	/* Calculate CPU power for physical packages and nodes */
6485	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6486		if (!cpumask_test_cpu(i, cpu_map))
6487			continue;
6488
6489		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6490			claim_allocations(i, sd);
6491			init_sched_groups_power(i, sd);
6492		}
6493	}
6494
6495	/* Attach the domains */
6496	rcu_read_lock();
6497	for_each_cpu(i, cpu_map) {
6498		sd = *per_cpu_ptr(d.sd, i);
6499		cpu_attach_domain(sd, d.rd, i);
6500	}
6501	rcu_read_unlock();
6502
6503	ret = 0;
6504error:
6505	__free_domain_allocs(&d, alloc_state, cpu_map);
6506	return ret;
6507}
6508
6509static cpumask_var_t *doms_cur;	/* current sched domains */
6510static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6511static struct sched_domain_attr *dattr_cur;
6512				/* attribues of custom domains in 'doms_cur' */
6513
6514/*
6515 * Special case: If a kmalloc of a doms_cur partition (array of
6516 * cpumask) fails, then fallback to a single sched domain,
6517 * as determined by the single cpumask fallback_doms.
6518 */
6519static cpumask_var_t fallback_doms;
6520
6521/*
6522 * arch_update_cpu_topology lets virtualized architectures update the
6523 * cpu core maps. It is supposed to return 1 if the topology changed
6524 * or 0 if it stayed the same.
6525 */
6526int __attribute__((weak)) arch_update_cpu_topology(void)
6527{
6528	return 0;
6529}
6530
6531cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6532{
6533	int i;
6534	cpumask_var_t *doms;
6535
6536	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6537	if (!doms)
6538		return NULL;
6539	for (i = 0; i < ndoms; i++) {
6540		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6541			free_sched_domains(doms, i);
6542			return NULL;
6543		}
6544	}
6545	return doms;
6546}
6547
6548void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6549{
6550	unsigned int i;
6551	for (i = 0; i < ndoms; i++)
6552		free_cpumask_var(doms[i]);
6553	kfree(doms);
6554}
6555
6556/*
6557 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6558 * For now this just excludes isolated cpus, but could be used to
6559 * exclude other special cases in the future.
6560 */
6561static int init_sched_domains(const struct cpumask *cpu_map)
6562{
6563	int err;
6564
6565	arch_update_cpu_topology();
6566	ndoms_cur = 1;
6567	doms_cur = alloc_sched_domains(ndoms_cur);
6568	if (!doms_cur)
6569		doms_cur = &fallback_doms;
6570	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6571	dattr_cur = NULL;
6572	err = build_sched_domains(doms_cur[0], NULL);
6573	register_sched_domain_sysctl();
6574
6575	return err;
6576}
6577
6578/*
6579 * Detach sched domains from a group of cpus specified in cpu_map
6580 * These cpus will now be attached to the NULL domain
6581 */
6582static void detach_destroy_domains(const struct cpumask *cpu_map)
6583{
6584	int i;
6585
6586	rcu_read_lock();
6587	for_each_cpu(i, cpu_map)
6588		cpu_attach_domain(NULL, &def_root_domain, i);
6589	rcu_read_unlock();
6590}
6591
6592/* handle null as "default" */
6593static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6594			struct sched_domain_attr *new, int idx_new)
6595{
6596	struct sched_domain_attr tmp;
6597
6598	/* fast path */
6599	if (!new && !cur)
6600		return 1;
6601
6602	tmp = SD_ATTR_INIT;
6603	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6604			new ? (new + idx_new) : &tmp,
6605			sizeof(struct sched_domain_attr));
6606}
6607
6608/*
6609 * Partition sched domains as specified by the 'ndoms_new'
6610 * cpumasks in the array doms_new[] of cpumasks. This compares
6611 * doms_new[] to the current sched domain partitioning, doms_cur[].
6612 * It destroys each deleted domain and builds each new domain.
6613 *
6614 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6615 * The masks don't intersect (don't overlap.) We should setup one
6616 * sched domain for each mask. CPUs not in any of the cpumasks will
6617 * not be load balanced. If the same cpumask appears both in the
6618 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6619 * it as it is.
6620 *
6621 * The passed in 'doms_new' should be allocated using
6622 * alloc_sched_domains.  This routine takes ownership of it and will
6623 * free_sched_domains it when done with it. If the caller failed the
6624 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6625 * and partition_sched_domains() will fallback to the single partition
6626 * 'fallback_doms', it also forces the domains to be rebuilt.
6627 *
6628 * If doms_new == NULL it will be replaced with cpu_online_mask.
6629 * ndoms_new == 0 is a special case for destroying existing domains,
6630 * and it will not create the default domain.
6631 *
6632 * Call with hotplug lock held
6633 */
6634void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6635			     struct sched_domain_attr *dattr_new)
6636{
6637	int i, j, n;
6638	int new_topology;
6639
6640	mutex_lock(&sched_domains_mutex);
6641
6642	/* always unregister in case we don't destroy any domains */
6643	unregister_sched_domain_sysctl();
6644
6645	/* Let architecture update cpu core mappings. */
6646	new_topology = arch_update_cpu_topology();
6647
6648	n = doms_new ? ndoms_new : 0;
6649
6650	/* Destroy deleted domains */
6651	for (i = 0; i < ndoms_cur; i++) {
6652		for (j = 0; j < n && !new_topology; j++) {
6653			if (cpumask_equal(doms_cur[i], doms_new[j])
6654			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6655				goto match1;
6656		}
6657		/* no match - a current sched domain not in new doms_new[] */
6658		detach_destroy_domains(doms_cur[i]);
6659match1:
6660		;
6661	}
6662
6663	if (doms_new == NULL) {
6664		ndoms_cur = 0;
6665		doms_new = &fallback_doms;
6666		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6667		WARN_ON_ONCE(dattr_new);
6668	}
6669
6670	/* Build new domains */
6671	for (i = 0; i < ndoms_new; i++) {
6672		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6673			if (cpumask_equal(doms_new[i], doms_cur[j])
6674			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6675				goto match2;
6676		}
6677		/* no match - add a new doms_new */
6678		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6679match2:
6680		;
6681	}
6682
6683	/* Remember the new sched domains */
6684	if (doms_cur != &fallback_doms)
6685		free_sched_domains(doms_cur, ndoms_cur);
6686	kfree(dattr_cur);	/* kfree(NULL) is safe */
6687	doms_cur = doms_new;
6688	dattr_cur = dattr_new;
6689	ndoms_cur = ndoms_new;
6690
6691	register_sched_domain_sysctl();
6692
6693	mutex_unlock(&sched_domains_mutex);
6694}
6695
6696#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6697static void reinit_sched_domains(void)
6698{
6699	get_online_cpus();
6700
6701	/* Destroy domains first to force the rebuild */
6702	partition_sched_domains(0, NULL, NULL);
6703
6704	rebuild_sched_domains();
6705	put_online_cpus();
6706}
6707
6708static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6709{
6710	unsigned int level = 0;
6711
6712	if (sscanf(buf, "%u", &level) != 1)
6713		return -EINVAL;
6714
6715	/*
6716	 * level is always be positive so don't check for
6717	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6718	 * What happens on 0 or 1 byte write,
6719	 * need to check for count as well?
