core.c revision db273be2a7d42f92b3471e0f717982928214a650
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303	__acquires(rq->lock)
304{
305	struct rq *rq;
306
307	lockdep_assert_held(&p->pi_lock);
308
309	for (;;) {
310		rq = task_rq(p);
311		raw_spin_lock(&rq->lock);
312		if (likely(rq == task_rq(p)))
313			return rq;
314		raw_spin_unlock(&rq->lock);
315	}
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322	__acquires(p->pi_lock)
323	__acquires(rq->lock)
324{
325	struct rq *rq;
326
327	for (;;) {
328		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329		rq = task_rq(p);
330		raw_spin_lock(&rq->lock);
331		if (likely(rq == task_rq(p)))
332			return rq;
333		raw_spin_unlock(&rq->lock);
334		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335	}
336}
337
338static void __task_rq_unlock(struct rq *rq)
339	__releases(rq->lock)
340{
341	raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346	__releases(rq->lock)
347	__releases(p->pi_lock)
348{
349	raw_spin_unlock(&rq->lock);
350	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357	__acquires(rq->lock)
358{
359	struct rq *rq;
360
361	local_irq_disable();
362	rq = this_rq();
363	raw_spin_lock(&rq->lock);
364
365	return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401	struct hrtimer *timer = &rq->hrtick_timer;
402	ktime_t time = hrtimer_get_softexpires(timer);
403
404	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	__hrtick_restart(rq);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		__hrtick_restart(rq);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516	int cpu;
517
518	lockdep_assert_held(&task_rq(p)->lock);
519
520	if (test_tsk_need_resched(p))
521		return;
522
523	set_tsk_need_resched(p);
524
525	cpu = task_cpu(p);
526	if (cpu == smp_processor_id()) {
527		set_preempt_need_resched();
528		return;
529	}
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707			     tg_visitor down, tg_visitor up, void *data)
708{
709	struct task_group *parent, *child;
710	int ret;
711
712	parent = from;
713
714down:
715	ret = (*down)(parent, data);
716	if (ret)
717		goto out;
718	list_for_each_entry_rcu(child, &parent->children, siblings) {
719		parent = child;
720		goto down;
721
722up:
723		continue;
724	}
725	ret = (*up)(parent, data);
726	if (ret || parent == from)
727		goto out;
728
729	child = parent;
730	parent = parent->parent;
731	if (parent)
732		goto up;
733out:
734	return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739	return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745	int prio = p->static_prio - MAX_RT_PRIO;
746	struct load_weight *load = &p->se.load;
747
748	/*
749	 * SCHED_IDLE tasks get minimal weight:
750	 */
751	if (p->policy == SCHED_IDLE) {
752		load->weight = scale_load(WEIGHT_IDLEPRIO);
753		load->inv_weight = WMULT_IDLEPRIO;
754		return;
755	}
756
757	load->weight = scale_load(prio_to_weight[prio]);
758	load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763	update_rq_clock(rq);
764	sched_info_queued(rq, p);
765	p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770	update_rq_clock(rq);
771	sched_info_dequeued(rq, p);
772	p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible--;
779
780	enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785	if (task_contributes_to_load(p))
786		rq->nr_uninterruptible++;
787
788	dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803	/*
804	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805	 * this case when a previous update_rq_clock() happened inside a
806	 * {soft,}irq region.
807	 *
808	 * When this happens, we stop ->clock_task and only update the
809	 * prev_irq_time stamp to account for the part that fit, so that a next
810	 * update will consume the rest. This ensures ->clock_task is
811	 * monotonic.
812	 *
813	 * It does however cause some slight miss-attribution of {soft,}irq
814	 * time, a more accurate solution would be to update the irq_time using
815	 * the current rq->clock timestamp, except that would require using
816	 * atomic ops.
817	 */
818	if (irq_delta > delta)
819		irq_delta = delta;
820
821	rq->prev_irq_time += irq_delta;
822	delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825	if (static_key_false((&paravirt_steal_rq_enabled))) {
826		u64 st;
827
828		steal = paravirt_steal_clock(cpu_of(rq));
829		steal -= rq->prev_steal_time_rq;
830
831		if (unlikely(steal > delta))
832			steal = delta;
833
834		st = steal_ticks(steal);
835		steal = st * TICK_NSEC;
836
837		rq->prev_steal_time_rq += steal;
838
839		delta -= steal;
840	}
841#endif
842
843	rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847		sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856	if (stop) {
857		/*
858		 * Make it appear like a SCHED_FIFO task, its something
859		 * userspace knows about and won't get confused about.
860		 *
861		 * Also, it will make PI more or less work without too
862		 * much confusion -- but then, stop work should not
863		 * rely on PI working anyway.
864		 */
865		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867		stop->sched_class = &stop_sched_class;
868	}
869
870	cpu_rq(cpu)->stop = stop;
871
872	if (old_stop) {
873		/*
874		 * Reset it back to a normal scheduling class so that
875		 * it can die in pieces.
876		 */
877		old_stop->sched_class = &rt_sched_class;
878	}
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886	return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898	int prio;
899
900	if (task_has_dl_policy(p))
901		prio = MAX_DL_PRIO-1;
902	else if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio || dl_task(p))
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	arg = (struct migration_swap_arg){
1089		.src_task = cur,
1090		.src_cpu = task_cpu(cur),
1091		.dst_task = p,
1092		.dst_cpu = task_cpu(p),
1093	};
1094
1095	if (arg.src_cpu == arg.dst_cpu)
1096		goto out;
1097
1098	/*
1099	 * These three tests are all lockless; this is OK since all of them
1100	 * will be re-checked with proper locks held further down the line.
1101	 */
1102	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106		goto out;
1107
1108	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109		goto out;
1110
1111	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
1115	return ret;
1116}
1117
1118struct migration_arg {
1119	struct task_struct *task;
1120	int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change.  If it changes, i.e. @p might have woken up,
1130 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count).  If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143	unsigned long flags;
1144	int running, on_rq;
1145	unsigned long ncsw;
1146	struct rq *rq;
1147
1148	for (;;) {
1149		/*
1150		 * We do the initial early heuristics without holding
1151		 * any task-queue locks at all. We'll only try to get
1152		 * the runqueue lock when things look like they will
1153		 * work out!
1154		 */
1155		rq = task_rq(p);
1156
1157		/*
1158		 * If the task is actively running on another CPU
1159		 * still, just relax and busy-wait without holding
1160		 * any locks.
1161		 *
1162		 * NOTE! Since we don't hold any locks, it's not
1163		 * even sure that "rq" stays as the right runqueue!
1164		 * But we don't care, since "task_running()" will
1165		 * return false if the runqueue has changed and p
1166		 * is actually now running somewhere else!
1167		 */
1168		while (task_running(rq, p)) {
1169			if (match_state && unlikely(p->state != match_state))
1170				return 0;
1171			cpu_relax();
1172		}
1173
1174		/*
1175		 * Ok, time to look more closely! We need the rq
1176		 * lock now, to be *sure*. If we're wrong, we'll
1177		 * just go back and repeat.
1178		 */
1179		rq = task_rq_lock(p, &flags);
1180		trace_sched_wait_task(p);
1181		running = task_running(rq, p);
1182		on_rq = p->on_rq;
1183		ncsw = 0;
1184		if (!match_state || p->state == match_state)
1185			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186		task_rq_unlock(rq, p, &flags);
1187
1188		/*
1189		 * If it changed from the expected state, bail out now.
1190		 */
1191		if (unlikely(!ncsw))
1192			break;
1193
1194		/*
1195		 * Was it really running after all now that we
1196		 * checked with the proper locks actually held?
1197		 *
1198		 * Oops. Go back and try again..
1199		 */
1200		if (unlikely(running)) {
1201			cpu_relax();
1202			continue;
1203		}
1204
1205		/*
1206		 * It's not enough that it's not actively running,
1207		 * it must be off the runqueue _entirely_, and not
1208		 * preempted!
1209		 *
1210		 * So if it was still runnable (but just not actively
1211		 * running right now), it's preempted, and we should
1212		 * yield - it could be a while.
1213		 */
1214		if (unlikely(on_rq)) {
1215			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217			set_current_state(TASK_UNINTERRUPTIBLE);
1218			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219			continue;
1220		}
1221
1222		/*
1223		 * Ahh, all good. It wasn't running, and it wasn't
1224		 * runnable, which means that it will never become
1225		 * running in the future either. We're all done!
1226		 */
1227		break;
1228	}
1229
1230	return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248	int cpu;
1249
1250	preempt_disable();
1251	cpu = task_cpu(p);
1252	if ((cpu != smp_processor_id()) && task_curr(p))
1253		smp_send_reschedule(cpu);
1254	preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265	int nid = cpu_to_node(cpu);
1266	const struct cpumask *nodemask = NULL;
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/*
1271	 * If the node that the cpu is on has been offlined, cpu_to_node()
1272	 * will return -1. There is no cpu on the node, and we should
1273	 * select the cpu on the other node.
1274	 */
1275	if (nid != -1) {
1276		nodemask = cpumask_of_node(nid);
1277
1278		/* Look for allowed, online CPU in same node. */
1279		for_each_cpu(dest_cpu, nodemask) {
1280			if (!cpu_online(dest_cpu))
1281				continue;
1282			if (!cpu_active(dest_cpu))
1283				continue;
1284			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285				return dest_cpu;
1286		}
1287	}
1288
1289	for (;;) {
1290		/* Any allowed, online CPU? */
1291		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292			if (!cpu_online(dest_cpu))
1293				continue;
1294			if (!cpu_active(dest_cpu))
1295				continue;
1296			goto out;
1297		}
1298
1299		switch (state) {
1300		case cpuset:
1301			/* No more Mr. Nice Guy. */
1302			cpuset_cpus_allowed_fallback(p);
1303			state = possible;
1304			break;
1305
1306		case possible:
1307			do_set_cpus_allowed(p, cpu_possible_mask);
1308			state = fail;
1309			break;
1310
1311		case fail:
1312			BUG();
1313			break;
1314		}
1315	}
1316
1317out:
1318	if (state != cpuset) {
1319		/*
1320		 * Don't tell them about moving exiting tasks or
1321		 * kernel threads (both mm NULL), since they never
1322		 * leave kernel.
1323		 */
1324		if (p->mm && printk_ratelimit()) {
1325			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326					task_pid_nr(p), p->comm, cpu);
1327		}
1328	}
1329
1330	return dest_cpu;
1331}
1332
1333/*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336static inline
1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338{
1339	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341	/*
1342	 * In order not to call set_task_cpu() on a blocking task we need
1343	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344	 * cpu.
1345	 *
1346	 * Since this is common to all placement strategies, this lives here.
1347	 *
1348	 * [ this allows ->select_task() to simply return task_cpu(p) and
1349	 *   not worry about this generic constraint ]
1350	 */
1351	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352		     !cpu_online(cpu)))
1353		cpu = select_fallback_rq(task_cpu(p), p);
1354
1355	return cpu;
1356}
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360	s64 diff = sample - *avg;
1361	*avg += diff >> 3;
1362}
1363#endif
1364
1365static void
1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367{
1368#ifdef CONFIG_SCHEDSTATS
1369	struct rq *rq = this_rq();
1370
1371#ifdef CONFIG_SMP
1372	int this_cpu = smp_processor_id();
1373
1374	if (cpu == this_cpu) {
1375		schedstat_inc(rq, ttwu_local);
1376		schedstat_inc(p, se.statistics.nr_wakeups_local);
1377	} else {
1378		struct sched_domain *sd;
1379
1380		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381		rcu_read_lock();
1382		for_each_domain(this_cpu, sd) {
1383			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384				schedstat_inc(sd, ttwu_wake_remote);
1385				break;
1386			}
1387		}
1388		rcu_read_unlock();
1389	}
1390
1391	if (wake_flags & WF_MIGRATED)
1392		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394#endif /* CONFIG_SMP */
1395
1396	schedstat_inc(rq, ttwu_count);
1397	schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399	if (wake_flags & WF_SYNC)
1400		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
1407	activate_task(rq, p, en_flags);
1408	p->on_rq = 1;
1409
1410	/* if a worker is waking up, notify workqueue */
1411	if (p->flags & PF_WQ_WORKER)
1412		wq_worker_waking_up(p, cpu_of(rq));
1413}
1414
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418static void
1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420{
1421	check_preempt_curr(rq, p, wake_flags);
1422	trace_sched_wakeup(p, true);
1423
1424	p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426	if (p->sched_class->task_woken)
1427		p->sched_class->task_woken(rq, p);
1428
1429	if (rq->idle_stamp) {
1430		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431		u64 max = 2*rq->max_idle_balance_cost;
1432
1433		update_avg(&rq->avg_idle, delta);
1434
1435		if (rq->avg_idle > max)
1436			rq->avg_idle = max;
1437
1438		rq->idle_stamp = 0;
1439	}
1440#endif
1441}
1442
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447	if (p->sched_contributes_to_load)
1448		rq->nr_uninterruptible--;
1449#endif
1450
1451	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452	ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463	struct rq *rq;
1464	int ret = 0;
1465
1466	rq = __task_rq_lock(p);
1467	if (p->on_rq) {
1468		/* check_preempt_curr() may use rq clock */
1469		update_rq_clock(rq);
1470		ttwu_do_wakeup(rq, p, wake_flags);
1471		ret = 1;
1472	}
1473	__task_rq_unlock(rq);
1474
1475	return ret;
1476}
1477
1478#ifdef CONFIG_SMP
1479static void sched_ttwu_pending(void)
1480{
1481	struct rq *rq = this_rq();
1482	struct llist_node *llist = llist_del_all(&rq->wake_list);
1483	struct task_struct *p;
1484
1485	raw_spin_lock(&rq->lock);
1486
1487	while (llist) {
1488		p = llist_entry(llist, struct task_struct, wake_entry);
1489		llist = llist_next(llist);
1490		ttwu_do_activate(rq, p, 0);
1491	}
1492
1493	raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
1498	/*
1499	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501	 * this IPI.
1502	 */
1503	preempt_fold_need_resched();
1504
1505	if (llist_empty(&this_rq()->wake_list)
1506			&& !tick_nohz_full_cpu(smp_processor_id())
1507			&& !got_nohz_idle_kick())
1508		return;
1509
1510	/*
1511	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512	 * traditionally all their work was done from the interrupt return
1513	 * path. Now that we actually do some work, we need to make sure
1514	 * we do call them.
1515	 *
1516	 * Some archs already do call them, luckily irq_enter/exit nest
1517	 * properly.
1518	 *
1519	 * Arguably we should visit all archs and update all handlers,
1520	 * however a fair share of IPIs are still resched only so this would
1521	 * somewhat pessimize the simple resched case.
1522	 */
1523	irq_enter();
1524	tick_nohz_full_check();
1525	sched_ttwu_pending();
1526
1527	/*
1528	 * Check if someone kicked us for doing the nohz idle load balance.
1529	 */
1530	if (unlikely(got_nohz_idle_kick())) {
1531		this_rq()->idle_balance = 1;
1532		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533	}
1534	irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540		smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551	struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556		ttwu_queue_remote(p, cpu);
1557		return;
1558	}
1559#endif
1560
1561	raw_spin_lock(&rq->lock);
1562	ttwu_do_activate(rq, p, 0);
1563	raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584	unsigned long flags;
1585	int cpu, success = 0;
1586
1587	/*
1588	 * If we are going to wake up a thread waiting for CONDITION we
1589	 * need to ensure that CONDITION=1 done by the caller can not be
1590	 * reordered with p->state check below. This pairs with mb() in
1591	 * set_current_state() the waiting thread does.
1592	 */
1593	smp_mb__before_spinlock();
1594	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595	if (!(p->state & state))
1596		goto out;
1597
1598	success = 1; /* we're going to change ->state */
1599	cpu = task_cpu(p);
1600
1601	if (p->on_rq && ttwu_remote(p, wake_flags))
1602		goto stat;
1603
1604#ifdef CONFIG_SMP
1605	/*
1606	 * If the owning (remote) cpu is still in the middle of schedule() with
1607	 * this task as prev, wait until its done referencing the task.
1608	 */
1609	while (p->on_cpu)
1610		cpu_relax();
1611	/*
1612	 * Pairs with the smp_wmb() in finish_lock_switch().
1613	 */
1614	smp_rmb();
1615
1616	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617	p->state = TASK_WAKING;
1618
1619	if (p->sched_class->task_waking)
1620		p->sched_class->task_waking(p);
1621
1622	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623	if (task_cpu(p) != cpu) {
1624		wake_flags |= WF_MIGRATED;
1625		set_task_cpu(p, cpu);
1626	}
1627#endif /* CONFIG_SMP */
1628
1629	ttwu_queue(p, cpu);
1630stat:
1631	ttwu_stat(p, cpu, wake_flags);
1632out:
1633	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635	return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648	struct rq *rq = task_rq(p);
1649
1650	if (WARN_ON_ONCE(rq != this_rq()) ||
1651	    WARN_ON_ONCE(p == current))
1652		return;
1653
1654	lockdep_assert_held(&rq->lock);
1655
1656	if (!raw_spin_trylock(&p->pi_lock)) {
1657		raw_spin_unlock(&rq->lock);
1658		raw_spin_lock(&p->pi_lock);
1659		raw_spin_lock(&rq->lock);
1660	}
1661
1662	if (!(p->state & TASK_NORMAL))
1663		goto out;
1664
1665	if (!p->on_rq)
1666		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668	ttwu_do_wakeup(rq, p, 0);
1669	ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671	raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688	WARN_ON(task_is_stopped_or_traced(p));
1689	return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720	RB_CLEAR_NODE(&p->dl.rb_node);
1721	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722	p->dl.dl_runtime = p->dl.runtime = 0;
1723	p->dl.dl_deadline = p->dl.deadline = 0;
1724	p->dl.dl_period = 0;
1725	p->dl.flags = 0;
1726
1727	INIT_LIST_HEAD(&p->rt.run_list);
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730	INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736		p->mm->numa_scan_seq = 0;
1737	}
1738
1739	if (clone_flags & CLONE_VM)
1740		p->numa_preferred_nid = current->numa_preferred_nid;
1741	else
1742		p->numa_preferred_nid = -1;
1743
1744	p->node_stamp = 0ULL;
1745	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747	p->numa_work.next = &p->numa_work;
1748	p->numa_faults_memory = NULL;
1749	p->numa_faults_buffer_memory = NULL;
1750	p->last_task_numa_placement = 0;
1751	p->last_sum_exec_runtime = 0;
1752
1753	INIT_LIST_HEAD(&p->numa_entry);
1754	p->numa_group = NULL;
1755#endif /* CONFIG_NUMA_BALANCING */
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759#ifdef CONFIG_SCHED_DEBUG
1760void set_numabalancing_state(bool enabled)
1761{
1762	if (enabled)
1763		sched_feat_set("NUMA");
1764	else
1765		sched_feat_set("NO_NUMA");
1766}
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772	numabalancing_enabled = enabled;
1773}
1774#endif /* CONFIG_SCHED_DEBUG */
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778			 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780	struct ctl_table t;
1781	int err;
1782	int state = numabalancing_enabled;
1783
1784	if (write && !capable(CAP_SYS_ADMIN))
1785		return -EPERM;
1786
1787	t = *table;
1788	t.data = &state;
1789	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790	if (err < 0)
1791		return err;
1792	if (write)
1793		set_numabalancing_state(state);
1794	return err;
1795}
1796#endif
1797#endif
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
1803{
1804	unsigned long flags;
1805	int cpu = get_cpu();
1806
1807	__sched_fork(clone_flags, p);
1808	/*
1809	 * We mark the process as running here. This guarantees that
1810	 * nobody will actually run it, and a signal or other external
1811	 * event cannot wake it up and insert it on the runqueue either.
