core.c revision d8d28c8f00e84a72e8bee39a85835635417bee49
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96	smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104	smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110{
111	unsigned long delta;
112	ktime_t soft, hard, now;
113
114	for (;;) {
115		if (hrtimer_active(period_timer))
116			break;
117
118		now = hrtimer_cb_get_time(period_timer);
119		hrtimer_forward(period_timer, now, period);
120
121		soft = hrtimer_get_softexpires(period_timer);
122		hard = hrtimer_get_expires(period_timer);
123		delta = ktime_to_ns(ktime_sub(hard, soft));
124		__hrtimer_start_range_ns(period_timer, soft, delta,
125					 HRTIMER_MODE_ABS_PINNED, 0);
126	}
127}
128
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134void update_rq_clock(struct rq *rq)
135{
136	s64 delta;
137
138	if (rq->skip_clock_update > 0)
139		return;
140
141	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142	rq->clock += delta;
143	update_rq_clock_task(rq, delta);
144}
145
146/*
147 * Debugging: various feature bits
148 */
149
150#define SCHED_FEAT(name, enabled)	\
151	(1UL << __SCHED_FEAT_##name) * enabled |
152
153const_debug unsigned int sysctl_sched_features =
154#include "features.h"
155	0;
156
157#undef SCHED_FEAT
158
159#ifdef CONFIG_SCHED_DEBUG
160#define SCHED_FEAT(name, enabled)	\
161	#name ,
162
163static const char * const sched_feat_names[] = {
164#include "features.h"
165};
166
167#undef SCHED_FEAT
168
169static int sched_feat_show(struct seq_file *m, void *v)
170{
171	int i;
172
173	for (i = 0; i < __SCHED_FEAT_NR; i++) {
174		if (!(sysctl_sched_features & (1UL << i)))
175			seq_puts(m, "NO_");
176		seq_printf(m, "%s ", sched_feat_names[i]);
177	}
178	seq_puts(m, "\n");
179
180	return 0;
181}
182
183#ifdef HAVE_JUMP_LABEL
184
185#define jump_label_key__true  STATIC_KEY_INIT_TRUE
186#define jump_label_key__false STATIC_KEY_INIT_FALSE
187
188#define SCHED_FEAT(name, enabled)	\
189	jump_label_key__##enabled ,
190
191struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192#include "features.h"
193};
194
195#undef SCHED_FEAT
196
197static void sched_feat_disable(int i)
198{
199	if (static_key_enabled(&sched_feat_keys[i]))
200		static_key_slow_dec(&sched_feat_keys[i]);
201}
202
203static void sched_feat_enable(int i)
204{
205	if (!static_key_enabled(&sched_feat_keys[i]))
206		static_key_slow_inc(&sched_feat_keys[i]);
207}
208#else
209static void sched_feat_disable(int i) { };
210static void sched_feat_enable(int i) { };
211#endif /* HAVE_JUMP_LABEL */
212
213static int sched_feat_set(char *cmp)
214{
215	int i;
216	int neg = 0;
217
218	if (strncmp(cmp, "NO_", 3) == 0) {
219		neg = 1;
220		cmp += 3;
221	}
222
223	for (i = 0; i < __SCHED_FEAT_NR; i++) {
224		if (strcmp(cmp, sched_feat_names[i]) == 0) {
225			if (neg) {
226				sysctl_sched_features &= ~(1UL << i);
227				sched_feat_disable(i);
228			} else {
229				sysctl_sched_features |= (1UL << i);
230				sched_feat_enable(i);
231			}
232			break;
233		}
234	}
235
236	return i;
237}
238
239static ssize_t
240sched_feat_write(struct file *filp, const char __user *ubuf,
241		size_t cnt, loff_t *ppos)
242{
243	char buf[64];
244	char *cmp;
245	int i;
246
247	if (cnt > 63)
248		cnt = 63;
249
250	if (copy_from_user(&buf, ubuf, cnt))
251		return -EFAULT;
252
253	buf[cnt] = 0;
254	cmp = strstrip(buf);
255
256	i = sched_feat_set(cmp);
257	if (i == __SCHED_FEAT_NR)
258		return -EINVAL;
259
260	*ppos += cnt;
261
262	return cnt;
263}
264
265static int sched_feat_open(struct inode *inode, struct file *filp)
266{
267	return single_open(filp, sched_feat_show, NULL);
268}
269
270static const struct file_operations sched_feat_fops = {
271	.open		= sched_feat_open,
272	.write		= sched_feat_write,
273	.read		= seq_read,
274	.llseek		= seq_lseek,
275	.release	= single_release,
276};
277
278static __init int sched_init_debug(void)
279{
280	debugfs_create_file("sched_features", 0644, NULL, NULL,
281			&sched_feat_fops);
282
283	return 0;
284}
285late_initcall(sched_init_debug);
286#endif /* CONFIG_SCHED_DEBUG */
287
288/*
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
291 */
292const_debug unsigned int sysctl_sched_nr_migrate = 32;
293
294/*
295 * period over which we average the RT time consumption, measured
296 * in ms.
297 *
298 * default: 1s
299 */
300const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301
302/*
303 * period over which we measure -rt task cpu usage in us.
304 * default: 1s
305 */
306unsigned int sysctl_sched_rt_period = 1000000;
307
308__read_mostly int scheduler_running;
309
310/*
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
313 */
314int sysctl_sched_rt_runtime = 950000;
315
316/*
317 * __task_rq_lock - lock the rq @p resides on.
318 */
319static inline struct rq *__task_rq_lock(struct task_struct *p)
320	__acquires(rq->lock)
321{
322	struct rq *rq;
323
324	lockdep_assert_held(&p->pi_lock);
325
326	for (;;) {
327		rq = task_rq(p);
328		raw_spin_lock(&rq->lock);
329		if (likely(rq == task_rq(p)))
330			return rq;
331		raw_spin_unlock(&rq->lock);
332	}
333}
334
335/*
336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
337 */
338static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339	__acquires(p->pi_lock)
340	__acquires(rq->lock)
341{
342	struct rq *rq;
343
344	for (;;) {
345		raw_spin_lock_irqsave(&p->pi_lock, *flags);
346		rq = task_rq(p);
347		raw_spin_lock(&rq->lock);
348		if (likely(rq == task_rq(p)))
349			return rq;
350		raw_spin_unlock(&rq->lock);
351		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352	}
353}
354
355static void __task_rq_unlock(struct rq *rq)
356	__releases(rq->lock)
357{
358	raw_spin_unlock(&rq->lock);
359}
360
361static inline void
362task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363	__releases(rq->lock)
364	__releases(p->pi_lock)
365{
366	raw_spin_unlock(&rq->lock);
367	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
368}
369
370/*
371 * this_rq_lock - lock this runqueue and disable interrupts.
372 */
373static struct rq *this_rq_lock(void)
374	__acquires(rq->lock)
375{
376	struct rq *rq;
377
378	local_irq_disable();
379	rq = this_rq();
380	raw_spin_lock(&rq->lock);
381
382	return rq;
383}
384
385#ifdef CONFIG_SCHED_HRTICK
386/*
387 * Use HR-timers to deliver accurate preemption points.
388 */
389
390static void hrtick_clear(struct rq *rq)
391{
392	if (hrtimer_active(&rq->hrtick_timer))
393		hrtimer_cancel(&rq->hrtick_timer);
394}
395
396/*
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
399 */
400static enum hrtimer_restart hrtick(struct hrtimer *timer)
401{
402	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403
404	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405
406	raw_spin_lock(&rq->lock);
407	update_rq_clock(rq);
408	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409	raw_spin_unlock(&rq->lock);
410
411	return HRTIMER_NORESTART;
412}
413
414#ifdef CONFIG_SMP
415
416static int __hrtick_restart(struct rq *rq)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = hrtimer_get_softexpires(timer);
420
421	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422}
423
424/*
425 * called from hardirq (IPI) context
426 */
427static void __hrtick_start(void *arg)
428{
429	struct rq *rq = arg;
430
431	raw_spin_lock(&rq->lock);
432	__hrtick_restart(rq);
433	rq->hrtick_csd_pending = 0;
434	raw_spin_unlock(&rq->lock);
435}
436
437/*
438 * Called to set the hrtick timer state.
439 *
440 * called with rq->lock held and irqs disabled
441 */
442void hrtick_start(struct rq *rq, u64 delay)
443{
444	struct hrtimer *timer = &rq->hrtick_timer;
445	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446
447	hrtimer_set_expires(timer, time);
448
449	if (rq == this_rq()) {
450		__hrtick_restart(rq);
451	} else if (!rq->hrtick_csd_pending) {
452		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453		rq->hrtick_csd_pending = 1;
454	}
455}
456
457static int
458hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459{
460	int cpu = (int)(long)hcpu;
461
462	switch (action) {
463	case CPU_UP_CANCELED:
464	case CPU_UP_CANCELED_FROZEN:
465	case CPU_DOWN_PREPARE:
466	case CPU_DOWN_PREPARE_FROZEN:
467	case CPU_DEAD:
468	case CPU_DEAD_FROZEN:
469		hrtick_clear(cpu_rq(cpu));
470		return NOTIFY_OK;
471	}
472
473	return NOTIFY_DONE;
474}
475
476static __init void init_hrtick(void)
477{
478	hotcpu_notifier(hotplug_hrtick, 0);
479}
480#else
481/*
482 * Called to set the hrtick timer state.
483 *
484 * called with rq->lock held and irqs disabled
485 */
486void hrtick_start(struct rq *rq, u64 delay)
487{
488	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489			HRTIMER_MODE_REL_PINNED, 0);
490}
491
492static inline void init_hrtick(void)
493{
494}
495#endif /* CONFIG_SMP */
496
497static void init_rq_hrtick(struct rq *rq)
498{
499#ifdef CONFIG_SMP
500	rq->hrtick_csd_pending = 0;
501
502	rq->hrtick_csd.flags = 0;
503	rq->hrtick_csd.func = __hrtick_start;
504	rq->hrtick_csd.info = rq;
505#endif
506
507	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508	rq->hrtick_timer.function = hrtick;
509}
510#else	/* CONFIG_SCHED_HRTICK */
511static inline void hrtick_clear(struct rq *rq)
512{
513}
514
515static inline void init_rq_hrtick(struct rq *rq)
516{
517}
518
519static inline void init_hrtick(void)
520{
521}
522#endif	/* CONFIG_SCHED_HRTICK */
523
524/*
525 * cmpxchg based fetch_or, macro so it works for different integer types
526 */
527#define fetch_or(ptr, val)						\
528({	typeof(*(ptr)) __old, __val = *(ptr);				\
529 	for (;;) {							\
530 		__old = cmpxchg((ptr), __val, __val | (val));		\
531 		if (__old == __val)					\
532 			break;						\
533 		__val = __old;						\
534 	}								\
535 	__old;								\
536})
537
538#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
539/*
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
542 * spurious IPIs.
543 */
544static bool set_nr_and_not_polling(struct task_struct *p)
545{
546	struct thread_info *ti = task_thread_info(p);
547	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548}
549
550/*
551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
552 *
553 * If this returns true, then the idle task promises to call
554 * sched_ttwu_pending() and reschedule soon.
555 */
556static bool set_nr_if_polling(struct task_struct *p)
557{
558	struct thread_info *ti = task_thread_info(p);
559	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
560
561	for (;;) {
562		if (!(val & _TIF_POLLING_NRFLAG))
563			return false;
564		if (val & _TIF_NEED_RESCHED)
565			return true;
566		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
567		if (old == val)
568			break;
569		val = old;
570	}
571	return true;
572}
573
574#else
575static bool set_nr_and_not_polling(struct task_struct *p)
576{
577	set_tsk_need_resched(p);
578	return true;
579}
580
581#ifdef CONFIG_SMP
582static bool set_nr_if_polling(struct task_struct *p)
583{
584	return false;
585}
586#endif
587#endif
588
589/*
590 * resched_task - mark a task 'to be rescheduled now'.
591 *
592 * On UP this means the setting of the need_resched flag, on SMP it
593 * might also involve a cross-CPU call to trigger the scheduler on
594 * the target CPU.
595 */
596void resched_task(struct task_struct *p)
597{
598	int cpu;
599
600	lockdep_assert_held(&task_rq(p)->lock);
601
602	if (test_tsk_need_resched(p))
603		return;
604
605	cpu = task_cpu(p);
606
607	if (cpu == smp_processor_id()) {
608		set_tsk_need_resched(p);
609		set_preempt_need_resched();
610		return;
611	}
612
613	if (set_nr_and_not_polling(p))
614		smp_send_reschedule(cpu);
615	else
616		trace_sched_wake_idle_without_ipi(cpu);
617}
618
619void resched_cpu(int cpu)
620{
621	struct rq *rq = cpu_rq(cpu);
622	unsigned long flags;
623
624	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
625		return;
626	resched_task(cpu_curr(cpu));
627	raw_spin_unlock_irqrestore(&rq->lock, flags);
628}
629
630#ifdef CONFIG_SMP
631#ifdef CONFIG_NO_HZ_COMMON
632/*
633 * In the semi idle case, use the nearest busy cpu for migrating timers
634 * from an idle cpu.  This is good for power-savings.
635 *
636 * We don't do similar optimization for completely idle system, as
637 * selecting an idle cpu will add more delays to the timers than intended
638 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
639 */
640int get_nohz_timer_target(int pinned)
641{
642	int cpu = smp_processor_id();
643	int i;
644	struct sched_domain *sd;
645
646	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
647		return cpu;
648
649	rcu_read_lock();
650	for_each_domain(cpu, sd) {
651		for_each_cpu(i, sched_domain_span(sd)) {
652			if (!idle_cpu(i)) {
653				cpu = i;
654				goto unlock;
655			}
656		}
657	}
658unlock:
659	rcu_read_unlock();
660	return cpu;
661}
662/*
663 * When add_timer_on() enqueues a timer into the timer wheel of an
664 * idle CPU then this timer might expire before the next timer event
665 * which is scheduled to wake up that CPU. In case of a completely
666 * idle system the next event might even be infinite time into the
667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668 * leaves the inner idle loop so the newly added timer is taken into
669 * account when the CPU goes back to idle and evaluates the timer
670 * wheel for the next timer event.
671 */
672static void wake_up_idle_cpu(int cpu)
673{
674	struct rq *rq = cpu_rq(cpu);
675
676	if (cpu == smp_processor_id())
677		return;
678
679	if (set_nr_and_not_polling(rq->idle))
680		smp_send_reschedule(cpu);
681	else
682		trace_sched_wake_idle_without_ipi(cpu);
683}
684
685static bool wake_up_full_nohz_cpu(int cpu)
686{
687	if (tick_nohz_full_cpu(cpu)) {
688		if (cpu != smp_processor_id() ||
689		    tick_nohz_tick_stopped())
690			smp_send_reschedule(cpu);
691		return true;
692	}
693
694	return false;
695}
696
697void wake_up_nohz_cpu(int cpu)
698{
699	if (!wake_up_full_nohz_cpu(cpu))
700		wake_up_idle_cpu(cpu);
701}
702
703static inline bool got_nohz_idle_kick(void)
704{
705	int cpu = smp_processor_id();
706
707	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
708		return false;
709
710	if (idle_cpu(cpu) && !need_resched())
711		return true;
712
713	/*
714	 * We can't run Idle Load Balance on this CPU for this time so we
715	 * cancel it and clear NOHZ_BALANCE_KICK
716	 */
717	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
718	return false;
719}
720
721#else /* CONFIG_NO_HZ_COMMON */
722
723static inline bool got_nohz_idle_kick(void)
724{
725	return false;
726}
727
728#endif /* CONFIG_NO_HZ_COMMON */
729
730#ifdef CONFIG_NO_HZ_FULL
731bool sched_can_stop_tick(void)
732{
733       struct rq *rq;
734
735       rq = this_rq();
736
737       /* Make sure rq->nr_running update is visible after the IPI */
738       smp_rmb();
739
740       /* More than one running task need preemption */
741       if (rq->nr_running > 1)
742               return false;
743
744       return true;
745}
746#endif /* CONFIG_NO_HZ_FULL */
747
748void sched_avg_update(struct rq *rq)
749{
750	s64 period = sched_avg_period();
751
752	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753		/*
754		 * Inline assembly required to prevent the compiler
755		 * optimising this loop into a divmod call.
756		 * See __iter_div_u64_rem() for another example of this.
757		 */
758		asm("" : "+rm" (rq->age_stamp));
759		rq->age_stamp += period;
760		rq->rt_avg /= 2;
761	}
762}
763
764#endif /* CONFIG_SMP */
765
766#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768/*
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
771 *
772 * Caller must hold rcu_lock or sufficient equivalent.
773 */
774int walk_tg_tree_from(struct task_group *from,
775			     tg_visitor down, tg_visitor up, void *data)
776{
777	struct task_group *parent, *child;
778	int ret;
779
780	parent = from;
781
782down:
783	ret = (*down)(parent, data);
784	if (ret)
785		goto out;
786	list_for_each_entry_rcu(child, &parent->children, siblings) {
787		parent = child;
788		goto down;
789
790up:
791		continue;
792	}
793	ret = (*up)(parent, data);
794	if (ret || parent == from)
795		goto out;
796
797	child = parent;
798	parent = parent->parent;
799	if (parent)
800		goto up;
801out:
802	return ret;
803}
804
805int tg_nop(struct task_group *tg, void *data)
806{
807	return 0;
808}
809#endif
810
811static void set_load_weight(struct task_struct *p)
812{
813	int prio = p->static_prio - MAX_RT_PRIO;
814	struct load_weight *load = &p->se.load;
815
816	/*
817	 * SCHED_IDLE tasks get minimal weight:
818	 */
819	if (p->policy == SCHED_IDLE) {
820		load->weight = scale_load(WEIGHT_IDLEPRIO);
821		load->inv_weight = WMULT_IDLEPRIO;
822		return;
823	}
824
825	load->weight = scale_load(prio_to_weight[prio]);
826	load->inv_weight = prio_to_wmult[prio];
827}
828
829static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830{
831	update_rq_clock(rq);
832	sched_info_queued(rq, p);
833	p->sched_class->enqueue_task(rq, p, flags);
834}
835
836static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837{
838	update_rq_clock(rq);
839	sched_info_dequeued(rq, p);
840	p->sched_class->dequeue_task(rq, p, flags);
841}
842
843void activate_task(struct rq *rq, struct task_struct *p, int flags)
844{
845	if (task_contributes_to_load(p))
846		rq->nr_uninterruptible--;
847
848	enqueue_task(rq, p, flags);
849}
850
851void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852{
853	if (task_contributes_to_load(p))
854		rq->nr_uninterruptible++;
855
856	dequeue_task(rq, p, flags);
857}
858
859static void update_rq_clock_task(struct rq *rq, s64 delta)
860{
861/*
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
864 */
865#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866	s64 steal = 0, irq_delta = 0;
867#endif
868#ifdef CONFIG_IRQ_TIME_ACCOUNTING
869	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870
871	/*
872	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873	 * this case when a previous update_rq_clock() happened inside a
874	 * {soft,}irq region.
875	 *
876	 * When this happens, we stop ->clock_task and only update the
877	 * prev_irq_time stamp to account for the part that fit, so that a next
878	 * update will consume the rest. This ensures ->clock_task is
879	 * monotonic.
880	 *
881	 * It does however cause some slight miss-attribution of {soft,}irq
882	 * time, a more accurate solution would be to update the irq_time using
883	 * the current rq->clock timestamp, except that would require using
884	 * atomic ops.
885	 */
886	if (irq_delta > delta)
887		irq_delta = delta;
888
889	rq->prev_irq_time += irq_delta;
890	delta -= irq_delta;
891#endif
892#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893	if (static_key_false((&paravirt_steal_rq_enabled))) {
894		steal = paravirt_steal_clock(cpu_of(rq));
895		steal -= rq->prev_steal_time_rq;
896
897		if (unlikely(steal > delta))
898			steal = delta;
899
900		rq->prev_steal_time_rq += steal;
901		delta -= steal;
902	}
903#endif
904
905	rq->clock_task += delta;
906
907#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909		sched_rt_avg_update(rq, irq_delta + steal);
910#endif
911}
912
913void sched_set_stop_task(int cpu, struct task_struct *stop)
914{
915	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916	struct task_struct *old_stop = cpu_rq(cpu)->stop;
917
918	if (stop) {
919		/*
920		 * Make it appear like a SCHED_FIFO task, its something
921		 * userspace knows about and won't get confused about.
922		 *
923		 * Also, it will make PI more or less work without too
924		 * much confusion -- but then, stop work should not
925		 * rely on PI working anyway.
926		 */
927		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928
929		stop->sched_class = &stop_sched_class;
930	}
931
932	cpu_rq(cpu)->stop = stop;
933
934	if (old_stop) {
935		/*
936		 * Reset it back to a normal scheduling class so that
937		 * it can die in pieces.
938		 */
939		old_stop->sched_class = &rt_sched_class;
940	}
941}
942
943/*
944 * __normal_prio - return the priority that is based on the static prio
945 */
946static inline int __normal_prio(struct task_struct *p)
947{
948	return p->static_prio;
949}
950
951/*
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
957 */
958static inline int normal_prio(struct task_struct *p)
959{
960	int prio;
961
962	if (task_has_dl_policy(p))
963		prio = MAX_DL_PRIO-1;
964	else if (task_has_rt_policy(p))
965		prio = MAX_RT_PRIO-1 - p->rt_priority;
966	else
967		prio = __normal_prio(p);
968	return prio;
969}
970
971/*
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
977 */
978static int effective_prio(struct task_struct *p)
979{
980	p->normal_prio = normal_prio(p);
981	/*
982	 * If we are RT tasks or we were boosted to RT priority,
983	 * keep the priority unchanged. Otherwise, update priority
984	 * to the normal priority:
985	 */
986	if (!rt_prio(p->prio))
987		return p->normal_prio;
988	return p->prio;
989}
990
991/**
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
994 *
995 * Return: 1 if the task is currently executing. 0 otherwise.
996 */
997inline int task_curr(const struct task_struct *p)
998{
999	return cpu_curr(task_cpu(p)) == p;
1000}
1001
1002static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1003				       const struct sched_class *prev_class,
1004				       int oldprio)
1005{
1006	if (prev_class != p->sched_class) {
1007		if (prev_class->switched_from)
1008			prev_class->switched_from(rq, p);
1009		p->sched_class->switched_to(rq, p);
1010	} else if (oldprio != p->prio || dl_task(p))
1011		p->sched_class->prio_changed(rq, p, oldprio);
1012}
1013
1014void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1015{
1016	const struct sched_class *class;
1017
1018	if (p->sched_class == rq->curr->sched_class) {
1019		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1020	} else {
1021		for_each_class(class) {
1022			if (class == rq->curr->sched_class)
1023				break;
1024			if (class == p->sched_class) {
1025				resched_task(rq->curr);
1026				break;
1027			}
1028		}
1029	}
1030
1031	/*
1032	 * A queue event has occurred, and we're going to schedule.  In
1033	 * this case, we can save a useless back to back clock update.
1034	 */
1035	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1036		rq->skip_clock_update = 1;
1037}
1038
1039#ifdef CONFIG_SMP
1040void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1041{
1042#ifdef CONFIG_SCHED_DEBUG
1043	/*
1044	 * We should never call set_task_cpu() on a blocked task,
1045	 * ttwu() will sort out the placement.
1046	 */
1047	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1048			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1049
1050#ifdef CONFIG_LOCKDEP
1051	/*
1052	 * The caller should hold either p->pi_lock or rq->lock, when changing
1053	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1054	 *
1055	 * sched_move_task() holds both and thus holding either pins the cgroup,
1056	 * see task_group().
1057	 *
1058	 * Furthermore, all task_rq users should acquire both locks, see
1059	 * task_rq_lock().
1060	 */
1061	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1062				      lockdep_is_held(&task_rq(p)->lock)));
1063#endif
1064#endif
1065
1066	trace_sched_migrate_task(p, new_cpu);
1067
1068	if (task_cpu(p) != new_cpu) {
1069		if (p->sched_class->migrate_task_rq)
1070			p->sched_class->migrate_task_rq(p, new_cpu);
1071		p->se.nr_migrations++;
1072		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1073	}
1074
1075	__set_task_cpu(p, new_cpu);
1076}
1077
1078static void __migrate_swap_task(struct task_struct *p, int cpu)
1079{
1080	if (p->on_rq) {
1081		struct rq *src_rq, *dst_rq;
1082
1083		src_rq = task_rq(p);
1084		dst_rq = cpu_rq(cpu);
1085
1086		deactivate_task(src_rq, p, 0);
1087		set_task_cpu(p, cpu);
1088		activate_task(dst_rq, p, 0);
1089		check_preempt_curr(dst_rq, p, 0);
1090	} else {
1091		/*
1092		 * Task isn't running anymore; make it appear like we migrated
1093		 * it before it went to sleep. This means on wakeup we make the
1094		 * previous cpu our targer instead of where it really is.
1095		 */
1096		p->wake_cpu = cpu;
1097	}
1098}
1099
1100struct migration_swap_arg {
1101	struct task_struct *src_task, *dst_task;
1102	int src_cpu, dst_cpu;
1103};
1104
1105static int migrate_swap_stop(void *data)
1106{
1107	struct migration_swap_arg *arg = data;
1108	struct rq *src_rq, *dst_rq;
1109	int ret = -EAGAIN;
1110
1111	src_rq = cpu_rq(arg->src_cpu);
1112	dst_rq = cpu_rq(arg->dst_cpu);
1113
1114	double_raw_lock(&arg->src_task->pi_lock,
1115			&arg->dst_task->pi_lock);
1116	double_rq_lock(src_rq, dst_rq);
1117	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1118		goto unlock;
1119
1120	if (task_cpu(arg->src_task) != arg->src_cpu)
1121		goto unlock;
1122
1123	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1124		goto unlock;
1125
1126	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1127		goto unlock;
1128
1129	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1130	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1131
1132	ret = 0;
1133
1134unlock:
1135	double_rq_unlock(src_rq, dst_rq);
1136	raw_spin_unlock(&arg->dst_task->pi_lock);
1137	raw_spin_unlock(&arg->src_task->pi_lock);
1138
1139	return ret;
1140}
1141
1142/*
1143 * Cross migrate two tasks
1144 */
1145int migrate_swap(struct task_struct *cur, struct task_struct *p)
1146{
1147	struct migration_swap_arg arg;
1148	int ret = -EINVAL;
1149
1150	arg = (struct migration_swap_arg){
1151		.src_task = cur,
1152		.src_cpu = task_cpu(cur),
1153		.dst_task = p,
1154		.dst_cpu = task_cpu(p),
1155	};
1156
1157	if (arg.src_cpu == arg.dst_cpu)
1158		goto out;
1159
1160	/*
1161	 * These three tests are all lockless; this is OK since all of them
1162	 * will be re-checked with proper locks held further down the line.
1163	 */
1164	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1165		goto out;
1166
1167	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1168		goto out;
1169
1170	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1171		goto out;
1172
1173	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1174	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1175
1176out:
1177	return ret;
1178}
1179
1180struct migration_arg {
1181	struct task_struct *task;
1182	int dest_cpu;
1183};
1184
1185static int migration_cpu_stop(void *data);
1186
1187/*
1188 * wait_task_inactive - wait for a thread to unschedule.
1189 *
1190 * If @match_state is nonzero, it's the @p->state value just checked and
1191 * not expected to change.  If it changes, i.e. @p might have woken up,
1192 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1193 * we return a positive number (its total switch count).  If a second call
1194 * a short while later returns the same number, the caller can be sure that
1195 * @p has remained unscheduled the whole time.
1196 *
1197 * The caller must ensure that the task *will* unschedule sometime soon,
1198 * else this function might spin for a *long* time. This function can't
1199 * be called with interrupts off, or it may introduce deadlock with
1200 * smp_call_function() if an IPI is sent by the same process we are
1201 * waiting to become inactive.
1202 */
1203unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1204{
1205	unsigned long flags;
1206	int running, on_rq;
1207	unsigned long ncsw;
1208	struct rq *rq;
1209
1210	for (;;) {
1211		/*
1212		 * We do the initial early heuristics without holding
1213		 * any task-queue locks at all. We'll only try to get
1214		 * the runqueue lock when things look like they will
1215		 * work out!
1216		 */
1217		rq = task_rq(p);
1218
1219		/*
1220		 * If the task is actively running on another CPU
1221		 * still, just relax and busy-wait without holding
1222		 * any locks.
1223		 *
1224		 * NOTE! Since we don't hold any locks, it's not
1225		 * even sure that "rq" stays as the right runqueue!
1226		 * But we don't care, since "task_running()" will
1227		 * return false if the runqueue has changed and p
1228		 * is actually now running somewhere else!