6720	 */
6721
6722	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6723		return -EINVAL;
6724
6725	if (smt)
6726		sched_smt_power_savings = level;
6727	else
6728		sched_mc_power_savings = level;
6729
6730	reinit_sched_domains();
6731
6732	return count;
6733}
6734
6735#ifdef CONFIG_SCHED_MC
6736static ssize_t sched_mc_power_savings_show(struct device *dev,
6737					   struct device_attribute *attr,
6738					   char *buf)
6739{
6740	return sprintf(buf, "%u\n", sched_mc_power_savings);
6741}
6742static ssize_t sched_mc_power_savings_store(struct device *dev,
6743					    struct device_attribute *attr,
6744					    const char *buf, size_t count)
6745{
6746	return sched_power_savings_store(buf, count, 0);
6747}
6748static DEVICE_ATTR(sched_mc_power_savings, 0644,
6749		   sched_mc_power_savings_show,
6750		   sched_mc_power_savings_store);
6751#endif
6752
6753#ifdef CONFIG_SCHED_SMT
6754static ssize_t sched_smt_power_savings_show(struct device *dev,
6755					    struct device_attribute *attr,
6756					    char *buf)
6757{
6758	return sprintf(buf, "%u\n", sched_smt_power_savings);
6759}
6760static ssize_t sched_smt_power_savings_store(struct device *dev,
6761					    struct device_attribute *attr,
6762					     const char *buf, size_t count)
6763{
6764	return sched_power_savings_store(buf, count, 1);
6765}
6766static DEVICE_ATTR(sched_smt_power_savings, 0644,
6767		   sched_smt_power_savings_show,
6768		   sched_smt_power_savings_store);
6769#endif
6770
6771int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6772{
6773	int err = 0;
6774
6775#ifdef CONFIG_SCHED_SMT
6776	if (smt_capable())
6777		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6778#endif
6779#ifdef CONFIG_SCHED_MC
6780	if (!err && mc_capable())
6781		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6782#endif
6783	return err;
6784}
6785#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6786
6787/*
6788 * Update cpusets according to cpu_active mask.  If cpusets are
6789 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6790 * around partition_sched_domains().
6791 */
6792static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6793			     void *hcpu)
6794{
6795	switch (action & ~CPU_TASKS_FROZEN) {
6796	case CPU_ONLINE:
6797	case CPU_DOWN_FAILED:
6798		cpuset_update_active_cpus();
6799		return NOTIFY_OK;
6800	default:
6801		return NOTIFY_DONE;
6802	}
6803}
6804
6805static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6806			       void *hcpu)
6807{
6808	switch (action & ~CPU_TASKS_FROZEN) {
6809	case CPU_DOWN_PREPARE:
6810		cpuset_update_active_cpus();
6811		return NOTIFY_OK;
6812	default:
6813		return NOTIFY_DONE;
6814	}
6815}
6816
6817void __init sched_init_smp(void)
6818{
6819	cpumask_var_t non_isolated_cpus;
6820
6821	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6822	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6823
6824	get_online_cpus();
6825	mutex_lock(&sched_domains_mutex);
6826	init_sched_domains(cpu_active_mask);
6827	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6828	if (cpumask_empty(non_isolated_cpus))
6829		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6830	mutex_unlock(&sched_domains_mutex);
6831	put_online_cpus();
6832
6833	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6834	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6835
6836	/* RT runtime code needs to handle some hotplug events */
6837	hotcpu_notifier(update_runtime, 0);
6838
6839	init_hrtick();
6840
6841	/* Move init over to a non-isolated CPU */
6842	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6843		BUG();
6844	sched_init_granularity();
6845	free_cpumask_var(non_isolated_cpus);
6846
6847	init_sched_rt_class();
6848}
6849#else
6850void __init sched_init_smp(void)
6851{
6852	sched_init_granularity();
6853}
6854#endif /* CONFIG_SMP */
6855
6856const_debug unsigned int sysctl_timer_migration = 1;
6857
6858int in_sched_functions(unsigned long addr)
6859{
6860	return in_lock_functions(addr) ||
6861		(addr >= (unsigned long)__sched_text_start
6862		&& addr < (unsigned long)__sched_text_end);
6863}
6864
6865#ifdef CONFIG_CGROUP_SCHED
6866struct task_group root_task_group;
6867#endif
6868
6869DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6870
6871void __init sched_init(void)
6872{
6873	int i, j;
6874	unsigned long alloc_size = 0, ptr;
6875
6876#ifdef CONFIG_FAIR_GROUP_SCHED
6877	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6878#endif
6879#ifdef CONFIG_RT_GROUP_SCHED
6880	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6881#endif
6882#ifdef CONFIG_CPUMASK_OFFSTACK
6883	alloc_size += num_possible_cpus() * cpumask_size();
6884#endif
6885	if (alloc_size) {