1812	 */
1813	p->state = TASK_RUNNING;
1814
1815	/*
1816	 * Make sure we do not leak PI boosting priority to the child.
1817	 */
1818	p->prio = current->normal_prio;
1819
1820	/*
1821	 * Revert to default priority/policy on fork if requested.
1822	 */
1823	if (unlikely(p->sched_reset_on_fork)) {
1824		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825			p->policy = SCHED_NORMAL;
1826			p->static_prio = NICE_TO_PRIO(0);
1827			p->rt_priority = 0;
1828		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1829			p->static_prio = NICE_TO_PRIO(0);
1830
1831		p->prio = p->normal_prio = __normal_prio(p);
1832		set_load_weight(p);
1833
1834		/*
1835		 * We don't need the reset flag anymore after the fork. It has
1836		 * fulfilled its duty:
1837		 */
1838		p->sched_reset_on_fork = 0;
1839	}
1840
1841	if (dl_prio(p->prio)) {
1842		put_cpu();
1843		return -EAGAIN;
1844	} else if (rt_prio(p->prio)) {
1845		p->sched_class = &rt_sched_class;
1846	} else {
1847		p->sched_class = &fair_sched_class;
1848	}
1849
1850	if (p->sched_class->task_fork)
1851		p->sched_class->task_fork(p);
1852
1853	/*
1854	 * The child is not yet in the pid-hash so no cgroup attach races,
1855	 * and the cgroup is pinned to this child due to cgroup_fork()
1856	 * is ran before sched_fork().
1857	 *
1858	 * Silence PROVE_RCU.
1859	 */
1860	raw_spin_lock_irqsave(&p->pi_lock, flags);
1861	set_task_cpu(p, cpu);
1862	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863
1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1865	if (likely(sched_info_on()))
1866		memset(&p->sched_info, 0, sizeof(p->sched_info));
1867#endif
1868#if defined(CONFIG_SMP)
1869	p->on_cpu = 0;
1870#endif
1871	init_task_preempt_count(p);
1872#ifdef CONFIG_SMP
1873	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875#endif
1876
1877	put_cpu();
1878	return 0;
1879}
1880
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883	if (runtime == RUNTIME_INF)
1884		return 1ULL << 20;
1885
1886	/*
1887	 * Doing this here saves a lot of checks in all
1888	 * the calling paths, and returning zero seems
1889	 * safe for them anyway.
1890	 */
1891	if (period == 0)
1892		return 0;
1893
1894	return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900	return &cpu_rq(i)->rd->dl_bw;
1901}
1902
1903static inline int dl_bw_cpus(int i)
1904{
1905	struct root_domain *rd = cpu_rq(i)->rd;
1906	int cpus = 0;
1907
1908	for_each_cpu_and(i, rd->span, cpu_active_mask)
1909		cpus++;
1910
1911	return cpus;
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916	return &cpu_rq(i)->dl.dl_bw;
1917}
1918
1919static inline int dl_bw_cpus(int i)
1920{
1921	return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928	dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934	dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940	return dl_b->bw != -1 &&
1941	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953		       const struct sched_attr *attr)
1954{
1955
1956	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957	u64 period = attr->sched_period;
1958	u64 runtime = attr->sched_runtime;
1959	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960	int cpus, err = -1;
1961
1962	if (new_bw == p->dl.dl_bw)
1963		return 0;
1964
1965	/*
1966	 * Either if a task, enters, leave, or stays -deadline but changes
1967	 * its parameters, we may need to update accordingly the total
1968	 * allocated bandwidth of the container.
1969	 */
1970	raw_spin_lock(&dl_b->lock);
1971	cpus = dl_bw_cpus(task_cpu(p));
1972	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974		__dl_add(dl_b, new_bw);
1975		err = 0;
1976	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978		__dl_clear(dl_b, p->dl.dl_bw);
1979		__dl_add(dl_b, new_bw);
1980		err = 0;
1981	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982		__dl_clear(dl_b, p->dl.dl_bw);
1983		err = 0;
1984	}
1985	raw_spin_unlock(&dl_b->lock);
1986
1987	return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
1999void wake_up_new_task(struct task_struct *p)
2000{
2001	unsigned long flags;
2002	struct rq *rq;
2003
2004	raw_spin_lock_irqsave(&p->pi_lock, flags);
2005#ifdef CONFIG_SMP
2006	/*
2007	 * Fork balancing, do it here and not earlier because:
2008	 *  - cpus_allowed can change in the fork path
2009	 *  - any previously selected cpu might disappear through hotplug
2010	 */
2011	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012#endif
2013
2014	/* Initialize new task's runnable average */
2015	init_task_runnable_average(p);
2016	rq = __task_rq_lock(p);
2017	activate_task(rq, p, 0);
2018	p->on_rq = 1;
2019	trace_sched_wakeup_new(p, true);
2020	check_preempt_curr(rq, p, WF_FORK);
2021#ifdef CONFIG_SMP
2022	if (p->sched_class->task_woken)
2023		p->sched_class->task_woken(rq, p);
2024#endif
2025	task_rq_unlock(rq, p, &flags);
2026}
2027
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2032 * @notifier: notifier struct to register
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
2042 * @notifier: notifier struct to unregister
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048	hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054	struct preempt_notifier *notifier;
2055
2056	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062				 struct task_struct *next)
2063{
2064	struct preempt_notifier *notifier;
2065
2066	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067		notifier->ops->sched_out(notifier, next);
2068}
2069
2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078				 struct task_struct *next)
2079{
2080}
2081
2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
2083
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
2087 * @prev: the current task that is being switched out
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099		    struct task_struct *next)
2100{
2101	trace_sched_switch(prev, next);
2102	sched_info_switch(rq, prev, next);
2103	perf_event_task_sched_out(prev, next);
2104	fire_sched_out_preempt_notifiers(prev, next);
2105	prepare_lock_switch(rq, next);
2106	prepare_arch_switch(next);
2107}
2108
2109/**
2110 * finish_task_switch - clean up after a task-switch
2111 * @rq: runqueue associated with task-switch
2112 * @prev: the thread we just switched away from.
2113 *
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
2120 * so, we finish that here outside of the runqueue lock. (Doing it
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2125	__releases(rq->lock)
2126{
2127	struct mm_struct *mm = rq->prev_mm;
2128	long prev_state;
2129
2130	rq->prev_mm = NULL;
2131
2132	/*
2133	 * A task struct has one reference for the use as "current".
2134	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2135	 * schedule one last time. The schedule call will never return, and
2136	 * the scheduled task must drop that reference.
2137	 * The test for TASK_DEAD must occur while the runqueue locks are
2138	 * still held, otherwise prev could be scheduled on another cpu, die
2139	 * there before we look at prev->state, and then the reference would
2140	 * be dropped twice.
2141	 *		Manfred Spraul <manfred@colorfullife.com>
2142	 */
2143	prev_state = prev->state;
2144	vtime_task_switch(prev);
2145	finish_arch_switch(prev);
2146	perf_event_task_sched_in(prev, current);
2147	finish_lock_switch(rq, prev);
2148	finish_arch_post_lock_switch();
2149
2150	fire_sched_in_preempt_notifiers(current);
2151	if (mm)
2152		mmdrop(mm);
2153	if (unlikely(prev_state == TASK_DEAD)) {
2154		task_numa_free(prev);
2155
2156		if (prev->sched_class->task_dead)
2157			prev->sched_class->task_dead(prev);
2158
2159		/*
2160		 * Remove function-return probe instances associated with this
2161		 * task and put them back on the free list.
2162		 */
2163		kprobe_flush_task(prev);
2164		put_task_struct(prev);
2165	}
2166
2167	tick_nohz_task_switch(current);
2168}
2169
2170#ifdef CONFIG_SMP
2171
2172/* rq->lock is NOT held, but preemption is disabled */
2173static inline void post_schedule(struct rq *rq)
2174{
2175	if (rq->post_schedule) {
2176		unsigned long flags;
2177
2178		raw_spin_lock_irqsave(&rq->lock, flags);
2179		if (rq->curr->sched_class->post_schedule)
2180			rq->curr->sched_class->post_schedule(rq);
2181		raw_spin_unlock_irqrestore(&rq->lock, flags);
2182
2183		rq->post_schedule = 0;
2184	}
2185}
2186
2187#else
2188
2189static inline void post_schedule(struct rq *rq)
2190{
2191}
2192
2193#endif
2194
2195/**
2196 * schedule_tail - first thing a freshly forked thread must call.
2197 * @prev: the thread we just switched away from.
2198 */
2199asmlinkage void schedule_tail(struct task_struct *prev)
2200	__releases(rq->lock)
2201{
2202	struct rq *rq = this_rq();
2203
2204	finish_task_switch(rq, prev);
2205
2206	/*
2207	 * FIXME: do we need to worry about rq being invalidated by the
2208	 * task_switch?
2209	 */
2210	post_schedule(rq);
2211
2212#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2213	/* In this case, finish_task_switch does not reenable preemption */
2214	preempt_enable();
2215#endif
2216	if (current->set_child_tid)
2217		put_user(task_pid_vnr(current), current->set_child_tid);
2218}
2219
2220/*
2221 * context_switch - switch to the new MM and the new
2222 * thread's register state.
2223 */
2224static inline void
2225context_switch(struct rq *rq, struct task_struct *prev,
2226	       struct task_struct *next)
2227{
2228	struct mm_struct *mm, *oldmm;
2229
2230	prepare_task_switch(rq, prev, next);
2231
2232	mm = next->mm;
2233	oldmm = prev->active_mm;
2234	/*
2235	 * For paravirt, this is coupled with an exit in switch_to to
2236	 * combine the page table reload and the switch backend into
2237	 * one hypercall.
2238	 */
2239	arch_start_context_switch(prev);
2240
2241	if (!mm) {
2242		next->active_mm = oldmm;
2243		atomic_inc(&oldmm->mm_count);
2244		enter_lazy_tlb(oldmm, next);
2245	} else
2246		switch_mm(oldmm, mm, next);
2247
2248	if (!prev->mm) {
2249		prev->active_mm = NULL;
2250		rq->prev_mm = oldmm;
2251	}
2252	/*
2253	 * Since the runqueue lock will be released by the next
2254	 * task (which is an invalid locking op but in the case
2255	 * of the scheduler it's an obvious special-case), so we
2256	 * do an early lockdep release here:
2257	 */
2258#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2259	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2260#endif
2261
2262	context_tracking_task_switch(prev, next);
2263	/* Here we just switch the register state and the stack. */
2264	switch_to(prev, next, prev);
2265
2266	barrier();
2267	/*
2268	 * this_rq must be evaluated again because prev may have moved
2269	 * CPUs since it called schedule(), thus the 'rq' on its stack
2270	 * frame will be invalid.
2271	 */
2272	finish_task_switch(this_rq(), prev);
2273}
2274
2275/*
2276 * nr_running and nr_context_switches:
2277 *
2278 * externally visible scheduler statistics: current number of runnable
2279 * threads, total number of context switches performed since bootup.
2280 */
2281unsigned long nr_running(void)
2282{
2283	unsigned long i, sum = 0;
2284
2285	for_each_online_cpu(i)
2286		sum += cpu_rq(i)->nr_running;
2287
2288	return sum;
2289}
2290
2291unsigned long long nr_context_switches(void)
2292{
2293	int i;
2294	unsigned long long sum = 0;
2295
2296	for_each_possible_cpu(i)
2297		sum += cpu_rq(i)->nr_switches;
2298
2299	return sum;
2300}
2301
2302unsigned long nr_iowait(void)
2303{
2304	unsigned long i, sum = 0;
2305
2306	for_each_possible_cpu(i)
2307		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2308
2309	return sum;
2310}
2311
2312unsigned long nr_iowait_cpu(int cpu)
2313{
2314	struct rq *this = cpu_rq(cpu);
2315	return atomic_read(&this->nr_iowait);
2316}
2317
2318#ifdef CONFIG_SMP
2319
2320/*
2321 * sched_exec - execve() is a valuable balancing opportunity, because at
2322 * this point the task has the smallest effective memory and cache footprint.
2323 */
2324void sched_exec(void)
2325{
2326	struct task_struct *p = current;
2327	unsigned long flags;
2328	int dest_cpu;
2329
2330	raw_spin_lock_irqsave(&p->pi_lock, flags);
2331	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2332	if (dest_cpu == smp_processor_id())
2333		goto unlock;
2334
2335	if (likely(cpu_active(dest_cpu))) {
2336		struct migration_arg arg = { p, dest_cpu };
2337
2338		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2340		return;
2341	}
2342unlock:
2343	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2344}
2345
2346#endif
2347
2348DEFINE_PER_CPU(struct kernel_stat, kstat);
2349DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2350
2351EXPORT_PER_CPU_SYMBOL(kstat);
2352EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2353
2354/*
2355 * Return any ns on the sched_clock that have not yet been accounted in
2356 * @p in case that task is currently running.
2357 *
2358 * Called with task_rq_lock() held on @rq.
2359 */
2360static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2361{
2362	u64 ns = 0;
2363
2364	if (task_current(rq, p)) {
2365		update_rq_clock(rq);
2366		ns = rq_clock_task(rq) - p->se.exec_start;
2367		if ((s64)ns < 0)
2368			ns = 0;
2369	}
2370
2371	return ns;
2372}
2373
2374unsigned long long task_delta_exec(struct task_struct *p)
2375{
2376	unsigned long flags;
2377	struct rq *rq;
2378	u64 ns = 0;
2379
2380	rq = task_rq_lock(p, &flags);
2381	ns = do_task_delta_exec(p, rq);
2382	task_rq_unlock(rq, p, &flags);
2383
2384	return ns;
2385}
2386
2387/*
2388 * Return accounted runtime for the task.
2389 * In case the task is currently running, return the runtime plus current's
2390 * pending runtime that have not been accounted yet.
2391 */
2392unsigned long long task_sched_runtime(struct task_struct *p)
2393{
2394	unsigned long flags;
2395	struct rq *rq;
2396	u64 ns = 0;
2397
2398#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2399	/*
2400	 * 64-bit doesn't need locks to atomically read a 64bit value.
2401	 * So we have a optimization chance when the task's delta_exec is 0.
2402	 * Reading ->on_cpu is racy, but this is ok.
2403	 *
2404	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2405	 * If we race with it entering cpu, unaccounted time is 0. This is
2406	 * indistinguishable from the read occurring a few cycles earlier.
2407	 */
2408	if (!p->on_cpu)
2409		return p->se.sum_exec_runtime;
2410#endif
2411
2412	rq = task_rq_lock(p, &flags);
2413	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2414	task_rq_unlock(rq, p, &flags);
2415
2416	return ns;
2417}
2418
2419/*
2420 * This function gets called by the timer code, with HZ frequency.
2421 * We call it with interrupts disabled.
2422 */
2423void scheduler_tick(void)
2424{
2425	int cpu = smp_processor_id();
2426	struct rq *rq = cpu_rq(cpu);
2427	struct task_struct *curr = rq->curr;
2428
2429	sched_clock_tick();
2430
2431	raw_spin_lock(&rq->lock);
2432	update_rq_clock(rq);
2433	curr->sched_class->task_tick(rq, curr, 0);
2434	update_cpu_load_active(rq);
2435	raw_spin_unlock(&rq->lock);
2436
2437	perf_event_task_tick();
2438
2439#ifdef CONFIG_SMP
2440	rq->idle_balance = idle_cpu(cpu);
2441	trigger_load_balance(rq);
2442#endif
2443	rq_last_tick_reset(rq);
2444}
2445
2446#ifdef CONFIG_NO_HZ_FULL
2447/**
2448 * scheduler_tick_max_deferment
2449 *
2450 * Keep at least one tick per second when a single
2451 * active task is running because the scheduler doesn't
2452 * yet completely support full dynticks environment.
2453 *
2454 * This makes sure that uptime, CFS vruntime, load
2455 * balancing, etc... continue to move forward, even
2456 * with a very low granularity.
2457 *
2458 * Return: Maximum deferment in nanoseconds.
2459 */
2460u64 scheduler_tick_max_deferment(void)
2461{
2462	struct rq *rq = this_rq();
2463	unsigned long next, now = ACCESS_ONCE(jiffies);
2464
2465	next = rq->last_sched_tick + HZ;
2466
2467	if (time_before_eq(next, now))
2468		return 0;
2469
2470	return jiffies_to_nsecs(next - now);
2471}
2472#endif
2473
2474notrace unsigned long get_parent_ip(unsigned long addr)
2475{
2476	if (in_lock_functions(addr)) {
2477		addr = CALLER_ADDR2;
2478		if (in_lock_functions(addr))
2479			addr = CALLER_ADDR3;
2480	}
2481	return addr;
2482}
2483
2484#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2485				defined(CONFIG_PREEMPT_TRACER))
2486
2487void __kprobes preempt_count_add(int val)
2488{
2489#ifdef CONFIG_DEBUG_PREEMPT
2490	/*
2491	 * Underflow?
2492	 */
2493	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2494		return;
2495#endif
2496	__preempt_count_add(val);
2497#ifdef CONFIG_DEBUG_PREEMPT
2498	/*
2499	 * Spinlock count overflowing soon?
2500	 */
2501	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2502				PREEMPT_MASK - 10);
2503#endif
2504	if (preempt_count() == val)
2505		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2506}
2507EXPORT_SYMBOL(preempt_count_add);
2508
2509void __kprobes preempt_count_sub(int val)
2510{
2511#ifdef CONFIG_DEBUG_PREEMPT
2512	/*
2513	 * Underflow?
2514	 */
2515	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2516		return;
2517	/*
2518	 * Is the spinlock portion underflowing?
2519	 */
2520	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2521			!(preempt_count() & PREEMPT_MASK)))
2522		return;
2523#endif
2524
2525	if (preempt_count() == val)
2526		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2527	__preempt_count_sub(val);
2528}
2529EXPORT_SYMBOL(preempt_count_sub);
2530
2531#endif
2532
2533/*
2534 * Print scheduling while atomic bug:
2535 */
2536static noinline void __schedule_bug(struct task_struct *prev)
2537{
2538	if (oops_in_progress)
2539		return;
2540
2541	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2542		prev->comm, prev->pid, preempt_count());
2543
2544	debug_show_held_locks(prev);
2545	print_modules();
2546	if (irqs_disabled())
2547		print_irqtrace_events(prev);
2548	dump_stack();
2549	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2550}
2551
2552/*
2553 * Various schedule()-time debugging checks and statistics:
2554 */
2555static inline void schedule_debug(struct task_struct *prev)
2556{
2557	/*
2558	 * Test if we are atomic. Since do_exit() needs to call into
2559	 * schedule() atomically, we ignore that path. Otherwise whine
2560	 * if we are scheduling when we should not.