1229		 */
1230		while (task_running(rq, p)) {
1231			if (match_state && unlikely(p->state != match_state))
1232				return 0;
1233			cpu_relax();
1234		}
1235
1236		/*
1237		 * Ok, time to look more closely! We need the rq
1238		 * lock now, to be *sure*. If we're wrong, we'll
1239		 * just go back and repeat.
1240		 */
1241		rq = task_rq_lock(p, &flags);
1242		trace_sched_wait_task(p);
1243		running = task_running(rq, p);
1244		on_rq = p->on_rq;
1245		ncsw = 0;
1246		if (!match_state || p->state == match_state)
1247			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1248		task_rq_unlock(rq, p, &flags);
1249
1250		/*
1251		 * If it changed from the expected state, bail out now.
1252		 */
1253		if (unlikely(!ncsw))
1254			break;
1255
1256		/*
1257		 * Was it really running after all now that we
1258		 * checked with the proper locks actually held?
1259		 *
1260		 * Oops. Go back and try again..
1261		 */
1262		if (unlikely(running)) {
1263			cpu_relax();
1264			continue;
1265		}
1266
1267		/*
1268		 * It's not enough that it's not actively running,
1269		 * it must be off the runqueue _entirely_, and not
1270		 * preempted!
1271		 *
1272		 * So if it was still runnable (but just not actively
1273		 * running right now), it's preempted, and we should
1274		 * yield - it could be a while.
1275		 */
1276		if (unlikely(on_rq)) {
1277			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1278
1279			set_current_state(TASK_UNINTERRUPTIBLE);
1280			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1281			continue;
1282		}
1283
1284		/*
1285		 * Ahh, all good. It wasn't running, and it wasn't
1286		 * runnable, which means that it will never become
1287		 * running in the future either. We're all done!
1288		 */
1289		break;
1290	}
1291
1292	return ncsw;
1293}
1294
1295/***
1296 * kick_process - kick a running thread to enter/exit the kernel
1297 * @p: the to-be-kicked thread
1298 *
1299 * Cause a process which is running on another CPU to enter
1300 * kernel-mode, without any delay. (to get signals handled.)
1301 *
1302 * NOTE: this function doesn't have to take the runqueue lock,
1303 * because all it wants to ensure is that the remote task enters
1304 * the kernel. If the IPI races and the task has been migrated
1305 * to another CPU then no harm is done and the purpose has been
1306 * achieved as well.
1307 */
1308void kick_process(struct task_struct *p)
1309{
1310	int cpu;
1311
1312	preempt_disable();
1313	cpu = task_cpu(p);
1314	if ((cpu != smp_processor_id()) && task_curr(p))
1315		smp_send_reschedule(cpu);
1316	preempt_enable();
1317}
1318EXPORT_SYMBOL_GPL(kick_process);
1319#endif /* CONFIG_SMP */
1320
1321#ifdef CONFIG_SMP
1322/*
1323 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1324 */
1325static int select_fallback_rq(int cpu, struct task_struct *p)
1326{
1327	int nid = cpu_to_node(cpu);
1328	const struct cpumask *nodemask = NULL;
1329	enum { cpuset, possible, fail } state = cpuset;
1330	int dest_cpu;
1331
1332	/*
1333	 * If the node that the cpu is on has been offlined, cpu_to_node()
1334	 * will return -1. There is no cpu on the node, and we should
1335	 * select the cpu on the other node.
1336	 */
1337	if (nid != -1) {
1338		nodemask = cpumask_of_node(nid);
1339
1340		/* Look for allowed, online CPU in same node. */
1341		for_each_cpu(dest_cpu, nodemask) {
1342			if (!cpu_online(dest_cpu))
1343				continue;
1344			if (!cpu_active(dest_cpu))
1345				continue;
1346			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1347				return dest_cpu;
1348		}
1349	}
1350
1351	for (;;) {
1352		/* Any allowed, online CPU? */
1353		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1354			if (!cpu_online(dest_cpu))
1355				continue;
1356			if (!cpu_active(dest_cpu))
1357				continue;
1358			goto out;
1359		}
1360
1361		switch (state) {
1362		case cpuset:
1363			/* No more Mr. Nice Guy. */
1364			cpuset_cpus_allowed_fallback(p);
1365			state = possible;
1366			break;
1367
1368		case possible:
1369			do_set_cpus_allowed(p, cpu_possible_mask);
1370			state = fail;
1371			break;
1372
1373		case fail:
1374			BUG();
1375			break;
1376		}
1377	}
1378
1379out:
1380	if (state != cpuset) {
1381		/*
1382		 * Don't tell them about moving exiting tasks or
1383		 * kernel threads (both mm NULL), since they never
1384		 * leave kernel.
1385		 */
1386		if (p->mm && printk_ratelimit()) {
1387			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1388					task_pid_nr(p), p->comm, cpu);
1389		}
1390	}
1391
1392	return dest_cpu;
1393}
1394
1395/*
1396 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1397 */
1398static inline
1399int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1400{
1401	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1402
1403	/*
1404	 * In order not to call set_task_cpu() on a blocking task we need
1405	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1406	 * cpu.
1407	 *
1408	 * Since this is common to all placement strategies, this lives here.
1409	 *
1410	 * [ this allows ->select_task() to simply return task_cpu(p) and
1411	 *   not worry about this generic constraint ]
1412	 */
1413	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1414		     !cpu_online(cpu)))
1415		cpu = select_fallback_rq(task_cpu(p), p);
1416
1417	return cpu;
1418}
1419
1420static void update_avg(u64 *avg, u64 sample)
1421{
1422	s64 diff = sample - *avg;
1423	*avg += diff >> 3;
1424}
1425#endif
1426
1427static void
1428ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1429{
1430#ifdef CONFIG_SCHEDSTATS
1431	struct rq *rq = this_rq();
1432
1433#ifdef CONFIG_SMP
1434	int this_cpu = smp_processor_id();
1435
1436	if (cpu == this_cpu) {
1437		schedstat_inc(rq, ttwu_local);
1438		schedstat_inc(p, se.statistics.nr_wakeups_local);
1439	} else {
1440		struct sched_domain *sd;
1441
1442		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1443		rcu_read_lock();
1444		for_each_domain(this_cpu, sd) {
1445			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1446				schedstat_inc(sd, ttwu_wake_remote);
1447				break;
1448			}
1449		}
1450		rcu_read_unlock();
1451	}
1452
1453	if (wake_flags & WF_MIGRATED)
1454		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1455
1456#endif /* CONFIG_SMP */
1457
1458	schedstat_inc(rq, ttwu_count);
1459	schedstat_inc(p, se.statistics.nr_wakeups);
1460
1461	if (wake_flags & WF_SYNC)
1462		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1463
1464#endif /* CONFIG_SCHEDSTATS */
1465}
1466
1467static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1468{
1469	activate_task(rq, p, en_flags);
1470	p->on_rq = 1;
1471
1472	/* if a worker is waking up, notify workqueue */
1473	if (p->flags & PF_WQ_WORKER)
1474		wq_worker_waking_up(p, cpu_of(rq));
1475}
1476
1477/*
1478 * Mark the task runnable and perform wakeup-preemption.
1479 */
1480static void
1481ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1482{
1483	check_preempt_curr(rq, p, wake_flags);
1484	trace_sched_wakeup(p, true);
1485
1486	p->state = TASK_RUNNING;
1487#ifdef CONFIG_SMP
1488	if (p->sched_class->task_woken)
1489		p->sched_class->task_woken(rq, p);
1490
1491	if (rq->idle_stamp) {
1492		u64 delta = rq_clock(rq) - rq->idle_stamp;
1493		u64 max = 2*rq->max_idle_balance_cost;
1494
1495		update_avg(&rq->avg_idle, delta);
1496
1497		if (rq->avg_idle > max)
1498			rq->avg_idle = max;
1499
1500		rq->idle_stamp = 0;
1501	}
1502#endif
1503}
1504
1505static void
1506ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1507{
1508#ifdef CONFIG_SMP
1509	if (p->sched_contributes_to_load)
1510		rq->nr_uninterruptible--;
1511#endif
1512
1513	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1514	ttwu_do_wakeup(rq, p, wake_flags);
1515}
1516
1517/*
1518 * Called in case the task @p isn't fully descheduled from its runqueue,
1519 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1520 * since all we need to do is flip p->state to TASK_RUNNING, since
1521 * the task is still ->on_rq.
1522 */
1523static int ttwu_remote(struct task_struct *p, int wake_flags)
1524{
1525	struct rq *rq;
1526	int ret = 0;
1527
1528	rq = __task_rq_lock(p);
1529	if (p->on_rq) {
1530		/* check_preempt_curr() may use rq clock */
1531		update_rq_clock(rq);
1532		ttwu_do_wakeup(rq, p, wake_flags);
1533		ret = 1;
1534	}
1535	__task_rq_unlock(rq);
1536
1537	return ret;
1538}
1539
1540#ifdef CONFIG_SMP
1541void sched_ttwu_pending(void)
1542{
1543	struct rq *rq = this_rq();
1544	struct llist_node *llist = llist_del_all(&rq->wake_list);
1545	struct task_struct *p;
1546	unsigned long flags;
1547
1548	if (!llist)
1549		return;
1550
1551	raw_spin_lock_irqsave(&rq->lock, flags);
1552
1553	while (llist) {
1554		p = llist_entry(llist, struct task_struct, wake_entry);
1555		llist = llist_next(llist);
1556		ttwu_do_activate(rq, p, 0);
1557	}
1558
1559	raw_spin_unlock_irqrestore(&rq->lock, flags);
1560}
1561
1562void scheduler_ipi(void)
1563{
1564	/*
1565	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1566	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1567	 * this IPI.
1568	 */
1569	preempt_fold_need_resched();
1570
1571	if (llist_empty(&this_rq()->wake_list)
1572			&& !tick_nohz_full_cpu(smp_processor_id())
1573			&& !got_nohz_idle_kick())
1574		return;
1575
1576	/*
1577	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1578	 * traditionally all their work was done from the interrupt return
1579	 * path. Now that we actually do some work, we need to make sure
1580	 * we do call them.
1581	 *
1582	 * Some archs already do call them, luckily irq_enter/exit nest
1583	 * properly.
1584	 *
1585	 * Arguably we should visit all archs and update all handlers,
1586	 * however a fair share of IPIs are still resched only so this would
1587	 * somewhat pessimize the simple resched case.
1588	 */
1589	irq_enter();
1590	tick_nohz_full_check();
1591	sched_ttwu_pending();
1592
1593	/*
1594	 * Check if someone kicked us for doing the nohz idle load balance.
1595	 */
1596	if (unlikely(got_nohz_idle_kick())) {
1597		this_rq()->idle_balance = 1;
1598		raise_softirq_irqoff(SCHED_SOFTIRQ);
1599	}
1600	irq_exit();
1601}
1602
1603static void ttwu_queue_remote(struct task_struct *p, int cpu)
1604{
1605	struct rq *rq = cpu_rq(cpu);
1606
1607	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1608		if (!set_nr_if_polling(rq->idle))
1609			smp_send_reschedule(cpu);
1610		else
1611			trace_sched_wake_idle_without_ipi(cpu);
1612	}
1613}
1614
1615bool cpus_share_cache(int this_cpu, int that_cpu)
1616{
1617	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1618}
1619#endif /* CONFIG_SMP */
1620
1621static void ttwu_queue(struct task_struct *p, int cpu)
1622{
1623	struct rq *rq = cpu_rq(cpu);
1624
1625#if defined(CONFIG_SMP)
1626	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1627		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1628		ttwu_queue_remote(p, cpu);
1629		return;
1630	}
1631#endif
1632
1633	raw_spin_lock(&rq->lock);
1634	ttwu_do_activate(rq, p, 0);
1635	raw_spin_unlock(&rq->lock);
1636}
1637
1638/**
1639 * try_to_wake_up - wake up a thread
1640 * @p: the thread to be awakened
1641 * @state: the mask of task states that can be woken
1642 * @wake_flags: wake modifier flags (WF_*)
1643 *
1644 * Put it on the run-queue if it's not already there. The "current"
1645 * thread is always on the run-queue (except when the actual
1646 * re-schedule is in progress), and as such you're allowed to do
1647 * the simpler "current->state = TASK_RUNNING" to mark yourself
1648 * runnable without the overhead of this.
1649 *
1650 * Return: %true if @p was woken up, %false if it was already running.
1651 * or @state didn't match @p's state.
1652 */
1653static int
1654try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1655{
1656	unsigned long flags;
1657	int cpu, success = 0;
1658
1659	/*
1660	 * If we are going to wake up a thread waiting for CONDITION we
1661	 * need to ensure that CONDITION=1 done by the caller can not be
1662	 * reordered with p->state check below. This pairs with mb() in
1663	 * set_current_state() the waiting thread does.
1664	 */
1665	smp_mb__before_spinlock();
1666	raw_spin_lock_irqsave(&p->pi_lock, flags);
1667	if (!(p->state & state))
1668		goto out;
1669
1670	success = 1; /* we're going to change ->state */
1671	cpu = task_cpu(p);
1672
1673	if (p->on_rq && ttwu_remote(p, wake_flags))
1674		goto stat;
1675
1676#ifdef CONFIG_SMP
1677	/*
1678	 * If the owning (remote) cpu is still in the middle of schedule() with
1679	 * this task as prev, wait until its done referencing the task.
1680	 */
1681	while (p->on_cpu)
1682		cpu_relax();
1683	/*
1684	 * Pairs with the smp_wmb() in finish_lock_switch().
1685	 */
1686	smp_rmb();
1687
1688	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1689	p->state = TASK_WAKING;
1690
1691	if (p->sched_class->task_waking)
1692		p->sched_class->task_waking(p);
1693
1694	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1695	if (task_cpu(p) != cpu) {
1696		wake_flags |= WF_MIGRATED;
1697		set_task_cpu(p, cpu);
1698	}
1699#endif /* CONFIG_SMP */
1700
1701	ttwu_queue(p, cpu);
1702stat:
1703	ttwu_stat(p, cpu, wake_flags);
1704out:
1705	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1706
1707	return success;
1708}
1709
1710/**
1711 * try_to_wake_up_local - try to wake up a local task with rq lock held
1712 * @p: the thread to be awakened
1713 *
1714 * Put @p on the run-queue if it's not already there. The caller must
1715 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1716 * the current task.
1717 */
1718static void try_to_wake_up_local(struct task_struct *p)
1719{
1720	struct rq *rq = task_rq(p);
1721
1722	if (WARN_ON_ONCE(rq != this_rq()) ||
1723	    WARN_ON_ONCE(p == current))
1724		return;
1725
1726	lockdep_assert_held(&rq->lock);
1727
1728	if (!raw_spin_trylock(&p->pi_lock)) {
1729		raw_spin_unlock(&rq->lock);
1730		raw_spin_lock(&p->pi_lock);
1731		raw_spin_lock(&rq->lock);
1732	}
1733
1734	if (!(p->state & TASK_NORMAL))
1735		goto out;
1736
1737	if (!p->on_rq)
1738		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1739
1740	ttwu_do_wakeup(rq, p, 0);
1741	ttwu_stat(p, smp_processor_id(), 0);
1742out:
1743	raw_spin_unlock(&p->pi_lock);
1744}
1745
1746/**
1747 * wake_up_process - Wake up a specific process
1748 * @p: The process to be woken up.
1749 *
1750 * Attempt to wake up the nominated process and move it to the set of runnable
1751 * processes.
1752 *
1753 * Return: 1 if the process was woken up, 0 if it was already running.
1754 *
1755 * It may be assumed that this function implies a write memory barrier before
1756 * changing the task state if and only if any tasks are woken up.
1757 */
1758int wake_up_process(struct task_struct *p)
1759{
1760	WARN_ON(task_is_stopped_or_traced(p));
1761	return try_to_wake_up(p, TASK_NORMAL, 0);
1762}
1763EXPORT_SYMBOL(wake_up_process);
1764
1765int wake_up_state(struct task_struct *p, unsigned int state)
1766{
1767	return try_to_wake_up(p, state, 0);
1768}
1769
1770/*
1771 * Perform scheduler related setup for a newly forked process p.
1772 * p is forked by current.
1773 *
1774 * __sched_fork() is basic setup used by init_idle() too:
1775 */
1776static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1777{
1778	p->on_rq			= 0;
1779
1780	p->se.on_rq			= 0;
1781	p->se.exec_start		= 0;
1782	p->se.sum_exec_runtime		= 0;
1783	p->se.prev_sum_exec_runtime	= 0;
1784	p->se.nr_migrations		= 0;
1785	p->se.vruntime			= 0;
1786	INIT_LIST_HEAD(&p->se.group_node);
1787
1788#ifdef CONFIG_SCHEDSTATS
1789	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1790#endif
1791
1792	RB_CLEAR_NODE(&p->dl.rb_node);
1793	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1794	p->dl.dl_runtime = p->dl.runtime = 0;
1795	p->dl.dl_deadline = p->dl.deadline = 0;
1796	p->dl.dl_period = 0;
1797	p->dl.flags = 0;
1798
1799	INIT_LIST_HEAD(&p->rt.run_list);
1800
1801#ifdef CONFIG_PREEMPT_NOTIFIERS
1802	INIT_HLIST_HEAD(&p->preempt_notifiers);
1803#endif
1804
1805#ifdef CONFIG_NUMA_BALANCING
1806	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808		p->mm->numa_scan_seq = 0;
1809	}
1810
1811	if (clone_flags & CLONE_VM)
1812		p->numa_preferred_nid = current->numa_preferred_nid;
1813	else
1814		p->numa_preferred_nid = -1;
1815
1816	p->node_stamp = 0ULL;
1817	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819	p->numa_work.next = &p->numa_work;
1820	p->numa_faults_memory = NULL;
1821	p->numa_faults_buffer_memory = NULL;
1822	p->last_task_numa_placement = 0;
1823	p->last_sum_exec_runtime = 0;
1824
1825	INIT_LIST_HEAD(&p->numa_entry);
1826	p->numa_group = NULL;
1827#endif /* CONFIG_NUMA_BALANCING */
1828}
1829
1830#ifdef CONFIG_NUMA_BALANCING
1831#ifdef CONFIG_SCHED_DEBUG
1832void set_numabalancing_state(bool enabled)
1833{
1834	if (enabled)
1835		sched_feat_set("NUMA");
1836	else
1837		sched_feat_set("NO_NUMA");
1838}
1839#else
1840__read_mostly bool numabalancing_enabled;
1841
1842void set_numabalancing_state(bool enabled)
1843{
1844	numabalancing_enabled = enabled;
1845}
1846#endif /* CONFIG_SCHED_DEBUG */
1847
1848#ifdef CONFIG_PROC_SYSCTL
1849int sysctl_numa_balancing(struct ctl_table *table, int write,
1850			 void __user *buffer, size_t *lenp, loff_t *ppos)
1851{
1852	struct ctl_table t;
1853	int err;
1854	int state = numabalancing_enabled;
1855
1856	if (write && !capable(CAP_SYS_ADMIN))
1857		return -EPERM;
1858
1859	t = *table;
1860	t.data = &state;
1861	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1862	if (err < 0)
1863		return err;
1864	if (write)
1865		set_numabalancing_state(state);
1866	return err;
1867}
1868#endif
1869#endif
1870
1871/*
1872 * fork()/clone()-time setup:
1873 */
1874int sched_fork(unsigned long clone_flags, struct task_struct *p)
1875{
1876	unsigned long flags;
1877	int cpu = get_cpu();
1878
1879	__sched_fork(clone_flags, p);
1880	/*
1881	 * We mark the process as running here. This guarantees that
1882	 * nobody will actually run it, and a signal or other external
1883	 * event cannot wake it up and insert it on the runqueue either.
1884	 */
1885	p->state = TASK_RUNNING;
1886
1887	/*
1888	 * Make sure we do not leak PI boosting priority to the child.
1889	 */
1890	p->prio = current->normal_prio;
1891
1892	/*
1893	 * Revert to default priority/policy on fork if requested.
1894	 */
1895	if (unlikely(p->sched_reset_on_fork)) {
1896		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1897			p->policy = SCHED_NORMAL;
1898			p->static_prio = NICE_TO_PRIO(0);
1899			p->rt_priority = 0;
1900		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1901			p->static_prio = NICE_TO_PRIO(0);
1902
1903		p->prio = p->normal_prio = __normal_prio(p);
1904		set_load_weight(p);
1905
1906		/*
1907		 * We don't need the reset flag anymore after the fork. It has
1908		 * fulfilled its duty:
1909		 */
1910		p->sched_reset_on_fork = 0;
1911	}
1912
1913	if (dl_prio(p->prio)) {
1914		put_cpu();
1915		return -EAGAIN;
1916	} else if (rt_prio(p->prio)) {
1917		p->sched_class = &rt_sched_class;
1918	} else {
1919		p->sched_class = &fair_sched_class;
1920	}
1921
1922	if (p->sched_class->task_fork)
1923		p->sched_class->task_fork(p);
1924
1925	/*
1926	 * The child is not yet in the pid-hash so no cgroup attach races,
1927	 * and the cgroup is pinned to this child due to cgroup_fork()
1928	 * is ran before sched_fork().
1929	 *
1930	 * Silence PROVE_RCU.
1931	 */
1932	raw_spin_lock_irqsave(&p->pi_lock, flags);
1933	set_task_cpu(p, cpu);
1934	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1935
1936#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1937	if (likely(sched_info_on()))
1938		memset(&p->sched_info, 0, sizeof(p->sched_info));
1939#endif
1940#if defined(CONFIG_SMP)
1941	p->on_cpu = 0;
1942#endif
1943	init_task_preempt_count(p);
1944#ifdef CONFIG_SMP
1945	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1946	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1947#endif
1948
1949	put_cpu();
1950	return 0;
1951}
1952
1953unsigned long to_ratio(u64 period, u64 runtime)
1954{
1955	if (runtime == RUNTIME_INF)
1956		return 1ULL << 20;
1957
1958	/*
1959	 * Doing this here saves a lot of checks in all
1960	 * the calling paths, and returning zero seems
1961	 * safe for them anyway.
1962	 */
1963	if (period == 0)
1964		return 0;
1965
1966	return div64_u64(runtime << 20, period);
1967}
1968
1969#ifdef CONFIG_SMP
1970inline struct dl_bw *dl_bw_of(int i)
1971{
1972	return &cpu_rq(i)->rd->dl_bw;
1973}
1974
1975static inline int dl_bw_cpus(int i)
1976{
1977	struct root_domain *rd = cpu_rq(i)->rd;
1978	int cpus = 0;
1979
1980	for_each_cpu_and(i, rd->span, cpu_active_mask)
1981		cpus++;
1982
1983	return cpus;
1984}
1985#else
1986inline struct dl_bw *dl_bw_of(int i)
1987{
1988	return &cpu_rq(i)->dl.dl_bw;
1989}
1990
1991static inline int dl_bw_cpus(int i)
1992{
1993	return 1;
1994}
1995#endif
1996
1997static inline
1998void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1999{
2000	dl_b->total_bw -= tsk_bw;
2001}
2002
2003static inline
2004void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2005{
2006	dl_b->total_bw += tsk_bw;
2007}
2008
2009static inline
2010bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2011{
2012	return dl_b->bw != -1 &&
2013	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2014}
2015
2016/*
2017 * We must be sure that accepting a new task (or allowing changing the
2018 * parameters of an existing one) is consistent with the bandwidth
2019 * constraints. If yes, this function also accordingly updates the currently
2020 * allocated bandwidth to reflect the new situation.
2021 *
2022 * This function is called while holding p's rq->lock.
2023 */
2024static int dl_overflow(struct task_struct *p, int policy,
2025		       const struct sched_attr *attr)
2026{
2027
2028	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2029	u64 period = attr->sched_period ?: attr->sched_deadline;
2030	u64 runtime = attr->sched_runtime;
2031	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2032	int cpus, err = -1;
2033
2034	if (new_bw == p->dl.dl_bw)
2035		return 0;
2036
2037	/*
2038	 * Either if a task, enters, leave, or stays -deadline but changes
2039	 * its parameters, we may need to update accordingly the total
2040	 * allocated bandwidth of the container.
2041	 */
2042	raw_spin_lock(&dl_b->lock);
2043	cpus = dl_bw_cpus(task_cpu(p));
2044	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2045	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2046		__dl_add(dl_b, new_bw);
2047		err = 0;
2048	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2049		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2050		__dl_clear(dl_b, p->dl.dl_bw);
2051		__dl_add(dl_b, new_bw);
2052		err = 0;
2053	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2054		__dl_clear(dl_b, p->dl.dl_bw);
2055		err = 0;
2056	}
2057	raw_spin_unlock(&dl_b->lock);
2058
2059	return err;
2060}
2061
2062extern void init_dl_bw(struct dl_bw *dl_b);
2063
2064/*
2065 * wake_up_new_task - wake up a newly created task for the first time.
2066 *
2067 * This function will do some initial scheduler statistics housekeeping
2068 * that must be done for every newly created context, then puts the task
2069 * on the runqueue and wakes it.
2070 */
2071void wake_up_new_task(struct task_struct *p)
2072{
2073	unsigned long flags;
2074	struct rq *rq;
2075
2076	raw_spin_lock_irqsave(&p->pi_lock, flags);
2077#ifdef CONFIG_SMP
2078	/*
2079	 * Fork balancing, do it here and not earlier because:
2080	 *  - cpus_allowed can change in the fork path
2081	 *  - any previously selected cpu might disappear through hotplug
2082	 */
2083	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2084#endif
2085
2086	/* Initialize new task's runnable average */
2087	init_task_runnable_average(p);
2088	rq = __task_rq_lock(p);
2089	activate_task(rq, p, 0);
2090	p->on_rq = 1;
2091	trace_sched_wakeup_new(p, true);
2092	check_preempt_curr(rq, p, WF_FORK);
2093#ifdef CONFIG_SMP
2094	if (p->sched_class->task_woken)
2095		p->sched_class->task_woken(rq, p);
2096#endif
2097	task_rq_unlock(rq, p, &flags);
2098}
2099
2100#ifdef CONFIG_PREEMPT_NOTIFIERS
2101
2102/**
2103 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2104 * @notifier: notifier struct to register
2105 */
2106void preempt_notifier_register(struct preempt_notifier *notifier)
2107{
2108	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2109}
2110EXPORT_SYMBOL_GPL(preempt_notifier_register);
2111
2112/**
2113 * preempt_notifier_unregister - no longer interested in preemption notifications
2114 * @notifier: notifier struct to unregister
2115 *
2116 * This is safe to call from within a preemption notifier.
2117 */
2118void preempt_notifier_unregister(struct preempt_notifier *notifier)
2119{
2120	hlist_del(&notifier->link);
2121}
2122EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2123
2124static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2125{
2126	struct preempt_notifier *notifier;
2127
2128	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2129		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2130}
2131
2132static void
2133fire_sched_out_preempt_notifiers(struct task_struct *curr,
2134				 struct task_struct *next)
2135{
2136	struct preempt_notifier *notifier;
2137
2138	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2139		notifier->ops->sched_out(notifier, next);
2140}
2141
2142#else /* !CONFIG_PREEMPT_NOTIFIERS */
2143
2144static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2145{
2146}
2147
2148static void
2149fire_sched_out_preempt_notifiers(struct task_struct *curr,
2150				 struct task_struct *next)
2151{
2152}
2153
2154#endif /* CONFIG_PREEMPT_NOTIFIERS */
2155
2156/**
2157 * prepare_task_switch - prepare to switch tasks
2158 * @rq: the runqueue preparing to switch
2159 * @prev: the current task that is being switched out
2160 * @next: the task we are going to switch to.
2161 *
2162 * This is called with the rq lock held and interrupts off. It must
2163 * be paired with a subsequent finish_task_switch after the context
2164 * switch.
2165 *
2166 * prepare_task_switch sets up locking and calls architecture specific
2167 * hooks.
2168 */
2169static inline void
2170prepare_task_switch(struct rq *rq, struct task_struct *prev,
2171		    struct task_struct *next)
2172{
2173	trace_sched_switch(prev, next);
2174	sched_info_switch(rq, prev, next);
2175	perf_event_task_sched_out(prev, next);
2176	fire_sched_out_preempt_notifiers(prev, next);
2177	prepare_lock_switch(rq, next);
2178	prepare_arch_switch(next);
2179}
2180
2181/**
2182 * finish_task_switch - clean up after a task-switch
2183 * @rq: runqueue associated with task-switch
2184 * @prev: the thread we just switched away from.
2185 *
2186 * finish_task_switch must be called after the context switch, paired
2187 * with a prepare_task_switch call before the context switch.
2188 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2189 * and do any other architecture-specific cleanup actions.
2190 *
2191 * Note that we may have delayed dropping an mm in context_switch(). If
2192 * so, we finish that here outside of the runqueue lock. (Doing it
2193 * with the lock held can cause deadlocks; see schedule() for
2194 * details.)