6886		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6887
6888#ifdef CONFIG_FAIR_GROUP_SCHED
6889		root_task_group.se = (struct sched_entity **)ptr;
6890		ptr += nr_cpu_ids * sizeof(void **);
6891
6892		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6893		ptr += nr_cpu_ids * sizeof(void **);
6894
6895#endif /* CONFIG_FAIR_GROUP_SCHED */
6896#ifdef CONFIG_RT_GROUP_SCHED
6897		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6898		ptr += nr_cpu_ids * sizeof(void **);
6899
6900		root_task_group.rt_rq = (struct rt_rq **)ptr;
6901		ptr += nr_cpu_ids * sizeof(void **);
6902
6903#endif /* CONFIG_RT_GROUP_SCHED */
6904#ifdef CONFIG_CPUMASK_OFFSTACK
6905		for_each_possible_cpu(i) {
6906			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6907			ptr += cpumask_size();
6908		}
6909#endif /* CONFIG_CPUMASK_OFFSTACK */
6910	}
6911
6912#ifdef CONFIG_SMP
6913	init_defrootdomain();
6914#endif
6915
6916	init_rt_bandwidth(&def_rt_bandwidth,
6917			global_rt_period(), global_rt_runtime());
6918
6919#ifdef CONFIG_RT_GROUP_SCHED
6920	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6921			global_rt_period(), global_rt_runtime());
6922#endif /* CONFIG_RT_GROUP_SCHED */
6923
6924#ifdef CONFIG_CGROUP_SCHED
6925	list_add(&root_task_group.list, &task_groups);
6926	INIT_LIST_HEAD(&root_task_group.children);
6927	INIT_LIST_HEAD(&root_task_group.siblings);
6928	autogroup_init(&init_task);
6929
6930#endif /* CONFIG_CGROUP_SCHED */
6931
6932#ifdef CONFIG_CGROUP_CPUACCT
6933	root_cpuacct.cpustat = &kernel_cpustat;
6934	root_cpuacct.cpuusage = alloc_percpu(u64);
6935	/* Too early, not expected to fail */
6936	BUG_ON(!root_cpuacct.cpuusage);
6937#endif
6938	for_each_possible_cpu(i) {
6939		struct rq *rq;
6940
6941		rq = cpu_rq(i);
6942		raw_spin_lock_init(&rq->lock);
6943		rq->nr_running = 0;
6944		rq->calc_load_active = 0;
6945		rq->calc_load_update = jiffies + LOAD_FREQ;
6946		init_cfs_rq(&rq->cfs);
6947		init_rt_rq(&rq->rt, rq);
6948#ifdef CONFIG_FAIR_GROUP_SCHED
6949		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6950		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6951		/*
6952		 * How much cpu bandwidth does root_task_group get?
6953		 *
6954		 * In case of task-groups formed thr' the cgroup filesystem, it
6955		 * gets 100% of the cpu resources in the system. This overall
6956		 * system cpu resource is divided among the tasks of
6957		 * root_task_group and its child task-groups in a fair manner,
6958		 * based on each entity's (task or task-group's) weight
6959		 * (se->load.weight).
6960		 *
6961		 * In other words, if root_task_group has 10 tasks of weight
6962		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6963		 * then A0's share of the cpu resource is:
6964		 *
6965		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6966		 *
6967		 * We achieve this by letting root_task_group's tasks sit
6968		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6969		 */
6970		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6971		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6972#endif /* CONFIG_FAIR_GROUP_SCHED */
6973
6974		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6975#ifdef CONFIG_RT_GROUP_SCHED
6976		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6977		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6978#endif
6979
6980		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6981			rq->cpu_load[j] = 0;
6982
6983		rq->last_load_update_tick = jiffies;
6984
6985#ifdef CONFIG_SMP
6986		rq->sd = NULL;
6987		rq->rd = NULL;
6988		rq->cpu_power = SCHED_POWER_SCALE;
6989		rq->post_schedule = 0;
6990		rq->active_balance = 0;
6991		rq->next_balance = jiffies;
6992		rq->push_cpu = 0;
6993		rq->cpu = i;
6994		rq->online = 0;
6995		rq->idle_stamp = 0;
6996		rq->avg_idle = 2*sysctl_sched_migration_cost;
6997
6998		INIT_LIST_HEAD(&rq->cfs_tasks);
6999
7000		rq_attach_root(rq, &def_root_domain);
7001#ifdef CONFIG_NO_HZ
7002		rq->nohz_flags = 0;
7003#endif
7004#endif
7005		init_rq_hrtick(rq);
7006		atomic_set(&rq->nr_iowait, 0);
7007	}
7008
7009	set_load_weight(&init_task);
7010
7011#ifdef CONFIG_PREEMPT_NOTIFIERS
7012	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7013#endif
7014
7015#ifdef CONFIG_RT_MUTEXES
7016	plist_head_init(&init_task.pi_waiters);
7017#endif
7018
7019	/*
7020	 * The boot idle thread does lazy MMU switching as well:
7021	 */
7022	atomic_inc(&init_mm.mm_count);
7023	enter_lazy_tlb(&init_mm, current);
7024
7025	/*
7026	 * Make us the idle thread. Technically, schedule() should not be
7027	 * called from this thread, however somewhere below it might be,
7028	 * but because we are the idle thread, we just pick up running again
7029	 * when this runqueue becomes "idle".