2561	 */
2562	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2563		__schedule_bug(prev);
2564	rcu_sleep_check();
2565
2566	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2567
2568	schedstat_inc(this_rq(), sched_count);
2569}
2570
2571/*
2572 * Pick up the highest-prio task:
2573 */
2574static inline struct task_struct *
2575pick_next_task(struct rq *rq, struct task_struct *prev)
2576{
2577	const struct sched_class *class;
2578	struct task_struct *p;
2579
2580	/*
2581	 * Optimization: we know that if all tasks are in
2582	 * the fair class we can call that function directly:
2583	 */
2584	if (likely(prev->sched_class == &fair_sched_class &&
2585		   rq->nr_running == rq->cfs.h_nr_running)) {
2586		p = fair_sched_class.pick_next_task(rq, prev);
2587		if (likely(p))
2588			return p;
2589	}
2590
2591	for_each_class(class) {
2592		p = class->pick_next_task(rq, prev);
2593		if (p)
2594			return p;
2595	}
2596
2597	BUG(); /* the idle class will always have a runnable task */
2598}
2599
2600/*
2601 * __schedule() is the main scheduler function.
2602 *
2603 * The main means of driving the scheduler and thus entering this function are:
2604 *
2605 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2606 *
2607 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2608 *      paths. For example, see arch/x86/entry_64.S.
2609 *
2610 *      To drive preemption between tasks, the scheduler sets the flag in timer
2611 *      interrupt handler scheduler_tick().
2612 *
2613 *   3. Wakeups don't really cause entry into schedule(). They add a
2614 *      task to the run-queue and that's it.
2615 *
2616 *      Now, if the new task added to the run-queue preempts the current
2617 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2618 *      called on the nearest possible occasion:
2619 *
2620 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2621 *
2622 *         - in syscall or exception context, at the next outmost
2623 *           preempt_enable(). (this might be as soon as the wake_up()'s
2624 *           spin_unlock()!)
2625 *
2626 *         - in IRQ context, return from interrupt-handler to
2627 *           preemptible context
2628 *
2629 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2630 *         then at the next:
2631 *
2632 *          - cond_resched() call
2633 *          - explicit schedule() call
2634 *          - return from syscall or exception to user-space
2635 *          - return from interrupt-handler to user-space
2636 */
2637static void __sched __schedule(void)
2638{
2639	struct task_struct *prev, *next;
2640	unsigned long *switch_count;
2641	struct rq *rq;
2642	int cpu;
2643
2644need_resched:
2645	preempt_disable();
2646	cpu = smp_processor_id();
2647	rq = cpu_rq(cpu);
2648	rcu_note_context_switch(cpu);
2649	prev = rq->curr;
2650
2651	schedule_debug(prev);
2652
2653	if (sched_feat(HRTICK))
2654		hrtick_clear(rq);
2655
2656	/*
2657	 * Make sure that signal_pending_state()->signal_pending() below
2658	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2659	 * done by the caller to avoid the race with signal_wake_up().
2660	 */
2661	smp_mb__before_spinlock();
2662	raw_spin_lock_irq(&rq->lock);
2663
2664	switch_count = &prev->nivcsw;
2665	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2666		if (unlikely(signal_pending_state(prev->state, prev))) {
2667			prev->state = TASK_RUNNING;
2668		} else {
2669			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2670			prev->on_rq = 0;
2671
2672			/*
2673			 * If a worker went to sleep, notify and ask workqueue
2674			 * whether it wants to wake up a task to maintain
2675			 * concurrency.
2676			 */
2677			if (prev->flags & PF_WQ_WORKER) {
2678				struct task_struct *to_wakeup;
2679
2680				to_wakeup = wq_worker_sleeping(prev, cpu);
2681				if (to_wakeup)
2682					try_to_wake_up_local(to_wakeup);
2683			}
2684		}
2685		switch_count = &prev->nvcsw;
2686	}
2687
2688	if (prev->on_rq || rq->skip_clock_update < 0)
2689		update_rq_clock(rq);
2690
2691	next = pick_next_task(rq, prev);
2692	clear_tsk_need_resched(prev);
2693	clear_preempt_need_resched();
2694	rq->skip_clock_update = 0;
2695
2696	if (likely(prev != next)) {
2697		rq->nr_switches++;
2698		rq->curr = next;
2699		++*switch_count;
2700
2701		context_switch(rq, prev, next); /* unlocks the rq */
2702		/*
2703		 * The context switch have flipped the stack from under us
2704		 * and restored the local variables which were saved when
2705		 * this task called schedule() in the past. prev == current
2706		 * is still correct, but it can be moved to another cpu/rq.
2707		 */
2708		cpu = smp_processor_id();
2709		rq = cpu_rq(cpu);
2710	} else
2711		raw_spin_unlock_irq(&rq->lock);
2712
2713	post_schedule(rq);
2714
2715	sched_preempt_enable_no_resched();
2716	if (need_resched())
2717		goto need_resched;
2718}
2719
2720static inline void sched_submit_work(struct task_struct *tsk)
2721{
2722	if (!tsk->state || tsk_is_pi_blocked(tsk))
2723		return;
2724	/*
2725	 * If we are going to sleep and we have plugged IO queued,
2726	 * make sure to submit it to avoid deadlocks.
2727	 */
2728	if (blk_needs_flush_plug(tsk))
2729		blk_schedule_flush_plug(tsk);
2730}
2731
2732asmlinkage void __sched schedule(void)
2733{
2734	struct task_struct *tsk = current;
2735
2736	sched_submit_work(tsk);
2737	__schedule();
2738}
2739EXPORT_SYMBOL(schedule);
2740
2741#ifdef CONFIG_CONTEXT_TRACKING
2742asmlinkage void __sched schedule_user(void)
2743{
2744	/*
2745	 * If we come here after a random call to set_need_resched(),
2746	 * or we have been woken up remotely but the IPI has not yet arrived,
2747	 * we haven't yet exited the RCU idle mode. Do it here manually until
2748	 * we find a better solution.
2749	 */
2750	user_exit();
2751	schedule();
2752	user_enter();
2753}
2754#endif
2755
2756/**
2757 * schedule_preempt_disabled - called with preemption disabled
2758 *
2759 * Returns with preemption disabled. Note: preempt_count must be 1
2760 */
2761void __sched schedule_preempt_disabled(void)
2762{
2763	sched_preempt_enable_no_resched();
2764	schedule();
2765	preempt_disable();
2766}
2767
2768#ifdef CONFIG_PREEMPT
2769/*
2770 * this is the entry point to schedule() from in-kernel preemption
2771 * off of preempt_enable. Kernel preemptions off return from interrupt
2772 * occur there and call schedule directly.
2773 */
2774asmlinkage void __sched notrace preempt_schedule(void)
2775{
2776	/*
2777	 * If there is a non-zero preempt_count or interrupts are disabled,
2778	 * we do not want to preempt the current task. Just return..
2779	 */
2780	if (likely(!preemptible()))
2781		return;
2782
2783	do {
2784		__preempt_count_add(PREEMPT_ACTIVE);
2785		__schedule();
2786		__preempt_count_sub(PREEMPT_ACTIVE);
2787
2788		/*
2789		 * Check again in case we missed a preemption opportunity
2790		 * between schedule and now.
2791		 */
2792		barrier();
2793	} while (need_resched());
2794}
2795EXPORT_SYMBOL(preempt_schedule);
2796#endif /* CONFIG_PREEMPT */
2797
2798/*
2799 * this is the entry point to schedule() from kernel preemption
2800 * off of irq context.
2801 * Note, that this is called and return with irqs disabled. This will
2802 * protect us against recursive calling from irq.
2803 */
2804asmlinkage void __sched preempt_schedule_irq(void)
2805{
2806	enum ctx_state prev_state;
2807
2808	/* Catch callers which need to be fixed */
2809	BUG_ON(preempt_count() || !irqs_disabled());
2810
2811	prev_state = exception_enter();
2812
2813	do {
2814		__preempt_count_add(PREEMPT_ACTIVE);
2815		local_irq_enable();
2816		__schedule();
2817		local_irq_disable();
2818		__preempt_count_sub(PREEMPT_ACTIVE);
2819
2820		/*
2821		 * Check again in case we missed a preemption opportunity
2822		 * between schedule and now.
2823		 */
2824		barrier();
2825	} while (need_resched());
2826
2827	exception_exit(prev_state);
2828}
2829
2830int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2831			  void *key)
2832{
2833	return try_to_wake_up(curr->private, mode, wake_flags);
2834}
2835EXPORT_SYMBOL(default_wake_function);
2836
2837static long __sched
2838sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2839{
2840	unsigned long flags;
2841	wait_queue_t wait;
2842
2843	init_waitqueue_entry(&wait, current);
2844
2845	__set_current_state(state);
2846
2847	spin_lock_irqsave(&q->lock, flags);
2848	__add_wait_queue(q, &wait);
2849	spin_unlock(&q->lock);
2850	timeout = schedule_timeout(timeout);
2851	spin_lock_irq(&q->lock);
2852	__remove_wait_queue(q, &wait);
2853	spin_unlock_irqrestore(&q->lock, flags);
2854
2855	return timeout;
2856}
2857
2858void __sched interruptible_sleep_on(wait_queue_head_t *q)
2859{
2860	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2861}
2862EXPORT_SYMBOL(interruptible_sleep_on);
2863
2864long __sched
2865interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2866{
2867	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2868}
2869EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2870
2871void __sched sleep_on(wait_queue_head_t *q)
2872{
2873	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2874}
2875EXPORT_SYMBOL(sleep_on);
2876
2877long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2878{
2879	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2880}
2881EXPORT_SYMBOL(sleep_on_timeout);
2882
2883#ifdef CONFIG_RT_MUTEXES
2884
2885/*
2886 * rt_mutex_setprio - set the current priority of a task
2887 * @p: task
2888 * @prio: prio value (kernel-internal form)
2889 *
2890 * This function changes the 'effective' priority of a task. It does
2891 * not touch ->normal_prio like __setscheduler().
2892 *
2893 * Used by the rt_mutex code to implement priority inheritance logic.
2894 */
2895void rt_mutex_setprio(struct task_struct *p, int prio)
2896{
2897	int oldprio, on_rq, running, enqueue_flag = 0;
2898	struct rq *rq;
2899	const struct sched_class *prev_class;
2900
2901	BUG_ON(prio > MAX_PRIO);
2902
2903	rq = __task_rq_lock(p);
2904
2905	/*
2906	 * Idle task boosting is a nono in general. There is one
2907	 * exception, when PREEMPT_RT and NOHZ is active:
2908	 *
2909	 * The idle task calls get_next_timer_interrupt() and holds
2910	 * the timer wheel base->lock on the CPU and another CPU wants
2911	 * to access the timer (probably to cancel it). We can safely
2912	 * ignore the boosting request, as the idle CPU runs this code
2913	 * with interrupts disabled and will complete the lock
2914	 * protected section without being interrupted. So there is no
2915	 * real need to boost.
2916	 */
2917	if (unlikely(p == rq->idle)) {
2918		WARN_ON(p != rq->curr);
2919		WARN_ON(p->pi_blocked_on);
2920		goto out_unlock;
2921	}
2922
2923	trace_sched_pi_setprio(p, prio);
2924	p->pi_top_task = rt_mutex_get_top_task(p);
2925	oldprio = p->prio;
2926	prev_class = p->sched_class;
2927	on_rq = p->on_rq;
2928	running = task_current(rq, p);
2929	if (on_rq)
2930		dequeue_task(rq, p, 0);
2931	if (running)
2932		p->sched_class->put_prev_task(rq, p);
2933
2934	/*
2935	 * Boosting condition are:
2936	 * 1. -rt task is running and holds mutex A
2937	 *      --> -dl task blocks on mutex A
2938	 *
2939	 * 2. -dl task is running and holds mutex A
2940	 *      --> -dl task blocks on mutex A and could preempt the
2941	 *          running task
2942	 */
2943	if (dl_prio(prio)) {
2944		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2945			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2946			p->dl.dl_boosted = 1;
2947			p->dl.dl_throttled = 0;
2948			enqueue_flag = ENQUEUE_REPLENISH;
2949		} else
2950			p->dl.dl_boosted = 0;
2951		p->sched_class = &dl_sched_class;
2952	} else if (rt_prio(prio)) {
2953		if (dl_prio(oldprio))
2954			p->dl.dl_boosted = 0;
2955		if (oldprio < prio)
2956			enqueue_flag = ENQUEUE_HEAD;
2957		p->sched_class = &rt_sched_class;
2958	} else {
2959		if (dl_prio(oldprio))
2960			p->dl.dl_boosted = 0;
2961		p->sched_class = &fair_sched_class;
2962	}
2963
2964	p->prio = prio;
2965
2966	if (running)
2967		p->sched_class->set_curr_task(rq);
2968	if (on_rq)
2969		enqueue_task(rq, p, enqueue_flag);
2970
2971	check_class_changed(rq, p, prev_class, oldprio);
2972out_unlock:
2973	__task_rq_unlock(rq);
2974}
2975#endif
2976
2977void set_user_nice(struct task_struct *p, long nice)
2978{
2979	int old_prio, delta, on_rq;
2980	unsigned long flags;
2981	struct rq *rq;
2982
2983	if (task_nice(p) == nice || nice < -20 || nice > 19)
2984		return;
2985	/*
2986	 * We have to be careful, if called from sys_setpriority(),
2987	 * the task might be in the middle of scheduling on another CPU.
2988	 */
2989	rq = task_rq_lock(p, &flags);
2990	/*
2991	 * The RT priorities are set via sched_setscheduler(), but we still
2992	 * allow the 'normal' nice value to be set - but as expected
2993	 * it wont have any effect on scheduling until the task is
2994	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2995	 */
2996	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2997		p->static_prio = NICE_TO_PRIO(nice);
2998		goto out_unlock;
2999	}
3000	on_rq = p->on_rq;
3001	if (on_rq)
3002		dequeue_task(rq, p, 0);
3003
3004	p->static_prio = NICE_TO_PRIO(nice);
3005	set_load_weight(p);
3006	old_prio = p->prio;
3007	p->prio = effective_prio(p);
3008	delta = p->prio - old_prio;
3009
3010	if (on_rq) {
3011		enqueue_task(rq, p, 0);
3012		/*
3013		 * If the task increased its priority or is running and
3014		 * lowered its priority, then reschedule its CPU:
3015		 */
3016		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3017			resched_task(rq->curr);
3018	}
3019out_unlock:
3020	task_rq_unlock(rq, p, &flags);
3021}
3022EXPORT_SYMBOL(set_user_nice);
3023
3024/*
3025 * can_nice - check if a task can reduce its nice value
3026 * @p: task
3027 * @nice: nice value
3028 */
3029int can_nice(const struct task_struct *p, const int nice)
3030{
3031	/* convert nice value [19,-20] to rlimit style value [1,40] */
3032	int nice_rlim = 20 - nice;
3033
3034	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3035		capable(CAP_SYS_NICE));
3036}
3037
3038#ifdef __ARCH_WANT_SYS_NICE
3039
3040/*
3041 * sys_nice - change the priority of the current process.
3042 * @increment: priority increment
3043 *
3044 * sys_setpriority is a more generic, but much slower function that
3045 * does similar things.
3046 */
3047SYSCALL_DEFINE1(nice, int, increment)
3048{
3049	long nice, retval;
3050
3051	/*
3052	 * Setpriority might change our priority at the same moment.
3053	 * We don't have to worry. Conceptually one call occurs first
3054	 * and we have a single winner.
3055	 */
3056	if (increment < -40)
3057		increment = -40;
3058	if (increment > 40)
3059		increment = 40;
3060
3061	nice = task_nice(current) + increment;
3062	if (nice < -20)
3063		nice = -20;
3064	if (nice > 19)
3065		nice = 19;
3066
3067	if (increment < 0 && !can_nice(current, nice))
3068		return -EPERM;
3069
3070	retval = security_task_setnice(current, nice);
3071	if (retval)
3072		return retval;
3073
3074	set_user_nice(current, nice);
3075	return 0;
3076}
3077
3078#endif
3079
3080/**
3081 * task_prio - return the priority value of a given task.
3082 * @p: the task in question.
3083 *
3084 * Return: The priority value as seen by users in /proc.
3085 * RT tasks are offset by -200. Normal tasks are centered
3086 * around 0, value goes from -16 to +15.
3087 */
3088int task_prio(const struct task_struct *p)
3089{
3090	return p->prio - MAX_RT_PRIO;
3091}
3092
3093/**
3094 * idle_cpu - is a given cpu idle currently?
3095 * @cpu: the processor in question.
3096 *
3097 * Return: 1 if the CPU is currently idle. 0 otherwise.
3098 */
3099int idle_cpu(int cpu)
3100{
3101	struct rq *rq = cpu_rq(cpu);
3102
3103	if (rq->curr != rq->idle)
3104		return 0;
3105
3106	if (rq->nr_running)
3107		return 0;
3108
3109#ifdef CONFIG_SMP
3110	if (!llist_empty(&rq->wake_list))
3111		return 0;
3112#endif
3113
3114	return 1;
3115}
3116
3117/**
3118 * idle_task - return the idle task for a given cpu.
3119 * @cpu: the processor in question.
3120 *
3121 * Return: The idle task for the cpu @cpu.
3122 */
3123struct task_struct *idle_task(int cpu)
3124{
3125	return cpu_rq(cpu)->idle;
3126}
3127
3128/**
3129 * find_process_by_pid - find a process with a matching PID value.
3130 * @pid: the pid in question.
3131 *
3132 * The task of @pid, if found. %NULL otherwise.
3133 */
3134static struct task_struct *find_process_by_pid(pid_t pid)
3135{
3136	return pid ? find_task_by_vpid(pid) : current;
3137}
3138
3139/*
3140 * This function initializes the sched_dl_entity of a newly becoming
3141 * SCHED_DEADLINE task.
3142 *
3143 * Only the static values are considered here, the actual runtime and the
3144 * absolute deadline will be properly calculated when the task is enqueued
3145 * for the first time with its new policy.
3146 */
3147static void
3148__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3149{
3150	struct sched_dl_entity *dl_se = &p->dl;
3151
3152	init_dl_task_timer(dl_se);
3153	dl_se->dl_runtime = attr->sched_runtime;
3154	dl_se->dl_deadline = attr->sched_deadline;
3155	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3156	dl_se->flags = attr->sched_flags;
3157	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3158	dl_se->dl_throttled = 0;
3159	dl_se->dl_new = 1;
3160}
3161
3162/* Actually do priority change: must hold pi & rq lock. */
3163static void __setscheduler(struct rq *rq, struct task_struct *p,
3164			   const struct sched_attr *attr)
3165{
3166	int policy = attr->sched_policy;
3167
3168	if (policy == -1) /* setparam */
3169		policy = p->policy;
3170
3171	p->policy = policy;
3172
3173	if (dl_policy(policy))
3174		__setparam_dl(p, attr);
3175	else if (fair_policy(policy))
3176		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3177
3178	/*
3179	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3180	 * !rt_policy. Always setting this ensures that things like
3181	 * getparam()/getattr() don't report silly values for !rt tasks.