2195 */
2196static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2197	__releases(rq->lock)
2198{
2199	struct mm_struct *mm = rq->prev_mm;
2200	long prev_state;
2201
2202	rq->prev_mm = NULL;
2203
2204	/*
2205	 * A task struct has one reference for the use as "current".
2206	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2207	 * schedule one last time. The schedule call will never return, and
2208	 * the scheduled task must drop that reference.
2209	 * The test for TASK_DEAD must occur while the runqueue locks are
2210	 * still held, otherwise prev could be scheduled on another cpu, die
2211	 * there before we look at prev->state, and then the reference would
2212	 * be dropped twice.
2213	 *		Manfred Spraul <manfred@colorfullife.com>
2214	 */
2215	prev_state = prev->state;
2216	vtime_task_switch(prev);
2217	finish_arch_switch(prev);
2218	perf_event_task_sched_in(prev, current);
2219	finish_lock_switch(rq, prev);
2220	finish_arch_post_lock_switch();
2221
2222	fire_sched_in_preempt_notifiers(current);
2223	if (mm)
2224		mmdrop(mm);
2225	if (unlikely(prev_state == TASK_DEAD)) {
2226		if (prev->sched_class->task_dead)
2227			prev->sched_class->task_dead(prev);
2228
2229		/*
2230		 * Remove function-return probe instances associated with this
2231		 * task and put them back on the free list.
2232		 */
2233		kprobe_flush_task(prev);
2234		put_task_struct(prev);
2235	}
2236
2237	tick_nohz_task_switch(current);
2238}
2239
2240#ifdef CONFIG_SMP
2241
2242/* rq->lock is NOT held, but preemption is disabled */
2243static inline void post_schedule(struct rq *rq)
2244{
2245	if (rq->post_schedule) {
2246		unsigned long flags;
2247
2248		raw_spin_lock_irqsave(&rq->lock, flags);
2249		if (rq->curr->sched_class->post_schedule)
2250			rq->curr->sched_class->post_schedule(rq);
2251		raw_spin_unlock_irqrestore(&rq->lock, flags);
2252
2253		rq->post_schedule = 0;
2254	}
2255}
2256
2257#else
2258
2259static inline void post_schedule(struct rq *rq)
2260{
2261}
2262
2263#endif
2264
2265/**
2266 * schedule_tail - first thing a freshly forked thread must call.
2267 * @prev: the thread we just switched away from.
2268 */
2269asmlinkage __visible void schedule_tail(struct task_struct *prev)
2270	__releases(rq->lock)
2271{
2272	struct rq *rq = this_rq();
2273
2274	finish_task_switch(rq, prev);
2275
2276	/*
2277	 * FIXME: do we need to worry about rq being invalidated by the
2278	 * task_switch?
2279	 */
2280	post_schedule(rq);
2281
2282#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2283	/* In this case, finish_task_switch does not reenable preemption */
2284	preempt_enable();
2285#endif
2286	if (current->set_child_tid)
2287		put_user(task_pid_vnr(current), current->set_child_tid);
2288}
2289
2290/*
2291 * context_switch - switch to the new MM and the new
2292 * thread's register state.
2293 */
2294static inline void
2295context_switch(struct rq *rq, struct task_struct *prev,
2296	       struct task_struct *next)
2297{
2298	struct mm_struct *mm, *oldmm;
2299
2300	prepare_task_switch(rq, prev, next);
2301
2302	mm = next->mm;
2303	oldmm = prev->active_mm;
2304	/*
2305	 * For paravirt, this is coupled with an exit in switch_to to
2306	 * combine the page table reload and the switch backend into
2307	 * one hypercall.
2308	 */
2309	arch_start_context_switch(prev);
2310
2311	if (!mm) {
2312		next->active_mm = oldmm;
2313		atomic_inc(&oldmm->mm_count);
2314		enter_lazy_tlb(oldmm, next);
2315	} else
2316		switch_mm(oldmm, mm, next);
2317
2318	if (!prev->mm) {
2319		prev->active_mm = NULL;
2320		rq->prev_mm = oldmm;
2321	}
2322	/*
2323	 * Since the runqueue lock will be released by the next
2324	 * task (which is an invalid locking op but in the case
2325	 * of the scheduler it's an obvious special-case), so we
2326	 * do an early lockdep release here:
2327	 */
2328#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2329	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2330#endif
2331
2332	context_tracking_task_switch(prev, next);
2333	/* Here we just switch the register state and the stack. */
2334	switch_to(prev, next, prev);
2335
2336	barrier();
2337	/*
2338	 * this_rq must be evaluated again because prev may have moved
2339	 * CPUs since it called schedule(), thus the 'rq' on its stack
2340	 * frame will be invalid.
2341	 */
2342	finish_task_switch(this_rq(), prev);
2343}
2344
2345/*
2346 * nr_running and nr_context_switches:
2347 *
2348 * externally visible scheduler statistics: current number of runnable
2349 * threads, total number of context switches performed since bootup.
2350 */
2351unsigned long nr_running(void)
2352{
2353	unsigned long i, sum = 0;
2354
2355	for_each_online_cpu(i)
2356		sum += cpu_rq(i)->nr_running;
2357
2358	return sum;
2359}
2360
2361unsigned long long nr_context_switches(void)
2362{
2363	int i;
2364	unsigned long long sum = 0;
2365
2366	for_each_possible_cpu(i)
2367		sum += cpu_rq(i)->nr_switches;
2368
2369	return sum;
2370}
2371
2372unsigned long nr_iowait(void)
2373{
2374	unsigned long i, sum = 0;
2375
2376	for_each_possible_cpu(i)
2377		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2378
2379	return sum;
2380}
2381
2382unsigned long nr_iowait_cpu(int cpu)
2383{
2384	struct rq *this = cpu_rq(cpu);
2385	return atomic_read(&this->nr_iowait);
2386}
2387
2388#ifdef CONFIG_SMP
2389
2390/*
2391 * sched_exec - execve() is a valuable balancing opportunity, because at
2392 * this point the task has the smallest effective memory and cache footprint.
2393 */
2394void sched_exec(void)
2395{
2396	struct task_struct *p = current;
2397	unsigned long flags;
2398	int dest_cpu;
2399
2400	raw_spin_lock_irqsave(&p->pi_lock, flags);
2401	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2402	if (dest_cpu == smp_processor_id())
2403		goto unlock;
2404
2405	if (likely(cpu_active(dest_cpu))) {
2406		struct migration_arg arg = { p, dest_cpu };
2407
2408		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2409		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2410		return;
2411	}
2412unlock:
2413	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2414}
2415
2416#endif
2417
2418DEFINE_PER_CPU(struct kernel_stat, kstat);
2419DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2420
2421EXPORT_PER_CPU_SYMBOL(kstat);
2422EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2423
2424/*
2425 * Return any ns on the sched_clock that have not yet been accounted in
2426 * @p in case that task is currently running.
2427 *
2428 * Called with task_rq_lock() held on @rq.
2429 */
2430static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2431{
2432	u64 ns = 0;
2433
2434	if (task_current(rq, p)) {
2435		update_rq_clock(rq);
2436		ns = rq_clock_task(rq) - p->se.exec_start;
2437		if ((s64)ns < 0)
2438			ns = 0;
2439	}
2440
2441	return ns;
2442}
2443
2444unsigned long long task_delta_exec(struct task_struct *p)
2445{
2446	unsigned long flags;
2447	struct rq *rq;
2448	u64 ns = 0;
2449
2450	rq = task_rq_lock(p, &flags);
2451	ns = do_task_delta_exec(p, rq);
2452	task_rq_unlock(rq, p, &flags);
2453
2454	return ns;
2455}
2456
2457/*
2458 * Return accounted runtime for the task.
2459 * In case the task is currently running, return the runtime plus current's
2460 * pending runtime that have not been accounted yet.
2461 */
2462unsigned long long task_sched_runtime(struct task_struct *p)
2463{
2464	unsigned long flags;
2465	struct rq *rq;
2466	u64 ns = 0;
2467
2468#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2469	/*
2470	 * 64-bit doesn't need locks to atomically read a 64bit value.
2471	 * So we have a optimization chance when the task's delta_exec is 0.
2472	 * Reading ->on_cpu is racy, but this is ok.
2473	 *
2474	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2475	 * If we race with it entering cpu, unaccounted time is 0. This is
2476	 * indistinguishable from the read occurring a few cycles earlier.
2477	 */
2478	if (!p->on_cpu)
2479		return p->se.sum_exec_runtime;
2480#endif
2481
2482	rq = task_rq_lock(p, &flags);
2483	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2484	task_rq_unlock(rq, p, &flags);
2485
2486	return ns;
2487}
2488
2489/*
2490 * This function gets called by the timer code, with HZ frequency.
2491 * We call it with interrupts disabled.
2492 */
2493void scheduler_tick(void)
2494{
2495	int cpu = smp_processor_id();
2496	struct rq *rq = cpu_rq(cpu);
2497	struct task_struct *curr = rq->curr;
2498
2499	sched_clock_tick();
2500
2501	raw_spin_lock(&rq->lock);
2502	update_rq_clock(rq);
2503	curr->sched_class->task_tick(rq, curr, 0);
2504	update_cpu_load_active(rq);
2505	raw_spin_unlock(&rq->lock);
2506
2507	perf_event_task_tick();
2508
2509#ifdef CONFIG_SMP
2510	rq->idle_balance = idle_cpu(cpu);
2511	trigger_load_balance(rq);
2512#endif
2513	rq_last_tick_reset(rq);
2514}
2515
2516#ifdef CONFIG_NO_HZ_FULL
2517/**
2518 * scheduler_tick_max_deferment
2519 *
2520 * Keep at least one tick per second when a single
2521 * active task is running because the scheduler doesn't
2522 * yet completely support full dynticks environment.
2523 *
2524 * This makes sure that uptime, CFS vruntime, load
2525 * balancing, etc... continue to move forward, even
2526 * with a very low granularity.
2527 *
2528 * Return: Maximum deferment in nanoseconds.
2529 */
2530u64 scheduler_tick_max_deferment(void)
2531{
2532	struct rq *rq = this_rq();
2533	unsigned long next, now = ACCESS_ONCE(jiffies);
2534
2535	next = rq->last_sched_tick + HZ;
2536
2537	if (time_before_eq(next, now))
2538		return 0;
2539
2540	return jiffies_to_nsecs(next - now);
2541}
2542#endif
2543
2544notrace unsigned long get_parent_ip(unsigned long addr)
2545{
2546	if (in_lock_functions(addr)) {
2547		addr = CALLER_ADDR2;
2548		if (in_lock_functions(addr))
2549			addr = CALLER_ADDR3;
2550	}
2551	return addr;
2552}
2553
2554#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2555				defined(CONFIG_PREEMPT_TRACER))
2556
2557void preempt_count_add(int val)
2558{
2559#ifdef CONFIG_DEBUG_PREEMPT
2560	/*
2561	 * Underflow?
2562	 */
2563	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2564		return;
2565#endif
2566	__preempt_count_add(val);
2567#ifdef CONFIG_DEBUG_PREEMPT
2568	/*
2569	 * Spinlock count overflowing soon?
2570	 */
2571	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2572				PREEMPT_MASK - 10);
2573#endif
2574	if (preempt_count() == val) {
2575		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2576#ifdef CONFIG_DEBUG_PREEMPT
2577		current->preempt_disable_ip = ip;
2578#endif
2579		trace_preempt_off(CALLER_ADDR0, ip);
2580	}
2581}
2582EXPORT_SYMBOL(preempt_count_add);
2583NOKPROBE_SYMBOL(preempt_count_add);
2584
2585void preempt_count_sub(int val)
2586{
2587#ifdef CONFIG_DEBUG_PREEMPT
2588	/*
2589	 * Underflow?
2590	 */
2591	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2592		return;
2593	/*
2594	 * Is the spinlock portion underflowing?
2595	 */
2596	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2597			!(preempt_count() & PREEMPT_MASK)))
2598		return;
2599#endif
2600
2601	if (preempt_count() == val)
2602		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2603	__preempt_count_sub(val);
2604}
2605EXPORT_SYMBOL(preempt_count_sub);
2606NOKPROBE_SYMBOL(preempt_count_sub);
2607
2608#endif
2609
2610/*
2611 * Print scheduling while atomic bug:
2612 */
2613static noinline void __schedule_bug(struct task_struct *prev)
2614{
2615	if (oops_in_progress)
2616		return;
2617
2618	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2619		prev->comm, prev->pid, preempt_count());
2620
2621	debug_show_held_locks(prev);
2622	print_modules();
2623	if (irqs_disabled())
2624		print_irqtrace_events(prev);
2625#ifdef CONFIG_DEBUG_PREEMPT
2626	if (in_atomic_preempt_off()) {
2627		pr_err("Preemption disabled at:");
2628		print_ip_sym(current->preempt_disable_ip);
2629		pr_cont("\n");
2630	}
2631#endif
2632	dump_stack();
2633	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2634}
2635
2636/*
2637 * Various schedule()-time debugging checks and statistics:
2638 */
2639static inline void schedule_debug(struct task_struct *prev)
2640{
2641	/*
2642	 * Test if we are atomic. Since do_exit() needs to call into
2643	 * schedule() atomically, we ignore that path. Otherwise whine
2644	 * if we are scheduling when we should not.
2645	 */
2646	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2647		__schedule_bug(prev);
2648	rcu_sleep_check();
2649
2650	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2651
2652	schedstat_inc(this_rq(), sched_count);
2653}
2654
2655/*
2656 * Pick up the highest-prio task:
2657 */
2658static inline struct task_struct *
2659pick_next_task(struct rq *rq, struct task_struct *prev)
2660{
2661	const struct sched_class *class = &fair_sched_class;
2662	struct task_struct *p;
2663
2664	/*
2665	 * Optimization: we know that if all tasks are in
2666	 * the fair class we can call that function directly:
2667	 */
2668	if (likely(prev->sched_class == class &&
2669		   rq->nr_running == rq->cfs.h_nr_running)) {
2670		p = fair_sched_class.pick_next_task(rq, prev);
2671		if (unlikely(p == RETRY_TASK))
2672			goto again;
2673
2674		/* assumes fair_sched_class->next == idle_sched_class */
2675		if (unlikely(!p))
2676			p = idle_sched_class.pick_next_task(rq, prev);
2677
2678		return p;
2679	}
2680
2681again:
2682	for_each_class(class) {
2683		p = class->pick_next_task(rq, prev);
2684		if (p) {
2685			if (unlikely(p == RETRY_TASK))
2686				goto again;
2687			return p;
2688		}
2689	}
2690
2691	BUG(); /* the idle class will always have a runnable task */
2692}
2693
2694/*
2695 * __schedule() is the main scheduler function.
2696 *
2697 * The main means of driving the scheduler and thus entering this function are:
2698 *
2699 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2700 *
2701 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2702 *      paths. For example, see arch/x86/entry_64.S.
2703 *
2704 *      To drive preemption between tasks, the scheduler sets the flag in timer
2705 *      interrupt handler scheduler_tick().
2706 *
2707 *   3. Wakeups don't really cause entry into schedule(). They add a
2708 *      task to the run-queue and that's it.
2709 *
2710 *      Now, if the new task added to the run-queue preempts the current
2711 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2712 *      called on the nearest possible occasion:
2713 *
2714 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2715 *
2716 *         - in syscall or exception context, at the next outmost
2717 *           preempt_enable(). (this might be as soon as the wake_up()'s
2718 *           spin_unlock()!)
2719 *
2720 *         - in IRQ context, return from interrupt-handler to
2721 *           preemptible context
2722 *
2723 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2724 *         then at the next:
2725 *
2726 *          - cond_resched() call
2727 *          - explicit schedule() call
2728 *          - return from syscall or exception to user-space
2729 *          - return from interrupt-handler to user-space
2730 */
2731static void __sched __schedule(void)
2732{
2733	struct task_struct *prev, *next;
2734	unsigned long *switch_count;
2735	struct rq *rq;
2736	int cpu;
2737
2738need_resched:
2739	preempt_disable();
2740	cpu = smp_processor_id();
2741	rq = cpu_rq(cpu);
2742	rcu_note_context_switch(cpu);
2743	prev = rq->curr;
2744
2745	schedule_debug(prev);
2746
2747	if (sched_feat(HRTICK))
2748		hrtick_clear(rq);
2749
2750	/*
2751	 * Make sure that signal_pending_state()->signal_pending() below
2752	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2753	 * done by the caller to avoid the race with signal_wake_up().
2754	 */
2755	smp_mb__before_spinlock();
2756	raw_spin_lock_irq(&rq->lock);
2757
2758	switch_count = &prev->nivcsw;
2759	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2760		if (unlikely(signal_pending_state(prev->state, prev))) {
2761			prev->state = TASK_RUNNING;
2762		} else {
2763			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2764			prev->on_rq = 0;
2765
2766			/*
2767			 * If a worker went to sleep, notify and ask workqueue
2768			 * whether it wants to wake up a task to maintain
2769			 * concurrency.
2770			 */
2771			if (prev->flags & PF_WQ_WORKER) {
2772				struct task_struct *to_wakeup;
2773
2774				to_wakeup = wq_worker_sleeping(prev, cpu);
2775				if (to_wakeup)
2776					try_to_wake_up_local(to_wakeup);
2777			}
2778		}
2779		switch_count = &prev->nvcsw;
2780	}
2781
2782	if (prev->on_rq || rq->skip_clock_update < 0)
2783		update_rq_clock(rq);
2784
2785	next = pick_next_task(rq, prev);
2786	clear_tsk_need_resched(prev);
2787	clear_preempt_need_resched();
2788	rq->skip_clock_update = 0;
2789
2790	if (likely(prev != next)) {
2791		rq->nr_switches++;
2792		rq->curr = next;
2793		++*switch_count;
2794
2795		context_switch(rq, prev, next); /* unlocks the rq */
2796		/*
2797		 * The context switch have flipped the stack from under us
2798		 * and restored the local variables which were saved when
2799		 * this task called schedule() in the past. prev == current
2800		 * is still correct, but it can be moved to another cpu/rq.
2801		 */
2802		cpu = smp_processor_id();
2803		rq = cpu_rq(cpu);
2804	} else
2805		raw_spin_unlock_irq(&rq->lock);
2806
2807	post_schedule(rq);
2808
2809	sched_preempt_enable_no_resched();
2810	if (need_resched())
2811		goto need_resched;
2812}
2813
2814static inline void sched_submit_work(struct task_struct *tsk)
2815{
2816	if (!tsk->state || tsk_is_pi_blocked(tsk))
2817		return;
2818	/*
2819	 * If we are going to sleep and we have plugged IO queued,
2820	 * make sure to submit it to avoid deadlocks.
2821	 */
2822	if (blk_needs_flush_plug(tsk))
2823		blk_schedule_flush_plug(tsk);
2824}
2825
2826asmlinkage __visible void __sched schedule(void)
2827{
2828	struct task_struct *tsk = current;
2829
2830	sched_submit_work(tsk);
2831	__schedule();
2832}
2833EXPORT_SYMBOL(schedule);
2834
2835#ifdef CONFIG_CONTEXT_TRACKING
2836asmlinkage __visible void __sched schedule_user(void)
2837{
2838	/*
2839	 * If we come here after a random call to set_need_resched(),
2840	 * or we have been woken up remotely but the IPI has not yet arrived,
2841	 * we haven't yet exited the RCU idle mode. Do it here manually until
2842	 * we find a better solution.
2843	 */
2844	user_exit();
2845	schedule();
2846	user_enter();
2847}
2848#endif
2849
2850/**
2851 * schedule_preempt_disabled - called with preemption disabled
2852 *
2853 * Returns with preemption disabled. Note: preempt_count must be 1
2854 */
2855void __sched schedule_preempt_disabled(void)
2856{
2857	sched_preempt_enable_no_resched();
2858	schedule();
2859	preempt_disable();
2860}
2861
2862#ifdef CONFIG_PREEMPT
2863/*
2864 * this is the entry point to schedule() from in-kernel preemption
2865 * off of preempt_enable. Kernel preemptions off return from interrupt
2866 * occur there and call schedule directly.
2867 */
2868asmlinkage __visible void __sched notrace preempt_schedule(void)
2869{
2870	/*
2871	 * If there is a non-zero preempt_count or interrupts are disabled,
2872	 * we do not want to preempt the current task. Just return..
2873	 */
2874	if (likely(!preemptible()))
2875		return;
2876
2877	do {
2878		__preempt_count_add(PREEMPT_ACTIVE);
2879		__schedule();
2880		__preempt_count_sub(PREEMPT_ACTIVE);
2881
2882		/*
2883		 * Check again in case we missed a preemption opportunity
2884		 * between schedule and now.
2885		 */
2886		barrier();
2887	} while (need_resched());
2888}
2889NOKPROBE_SYMBOL(preempt_schedule);
2890EXPORT_SYMBOL(preempt_schedule);
2891#endif /* CONFIG_PREEMPT */
2892
2893/*
2894 * this is the entry point to schedule() from kernel preemption
2895 * off of irq context.
2896 * Note, that this is called and return with irqs disabled. This will
2897 * protect us against recursive calling from irq.
2898 */
2899asmlinkage __visible void __sched preempt_schedule_irq(void)
2900{
2901	enum ctx_state prev_state;
2902
2903	/* Catch callers which need to be fixed */
2904	BUG_ON(preempt_count() || !irqs_disabled());
2905
2906	prev_state = exception_enter();
2907
2908	do {
2909		__preempt_count_add(PREEMPT_ACTIVE);
2910		local_irq_enable();
2911		__schedule();
2912		local_irq_disable();
2913		__preempt_count_sub(PREEMPT_ACTIVE);
2914
2915		/*
2916		 * Check again in case we missed a preemption opportunity
2917		 * between schedule and now.
2918		 */
2919		barrier();
2920	} while (need_resched());
2921
2922	exception_exit(prev_state);
2923}
2924
2925int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2926			  void *key)
2927{
2928	return try_to_wake_up(curr->private, mode, wake_flags);
2929}
2930EXPORT_SYMBOL(default_wake_function);
2931
2932#ifdef CONFIG_RT_MUTEXES
2933
2934/*
2935 * rt_mutex_setprio - set the current priority of a task
2936 * @p: task
2937 * @prio: prio value (kernel-internal form)
2938 *
2939 * This function changes the 'effective' priority of a task. It does
2940 * not touch ->normal_prio like __setscheduler().
2941 *
2942 * Used by the rt_mutex code to implement priority inheritance
2943 * logic. Call site only calls if the priority of the task changed.
2944 */
2945void rt_mutex_setprio(struct task_struct *p, int prio)
2946{
2947	int oldprio, on_rq, running, enqueue_flag = 0;
2948	struct rq *rq;
2949	const struct sched_class *prev_class;
2950
2951	BUG_ON(prio > MAX_PRIO);
2952
2953	rq = __task_rq_lock(p);
2954
2955	/*
2956	 * Idle task boosting is a nono in general. There is one
2957	 * exception, when PREEMPT_RT and NOHZ is active:
2958	 *
2959	 * The idle task calls get_next_timer_interrupt() and holds
2960	 * the timer wheel base->lock on the CPU and another CPU wants
2961	 * to access the timer (probably to cancel it). We can safely
2962	 * ignore the boosting request, as the idle CPU runs this code
2963	 * with interrupts disabled and will complete the lock
2964	 * protected section without being interrupted. So there is no
2965	 * real need to boost.
2966	 */
2967	if (unlikely(p == rq->idle)) {
2968		WARN_ON(p != rq->curr);
2969		WARN_ON(p->pi_blocked_on);
2970		goto out_unlock;
2971	}
2972
2973	trace_sched_pi_setprio(p, prio);
2974	p->pi_top_task = rt_mutex_get_top_task(p);
2975	oldprio = p->prio;
2976	prev_class = p->sched_class;
2977	on_rq = p->on_rq;
2978	running = task_current(rq, p);
2979	if (on_rq)
2980		dequeue_task(rq, p, 0);
2981	if (running)
2982		p->sched_class->put_prev_task(rq, p);
2983
2984	/*
2985	 * Boosting condition are:
2986	 * 1. -rt task is running and holds mutex A
2987	 *      --> -dl task blocks on mutex A
2988	 *
2989	 * 2. -dl task is running and holds mutex A
2990	 *      --> -dl task blocks on mutex A and could preempt the
2991	 *          running task
2992	 */
2993	if (dl_prio(prio)) {
2994		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2995			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2996			p->dl.dl_boosted = 1;
2997			p->dl.dl_throttled = 0;
2998			enqueue_flag = ENQUEUE_REPLENISH;
2999		} else
3000			p->dl.dl_boosted = 0;
3001		p->sched_class = &dl_sched_class;
3002	} else if (rt_prio(prio)) {
3003		if (dl_prio(oldprio))
3004			p->dl.dl_boosted = 0;
3005		if (oldprio < prio)
3006			enqueue_flag = ENQUEUE_HEAD;
3007		p->sched_class = &rt_sched_class;
3008	} else {
3009		if (dl_prio(oldprio))
3010			p->dl.dl_boosted = 0;
3011		p->sched_class = &fair_sched_class;
3012	}
3013
3014	p->prio = prio;
3015
3016	if (running)
3017		p->sched_class->set_curr_task(rq);
3018	if (on_rq)
3019		enqueue_task(rq, p, enqueue_flag);
3020
3021	check_class_changed(rq, p, prev_class, oldprio);
3022out_unlock:
3023	__task_rq_unlock(rq);
3024}
3025#endif
3026
3027void set_user_nice(struct task_struct *p, long nice)
3028{
3029	int old_prio, delta, on_rq;
3030	unsigned long flags;
3031	struct rq *rq;
3032
3033	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3034		return;
3035	/*
3036	 * We have to be careful, if called from sys_setpriority(),
3037	 * the task might be in the middle of scheduling on another CPU.
3038	 */
3039	rq = task_rq_lock(p, &flags);
3040	/*
3041	 * The RT priorities are set via sched_setscheduler(), but we still
3042	 * allow the 'normal' nice value to be set - but as expected
3043	 * it wont have any effect on scheduling until the task is
3044	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3045	 */
3046	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3047		p->static_prio = NICE_TO_PRIO(nice);
3048		goto out_unlock;
3049	}
3050	on_rq = p->on_rq;
3051	if (on_rq)
3052		dequeue_task(rq, p, 0);
3053
3054	p->static_prio = NICE_TO_PRIO(nice);
3055	set_load_weight(p);
3056	old_prio = p->prio;
3057	p->prio = effective_prio(p);
3058	delta = p->prio - old_prio;
3059
3060	if (on_rq) {
3061		enqueue_task(rq, p, 0);
3062		/*
3063		 * If the task increased its priority or is running and
3064		 * lowered its priority, then reschedule its CPU:
3065		 */
3066		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3067			resched_task(rq->curr);
3068	}
3069out_unlock:
3070	task_rq_unlock(rq, p, &flags);
3071}
3072EXPORT_SYMBOL(set_user_nice);
3073
3074/*
3075 * can_nice - check if a task can reduce its nice value
3076 * @p: task
3077 * @nice: nice value
3078 */
3079int can_nice(const struct task_struct *p, const int nice)
3080{
3081	/* convert nice value [19,-20] to rlimit style value [1,40] */
3082	int nice_rlim = nice_to_rlimit(nice);
3083
3084	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3085		capable(CAP_SYS_NICE));
3086}
3087
3088#ifdef __ARCH_WANT_SYS_NICE
3089
3090/*
3091 * sys_nice - change the priority of the current process.
3092 * @increment: priority increment
3093 *
3094 * sys_setpriority is a more generic, but much slower function that
3095 * does similar things.
3096 */
3097SYSCALL_DEFINE1(nice, int, increment)
3098{
3099	long nice, retval;
3100
3101	/*
3102	 * Setpriority might change our priority at the same moment.
3103	 * We don't have to worry. Conceptually one call occurs first
3104	 * and we have a single winner.
3105	 */
3106	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3107	nice = task_nice(current) + increment;
3108
3109	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3110	if (increment < 0 && !can_nice(current, nice))
3111		return -EPERM;
3112
3113	retval = security_task_setnice(current, nice);
3114	if (retval)
3115		return retval;
3116
3117	set_user_nice(current, nice);
3118	return 0;
3119}
3120
3121#endif
3122
3123/**
3124 * task_prio - return the priority value of a given task.
3125 * @p: the task in question.
3126 *
3127 * Return: The priority value as seen by users in /proc.
3128 * RT tasks are offset by -200. Normal tasks are centered
3129 * around 0, value goes from -16 to +15.
3130 */
3131int task_prio(const struct task_struct *p)
3132{
3133	return p->prio - MAX_RT_PRIO;
3134}
3135
3136/**
3137 * idle_cpu - is a given cpu idle currently?
3138 * @cpu: the processor in question.
3139 *
3140 * Return: 1 if the CPU is currently idle. 0 otherwise.