7030	 */
7031	init_idle(current, smp_processor_id());
7032
7033	calc_load_update = jiffies + LOAD_FREQ;
7034
7035	/*
7036	 * During early bootup we pretend to be a normal task:
7037	 */
7038	current->sched_class = &fair_sched_class;
7039
7040#ifdef CONFIG_SMP
7041	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7042	/* May be allocated at isolcpus cmdline parse time */
7043	if (cpu_isolated_map == NULL)
7044		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7045#endif
7046	init_sched_fair_class();
7047
7048	scheduler_running = 1;
7049}
7050
7051#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7052static inline int preempt_count_equals(int preempt_offset)
7053{
7054	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7055
7056	return (nested == preempt_offset);
7057}
7058
7059void __might_sleep(const char *file, int line, int preempt_offset)
7060{
7061	static unsigned long prev_jiffy;	/* ratelimiting */
7062
7063	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7064	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7065	    system_state != SYSTEM_RUNNING || oops_in_progress)
7066		return;
7067	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7068		return;
7069	prev_jiffy = jiffies;
7070
7071	printk(KERN_ERR
7072		"BUG: sleeping function called from invalid context at %s:%d\n",
7073			file, line);
7074	printk(KERN_ERR
7075		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7076			in_atomic(), irqs_disabled(),
7077			current->pid, current->comm);
7078
7079	debug_show_held_locks(current);
7080	if (irqs_disabled())
7081		print_irqtrace_events(current);
7082	dump_stack();
7083}
7084EXPORT_SYMBOL(__might_sleep);
7085#endif
7086
7087#ifdef CONFIG_MAGIC_SYSRQ
7088static void normalize_task(struct rq *rq, struct task_struct *p)
7089{
7090	const struct sched_class *prev_class = p->sched_class;
7091	int old_prio = p->prio;
7092	int on_rq;
7093
7094	on_rq = p->on_rq;
7095	if (on_rq)
7096		dequeue_task(rq, p, 0);
7097	__setscheduler(rq, p, SCHED_NORMAL, 0);
7098	if (on_rq) {
7099		enqueue_task(rq, p, 0);
7100		resched_task(rq->curr);
7101	}
7102
7103	check_class_changed(rq, p, prev_class, old_prio);
7104}
7105
7106void normalize_rt_tasks(void)
7107{
7108	struct task_struct *g, *p;
7109	unsigned long flags;
7110	struct rq *rq;
7111
7112	read_lock_irqsave(&tasklist_lock, flags);
7113	do_each_thread(g, p) {
7114		/*
7115		 * Only normalize user tasks:
7116		 */
7117		if (!p->mm)
7118			continue;
7119
7120		p->se.exec_start		= 0;
7121#ifdef CONFIG_SCHEDSTATS
7122		p->se.statistics.wait_start	= 0;
7123		p->se.statistics.sleep_start	= 0;
7124		p->se.statistics.block_start	= 0;
7125#endif
7126
7127		if (!rt_task(p)) {
7128			/*
7129			 * Renice negative nice level userspace
7130			 * tasks back to 0:
7131			 */
7132			if (TASK_NICE(p) < 0 && p->mm)
7133				set_user_nice(p, 0);
7134			continue;
7135		}
7136
7137		raw_spin_lock(&p->pi_lock);
7138		rq = __task_rq_lock(p);
7139
7140		normalize_task(rq, p);
7141
7142		__task_rq_unlock(rq);
7143		raw_spin_unlock(&p->pi_lock);
7144	} while_each_thread(g, p);
7145
7146	read_unlock_irqrestore(&tasklist_lock, flags);
7147}
7148
7149#endif /* CONFIG_MAGIC_SYSRQ */
7150
7151#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7152/*
7153 * These functions are only useful for the IA64 MCA handling, or kdb.
7154 *
7155 * They can only be called when the whole system has been
7156 * stopped - every CPU needs to be quiescent, and no scheduling
7157 * activity can take place. Using them for anything else would
7158 * be a serious bug, and as a result, they aren't even visible
7159 * under any other configuration.
7160 */
7161
7162/**
7163 * curr_task - return the current task for a given cpu.
7164 * @cpu: the processor in question.
7165 *
7166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7167 */
7168struct task_struct *curr_task(int cpu)
7169{
7170	return cpu_curr(cpu);
7171}
7172
7173#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7174
7175#ifdef CONFIG_IA64
7176/**
7177 * set_curr_task - set the current task for a given cpu.
7178 * @cpu: the processor in question.
7179 * @p: the task pointer to set.
7180 *
7181 * Description: This function must only be used when non-maskable interrupts
7182 * are serviced on a separate stack. It allows the architecture to switch the
7183 * notion of the current task on a cpu in a non-blocking manner. This function
7184 * must be called with all CPU's synchronized, and interrupts disabled, the
7185 * and caller must save the original value of the current task (see
7186 * curr_task() above) and restore that value before reenabling interrupts and
7187 * re-starting the system.
7188 *
7189 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7190 */
7191void set_curr_task(int cpu, struct task_struct *p)
7192{
7193	cpu_curr(cpu) = p;
7194}
7195
7196#endif
7197
7198#ifdef CONFIG_CGROUP_SCHED
7199/* task_group_lock serializes the addition/removal of task groups */
7200static DEFINE_SPINLOCK(task_group_lock);
7201
7202static void free_sched_group(struct task_group *tg)
7203{
7204	free_fair_sched_group(tg);
7205	free_rt_sched_group(tg);
7206	autogroup_free(tg);
7207	kfree(tg);
7208}
7209
7210/* allocate runqueue etc for a new task group */
7211struct task_group *sched_create_group(struct task_group *parent)
7212{
7213	struct task_group *tg;
7214	unsigned long flags;
7215
7216	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7217	if (!tg)
7218		return ERR_PTR(-ENOMEM);
7219
7220	if (!alloc_fair_sched_group(tg, parent))
7221		goto err;
7222
7223	if (!alloc_rt_sched_group(tg, parent))
7224		goto err;
7225
7226	spin_lock_irqsave(&task_group_lock, flags);
7227	list_add_rcu(&tg->list, &task_groups);
7228
7229	WARN_ON(!parent); /* root should already exist */
7230
7231	tg->parent = parent;
7232	INIT_LIST_HEAD(&tg->children);
7233	list_add_rcu(&tg->siblings, &parent->children);
7234	spin_unlock_irqrestore(&task_group_lock, flags);
7235
7236	return tg;
7237
7238err:
7239	free_sched_group(tg);
7240	return ERR_PTR(-ENOMEM);
7241}
7242
7243/* rcu callback to free various structures associated with a task group */
7244static void free_sched_group_rcu(struct rcu_head *rhp)
7245{
7246	/* now it should be safe to free those cfs_rqs */
7247	free_sched_group(container_of(rhp, struct task_group, rcu));
7248}
7249
7250/* Destroy runqueue etc associated with a task group */
7251void sched_destroy_group(struct task_group *tg)
7252{
7253	unsigned long flags;
7254	int i;
7255
7256	/* end participation in shares distribution */
7257	for_each_possible_cpu(i)
7258		unregister_fair_sched_group(tg, i);
7259
7260	spin_lock_irqsave(&task_group_lock, flags);
7261	list_del_rcu(&tg->list);
7262	list_del_rcu(&tg->siblings);
7263	spin_unlock_irqrestore(&task_group_lock, flags);
7264
7265	/* wait for possible concurrent references to cfs_rqs complete */
7266	call_rcu(&tg->rcu, free_sched_group_rcu);
7267}
7268
7269/* change task's runqueue when it moves between groups.
7270 *	The caller of this function should have put the task in its new group
7271 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7272 *	reflect its new group.