3182	 */
3183	p->rt_priority = attr->sched_priority;
3184
3185	p->normal_prio = normal_prio(p);
3186	p->prio = rt_mutex_getprio(p);
3187
3188	if (dl_prio(p->prio))
3189		p->sched_class = &dl_sched_class;
3190	else if (rt_prio(p->prio))
3191		p->sched_class = &rt_sched_class;
3192	else
3193		p->sched_class = &fair_sched_class;
3194
3195	set_load_weight(p);
3196}
3197
3198static void
3199__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3200{
3201	struct sched_dl_entity *dl_se = &p->dl;
3202
3203	attr->sched_priority = p->rt_priority;
3204	attr->sched_runtime = dl_se->dl_runtime;
3205	attr->sched_deadline = dl_se->dl_deadline;
3206	attr->sched_period = dl_se->dl_period;
3207	attr->sched_flags = dl_se->flags;
3208}
3209
3210/*
3211 * This function validates the new parameters of a -deadline task.
3212 * We ask for the deadline not being zero, and greater or equal
3213 * than the runtime, as well as the period of being zero or
3214 * greater than deadline. Furthermore, we have to be sure that
3215 * user parameters are above the internal resolution (1us); we
3216 * check sched_runtime only since it is always the smaller one.
3217 */
3218static bool
3219__checkparam_dl(const struct sched_attr *attr)
3220{
3221	return attr && attr->sched_deadline != 0 &&
3222		(attr->sched_period == 0 ||
3223		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3224		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3225		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3226}
3227
3228/*
3229 * check the target process has a UID that matches the current process's
3230 */
3231static bool check_same_owner(struct task_struct *p)
3232{
3233	const struct cred *cred = current_cred(), *pcred;
3234	bool match;
3235
3236	rcu_read_lock();
3237	pcred = __task_cred(p);
3238	match = (uid_eq(cred->euid, pcred->euid) ||
3239		 uid_eq(cred->euid, pcred->uid));
3240	rcu_read_unlock();
3241	return match;
3242}
3243
3244static int __sched_setscheduler(struct task_struct *p,
3245				const struct sched_attr *attr,
3246				bool user)
3247{
3248	int retval, oldprio, oldpolicy = -1, on_rq, running;
3249	int policy = attr->sched_policy;
3250	unsigned long flags;
3251	const struct sched_class *prev_class;
3252	struct rq *rq;
3253	int reset_on_fork;
3254
3255	/* may grab non-irq protected spin_locks */
3256	BUG_ON(in_interrupt());
3257recheck:
3258	/* double check policy once rq lock held */
3259	if (policy < 0) {
3260		reset_on_fork = p->sched_reset_on_fork;
3261		policy = oldpolicy = p->policy;
3262	} else {
3263		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3264
3265		if (policy != SCHED_DEADLINE &&
3266				policy != SCHED_FIFO && policy != SCHED_RR &&
3267				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3268				policy != SCHED_IDLE)
3269			return -EINVAL;
3270	}
3271
3272	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3273		return -EINVAL;
3274
3275	/*
3276	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3277	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3278	 * SCHED_BATCH and SCHED_IDLE is 0.
3279	 */
3280	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3281	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3282		return -EINVAL;
3283	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3284	    (rt_policy(policy) != (attr->sched_priority != 0)))
3285		return -EINVAL;
3286
3287	/*
3288	 * Allow unprivileged RT tasks to decrease priority:
3289	 */
3290	if (user && !capable(CAP_SYS_NICE)) {
3291		if (fair_policy(policy)) {
3292			if (attr->sched_nice < task_nice(p) &&
3293			    !can_nice(p, attr->sched_nice))
3294				return -EPERM;
3295		}
3296
3297		if (rt_policy(policy)) {
3298			unsigned long rlim_rtprio =
3299					task_rlimit(p, RLIMIT_RTPRIO);
3300
3301			/* can't set/change the rt policy */
3302			if (policy != p->policy && !rlim_rtprio)
3303				return -EPERM;
3304
3305			/* can't increase priority */
3306			if (attr->sched_priority > p->rt_priority &&
3307			    attr->sched_priority > rlim_rtprio)
3308				return -EPERM;
3309		}
3310
3311		/*
3312		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3313		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3314		 */
3315		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3316			if (!can_nice(p, task_nice(p)))
3317				return -EPERM;
3318		}
3319
3320		/* can't change other user's priorities */
3321		if (!check_same_owner(p))
3322			return -EPERM;
3323
3324		/* Normal users shall not reset the sched_reset_on_fork flag */
3325		if (p->sched_reset_on_fork && !reset_on_fork)
3326			return -EPERM;
3327	}
3328
3329	if (user) {
3330		retval = security_task_setscheduler(p);
3331		if (retval)
3332			return retval;
3333	}
3334
3335	/*
3336	 * make sure no PI-waiters arrive (or leave) while we are
3337	 * changing the priority of the task:
3338	 *
3339	 * To be able to change p->policy safely, the appropriate
3340	 * runqueue lock must be held.
3341	 */
3342	rq = task_rq_lock(p, &flags);
3343
3344	/*
3345	 * Changing the policy of the stop threads its a very bad idea
3346	 */
3347	if (p == rq->stop) {
3348		task_rq_unlock(rq, p, &flags);
3349		return -EINVAL;
3350	}
3351
3352	/*
3353	 * If not changing anything there's no need to proceed further:
3354	 */
3355	if (unlikely(policy == p->policy)) {
3356		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3357			goto change;
3358		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3359			goto change;
3360		if (dl_policy(policy))
3361			goto change;
3362
3363		task_rq_unlock(rq, p, &flags);
3364		return 0;
3365	}
3366change:
3367
3368	if (user) {
3369#ifdef CONFIG_RT_GROUP_SCHED
3370		/*
3371		 * Do not allow realtime tasks into groups that have no runtime
3372		 * assigned.
3373		 */
3374		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3375				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3376				!task_group_is_autogroup(task_group(p))) {
3377			task_rq_unlock(rq, p, &flags);
3378			return -EPERM;
3379		}
3380#endif
3381#ifdef CONFIG_SMP
3382		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3383			cpumask_t *span = rq->rd->span;
3384
3385			/*
3386			 * Don't allow tasks with an affinity mask smaller than
3387			 * the entire root_domain to become SCHED_DEADLINE. We
3388			 * will also fail if there's no bandwidth available.
3389			 */
3390			if (!cpumask_subset(span, &p->cpus_allowed) ||
3391			    rq->rd->dl_bw.bw == 0) {
3392				task_rq_unlock(rq, p, &flags);
3393				return -EPERM;
3394			}
3395		}
3396#endif
3397	}
3398
3399	/* recheck policy now with rq lock held */
3400	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3401		policy = oldpolicy = -1;
3402		task_rq_unlock(rq, p, &flags);
3403		goto recheck;
3404	}
3405
3406	/*
3407	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3408	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3409	 * is available.
3410	 */
3411	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3412		task_rq_unlock(rq, p, &flags);
3413		return -EBUSY;
3414	}
3415
3416	on_rq = p->on_rq;
3417	running = task_current(rq, p);
3418	if (on_rq)
3419		dequeue_task(rq, p, 0);
3420	if (running)
3421		p->sched_class->put_prev_task(rq, p);
3422
3423	p->sched_reset_on_fork = reset_on_fork;
3424
3425	oldprio = p->prio;
3426	prev_class = p->sched_class;
3427	__setscheduler(rq, p, attr);
3428
3429	if (running)
3430		p->sched_class->set_curr_task(rq);
3431	if (on_rq)
3432		enqueue_task(rq, p, 0);
3433
3434	check_class_changed(rq, p, prev_class, oldprio);
3435	task_rq_unlock(rq, p, &flags);
3436
3437	rt_mutex_adjust_pi(p);
3438
3439	return 0;
3440}
3441
3442static int _sched_setscheduler(struct task_struct *p, int policy,
3443			       const struct sched_param *param, bool check)
3444{
3445	struct sched_attr attr = {
3446		.sched_policy   = policy,
3447		.sched_priority = param->sched_priority,
3448		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3449	};
3450
3451	/*
3452	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3453	 */
3454	if (policy & SCHED_RESET_ON_FORK) {
3455		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3456		policy &= ~SCHED_RESET_ON_FORK;
3457		attr.sched_policy = policy;
3458	}
3459
3460	return __sched_setscheduler(p, &attr, check);
3461}
3462/**
3463 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3464 * @p: the task in question.
3465 * @policy: new policy.
3466 * @param: structure containing the new RT priority.
3467 *
3468 * Return: 0 on success. An error code otherwise.
3469 *
3470 * NOTE that the task may be already dead.
3471 */
3472int sched_setscheduler(struct task_struct *p, int policy,
3473		       const struct sched_param *param)
3474{
3475	return _sched_setscheduler(p, policy, param, true);
3476}
3477EXPORT_SYMBOL_GPL(sched_setscheduler);
3478
3479int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3480{
3481	return __sched_setscheduler(p, attr, true);
3482}
3483EXPORT_SYMBOL_GPL(sched_setattr);
3484
3485/**
3486 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3487 * @p: the task in question.
3488 * @policy: new policy.
3489 * @param: structure containing the new RT priority.
3490 *
3491 * Just like sched_setscheduler, only don't bother checking if the
3492 * current context has permission.  For example, this is needed in
3493 * stop_machine(): we create temporary high priority worker threads,
3494 * but our caller might not have that capability.
3495 *
3496 * Return: 0 on success. An error code otherwise.
3497 */
3498int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3499			       const struct sched_param *param)
3500{
3501	return _sched_setscheduler(p, policy, param, false);
3502}
3503
3504static int
3505do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3506{
3507	struct sched_param lparam;
3508	struct task_struct *p;
3509	int retval;
3510
3511	if (!param || pid < 0)
3512		return -EINVAL;
3513	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3514		return -EFAULT;
3515
3516	rcu_read_lock();
3517	retval = -ESRCH;
3518	p = find_process_by_pid(pid);
3519	if (p != NULL)
3520		retval = sched_setscheduler(p, policy, &lparam);
3521	rcu_read_unlock();
3522
3523	return retval;
3524}
3525
3526/*
3527 * Mimics kernel/events/core.c perf_copy_attr().
3528 */
3529static int sched_copy_attr(struct sched_attr __user *uattr,
3530			   struct sched_attr *attr)
3531{
3532	u32 size;
3533	int ret;
3534
3535	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3536		return -EFAULT;
3537
3538	/*
3539	 * zero the full structure, so that a short copy will be nice.
3540	 */
3541	memset(attr, 0, sizeof(*attr));
3542
3543	ret = get_user(size, &uattr->size);
3544	if (ret)
3545		return ret;
3546
3547	if (size > PAGE_SIZE)	/* silly large */
3548		goto err_size;
3549
3550	if (!size)		/* abi compat */
3551		size = SCHED_ATTR_SIZE_VER0;
3552
3553	if (size < SCHED_ATTR_SIZE_VER0)
3554		goto err_size;
3555
3556	/*
3557	 * If we're handed a bigger struct than we know of,
3558	 * ensure all the unknown bits are 0 - i.e. new
3559	 * user-space does not rely on any kernel feature
3560	 * extensions we dont know about yet.
3561	 */
3562	if (size > sizeof(*attr)) {
3563		unsigned char __user *addr;
3564		unsigned char __user *end;
3565		unsigned char val;
3566
3567		addr = (void __user *)uattr + sizeof(*attr);
3568		end  = (void __user *)uattr + size;
3569
3570		for (; addr < end; addr++) {
3571			ret = get_user(val, addr);
3572			if (ret)
3573				return ret;
3574			if (val)
3575				goto err_size;
3576		}
3577		size = sizeof(*attr);
3578	}
3579
3580	ret = copy_from_user(attr, uattr, size);
3581	if (ret)
3582		return -EFAULT;
3583
3584	/*
3585	 * XXX: do we want to be lenient like existing syscalls; or do we want
3586	 * to be strict and return an error on out-of-bounds values?
3587	 */
3588	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3589
3590out:
3591	return ret;
3592
3593err_size:
3594	put_user(sizeof(*attr), &uattr->size);
3595	ret = -E2BIG;
3596	goto out;
3597}
3598
3599/**
3600 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3601 * @pid: the pid in question.
3602 * @policy: new policy.
3603 * @param: structure containing the new RT priority.
3604 *
3605 * Return: 0 on success. An error code otherwise.
3606 */
3607SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3608		struct sched_param __user *, param)
3609{
3610	/* negative values for policy are not valid */
3611	if (policy < 0)
3612		return -EINVAL;
3613
3614	return do_sched_setscheduler(pid, policy, param);
3615}
3616
3617/**
3618 * sys_sched_setparam - set/change the RT priority of a thread
3619 * @pid: the pid in question.
3620 * @param: structure containing the new RT priority.
3621 *
3622 * Return: 0 on success. An error code otherwise.
3623 */
3624SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3625{
3626	return do_sched_setscheduler(pid, -1, param);
3627}
3628
3629/**
3630 * sys_sched_setattr - same as above, but with extended sched_attr
3631 * @pid: the pid in question.
3632 * @uattr: structure containing the extended parameters.
3633 */
3634SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3635{
3636	struct sched_attr attr;
3637	struct task_struct *p;
3638	int retval;
3639
3640	if (!uattr || pid < 0)
3641		return -EINVAL;
3642
3643	if (sched_copy_attr(uattr, &attr))
3644		return -EFAULT;
3645
3646	rcu_read_lock();
3647	retval = -ESRCH;
3648	p = find_process_by_pid(pid);
3649	if (p != NULL)
3650		retval = sched_setattr(p, &attr);
3651	rcu_read_unlock();
3652
3653	return retval;
3654}
3655
3656/**
3657 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3658 * @pid: the pid in question.
3659 *
3660 * Return: On success, the policy of the thread. Otherwise, a negative error
3661 * code.
3662 */
3663SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3664{
3665	struct task_struct *p;
3666	int retval;
3667
3668	if (pid < 0)
3669		return -EINVAL;
3670
3671	retval = -ESRCH;
3672	rcu_read_lock();
3673	p = find_process_by_pid(pid);
3674	if (p) {
3675		retval = security_task_getscheduler(p);
3676		if (!retval)
3677			retval = p->policy
3678				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3679	}
3680	rcu_read_unlock();
3681	return retval;
3682}
3683
3684/**
3685 * sys_sched_getparam - get the RT priority of a thread
3686 * @pid: the pid in question.
3687 * @param: structure containing the RT priority.
3688 *
3689 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3690 * code.
3691 */
3692SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3693{
3694	struct sched_param lp;
3695	struct task_struct *p;
3696	int retval;
3697
3698	if (!param || pid < 0)
3699		return -EINVAL;
3700
3701	rcu_read_lock();
3702	p = find_process_by_pid(pid);
3703	retval = -ESRCH;
3704	if (!p)
3705		goto out_unlock;
3706
3707	retval = security_task_getscheduler(p);
3708	if (retval)
3709		goto out_unlock;
3710
3711	if (task_has_dl_policy(p)) {
3712		retval = -EINVAL;
3713		goto out_unlock;
3714	}
3715	lp.sched_priority = p->rt_priority;
3716	rcu_read_unlock();
3717
3718	/*
3719	 * This one might sleep, we cannot do it with a spinlock held ...
3720	 */
3721	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3722
3723	return retval;
3724
3725out_unlock:
3726	rcu_read_unlock();
3727	return retval;
3728}
3729
3730static int sched_read_attr(struct sched_attr __user *uattr,
3731			   struct sched_attr *attr,
3732			   unsigned int usize)
3733{
3734	int ret;
3735
3736	if (!access_ok(VERIFY_WRITE, uattr, usize))
3737		return -EFAULT;
3738
3739	/*
3740	 * If we're handed a smaller struct than we know of,
3741	 * ensure all the unknown bits are 0 - i.e. old
3742	 * user-space does not get uncomplete information.
3743	 */
3744	if (usize < sizeof(*attr)) {
3745		unsigned char *addr;
3746		unsigned char *end;
3747
3748		addr = (void *)attr + usize;
3749		end  = (void *)attr + sizeof(*attr);
3750
3751		for (; addr < end; addr++) {
3752			if (*addr)
3753				goto err_size;
3754		}
3755
3756		attr->size = usize;
3757	}
3758
3759	ret = copy_to_user(uattr, attr, usize);
3760	if (ret)
3761		return -EFAULT;
3762
3763out:
3764	return ret;
3765
3766err_size:
3767	ret = -E2BIG;
3768	goto out;
3769}
3770
3771/**
3772 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3773 * @pid: the pid in question.
3774 * @uattr: structure containing the extended parameters.
3775 * @size: sizeof(attr) for fwd/bwd comp.
3776 */
3777SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3778		unsigned int, size)
3779{
3780	struct sched_attr attr = {
3781		.size = sizeof(struct sched_attr),
3782	};
3783	struct task_struct *p;
3784	int retval;
3785
3786	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3787	    size < SCHED_ATTR_SIZE_VER0)
3788		return -EINVAL;
3789
3790	rcu_read_lock();
3791	p = find_process_by_pid(pid);
3792	retval = -ESRCH;
3793	if (!p)
3794		goto out_unlock;
3795
3796	retval = security_task_getscheduler(p);
3797	if (retval)
3798		goto out_unlock;
3799
3800	attr.sched_policy = p->policy;
3801	if (p->sched_reset_on_fork)
3802		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3803	if (task_has_dl_policy(p))
3804		__getparam_dl(p, &attr);
3805	else if (task_has_rt_policy(p))
3806		attr.sched_priority = p->rt_priority;
3807	else
3808		attr.sched_nice = task_nice(p);
3809
3810	rcu_read_unlock();
3811
3812	retval = sched_read_attr(uattr, &attr, size);
3813	return retval;
3814
3815out_unlock:
3816	rcu_read_unlock();
3817	return retval;
3818}
3819
3820long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3821{
3822	cpumask_var_t cpus_allowed, new_mask;
3823	struct task_struct *p;
3824	int retval;
3825
3826	rcu_read_lock();
3827
3828	p = find_process_by_pid(pid);
3829	if (!p) {
3830		rcu_read_unlock();
3831		return -ESRCH;
3832	}
3833
3834	/* Prevent p going away */
3835	get_task_struct(p);
3836	rcu_read_unlock();
3837
3838	if (p->flags & PF_NO_SETAFFINITY) {
3839		retval = -EINVAL;
3840		goto out_put_task;
3841	}
3842	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3843		retval = -ENOMEM;
3844		goto out_put_task;
3845	}
3846	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3847		retval = -ENOMEM;
3848		goto out_free_cpus_allowed;
3849	}
3850	retval = -EPERM;
3851	if (!check_same_owner(p)) {
3852		rcu_read_lock();
3853		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3854			rcu_read_unlock();
3855			goto out_unlock;
3856		}
3857		rcu_read_unlock();
3858	}
3859
3860	retval = security_task_setscheduler(p);
3861	if (retval)
3862		goto out_unlock;
3863
3864
3865	cpuset_cpus_allowed(p, cpus_allowed);
3866	cpumask_and(new_mask, in_mask, cpus_allowed);
3867
3868	/*
3869	 * Since bandwidth control happens on root_domain basis,
3870	 * if admission test is enabled, we only admit -deadline
3871	 * tasks allowed to run on all the CPUs in the task's
3872	 * root_domain.