3141 */
3142int idle_cpu(int cpu)
3143{
3144	struct rq *rq = cpu_rq(cpu);
3145
3146	if (rq->curr != rq->idle)
3147		return 0;
3148
3149	if (rq->nr_running)
3150		return 0;
3151
3152#ifdef CONFIG_SMP
3153	if (!llist_empty(&rq->wake_list))
3154		return 0;
3155#endif
3156
3157	return 1;
3158}
3159
3160/**
3161 * idle_task - return the idle task for a given cpu.
3162 * @cpu: the processor in question.
3163 *
3164 * Return: The idle task for the cpu @cpu.
3165 */
3166struct task_struct *idle_task(int cpu)
3167{
3168	return cpu_rq(cpu)->idle;
3169}
3170
3171/**
3172 * find_process_by_pid - find a process with a matching PID value.
3173 * @pid: the pid in question.
3174 *
3175 * The task of @pid, if found. %NULL otherwise.
3176 */
3177static struct task_struct *find_process_by_pid(pid_t pid)
3178{
3179	return pid ? find_task_by_vpid(pid) : current;
3180}
3181
3182/*
3183 * This function initializes the sched_dl_entity of a newly becoming
3184 * SCHED_DEADLINE task.
3185 *
3186 * Only the static values are considered here, the actual runtime and the
3187 * absolute deadline will be properly calculated when the task is enqueued
3188 * for the first time with its new policy.
3189 */
3190static void
3191__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3192{
3193	struct sched_dl_entity *dl_se = &p->dl;
3194
3195	init_dl_task_timer(dl_se);
3196	dl_se->dl_runtime = attr->sched_runtime;
3197	dl_se->dl_deadline = attr->sched_deadline;
3198	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3199	dl_se->flags = attr->sched_flags;
3200	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3201	dl_se->dl_throttled = 0;
3202	dl_se->dl_new = 1;
3203	dl_se->dl_yielded = 0;
3204}
3205
3206static void __setscheduler_params(struct task_struct *p,
3207		const struct sched_attr *attr)
3208{
3209	int policy = attr->sched_policy;
3210
3211	if (policy == -1) /* setparam */
3212		policy = p->policy;
3213
3214	p->policy = policy;
3215
3216	if (dl_policy(policy))
3217		__setparam_dl(p, attr);
3218	else if (fair_policy(policy))
3219		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3220
3221	/*
3222	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3223	 * !rt_policy. Always setting this ensures that things like
3224	 * getparam()/getattr() don't report silly values for !rt tasks.
3225	 */
3226	p->rt_priority = attr->sched_priority;
3227	p->normal_prio = normal_prio(p);
3228	set_load_weight(p);
3229}
3230
3231/* Actually do priority change: must hold pi & rq lock. */
3232static void __setscheduler(struct rq *rq, struct task_struct *p,
3233			   const struct sched_attr *attr)
3234{
3235	__setscheduler_params(p, attr);
3236
3237	/*
3238	 * If we get here, there was no pi waiters boosting the
3239	 * task. It is safe to use the normal prio.
3240	 */
3241	p->prio = normal_prio(p);
3242
3243	if (dl_prio(p->prio))
3244		p->sched_class = &dl_sched_class;
3245	else if (rt_prio(p->prio))
3246		p->sched_class = &rt_sched_class;
3247	else
3248		p->sched_class = &fair_sched_class;
3249}
3250
3251static void
3252__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3253{
3254	struct sched_dl_entity *dl_se = &p->dl;
3255
3256	attr->sched_priority = p->rt_priority;
3257	attr->sched_runtime = dl_se->dl_runtime;
3258	attr->sched_deadline = dl_se->dl_deadline;
3259	attr->sched_period = dl_se->dl_period;
3260	attr->sched_flags = dl_se->flags;
3261}
3262
3263/*
3264 * This function validates the new parameters of a -deadline task.
3265 * We ask for the deadline not being zero, and greater or equal
3266 * than the runtime, as well as the period of being zero or
3267 * greater than deadline. Furthermore, we have to be sure that
3268 * user parameters are above the internal resolution of 1us (we
3269 * check sched_runtime only since it is always the smaller one) and
3270 * below 2^63 ns (we have to check both sched_deadline and
3271 * sched_period, as the latter can be zero).
3272 */
3273static bool
3274__checkparam_dl(const struct sched_attr *attr)
3275{
3276	/* deadline != 0 */
3277	if (attr->sched_deadline == 0)
3278		return false;
3279
3280	/*
3281	 * Since we truncate DL_SCALE bits, make sure we're at least
3282	 * that big.
3283	 */
3284	if (attr->sched_runtime < (1ULL << DL_SCALE))
3285		return false;
3286
3287	/*
3288	 * Since we use the MSB for wrap-around and sign issues, make
3289	 * sure it's not set (mind that period can be equal to zero).
3290	 */
3291	if (attr->sched_deadline & (1ULL << 63) ||
3292	    attr->sched_period & (1ULL << 63))
3293		return false;
3294
3295	/* runtime <= deadline <= period (if period != 0) */
3296	if ((attr->sched_period != 0 &&
3297	     attr->sched_period < attr->sched_deadline) ||
3298	    attr->sched_deadline < attr->sched_runtime)
3299		return false;
3300
3301	return true;
3302}
3303
3304/*
3305 * check the target process has a UID that matches the current process's
3306 */
3307static bool check_same_owner(struct task_struct *p)
3308{
3309	const struct cred *cred = current_cred(), *pcred;
3310	bool match;
3311
3312	rcu_read_lock();
3313	pcred = __task_cred(p);
3314	match = (uid_eq(cred->euid, pcred->euid) ||
3315		 uid_eq(cred->euid, pcred->uid));
3316	rcu_read_unlock();
3317	return match;
3318}
3319
3320static int __sched_setscheduler(struct task_struct *p,
3321				const struct sched_attr *attr,
3322				bool user)
3323{
3324	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3325		      MAX_RT_PRIO - 1 - attr->sched_priority;
3326	int retval, oldprio, oldpolicy = -1, on_rq, running;
3327	int policy = attr->sched_policy;
3328	unsigned long flags;
3329	const struct sched_class *prev_class;
3330	struct rq *rq;
3331	int reset_on_fork;
3332
3333	/* may grab non-irq protected spin_locks */
3334	BUG_ON(in_interrupt());
3335recheck:
3336	/* double check policy once rq lock held */
3337	if (policy < 0) {
3338		reset_on_fork = p->sched_reset_on_fork;
3339		policy = oldpolicy = p->policy;
3340	} else {
3341		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3342
3343		if (policy != SCHED_DEADLINE &&
3344				policy != SCHED_FIFO && policy != SCHED_RR &&
3345				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3346				policy != SCHED_IDLE)
3347			return -EINVAL;
3348	}
3349
3350	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3351		return -EINVAL;
3352
3353	/*
3354	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3355	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3356	 * SCHED_BATCH and SCHED_IDLE is 0.
3357	 */
3358	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3359	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3360		return -EINVAL;
3361	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3362	    (rt_policy(policy) != (attr->sched_priority != 0)))
3363		return -EINVAL;
3364
3365	/*
3366	 * Allow unprivileged RT tasks to decrease priority:
3367	 */
3368	if (user && !capable(CAP_SYS_NICE)) {
3369		if (fair_policy(policy)) {
3370			if (attr->sched_nice < task_nice(p) &&
3371			    !can_nice(p, attr->sched_nice))
3372				return -EPERM;
3373		}
3374
3375		if (rt_policy(policy)) {
3376			unsigned long rlim_rtprio =
3377					task_rlimit(p, RLIMIT_RTPRIO);
3378
3379			/* can't set/change the rt policy */
3380			if (policy != p->policy && !rlim_rtprio)
3381				return -EPERM;
3382
3383			/* can't increase priority */
3384			if (attr->sched_priority > p->rt_priority &&
3385			    attr->sched_priority > rlim_rtprio)
3386				return -EPERM;
3387		}
3388
3389		 /*
3390		  * Can't set/change SCHED_DEADLINE policy at all for now
3391		  * (safest behavior); in the future we would like to allow
3392		  * unprivileged DL tasks to increase their relative deadline
3393		  * or reduce their runtime (both ways reducing utilization)
3394		  */
3395		if (dl_policy(policy))
3396			return -EPERM;
3397
3398		/*
3399		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3400		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3401		 */
3402		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3403			if (!can_nice(p, task_nice(p)))
3404				return -EPERM;
3405		}
3406
3407		/* can't change other user's priorities */
3408		if (!check_same_owner(p))
3409			return -EPERM;
3410
3411		/* Normal users shall not reset the sched_reset_on_fork flag */
3412		if (p->sched_reset_on_fork && !reset_on_fork)
3413			return -EPERM;
3414	}
3415
3416	if (user) {
3417		retval = security_task_setscheduler(p);
3418		if (retval)
3419			return retval;
3420	}
3421
3422	/*
3423	 * make sure no PI-waiters arrive (or leave) while we are
3424	 * changing the priority of the task:
3425	 *
3426	 * To be able to change p->policy safely, the appropriate
3427	 * runqueue lock must be held.
3428	 */
3429	rq = task_rq_lock(p, &flags);
3430
3431	/*
3432	 * Changing the policy of the stop threads its a very bad idea
3433	 */
3434	if (p == rq->stop) {
3435		task_rq_unlock(rq, p, &flags);
3436		return -EINVAL;
3437	}
3438
3439	/*
3440	 * If not changing anything there's no need to proceed further,
3441	 * but store a possible modification of reset_on_fork.
3442	 */
3443	if (unlikely(policy == p->policy)) {
3444		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3445			goto change;
3446		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3447			goto change;
3448		if (dl_policy(policy))
3449			goto change;
3450
3451		p->sched_reset_on_fork = reset_on_fork;
3452		task_rq_unlock(rq, p, &flags);
3453		return 0;
3454	}
3455change:
3456
3457	if (user) {
3458#ifdef CONFIG_RT_GROUP_SCHED
3459		/*
3460		 * Do not allow realtime tasks into groups that have no runtime
3461		 * assigned.
3462		 */
3463		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3464				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3465				!task_group_is_autogroup(task_group(p))) {
3466			task_rq_unlock(rq, p, &flags);
3467			return -EPERM;
3468		}
3469#endif
3470#ifdef CONFIG_SMP
3471		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3472			cpumask_t *span = rq->rd->span;
3473
3474			/*
3475			 * Don't allow tasks with an affinity mask smaller than
3476			 * the entire root_domain to become SCHED_DEADLINE. We
3477			 * will also fail if there's no bandwidth available.
3478			 */
3479			if (!cpumask_subset(span, &p->cpus_allowed) ||
3480			    rq->rd->dl_bw.bw == 0) {
3481				task_rq_unlock(rq, p, &flags);
3482				return -EPERM;
3483			}
3484		}
3485#endif
3486	}
3487
3488	/* recheck policy now with rq lock held */
3489	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3490		policy = oldpolicy = -1;
3491		task_rq_unlock(rq, p, &flags);
3492		goto recheck;
3493	}
3494
3495	/*
3496	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3497	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3498	 * is available.
3499	 */
3500	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3501		task_rq_unlock(rq, p, &flags);
3502		return -EBUSY;
3503	}
3504
3505	p->sched_reset_on_fork = reset_on_fork;
3506	oldprio = p->prio;
3507
3508	/*
3509	 * Special case for priority boosted tasks.
3510	 *
3511	 * If the new priority is lower or equal (user space view)
3512	 * than the current (boosted) priority, we just store the new
3513	 * normal parameters and do not touch the scheduler class and
3514	 * the runqueue. This will be done when the task deboost
3515	 * itself.
3516	 */
3517	if (rt_mutex_check_prio(p, newprio)) {
3518		__setscheduler_params(p, attr);
3519		task_rq_unlock(rq, p, &flags);
3520		return 0;
3521	}
3522
3523	on_rq = p->on_rq;
3524	running = task_current(rq, p);
3525	if (on_rq)
3526		dequeue_task(rq, p, 0);
3527	if (running)
3528		p->sched_class->put_prev_task(rq, p);
3529
3530	prev_class = p->sched_class;
3531	__setscheduler(rq, p, attr);
3532
3533	if (running)
3534		p->sched_class->set_curr_task(rq);
3535	if (on_rq) {
3536		/*
3537		 * We enqueue to tail when the priority of a task is
3538		 * increased (user space view).
3539		 */
3540		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3541	}
3542
3543	check_class_changed(rq, p, prev_class, oldprio);
3544	task_rq_unlock(rq, p, &flags);
3545
3546	rt_mutex_adjust_pi(p);
3547
3548	return 0;
3549}
3550
3551static int _sched_setscheduler(struct task_struct *p, int policy,
3552			       const struct sched_param *param, bool check)
3553{
3554	struct sched_attr attr = {
3555		.sched_policy   = policy,
3556		.sched_priority = param->sched_priority,
3557		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3558	};
3559
3560	/*
3561	 * Fixup the legacy SCHED_RESET_ON_FORK hack, except if
3562	 * the policy=-1 was passed by sched_setparam().
3563	 */
3564	if ((policy != -1) && (policy & SCHED_RESET_ON_FORK)) {
3565		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3566		policy &= ~SCHED_RESET_ON_FORK;
3567		attr.sched_policy = policy;
3568	}
3569
3570	return __sched_setscheduler(p, &attr, check);
3571}
3572/**
3573 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3574 * @p: the task in question.
3575 * @policy: new policy.
3576 * @param: structure containing the new RT priority.
3577 *
3578 * Return: 0 on success. An error code otherwise.
3579 *
3580 * NOTE that the task may be already dead.
3581 */
3582int sched_setscheduler(struct task_struct *p, int policy,
3583		       const struct sched_param *param)
3584{
3585	return _sched_setscheduler(p, policy, param, true);
3586}
3587EXPORT_SYMBOL_GPL(sched_setscheduler);
3588
3589int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3590{
3591	return __sched_setscheduler(p, attr, true);
3592}
3593EXPORT_SYMBOL_GPL(sched_setattr);
3594
3595/**
3596 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3597 * @p: the task in question.
3598 * @policy: new policy.
3599 * @param: structure containing the new RT priority.
3600 *
3601 * Just like sched_setscheduler, only don't bother checking if the
3602 * current context has permission.  For example, this is needed in
3603 * stop_machine(): we create temporary high priority worker threads,
3604 * but our caller might not have that capability.
3605 *
3606 * Return: 0 on success. An error code otherwise.
3607 */
3608int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3609			       const struct sched_param *param)
3610{
3611	return _sched_setscheduler(p, policy, param, false);
3612}
3613
3614static int
3615do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3616{
3617	struct sched_param lparam;
3618	struct task_struct *p;
3619	int retval;
3620
3621	if (!param || pid < 0)
3622		return -EINVAL;
3623	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3624		return -EFAULT;
3625
3626	rcu_read_lock();
3627	retval = -ESRCH;
3628	p = find_process_by_pid(pid);
3629	if (p != NULL)
3630		retval = sched_setscheduler(p, policy, &lparam);
3631	rcu_read_unlock();
3632
3633	return retval;
3634}
3635
3636/*
3637 * Mimics kernel/events/core.c perf_copy_attr().
3638 */
3639static int sched_copy_attr(struct sched_attr __user *uattr,
3640			   struct sched_attr *attr)
3641{
3642	u32 size;
3643	int ret;
3644
3645	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3646		return -EFAULT;
3647
3648	/*
3649	 * zero the full structure, so that a short copy will be nice.
3650	 */
3651	memset(attr, 0, sizeof(*attr));
3652
3653	ret = get_user(size, &uattr->size);
3654	if (ret)
3655		return ret;
3656
3657	if (size > PAGE_SIZE)	/* silly large */
3658		goto err_size;
3659
3660	if (!size)		/* abi compat */
3661		size = SCHED_ATTR_SIZE_VER0;
3662
3663	if (size < SCHED_ATTR_SIZE_VER0)
3664		goto err_size;
3665
3666	/*
3667	 * If we're handed a bigger struct than we know of,
3668	 * ensure all the unknown bits are 0 - i.e. new
3669	 * user-space does not rely on any kernel feature
3670	 * extensions we dont know about yet.
3671	 */
3672	if (size > sizeof(*attr)) {
3673		unsigned char __user *addr;
3674		unsigned char __user *end;
3675		unsigned char val;
3676
3677		addr = (void __user *)uattr + sizeof(*attr);
3678		end  = (void __user *)uattr + size;
3679
3680		for (; addr < end; addr++) {
3681			ret = get_user(val, addr);
3682			if (ret)
3683				return ret;
3684			if (val)
3685				goto err_size;
3686		}
3687		size = sizeof(*attr);
3688	}
3689
3690	ret = copy_from_user(attr, uattr, size);
3691	if (ret)
3692		return -EFAULT;
3693
3694	/*
3695	 * XXX: do we want to be lenient like existing syscalls; or do we want
3696	 * to be strict and return an error on out-of-bounds values?
3697	 */
3698	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3699
3700	return 0;
3701
3702err_size:
3703	put_user(sizeof(*attr), &uattr->size);
3704	return -E2BIG;
3705}
3706
3707/**
3708 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3709 * @pid: the pid in question.
3710 * @policy: new policy.
3711 * @param: structure containing the new RT priority.
3712 *
3713 * Return: 0 on success. An error code otherwise.
3714 */
3715SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3716		struct sched_param __user *, param)
3717{
3718	/* negative values for policy are not valid */
3719	if (policy < 0)
3720		return -EINVAL;
3721
3722	return do_sched_setscheduler(pid, policy, param);
3723}
3724
3725/**
3726 * sys_sched_setparam - set/change the RT priority of a thread
3727 * @pid: the pid in question.
3728 * @param: structure containing the new RT priority.
3729 *
3730 * Return: 0 on success. An error code otherwise.
3731 */
3732SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3733{
3734	return do_sched_setscheduler(pid, -1, param);
3735}
3736
3737/**
3738 * sys_sched_setattr - same as above, but with extended sched_attr
3739 * @pid: the pid in question.
3740 * @uattr: structure containing the extended parameters.
3741 * @flags: for future extension.
3742 */
3743SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3744			       unsigned int, flags)
3745{
3746	struct sched_attr attr;
3747	struct task_struct *p;
3748	int retval;
3749
3750	if (!uattr || pid < 0 || flags)
3751		return -EINVAL;
3752
3753	retval = sched_copy_attr(uattr, &attr);
3754	if (retval)
3755		return retval;
3756
3757	if ((int)attr.sched_policy < 0)
3758		return -EINVAL;
3759
3760	rcu_read_lock();
3761	retval = -ESRCH;
3762	p = find_process_by_pid(pid);
3763	if (p != NULL)
3764		retval = sched_setattr(p, &attr);
3765	rcu_read_unlock();
3766
3767	return retval;
3768}
3769
3770/**
3771 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3772 * @pid: the pid in question.
3773 *
3774 * Return: On success, the policy of the thread. Otherwise, a negative error
3775 * code.
3776 */
3777SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3778{
3779	struct task_struct *p;
3780	int retval;
3781
3782	if (pid < 0)
3783		return -EINVAL;
3784
3785	retval = -ESRCH;
3786	rcu_read_lock();
3787	p = find_process_by_pid(pid);
3788	if (p) {
3789		retval = security_task_getscheduler(p);
3790		if (!retval)
3791			retval = p->policy
3792				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3793	}
3794	rcu_read_unlock();
3795	return retval;
3796}
3797
3798/**
3799 * sys_sched_getparam - get the RT priority of a thread
3800 * @pid: the pid in question.
3801 * @param: structure containing the RT priority.
3802 *
3803 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3804 * code.
3805 */
3806SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3807{
3808	struct sched_param lp = { .sched_priority = 0 };
3809	struct task_struct *p;
3810	int retval;
3811
3812	if (!param || pid < 0)
3813		return -EINVAL;
3814
3815	rcu_read_lock();
3816	p = find_process_by_pid(pid);
3817	retval = -ESRCH;
3818	if (!p)
3819		goto out_unlock;
3820
3821	retval = security_task_getscheduler(p);
3822	if (retval)
3823		goto out_unlock;
3824
3825	if (task_has_rt_policy(p))
3826		lp.sched_priority = p->rt_priority;
3827	rcu_read_unlock();
3828
3829	/*
3830	 * This one might sleep, we cannot do it with a spinlock held ...
3831	 */
3832	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3833
3834	return retval;
3835
3836out_unlock:
3837	rcu_read_unlock();
3838	return retval;
3839}
3840
3841static int sched_read_attr(struct sched_attr __user *uattr,
3842			   struct sched_attr *attr,
3843			   unsigned int usize)
3844{
3845	int ret;
3846
3847	if (!access_ok(VERIFY_WRITE, uattr, usize))
3848		return -EFAULT;
3849
3850	/*
3851	 * If we're handed a smaller struct than we know of,
3852	 * ensure all the unknown bits are 0 - i.e. old
3853	 * user-space does not get uncomplete information.
3854	 */
3855	if (usize < sizeof(*attr)) {
3856		unsigned char *addr;
3857		unsigned char *end;
3858
3859		addr = (void *)attr + usize;
3860		end  = (void *)attr + sizeof(*attr);
3861
3862		for (; addr < end; addr++) {
3863			if (*addr)
3864				return -EFBIG;
3865		}
3866
3867		attr->size = usize;
3868	}
3869
3870	ret = copy_to_user(uattr, attr, attr->size);
3871	if (ret)
3872		return -EFAULT;
3873
3874	return 0;
3875}
3876
3877/**
3878 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3879 * @pid: the pid in question.
3880 * @uattr: structure containing the extended parameters.
3881 * @size: sizeof(attr) for fwd/bwd comp.
3882 * @flags: for future extension.
3883 */
3884SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3885		unsigned int, size, unsigned int, flags)
3886{
3887	struct sched_attr attr = {
3888		.size = sizeof(struct sched_attr),
3889	};
3890	struct task_struct *p;
3891	int retval;
3892
3893	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3894	    size < SCHED_ATTR_SIZE_VER0 || flags)
3895		return -EINVAL;
3896
3897	rcu_read_lock();
3898	p = find_process_by_pid(pid);
3899	retval = -ESRCH;
3900	if (!p)
3901		goto out_unlock;
3902
3903	retval = security_task_getscheduler(p);
3904	if (retval)
3905		goto out_unlock;
3906
3907	attr.sched_policy = p->policy;
3908	if (p->sched_reset_on_fork)
3909		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3910	if (task_has_dl_policy(p))
3911		__getparam_dl(p, &attr);
3912	else if (task_has_rt_policy(p))
3913		attr.sched_priority = p->rt_priority;
3914	else
3915		attr.sched_nice = task_nice(p);
3916
3917	rcu_read_unlock();
3918
3919	retval = sched_read_attr(uattr, &attr, size);
3920	return retval;
3921
3922out_unlock:
3923	rcu_read_unlock();
3924	return retval;
3925}
3926
3927long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3928{
3929	cpumask_var_t cpus_allowed, new_mask;
3930	struct task_struct *p;
3931	int retval;
3932
3933	rcu_read_lock();
3934
3935	p = find_process_by_pid(pid);
3936	if (!p) {
3937		rcu_read_unlock();
3938		return -ESRCH;
3939	}
3940
3941	/* Prevent p going away */
3942	get_task_struct(p);
3943	rcu_read_unlock();
3944
3945	if (p->flags & PF_NO_SETAFFINITY) {
3946		retval = -EINVAL;
3947		goto out_put_task;
3948	}
3949	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3950		retval = -ENOMEM;
3951		goto out_put_task;
3952	}
3953	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3954		retval = -ENOMEM;
3955		goto out_free_cpus_allowed;
3956	}
3957	retval = -EPERM;
3958	if (!check_same_owner(p)) {
3959		rcu_read_lock();
3960		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3961			rcu_read_unlock();
3962			goto out_unlock;
3963		}
3964		rcu_read_unlock();
3965	}
3966
3967	retval = security_task_setscheduler(p);
3968	if (retval)
3969		goto out_unlock;
3970
3971
3972	cpuset_cpus_allowed(p, cpus_allowed);
3973	cpumask_and(new_mask, in_mask, cpus_allowed);
3974
3975	/*
3976	 * Since bandwidth control happens on root_domain basis,
3977	 * if admission test is enabled, we only admit -deadline
3978	 * tasks allowed to run on all the CPUs in the task's
3979	 * root_domain.
3980	 */
3981#ifdef CONFIG_SMP
3982	if (task_has_dl_policy(p)) {
3983		const struct cpumask *span = task_rq(p)->rd->span;
3984
3985		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3986			retval = -EBUSY;
3987			goto out_unlock;
3988		}
3989	}
3990#endif
3991again:
3992	retval = set_cpus_allowed_ptr(p, new_mask);
3993
3994	if (!retval) {
3995		cpuset_cpus_allowed(p, cpus_allowed);
3996		if (!cpumask_subset(new_mask, cpus_allowed)) {
3997			/*
3998			 * We must have raced with a concurrent cpuset
3999			 * update. Just reset the cpus_allowed to the
4000			 * cpuset's cpus_allowed
4001			 */
4002			cpumask_copy(new_mask, cpus_allowed);
4003			goto again;
4004		}
4005	}
4006out_unlock:
4007	free_cpumask_var(new_mask);
4008out_free_cpus_allowed:
4009	free_cpumask_var(cpus_allowed);
4010out_put_task:
4011	put_task_struct(p);
4012	return retval;
4013}
4014
4015static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4016			     struct cpumask *new_mask)
4017{
4018	if (len < cpumask_size())
4019		cpumask_clear(new_mask);
4020	else if (len > cpumask_size())
4021		len = cpumask_size();
4022
4023	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4024}
4025
4026/**
4027 * sys_sched_setaffinity - set the cpu affinity of a process
4028 * @pid: pid of the process
4029 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4030 * @user_mask_ptr: user-space pointer to the new cpu mask
4031 *
4032 * Return: 0 on success. An error code otherwise.
4033 */
4034SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4035		unsigned long __user *, user_mask_ptr)
4036{
4037	cpumask_var_t new_mask;
4038	int retval;
4039
4040	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4041		return -ENOMEM;
4042
4043	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4044	if (retval == 0)
4045		retval = sched_setaffinity(pid, new_mask);
4046	free_cpumask_var(new_mask);
4047	return retval;
4048}
4049
4050long sched_getaffinity(pid_t pid, struct cpumask *mask)
4051{
4052	struct task_struct *p;
4053	unsigned long flags;
4054	int retval;
4055
4056	rcu_read_lock();
4057
4058	retval = -ESRCH;
4059	p = find_process_by_pid(pid);
4060	if (!p)
4061		goto out_unlock;
4062
4063	retval = security_task_getscheduler(p);
4064	if (retval)
4065		goto out_unlock;
4066
4067	raw_spin_lock_irqsave(&p->pi_lock, flags);
4068	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4069	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4070
4071out_unlock:
4072	rcu_read_unlock();
4073
4074	return retval;
4075}
4076
4077/**
4078 * sys_sched_getaffinity - get the cpu affinity of a process
4079 * @pid: pid of the process
4080 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4081 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4082 *
4083 * Return: 0 on success. An error code otherwise.
4084 */
4085SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4086		unsigned long __user *, user_mask_ptr)
4087{
4088	int ret;
4089	cpumask_var_t mask;
4090
4091	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4092		return -EINVAL;
4093	if (len & (sizeof(unsigned long)-1))
4094		return -EINVAL;
4095
4096	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4097		return -ENOMEM;
4098
4099	ret = sched_getaffinity(pid, mask);
4100	if (ret == 0) {
4101		size_t retlen = min_t(size_t, len, cpumask_size());
4102
4103		if (copy_to_user(user_mask_ptr, mask, retlen))
4104			ret = -EFAULT;
4105		else
4106			ret = retlen;
4107	}
4108	free_cpumask_var(mask);
4109
4110	return ret;
4111}
4112
4113/**
4114 * sys_sched_yield - yield the current processor to other threads.
4115 *
4116 * This function yields the current CPU to other tasks. If there are no
4117 * other threads running on this CPU then this function will return.
4118 *
4119 * Return: 0.
4120 */
4121SYSCALL_DEFINE0(sched_yield)
4122{
4123	struct rq *rq = this_rq_lock();
4124
4125	schedstat_inc(rq, yld_count);
4126	current->sched_class->yield_task(rq);
4127
4128	/*
4129	 * Since we are going to call schedule() anyway, there's
4130	 * no need to preempt or enable interrupts:
4131	 */
4132	__release(rq->lock);
4133	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4134	do_raw_spin_unlock(&rq->lock);
4135	sched_preempt_enable_no_resched();
4136
4137	schedule();
4138
4139	return 0;
4140}
4141
4142static void __cond_resched(void)
4143{
4144	__preempt_count_add(PREEMPT_ACTIVE);
4145	__schedule();
4146	__preempt_count_sub(PREEMPT_ACTIVE);
4147}
4148
4149int __sched _cond_resched(void)
4150{
4151	if (should_resched()) {
4152		__cond_resched();
4153		return 1;
4154	}
4155	return 0;
4156}
4157EXPORT_SYMBOL(_cond_resched);
4158
4159/*
4160 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4161 * call schedule, and on return reacquire the lock.