7273 */
7274void sched_move_task(struct task_struct *tsk)
7275{
7276	int on_rq, running;
7277	unsigned long flags;
7278	struct rq *rq;
7279
7280	rq = task_rq_lock(tsk, &flags);
7281
7282	running = task_current(rq, tsk);
7283	on_rq = tsk->on_rq;
7284
7285	if (on_rq)
7286		dequeue_task(rq, tsk, 0);
7287	if (unlikely(running))
7288		tsk->sched_class->put_prev_task(rq, tsk);
7289
7290#ifdef CONFIG_FAIR_GROUP_SCHED
7291	if (tsk->sched_class->task_move_group)
7292		tsk->sched_class->task_move_group(tsk, on_rq);
7293	else
7294#endif
7295		set_task_rq(tsk, task_cpu(tsk));
7296
7297	if (unlikely(running))
7298		tsk->sched_class->set_curr_task(rq);
7299	if (on_rq)
7300		enqueue_task(rq, tsk, 0);
7301
7302	task_rq_unlock(rq, tsk, &flags);
7303}
7304#endif /* CONFIG_CGROUP_SCHED */
7305
7306#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7307static unsigned long to_ratio(u64 period, u64 runtime)
7308{
7309	if (runtime == RUNTIME_INF)
7310		return 1ULL << 20;
7311
7312	return div64_u64(runtime << 20, period);
7313}
7314#endif
7315
7316#ifdef CONFIG_RT_GROUP_SCHED
7317/*
7318 * Ensure that the real time constraints are schedulable.
7319 */
7320static DEFINE_MUTEX(rt_constraints_mutex);
7321
7322/* Must be called with tasklist_lock held */
7323static inline int tg_has_rt_tasks(struct task_group *tg)
7324{
7325	struct task_struct *g, *p;
7326
7327	do_each_thread(g, p) {
7328		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7329			return 1;
7330	} while_each_thread(g, p);
7331
7332	return 0;
7333}
7334
7335struct rt_schedulable_data {
7336	struct task_group *tg;
7337	u64 rt_period;
7338	u64 rt_runtime;
7339};
7340
7341static int tg_rt_schedulable(struct task_group *tg, void *data)
7342{
7343	struct rt_schedulable_data *d = data;
7344	struct task_group *child;
7345	unsigned long total, sum = 0;
7346	u64 period, runtime;
7347
7348	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7349	runtime = tg->rt_bandwidth.rt_runtime;
7350
7351	if (tg == d->tg) {
7352		period = d->rt_period;
7353		runtime = d->rt_runtime;
7354	}
7355
7356	/*
7357	 * Cannot have more runtime than the period.
7358	 */
7359	if (runtime > period && runtime != RUNTIME_INF)
7360		return -EINVAL;
7361
7362	/*
7363	 * Ensure we don't starve existing RT tasks.
7364	 */
7365	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7366		return -EBUSY;
7367
7368	total = to_ratio(period, runtime);
7369
7370	/*
7371	 * Nobody can have more than the global setting allows.
7372	 */
7373	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7374		return -EINVAL;
7375
7376	/*
7377	 * The sum of our children's runtime should not exceed our own.
7378	 */
7379	list_for_each_entry_rcu(child, &tg->children, siblings) {
7380		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7381		runtime = child->rt_bandwidth.rt_runtime;
7382
7383		if (child == d->tg) {
7384			period = d->rt_period;
7385			runtime = d->rt_runtime;
7386		}
7387
7388		sum += to_ratio(period, runtime);
7389	}
7390
7391	if (sum > total)
7392		return -EINVAL;
7393
7394	return 0;
7395}
7396
7397static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7398{
7399	int ret;
7400
7401	struct rt_schedulable_data data = {
7402		.tg = tg,
7403		.rt_period = period,
7404		.rt_runtime = runtime,
7405	};
7406
7407	rcu_read_lock();
7408	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7409	rcu_read_unlock();
7410
7411	return ret;
7412}
7413
7414static int tg_set_rt_bandwidth(struct task_group *tg,
7415		u64 rt_period, u64 rt_runtime)
7416{
7417	int i, err = 0;
7418
7419	mutex_lock(&rt_constraints_mutex);
7420	read_lock(&tasklist_lock);
7421	err = __rt_schedulable(tg, rt_period, rt_runtime);
7422	if (err)
7423		goto unlock;
7424
7425	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7426	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7427	tg->rt_bandwidth.rt_runtime = rt_runtime;
7428
7429	for_each_possible_cpu(i) {
7430		struct rt_rq *rt_rq = tg->rt_rq[i];
7431
7432		raw_spin_lock(&rt_rq->rt_runtime_lock);
7433		rt_rq->rt_runtime = rt_runtime;
7434		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7435	}
7436	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7437unlock:
7438	read_unlock(&tasklist_lock);
7439	mutex_unlock(&rt_constraints_mutex);
7440
7441	return err;
7442}
7443
7444int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7445{
7446	u64 rt_runtime, rt_period;
7447
7448	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7449	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7450	if (rt_runtime_us < 0)
7451		rt_runtime = RUNTIME_INF;
7452
7453	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7454}
7455
7456long sched_group_rt_runtime(struct task_group *tg)
7457{
7458	u64 rt_runtime_us;
7459
7460	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7461		return -1;
7462
7463	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7464	do_div(rt_runtime_us, NSEC_PER_USEC);
7465	return rt_runtime_us;
7466}
7467
7468int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7469{
7470	u64 rt_runtime, rt_period;
7471
7472	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7473	rt_runtime = tg->rt_bandwidth.rt_runtime;
7474
7475	if (rt_period == 0)
7476		return -EINVAL;
7477
7478	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7479}
7480
7481long sched_group_rt_period(struct task_group *tg)
7482{
7483	u64 rt_period_us;
7484
7485	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7486	do_div(rt_period_us, NSEC_PER_USEC);
7487	return rt_period_us;
7488}
7489
7490static int sched_rt_global_constraints(void)
7491{
7492	u64 runtime, period;
7493	int ret = 0;
7494
7495	if (sysctl_sched_rt_period <= 0)
7496		return -EINVAL;
7497
7498	runtime = global_rt_runtime();
7499	period = global_rt_period();
7500
7501	/*
7502	 * Sanity check on the sysctl variables.