3873	 */
3874#ifdef CONFIG_SMP
3875	if (task_has_dl_policy(p)) {
3876		const struct cpumask *span = task_rq(p)->rd->span;
3877
3878		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3879			retval = -EBUSY;
3880			goto out_unlock;
3881		}
3882	}
3883#endif
3884again:
3885	retval = set_cpus_allowed_ptr(p, new_mask);
3886
3887	if (!retval) {
3888		cpuset_cpus_allowed(p, cpus_allowed);
3889		if (!cpumask_subset(new_mask, cpus_allowed)) {
3890			/*
3891			 * We must have raced with a concurrent cpuset
3892			 * update. Just reset the cpus_allowed to the
3893			 * cpuset's cpus_allowed
3894			 */
3895			cpumask_copy(new_mask, cpus_allowed);
3896			goto again;
3897		}
3898	}
3899out_unlock:
3900	free_cpumask_var(new_mask);
3901out_free_cpus_allowed:
3902	free_cpumask_var(cpus_allowed);
3903out_put_task:
3904	put_task_struct(p);
3905	return retval;
3906}
3907
3908static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3909			     struct cpumask *new_mask)
3910{
3911	if (len < cpumask_size())
3912		cpumask_clear(new_mask);
3913	else if (len > cpumask_size())
3914		len = cpumask_size();
3915
3916	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3917}
3918
3919/**
3920 * sys_sched_setaffinity - set the cpu affinity of a process
3921 * @pid: pid of the process
3922 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3923 * @user_mask_ptr: user-space pointer to the new cpu mask
3924 *
3925 * Return: 0 on success. An error code otherwise.
3926 */
3927SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3928		unsigned long __user *, user_mask_ptr)
3929{
3930	cpumask_var_t new_mask;
3931	int retval;
3932
3933	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3934		return -ENOMEM;
3935
3936	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3937	if (retval == 0)
3938		retval = sched_setaffinity(pid, new_mask);
3939	free_cpumask_var(new_mask);
3940	return retval;
3941}
3942
3943long sched_getaffinity(pid_t pid, struct cpumask *mask)
3944{
3945	struct task_struct *p;
3946	unsigned long flags;
3947	int retval;
3948
3949	rcu_read_lock();
3950
3951	retval = -ESRCH;
3952	p = find_process_by_pid(pid);
3953	if (!p)
3954		goto out_unlock;
3955
3956	retval = security_task_getscheduler(p);
3957	if (retval)
3958		goto out_unlock;
3959
3960	raw_spin_lock_irqsave(&p->pi_lock, flags);
3961	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3962	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3963
3964out_unlock:
3965	rcu_read_unlock();
3966
3967	return retval;
3968}
3969
3970/**
3971 * sys_sched_getaffinity - get the cpu affinity of a process
3972 * @pid: pid of the process
3973 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3974 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3975 *
3976 * Return: 0 on success. An error code otherwise.
3977 */
3978SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3979		unsigned long __user *, user_mask_ptr)
3980{
3981	int ret;
3982	cpumask_var_t mask;
3983
3984	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3985		return -EINVAL;
3986	if (len & (sizeof(unsigned long)-1))
3987		return -EINVAL;
3988
3989	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3990		return -ENOMEM;
3991
3992	ret = sched_getaffinity(pid, mask);
3993	if (ret == 0) {
3994		size_t retlen = min_t(size_t, len, cpumask_size());
3995
3996		if (copy_to_user(user_mask_ptr, mask, retlen))
3997			ret = -EFAULT;
3998		else
3999			ret = retlen;
4000	}
4001	free_cpumask_var(mask);
4002
4003	return ret;
4004}
4005
4006/**
4007 * sys_sched_yield - yield the current processor to other threads.
4008 *
4009 * This function yields the current CPU to other tasks. If there are no
4010 * other threads running on this CPU then this function will return.
4011 *
4012 * Return: 0.
4013 */
4014SYSCALL_DEFINE0(sched_yield)
4015{
4016	struct rq *rq = this_rq_lock();
4017
4018	schedstat_inc(rq, yld_count);
4019	current->sched_class->yield_task(rq);
4020
4021	/*
4022	 * Since we are going to call schedule() anyway, there's
4023	 * no need to preempt or enable interrupts:
4024	 */
4025	__release(rq->lock);
4026	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4027	do_raw_spin_unlock(&rq->lock);
4028	sched_preempt_enable_no_resched();
4029
4030	schedule();
4031
4032	return 0;
4033}
4034
4035static void __cond_resched(void)
4036{
4037	__preempt_count_add(PREEMPT_ACTIVE);
4038	__schedule();
4039	__preempt_count_sub(PREEMPT_ACTIVE);
4040}
4041
4042int __sched _cond_resched(void)
4043{
4044	if (should_resched()) {
4045		__cond_resched();
4046		return 1;
4047	}
4048	return 0;
4049}
4050EXPORT_SYMBOL(_cond_resched);
4051
4052/*
4053 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4054 * call schedule, and on return reacquire the lock.
4055 *
4056 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4057 * operations here to prevent schedule() from being called twice (once via
4058 * spin_unlock(), once by hand).
4059 */
4060int __cond_resched_lock(spinlock_t *lock)
4061{
4062	int resched = should_resched();
4063	int ret = 0;
4064
4065	lockdep_assert_held(lock);
4066
4067	if (spin_needbreak(lock) || resched) {
4068		spin_unlock(lock);
4069		if (resched)
4070			__cond_resched();
4071		else
4072			cpu_relax();
4073		ret = 1;
4074		spin_lock(lock);
4075	}
4076	return ret;
4077}
4078EXPORT_SYMBOL(__cond_resched_lock);
4079
4080int __sched __cond_resched_softirq(void)
4081{
4082	BUG_ON(!in_softirq());
4083
4084	if (should_resched()) {
4085		local_bh_enable();
4086		__cond_resched();
4087		local_bh_disable();
4088		return 1;
4089	}
4090	return 0;
4091}
4092EXPORT_SYMBOL(__cond_resched_softirq);
4093
4094/**
4095 * yield - yield the current processor to other threads.
4096 *
4097 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4098 *
4099 * The scheduler is at all times free to pick the calling task as the most
4100 * eligible task to run, if removing the yield() call from your code breaks
4101 * it, its already broken.
4102 *
4103 * Typical broken usage is:
4104 *
4105 * while (!event)
4106 * 	yield();
4107 *
4108 * where one assumes that yield() will let 'the other' process run that will
4109 * make event true. If the current task is a SCHED_FIFO task that will never
4110 * happen. Never use yield() as a progress guarantee!!
4111 *
4112 * If you want to use yield() to wait for something, use wait_event().
4113 * If you want to use yield() to be 'nice' for others, use cond_resched().
4114 * If you still want to use yield(), do not!
4115 */
4116void __sched yield(void)
4117{
4118	set_current_state(TASK_RUNNING);
4119	sys_sched_yield();
4120}
4121EXPORT_SYMBOL(yield);
4122
4123/**
4124 * yield_to - yield the current processor to another thread in
4125 * your thread group, or accelerate that thread toward the
4126 * processor it's on.
4127 * @p: target task
4128 * @preempt: whether task preemption is allowed or not
4129 *
4130 * It's the caller's job to ensure that the target task struct
4131 * can't go away on us before we can do any checks.
4132 *
4133 * Return:
4134 *	true (>0) if we indeed boosted the target task.
4135 *	false (0) if we failed to boost the target.
4136 *	-ESRCH if there's no task to yield to.
4137 */
4138bool __sched yield_to(struct task_struct *p, bool preempt)
4139{
4140	struct task_struct *curr = current;
4141	struct rq *rq, *p_rq;
4142	unsigned long flags;
4143	int yielded = 0;
4144
4145	local_irq_save(flags);
4146	rq = this_rq();
4147
4148again:
4149	p_rq = task_rq(p);
4150	/*
4151	 * If we're the only runnable task on the rq and target rq also
4152	 * has only one task, there's absolutely no point in yielding.
4153	 */
4154	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4155		yielded = -ESRCH;
4156		goto out_irq;
4157	}
4158
4159	double_rq_lock(rq, p_rq);
4160	if (task_rq(p) != p_rq) {
4161		double_rq_unlock(rq, p_rq);
4162		goto again;
4163	}
4164
4165	if (!curr->sched_class->yield_to_task)
4166		goto out_unlock;
4167
4168	if (curr->sched_class != p->sched_class)
4169		goto out_unlock;
4170
4171	if (task_running(p_rq, p) || p->state)
4172		goto out_unlock;
4173
4174	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4175	if (yielded) {
4176		schedstat_inc(rq, yld_count);
4177		/*
4178		 * Make p's CPU reschedule; pick_next_entity takes care of
4179		 * fairness.
4180		 */
4181		if (preempt && rq != p_rq)
4182			resched_task(p_rq->curr);
4183	}
4184
4185out_unlock:
4186	double_rq_unlock(rq, p_rq);
4187out_irq:
4188	local_irq_restore(flags);
4189
4190	if (yielded > 0)
4191		schedule();
4192
4193	return yielded;
4194}
4195EXPORT_SYMBOL_GPL(yield_to);
4196
4197/*
4198 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4199 * that process accounting knows that this is a task in IO wait state.
4200 */
4201void __sched io_schedule(void)
4202{
4203	struct rq *rq = raw_rq();
4204
4205	delayacct_blkio_start();
4206	atomic_inc(&rq->nr_iowait);
4207	blk_flush_plug(current);
4208	current->in_iowait = 1;
4209	schedule();
4210	current->in_iowait = 0;
4211	atomic_dec(&rq->nr_iowait);
4212	delayacct_blkio_end();
4213}
4214EXPORT_SYMBOL(io_schedule);
4215
4216long __sched io_schedule_timeout(long timeout)
4217{
4218	struct rq *rq = raw_rq();
4219	long ret;
4220
4221	delayacct_blkio_start();
4222	atomic_inc(&rq->nr_iowait);
4223	blk_flush_plug(current);
4224	current->in_iowait = 1;
4225	ret = schedule_timeout(timeout);
4226	current->in_iowait = 0;
4227	atomic_dec(&rq->nr_iowait);
4228	delayacct_blkio_end();
4229	return ret;
4230}
4231
4232/**
4233 * sys_sched_get_priority_max - return maximum RT priority.
4234 * @policy: scheduling class.
4235 *
4236 * Return: On success, this syscall returns the maximum
4237 * rt_priority that can be used by a given scheduling class.
4238 * On failure, a negative error code is returned.
4239 */
4240SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4241{
4242	int ret = -EINVAL;
4243
4244	switch (policy) {
4245	case SCHED_FIFO:
4246	case SCHED_RR:
4247		ret = MAX_USER_RT_PRIO-1;
4248		break;
4249	case SCHED_DEADLINE:
4250	case SCHED_NORMAL:
4251	case SCHED_BATCH:
4252	case SCHED_IDLE:
4253		ret = 0;
4254		break;
4255	}
4256	return ret;
4257}
4258
4259/**
4260 * sys_sched_get_priority_min - return minimum RT priority.
4261 * @policy: scheduling class.
4262 *
4263 * Return: On success, this syscall returns the minimum
4264 * rt_priority that can be used by a given scheduling class.
4265 * On failure, a negative error code is returned.
4266 */
4267SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4268{
4269	int ret = -EINVAL;
4270
4271	switch (policy) {
4272	case SCHED_FIFO:
4273	case SCHED_RR:
4274		ret = 1;
4275		break;
4276	case SCHED_DEADLINE:
4277	case SCHED_NORMAL:
4278	case SCHED_BATCH:
4279	case SCHED_IDLE:
4280		ret = 0;
4281	}
4282	return ret;
4283}
4284
4285/**
4286 * sys_sched_rr_get_interval - return the default timeslice of a process.
4287 * @pid: pid of the process.
4288 * @interval: userspace pointer to the timeslice value.
4289 *
4290 * this syscall writes the default timeslice value of a given process
4291 * into the user-space timespec buffer. A value of '0' means infinity.
4292 *
4293 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4294 * an error code.
4295 */
4296SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4297		struct timespec __user *, interval)
4298{
4299	struct task_struct *p;
4300	unsigned int time_slice;
4301	unsigned long flags;
4302	struct rq *rq;
4303	int retval;
4304	struct timespec t;
4305
4306	if (pid < 0)
4307		return -EINVAL;
4308
4309	retval = -ESRCH;
4310	rcu_read_lock();
4311	p = find_process_by_pid(pid);
4312	if (!p)
4313		goto out_unlock;
4314
4315	retval = security_task_getscheduler(p);
4316	if (retval)
4317		goto out_unlock;
4318
4319	rq = task_rq_lock(p, &flags);
4320	time_slice = 0;
4321	if (p->sched_class->get_rr_interval)
4322		time_slice = p->sched_class->get_rr_interval(rq, p);
4323	task_rq_unlock(rq, p, &flags);
4324
4325	rcu_read_unlock();
4326	jiffies_to_timespec(time_slice, &t);
4327	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4328	return retval;
4329
4330out_unlock:
4331	rcu_read_unlock();
4332	return retval;
4333}
4334
4335static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4336
4337void sched_show_task(struct task_struct *p)
4338{
4339	unsigned long free = 0;
4340	int ppid;
4341	unsigned state;
4342
4343	state = p->state ? __ffs(p->state) + 1 : 0;
4344	printk(KERN_INFO "%-15.15s %c", p->comm,
4345		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4346#if BITS_PER_LONG == 32
4347	if (state == TASK_RUNNING)
4348		printk(KERN_CONT " running  ");
4349	else
4350		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4351#else
4352	if (state == TASK_RUNNING)
4353		printk(KERN_CONT "  running task    ");
4354	else
4355		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4356#endif
4357#ifdef CONFIG_DEBUG_STACK_USAGE
4358	free = stack_not_used(p);
4359#endif
4360	rcu_read_lock();
4361	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4362	rcu_read_unlock();
4363	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4364		task_pid_nr(p), ppid,
4365		(unsigned long)task_thread_info(p)->flags);
4366
4367	print_worker_info(KERN_INFO, p);
4368	show_stack(p, NULL);
4369}
4370
4371void show_state_filter(unsigned long state_filter)
4372{
4373	struct task_struct *g, *p;
4374
4375#if BITS_PER_LONG == 32
4376	printk(KERN_INFO
4377		"  task                PC stack   pid father\n");
4378#else
4379	printk(KERN_INFO
4380		"  task                        PC stack   pid father\n");
4381#endif
4382	rcu_read_lock();
4383	do_each_thread(g, p) {
4384		/*
4385		 * reset the NMI-timeout, listing all files on a slow
4386		 * console might take a lot of time:
4387		 */
4388		touch_nmi_watchdog();
4389		if (!state_filter || (p->state & state_filter))
4390			sched_show_task(p);
4391	} while_each_thread(g, p);
4392
4393	touch_all_softlockup_watchdogs();
4394
4395#ifdef CONFIG_SCHED_DEBUG
4396	sysrq_sched_debug_show();
4397#endif
4398	rcu_read_unlock();
4399	/*
4400	 * Only show locks if all tasks are dumped:
4401	 */
4402	if (!state_filter)
4403		debug_show_all_locks();
4404}
4405
4406void init_idle_bootup_task(struct task_struct *idle)
4407{
4408	idle->sched_class = &idle_sched_class;
4409}
4410
4411/**
4412 * init_idle - set up an idle thread for a given CPU
4413 * @idle: task in question
4414 * @cpu: cpu the idle task belongs to
4415 *
4416 * NOTE: this function does not set the idle thread's NEED_RESCHED
4417 * flag, to make booting more robust.
4418 */
4419void init_idle(struct task_struct *idle, int cpu)
4420{
4421	struct rq *rq = cpu_rq(cpu);
4422	unsigned long flags;
4423
4424	raw_spin_lock_irqsave(&rq->lock, flags);
4425
4426	__sched_fork(0, idle);
4427	idle->state = TASK_RUNNING;
4428	idle->se.exec_start = sched_clock();
4429
4430	do_set_cpus_allowed(idle, cpumask_of(cpu));
4431	/*
4432	 * We're having a chicken and egg problem, even though we are
4433	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4434	 * lockdep check in task_group() will fail.
4435	 *
4436	 * Similar case to sched_fork(). / Alternatively we could
4437	 * use task_rq_lock() here and obtain the other rq->lock.
4438	 *
4439	 * Silence PROVE_RCU
4440	 */
4441	rcu_read_lock();
4442	__set_task_cpu(idle, cpu);
4443	rcu_read_unlock();
4444
4445	rq->curr = rq->idle = idle;
4446	idle->on_rq = 1;
4447#if defined(CONFIG_SMP)
4448	idle->on_cpu = 1;
4449#endif
4450	raw_spin_unlock_irqrestore(&rq->lock, flags);
4451
4452	/* Set the preempt count _outside_ the spinlocks! */
4453	init_idle_preempt_count(idle, cpu);
4454
4455	/*
4456	 * The idle tasks have their own, simple scheduling class:
4457	 */
4458	idle->sched_class = &idle_sched_class;
4459	ftrace_graph_init_idle_task(idle, cpu);
4460	vtime_init_idle(idle, cpu);
4461#if defined(CONFIG_SMP)
4462	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4463#endif
4464}
4465
4466#ifdef CONFIG_SMP
4467void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4468{
4469	if (p->sched_class && p->sched_class->set_cpus_allowed)
4470		p->sched_class->set_cpus_allowed(p, new_mask);
4471
4472	cpumask_copy(&p->cpus_allowed, new_mask);
4473	p->nr_cpus_allowed = cpumask_weight(new_mask);
4474}
4475
4476/*
4477 * This is how migration works:
4478 *
4479 * 1) we invoke migration_cpu_stop() on the target CPU using
4480 *    stop_one_cpu().
4481 * 2) stopper starts to run (implicitly forcing the migrated thread
4482 *    off the CPU)
4483 * 3) it checks whether the migrated task is still in the wrong runqueue.
4484 * 4) if it's in the wrong runqueue then the migration thread removes
4485 *    it and puts it into the right queue.
4486 * 5) stopper completes and stop_one_cpu() returns and the migration
4487 *    is done.
4488 */
4489
4490/*
4491 * Change a given task's CPU affinity. Migrate the thread to a
4492 * proper CPU and schedule it away if the CPU it's executing on
4493 * is removed from the allowed bitmask.
4494 *
4495 * NOTE: the caller must have a valid reference to the task, the
4496 * task must not exit() & deallocate itself prematurely. The
4497 * call is not atomic; no spinlocks may be held.