4162 *
4163 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4164 * operations here to prevent schedule() from being called twice (once via
4165 * spin_unlock(), once by hand).
4166 */
4167int __cond_resched_lock(spinlock_t *lock)
4168{
4169	int resched = should_resched();
4170	int ret = 0;
4171
4172	lockdep_assert_held(lock);
4173
4174	if (spin_needbreak(lock) || resched) {
4175		spin_unlock(lock);
4176		if (resched)
4177			__cond_resched();
4178		else
4179			cpu_relax();
4180		ret = 1;
4181		spin_lock(lock);
4182	}
4183	return ret;
4184}
4185EXPORT_SYMBOL(__cond_resched_lock);
4186
4187int __sched __cond_resched_softirq(void)
4188{
4189	BUG_ON(!in_softirq());
4190
4191	if (should_resched()) {
4192		local_bh_enable();
4193		__cond_resched();
4194		local_bh_disable();
4195		return 1;
4196	}
4197	return 0;
4198}
4199EXPORT_SYMBOL(__cond_resched_softirq);
4200
4201/**
4202 * yield - yield the current processor to other threads.
4203 *
4204 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4205 *
4206 * The scheduler is at all times free to pick the calling task as the most
4207 * eligible task to run, if removing the yield() call from your code breaks
4208 * it, its already broken.
4209 *
4210 * Typical broken usage is:
4211 *
4212 * while (!event)
4213 * 	yield();
4214 *
4215 * where one assumes that yield() will let 'the other' process run that will
4216 * make event true. If the current task is a SCHED_FIFO task that will never
4217 * happen. Never use yield() as a progress guarantee!!
4218 *
4219 * If you want to use yield() to wait for something, use wait_event().
4220 * If you want to use yield() to be 'nice' for others, use cond_resched().
4221 * If you still want to use yield(), do not!
4222 */
4223void __sched yield(void)
4224{
4225	set_current_state(TASK_RUNNING);
4226	sys_sched_yield();
4227}
4228EXPORT_SYMBOL(yield);
4229
4230/**
4231 * yield_to - yield the current processor to another thread in
4232 * your thread group, or accelerate that thread toward the
4233 * processor it's on.
4234 * @p: target task
4235 * @preempt: whether task preemption is allowed or not
4236 *
4237 * It's the caller's job to ensure that the target task struct
4238 * can't go away on us before we can do any checks.
4239 *
4240 * Return:
4241 *	true (>0) if we indeed boosted the target task.
4242 *	false (0) if we failed to boost the target.
4243 *	-ESRCH if there's no task to yield to.
4244 */
4245int __sched yield_to(struct task_struct *p, bool preempt)
4246{
4247	struct task_struct *curr = current;
4248	struct rq *rq, *p_rq;
4249	unsigned long flags;
4250	int yielded = 0;
4251
4252	local_irq_save(flags);
4253	rq = this_rq();
4254
4255again:
4256	p_rq = task_rq(p);
4257	/*
4258	 * If we're the only runnable task on the rq and target rq also
4259	 * has only one task, there's absolutely no point in yielding.
4260	 */
4261	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4262		yielded = -ESRCH;
4263		goto out_irq;
4264	}
4265
4266	double_rq_lock(rq, p_rq);
4267	if (task_rq(p) != p_rq) {
4268		double_rq_unlock(rq, p_rq);
4269		goto again;
4270	}
4271
4272	if (!curr->sched_class->yield_to_task)
4273		goto out_unlock;
4274
4275	if (curr->sched_class != p->sched_class)
4276		goto out_unlock;
4277
4278	if (task_running(p_rq, p) || p->state)
4279		goto out_unlock;
4280
4281	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4282	if (yielded) {
4283		schedstat_inc(rq, yld_count);
4284		/*
4285		 * Make p's CPU reschedule; pick_next_entity takes care of
4286		 * fairness.
4287		 */
4288		if (preempt && rq != p_rq)
4289			resched_task(p_rq->curr);
4290	}
4291
4292out_unlock:
4293	double_rq_unlock(rq, p_rq);
4294out_irq:
4295	local_irq_restore(flags);
4296
4297	if (yielded > 0)
4298		schedule();
4299
4300	return yielded;
4301}
4302EXPORT_SYMBOL_GPL(yield_to);
4303
4304/*
4305 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4306 * that process accounting knows that this is a task in IO wait state.
4307 */
4308void __sched io_schedule(void)
4309{
4310	struct rq *rq = raw_rq();
4311
4312	delayacct_blkio_start();
4313	atomic_inc(&rq->nr_iowait);
4314	blk_flush_plug(current);
4315	current->in_iowait = 1;
4316	schedule();
4317	current->in_iowait = 0;
4318	atomic_dec(&rq->nr_iowait);
4319	delayacct_blkio_end();
4320}
4321EXPORT_SYMBOL(io_schedule);
4322
4323long __sched io_schedule_timeout(long timeout)
4324{
4325	struct rq *rq = raw_rq();
4326	long ret;
4327
4328	delayacct_blkio_start();
4329	atomic_inc(&rq->nr_iowait);
4330	blk_flush_plug(current);
4331	current->in_iowait = 1;
4332	ret = schedule_timeout(timeout);
4333	current->in_iowait = 0;
4334	atomic_dec(&rq->nr_iowait);
4335	delayacct_blkio_end();
4336	return ret;
4337}
4338
4339/**
4340 * sys_sched_get_priority_max - return maximum RT priority.
4341 * @policy: scheduling class.
4342 *
4343 * Return: On success, this syscall returns the maximum
4344 * rt_priority that can be used by a given scheduling class.
4345 * On failure, a negative error code is returned.
4346 */
4347SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4348{
4349	int ret = -EINVAL;
4350
4351	switch (policy) {
4352	case SCHED_FIFO:
4353	case SCHED_RR:
4354		ret = MAX_USER_RT_PRIO-1;
4355		break;
4356	case SCHED_DEADLINE:
4357	case SCHED_NORMAL:
4358	case SCHED_BATCH:
4359	case SCHED_IDLE:
4360		ret = 0;
4361		break;
4362	}
4363	return ret;
4364}
4365
4366/**
4367 * sys_sched_get_priority_min - return minimum RT priority.
4368 * @policy: scheduling class.
4369 *
4370 * Return: On success, this syscall returns the minimum
4371 * rt_priority that can be used by a given scheduling class.
4372 * On failure, a negative error code is returned.
4373 */
4374SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4375{
4376	int ret = -EINVAL;
4377
4378	switch (policy) {
4379	case SCHED_FIFO:
4380	case SCHED_RR:
4381		ret = 1;
4382		break;
4383	case SCHED_DEADLINE:
4384	case SCHED_NORMAL:
4385	case SCHED_BATCH:
4386	case SCHED_IDLE:
4387		ret = 0;
4388	}
4389	return ret;
4390}
4391
4392/**
4393 * sys_sched_rr_get_interval - return the default timeslice of a process.
4394 * @pid: pid of the process.
4395 * @interval: userspace pointer to the timeslice value.
4396 *
4397 * this syscall writes the default timeslice value of a given process
4398 * into the user-space timespec buffer. A value of '0' means infinity.
4399 *
4400 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4401 * an error code.
4402 */
4403SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4404		struct timespec __user *, interval)
4405{
4406	struct task_struct *p;
4407	unsigned int time_slice;
4408	unsigned long flags;
4409	struct rq *rq;
4410	int retval;
4411	struct timespec t;
4412
4413	if (pid < 0)
4414		return -EINVAL;
4415
4416	retval = -ESRCH;
4417	rcu_read_lock();
4418	p = find_process_by_pid(pid);
4419	if (!p)
4420		goto out_unlock;
4421
4422	retval = security_task_getscheduler(p);
4423	if (retval)
4424		goto out_unlock;
4425
4426	rq = task_rq_lock(p, &flags);
4427	time_slice = 0;
4428	if (p->sched_class->get_rr_interval)
4429		time_slice = p->sched_class->get_rr_interval(rq, p);
4430	task_rq_unlock(rq, p, &flags);
4431
4432	rcu_read_unlock();
4433	jiffies_to_timespec(time_slice, &t);
4434	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4435	return retval;
4436
4437out_unlock:
4438	rcu_read_unlock();
4439	return retval;
4440}
4441
4442static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4443
4444void sched_show_task(struct task_struct *p)
4445{
4446	unsigned long free = 0;
4447	int ppid;
4448	unsigned state;
4449
4450	state = p->state ? __ffs(p->state) + 1 : 0;
4451	printk(KERN_INFO "%-15.15s %c", p->comm,
4452		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4453#if BITS_PER_LONG == 32
4454	if (state == TASK_RUNNING)
4455		printk(KERN_CONT " running  ");
4456	else
4457		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4458#else
4459	if (state == TASK_RUNNING)
4460		printk(KERN_CONT "  running task    ");
4461	else
4462		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4463#endif
4464#ifdef CONFIG_DEBUG_STACK_USAGE
4465	free = stack_not_used(p);
4466#endif
4467	rcu_read_lock();
4468	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4469	rcu_read_unlock();
4470	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4471		task_pid_nr(p), ppid,
4472		(unsigned long)task_thread_info(p)->flags);
4473
4474	print_worker_info(KERN_INFO, p);
4475	show_stack(p, NULL);
4476}
4477
4478void show_state_filter(unsigned long state_filter)
4479{
4480	struct task_struct *g, *p;
4481
4482#if BITS_PER_LONG == 32
4483	printk(KERN_INFO
4484		"  task                PC stack   pid father\n");
4485#else
4486	printk(KERN_INFO
4487		"  task                        PC stack   pid father\n");
4488#endif
4489	rcu_read_lock();
4490	do_each_thread(g, p) {
4491		/*
4492		 * reset the NMI-timeout, listing all files on a slow
4493		 * console might take a lot of time:
4494		 */
4495		touch_nmi_watchdog();
4496		if (!state_filter || (p->state & state_filter))
4497			sched_show_task(p);
4498	} while_each_thread(g, p);
4499
4500	touch_all_softlockup_watchdogs();
4501
4502#ifdef CONFIG_SCHED_DEBUG
4503	sysrq_sched_debug_show();
4504#endif
4505	rcu_read_unlock();
4506	/*
4507	 * Only show locks if all tasks are dumped:
4508	 */
4509	if (!state_filter)
4510		debug_show_all_locks();
4511}
4512
4513void init_idle_bootup_task(struct task_struct *idle)
4514{
4515	idle->sched_class = &idle_sched_class;
4516}
4517
4518/**
4519 * init_idle - set up an idle thread for a given CPU
4520 * @idle: task in question
4521 * @cpu: cpu the idle task belongs to
4522 *
4523 * NOTE: this function does not set the idle thread's NEED_RESCHED
4524 * flag, to make booting more robust.
4525 */
4526void init_idle(struct task_struct *idle, int cpu)
4527{
4528	struct rq *rq = cpu_rq(cpu);
4529	unsigned long flags;
4530
4531	raw_spin_lock_irqsave(&rq->lock, flags);
4532
4533	__sched_fork(0, idle);
4534	idle->state = TASK_RUNNING;
4535	idle->se.exec_start = sched_clock();
4536
4537	do_set_cpus_allowed(idle, cpumask_of(cpu));
4538	/*
4539	 * We're having a chicken and egg problem, even though we are
4540	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4541	 * lockdep check in task_group() will fail.
4542	 *
4543	 * Similar case to sched_fork(). / Alternatively we could
4544	 * use task_rq_lock() here and obtain the other rq->lock.
4545	 *
4546	 * Silence PROVE_RCU
4547	 */
4548	rcu_read_lock();
4549	__set_task_cpu(idle, cpu);
4550	rcu_read_unlock();
4551
4552	rq->curr = rq->idle = idle;
4553	idle->on_rq = 1;
4554#if defined(CONFIG_SMP)
4555	idle->on_cpu = 1;
4556#endif
4557	raw_spin_unlock_irqrestore(&rq->lock, flags);
4558
4559	/* Set the preempt count _outside_ the spinlocks! */
4560	init_idle_preempt_count(idle, cpu);
4561
4562	/*
4563	 * The idle tasks have their own, simple scheduling class:
4564	 */
4565	idle->sched_class = &idle_sched_class;
4566	ftrace_graph_init_idle_task(idle, cpu);
4567	vtime_init_idle(idle, cpu);
4568#if defined(CONFIG_SMP)
4569	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4570#endif
4571}
4572
4573#ifdef CONFIG_SMP
4574void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4575{
4576	if (p->sched_class && p->sched_class->set_cpus_allowed)
4577		p->sched_class->set_cpus_allowed(p, new_mask);
4578
4579	cpumask_copy(&p->cpus_allowed, new_mask);
4580	p->nr_cpus_allowed = cpumask_weight(new_mask);
4581}
4582
4583/*
4584 * This is how migration works:
4585 *
4586 * 1) we invoke migration_cpu_stop() on the target CPU using
4587 *    stop_one_cpu().
4588 * 2) stopper starts to run (implicitly forcing the migrated thread
4589 *    off the CPU)
4590 * 3) it checks whether the migrated task is still in the wrong runqueue.
4591 * 4) if it's in the wrong runqueue then the migration thread removes
4592 *    it and puts it into the right queue.
4593 * 5) stopper completes and stop_one_cpu() returns and the migration
4594 *    is done.
4595 */
4596
4597/*
4598 * Change a given task's CPU affinity. Migrate the thread to a
4599 * proper CPU and schedule it away if the CPU it's executing on
4600 * is removed from the allowed bitmask.
4601 *
4602 * NOTE: the caller must have a valid reference to the task, the
4603 * task must not exit() & deallocate itself prematurely. The
4604 * call is not atomic; no spinlocks may be held.
4605 */
4606int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4607{
4608	unsigned long flags;
4609	struct rq *rq;
4610	unsigned int dest_cpu;
4611	int ret = 0;
4612
4613	rq = task_rq_lock(p, &flags);
4614
4615	if (cpumask_equal(&p->cpus_allowed, new_mask))
4616		goto out;
4617
4618	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4619		ret = -EINVAL;
4620		goto out;
4621	}
4622
4623	do_set_cpus_allowed(p, new_mask);
4624
4625	/* Can the task run on the task's current CPU? If so, we're done */
4626	if (cpumask_test_cpu(task_cpu(p), new_mask))
4627		goto out;
4628
4629	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4630	if (p->on_rq) {
4631		struct migration_arg arg = { p, dest_cpu };
4632		/* Need help from migration thread: drop lock and wait. */
4633		task_rq_unlock(rq, p, &flags);
4634		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4635		tlb_migrate_finish(p->mm);
4636		return 0;
4637	}
4638out:
4639	task_rq_unlock(rq, p, &flags);
4640
4641	return ret;
4642}
4643EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4644
4645/*
4646 * Move (not current) task off this cpu, onto dest cpu. We're doing
4647 * this because either it can't run here any more (set_cpus_allowed()
4648 * away from this CPU, or CPU going down), or because we're
4649 * attempting to rebalance this task on exec (sched_exec).
4650 *
4651 * So we race with normal scheduler movements, but that's OK, as long
4652 * as the task is no longer on this CPU.
4653 *
4654 * Returns non-zero if task was successfully migrated.
4655 */
4656static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4657{
4658	struct rq *rq_dest, *rq_src;
4659	int ret = 0;
4660
4661	if (unlikely(!cpu_active(dest_cpu)))
4662		return ret;
4663
4664	rq_src = cpu_rq(src_cpu);
4665	rq_dest = cpu_rq(dest_cpu);
4666
4667	raw_spin_lock(&p->pi_lock);
4668	double_rq_lock(rq_src, rq_dest);
4669	/* Already moved. */
4670	if (task_cpu(p) != src_cpu)
4671		goto done;
4672	/* Affinity changed (again). */
4673	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4674		goto fail;
4675
4676	/*
4677	 * If we're not on a rq, the next wake-up will ensure we're
4678	 * placed properly.
4679	 */
4680	if (p->on_rq) {
4681		dequeue_task(rq_src, p, 0);
4682		set_task_cpu(p, dest_cpu);
4683		enqueue_task(rq_dest, p, 0);
4684		check_preempt_curr(rq_dest, p, 0);
4685	}
4686done:
4687	ret = 1;
4688fail:
4689	double_rq_unlock(rq_src, rq_dest);
4690	raw_spin_unlock(&p->pi_lock);
4691	return ret;
4692}
4693
4694#ifdef CONFIG_NUMA_BALANCING
4695/* Migrate current task p to target_cpu */
4696int migrate_task_to(struct task_struct *p, int target_cpu)
4697{
4698	struct migration_arg arg = { p, target_cpu };
4699	int curr_cpu = task_cpu(p);
4700
4701	if (curr_cpu == target_cpu)
4702		return 0;
4703
4704	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4705		return -EINVAL;
4706
4707	/* TODO: This is not properly updating schedstats */
4708
4709	trace_sched_move_numa(p, curr_cpu, target_cpu);
4710	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4711}
4712
4713/*
4714 * Requeue a task on a given node and accurately track the number of NUMA
4715 * tasks on the runqueues
4716 */
4717void sched_setnuma(struct task_struct *p, int nid)
4718{
4719	struct rq *rq;
4720	unsigned long flags;
4721	bool on_rq, running;
4722
4723	rq = task_rq_lock(p, &flags);
4724	on_rq = p->on_rq;
4725	running = task_current(rq, p);
4726
4727	if (on_rq)
4728		dequeue_task(rq, p, 0);
4729	if (running)
4730		p->sched_class->put_prev_task(rq, p);
4731
4732	p->numa_preferred_nid = nid;
4733
4734	if (running)
4735		p->sched_class->set_curr_task(rq);
4736	if (on_rq)
4737		enqueue_task(rq, p, 0);
4738	task_rq_unlock(rq, p, &flags);
4739}
4740#endif
4741
4742/*
4743 * migration_cpu_stop - this will be executed by a highprio stopper thread
4744 * and performs thread migration by bumping thread off CPU then
4745 * 'pushing' onto another runqueue.
4746 */
4747static int migration_cpu_stop(void *data)
4748{
4749	struct migration_arg *arg = data;
4750
4751	/*
4752	 * The original target cpu might have gone down and we might
4753	 * be on another cpu but it doesn't matter.
4754	 */
4755	local_irq_disable();
4756	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4757	local_irq_enable();
4758	return 0;
4759}
4760
4761#ifdef CONFIG_HOTPLUG_CPU
4762
4763/*
4764 * Ensures that the idle task is using init_mm right before its cpu goes
4765 * offline.
4766 */
4767void idle_task_exit(void)
4768{
4769	struct mm_struct *mm = current->active_mm;
4770
4771	BUG_ON(cpu_online(smp_processor_id()));
4772
4773	if (mm != &init_mm) {
4774		switch_mm(mm, &init_mm, current);
4775		finish_arch_post_lock_switch();
4776	}
4777	mmdrop(mm);
4778}
4779
4780/*
4781 * Since this CPU is going 'away' for a while, fold any nr_active delta
4782 * we might have. Assumes we're called after migrate_tasks() so that the
4783 * nr_active count is stable.
4784 *
4785 * Also see the comment "Global load-average calculations".
4786 */
4787static void calc_load_migrate(struct rq *rq)
4788{
4789	long delta = calc_load_fold_active(rq);
4790	if (delta)
4791		atomic_long_add(delta, &calc_load_tasks);
4792}
4793
4794static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4795{
4796}
4797
4798static const struct sched_class fake_sched_class = {
4799	.put_prev_task = put_prev_task_fake,
4800};
4801
4802static struct task_struct fake_task = {
4803	/*
4804	 * Avoid pull_{rt,dl}_task()
4805	 */
4806	.prio = MAX_PRIO + 1,
4807	.sched_class = &fake_sched_class,
4808};
4809
4810/*
4811 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4812 * try_to_wake_up()->select_task_rq().
4813 *
4814 * Called with rq->lock held even though we'er in stop_machine() and
4815 * there's no concurrency possible, we hold the required locks anyway
4816 * because of lock validation efforts.
4817 */
4818static void migrate_tasks(unsigned int dead_cpu)
4819{
4820	struct rq *rq = cpu_rq(dead_cpu);
4821	struct task_struct *next, *stop = rq->stop;
4822	int dest_cpu;
4823
4824	/*
4825	 * Fudge the rq selection such that the below task selection loop
4826	 * doesn't get stuck on the currently eligible stop task.
4827	 *
4828	 * We're currently inside stop_machine() and the rq is either stuck
4829	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4830	 * either way we should never end up calling schedule() until we're
4831	 * done here.
4832	 */
4833	rq->stop = NULL;
4834
4835	/*
4836	 * put_prev_task() and pick_next_task() sched
4837	 * class method both need to have an up-to-date
4838	 * value of rq->clock[_task]
4839	 */
4840	update_rq_clock(rq);
4841
4842	for ( ; ; ) {
4843		/*
4844		 * There's this thread running, bail when that's the only
4845		 * remaining thread.
4846		 */
4847		if (rq->nr_running == 1)
4848			break;
4849
4850		next = pick_next_task(rq, &fake_task);
4851		BUG_ON(!next);
4852		next->sched_class->put_prev_task(rq, next);
4853
4854		/* Find suitable destination for @next, with force if needed. */
4855		dest_cpu = select_fallback_rq(dead_cpu, next);
4856		raw_spin_unlock(&rq->lock);
4857
4858		__migrate_task(next, dead_cpu, dest_cpu);
4859
4860		raw_spin_lock(&rq->lock);
4861	}
4862
4863	rq->stop = stop;
4864}
4865
4866#endif /* CONFIG_HOTPLUG_CPU */
4867
4868#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4869
4870static struct ctl_table sd_ctl_dir[] = {
4871	{
4872		.procname	= "sched_domain",
4873		.mode		= 0555,
4874	},
4875	{}
4876};
4877
4878static struct ctl_table sd_ctl_root[] = {
4879	{
4880		.procname	= "kernel",
4881		.mode		= 0555,
4882		.child		= sd_ctl_dir,
4883	},
4884	{}
4885};
4886
4887static struct ctl_table *sd_alloc_ctl_entry(int n)
4888{
4889	struct ctl_table *entry =
4890		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4891
4892	return entry;
4893}
4894
4895static void sd_free_ctl_entry(struct ctl_table **tablep)
4896{
4897	struct ctl_table *entry;
4898
4899	/*
4900	 * In the intermediate directories, both the child directory and
4901	 * procname are dynamically allocated and could fail but the mode
4902	 * will always be set. In the lowest directory the names are
4903	 * static strings and all have proc handlers.
4904	 */
4905	for (entry = *tablep; entry->mode; entry++) {
4906		if (entry->child)
4907			sd_free_ctl_entry(&entry->child);
4908		if (entry->proc_handler == NULL)
4909			kfree(entry->procname);
4910	}
4911
4912	kfree(*tablep);
4913	*tablep = NULL;
4914}
4915
4916static int min_load_idx = 0;
4917static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4918
4919static void
4920set_table_entry(struct ctl_table *entry,
4921		const char *procname, void *data, int maxlen,
4922		umode_t mode, proc_handler *proc_handler,
4923		bool load_idx)
4924{
4925	entry->procname = procname;
4926	entry->data = data;
4927	entry->maxlen = maxlen;
4928	entry->mode = mode;
4929	entry->proc_handler = proc_handler;
4930
4931	if (load_idx) {
4932		entry->extra1 = &min_load_idx;
4933		entry->extra2 = &max_load_idx;
4934	}
4935}
4936
4937static struct ctl_table *
4938sd_alloc_ctl_domain_table(struct sched_domain *sd)
4939{
4940	struct ctl_table *table = sd_alloc_ctl_entry(14);
4941
4942	if (table == NULL)
4943		return NULL;
4944
4945	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4946		sizeof(long), 0644, proc_doulongvec_minmax, false);
4947	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4948		sizeof(long), 0644, proc_doulongvec_minmax, false);
4949	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4950		sizeof(int), 0644, proc_dointvec_minmax, true);
4951	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4952		sizeof(int), 0644, proc_dointvec_minmax, true);
4953	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4954		sizeof(int), 0644, proc_dointvec_minmax, true);
4955	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4956		sizeof(int), 0644, proc_dointvec_minmax, true);
4957	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4958		sizeof(int), 0644, proc_dointvec_minmax, true);
4959	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4960		sizeof(int), 0644, proc_dointvec_minmax, false);
4961	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4962		sizeof(int), 0644, proc_dointvec_minmax, false);
4963	set_table_entry(&table[9], "cache_nice_tries",
4964		&sd->cache_nice_tries,
4965		sizeof(int), 0644, proc_dointvec_minmax, false);
4966	set_table_entry(&table[10], "flags", &sd->flags,
4967		sizeof(int), 0644, proc_dointvec_minmax, false);
4968	set_table_entry(&table[11], "max_newidle_lb_cost",
4969		&sd->max_newidle_lb_cost,
4970		sizeof(long), 0644, proc_doulongvec_minmax, false);
4971	set_table_entry(&table[12], "name", sd->name,
4972		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4973	/* &table[13] is terminator */
4974
4975	return table;
4976}
4977
4978static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4979{
4980	struct ctl_table *entry, *table;
4981	struct sched_domain *sd;
4982	int domain_num = 0, i;
4983	char buf[32];
4984
4985	for_each_domain(cpu, sd)
4986		domain_num++;
4987	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4988	if (table == NULL)
4989		return NULL;
4990
4991	i = 0;
4992	for_each_domain(cpu, sd) {
4993		snprintf(buf, 32, "domain%d", i);
4994		entry->procname = kstrdup(buf, GFP_KERNEL);
4995		entry->mode = 0555;
4996		entry->child = sd_alloc_ctl_domain_table(sd);
4997		entry++;
4998		i++;
4999	}
5000	return table;
5001}
5002
5003static struct ctl_table_header *sd_sysctl_header;
5004static void register_sched_domain_sysctl(void)
5005{
5006	int i, cpu_num = num_possible_cpus();
5007	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5008	char buf[32];
5009
5010	WARN_ON(sd_ctl_dir[0].child);
5011	sd_ctl_dir[0].child = entry;
5012
5013	if (entry == NULL)
5014		return;
5015
5016	for_each_possible_cpu(i) {
5017		snprintf(buf, 32, "cpu%d", i);
5018		entry->procname = kstrdup(buf, GFP_KERNEL);
5019		entry->mode = 0555;
5020		entry->child = sd_alloc_ctl_cpu_table(i);
5021		entry++;
5022	}
5023
5024	WARN_ON(sd_sysctl_header);
5025	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5026}
5027
5028/* may be called multiple times per register */
5029static void unregister_sched_domain_sysctl(void)
5030{
5031	if (sd_sysctl_header)
5032		unregister_sysctl_table(sd_sysctl_header);
5033	sd_sysctl_header = NULL;
5034	if (sd_ctl_dir[0].child)
5035		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5036}
5037#else
5038static void register_sched_domain_sysctl(void)
5039{
5040}
5041static void unregister_sched_domain_sysctl(void)
5042{
5043}
5044#endif
5045
5046static void set_rq_online(struct rq *rq)
5047{
5048	if (!rq->online) {
5049		const struct sched_class *class;
5050
5051		cpumask_set_cpu(rq->cpu, rq->rd->online);
5052		rq->online = 1;
5053
5054		for_each_class(class) {
5055			if (class->rq_online)
5056				class->rq_online(rq);
5057		}
5058	}
5059}
5060
5061static void set_rq_offline(struct rq *rq)
5062{
5063	if (rq->online) {
5064		const struct sched_class *class;
5065
5066		for_each_class(class) {
5067			if (class->rq_offline)
5068				class->rq_offline(rq);
5069		}
5070
5071		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5072		rq->online = 0;
5073	}
5074}
5075
5076/*
5077 * migration_call - callback that gets triggered when a CPU is added.
5078 * Here we can start up the necessary migration thread for the new CPU.
5079 */
5080static int
5081migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5082{
5083	int cpu = (long)hcpu;
5084	unsigned long flags;
5085	struct rq *rq = cpu_rq(cpu);
5086
5087	switch (action & ~CPU_TASKS_FROZEN) {
5088
5089	case CPU_UP_PREPARE:
5090		rq->calc_load_update = calc_load_update;
5091		break;
5092
5093	case CPU_ONLINE:
5094		/* Update our root-domain */
5095		raw_spin_lock_irqsave(&rq->lock, flags);
5096		if (rq->rd) {
5097			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5098
5099			set_rq_online(rq);
5100		}
5101		raw_spin_unlock_irqrestore(&rq->lock, flags);
5102		break;
5103
5104#ifdef CONFIG_HOTPLUG_CPU
5105	case CPU_DYING:
5106		sched_ttwu_pending();
5107		/* Update our root-domain */
5108		raw_spin_lock_irqsave(&rq->lock, flags);
5109		if (rq->rd) {
5110			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5111			set_rq_offline(rq);
5112		}
5113		migrate_tasks(cpu);
5114		BUG_ON(rq->nr_running != 1); /* the migration thread */
5115		raw_spin_unlock_irqrestore(&rq->lock, flags);
5116		break;
5117
5118	case CPU_DEAD:
5119		calc_load_migrate(rq);
5120		break;
5121#endif
5122	}
5123
5124	update_max_interval();
5125
5126	return NOTIFY_OK;
5127}
5128
5129/*
5130 * Register at high priority so that task migration (migrate_all_tasks)
5131 * happens before everything else.  This has to be lower priority than
5132 * the notifier in the perf_event subsystem, though.