7503	 */
7504	if (runtime > period && runtime != RUNTIME_INF)
7505		return -EINVAL;
7506
7507	mutex_lock(&rt_constraints_mutex);
7508	read_lock(&tasklist_lock);
7509	ret = __rt_schedulable(NULL, 0, 0);
7510	read_unlock(&tasklist_lock);
7511	mutex_unlock(&rt_constraints_mutex);
7512
7513	return ret;
7514}
7515
7516int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7517{
7518	/* Don't accept realtime tasks when there is no way for them to run */
7519	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7520		return 0;
7521
7522	return 1;
7523}
7524
7525#else /* !CONFIG_RT_GROUP_SCHED */
7526static int sched_rt_global_constraints(void)
7527{
7528	unsigned long flags;
7529	int i;
7530
7531	if (sysctl_sched_rt_period <= 0)
7532		return -EINVAL;
7533
7534	/*
7535	 * There's always some RT tasks in the root group
7536	 * -- migration, kstopmachine etc..
7537	 */
7538	if (sysctl_sched_rt_runtime == 0)
7539		return -EBUSY;
7540
7541	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7542	for_each_possible_cpu(i) {
7543		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7544
7545		raw_spin_lock(&rt_rq->rt_runtime_lock);
7546		rt_rq->rt_runtime = global_rt_runtime();
7547		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7548	}
7549	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7550
7551	return 0;
7552}
7553#endif /* CONFIG_RT_GROUP_SCHED */
7554
7555int sched_rt_handler(struct ctl_table *table, int write,
7556		void __user *buffer, size_t *lenp,
7557		loff_t *ppos)
7558{
7559	int ret;
7560	int old_period, old_runtime;
7561	static DEFINE_MUTEX(mutex);
7562
7563	mutex_lock(&mutex);
7564	old_period = sysctl_sched_rt_period;
7565	old_runtime = sysctl_sched_rt_runtime;
7566
7567	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7568
7569	if (!ret && write) {
7570		ret = sched_rt_global_constraints();
7571		if (ret) {
7572			sysctl_sched_rt_period = old_period;
7573			sysctl_sched_rt_runtime = old_runtime;
7574		} else {
7575			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7576			def_rt_bandwidth.rt_period =
7577				ns_to_ktime(global_rt_period());
7578		}
7579	}
7580	mutex_unlock(&mutex);
7581
7582	return ret;
7583}
7584
7585#ifdef CONFIG_CGROUP_SCHED
7586
7587/* return corresponding task_group object of a cgroup */
7588static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7589{
7590	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7591			    struct task_group, css);
7592}
7593
7594static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7595{
7596	struct task_group *tg, *parent;
7597
7598	if (!cgrp->parent) {
7599		/* This is early initialization for the top cgroup */
7600		return &root_task_group.css;
7601	}
7602
7603	parent = cgroup_tg(cgrp->parent);
7604	tg = sched_create_group(parent);
7605	if (IS_ERR(tg))
7606		return ERR_PTR(-ENOMEM);
7607
7608	return &tg->css;
7609}
7610
7611static void cpu_cgroup_destroy(struct cgroup *cgrp)
7612{
7613	struct task_group *tg = cgroup_tg(cgrp);
7614
7615	sched_destroy_group(tg);
7616}
7617
7618static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7619				 struct cgroup_taskset *tset)
7620{
7621	struct task_struct *task;
7622
7623	cgroup_taskset_for_each(task, cgrp, tset) {
7624#ifdef CONFIG_RT_GROUP_SCHED
7625		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7626			return -EINVAL;
7627#else
7628		/* We don't support RT-tasks being in separate groups */
7629		if (task->sched_class != &fair_sched_class)
7630			return -EINVAL;
7631#endif
7632	}
7633	return 0;
7634}
7635
7636static void cpu_cgroup_attach(struct cgroup *cgrp,
7637			      struct cgroup_taskset *tset)
7638{
7639	struct task_struct *task;
7640
7641	cgroup_taskset_for_each(task, cgrp, tset)
7642		sched_move_task(task);
7643}
7644
7645static void
7646cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7647		struct task_struct *task)
7648{
7649	/*
7650	 * cgroup_exit() is called in the copy_process() failure path.
7651	 * Ignore this case since the task hasn't ran yet, this avoids
7652	 * trying to poke a half freed task state from generic code.
7653	 */
7654	if (!(task->flags & PF_EXITING))
7655		return;
7656
7657	sched_move_task(task);
7658}
7659
7660#ifdef CONFIG_FAIR_GROUP_SCHED
7661static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7662				u64 shareval)
7663{
7664	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7665}
7666
7667static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7668{
7669	struct task_group *tg = cgroup_tg(cgrp);
7670
7671	return (u64) scale_load_down(tg->shares);
7672}
7673
7674#ifdef CONFIG_CFS_BANDWIDTH
7675static DEFINE_MUTEX(cfs_constraints_mutex);
7676
7677const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7678const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7679
7680static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7681
7682static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7683{
7684	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7685	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7686
7687	if (tg == &root_task_group)
7688		return -EINVAL;
7689
7690	/*
7691	 * Ensure we have at some amount of bandwidth every period.  This is
7692	 * to prevent reaching a state of large arrears when throttled via
7693	 * entity_tick() resulting in prolonged exit starvation.
7694	 */
7695	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7696		return -EINVAL;
7697
7698	/*
7699	 * Likewise, bound things on the otherside by preventing insane quota
7700	 * periods.  This also allows us to normalize in computing quota
7701	 * feasibility.