4498 */
4499int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4500{
4501	unsigned long flags;
4502	struct rq *rq;
4503	unsigned int dest_cpu;
4504	int ret = 0;
4505
4506	rq = task_rq_lock(p, &flags);
4507
4508	if (cpumask_equal(&p->cpus_allowed, new_mask))
4509		goto out;
4510
4511	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4512		ret = -EINVAL;
4513		goto out;
4514	}
4515
4516	do_set_cpus_allowed(p, new_mask);
4517
4518	/* Can the task run on the task's current CPU? If so, we're done */
4519	if (cpumask_test_cpu(task_cpu(p), new_mask))
4520		goto out;
4521
4522	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4523	if (p->on_rq) {
4524		struct migration_arg arg = { p, dest_cpu };
4525		/* Need help from migration thread: drop lock and wait. */
4526		task_rq_unlock(rq, p, &flags);
4527		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4528		tlb_migrate_finish(p->mm);
4529		return 0;
4530	}
4531out:
4532	task_rq_unlock(rq, p, &flags);
4533
4534	return ret;
4535}
4536EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4537
4538/*
4539 * Move (not current) task off this cpu, onto dest cpu. We're doing
4540 * this because either it can't run here any more (set_cpus_allowed()
4541 * away from this CPU, or CPU going down), or because we're
4542 * attempting to rebalance this task on exec (sched_exec).
4543 *
4544 * So we race with normal scheduler movements, but that's OK, as long
4545 * as the task is no longer on this CPU.
4546 *
4547 * Returns non-zero if task was successfully migrated.
4548 */
4549static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4550{
4551	struct rq *rq_dest, *rq_src;
4552	int ret = 0;
4553
4554	if (unlikely(!cpu_active(dest_cpu)))
4555		return ret;
4556
4557	rq_src = cpu_rq(src_cpu);
4558	rq_dest = cpu_rq(dest_cpu);
4559
4560	raw_spin_lock(&p->pi_lock);
4561	double_rq_lock(rq_src, rq_dest);
4562	/* Already moved. */
4563	if (task_cpu(p) != src_cpu)
4564		goto done;
4565	/* Affinity changed (again). */
4566	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4567		goto fail;
4568
4569	/*
4570	 * If we're not on a rq, the next wake-up will ensure we're
4571	 * placed properly.
4572	 */
4573	if (p->on_rq) {
4574		dequeue_task(rq_src, p, 0);
4575		set_task_cpu(p, dest_cpu);
4576		enqueue_task(rq_dest, p, 0);
4577		check_preempt_curr(rq_dest, p, 0);
4578	}
4579done:
4580	ret = 1;
4581fail:
4582	double_rq_unlock(rq_src, rq_dest);
4583	raw_spin_unlock(&p->pi_lock);
4584	return ret;
4585}
4586
4587#ifdef CONFIG_NUMA_BALANCING
4588/* Migrate current task p to target_cpu */
4589int migrate_task_to(struct task_struct *p, int target_cpu)
4590{
4591	struct migration_arg arg = { p, target_cpu };
4592	int curr_cpu = task_cpu(p);
4593
4594	if (curr_cpu == target_cpu)
4595		return 0;
4596
4597	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4598		return -EINVAL;
4599
4600	/* TODO: This is not properly updating schedstats */
4601
4602	trace_sched_move_numa(p, curr_cpu, target_cpu);
4603	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4604}
4605
4606/*
4607 * Requeue a task on a given node and accurately track the number of NUMA
4608 * tasks on the runqueues
4609 */
4610void sched_setnuma(struct task_struct *p, int nid)
4611{
4612	struct rq *rq;
4613	unsigned long flags;
4614	bool on_rq, running;
4615
4616	rq = task_rq_lock(p, &flags);
4617	on_rq = p->on_rq;
4618	running = task_current(rq, p);
4619
4620	if (on_rq)
4621		dequeue_task(rq, p, 0);
4622	if (running)
4623		p->sched_class->put_prev_task(rq, p);
4624
4625	p->numa_preferred_nid = nid;
4626
4627	if (running)
4628		p->sched_class->set_curr_task(rq);
4629	if (on_rq)
4630		enqueue_task(rq, p, 0);
4631	task_rq_unlock(rq, p, &flags);
4632}
4633#endif
4634
4635/*
4636 * migration_cpu_stop - this will be executed by a highprio stopper thread
4637 * and performs thread migration by bumping thread off CPU then
4638 * 'pushing' onto another runqueue.
4639 */
4640static int migration_cpu_stop(void *data)
4641{
4642	struct migration_arg *arg = data;
4643
4644	/*
4645	 * The original target cpu might have gone down and we might
4646	 * be on another cpu but it doesn't matter.
4647	 */
4648	local_irq_disable();
4649	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4650	local_irq_enable();
4651	return 0;
4652}
4653
4654#ifdef CONFIG_HOTPLUG_CPU
4655
4656/*
4657 * Ensures that the idle task is using init_mm right before its cpu goes
4658 * offline.
4659 */
4660void idle_task_exit(void)
4661{
4662	struct mm_struct *mm = current->active_mm;
4663
4664	BUG_ON(cpu_online(smp_processor_id()));
4665
4666	if (mm != &init_mm)
4667		switch_mm(mm, &init_mm, current);
4668	mmdrop(mm);
4669}
4670
4671/*
4672 * Since this CPU is going 'away' for a while, fold any nr_active delta
4673 * we might have. Assumes we're called after migrate_tasks() so that the
4674 * nr_active count is stable.
4675 *
4676 * Also see the comment "Global load-average calculations".
4677 */
4678static void calc_load_migrate(struct rq *rq)
4679{
4680	long delta = calc_load_fold_active(rq);
4681	if (delta)
4682		atomic_long_add(delta, &calc_load_tasks);
4683}
4684
4685static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4686{
4687}
4688
4689static const struct sched_class fake_sched_class = {
4690	.put_prev_task = put_prev_task_fake,
4691};
4692
4693static struct task_struct fake_task = {
4694	/*
4695	 * Avoid pull_{rt,dl}_task()
4696	 */
4697	.prio = MAX_PRIO + 1,
4698	.sched_class = &fake_sched_class,
4699};
4700
4701/*
4702 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4703 * try_to_wake_up()->select_task_rq().
4704 *
4705 * Called with rq->lock held even though we'er in stop_machine() and
4706 * there's no concurrency possible, we hold the required locks anyway
4707 * because of lock validation efforts.
4708 */
4709static void migrate_tasks(unsigned int dead_cpu)
4710{
4711	struct rq *rq = cpu_rq(dead_cpu);
4712	struct task_struct *next, *stop = rq->stop;
4713	int dest_cpu;
4714
4715	/*
4716	 * Fudge the rq selection such that the below task selection loop
4717	 * doesn't get stuck on the currently eligible stop task.
4718	 *
4719	 * We're currently inside stop_machine() and the rq is either stuck
4720	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4721	 * either way we should never end up calling schedule() until we're
4722	 * done here.
4723	 */
4724	rq->stop = NULL;
4725
4726	/*
4727	 * put_prev_task() and pick_next_task() sched
4728	 * class method both need to have an up-to-date
4729	 * value of rq->clock[_task]
4730	 */
4731	update_rq_clock(rq);
4732
4733	for ( ; ; ) {
4734		/*
4735		 * There's this thread running, bail when that's the only
4736		 * remaining thread.
4737		 */
4738		if (rq->nr_running == 1)
4739			break;
4740
4741		next = pick_next_task(rq, &fake_task);
4742		BUG_ON(!next);
4743		next->sched_class->put_prev_task(rq, next);
4744
4745		/* Find suitable destination for @next, with force if needed. */
4746		dest_cpu = select_fallback_rq(dead_cpu, next);
4747		raw_spin_unlock(&rq->lock);
4748
4749		__migrate_task(next, dead_cpu, dest_cpu);
4750
4751		raw_spin_lock(&rq->lock);
4752	}
4753
4754	rq->stop = stop;
4755}
4756
4757#endif /* CONFIG_HOTPLUG_CPU */
4758
4759#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4760
4761static struct ctl_table sd_ctl_dir[] = {
4762	{
4763		.procname	= "sched_domain",
4764		.mode		= 0555,
4765	},
4766	{}
4767};
4768
4769static struct ctl_table sd_ctl_root[] = {
4770	{
4771		.procname	= "kernel",
4772		.mode		= 0555,
4773		.child		= sd_ctl_dir,
4774	},
4775	{}
4776};
4777
4778static struct ctl_table *sd_alloc_ctl_entry(int n)
4779{
4780	struct ctl_table *entry =
4781		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4782
4783	return entry;
4784}
4785
4786static void sd_free_ctl_entry(struct ctl_table **tablep)
4787{
4788	struct ctl_table *entry;
4789
4790	/*
4791	 * In the intermediate directories, both the child directory and
4792	 * procname are dynamically allocated and could fail but the mode
4793	 * will always be set. In the lowest directory the names are
4794	 * static strings and all have proc handlers.
4795	 */
4796	for (entry = *tablep; entry->mode; entry++) {
4797		if (entry->child)
4798			sd_free_ctl_entry(&entry->child);
4799		if (entry->proc_handler == NULL)
4800			kfree(entry->procname);
4801	}
4802
4803	kfree(*tablep);
4804	*tablep = NULL;
4805}
4806
4807static int min_load_idx = 0;
4808static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4809
4810static void
4811set_table_entry(struct ctl_table *entry,
4812		const char *procname, void *data, int maxlen,
4813		umode_t mode, proc_handler *proc_handler,
4814		bool load_idx)
4815{
4816	entry->procname = procname;
4817	entry->data = data;
4818	entry->maxlen = maxlen;
4819	entry->mode = mode;
4820	entry->proc_handler = proc_handler;
4821
4822	if (load_idx) {
4823		entry->extra1 = &min_load_idx;
4824		entry->extra2 = &max_load_idx;
4825	}
4826}
4827
4828static struct ctl_table *
4829sd_alloc_ctl_domain_table(struct sched_domain *sd)
4830{
4831	struct ctl_table *table = sd_alloc_ctl_entry(14);
4832
4833	if (table == NULL)
4834		return NULL;
4835
4836	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4837		sizeof(long), 0644, proc_doulongvec_minmax, false);
4838	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4839		sizeof(long), 0644, proc_doulongvec_minmax, false);
4840	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4841		sizeof(int), 0644, proc_dointvec_minmax, true);
4842	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4843		sizeof(int), 0644, proc_dointvec_minmax, true);
4844	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4845		sizeof(int), 0644, proc_dointvec_minmax, true);
4846	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4847		sizeof(int), 0644, proc_dointvec_minmax, true);
4848	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4849		sizeof(int), 0644, proc_dointvec_minmax, true);
4850	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4851		sizeof(int), 0644, proc_dointvec_minmax, false);
4852	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4853		sizeof(int), 0644, proc_dointvec_minmax, false);
4854	set_table_entry(&table[9], "cache_nice_tries",
4855		&sd->cache_nice_tries,
4856		sizeof(int), 0644, proc_dointvec_minmax, false);
4857	set_table_entry(&table[10], "flags", &sd->flags,
4858		sizeof(int), 0644, proc_dointvec_minmax, false);
4859	set_table_entry(&table[11], "max_newidle_lb_cost",
4860		&sd->max_newidle_lb_cost,
4861		sizeof(long), 0644, proc_doulongvec_minmax, false);
4862	set_table_entry(&table[12], "name", sd->name,
4863		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4864	/* &table[13] is terminator */
4865
4866	return table;
4867}
4868
4869static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4870{
4871	struct ctl_table *entry, *table;
4872	struct sched_domain *sd;
4873	int domain_num = 0, i;
4874	char buf[32];
4875
4876	for_each_domain(cpu, sd)
4877		domain_num++;
4878	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4879	if (table == NULL)
4880		return NULL;
4881
4882	i = 0;
4883	for_each_domain(cpu, sd) {
4884		snprintf(buf, 32, "domain%d", i);
4885		entry->procname = kstrdup(buf, GFP_KERNEL);
4886		entry->mode = 0555;
4887		entry->child = sd_alloc_ctl_domain_table(sd);
4888		entry++;
4889		i++;
4890	}
4891	return table;
4892}
4893
4894static struct ctl_table_header *sd_sysctl_header;
4895static void register_sched_domain_sysctl(void)
4896{
4897	int i, cpu_num = num_possible_cpus();
4898	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4899	char buf[32];
4900
4901	WARN_ON(sd_ctl_dir[0].child);
4902	sd_ctl_dir[0].child = entry;
4903
4904	if (entry == NULL)
4905		return;
4906
4907	for_each_possible_cpu(i) {
4908		snprintf(buf, 32, "cpu%d", i);
4909		entry->procname = kstrdup(buf, GFP_KERNEL);
4910		entry->mode = 0555;
4911		entry->child = sd_alloc_ctl_cpu_table(i);
4912		entry++;
4913	}
4914
4915	WARN_ON(sd_sysctl_header);
4916	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4917}
4918
4919/* may be called multiple times per register */
4920static void unregister_sched_domain_sysctl(void)
4921{
4922	if (sd_sysctl_header)
4923		unregister_sysctl_table(sd_sysctl_header);
4924	sd_sysctl_header = NULL;
4925	if (sd_ctl_dir[0].child)
4926		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4927}
4928#else
4929static void register_sched_domain_sysctl(void)
4930{
4931}
4932static void unregister_sched_domain_sysctl(void)
4933{
4934}
4935#endif
4936
4937static void set_rq_online(struct rq *rq)
4938{
4939	if (!rq->online) {
4940		const struct sched_class *class;
4941
4942		cpumask_set_cpu(rq->cpu, rq->rd->online);
4943		rq->online = 1;
4944
4945		for_each_class(class) {
4946			if (class->rq_online)
4947				class->rq_online(rq);
4948		}
4949	}
4950}
4951
4952static void set_rq_offline(struct rq *rq)
4953{
4954	if (rq->online) {
4955		const struct sched_class *class;
4956
4957		for_each_class(class) {
4958			if (class->rq_offline)
4959				class->rq_offline(rq);
4960		}
4961
4962		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4963		rq->online = 0;
4964	}
4965}
4966
4967/*
4968 * migration_call - callback that gets triggered when a CPU is added.
4969 * Here we can start up the necessary migration thread for the new CPU.
4970 */
4971static int
4972migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4973{
4974	int cpu = (long)hcpu;
4975	unsigned long flags;
4976	struct rq *rq = cpu_rq(cpu);
4977
4978	switch (action & ~CPU_TASKS_FROZEN) {
4979
4980	case CPU_UP_PREPARE:
4981		rq->calc_load_update = calc_load_update;
4982		break;
4983
4984	case CPU_ONLINE:
4985		/* Update our root-domain */
4986		raw_spin_lock_irqsave(&rq->lock, flags);
4987		if (rq->rd) {
4988			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4989
4990			set_rq_online(rq);
4991		}
4992		raw_spin_unlock_irqrestore(&rq->lock, flags);
4993		break;
4994
4995#ifdef CONFIG_HOTPLUG_CPU
4996	case CPU_DYING:
4997		sched_ttwu_pending();
4998		/* Update our root-domain */
4999		raw_spin_lock_irqsave(&rq->lock, flags);
5000		if (rq->rd) {
5001			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5002			set_rq_offline(rq);
5003		}
5004		migrate_tasks(cpu);
5005		BUG_ON(rq->nr_running != 1); /* the migration thread */
5006		raw_spin_unlock_irqrestore(&rq->lock, flags);
5007		break;
5008
5009	case CPU_DEAD:
5010		calc_load_migrate(rq);
5011		break;
5012#endif
5013	}
5014
5015	update_max_interval();
5016
5017	return NOTIFY_OK;
5018}
5019
5020/*
5021 * Register at high priority so that task migration (migrate_all_tasks)
5022 * happens before everything else.  This has to be lower priority than
5023 * the notifier in the perf_event subsystem, though.
5024 */
5025static struct notifier_block migration_notifier = {
5026	.notifier_call = migration_call,
5027	.priority = CPU_PRI_MIGRATION,
5028};
5029
5030static int sched_cpu_active(struct notifier_block *nfb,
5031				      unsigned long action, void *hcpu)
5032{
5033	switch (action & ~CPU_TASKS_FROZEN) {
5034	case CPU_STARTING:
5035	case CPU_DOWN_FAILED:
5036		set_cpu_active((long)hcpu, true);
5037		return NOTIFY_OK;
5038	default:
5039		return NOTIFY_DONE;
5040	}
5041}
5042
5043static int sched_cpu_inactive(struct notifier_block *nfb,
5044					unsigned long action, void *hcpu)
5045{
5046	unsigned long flags;
5047	long cpu = (long)hcpu;
5048
5049	switch (action & ~CPU_TASKS_FROZEN) {
5050	case CPU_DOWN_PREPARE:
5051		set_cpu_active(cpu, false);
5052
5053		/* explicitly allow suspend */
5054		if (!(action & CPU_TASKS_FROZEN)) {
5055			struct dl_bw *dl_b = dl_bw_of(cpu);
5056			bool overflow;
5057			int cpus;
5058
5059			raw_spin_lock_irqsave(&dl_b->lock, flags);
5060			cpus = dl_bw_cpus(cpu);
5061			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5062			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5063
5064			if (overflow)
5065				return notifier_from_errno(-EBUSY);
5066		}
5067		return NOTIFY_OK;
5068	}
5069
5070	return NOTIFY_DONE;
5071}
5072
5073static int __init migration_init(void)
5074{
5075	void *cpu = (void *)(long)smp_processor_id();
5076	int err;
5077
5078	/* Initialize migration for the boot CPU */
5079	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5080	BUG_ON(err == NOTIFY_BAD);
5081	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5082	register_cpu_notifier(&migration_notifier);
5083
5084	/* Register cpu active notifiers */
5085	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5086	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5087
5088	return 0;
5089}
5090early_initcall(migration_init);
5091#endif
5092
5093#ifdef CONFIG_SMP
5094
5095static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5096
5097#ifdef CONFIG_SCHED_DEBUG
5098
5099static __read_mostly int sched_debug_enabled;
5100
5101static int __init sched_debug_setup(char *str)
5102{
5103	sched_debug_enabled = 1;
5104
5105	return 0;
5106}
5107early_param("sched_debug", sched_debug_setup);
5108
5109static inline bool sched_debug(void)
5110{
5111	return sched_debug_enabled;
5112}
5113
5114static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5115				  struct cpumask *groupmask)
5116{
5117	struct sched_group *group = sd->groups;
5118	char str[256];
5119
5120	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5121	cpumask_clear(groupmask);
5122
5123	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5124
5125	if (!(sd->flags & SD_LOAD_BALANCE)) {
5126		printk("does not load-balance\n");
5127		if (sd->parent)
5128			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5129					" has parent");
5130		return -1;
5131	}
5132
5133	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5134
5135	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5136		printk(KERN_ERR "ERROR: domain->span does not contain "
5137				"CPU%d\n", cpu);
5138	}
5139	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5140		printk(KERN_ERR "ERROR: domain->groups does not contain"
5141				" CPU%d\n", cpu);
5142	}
5143
5144	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5145	do {
5146		if (!group) {
5147			printk("\n");
5148			printk(KERN_ERR "ERROR: group is NULL\n");
5149			break;
5150		}
5151
5152		/*
5153		 * Even though we initialize ->power to something semi-sane,
5154		 * we leave power_orig unset. This allows us to detect if
5155		 * domain iteration is still funny without causing /0 traps.