5133 */
5134static struct notifier_block migration_notifier = {
5135	.notifier_call = migration_call,
5136	.priority = CPU_PRI_MIGRATION,
5137};
5138
5139static void __cpuinit set_cpu_rq_start_time(void)
5140{
5141	int cpu = smp_processor_id();
5142	struct rq *rq = cpu_rq(cpu);
5143	rq->age_stamp = sched_clock_cpu(cpu);
5144}
5145
5146static int sched_cpu_active(struct notifier_block *nfb,
5147				      unsigned long action, void *hcpu)
5148{
5149	switch (action & ~CPU_TASKS_FROZEN) {
5150	case CPU_STARTING:
5151		set_cpu_rq_start_time();
5152		return NOTIFY_OK;
5153	case CPU_DOWN_FAILED:
5154		set_cpu_active((long)hcpu, true);
5155		return NOTIFY_OK;
5156	default:
5157		return NOTIFY_DONE;
5158	}
5159}
5160
5161static int sched_cpu_inactive(struct notifier_block *nfb,
5162					unsigned long action, void *hcpu)
5163{
5164	unsigned long flags;
5165	long cpu = (long)hcpu;
5166
5167	switch (action & ~CPU_TASKS_FROZEN) {
5168	case CPU_DOWN_PREPARE:
5169		set_cpu_active(cpu, false);
5170
5171		/* explicitly allow suspend */
5172		if (!(action & CPU_TASKS_FROZEN)) {
5173			struct dl_bw *dl_b = dl_bw_of(cpu);
5174			bool overflow;
5175			int cpus;
5176
5177			raw_spin_lock_irqsave(&dl_b->lock, flags);
5178			cpus = dl_bw_cpus(cpu);
5179			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5180			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5181
5182			if (overflow)
5183				return notifier_from_errno(-EBUSY);
5184		}
5185		return NOTIFY_OK;
5186	}
5187
5188	return NOTIFY_DONE;
5189}
5190
5191static int __init migration_init(void)
5192{
5193	void *cpu = (void *)(long)smp_processor_id();
5194	int err;
5195
5196	/* Initialize migration for the boot CPU */
5197	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5198	BUG_ON(err == NOTIFY_BAD);
5199	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5200	register_cpu_notifier(&migration_notifier);
5201
5202	/* Register cpu active notifiers */
5203	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5204	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5205
5206	return 0;
5207}
5208early_initcall(migration_init);
5209#endif
5210
5211#ifdef CONFIG_SMP
5212
5213static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5214
5215#ifdef CONFIG_SCHED_DEBUG
5216
5217static __read_mostly int sched_debug_enabled;
5218
5219static int __init sched_debug_setup(char *str)
5220{
5221	sched_debug_enabled = 1;
5222
5223	return 0;
5224}
5225early_param("sched_debug", sched_debug_setup);
5226
5227static inline bool sched_debug(void)
5228{
5229	return sched_debug_enabled;
5230}
5231
5232static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5233				  struct cpumask *groupmask)
5234{
5235	struct sched_group *group = sd->groups;
5236	char str[256];
5237
5238	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5239	cpumask_clear(groupmask);
5240
5241	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5242
5243	if (!(sd->flags & SD_LOAD_BALANCE)) {
5244		printk("does not load-balance\n");
5245		if (sd->parent)
5246			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5247					" has parent");
5248		return -1;
5249	}
5250
5251	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5252
5253	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5254		printk(KERN_ERR "ERROR: domain->span does not contain "
5255				"CPU%d\n", cpu);
5256	}
5257	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5258		printk(KERN_ERR "ERROR: domain->groups does not contain"
5259				" CPU%d\n", cpu);
5260	}
5261
5262	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5263	do {
5264		if (!group) {
5265			printk("\n");
5266			printk(KERN_ERR "ERROR: group is NULL\n");
5267			break;
5268		}
5269
5270		/*
5271		 * Even though we initialize ->capacity to something semi-sane,
5272		 * we leave capacity_orig unset. This allows us to detect if
5273		 * domain iteration is still funny without causing /0 traps.
5274		 */
5275		if (!group->sgc->capacity_orig) {
5276			printk(KERN_CONT "\n");
5277			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5278			break;
5279		}
5280
5281		if (!cpumask_weight(sched_group_cpus(group))) {
5282			printk(KERN_CONT "\n");
5283			printk(KERN_ERR "ERROR: empty group\n");
5284			break;
5285		}
5286
5287		if (!(sd->flags & SD_OVERLAP) &&
5288		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5289			printk(KERN_CONT "\n");
5290			printk(KERN_ERR "ERROR: repeated CPUs\n");
5291			break;
5292		}
5293
5294		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5295
5296		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5297
5298		printk(KERN_CONT " %s", str);
5299		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5300			printk(KERN_CONT " (cpu_capacity = %d)",
5301				group->sgc->capacity);
5302		}
5303
5304		group = group->next;
5305	} while (group != sd->groups);
5306	printk(KERN_CONT "\n");
5307
5308	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5309		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5310
5311	if (sd->parent &&
5312	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5313		printk(KERN_ERR "ERROR: parent span is not a superset "
5314			"of domain->span\n");
5315	return 0;
5316}
5317
5318static void sched_domain_debug(struct sched_domain *sd, int cpu)
5319{
5320	int level = 0;
5321
5322	if (!sched_debug_enabled)
5323		return;
5324
5325	if (!sd) {
5326		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5327		return;
5328	}
5329
5330	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5331
5332	for (;;) {
5333		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5334			break;
5335		level++;
5336		sd = sd->parent;
5337		if (!sd)
5338			break;
5339	}
5340}
5341#else /* !CONFIG_SCHED_DEBUG */
5342# define sched_domain_debug(sd, cpu) do { } while (0)
5343static inline bool sched_debug(void)
5344{
5345	return false;
5346}
5347#endif /* CONFIG_SCHED_DEBUG */
5348
5349static int sd_degenerate(struct sched_domain *sd)
5350{
5351	if (cpumask_weight(sched_domain_span(sd)) == 1)
5352		return 1;
5353
5354	/* Following flags need at least 2 groups */
5355	if (sd->flags & (SD_LOAD_BALANCE |
5356			 SD_BALANCE_NEWIDLE |
5357			 SD_BALANCE_FORK |
5358			 SD_BALANCE_EXEC |
5359			 SD_SHARE_CPUCAPACITY |
5360			 SD_SHARE_PKG_RESOURCES |
5361			 SD_SHARE_POWERDOMAIN)) {
5362		if (sd->groups != sd->groups->next)
5363			return 0;
5364	}
5365
5366	/* Following flags don't use groups */
5367	if (sd->flags & (SD_WAKE_AFFINE))
5368		return 0;
5369
5370	return 1;
5371}
5372
5373static int
5374sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5375{
5376	unsigned long cflags = sd->flags, pflags = parent->flags;
5377
5378	if (sd_degenerate(parent))
5379		return 1;
5380
5381	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5382		return 0;
5383
5384	/* Flags needing groups don't count if only 1 group in parent */
5385	if (parent->groups == parent->groups->next) {
5386		pflags &= ~(SD_LOAD_BALANCE |
5387				SD_BALANCE_NEWIDLE |
5388				SD_BALANCE_FORK |
5389				SD_BALANCE_EXEC |
5390				SD_SHARE_CPUCAPACITY |
5391				SD_SHARE_PKG_RESOURCES |
5392				SD_PREFER_SIBLING |
5393				SD_SHARE_POWERDOMAIN);
5394		if (nr_node_ids == 1)
5395			pflags &= ~SD_SERIALIZE;
5396	}
5397	if (~cflags & pflags)
5398		return 0;
5399
5400	return 1;
5401}
5402
5403static void free_rootdomain(struct rcu_head *rcu)
5404{
5405	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5406
5407	cpupri_cleanup(&rd->cpupri);
5408	cpudl_cleanup(&rd->cpudl);
5409	free_cpumask_var(rd->dlo_mask);
5410	free_cpumask_var(rd->rto_mask);
5411	free_cpumask_var(rd->online);
5412	free_cpumask_var(rd->span);
5413	kfree(rd);
5414}
5415
5416static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5417{
5418	struct root_domain *old_rd = NULL;
5419	unsigned long flags;
5420
5421	raw_spin_lock_irqsave(&rq->lock, flags);
5422
5423	if (rq->rd) {
5424		old_rd = rq->rd;
5425
5426		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5427			set_rq_offline(rq);
5428
5429		cpumask_clear_cpu(rq->cpu, old_rd->span);
5430
5431		/*
5432		 * If we dont want to free the old_rd yet then
5433		 * set old_rd to NULL to skip the freeing later
5434		 * in this function:
5435		 */
5436		if (!atomic_dec_and_test(&old_rd->refcount))
5437			old_rd = NULL;
5438	}
5439
5440	atomic_inc(&rd->refcount);
5441	rq->rd = rd;
5442
5443	cpumask_set_cpu(rq->cpu, rd->span);
5444	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5445		set_rq_online(rq);
5446
5447	raw_spin_unlock_irqrestore(&rq->lock, flags);
5448
5449	if (old_rd)
5450		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5451}
5452
5453static int init_rootdomain(struct root_domain *rd)
5454{
5455	memset(rd, 0, sizeof(*rd));
5456
5457	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5458		goto out;
5459	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5460		goto free_span;
5461	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5462		goto free_online;
5463	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5464		goto free_dlo_mask;
5465
5466	init_dl_bw(&rd->dl_bw);
5467	if (cpudl_init(&rd->cpudl) != 0)
5468		goto free_dlo_mask;
5469
5470	if (cpupri_init(&rd->cpupri) != 0)
5471		goto free_rto_mask;
5472	return 0;
5473
5474free_rto_mask:
5475	free_cpumask_var(rd->rto_mask);
5476free_dlo_mask:
5477	free_cpumask_var(rd->dlo_mask);
5478free_online:
5479	free_cpumask_var(rd->online);
5480free_span:
5481	free_cpumask_var(rd->span);
5482out:
5483	return -ENOMEM;
5484}
5485
5486/*
5487 * By default the system creates a single root-domain with all cpus as
5488 * members (mimicking the global state we have today).
5489 */
5490struct root_domain def_root_domain;
5491
5492static void init_defrootdomain(void)
5493{
5494	init_rootdomain(&def_root_domain);
5495
5496	atomic_set(&def_root_domain.refcount, 1);
5497}
5498
5499static struct root_domain *alloc_rootdomain(void)
5500{
5501	struct root_domain *rd;
5502
5503	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5504	if (!rd)
5505		return NULL;
5506
5507	if (init_rootdomain(rd) != 0) {
5508		kfree(rd);
5509		return NULL;
5510	}
5511
5512	return rd;
5513}
5514
5515static void free_sched_groups(struct sched_group *sg, int free_sgc)
5516{
5517	struct sched_group *tmp, *first;
5518
5519	if (!sg)
5520		return;
5521
5522	first = sg;
5523	do {
5524		tmp = sg->next;
5525
5526		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5527			kfree(sg->sgc);
5528
5529		kfree(sg);
5530		sg = tmp;
5531	} while (sg != first);
5532}
5533
5534static void free_sched_domain(struct rcu_head *rcu)
5535{
5536	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5537
5538	/*
5539	 * If its an overlapping domain it has private groups, iterate and
5540	 * nuke them all.
5541	 */
5542	if (sd->flags & SD_OVERLAP) {
5543		free_sched_groups(sd->groups, 1);
5544	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5545		kfree(sd->groups->sgc);
5546		kfree(sd->groups);
5547	}
5548	kfree(sd);
5549}
5550
5551static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5552{
5553	call_rcu(&sd->rcu, free_sched_domain);
5554}
5555
5556static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5557{
5558	for (; sd; sd = sd->parent)
5559		destroy_sched_domain(sd, cpu);
5560}
5561
5562/*
5563 * Keep a special pointer to the highest sched_domain that has
5564 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5565 * allows us to avoid some pointer chasing select_idle_sibling().
5566 *
5567 * Also keep a unique ID per domain (we use the first cpu number in
5568 * the cpumask of the domain), this allows us to quickly tell if
5569 * two cpus are in the same cache domain, see cpus_share_cache().
5570 */
5571DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5572DEFINE_PER_CPU(int, sd_llc_size);
5573DEFINE_PER_CPU(int, sd_llc_id);
5574DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5575DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5576DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5577
5578static void update_top_cache_domain(int cpu)
5579{
5580	struct sched_domain *sd;
5581	struct sched_domain *busy_sd = NULL;
5582	int id = cpu;
5583	int size = 1;
5584
5585	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5586	if (sd) {
5587		id = cpumask_first(sched_domain_span(sd));
5588		size = cpumask_weight(sched_domain_span(sd));
5589		busy_sd = sd->parent; /* sd_busy */
5590	}
5591	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5592
5593	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5594	per_cpu(sd_llc_size, cpu) = size;
5595	per_cpu(sd_llc_id, cpu) = id;
5596
5597	sd = lowest_flag_domain(cpu, SD_NUMA);
5598	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5599
5600	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5601	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5602}
5603
5604/*
5605 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5606 * hold the hotplug lock.
5607 */
5608static void
5609cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5610{
5611	struct rq *rq = cpu_rq(cpu);
5612	struct sched_domain *tmp;
5613
5614	/* Remove the sched domains which do not contribute to scheduling. */
5615	for (tmp = sd; tmp; ) {
5616		struct sched_domain *parent = tmp->parent;
5617		if (!parent)
5618			break;
5619
5620		if (sd_parent_degenerate(tmp, parent)) {
5621			tmp->parent = parent->parent;
5622			if (parent->parent)
5623				parent->parent->child = tmp;
5624			/*
5625			 * Transfer SD_PREFER_SIBLING down in case of a
5626			 * degenerate parent; the spans match for this
5627			 * so the property transfers.
5628			 */
5629			if (parent->flags & SD_PREFER_SIBLING)
5630				tmp->flags |= SD_PREFER_SIBLING;
5631			destroy_sched_domain(parent, cpu);
5632		} else
5633			tmp = tmp->parent;
5634	}
5635
5636	if (sd && sd_degenerate(sd)) {
5637		tmp = sd;
5638		sd = sd->parent;
5639		destroy_sched_domain(tmp, cpu);
5640		if (sd)
5641			sd->child = NULL;
5642	}
5643
5644	sched_domain_debug(sd, cpu);
5645
5646	rq_attach_root(rq, rd);
5647	tmp = rq->sd;
5648	rcu_assign_pointer(rq->sd, sd);
5649	destroy_sched_domains(tmp, cpu);
5650
5651	update_top_cache_domain(cpu);
5652}
5653
5654/* cpus with isolated domains */
5655static cpumask_var_t cpu_isolated_map;
5656
5657/* Setup the mask of cpus configured for isolated domains */
5658static int __init isolated_cpu_setup(char *str)
5659{
5660	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5661	cpulist_parse(str, cpu_isolated_map);
5662	return 1;
5663}
5664
5665__setup("isolcpus=", isolated_cpu_setup);
5666
5667struct s_data {
5668	struct sched_domain ** __percpu sd;
5669	struct root_domain	*rd;
5670};
5671
5672enum s_alloc {
5673	sa_rootdomain,
5674	sa_sd,
5675	sa_sd_storage,
5676	sa_none,
5677};
5678
5679/*
5680 * Build an iteration mask that can exclude certain CPUs from the upwards
5681 * domain traversal.
5682 *
5683 * Asymmetric node setups can result in situations where the domain tree is of
5684 * unequal depth, make sure to skip domains that already cover the entire
5685 * range.
5686 *
5687 * In that case build_sched_domains() will have terminated the iteration early
5688 * and our sibling sd spans will be empty. Domains should always include the
5689 * cpu they're built on, so check that.
5690 *
5691 */
5692static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5693{
5694	const struct cpumask *span = sched_domain_span(sd);
5695	struct sd_data *sdd = sd->private;
5696	struct sched_domain *sibling;
5697	int i;
5698
5699	for_each_cpu(i, span) {
5700		sibling = *per_cpu_ptr(sdd->sd, i);
5701		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5702			continue;
5703
5704		cpumask_set_cpu(i, sched_group_mask(sg));
5705	}
5706}
5707
5708/*
5709 * Return the canonical balance cpu for this group, this is the first cpu
5710 * of this group that's also in the iteration mask.
5711 */
5712int group_balance_cpu(struct sched_group *sg)
5713{
5714	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5715}
5716
5717static int
5718build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5719{
5720	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5721	const struct cpumask *span = sched_domain_span(sd);
5722	struct cpumask *covered = sched_domains_tmpmask;
5723	struct sd_data *sdd = sd->private;
5724	struct sched_domain *child;
5725	int i;
5726
5727	cpumask_clear(covered);
5728
5729	for_each_cpu(i, span) {
5730		struct cpumask *sg_span;
5731
5732		if (cpumask_test_cpu(i, covered))
5733			continue;
5734
5735		child = *per_cpu_ptr(sdd->sd, i);
5736
5737		/* See the comment near build_group_mask(). */
5738		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5739			continue;
5740
5741		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5742				GFP_KERNEL, cpu_to_node(cpu));
5743
5744		if (!sg)
5745			goto fail;
5746
5747		sg_span = sched_group_cpus(sg);
5748		if (child->child) {
5749			child = child->child;
5750			cpumask_copy(sg_span, sched_domain_span(child));
5751		} else
5752			cpumask_set_cpu(i, sg_span);
5753
5754		cpumask_or(covered, covered, sg_span);
5755
5756		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5757		if (atomic_inc_return(&sg->sgc->ref) == 1)
5758			build_group_mask(sd, sg);
5759
5760		/*
5761		 * Initialize sgc->capacity such that even if we mess up the
5762		 * domains and no possible iteration will get us here, we won't
5763		 * die on a /0 trap.
5764		 */
5765		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5766		sg->sgc->capacity_orig = sg->sgc->capacity;
5767
5768		/*
5769		 * Make sure the first group of this domain contains the
5770		 * canonical balance cpu. Otherwise the sched_domain iteration
5771		 * breaks. See update_sg_lb_stats().
5772		 */
5773		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5774		    group_balance_cpu(sg) == cpu)
5775			groups = sg;
5776
5777		if (!first)
5778			first = sg;
5779		if (last)
5780			last->next = sg;
5781		last = sg;
5782		last->next = first;
5783	}
5784	sd->groups = groups;
5785
5786	return 0;
5787
5788fail:
5789	free_sched_groups(first, 0);
5790
5791	return -ENOMEM;
5792}
5793
5794static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5795{
5796	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5797	struct sched_domain *child = sd->child;
5798
5799	if (child)
5800		cpu = cpumask_first(sched_domain_span(child));
5801
5802	if (sg) {
5803		*sg = *per_cpu_ptr(sdd->sg, cpu);
5804		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5805		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5806	}
5807
5808	return cpu;
5809}
5810
5811/*
5812 * build_sched_groups will build a circular linked list of the groups
5813 * covered by the given span, and will set each group's ->cpumask correctly,
5814 * and ->cpu_capacity to 0.
5815 *
5816 * Assumes the sched_domain tree is fully constructed
5817 */
5818static int
5819build_sched_groups(struct sched_domain *sd, int cpu)
5820{
5821	struct sched_group *first = NULL, *last = NULL;
5822	struct sd_data *sdd = sd->private;
5823	const struct cpumask *span = sched_domain_span(sd);
5824	struct cpumask *covered;
5825	int i;
5826
5827	get_group(cpu, sdd, &sd->groups);
5828	atomic_inc(&sd->groups->ref);
5829
5830	if (cpu != cpumask_first(span))
5831		return 0;
5832
5833	lockdep_assert_held(&sched_domains_mutex);
5834	covered = sched_domains_tmpmask;
5835
5836	cpumask_clear(covered);
5837
5838	for_each_cpu(i, span) {
5839		struct sched_group *sg;
5840		int group, j;
5841
5842		if (cpumask_test_cpu(i, covered))
5843			continue;
5844
5845		group = get_group(i, sdd, &sg);
5846		cpumask_setall(sched_group_mask(sg));
5847
5848		for_each_cpu(j, span) {
5849			if (get_group(j, sdd, NULL) != group)
5850				continue;
5851
5852			cpumask_set_cpu(j, covered);
5853			cpumask_set_cpu(j, sched_group_cpus(sg));
5854		}
5855
5856		if (!first)
5857			first = sg;
5858		if (last)
5859			last->next = sg;
5860		last = sg;
5861	}
5862	last->next = first;
5863
5864	return 0;
5865}
5866
5867/*
5868 * Initialize sched groups cpu_capacity.
5869 *
5870 * cpu_capacity indicates the capacity of sched group, which is used while
5871 * distributing the load between different sched groups in a sched domain.
5872 * Typically cpu_capacity for all the groups in a sched domain will be same
5873 * unless there are asymmetries in the topology. If there are asymmetries,
5874 * group having more cpu_capacity will pickup more load compared to the
5875 * group having less cpu_capacity.
5876 */
5877static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5878{
5879	struct sched_group *sg = sd->groups;
5880
5881	WARN_ON(!sg);
5882
5883	do {
5884		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5885		sg = sg->next;
5886	} while (sg != sd->groups);
5887
5888	if (cpu != group_balance_cpu(sg))
5889		return;
5890
5891	update_group_capacity(sd, cpu);
5892	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5893}
5894
5895/*
5896 * Initializers for schedule domains
5897 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5898 */
5899
5900static int default_relax_domain_level = -1;
5901int sched_domain_level_max;
5902
5903static int __init setup_relax_domain_level(char *str)
5904{
5905	if (kstrtoint(str, 0, &default_relax_domain_level))
5906		pr_warn("Unable to set relax_domain_level\n");
5907
5908	return 1;
5909}
5910__setup("relax_domain_level=", setup_relax_domain_level);
5911
5912static void set_domain_attribute(struct sched_domain *sd,
5913				 struct sched_domain_attr *attr)
5914{
5915	int request;
5916
5917	if (!attr || attr->relax_domain_level < 0) {
5918		if (default_relax_domain_level < 0)
5919			return;
5920		else
5921			request = default_relax_domain_level;
5922	} else
5923		request = attr->relax_domain_level;
5924	if (request < sd->level) {
5925		/* turn off idle balance on this domain */
5926		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5927	} else {
5928		/* turn on idle balance on this domain */
5929		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5930	}
5931}
5932
5933static void __sdt_free(const struct cpumask *cpu_map);
5934static int __sdt_alloc(const struct cpumask *cpu_map);
5935
5936static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5937				 const struct cpumask *cpu_map)
5938{
5939	switch (what) {
5940	case sa_rootdomain:
5941		if (!atomic_read(&d->rd->refcount))
5942			free_rootdomain(&d->rd->rcu); /* fall through */
5943	case sa_sd:
5944		free_percpu(d->sd); /* fall through */
5945	case sa_sd_storage:
5946		__sdt_free(cpu_map); /* fall through */
5947	case sa_none:
5948		break;
5949	}
5950}
5951
5952static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5953						   const struct cpumask *cpu_map)
5954{
5955	memset(d, 0, sizeof(*d));
5956
5957	if (__sdt_alloc(cpu_map))
5958		return sa_sd_storage;
5959	d->sd = alloc_percpu(struct sched_domain *);
5960	if (!d->sd)
5961		return sa_sd_storage;
5962	d->rd = alloc_rootdomain();
5963	if (!d->rd)
5964		return sa_sd;
5965	return sa_rootdomain;
5966}
5967
5968/*
5969 * NULL the sd_data elements we've used to build the sched_domain and
5970 * sched_group structure so that the subsequent __free_domain_allocs()
5971 * will not free the data we're using.
5972 */
5973static void claim_allocations(int cpu, struct sched_domain *sd)
5974{
5975	struct sd_data *sdd = sd->private;
5976
5977	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5978	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5979
5980	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5981		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5982
5983	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5984		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5985}
5986
5987#ifdef CONFIG_NUMA
5988static int sched_domains_numa_levels;
5989static int *sched_domains_numa_distance;
5990static struct cpumask ***sched_domains_numa_masks;
5991static int sched_domains_curr_level;
5992#endif
5993
5994/*
5995 * SD_flags allowed in topology descriptions.
5996 *
5997 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
5998 * SD_SHARE_PKG_RESOURCES - describes shared caches
5999 * SD_NUMA                - describes NUMA topologies
6000 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6001 *
6002 * Odd one out:
6003 * SD_ASYM_PACKING        - describes SMT quirks
6004 */
6005#define TOPOLOGY_SD_FLAGS		\
6006	(SD_SHARE_CPUCAPACITY |		\
6007	 SD_SHARE_PKG_RESOURCES |	\
6008	 SD_NUMA |			\
6009	 SD_ASYM_PACKING |		\
6010	 SD_SHARE_POWERDOMAIN)
6011
6012static struct sched_domain *
6013sd_init(struct sched_domain_topology_level *tl, int cpu)
6014{
6015	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6016	int sd_weight, sd_flags = 0;
6017
6018#ifdef CONFIG_NUMA
6019	/*
6020	 * Ugly hack to pass state to sd_numa_mask()...
6021	 */
6022	sched_domains_curr_level = tl->numa_level;
6023#endif
6024
6025	sd_weight = cpumask_weight(tl->mask(cpu));
6026
6027	if (tl->sd_flags)
6028		sd_flags = (*tl->sd_flags)();
6029	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6030			"wrong sd_flags in topology description\n"))
6031		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6032
6033	*sd = (struct sched_domain){
6034		.min_interval		= sd_weight,
6035		.max_interval		= 2*sd_weight,
6036		.busy_factor		= 32,
6037		.imbalance_pct		= 125,
6038
6039		.cache_nice_tries	= 0,
6040		.busy_idx		= 0,
6041		.idle_idx		= 0,
6042		.newidle_idx		= 0,
6043		.wake_idx		= 0,
6044		.forkexec_idx		= 0,
6045
6046		.flags			= 1*SD_LOAD_BALANCE
6047					| 1*SD_BALANCE_NEWIDLE
6048					| 1*SD_BALANCE_EXEC
6049					| 1*SD_BALANCE_FORK
6050					| 0*SD_BALANCE_WAKE
6051					| 1*SD_WAKE_AFFINE
6052					| 0*SD_SHARE_CPUCAPACITY
6053					| 0*SD_SHARE_PKG_RESOURCES
6054					| 0*SD_SERIALIZE
6055					| 0*SD_PREFER_SIBLING
6056					| 0*SD_NUMA
6057					| sd_flags
6058					,
6059
6060		.last_balance		= jiffies,
6061		.balance_interval	= sd_weight,
6062		.smt_gain		= 0,
6063		.max_newidle_lb_cost	= 0,
6064		.next_decay_max_lb_cost	= jiffies,
6065#ifdef CONFIG_SCHED_DEBUG
6066		.name			= tl->name,
6067#endif
6068	};
6069
6070	/*
6071	 * Convert topological properties into behaviour.
6072	 */
6073
6074	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6075		sd->imbalance_pct = 110;
6076		sd->smt_gain = 1178; /* ~15% */
6077
6078	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6079		sd->imbalance_pct = 117;
6080		sd->cache_nice_tries = 1;
6081		sd->busy_idx = 2;
6082
6083#ifdef CONFIG_NUMA
6084	} else if (sd->flags & SD_NUMA) {
6085		sd->cache_nice_tries = 2;
6086		sd->busy_idx = 3;
6087		sd->idle_idx = 2;
6088
6089		sd->flags |= SD_SERIALIZE;
6090		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6091			sd->flags &= ~(SD_BALANCE_EXEC |
6092				       SD_BALANCE_FORK |
6093				       SD_WAKE_AFFINE);
6094		}
6095
6096#endif
6097	} else {
6098		sd->flags |= SD_PREFER_SIBLING;
6099		sd->cache_nice_tries = 1;
6100		sd->busy_idx = 2;
6101		sd->idle_idx = 1;
6102	}
6103
6104	sd->private = &tl->data;
6105
6106	return sd;
6107}
6108
6109/*
6110 * Topology list, bottom-up.