7702	 */
7703	if (period > max_cfs_quota_period)
7704		return -EINVAL;
7705
7706	mutex_lock(&cfs_constraints_mutex);
7707	ret = __cfs_schedulable(tg, period, quota);
7708	if (ret)
7709		goto out_unlock;
7710
7711	runtime_enabled = quota != RUNTIME_INF;
7712	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7713	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7714	raw_spin_lock_irq(&cfs_b->lock);
7715	cfs_b->period = ns_to_ktime(period);
7716	cfs_b->quota = quota;
7717
7718	__refill_cfs_bandwidth_runtime(cfs_b);
7719	/* restart the period timer (if active) to handle new period expiry */
7720	if (runtime_enabled && cfs_b->timer_active) {
7721		/* force a reprogram */
7722		cfs_b->timer_active = 0;
7723		__start_cfs_bandwidth(cfs_b);
7724	}
7725	raw_spin_unlock_irq(&cfs_b->lock);
7726
7727	for_each_possible_cpu(i) {
7728		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7729		struct rq *rq = cfs_rq->rq;
7730
7731		raw_spin_lock_irq(&rq->lock);
7732		cfs_rq->runtime_enabled = runtime_enabled;
7733		cfs_rq->runtime_remaining = 0;
7734
7735		if (cfs_rq->throttled)
7736			unthrottle_cfs_rq(cfs_rq);
7737		raw_spin_unlock_irq(&rq->lock);
7738	}
7739out_unlock:
7740	mutex_unlock(&cfs_constraints_mutex);
7741
7742	return ret;
7743}
7744
7745int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7746{
7747	u64 quota, period;
7748
7749	period = ktime_to_ns(tg->cfs_bandwidth.period);
7750	if (cfs_quota_us < 0)
7751		quota = RUNTIME_INF;
7752	else
7753		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7754
7755	return tg_set_cfs_bandwidth(tg, period, quota);
7756}
7757
7758long tg_get_cfs_quota(struct task_group *tg)
7759{
7760	u64 quota_us;
7761
7762	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7763		return -1;
7764
7765	quota_us = tg->cfs_bandwidth.quota;
7766	do_div(quota_us, NSEC_PER_USEC);
7767
7768	return quota_us;
7769}
7770
7771int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7772{
7773	u64 quota, period;
7774
7775	period = (u64)cfs_period_us * NSEC_PER_USEC;
7776	quota = tg->cfs_bandwidth.quota;
7777
7778	return tg_set_cfs_bandwidth(tg, period, quota);
7779}
7780
7781long tg_get_cfs_period(struct task_group *tg)
7782{
7783	u64 cfs_period_us;
7784
7785	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7786	do_div(cfs_period_us, NSEC_PER_USEC);
7787
7788	return cfs_period_us;
7789}
7790
7791static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7792{
7793	return tg_get_cfs_quota(cgroup_tg(cgrp));
7794}
7795
7796static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7797				s64 cfs_quota_us)
7798{
7799	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7800}
7801
7802static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7803{
7804	return tg_get_cfs_period(cgroup_tg(cgrp));
7805}
7806
7807static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7808				u64 cfs_period_us)
7809{
7810	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7811}
7812
7813struct cfs_schedulable_data {
7814	struct task_group *tg;
7815	u64 period, quota;
7816};
7817
7818/*
7819 * normalize group quota/period to be quota/max_period
7820 * note: units are usecs
7821 */
7822static u64 normalize_cfs_quota(struct task_group *tg,
7823			       struct cfs_schedulable_data *d)
7824{
7825	u64 quota, period;
7826
7827	if (tg == d->tg) {
7828		period = d->period;
7829		quota = d->quota;
7830	} else {
7831		period = tg_get_cfs_period(tg);
7832		quota = tg_get_cfs_quota(tg);
7833	}
7834
7835	/* note: these should typically be equivalent */
7836	if (quota == RUNTIME_INF || quota == -1)
7837		return RUNTIME_INF;
7838
7839	return to_ratio(period, quota);
7840}
7841
7842static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7843{
7844	struct cfs_schedulable_data *d = data;
7845	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7846	s64 quota = 0, parent_quota = -1;
7847
7848	if (!tg->parent) {
7849		quota = RUNTIME_INF;
7850	} else {
7851		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7852
7853		quota = normalize_cfs_quota(tg, d);
7854		parent_quota = parent_b->hierarchal_quota;
7855
7856		/*
7857		 * ensure max(child_quota) <= parent_quota, inherit when no
7858		 * limit is set
7859		 */
7860		if (quota == RUNTIME_INF)
7861			quota = parent_quota;
7862		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7863			return -EINVAL;
7864	}
7865	cfs_b->hierarchal_quota = quota;
7866
7867	return 0;
7868}
7869
7870static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7871{
7872	int ret;
7873	struct cfs_schedulable_data data = {
7874		.tg = tg,
7875		.period = period,
7876		.quota = quota,
7877	};
7878
7879	if (quota != RUNTIME_INF) {
7880		do_div(data.period, NSEC_PER_USEC);
7881		do_div(data.quota, NSEC_PER_USEC);
7882	}
7883
7884	rcu_read_lock();
7885	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7886	rcu_read_unlock();
7887
7888	return ret;
7889}
7890
7891static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7892		struct cgroup_map_cb *cb)
7893{
7894	struct task_group *tg = cgroup_tg(cgrp);
7895	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7896
7897	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7898	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7899	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7900
7901	return 0;
7902}
7903#endif /* CONFIG_CFS_BANDWIDTH */
7904#endif /* CONFIG_FAIR_GROUP_SCHED */
7905
7906#ifdef CONFIG_RT_GROUP_SCHED
7907static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7908				s64 val)
7909{
7910	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7911}
7912
7913static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7914{
7915	return sched_group_rt_runtime(cgroup_tg(cgrp));
7916}
7917
7918static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7919		u64 rt_period_us)
7920{
7921	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7922}
7923
7924static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7925{
7926	return sched_group_rt_period(cgroup_tg(cgrp));
7927}
7928#endif /* CONFIG_RT_GROUP_SCHED */
7929
7930static struct cftype cpu_files[] = {
7931#ifdef CONFIG_FAIR_GROUP_SCHED
7932	{
7933		.name = "shares",
7934		.read_u64 = cpu_shares_read_u64,
7935		.write_u64 = cpu_shares_write_u64,
7936	},
7937#endif
7938#ifdef CONFIG_CFS_BANDWIDTH
7939	{
7940		.name = "cfs_quota_us",
7941		.read_s64 = cpu_cfs_quota_read_s64,
7942		.write_s64 = cpu_cfs_quota_write_s64,
7943	},
7944	{
7945		.name = "cfs_period_us",
7946		.read_u64 = cpu_cfs_period_read_u64,
7947		.write_u64 = cpu_cfs_period_write_u64,
7948	},
7949	{
7950		.name = "stat",
7951		.read_map = cpu_stats_show,
7952	},
7953#endif
7954#ifdef CONFIG_RT_GROUP_SCHED
7955	{
7956		.name = "rt_runtime_us",
7957		.read_s64 = cpu_rt_runtime_read,
7958		.write_s64 = cpu_rt_runtime_write,
7959	},
7960	{
7961		.name = "rt_period_us",
7962		.read_u64 = cpu_rt_period_read_uint,
7963		.write_u64 = cpu_rt_period_write_uint,
7964	},
7965#endif
7966};
7967
7968static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7969{
7970	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7971}
7972
7973struct cgroup_subsys cpu_cgroup_subsys = {
7974	.name		= "cpu",
7975	.create		= cpu_cgroup_create,
7976	.destroy	= cpu_cgroup_destroy,
7977	.can_attach	= cpu_cgroup_can_attach,
7978	.attach		= cpu_cgroup_attach,
7979	.exit		= cpu_cgroup_exit,
7980	.populate	= cpu_cgroup_populate,
7981	.subsys_id	= cpu_cgroup_subsys_id,
7982	.early_init	= 1,
7983};
7984
7985#endif	/* CONFIG_CGROUP_SCHED */
7986
7987#ifdef CONFIG_CGROUP_CPUACCT
7988
7989/*
7990 * CPU accounting code for task groups.