5156		 */
5157		if (!group->sgp->power_orig) {
5158			printk(KERN_CONT "\n");
5159			printk(KERN_ERR "ERROR: domain->cpu_power not "
5160					"set\n");
5161			break;
5162		}
5163
5164		if (!cpumask_weight(sched_group_cpus(group))) {
5165			printk(KERN_CONT "\n");
5166			printk(KERN_ERR "ERROR: empty group\n");
5167			break;
5168		}
5169
5170		if (!(sd->flags & SD_OVERLAP) &&
5171		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5172			printk(KERN_CONT "\n");
5173			printk(KERN_ERR "ERROR: repeated CPUs\n");
5174			break;
5175		}
5176
5177		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5178
5179		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5180
5181		printk(KERN_CONT " %s", str);
5182		if (group->sgp->power != SCHED_POWER_SCALE) {
5183			printk(KERN_CONT " (cpu_power = %d)",
5184				group->sgp->power);
5185		}
5186
5187		group = group->next;
5188	} while (group != sd->groups);
5189	printk(KERN_CONT "\n");
5190
5191	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5192		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5193
5194	if (sd->parent &&
5195	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5196		printk(KERN_ERR "ERROR: parent span is not a superset "
5197			"of domain->span\n");
5198	return 0;
5199}
5200
5201static void sched_domain_debug(struct sched_domain *sd, int cpu)
5202{
5203	int level = 0;
5204
5205	if (!sched_debug_enabled)
5206		return;
5207
5208	if (!sd) {
5209		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5210		return;
5211	}
5212
5213	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5214
5215	for (;;) {
5216		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5217			break;
5218		level++;
5219		sd = sd->parent;
5220		if (!sd)
5221			break;
5222	}
5223}
5224#else /* !CONFIG_SCHED_DEBUG */
5225# define sched_domain_debug(sd, cpu) do { } while (0)
5226static inline bool sched_debug(void)
5227{
5228	return false;
5229}
5230#endif /* CONFIG_SCHED_DEBUG */
5231
5232static int sd_degenerate(struct sched_domain *sd)
5233{
5234	if (cpumask_weight(sched_domain_span(sd)) == 1)
5235		return 1;
5236
5237	/* Following flags need at least 2 groups */
5238	if (sd->flags & (SD_LOAD_BALANCE |
5239			 SD_BALANCE_NEWIDLE |
5240			 SD_BALANCE_FORK |
5241			 SD_BALANCE_EXEC |
5242			 SD_SHARE_CPUPOWER |
5243			 SD_SHARE_PKG_RESOURCES)) {
5244		if (sd->groups != sd->groups->next)
5245			return 0;
5246	}
5247
5248	/* Following flags don't use groups */
5249	if (sd->flags & (SD_WAKE_AFFINE))
5250		return 0;
5251
5252	return 1;
5253}
5254
5255static int
5256sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5257{
5258	unsigned long cflags = sd->flags, pflags = parent->flags;
5259
5260	if (sd_degenerate(parent))
5261		return 1;
5262
5263	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5264		return 0;
5265
5266	/* Flags needing groups don't count if only 1 group in parent */
5267	if (parent->groups == parent->groups->next) {
5268		pflags &= ~(SD_LOAD_BALANCE |
5269				SD_BALANCE_NEWIDLE |
5270				SD_BALANCE_FORK |
5271				SD_BALANCE_EXEC |
5272				SD_SHARE_CPUPOWER |
5273				SD_SHARE_PKG_RESOURCES |
5274				SD_PREFER_SIBLING);
5275		if (nr_node_ids == 1)
5276			pflags &= ~SD_SERIALIZE;
5277	}
5278	if (~cflags & pflags)
5279		return 0;
5280
5281	return 1;
5282}
5283
5284static void free_rootdomain(struct rcu_head *rcu)
5285{
5286	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5287
5288	cpupri_cleanup(&rd->cpupri);
5289	cpudl_cleanup(&rd->cpudl);
5290	free_cpumask_var(rd->dlo_mask);
5291	free_cpumask_var(rd->rto_mask);
5292	free_cpumask_var(rd->online);
5293	free_cpumask_var(rd->span);
5294	kfree(rd);
5295}
5296
5297static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5298{
5299	struct root_domain *old_rd = NULL;
5300	unsigned long flags;
5301
5302	raw_spin_lock_irqsave(&rq->lock, flags);
5303
5304	if (rq->rd) {
5305		old_rd = rq->rd;
5306
5307		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5308			set_rq_offline(rq);
5309
5310		cpumask_clear_cpu(rq->cpu, old_rd->span);
5311
5312		/*
5313		 * If we dont want to free the old_rd yet then
5314		 * set old_rd to NULL to skip the freeing later
5315		 * in this function:
5316		 */
5317		if (!atomic_dec_and_test(&old_rd->refcount))
5318			old_rd = NULL;
5319	}
5320
5321	atomic_inc(&rd->refcount);
5322	rq->rd = rd;
5323
5324	cpumask_set_cpu(rq->cpu, rd->span);
5325	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5326		set_rq_online(rq);
5327
5328	raw_spin_unlock_irqrestore(&rq->lock, flags);
5329
5330	if (old_rd)
5331		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5332}
5333
5334static int init_rootdomain(struct root_domain *rd)
5335{
5336	memset(rd, 0, sizeof(*rd));
5337
5338	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5339		goto out;
5340	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5341		goto free_span;
5342	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5343		goto free_online;
5344	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5345		goto free_dlo_mask;
5346
5347	init_dl_bw(&rd->dl_bw);
5348	if (cpudl_init(&rd->cpudl) != 0)
5349		goto free_dlo_mask;
5350
5351	if (cpupri_init(&rd->cpupri) != 0)
5352		goto free_rto_mask;
5353	return 0;
5354
5355free_rto_mask:
5356	free_cpumask_var(rd->rto_mask);
5357free_dlo_mask:
5358	free_cpumask_var(rd->dlo_mask);
5359free_online:
5360	free_cpumask_var(rd->online);
5361free_span:
5362	free_cpumask_var(rd->span);
5363out:
5364	return -ENOMEM;
5365}
5366
5367/*
5368 * By default the system creates a single root-domain with all cpus as
5369 * members (mimicking the global state we have today).
5370 */
5371struct root_domain def_root_domain;
5372
5373static void init_defrootdomain(void)
5374{
5375	init_rootdomain(&def_root_domain);
5376
5377	atomic_set(&def_root_domain.refcount, 1);
5378}
5379
5380static struct root_domain *alloc_rootdomain(void)
5381{
5382	struct root_domain *rd;
5383
5384	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5385	if (!rd)
5386		return NULL;
5387
5388	if (init_rootdomain(rd) != 0) {
5389		kfree(rd);
5390		return NULL;
5391	}
5392
5393	return rd;
5394}
5395
5396static void free_sched_groups(struct sched_group *sg, int free_sgp)
5397{
5398	struct sched_group *tmp, *first;
5399
5400	if (!sg)
5401		return;
5402
5403	first = sg;
5404	do {
5405		tmp = sg->next;
5406
5407		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5408			kfree(sg->sgp);
5409
5410		kfree(sg);
5411		sg = tmp;
5412	} while (sg != first);
5413}
5414
5415static void free_sched_domain(struct rcu_head *rcu)
5416{
5417	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5418
5419	/*
5420	 * If its an overlapping domain it has private groups, iterate and
5421	 * nuke them all.
5422	 */
5423	if (sd->flags & SD_OVERLAP) {
5424		free_sched_groups(sd->groups, 1);
5425	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5426		kfree(sd->groups->sgp);
5427		kfree(sd->groups);
5428	}
5429	kfree(sd);
5430}
5431
5432static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5433{
5434	call_rcu(&sd->rcu, free_sched_domain);
5435}
5436
5437static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5438{
5439	for (; sd; sd = sd->parent)
5440		destroy_sched_domain(sd, cpu);
5441}
5442
5443/*
5444 * Keep a special pointer to the highest sched_domain that has
5445 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5446 * allows us to avoid some pointer chasing select_idle_sibling().
5447 *
5448 * Also keep a unique ID per domain (we use the first cpu number in
5449 * the cpumask of the domain), this allows us to quickly tell if
5450 * two cpus are in the same cache domain, see cpus_share_cache().
5451 */
5452DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5453DEFINE_PER_CPU(int, sd_llc_size);
5454DEFINE_PER_CPU(int, sd_llc_id);
5455DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5456DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5457DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5458
5459static void update_top_cache_domain(int cpu)
5460{
5461	struct sched_domain *sd;
5462	struct sched_domain *busy_sd = NULL;
5463	int id = cpu;
5464	int size = 1;
5465
5466	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5467	if (sd) {
5468		id = cpumask_first(sched_domain_span(sd));
5469		size = cpumask_weight(sched_domain_span(sd));
5470		busy_sd = sd->parent; /* sd_busy */
5471	}
5472	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5473
5474	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5475	per_cpu(sd_llc_size, cpu) = size;
5476	per_cpu(sd_llc_id, cpu) = id;
5477
5478	sd = lowest_flag_domain(cpu, SD_NUMA);
5479	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5480
5481	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5482	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5483}
5484
5485/*
5486 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5487 * hold the hotplug lock.
5488 */
5489static void
5490cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5491{
5492	struct rq *rq = cpu_rq(cpu);
5493	struct sched_domain *tmp;
5494
5495	/* Remove the sched domains which do not contribute to scheduling. */
5496	for (tmp = sd; tmp; ) {
5497		struct sched_domain *parent = tmp->parent;
5498		if (!parent)
5499			break;
5500
5501		if (sd_parent_degenerate(tmp, parent)) {
5502			tmp->parent = parent->parent;
5503			if (parent->parent)
5504				parent->parent->child = tmp;
5505			/*
5506			 * Transfer SD_PREFER_SIBLING down in case of a
5507			 * degenerate parent; the spans match for this
5508			 * so the property transfers.
5509			 */
5510			if (parent->flags & SD_PREFER_SIBLING)
5511				tmp->flags |= SD_PREFER_SIBLING;
5512			destroy_sched_domain(parent, cpu);
5513		} else
5514			tmp = tmp->parent;
5515	}
5516
5517	if (sd && sd_degenerate(sd)) {
5518		tmp = sd;
5519		sd = sd->parent;
5520		destroy_sched_domain(tmp, cpu);
5521		if (sd)
5522			sd->child = NULL;
5523	}
5524
5525	sched_domain_debug(sd, cpu);
5526
5527	rq_attach_root(rq, rd);
5528	tmp = rq->sd;
5529	rcu_assign_pointer(rq->sd, sd);
5530	destroy_sched_domains(tmp, cpu);
5531
5532	update_top_cache_domain(cpu);
5533}
5534
5535/* cpus with isolated domains */
5536static cpumask_var_t cpu_isolated_map;
5537
5538/* Setup the mask of cpus configured for isolated domains */
5539static int __init isolated_cpu_setup(char *str)
5540{
5541	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5542	cpulist_parse(str, cpu_isolated_map);
5543	return 1;
5544}
5545
5546__setup("isolcpus=", isolated_cpu_setup);
5547
5548static const struct cpumask *cpu_cpu_mask(int cpu)
5549{
5550	return cpumask_of_node(cpu_to_node(cpu));
5551}
5552
5553struct sd_data {
5554	struct sched_domain **__percpu sd;
5555	struct sched_group **__percpu sg;
5556	struct sched_group_power **__percpu sgp;
5557};
5558
5559struct s_data {
5560	struct sched_domain ** __percpu sd;
5561	struct root_domain	*rd;
5562};
5563
5564enum s_alloc {
5565	sa_rootdomain,
5566	sa_sd,
5567	sa_sd_storage,
5568	sa_none,
5569};
5570
5571struct sched_domain_topology_level;
5572
5573typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5574typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5575
5576#define SDTL_OVERLAP	0x01
5577
5578struct sched_domain_topology_level {
5579	sched_domain_init_f init;
5580	sched_domain_mask_f mask;
5581	int		    flags;
5582	int		    numa_level;
5583	struct sd_data      data;
5584};
5585
5586/*
5587 * Build an iteration mask that can exclude certain CPUs from the upwards
5588 * domain traversal.
5589 *
5590 * Asymmetric node setups can result in situations where the domain tree is of
5591 * unequal depth, make sure to skip domains that already cover the entire
5592 * range.
5593 *
5594 * In that case build_sched_domains() will have terminated the iteration early
5595 * and our sibling sd spans will be empty. Domains should always include the
5596 * cpu they're built on, so check that.
5597 *
5598 */
5599static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5600{
5601	const struct cpumask *span = sched_domain_span(sd);
5602	struct sd_data *sdd = sd->private;
5603	struct sched_domain *sibling;
5604	int i;
5605
5606	for_each_cpu(i, span) {
5607		sibling = *per_cpu_ptr(sdd->sd, i);
5608		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5609			continue;
5610
5611		cpumask_set_cpu(i, sched_group_mask(sg));
5612	}
5613}
5614
5615/*
5616 * Return the canonical balance cpu for this group, this is the first cpu
5617 * of this group that's also in the iteration mask.
5618 */
5619int group_balance_cpu(struct sched_group *sg)
5620{
5621	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5622}
5623
5624static int
5625build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5626{
5627	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5628	const struct cpumask *span = sched_domain_span(sd);
5629	struct cpumask *covered = sched_domains_tmpmask;
5630	struct sd_data *sdd = sd->private;
5631	struct sched_domain *child;
5632	int i;
5633
5634	cpumask_clear(covered);
5635
5636	for_each_cpu(i, span) {
5637		struct cpumask *sg_span;
5638
5639		if (cpumask_test_cpu(i, covered))
5640			continue;
5641
5642		child = *per_cpu_ptr(sdd->sd, i);
5643
5644		/* See the comment near build_group_mask(). */
5645		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5646			continue;
5647
5648		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5649				GFP_KERNEL, cpu_to_node(cpu));
5650
5651		if (!sg)
5652			goto fail;
5653
5654		sg_span = sched_group_cpus(sg);
5655		if (child->child) {
5656			child = child->child;
5657			cpumask_copy(sg_span, sched_domain_span(child));
5658		} else
5659			cpumask_set_cpu(i, sg_span);
5660
5661		cpumask_or(covered, covered, sg_span);
5662
5663		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5664		if (atomic_inc_return(&sg->sgp->ref) == 1)
5665			build_group_mask(sd, sg);
5666
5667		/*
5668		 * Initialize sgp->power such that even if we mess up the
5669		 * domains and no possible iteration will get us here, we won't
5670		 * die on a /0 trap.
5671		 */
5672		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5673		sg->sgp->power_orig = sg->sgp->power;
5674
5675		/*
5676		 * Make sure the first group of this domain contains the
5677		 * canonical balance cpu. Otherwise the sched_domain iteration
5678		 * breaks. See update_sg_lb_stats().
5679		 */
5680		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5681		    group_balance_cpu(sg) == cpu)
5682			groups = sg;
5683
5684		if (!first)
5685			first = sg;
5686		if (last)
5687			last->next = sg;
5688		last = sg;
5689		last->next = first;
5690	}
5691	sd->groups = groups;
5692
5693	return 0;
5694
5695fail:
5696	free_sched_groups(first, 0);
5697
5698	return -ENOMEM;
5699}
5700
5701static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5702{
5703	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5704	struct sched_domain *child = sd->child;
5705
5706	if (child)
5707		cpu = cpumask_first(sched_domain_span(child));
5708
5709	if (sg) {
5710		*sg = *per_cpu_ptr(sdd->sg, cpu);
5711		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5712		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5713	}
5714
5715	return cpu;
5716}
5717
5718/*
5719 * build_sched_groups will build a circular linked list of the groups
5720 * covered by the given span, and will set each group's ->cpumask correctly,
5721 * and ->cpu_power to 0.
5722 *
5723 * Assumes the sched_domain tree is fully constructed
5724 */
5725static int
5726build_sched_groups(struct sched_domain *sd, int cpu)
5727{
5728	struct sched_group *first = NULL, *last = NULL;
5729	struct sd_data *sdd = sd->private;
5730	const struct cpumask *span = sched_domain_span(sd);
5731	struct cpumask *covered;
5732	int i;
5733
5734	get_group(cpu, sdd, &sd->groups);
5735	atomic_inc(&sd->groups->ref);
5736
5737	if (cpu != cpumask_first(span))
5738		return 0;
5739
5740	lockdep_assert_held(&sched_domains_mutex);
5741	covered = sched_domains_tmpmask;
5742
5743	cpumask_clear(covered);
5744
5745	for_each_cpu(i, span) {
5746		struct sched_group *sg;
5747		int group, j;
5748
5749		if (cpumask_test_cpu(i, covered))
5750			continue;
5751
5752		group = get_group(i, sdd, &sg);
5753		cpumask_clear(sched_group_cpus(sg));
5754		sg->sgp->power = 0;
5755		cpumask_setall(sched_group_mask(sg));
5756
5757		for_each_cpu(j, span) {
5758			if (get_group(j, sdd, NULL) != group)
5759				continue;
5760
5761			cpumask_set_cpu(j, covered);
5762			cpumask_set_cpu(j, sched_group_cpus(sg));
5763		}
5764
5765		if (!first)
5766			first = sg;
5767		if (last)
5768			last->next = sg;
5769		last = sg;
5770	}
5771	last->next = first;
5772
5773	return 0;
5774}
5775
5776/*
5777 * Initialize sched groups cpu_power.
5778 *
5779 * cpu_power indicates the capacity of sched group, which is used while
5780 * distributing the load between different sched groups in a sched domain.
5781 * Typically cpu_power for all the groups in a sched domain will be same unless
5782 * there are asymmetries in the topology. If there are asymmetries, group
5783 * having more cpu_power will pickup more load compared to the group having
5784 * less cpu_power.