6111 */
6112static struct sched_domain_topology_level default_topology[] = {
6113#ifdef CONFIG_SCHED_SMT
6114	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6115#endif
6116#ifdef CONFIG_SCHED_MC
6117	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6118#endif
6119	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6120	{ NULL, },
6121};
6122
6123struct sched_domain_topology_level *sched_domain_topology = default_topology;
6124
6125#define for_each_sd_topology(tl)			\
6126	for (tl = sched_domain_topology; tl->mask; tl++)
6127
6128void set_sched_topology(struct sched_domain_topology_level *tl)
6129{
6130	sched_domain_topology = tl;
6131}
6132
6133#ifdef CONFIG_NUMA
6134
6135static const struct cpumask *sd_numa_mask(int cpu)
6136{
6137	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6138}
6139
6140static void sched_numa_warn(const char *str)
6141{
6142	static int done = false;
6143	int i,j;
6144
6145	if (done)
6146		return;
6147
6148	done = true;
6149
6150	printk(KERN_WARNING "ERROR: %s\n\n", str);
6151
6152	for (i = 0; i < nr_node_ids; i++) {
6153		printk(KERN_WARNING "  ");
6154		for (j = 0; j < nr_node_ids; j++)
6155			printk(KERN_CONT "%02d ", node_distance(i,j));
6156		printk(KERN_CONT "\n");
6157	}
6158	printk(KERN_WARNING "\n");
6159}
6160
6161static bool find_numa_distance(int distance)
6162{
6163	int i;
6164
6165	if (distance == node_distance(0, 0))
6166		return true;
6167
6168	for (i = 0; i < sched_domains_numa_levels; i++) {
6169		if (sched_domains_numa_distance[i] == distance)
6170			return true;
6171	}
6172
6173	return false;
6174}
6175
6176static void sched_init_numa(void)
6177{
6178	int next_distance, curr_distance = node_distance(0, 0);
6179	struct sched_domain_topology_level *tl;
6180	int level = 0;
6181	int i, j, k;
6182
6183	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6184	if (!sched_domains_numa_distance)
6185		return;
6186
6187	/*
6188	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6189	 * unique distances in the node_distance() table.
6190	 *
6191	 * Assumes node_distance(0,j) includes all distances in
6192	 * node_distance(i,j) in order to avoid cubic time.
6193	 */
6194	next_distance = curr_distance;
6195	for (i = 0; i < nr_node_ids; i++) {
6196		for (j = 0; j < nr_node_ids; j++) {
6197			for (k = 0; k < nr_node_ids; k++) {
6198				int distance = node_distance(i, k);
6199
6200				if (distance > curr_distance &&
6201				    (distance < next_distance ||
6202				     next_distance == curr_distance))
6203					next_distance = distance;
6204
6205				/*
6206				 * While not a strong assumption it would be nice to know
6207				 * about cases where if node A is connected to B, B is not
6208				 * equally connected to A.
6209				 */
6210				if (sched_debug() && node_distance(k, i) != distance)
6211					sched_numa_warn("Node-distance not symmetric");
6212
6213				if (sched_debug() && i && !find_numa_distance(distance))
6214					sched_numa_warn("Node-0 not representative");
6215			}
6216			if (next_distance != curr_distance) {
6217				sched_domains_numa_distance[level++] = next_distance;
6218				sched_domains_numa_levels = level;
6219				curr_distance = next_distance;
6220			} else break;
6221		}
6222
6223		/*
6224		 * In case of sched_debug() we verify the above assumption.
6225		 */
6226		if (!sched_debug())
6227			break;
6228	}
6229	/*
6230	 * 'level' contains the number of unique distances, excluding the
6231	 * identity distance node_distance(i,i).
6232	 *
6233	 * The sched_domains_numa_distance[] array includes the actual distance
6234	 * numbers.
6235	 */
6236
6237	/*
6238	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6239	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6240	 * the array will contain less then 'level' members. This could be
6241	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6242	 * in other functions.
6243	 *
6244	 * We reset it to 'level' at the end of this function.
6245	 */
6246	sched_domains_numa_levels = 0;
6247
6248	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6249	if (!sched_domains_numa_masks)
6250		return;
6251
6252	/*
6253	 * Now for each level, construct a mask per node which contains all
6254	 * cpus of nodes that are that many hops away from us.
6255	 */
6256	for (i = 0; i < level; i++) {
6257		sched_domains_numa_masks[i] =
6258			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6259		if (!sched_domains_numa_masks[i])
6260			return;
6261
6262		for (j = 0; j < nr_node_ids; j++) {
6263			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6264			if (!mask)
6265				return;
6266
6267			sched_domains_numa_masks[i][j] = mask;
6268
6269			for (k = 0; k < nr_node_ids; k++) {
6270				if (node_distance(j, k) > sched_domains_numa_distance[i])
6271					continue;
6272
6273				cpumask_or(mask, mask, cpumask_of_node(k));
6274			}
6275		}
6276	}
6277
6278	/* Compute default topology size */
6279	for (i = 0; sched_domain_topology[i].mask; i++);
6280
6281	tl = kzalloc((i + level + 1) *
6282			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6283	if (!tl)
6284		return;
6285
6286	/*
6287	 * Copy the default topology bits..
6288	 */
6289	for (i = 0; sched_domain_topology[i].mask; i++)
6290		tl[i] = sched_domain_topology[i];
6291
6292	/*
6293	 * .. and append 'j' levels of NUMA goodness.
6294	 */
6295	for (j = 0; j < level; i++, j++) {
6296		tl[i] = (struct sched_domain_topology_level){
6297			.mask = sd_numa_mask,
6298			.sd_flags = cpu_numa_flags,
6299			.flags = SDTL_OVERLAP,
6300			.numa_level = j,
6301			SD_INIT_NAME(NUMA)
6302		};
6303	}
6304
6305	sched_domain_topology = tl;
6306
6307	sched_domains_numa_levels = level;
6308}
6309
6310static void sched_domains_numa_masks_set(int cpu)
6311{
6312	int i, j;
6313	int node = cpu_to_node(cpu);
6314
6315	for (i = 0; i < sched_domains_numa_levels; i++) {
6316		for (j = 0; j < nr_node_ids; j++) {
6317			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6318				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6319		}
6320	}
6321}
6322
6323static void sched_domains_numa_masks_clear(int cpu)
6324{
6325	int i, j;
6326	for (i = 0; i < sched_domains_numa_levels; i++) {
6327		for (j = 0; j < nr_node_ids; j++)
6328			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6329	}
6330}
6331
6332/*
6333 * Update sched_domains_numa_masks[level][node] array when new cpus
6334 * are onlined.
6335 */
6336static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6337					   unsigned long action,
6338					   void *hcpu)
6339{
6340	int cpu = (long)hcpu;
6341
6342	switch (action & ~CPU_TASKS_FROZEN) {
6343	case CPU_ONLINE:
6344		sched_domains_numa_masks_set(cpu);
6345		break;
6346
6347	case CPU_DEAD:
6348		sched_domains_numa_masks_clear(cpu);
6349		break;
6350
6351	default:
6352		return NOTIFY_DONE;
6353	}
6354
6355	return NOTIFY_OK;
6356}
6357#else
6358static inline void sched_init_numa(void)
6359{
6360}
6361
6362static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6363					   unsigned long action,
6364					   void *hcpu)
6365{
6366	return 0;
6367}
6368#endif /* CONFIG_NUMA */
6369
6370static int __sdt_alloc(const struct cpumask *cpu_map)
6371{
6372	struct sched_domain_topology_level *tl;
6373	int j;
6374
6375	for_each_sd_topology(tl) {
6376		struct sd_data *sdd = &tl->data;
6377
6378		sdd->sd = alloc_percpu(struct sched_domain *);
6379		if (!sdd->sd)
6380			return -ENOMEM;
6381
6382		sdd->sg = alloc_percpu(struct sched_group *);
6383		if (!sdd->sg)
6384			return -ENOMEM;
6385
6386		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6387		if (!sdd->sgc)
6388			return -ENOMEM;
6389
6390		for_each_cpu(j, cpu_map) {
6391			struct sched_domain *sd;
6392			struct sched_group *sg;
6393			struct sched_group_capacity *sgc;
6394
6395		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6396					GFP_KERNEL, cpu_to_node(j));
6397			if (!sd)
6398				return -ENOMEM;
6399
6400			*per_cpu_ptr(sdd->sd, j) = sd;
6401
6402			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6403					GFP_KERNEL, cpu_to_node(j));
6404			if (!sg)
6405				return -ENOMEM;
6406
6407			sg->next = sg;
6408
6409			*per_cpu_ptr(sdd->sg, j) = sg;
6410
6411			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6412					GFP_KERNEL, cpu_to_node(j));
6413			if (!sgc)
6414				return -ENOMEM;
6415
6416			*per_cpu_ptr(sdd->sgc, j) = sgc;
6417		}
6418	}
6419
6420	return 0;
6421}
6422
6423static void __sdt_free(const struct cpumask *cpu_map)
6424{
6425	struct sched_domain_topology_level *tl;
6426	int j;
6427
6428	for_each_sd_topology(tl) {
6429		struct sd_data *sdd = &tl->data;
6430
6431		for_each_cpu(j, cpu_map) {
6432			struct sched_domain *sd;
6433
6434			if (sdd->sd) {
6435				sd = *per_cpu_ptr(sdd->sd, j);
6436				if (sd && (sd->flags & SD_OVERLAP))
6437					free_sched_groups(sd->groups, 0);
6438				kfree(*per_cpu_ptr(sdd->sd, j));
6439			}
6440
6441			if (sdd->sg)
6442				kfree(*per_cpu_ptr(sdd->sg, j));
6443			if (sdd->sgc)
6444				kfree(*per_cpu_ptr(sdd->sgc, j));
6445		}
6446		free_percpu(sdd->sd);
6447		sdd->sd = NULL;
6448		free_percpu(sdd->sg);
6449		sdd->sg = NULL;
6450		free_percpu(sdd->sgc);
6451		sdd->sgc = NULL;
6452	}
6453}
6454
6455struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6456		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6457		struct sched_domain *child, int cpu)
6458{
6459	struct sched_domain *sd = sd_init(tl, cpu);
6460	if (!sd)
6461		return child;
6462
6463	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6464	if (child) {
6465		sd->level = child->level + 1;
6466		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6467		child->parent = sd;
6468		sd->child = child;
6469	}
6470	set_domain_attribute(sd, attr);
6471
6472	return sd;
6473}
6474
6475/*
6476 * Build sched domains for a given set of cpus and attach the sched domains
6477 * to the individual cpus
6478 */
6479static int build_sched_domains(const struct cpumask *cpu_map,
6480			       struct sched_domain_attr *attr)
6481{
6482	enum s_alloc alloc_state;
6483	struct sched_domain *sd;
6484	struct s_data d;
6485	int i, ret = -ENOMEM;
6486
6487	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6488	if (alloc_state != sa_rootdomain)
6489		goto error;
6490
6491	/* Set up domains for cpus specified by the cpu_map. */
6492	for_each_cpu(i, cpu_map) {
6493		struct sched_domain_topology_level *tl;
6494
6495		sd = NULL;
6496		for_each_sd_topology(tl) {
6497			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6498			if (tl == sched_domain_topology)
6499				*per_cpu_ptr(d.sd, i) = sd;
6500			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6501				sd->flags |= SD_OVERLAP;
6502			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6503				break;
6504		}
6505	}
6506
6507	/* Build the groups for the domains */
6508	for_each_cpu(i, cpu_map) {
6509		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6510			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6511			if (sd->flags & SD_OVERLAP) {
6512				if (build_overlap_sched_groups(sd, i))
6513					goto error;
6514			} else {
6515				if (build_sched_groups(sd, i))
6516					goto error;
6517			}
6518		}
6519	}
6520
6521	/* Calculate CPU capacity for physical packages and nodes */
6522	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6523		if (!cpumask_test_cpu(i, cpu_map))
6524			continue;
6525
6526		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6527			claim_allocations(i, sd);
6528			init_sched_groups_capacity(i, sd);
6529		}
6530	}
6531
6532	/* Attach the domains */
6533	rcu_read_lock();
6534	for_each_cpu(i, cpu_map) {
6535		sd = *per_cpu_ptr(d.sd, i);
6536		cpu_attach_domain(sd, d.rd, i);
6537	}
6538	rcu_read_unlock();
6539
6540	ret = 0;
6541error:
6542	__free_domain_allocs(&d, alloc_state, cpu_map);
6543	return ret;
6544}
6545
6546static cpumask_var_t *doms_cur;	/* current sched domains */
6547static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6548static struct sched_domain_attr *dattr_cur;
6549				/* attribues of custom domains in 'doms_cur' */
6550
6551/*
6552 * Special case: If a kmalloc of a doms_cur partition (array of
6553 * cpumask) fails, then fallback to a single sched domain,
6554 * as determined by the single cpumask fallback_doms.
6555 */
6556static cpumask_var_t fallback_doms;
6557
6558/*
6559 * arch_update_cpu_topology lets virtualized architectures update the
6560 * cpu core maps. It is supposed to return 1 if the topology changed
6561 * or 0 if it stayed the same.
6562 */
6563int __weak arch_update_cpu_topology(void)
6564{
6565	return 0;
6566}
6567
6568cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6569{
6570	int i;
6571	cpumask_var_t *doms;
6572
6573	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6574	if (!doms)
6575		return NULL;
6576	for (i = 0; i < ndoms; i++) {
6577		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6578			free_sched_domains(doms, i);
6579			return NULL;
6580		}
6581	}
6582	return doms;
6583}
6584
6585void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6586{
6587	unsigned int i;
6588	for (i = 0; i < ndoms; i++)
6589		free_cpumask_var(doms[i]);
6590	kfree(doms);
6591}
6592
6593/*
6594 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6595 * For now this just excludes isolated cpus, but could be used to
6596 * exclude other special cases in the future.
6597 */
6598static int init_sched_domains(const struct cpumask *cpu_map)
6599{
6600	int err;
6601
6602	arch_update_cpu_topology();
6603	ndoms_cur = 1;
6604	doms_cur = alloc_sched_domains(ndoms_cur);
6605	if (!doms_cur)
6606		doms_cur = &fallback_doms;
6607	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6608	err = build_sched_domains(doms_cur[0], NULL);
6609	register_sched_domain_sysctl();
6610
6611	return err;
6612}
6613
6614/*
6615 * Detach sched domains from a group of cpus specified in cpu_map
6616 * These cpus will now be attached to the NULL domain
6617 */
6618static void detach_destroy_domains(const struct cpumask *cpu_map)
6619{
6620	int i;
6621
6622	rcu_read_lock();
6623	for_each_cpu(i, cpu_map)
6624		cpu_attach_domain(NULL, &def_root_domain, i);
6625	rcu_read_unlock();
6626}
6627
6628/* handle null as "default" */
6629static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6630			struct sched_domain_attr *new, int idx_new)
6631{
6632	struct sched_domain_attr tmp;
6633
6634	/* fast path */
6635	if (!new && !cur)
6636		return 1;
6637
6638	tmp = SD_ATTR_INIT;
6639	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6640			new ? (new + idx_new) : &tmp,
6641			sizeof(struct sched_domain_attr));
6642}
6643
6644/*
6645 * Partition sched domains as specified by the 'ndoms_new'
6646 * cpumasks in the array doms_new[] of cpumasks. This compares
6647 * doms_new[] to the current sched domain partitioning, doms_cur[].
6648 * It destroys each deleted domain and builds each new domain.
6649 *
6650 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6651 * The masks don't intersect (don't overlap.) We should setup one
6652 * sched domain for each mask. CPUs not in any of the cpumasks will
6653 * not be load balanced. If the same cpumask appears both in the
6654 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6655 * it as it is.
6656 *
6657 * The passed in 'doms_new' should be allocated using
6658 * alloc_sched_domains.  This routine takes ownership of it and will
6659 * free_sched_domains it when done with it. If the caller failed the
6660 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6661 * and partition_sched_domains() will fallback to the single partition
6662 * 'fallback_doms', it also forces the domains to be rebuilt.
6663 *
6664 * If doms_new == NULL it will be replaced with cpu_online_mask.
6665 * ndoms_new == 0 is a special case for destroying existing domains,
6666 * and it will not create the default domain.
6667 *
6668 * Call with hotplug lock held
6669 */
6670void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6671			     struct sched_domain_attr *dattr_new)
6672{
6673	int i, j, n;
6674	int new_topology;
6675
6676	mutex_lock(&sched_domains_mutex);
6677
6678	/* always unregister in case we don't destroy any domains */
6679	unregister_sched_domain_sysctl();
6680
6681	/* Let architecture update cpu core mappings. */
6682	new_topology = arch_update_cpu_topology();
6683
6684	n = doms_new ? ndoms_new : 0;
6685
6686	/* Destroy deleted domains */
6687	for (i = 0; i < ndoms_cur; i++) {
6688		for (j = 0; j < n && !new_topology; j++) {
6689			if (cpumask_equal(doms_cur[i], doms_new[j])
6690			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6691				goto match1;
6692		}
6693		/* no match - a current sched domain not in new doms_new[] */
6694		detach_destroy_domains(doms_cur[i]);
6695match1:
6696		;
6697	}
6698
6699	n = ndoms_cur;
6700	if (doms_new == NULL) {
6701		n = 0;
6702		doms_new = &fallback_doms;
6703		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6704		WARN_ON_ONCE(dattr_new);
6705	}
6706
6707	/* Build new domains */
6708	for (i = 0; i < ndoms_new; i++) {
6709		for (j = 0; j < n && !new_topology; j++) {
6710			if (cpumask_equal(doms_new[i], doms_cur[j])
6711			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6712				goto match2;
6713		}
6714		/* no match - add a new doms_new */
6715		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6716match2:
6717		;
6718	}
6719
6720	/* Remember the new sched domains */
6721	if (doms_cur != &fallback_doms)
6722		free_sched_domains(doms_cur, ndoms_cur);
6723	kfree(dattr_cur);	/* kfree(NULL) is safe */
6724	doms_cur = doms_new;
6725	dattr_cur = dattr_new;
6726	ndoms_cur = ndoms_new;
6727
6728	register_sched_domain_sysctl();
6729
6730	mutex_unlock(&sched_domains_mutex);
6731}
6732
6733static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6734
6735/*
6736 * Update cpusets according to cpu_active mask.  If cpusets are
6737 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6738 * around partition_sched_domains().
6739 *
6740 * If we come here as part of a suspend/resume, don't touch cpusets because we
6741 * want to restore it back to its original state upon resume anyway.
6742 */
6743static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6744			     void *hcpu)
6745{
6746	switch (action) {
6747	case CPU_ONLINE_FROZEN:
6748	case CPU_DOWN_FAILED_FROZEN:
6749
6750		/*
6751		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6752		 * resume sequence. As long as this is not the last online
6753		 * operation in the resume sequence, just build a single sched
6754		 * domain, ignoring cpusets.
6755		 */
6756		num_cpus_frozen--;
6757		if (likely(num_cpus_frozen)) {
6758			partition_sched_domains(1, NULL, NULL);
6759			break;
6760		}
6761
6762		/*
6763		 * This is the last CPU online operation. So fall through and
6764		 * restore the original sched domains by considering the
6765		 * cpuset configurations.
6766		 */
6767
6768	case CPU_ONLINE:
6769	case CPU_DOWN_FAILED:
6770		cpuset_update_active_cpus(true);
6771		break;
6772	default:
6773		return NOTIFY_DONE;
6774	}
6775	return NOTIFY_OK;
6776}
6777
6778static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6779			       void *hcpu)
6780{
6781	switch (action) {
6782	case CPU_DOWN_PREPARE:
6783		cpuset_update_active_cpus(false);
6784		break;
6785	case CPU_DOWN_PREPARE_FROZEN:
6786		num_cpus_frozen++;
6787		partition_sched_domains(1, NULL, NULL);
6788		break;
6789	default:
6790		return NOTIFY_DONE;
6791	}
6792	return NOTIFY_OK;
6793}
6794
6795void __init sched_init_smp(void)
6796{
6797	cpumask_var_t non_isolated_cpus;
6798
6799	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6800	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6801
6802	sched_init_numa();
6803
6804	/*
6805	 * There's no userspace yet to cause hotplug operations; hence all the
6806	 * cpu masks are stable and all blatant races in the below code cannot
6807	 * happen.
6808	 */
6809	mutex_lock(&sched_domains_mutex);
6810	init_sched_domains(cpu_active_mask);
6811	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6812	if (cpumask_empty(non_isolated_cpus))
6813		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6814	mutex_unlock(&sched_domains_mutex);
6815
6816	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6817	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6818	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6819
6820	init_hrtick();
6821
6822	/* Move init over to a non-isolated CPU */
6823	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6824		BUG();
6825	sched_init_granularity();
6826	free_cpumask_var(non_isolated_cpus);
6827
6828	init_sched_rt_class();
6829	init_sched_dl_class();
6830}
6831#else
6832void __init sched_init_smp(void)
6833{
6834	sched_init_granularity();
6835}
6836#endif /* CONFIG_SMP */
6837
6838const_debug unsigned int sysctl_timer_migration = 1;
6839
6840int in_sched_functions(unsigned long addr)
6841{
6842	return in_lock_functions(addr) ||
6843		(addr >= (unsigned long)__sched_text_start
6844		&& addr < (unsigned long)__sched_text_end);
6845}
6846
6847#ifdef CONFIG_CGROUP_SCHED
6848/*
6849 * Default task group.
6850 * Every task in system belongs to this group at bootup.
6851 */
6852struct task_group root_task_group;
6853LIST_HEAD(task_groups);
6854#endif
6855
6856DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6857
6858void __init sched_init(void)
6859{
6860	int i, j;
6861	unsigned long alloc_size = 0, ptr;
6862
6863#ifdef CONFIG_FAIR_GROUP_SCHED
6864	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6865#endif
6866#ifdef CONFIG_RT_GROUP_SCHED
6867	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6868#endif
6869#ifdef CONFIG_CPUMASK_OFFSTACK
6870	alloc_size += num_possible_cpus() * cpumask_size();
6871#endif
6872	if (alloc_size) {
6873		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6874
6875#ifdef CONFIG_FAIR_GROUP_SCHED
6876		root_task_group.se = (struct sched_entity **)ptr;
6877		ptr += nr_cpu_ids * sizeof(void **);
6878
6879		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6880		ptr += nr_cpu_ids * sizeof(void **);
6881
6882#endif /* CONFIG_FAIR_GROUP_SCHED */
6883#ifdef CONFIG_RT_GROUP_SCHED
6884		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6885		ptr += nr_cpu_ids * sizeof(void **);
6886
6887		root_task_group.rt_rq = (struct rt_rq **)ptr;
6888		ptr += nr_cpu_ids * sizeof(void **);
6889
6890#endif /* CONFIG_RT_GROUP_SCHED */
6891#ifdef CONFIG_CPUMASK_OFFSTACK
6892		for_each_possible_cpu(i) {
6893			per_cpu(load_balance_mask, i) = (void *)ptr;
6894			ptr += cpumask_size();
6895		}
6896#endif /* CONFIG_CPUMASK_OFFSTACK */
6897	}
6898
6899	init_rt_bandwidth(&def_rt_bandwidth,
6900			global_rt_period(), global_rt_runtime());
6901	init_dl_bandwidth(&def_dl_bandwidth,
6902			global_rt_period(), global_rt_runtime());
6903
6904#ifdef CONFIG_SMP
6905	init_defrootdomain();
6906#endif
6907
6908#ifdef CONFIG_RT_GROUP_SCHED
6909	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6910			global_rt_period(), global_rt_runtime());
6911#endif /* CONFIG_RT_GROUP_SCHED */
6912
6913#ifdef CONFIG_CGROUP_SCHED
6914	list_add(&root_task_group.list, &task_groups);
6915	INIT_LIST_HEAD(&root_task_group.children);
6916	INIT_LIST_HEAD(&root_task_group.siblings);
6917	autogroup_init(&init_task);
6918
6919#endif /* CONFIG_CGROUP_SCHED */
6920
6921	for_each_possible_cpu(i) {
6922		struct rq *rq;
6923
6924		rq = cpu_rq(i);
6925		raw_spin_lock_init(&rq->lock);
6926		rq->nr_running = 0;
6927		rq->calc_load_active = 0;
6928		rq->calc_load_update = jiffies + LOAD_FREQ;
6929		init_cfs_rq(&rq->cfs);
6930		init_rt_rq(&rq->rt, rq);
6931		init_dl_rq(&rq->dl, rq);
6932#ifdef CONFIG_FAIR_GROUP_SCHED
6933		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6934		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6935		/*
6936		 * How much cpu bandwidth does root_task_group get?
6937		 *
6938		 * In case of task-groups formed thr' the cgroup filesystem, it
6939		 * gets 100% of the cpu resources in the system. This overall
6940		 * system cpu resource is divided among the tasks of
6941		 * root_task_group and its child task-groups in a fair manner,
6942		 * based on each entity's (task or task-group's) weight
6943		 * (se->load.weight).
6944		 *
6945		 * In other words, if root_task_group has 10 tasks of weight
6946		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6947		 * then A0's share of the cpu resource is:
6948		 *
6949		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6950		 *
6951		 * We achieve this by letting root_task_group's tasks sit
6952		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6953		 */
6954		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6955		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6956#endif /* CONFIG_FAIR_GROUP_SCHED */
6957
6958		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6959#ifdef CONFIG_RT_GROUP_SCHED
6960		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6961#endif
6962
6963		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6964			rq->cpu_load[j] = 0;
6965
6966		rq->last_load_update_tick = jiffies;
6967
6968#ifdef CONFIG_SMP
6969		rq->sd = NULL;
6970		rq->rd = NULL;
6971		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6972		rq->post_schedule = 0;
6973		rq->active_balance = 0;
6974		rq->next_balance = jiffies;
6975		rq->push_cpu = 0;
6976		rq->cpu = i;
6977		rq->online = 0;
6978		rq->idle_stamp = 0;
6979		rq->avg_idle = 2*sysctl_sched_migration_cost;
6980		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6981
6982		INIT_LIST_HEAD(&rq->cfs_tasks);
6983
6984		rq_attach_root(rq, &def_root_domain);
6985#ifdef CONFIG_NO_HZ_COMMON
6986		rq->nohz_flags = 0;
6987#endif
6988#ifdef CONFIG_NO_HZ_FULL
6989		rq->last_sched_tick = 0;
6990#endif
6991#endif
6992		init_rq_hrtick(rq);
6993		atomic_set(&rq->nr_iowait, 0);
6994	}
6995
6996	set_load_weight(&init_task);
6997
6998#ifdef CONFIG_PREEMPT_NOTIFIERS
6999	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7000#endif
7001
7002	/*
7003	 * The boot idle thread does lazy MMU switching as well:
7004	 */
7005	atomic_inc(&init_mm.mm_count);
7006	enter_lazy_tlb(&init_mm, current);
7007
7008	/*
7009	 * Make us the idle thread. Technically, schedule() should not be
7010	 * called from this thread, however somewhere below it might be,
7011	 * but because we are the idle thread, we just pick up running again
7012	 * when this runqueue becomes "idle".