7991 *
7992 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7993 * (balbir@in.ibm.com).
7994 */
7995
7996/* create a new cpu accounting group */
7997static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7998{
7999	struct cpuacct *ca;
8000
8001	if (!cgrp->parent)
8002		return &root_cpuacct.css;
8003
8004	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8005	if (!ca)
8006		goto out;
8007
8008	ca->cpuusage = alloc_percpu(u64);
8009	if (!ca->cpuusage)
8010		goto out_free_ca;
8011
8012	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8013	if (!ca->cpustat)
8014		goto out_free_cpuusage;
8015
8016	return &ca->css;
8017
8018out_free_cpuusage:
8019	free_percpu(ca->cpuusage);
8020out_free_ca:
8021	kfree(ca);
8022out:
8023	return ERR_PTR(-ENOMEM);
8024}
8025
8026/* destroy an existing cpu accounting group */
8027static void cpuacct_destroy(struct cgroup *cgrp)
8028{
8029	struct cpuacct *ca = cgroup_ca(cgrp);
8030
8031	free_percpu(ca->cpustat);
8032	free_percpu(ca->cpuusage);
8033	kfree(ca);
8034}
8035
8036static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8037{
8038	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8039	u64 data;
8040
8041#ifndef CONFIG_64BIT
8042	/*
8043	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8044	 */
8045	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8046	data = *cpuusage;
8047	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8048#else
8049	data = *cpuusage;
8050#endif
8051
8052	return data;
8053}
8054
8055static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8056{
8057	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8058
8059#ifndef CONFIG_64BIT
8060	/*
8061	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8062	 */
8063	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8064	*cpuusage = val;
8065	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8066#else
8067	*cpuusage = val;
8068#endif
8069}
8070
8071/* return total cpu usage (in nanoseconds) of a group */
8072static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8073{
8074	struct cpuacct *ca = cgroup_ca(cgrp);
8075	u64 totalcpuusage = 0;
8076	int i;
8077
8078	for_each_present_cpu(i)
8079		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8080
8081	return totalcpuusage;
8082}
8083
8084static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8085								u64 reset)
8086{
8087	struct cpuacct *ca = cgroup_ca(cgrp);
8088	int err = 0;
8089	int i;
8090
8091	if (reset) {
8092		err = -EINVAL;
8093		goto out;
8094	}
8095
8096	for_each_present_cpu(i)
8097		cpuacct_cpuusage_write(ca, i, 0);
8098
8099out:
8100	return err;
8101}
8102
8103static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8104				   struct seq_file *m)
8105{
8106	struct cpuacct *ca = cgroup_ca(cgroup);
8107	u64 percpu;
8108	int i;
8109
8110	for_each_present_cpu(i) {
8111		percpu = cpuacct_cpuusage_read(ca, i);
8112		seq_printf(m, "%llu ", (unsigned long long) percpu);
8113	}
8114	seq_printf(m, "\n");
8115	return 0;
8116}
8117
8118static const char *cpuacct_stat_desc[] = {
8119	[CPUACCT_STAT_USER] = "user",
8120	[CPUACCT_STAT_SYSTEM] = "system",
8121};
8122
8123static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8124			      struct cgroup_map_cb *cb)
8125{
8126	struct cpuacct *ca = cgroup_ca(cgrp);
8127	int cpu;
8128	s64 val = 0;
8129
8130	for_each_online_cpu(cpu) {
8131		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8132		val += kcpustat->cpustat[CPUTIME_USER];
8133		val += kcpustat->cpustat[CPUTIME_NICE];
8134	}
8135	val = cputime64_to_clock_t(val);
8136	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8137
8138	val = 0;
8139	for_each_online_cpu(cpu) {
8140		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8141		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8142		val += kcpustat->cpustat[CPUTIME_IRQ];
8143		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8144	}
8145
8146	val = cputime64_to_clock_t(val);
8147	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8148
8149	return 0;
8150}
8151
8152static struct cftype files[] = {
8153	{
8154		.name = "usage",
8155		.read_u64 = cpuusage_read,
8156		.write_u64 = cpuusage_write,
8157	},
8158	{
8159		.name = "usage_percpu",
8160		.read_seq_string = cpuacct_percpu_seq_read,
8161	},
8162	{
8163		.name = "stat",
8164		.read_map = cpuacct_stats_show,
8165	},
8166};
8167
8168static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8169{
8170	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8171}
8172
8173/*
8174 * charge this task's execution time to its accounting group.
8175 *
8176 * called with rq->lock held.
8177 */
8178void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8179{
8180	struct cpuacct *ca;
8181	int cpu;
8182
8183	if (unlikely(!cpuacct_subsys.active))
8184		return;
8185
8186	cpu = task_cpu(tsk);
8187
8188	rcu_read_lock();
8189
8190	ca = task_ca(tsk);
8191
8192	for (; ca; ca = parent_ca(ca)) {
8193		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8194		*cpuusage += cputime;
8195	}
8196
8197	rcu_read_unlock();
8198}
8199
8200struct cgroup_subsys cpuacct_subsys = {
8201	.name = "cpuacct",
8202	.create = cpuacct_create,
8203	.destroy = cpuacct_destroy,
8204	.populate = cpuacct_populate,
8205	.subsys_id = cpuacct_subsys_id,
8206};
8207#endif	/* CONFIG_CGROUP_CPUACCT */
8208