7013	 */
7014	init_idle(current, smp_processor_id());
7015
7016	calc_load_update = jiffies + LOAD_FREQ;
7017
7018	/*
7019	 * During early bootup we pretend to be a normal task:
7020	 */
7021	current->sched_class = &fair_sched_class;
7022
7023#ifdef CONFIG_SMP
7024	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7025	/* May be allocated at isolcpus cmdline parse time */
7026	if (cpu_isolated_map == NULL)
7027		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7028	idle_thread_set_boot_cpu();
7029	set_cpu_rq_start_time();
7030#endif
7031	init_sched_fair_class();
7032
7033	scheduler_running = 1;
7034}
7035
7036#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7037static inline int preempt_count_equals(int preempt_offset)
7038{
7039	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7040
7041	return (nested == preempt_offset);
7042}
7043
7044void __might_sleep(const char *file, int line, int preempt_offset)
7045{
7046	static unsigned long prev_jiffy;	/* ratelimiting */
7047
7048	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7049	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7050	     !is_idle_task(current)) ||
7051	    system_state != SYSTEM_RUNNING || oops_in_progress)
7052		return;
7053	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7054		return;
7055	prev_jiffy = jiffies;
7056
7057	printk(KERN_ERR
7058		"BUG: sleeping function called from invalid context at %s:%d\n",
7059			file, line);
7060	printk(KERN_ERR
7061		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7062			in_atomic(), irqs_disabled(),
7063			current->pid, current->comm);
7064
7065	debug_show_held_locks(current);
7066	if (irqs_disabled())
7067		print_irqtrace_events(current);
7068#ifdef CONFIG_DEBUG_PREEMPT
7069	if (!preempt_count_equals(preempt_offset)) {
7070		pr_err("Preemption disabled at:");
7071		print_ip_sym(current->preempt_disable_ip);
7072		pr_cont("\n");
7073	}
7074#endif
7075	dump_stack();
7076}
7077EXPORT_SYMBOL(__might_sleep);
7078#endif
7079
7080#ifdef CONFIG_MAGIC_SYSRQ
7081static void normalize_task(struct rq *rq, struct task_struct *p)
7082{
7083	const struct sched_class *prev_class = p->sched_class;
7084	struct sched_attr attr = {
7085		.sched_policy = SCHED_NORMAL,
7086	};
7087	int old_prio = p->prio;
7088	int on_rq;
7089
7090	on_rq = p->on_rq;
7091	if (on_rq)
7092		dequeue_task(rq, p, 0);
7093	__setscheduler(rq, p, &attr);
7094	if (on_rq) {
7095		enqueue_task(rq, p, 0);
7096		resched_task(rq->curr);
7097	}
7098
7099	check_class_changed(rq, p, prev_class, old_prio);
7100}
7101
7102void normalize_rt_tasks(void)
7103{
7104	struct task_struct *g, *p;
7105	unsigned long flags;
7106	struct rq *rq;
7107
7108	read_lock_irqsave(&tasklist_lock, flags);
7109	do_each_thread(g, p) {
7110		/*
7111		 * Only normalize user tasks:
7112		 */
7113		if (!p->mm)
7114			continue;
7115
7116		p->se.exec_start		= 0;
7117#ifdef CONFIG_SCHEDSTATS
7118		p->se.statistics.wait_start	= 0;
7119		p->se.statistics.sleep_start	= 0;
7120		p->se.statistics.block_start	= 0;
7121#endif
7122
7123		if (!dl_task(p) && !rt_task(p)) {
7124			/*
7125			 * Renice negative nice level userspace
7126			 * tasks back to 0:
7127			 */
7128			if (task_nice(p) < 0 && p->mm)
7129				set_user_nice(p, 0);
7130			continue;
7131		}
7132
7133		raw_spin_lock(&p->pi_lock);
7134		rq = __task_rq_lock(p);
7135
7136		normalize_task(rq, p);
7137
7138		__task_rq_unlock(rq);
7139		raw_spin_unlock(&p->pi_lock);
7140	} while_each_thread(g, p);
7141
7142	read_unlock_irqrestore(&tasklist_lock, flags);
7143}
7144
7145#endif /* CONFIG_MAGIC_SYSRQ */
7146
7147#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7148/*
7149 * These functions are only useful for the IA64 MCA handling, or kdb.
7150 *
7151 * They can only be called when the whole system has been
7152 * stopped - every CPU needs to be quiescent, and no scheduling
7153 * activity can take place. Using them for anything else would
7154 * be a serious bug, and as a result, they aren't even visible
7155 * under any other configuration.
7156 */
7157
7158/**
7159 * curr_task - return the current task for a given cpu.
7160 * @cpu: the processor in question.
7161 *
7162 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7163 *
7164 * Return: The current task for @cpu.
7165 */
7166struct task_struct *curr_task(int cpu)
7167{
7168	return cpu_curr(cpu);
7169}
7170
7171#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7172
7173#ifdef CONFIG_IA64
7174/**
7175 * set_curr_task - set the current task for a given cpu.
7176 * @cpu: the processor in question.
7177 * @p: the task pointer to set.
7178 *
7179 * Description: This function must only be used when non-maskable interrupts
7180 * are serviced on a separate stack. It allows the architecture to switch the
7181 * notion of the current task on a cpu in a non-blocking manner. This function
7182 * must be called with all CPU's synchronized, and interrupts disabled, the
7183 * and caller must save the original value of the current task (see
7184 * curr_task() above) and restore that value before reenabling interrupts and
7185 * re-starting the system.
7186 *
7187 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7188 */
7189void set_curr_task(int cpu, struct task_struct *p)
7190{
7191	cpu_curr(cpu) = p;
7192}
7193
7194#endif
7195
7196#ifdef CONFIG_CGROUP_SCHED
7197/* task_group_lock serializes the addition/removal of task groups */
7198static DEFINE_SPINLOCK(task_group_lock);
7199
7200static void free_sched_group(struct task_group *tg)
7201{
7202	free_fair_sched_group(tg);
7203	free_rt_sched_group(tg);
7204	autogroup_free(tg);
7205	kfree(tg);
7206}
7207
7208/* allocate runqueue etc for a new task group */
7209struct task_group *sched_create_group(struct task_group *parent)
7210{
7211	struct task_group *tg;
7212
7213	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7214	if (!tg)
7215		return ERR_PTR(-ENOMEM);
7216
7217	if (!alloc_fair_sched_group(tg, parent))
7218		goto err;
7219
7220	if (!alloc_rt_sched_group(tg, parent))
7221		goto err;
7222
7223	return tg;
7224
7225err:
7226	free_sched_group(tg);
7227	return ERR_PTR(-ENOMEM);
7228}
7229
7230void sched_online_group(struct task_group *tg, struct task_group *parent)
7231{
7232	unsigned long flags;
7233
7234	spin_lock_irqsave(&task_group_lock, flags);
7235	list_add_rcu(&tg->list, &task_groups);
7236
7237	WARN_ON(!parent); /* root should already exist */
7238
7239	tg->parent = parent;
7240	INIT_LIST_HEAD(&tg->children);
7241	list_add_rcu(&tg->siblings, &parent->children);
7242	spin_unlock_irqrestore(&task_group_lock, flags);
7243}
7244
7245/* rcu callback to free various structures associated with a task group */
7246static void free_sched_group_rcu(struct rcu_head *rhp)
7247{
7248	/* now it should be safe to free those cfs_rqs */
7249	free_sched_group(container_of(rhp, struct task_group, rcu));
7250}
7251
7252/* Destroy runqueue etc associated with a task group */
7253void sched_destroy_group(struct task_group *tg)
7254{
7255	/* wait for possible concurrent references to cfs_rqs complete */
7256	call_rcu(&tg->rcu, free_sched_group_rcu);
7257}
7258
7259void sched_offline_group(struct task_group *tg)
7260{
7261	unsigned long flags;
7262	int i;
7263
7264	/* end participation in shares distribution */
7265	for_each_possible_cpu(i)
7266		unregister_fair_sched_group(tg, i);
7267
7268	spin_lock_irqsave(&task_group_lock, flags);
7269	list_del_rcu(&tg->list);
7270	list_del_rcu(&tg->siblings);
7271	spin_unlock_irqrestore(&task_group_lock, flags);
7272}
7273
7274/* change task's runqueue when it moves between groups.
7275 *	The caller of this function should have put the task in its new group
7276 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7277 *	reflect its new group.
7278 */
7279void sched_move_task(struct task_struct *tsk)
7280{
7281	struct task_group *tg;
7282	int on_rq, running;
7283	unsigned long flags;
7284	struct rq *rq;
7285
7286	rq = task_rq_lock(tsk, &flags);
7287
7288	running = task_current(rq, tsk);
7289	on_rq = tsk->on_rq;
7290
7291	if (on_rq)
7292		dequeue_task(rq, tsk, 0);
7293	if (unlikely(running))
7294		tsk->sched_class->put_prev_task(rq, tsk);
7295
7296	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7297				lockdep_is_held(&tsk->sighand->siglock)),
7298			  struct task_group, css);
7299	tg = autogroup_task_group(tsk, tg);
7300	tsk->sched_task_group = tg;
7301
7302#ifdef CONFIG_FAIR_GROUP_SCHED
7303	if (tsk->sched_class->task_move_group)
7304		tsk->sched_class->task_move_group(tsk, on_rq);
7305	else
7306#endif
7307		set_task_rq(tsk, task_cpu(tsk));
7308
7309	if (unlikely(running))
7310		tsk->sched_class->set_curr_task(rq);
7311	if (on_rq)
7312		enqueue_task(rq, tsk, 0);
7313
7314	task_rq_unlock(rq, tsk, &flags);
7315}
7316#endif /* CONFIG_CGROUP_SCHED */
7317
7318#ifdef CONFIG_RT_GROUP_SCHED
7319/*
7320 * Ensure that the real time constraints are schedulable.
7321 */
7322static DEFINE_MUTEX(rt_constraints_mutex);
7323
7324/* Must be called with tasklist_lock held */
7325static inline int tg_has_rt_tasks(struct task_group *tg)
7326{
7327	struct task_struct *g, *p;
7328
7329	do_each_thread(g, p) {
7330		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7331			return 1;
7332	} while_each_thread(g, p);
7333
7334	return 0;
7335}
7336
7337struct rt_schedulable_data {
7338	struct task_group *tg;
7339	u64 rt_period;
7340	u64 rt_runtime;
7341};
7342
7343static int tg_rt_schedulable(struct task_group *tg, void *data)
7344{
7345	struct rt_schedulable_data *d = data;
7346	struct task_group *child;
7347	unsigned long total, sum = 0;
7348	u64 period, runtime;
7349
7350	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7351	runtime = tg->rt_bandwidth.rt_runtime;
7352
7353	if (tg == d->tg) {
7354		period = d->rt_period;
7355		runtime = d->rt_runtime;
7356	}
7357
7358	/*
7359	 * Cannot have more runtime than the period.
7360	 */
7361	if (runtime > period && runtime != RUNTIME_INF)
7362		return -EINVAL;
7363
7364	/*
7365	 * Ensure we don't starve existing RT tasks.
7366	 */
7367	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7368		return -EBUSY;
7369
7370	total = to_ratio(period, runtime);
7371
7372	/*
7373	 * Nobody can have more than the global setting allows.
7374	 */
7375	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7376		return -EINVAL;
7377
7378	/*
7379	 * The sum of our children's runtime should not exceed our own.
7380	 */
7381	list_for_each_entry_rcu(child, &tg->children, siblings) {
7382		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7383		runtime = child->rt_bandwidth.rt_runtime;
7384
7385		if (child == d->tg) {
7386			period = d->rt_period;
7387			runtime = d->rt_runtime;
7388		}
7389
7390		sum += to_ratio(period, runtime);
7391	}
7392
7393	if (sum > total)
7394		return -EINVAL;
7395
7396	return 0;
7397}
7398
7399static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7400{
7401	int ret;
7402
7403	struct rt_schedulable_data data = {
7404		.tg = tg,
7405		.rt_period = period,
7406		.rt_runtime = runtime,
7407	};
7408
7409	rcu_read_lock();
7410	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7411	rcu_read_unlock();
7412
7413	return ret;
7414}
7415
7416static int tg_set_rt_bandwidth(struct task_group *tg,
7417		u64 rt_period, u64 rt_runtime)
7418{
7419	int i, err = 0;
7420
7421	mutex_lock(&rt_constraints_mutex);
7422	read_lock(&tasklist_lock);
7423	err = __rt_schedulable(tg, rt_period, rt_runtime);
7424	if (err)
7425		goto unlock;
7426
7427	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7428	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7429	tg->rt_bandwidth.rt_runtime = rt_runtime;
7430
7431	for_each_possible_cpu(i) {
7432		struct rt_rq *rt_rq = tg->rt_rq[i];
7433
7434		raw_spin_lock(&rt_rq->rt_runtime_lock);
7435		rt_rq->rt_runtime = rt_runtime;
7436		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7437	}
7438	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7439unlock:
7440	read_unlock(&tasklist_lock);
7441	mutex_unlock(&rt_constraints_mutex);
7442
7443	return err;
7444}
7445
7446static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7447{
7448	u64 rt_runtime, rt_period;
7449
7450	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7451	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7452	if (rt_runtime_us < 0)
7453		rt_runtime = RUNTIME_INF;
7454
7455	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7456}
7457
7458static long sched_group_rt_runtime(struct task_group *tg)
7459{
7460	u64 rt_runtime_us;
7461
7462	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7463		return -1;
7464
7465	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7466	do_div(rt_runtime_us, NSEC_PER_USEC);
7467	return rt_runtime_us;
7468}
7469
7470static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7471{
7472	u64 rt_runtime, rt_period;
7473
7474	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7475	rt_runtime = tg->rt_bandwidth.rt_runtime;
7476
7477	if (rt_period == 0)
7478		return -EINVAL;
7479
7480	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7481}
7482
7483static long sched_group_rt_period(struct task_group *tg)
7484{
7485	u64 rt_period_us;
7486
7487	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7488	do_div(rt_period_us, NSEC_PER_USEC);
7489	return rt_period_us;
7490}
7491#endif /* CONFIG_RT_GROUP_SCHED */
7492
7493#ifdef CONFIG_RT_GROUP_SCHED
7494static int sched_rt_global_constraints(void)
7495{
7496	int ret = 0;
7497
7498	mutex_lock(&rt_constraints_mutex);
7499	read_lock(&tasklist_lock);
7500	ret = __rt_schedulable(NULL, 0, 0);
7501	read_unlock(&tasklist_lock);
7502	mutex_unlock(&rt_constraints_mutex);
7503
7504	return ret;
7505}
7506
7507static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7508{
7509	/* Don't accept realtime tasks when there is no way for them to run */
7510	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7511		return 0;
7512
7513	return 1;
7514}
7515
7516#else /* !CONFIG_RT_GROUP_SCHED */
7517static int sched_rt_global_constraints(void)
7518{
7519	unsigned long flags;
7520	int i, ret = 0;
7521
7522	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7523	for_each_possible_cpu(i) {
7524		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7525
7526		raw_spin_lock(&rt_rq->rt_runtime_lock);
7527		rt_rq->rt_runtime = global_rt_runtime();
7528		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7529	}
7530	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7531
7532	return ret;
7533}
7534#endif /* CONFIG_RT_GROUP_SCHED */
7535
7536static int sched_dl_global_constraints(void)
7537{
7538	u64 runtime = global_rt_runtime();
7539	u64 period = global_rt_period();
7540	u64 new_bw = to_ratio(period, runtime);
7541	int cpu, ret = 0;
7542	unsigned long flags;
7543
7544	/*
7545	 * Here we want to check the bandwidth not being set to some
7546	 * value smaller than the currently allocated bandwidth in
7547	 * any of the root_domains.
7548	 *
7549	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7550	 * cycling on root_domains... Discussion on different/better
7551	 * solutions is welcome!
7552	 */
7553	for_each_possible_cpu(cpu) {
7554		struct dl_bw *dl_b = dl_bw_of(cpu);
7555
7556		raw_spin_lock_irqsave(&dl_b->lock, flags);
7557		if (new_bw < dl_b->total_bw)
7558			ret = -EBUSY;
7559		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7560
7561		if (ret)
7562			break;
7563	}
7564
7565	return ret;
7566}
7567
7568static void sched_dl_do_global(void)
7569{
7570	u64 new_bw = -1;
7571	int cpu;
7572	unsigned long flags;
7573
7574	def_dl_bandwidth.dl_period = global_rt_period();
7575	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7576
7577	if (global_rt_runtime() != RUNTIME_INF)
7578		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7579
7580	/*
7581	 * FIXME: As above...
7582	 */
7583	for_each_possible_cpu(cpu) {
7584		struct dl_bw *dl_b = dl_bw_of(cpu);
7585
7586		raw_spin_lock_irqsave(&dl_b->lock, flags);
7587		dl_b->bw = new_bw;
7588		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7589	}
7590}
7591
7592static int sched_rt_global_validate(void)
7593{
7594	if (sysctl_sched_rt_period <= 0)
7595		return -EINVAL;
7596
7597	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7598		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7599		return -EINVAL;
7600
7601	return 0;
7602}
7603
7604static void sched_rt_do_global(void)
7605{
7606	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7607	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7608}
7609
7610int sched_rt_handler(struct ctl_table *table, int write,
7611		void __user *buffer, size_t *lenp,
7612		loff_t *ppos)
7613{
7614	int old_period, old_runtime;
7615	static DEFINE_MUTEX(mutex);
7616	int ret;
7617
7618	mutex_lock(&mutex);
7619	old_period = sysctl_sched_rt_period;
7620	old_runtime = sysctl_sched_rt_runtime;
7621
7622	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7623
7624	if (!ret && write) {
7625		ret = sched_rt_global_validate();
7626		if (ret)
7627			goto undo;
7628
7629		ret = sched_rt_global_constraints();
7630		if (ret)
7631			goto undo;
7632
7633		ret = sched_dl_global_constraints();
7634		if (ret)
7635			goto undo;
7636
7637		sched_rt_do_global();
7638		sched_dl_do_global();
7639	}
7640	if (0) {
7641undo:
7642		sysctl_sched_rt_period = old_period;
7643		sysctl_sched_rt_runtime = old_runtime;
7644	}
7645	mutex_unlock(&mutex);
7646
7647	return ret;
7648}
7649
7650int sched_rr_handler(struct ctl_table *table, int write,
7651		void __user *buffer, size_t *lenp,
7652		loff_t *ppos)
7653{
7654	int ret;
7655	static DEFINE_MUTEX(mutex);
7656
7657	mutex_lock(&mutex);
7658	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7659	/* make sure that internally we keep jiffies */
7660	/* also, writing zero resets timeslice to default */
7661	if (!ret && write) {
7662		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7663			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7664	}
7665	mutex_unlock(&mutex);
7666	return ret;
7667}
7668
7669#ifdef CONFIG_CGROUP_SCHED
7670
7671static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7672{
7673	return css ? container_of(css, struct task_group, css) : NULL;
7674}
7675
7676static struct cgroup_subsys_state *
7677cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7678{
7679	struct task_group *parent = css_tg(parent_css);
7680	struct task_group *tg;
7681
7682	if (!parent) {
7683		/* This is early initialization for the top cgroup */
7684		return &root_task_group.css;
7685	}
7686
7687	tg = sched_create_group(parent);
7688	if (IS_ERR(tg))
7689		return ERR_PTR(-ENOMEM);
7690
7691	return &tg->css;
7692}
7693
7694static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7695{
7696	struct task_group *tg = css_tg(css);
7697	struct task_group *parent = css_tg(css->parent);
7698
7699	if (parent)
7700		sched_online_group(tg, parent);
7701	return 0;
7702}
7703
7704static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7705{
7706	struct task_group *tg = css_tg(css);
7707
7708	sched_destroy_group(tg);
7709}
7710
7711static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7712{
7713	struct task_group *tg = css_tg(css);
7714
7715	sched_offline_group(tg);
7716}
7717
7718static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7719				 struct cgroup_taskset *tset)
7720{
7721	struct task_struct *task;
7722
7723	cgroup_taskset_for_each(task, tset) {
7724#ifdef CONFIG_RT_GROUP_SCHED
7725		if (!sched_rt_can_attach(css_tg(css), task))
7726			return -EINVAL;
7727#else
7728		/* We don't support RT-tasks being in separate groups */
7729		if (task->sched_class != &fair_sched_class)
7730			return -EINVAL;
7731#endif
7732	}
7733	return 0;
7734}
7735
7736static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7737			      struct cgroup_taskset *tset)
7738{
7739	struct task_struct *task;
7740
7741	cgroup_taskset_for_each(task, tset)
7742		sched_move_task(task);
7743}
7744
7745static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7746			    struct cgroup_subsys_state *old_css,
7747			    struct task_struct *task)
7748{
7749	/*
7750	 * cgroup_exit() is called in the copy_process() failure path.
7751	 * Ignore this case since the task hasn't ran yet, this avoids
7752	 * trying to poke a half freed task state from generic code.
7753	 */
7754	if (!(task->flags & PF_EXITING))
7755		return;
7756
7757	sched_move_task(task);
7758}
7759
7760#ifdef CONFIG_FAIR_GROUP_SCHED
7761static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7762				struct cftype *cftype, u64 shareval)
7763{
7764	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7765}
7766
7767static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7768			       struct cftype *cft)
7769{
7770	struct task_group *tg = css_tg(css);
7771
7772	return (u64) scale_load_down(tg->shares);
7773}
7774
7775#ifdef CONFIG_CFS_BANDWIDTH
7776static DEFINE_MUTEX(cfs_constraints_mutex);
7777
7778const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7779const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7780
7781static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7782
7783static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7784{
7785	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7786	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7787
7788	if (tg == &root_task_group)
7789		return -EINVAL;
7790
7791	/*
7792	 * Ensure we have at some amount of bandwidth every period.  This is
7793	 * to prevent reaching a state of large arrears when throttled via
7794	 * entity_tick() resulting in prolonged exit starvation.
7795	 */
7796	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7797		return -EINVAL;
7798
7799	/*
7800	 * Likewise, bound things on the otherside by preventing insane quota
7801	 * periods.  This also allows us to normalize in computing quota
7802	 * feasibility.
7803	 */
7804	if (period > max_cfs_quota_period)
7805		return -EINVAL;
7806
7807	mutex_lock(&cfs_constraints_mutex);
7808	ret = __cfs_schedulable(tg, period, quota);
7809	if (ret)
7810		goto out_unlock;
7811
7812	runtime_enabled = quota != RUNTIME_INF;
7813	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7814	/*
7815	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7816	 * before making related changes, and on->off must occur afterwards
7817	 */
7818	if (runtime_enabled && !runtime_was_enabled)
7819		cfs_bandwidth_usage_inc();
7820	raw_spin_lock_irq(&cfs_b->lock);
7821	cfs_b->period = ns_to_ktime(period);
7822	cfs_b->quota = quota;
7823
7824	__refill_cfs_bandwidth_runtime(cfs_b);
7825	/* restart the period timer (if active) to handle new period expiry */
7826	if (runtime_enabled && cfs_b->timer_active) {
7827		/* force a reprogram */
7828		__start_cfs_bandwidth(cfs_b, true);
7829	}
7830	raw_spin_unlock_irq(&cfs_b->lock);
7831
7832	for_each_possible_cpu(i) {
7833		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7834		struct rq *rq = cfs_rq->rq;
7835
7836		raw_spin_lock_irq(&rq->lock);
7837		cfs_rq->runtime_enabled = runtime_enabled;
7838		cfs_rq->runtime_remaining = 0;
7839
7840		if (cfs_rq->throttled)
7841			unthrottle_cfs_rq(cfs_rq);
7842		raw_spin_unlock_irq(&rq->lock);
7843	}
7844	if (runtime_was_enabled && !runtime_enabled)
7845		cfs_bandwidth_usage_dec();
7846out_unlock:
7847	mutex_unlock(&cfs_constraints_mutex);
7848
7849	return ret;
7850}
7851
7852int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7853{
7854	u64 quota, period;
7855
7856	period = ktime_to_ns(tg->cfs_bandwidth.period);
7857	if (cfs_quota_us < 0)
7858		quota = RUNTIME_INF;
7859	else
7860		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7861
7862	return tg_set_cfs_bandwidth(tg, period, quota);
7863}
7864
7865long tg_get_cfs_quota(struct task_group *tg)
7866{
7867	u64 quota_us;
7868
7869	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7870		return -1;
7871
7872	quota_us = tg->cfs_bandwidth.quota;
7873	do_div(quota_us, NSEC_PER_USEC);
7874
7875	return quota_us;
7876}
7877
7878int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7879{
7880	u64 quota, period;
7881
7882	period = (u64)cfs_period_us * NSEC_PER_USEC;
7883	quota = tg->cfs_bandwidth.quota;
7884
7885	return tg_set_cfs_bandwidth(tg, period, quota);
7886}
7887
7888long tg_get_cfs_period(struct task_group *tg)
7889{
7890	u64 cfs_period_us;
7891
7892	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7893	do_div(cfs_period_us, NSEC_PER_USEC);
7894
7895	return cfs_period_us;
7896}
7897
7898static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7899				  struct cftype *cft)
7900{
7901	return tg_get_cfs_quota(css_tg(css));
7902}
7903
7904static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7905				   struct cftype *cftype, s64 cfs_quota_us)
7906{
7907	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7908}
7909
7910static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7911				   struct cftype *cft)
7912{
7913	return tg_get_cfs_period(css_tg(css));
7914}
7915
7916static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7917				    struct cftype *cftype, u64 cfs_period_us)
7918{
7919	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7920}
7921
7922struct cfs_schedulable_data {
7923	struct task_group *tg;
7924	u64 period, quota;
7925};
7926
7927/*
7928 * normalize group quota/period to be quota/max_period
7929 * note: units are usecs
7930 */
7931static u64 normalize_cfs_quota(struct task_group *tg,
7932			       struct cfs_schedulable_data *d)
7933{
7934	u64 quota, period;
7935
7936	if (tg == d->tg) {
7937		period = d->period;
7938		quota = d->quota;
7939	} else {
7940		period = tg_get_cfs_period(tg);
7941		quota = tg_get_cfs_quota(tg);
7942	}
7943
7944	/* note: these should typically be equivalent */
7945	if (quota == RUNTIME_INF || quota == -1)
7946		return RUNTIME_INF;
7947
7948	return to_ratio(period, quota);
7949}
7950
7951static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7952{
7953	struct cfs_schedulable_data *d = data;
7954	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7955	s64 quota = 0, parent_quota = -1;
7956
7957	if (!tg->parent) {
7958		quota = RUNTIME_INF;
7959	} else {
7960		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7961
7962		quota = normalize_cfs_quota(tg, d);
7963		parent_quota = parent_b->hierarchal_quota;
7964
7965		/*
7966		 * ensure max(child_quota) <= parent_quota, inherit when no
7967		 * limit is set
7968		 */
7969		if (quota == RUNTIME_INF)
7970			quota = parent_quota;
7971		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7972			return -EINVAL;
7973	}
7974	cfs_b->hierarchal_quota = quota;
7975
7976	return 0;
7977}
7978
7979static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7980{
7981	int ret;
7982	struct cfs_schedulable_data data = {
7983		.tg = tg,
7984		.period = period,
7985		.quota = quota,
7986	};
7987
7988	if (quota != RUNTIME_INF) {
7989		do_div(data.period, NSEC_PER_USEC);
7990		do_div(data.quota, NSEC_PER_USEC);
7991	}
7992
7993	rcu_read_lock();
7994	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7995	rcu_read_unlock();
7996
7997	return ret;
7998}
7999
8000static int cpu_stats_show(struct seq_file *sf, void *v)
8001{
8002	struct task_group *tg = css_tg(seq_css(sf));
8003	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8004
8005	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8006	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8007	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8008
8009	return 0;
8010}
8011#endif /* CONFIG_CFS_BANDWIDTH */
8012#endif /* CONFIG_FAIR_GROUP_SCHED */
8013
8014#ifdef CONFIG_RT_GROUP_SCHED
8015static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8016				struct cftype *cft, s64 val)
8017{
8018	return sched_group_set_rt_runtime(css_tg(css), val);
8019}
8020
8021static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8022			       struct cftype *cft)
8023{
8024	return sched_group_rt_runtime(css_tg(css));
8025}
8026
8027static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8028				    struct cftype *cftype, u64 rt_period_us)
8029{
8030	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8031}
8032
8033static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8034				   struct cftype *cft)
8035{
8036	return sched_group_rt_period(css_tg(css));
8037}
8038#endif /* CONFIG_RT_GROUP_SCHED */
8039
8040static struct cftype cpu_files[] = {
8041#ifdef CONFIG_FAIR_GROUP_SCHED
8042	{
8043		.name = "shares",
8044		.read_u64 = cpu_shares_read_u64,
8045		.write_u64 = cpu_shares_write_u64,
8046	},
8047#endif
8048#ifdef CONFIG_CFS_BANDWIDTH
8049	{
8050		.name = "cfs_quota_us",
8051		.read_s64 = cpu_cfs_quota_read_s64,
8052		.write_s64 = cpu_cfs_quota_write_s64,
8053	},
8054	{
8055		.name = "cfs_period_us",
8056		.read_u64 = cpu_cfs_period_read_u64,
8057		.write_u64 = cpu_cfs_period_write_u64,
8058	},
8059	{
8060		.name = "stat",
8061		.seq_show = cpu_stats_show,
8062	},
8063#endif
8064#ifdef CONFIG_RT_GROUP_SCHED
8065	{
8066		.name = "rt_runtime_us",
8067		.read_s64 = cpu_rt_runtime_read,
8068		.write_s64 = cpu_rt_runtime_write,
8069	},
8070	{
8071		.name = "rt_period_us",
8072		.read_u64 = cpu_rt_period_read_uint,
8073		.write_u64 = cpu_rt_period_write_uint,
8074	},
8075#endif
8076	{ }	/* terminate */
8077};
8078
8079struct cgroup_subsys cpu_cgrp_subsys = {
8080	.css_alloc	= cpu_cgroup_css_alloc,
8081	.css_free	= cpu_cgroup_css_free,
8082	.css_online	= cpu_cgroup_css_online,
8083	.css_offline	= cpu_cgroup_css_offline,
8084	.can_attach	= cpu_cgroup_can_attach,
8085	.attach		= cpu_cgroup_attach,
8086	.exit		= cpu_cgroup_exit,
8087	.base_cftypes	= cpu_files,
8088	.early_init	= 1,
8089};
8090
8091#endif	/* CONFIG_CGROUP_SCHED */
8092
8093void dump_cpu_task(int cpu)
8094{
8095	pr_info("Task dump for CPU %d:\n", cpu);
8096	sched_show_task(cpu_curr(cpu));
8097}
8098