5785 */
5786static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5787{
5788	struct sched_group *sg = sd->groups;
5789
5790	WARN_ON(!sg);
5791
5792	do {
5793		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5794		sg = sg->next;
5795	} while (sg != sd->groups);
5796
5797	if (cpu != group_balance_cpu(sg))
5798		return;
5799
5800	update_group_power(sd, cpu);
5801	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5802}
5803
5804int __weak arch_sd_sibling_asym_packing(void)
5805{
5806       return 0*SD_ASYM_PACKING;
5807}
5808
5809/*
5810 * Initializers for schedule domains
5811 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5812 */
5813
5814#ifdef CONFIG_SCHED_DEBUG
5815# define SD_INIT_NAME(sd, type)		sd->name = #type
5816#else
5817# define SD_INIT_NAME(sd, type)		do { } while (0)
5818#endif
5819
5820#define SD_INIT_FUNC(type)						\
5821static noinline struct sched_domain *					\
5822sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5823{									\
5824	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5825	*sd = SD_##type##_INIT;						\
5826	SD_INIT_NAME(sd, type);						\
5827	sd->private = &tl->data;					\
5828	return sd;							\
5829}
5830
5831SD_INIT_FUNC(CPU)
5832#ifdef CONFIG_SCHED_SMT
5833 SD_INIT_FUNC(SIBLING)
5834#endif
5835#ifdef CONFIG_SCHED_MC
5836 SD_INIT_FUNC(MC)
5837#endif
5838#ifdef CONFIG_SCHED_BOOK
5839 SD_INIT_FUNC(BOOK)
5840#endif
5841
5842static int default_relax_domain_level = -1;
5843int sched_domain_level_max;
5844
5845static int __init setup_relax_domain_level(char *str)
5846{
5847	if (kstrtoint(str, 0, &default_relax_domain_level))
5848		pr_warn("Unable to set relax_domain_level\n");
5849
5850	return 1;
5851}
5852__setup("relax_domain_level=", setup_relax_domain_level);
5853
5854static void set_domain_attribute(struct sched_domain *sd,
5855				 struct sched_domain_attr *attr)
5856{
5857	int request;
5858
5859	if (!attr || attr->relax_domain_level < 0) {
5860		if (default_relax_domain_level < 0)
5861			return;
5862		else
5863			request = default_relax_domain_level;
5864	} else
5865		request = attr->relax_domain_level;
5866	if (request < sd->level) {
5867		/* turn off idle balance on this domain */
5868		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5869	} else {
5870		/* turn on idle balance on this domain */
5871		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5872	}
5873}
5874
5875static void __sdt_free(const struct cpumask *cpu_map);
5876static int __sdt_alloc(const struct cpumask *cpu_map);
5877
5878static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5879				 const struct cpumask *cpu_map)
5880{
5881	switch (what) {
5882	case sa_rootdomain:
5883		if (!atomic_read(&d->rd->refcount))
5884			free_rootdomain(&d->rd->rcu); /* fall through */
5885	case sa_sd:
5886		free_percpu(d->sd); /* fall through */
5887	case sa_sd_storage:
5888		__sdt_free(cpu_map); /* fall through */
5889	case sa_none:
5890		break;
5891	}
5892}
5893
5894static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5895						   const struct cpumask *cpu_map)
5896{
5897	memset(d, 0, sizeof(*d));
5898
5899	if (__sdt_alloc(cpu_map))
5900		return sa_sd_storage;
5901	d->sd = alloc_percpu(struct sched_domain *);
5902	if (!d->sd)
5903		return sa_sd_storage;
5904	d->rd = alloc_rootdomain();
5905	if (!d->rd)
5906		return sa_sd;
5907	return sa_rootdomain;
5908}
5909
5910/*
5911 * NULL the sd_data elements we've used to build the sched_domain and
5912 * sched_group structure so that the subsequent __free_domain_allocs()
5913 * will not free the data we're using.
5914 */
5915static void claim_allocations(int cpu, struct sched_domain *sd)
5916{
5917	struct sd_data *sdd = sd->private;
5918
5919	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5920	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5921
5922	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5923		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5924
5925	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5926		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5927}
5928
5929#ifdef CONFIG_SCHED_SMT
5930static const struct cpumask *cpu_smt_mask(int cpu)
5931{
5932	return topology_thread_cpumask(cpu);
5933}
5934#endif
5935
5936/*
5937 * Topology list, bottom-up.
5938 */
5939static struct sched_domain_topology_level default_topology[] = {
5940#ifdef CONFIG_SCHED_SMT
5941	{ sd_init_SIBLING, cpu_smt_mask, },
5942#endif
5943#ifdef CONFIG_SCHED_MC
5944	{ sd_init_MC, cpu_coregroup_mask, },
5945#endif
5946#ifdef CONFIG_SCHED_BOOK
5947	{ sd_init_BOOK, cpu_book_mask, },
5948#endif
5949	{ sd_init_CPU, cpu_cpu_mask, },
5950	{ NULL, },
5951};
5952
5953static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5954
5955#define for_each_sd_topology(tl)			\
5956	for (tl = sched_domain_topology; tl->init; tl++)
5957
5958#ifdef CONFIG_NUMA
5959
5960static int sched_domains_numa_levels;
5961static int *sched_domains_numa_distance;
5962static struct cpumask ***sched_domains_numa_masks;
5963static int sched_domains_curr_level;
5964
5965static inline int sd_local_flags(int level)
5966{
5967	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5968		return 0;
5969
5970	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5971}
5972
5973static struct sched_domain *
5974sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5975{
5976	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5977	int level = tl->numa_level;
5978	int sd_weight = cpumask_weight(
5979			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5980
5981	*sd = (struct sched_domain){
5982		.min_interval		= sd_weight,
5983		.max_interval		= 2*sd_weight,
5984		.busy_factor		= 32,
5985		.imbalance_pct		= 125,
5986		.cache_nice_tries	= 2,
5987		.busy_idx		= 3,
5988		.idle_idx		= 2,
5989		.newidle_idx		= 0,
5990		.wake_idx		= 0,
5991		.forkexec_idx		= 0,
5992
5993		.flags			= 1*SD_LOAD_BALANCE
5994					| 1*SD_BALANCE_NEWIDLE
5995					| 0*SD_BALANCE_EXEC
5996					| 0*SD_BALANCE_FORK
5997					| 0*SD_BALANCE_WAKE
5998					| 0*SD_WAKE_AFFINE
5999					| 0*SD_SHARE_CPUPOWER
6000					| 0*SD_SHARE_PKG_RESOURCES
6001					| 1*SD_SERIALIZE
6002					| 0*SD_PREFER_SIBLING
6003					| 1*SD_NUMA
6004					| sd_local_flags(level)
6005					,
6006		.last_balance		= jiffies,
6007		.balance_interval	= sd_weight,
6008	};
6009	SD_INIT_NAME(sd, NUMA);
6010	sd->private = &tl->data;
6011
6012	/*
6013	 * Ugly hack to pass state to sd_numa_mask()...
6014	 */
6015	sched_domains_curr_level = tl->numa_level;
6016
6017	return sd;
6018}
6019
6020static const struct cpumask *sd_numa_mask(int cpu)
6021{
6022	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6023}
6024
6025static void sched_numa_warn(const char *str)
6026{
6027	static int done = false;
6028	int i,j;
6029
6030	if (done)
6031		return;
6032
6033	done = true;
6034
6035	printk(KERN_WARNING "ERROR: %s\n\n", str);
6036
6037	for (i = 0; i < nr_node_ids; i++) {
6038		printk(KERN_WARNING "  ");
6039		for (j = 0; j < nr_node_ids; j++)
6040			printk(KERN_CONT "%02d ", node_distance(i,j));
6041		printk(KERN_CONT "\n");
6042	}
6043	printk(KERN_WARNING "\n");
6044}
6045
6046static bool find_numa_distance(int distance)
6047{
6048	int i;
6049
6050	if (distance == node_distance(0, 0))
6051		return true;
6052
6053	for (i = 0; i < sched_domains_numa_levels; i++) {
6054		if (sched_domains_numa_distance[i] == distance)
6055			return true;
6056	}
6057
6058	return false;
6059}
6060
6061static void sched_init_numa(void)
6062{
6063	int next_distance, curr_distance = node_distance(0, 0);
6064	struct sched_domain_topology_level *tl;
6065	int level = 0;
6066	int i, j, k;
6067
6068	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6069	if (!sched_domains_numa_distance)
6070		return;
6071
6072	/*
6073	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6074	 * unique distances in the node_distance() table.
6075	 *
6076	 * Assumes node_distance(0,j) includes all distances in
6077	 * node_distance(i,j) in order to avoid cubic time.
6078	 */
6079	next_distance = curr_distance;
6080	for (i = 0; i < nr_node_ids; i++) {
6081		for (j = 0; j < nr_node_ids; j++) {
6082			for (k = 0; k < nr_node_ids; k++) {
6083				int distance = node_distance(i, k);
6084
6085				if (distance > curr_distance &&
6086				    (distance < next_distance ||
6087				     next_distance == curr_distance))
6088					next_distance = distance;
6089
6090				/*
6091				 * While not a strong assumption it would be nice to know
6092				 * about cases where if node A is connected to B, B is not
6093				 * equally connected to A.
6094				 */
6095				if (sched_debug() && node_distance(k, i) != distance)
6096					sched_numa_warn("Node-distance not symmetric");
6097
6098				if (sched_debug() && i && !find_numa_distance(distance))
6099					sched_numa_warn("Node-0 not representative");
6100			}
6101			if (next_distance != curr_distance) {
6102				sched_domains_numa_distance[level++] = next_distance;
6103				sched_domains_numa_levels = level;
6104				curr_distance = next_distance;
6105			} else break;
6106		}
6107
6108		/*
6109		 * In case of sched_debug() we verify the above assumption.
6110		 */
6111		if (!sched_debug())
6112			break;
6113	}
6114	/*
6115	 * 'level' contains the number of unique distances, excluding the
6116	 * identity distance node_distance(i,i).
6117	 *
6118	 * The sched_domains_numa_distance[] array includes the actual distance
6119	 * numbers.
6120	 */
6121
6122	/*
6123	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6124	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6125	 * the array will contain less then 'level' members. This could be
6126	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6127	 * in other functions.
6128	 *
6129	 * We reset it to 'level' at the end of this function.
6130	 */
6131	sched_domains_numa_levels = 0;
6132
6133	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6134	if (!sched_domains_numa_masks)
6135		return;
6136
6137	/*
6138	 * Now for each level, construct a mask per node which contains all
6139	 * cpus of nodes that are that many hops away from us.
6140	 */
6141	for (i = 0; i < level; i++) {
6142		sched_domains_numa_masks[i] =
6143			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6144		if (!sched_domains_numa_masks[i])
6145			return;
6146
6147		for (j = 0; j < nr_node_ids; j++) {
6148			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6149			if (!mask)
6150				return;
6151
6152			sched_domains_numa_masks[i][j] = mask;
6153
6154			for (k = 0; k < nr_node_ids; k++) {
6155				if (node_distance(j, k) > sched_domains_numa_distance[i])
6156					continue;
6157
6158				cpumask_or(mask, mask, cpumask_of_node(k));
6159			}
6160		}
6161	}
6162
6163	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6164			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6165	if (!tl)
6166		return;
6167
6168	/*
6169	 * Copy the default topology bits..
6170	 */
6171	for (i = 0; default_topology[i].init; i++)
6172		tl[i] = default_topology[i];
6173
6174	/*
6175	 * .. and append 'j' levels of NUMA goodness.
6176	 */
6177	for (j = 0; j < level; i++, j++) {
6178		tl[i] = (struct sched_domain_topology_level){
6179			.init = sd_numa_init,
6180			.mask = sd_numa_mask,
6181			.flags = SDTL_OVERLAP,
6182			.numa_level = j,
6183		};
6184	}
6185
6186	sched_domain_topology = tl;
6187
6188	sched_domains_numa_levels = level;
6189}
6190
6191static void sched_domains_numa_masks_set(int cpu)
6192{
6193	int i, j;
6194	int node = cpu_to_node(cpu);
6195
6196	for (i = 0; i < sched_domains_numa_levels; i++) {
6197		for (j = 0; j < nr_node_ids; j++) {
6198			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6199				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6200		}
6201	}
6202}
6203
6204static void sched_domains_numa_masks_clear(int cpu)
6205{
6206	int i, j;
6207	for (i = 0; i < sched_domains_numa_levels; i++) {
6208		for (j = 0; j < nr_node_ids; j++)
6209			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6210	}
6211}
6212
6213/*
6214 * Update sched_domains_numa_masks[level][node] array when new cpus
6215 * are onlined.
6216 */
6217static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6218					   unsigned long action,
6219					   void *hcpu)
6220{
6221	int cpu = (long)hcpu;
6222
6223	switch (action & ~CPU_TASKS_FROZEN) {
6224	case CPU_ONLINE:
6225		sched_domains_numa_masks_set(cpu);
6226		break;
6227
6228	case CPU_DEAD:
6229		sched_domains_numa_masks_clear(cpu);
6230		break;
6231
6232	default:
6233		return NOTIFY_DONE;
6234	}
6235
6236	return NOTIFY_OK;
6237}
6238#else
6239static inline void sched_init_numa(void)
6240{
6241}
6242
6243static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6244					   unsigned long action,
6245					   void *hcpu)
6246{
6247	return 0;
6248}
6249#endif /* CONFIG_NUMA */
6250
6251static int __sdt_alloc(const struct cpumask *cpu_map)
6252{
6253	struct sched_domain_topology_level *tl;
6254	int j;
6255
6256	for_each_sd_topology(tl) {
6257		struct sd_data *sdd = &tl->data;
6258
6259		sdd->sd = alloc_percpu(struct sched_domain *);
6260		if (!sdd->sd)
6261			return -ENOMEM;
6262
6263		sdd->sg = alloc_percpu(struct sched_group *);
6264		if (!sdd->sg)
6265			return -ENOMEM;
6266
6267		sdd->sgp = alloc_percpu(struct sched_group_power *);
6268		if (!sdd->sgp)
6269			return -ENOMEM;
6270
6271		for_each_cpu(j, cpu_map) {
6272			struct sched_domain *sd;
6273			struct sched_group *sg;
6274			struct sched_group_power *sgp;
6275
6276		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6277					GFP_KERNEL, cpu_to_node(j));
6278			if (!sd)
6279				return -ENOMEM;
6280
6281			*per_cpu_ptr(sdd->sd, j) = sd;
6282
6283			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6284					GFP_KERNEL, cpu_to_node(j));
6285			if (!sg)
6286				return -ENOMEM;
6287
6288			sg->next = sg;
6289
6290			*per_cpu_ptr(sdd->sg, j) = sg;
6291
6292			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6293					GFP_KERNEL, cpu_to_node(j));
6294			if (!sgp)
6295				return -ENOMEM;
6296
6297			*per_cpu_ptr(sdd->sgp, j) = sgp;
6298		}
6299	}
6300
6301	return 0;
6302}
6303
6304static void __sdt_free(const struct cpumask *cpu_map)
6305{
6306	struct sched_domain_topology_level *tl;
6307	int j;
6308
6309	for_each_sd_topology(tl) {
6310		struct sd_data *sdd = &tl->data;
6311
6312		for_each_cpu(j, cpu_map) {
6313			struct sched_domain *sd;
6314
6315			if (sdd->sd) {
6316				sd = *per_cpu_ptr(sdd->sd, j);
6317				if (sd && (sd->flags & SD_OVERLAP))
6318					free_sched_groups(sd->groups, 0);
6319				kfree(*per_cpu_ptr(sdd->sd, j));
6320			}
6321
6322			if (sdd->sg)
6323				kfree(*per_cpu_ptr(sdd->sg, j));
6324			if (sdd->sgp)
6325				kfree(*per_cpu_ptr(sdd->sgp, j));
6326		}
6327		free_percpu(sdd->sd);
6328		sdd->sd = NULL;
6329		free_percpu(sdd->sg);
6330		sdd->sg = NULL;
6331		free_percpu(sdd->sgp);
6332		sdd->sgp = NULL;
6333	}
6334}
6335
6336struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6337		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6338		struct sched_domain *child, int cpu)
6339{
6340	struct sched_domain *sd = tl->init(tl, cpu);
6341	if (!sd)
6342		return child;
6343
6344	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6345	if (child) {
6346		sd->level = child->level + 1;
6347		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6348		child->parent = sd;
6349		sd->child = child;
6350	}
6351	set_domain_attribute(sd, attr);
6352
6353	return sd;
6354}
6355
6356/*
6357 * Build sched domains for a given set of cpus and attach the sched domains
6358 * to the individual cpus
6359 */
6360static int build_sched_domains(const struct cpumask *cpu_map,
6361			       struct sched_domain_attr *attr)
6362{
6363	enum s_alloc alloc_state;
6364	struct sched_domain *sd;
6365	struct s_data d;
6366	int i, ret = -ENOMEM;
6367
6368	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6369	if (alloc_state != sa_rootdomain)
6370		goto error;
6371
6372	/* Set up domains for cpus specified by the cpu_map. */
6373	for_each_cpu(i, cpu_map) {
6374		struct sched_domain_topology_level *tl;
6375
6376		sd = NULL;
6377		for_each_sd_topology(tl) {
6378			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6379			if (tl == sched_domain_topology)
6380				*per_cpu_ptr(d.sd, i) = sd;
6381			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6382				sd->flags |= SD_OVERLAP;
6383			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6384				break;
6385		}
6386	}
6387
6388	/* Build the groups for the domains */
6389	for_each_cpu(i, cpu_map) {
6390		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6391			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6392			if (sd->flags & SD_OVERLAP) {
6393				if (build_overlap_sched_groups(sd, i))
6394					goto error;
6395			} else {
6396				if (build_sched_groups(sd, i))
6397					goto error;
6398			}
6399		}
6400	}
6401
6402	/* Calculate CPU power for physical packages and nodes */
6403	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6404		if (!cpumask_test_cpu(i, cpu_map))
6405			continue;
6406
6407		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6408			claim_allocations(i, sd);
6409			init_sched_groups_power(i, sd);
6410		}
6411	}
6412
6413	/* Attach the domains */
6414	rcu_read_lock();
6415	for_each_cpu(i, cpu_map) {
6416		sd = *per_cpu_ptr(d.sd, i);
6417		cpu_attach_domain(sd, d.rd, i);
6418	}
6419	rcu_read_unlock();
6420
6421	ret = 0;
6422error:
6423	__free_domain_allocs(&d, alloc_state, cpu_map);
6424	return ret;
6425}
6426
6427static cpumask_var_t *doms_cur;	/* current sched domains */
6428static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6429static struct sched_domain_attr *dattr_cur;
6430				/* attribues of custom domains in 'doms_cur' */
6431
6432/*
6433 * Special case: If a kmalloc of a doms_cur partition (array of
6434 * cpumask) fails, then fallback to a single sched domain,
6435 * as determined by the single cpumask fallback_doms.
6436 */
6437static cpumask_var_t fallback_doms;
6438
6439/*
6440 * arch_update_cpu_topology lets virtualized architectures update the
6441 * cpu core maps. It is supposed to return 1 if the topology changed
6442 * or 0 if it stayed the same.
6443 */
6444int __attribute__((weak)) arch_update_cpu_topology(void)
6445{
6446	return 0;
6447}
6448
6449cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6450{
6451	int i;
6452	cpumask_var_t *doms;
6453
6454	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6455	if (!doms)
6456		return NULL;
6457	for (i = 0; i < ndoms; i++) {
6458		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6459			free_sched_domains(doms, i);
6460			return NULL;
6461		}
6462	}
6463	return doms;
6464}
6465
6466void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6467{
6468	unsigned int i;
6469	for (i = 0; i < ndoms; i++)
6470		free_cpumask_var(doms[i]);
6471	kfree(doms);
6472}
6473
6474/*
6475 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6476 * For now this just excludes isolated cpus, but could be used to
6477 * exclude other special cases in the future.
6478 */
6479static int init_sched_domains(const struct cpumask *cpu_map)
6480{
6481	int err;
6482
6483	arch_update_cpu_topology();
6484	ndoms_cur = 1;
6485	doms_cur = alloc_sched_domains(ndoms_cur);
6486	if (!doms_cur)
6487		doms_cur = &fallback_doms;
6488	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6489	err = build_sched_domains(doms_cur[0], NULL);
6490	register_sched_domain_sysctl();
6491
6492	return err;
6493}
6494
6495/*
6496 * Detach sched domains from a group of cpus specified in cpu_map
6497 * These cpus will now be attached to the NULL domain
6498 */
6499static void detach_destroy_domains(const struct cpumask *cpu_map)
6500{
6501	int i;
6502
6503	rcu_read_lock();
6504	for_each_cpu(i, cpu_map)
6505		cpu_attach_domain(NULL, &def_root_domain, i);
6506	rcu_read_unlock();
6507}
6508
6509/* handle null as "default" */
6510static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6511			struct sched_domain_attr *new, int idx_new)
6512{
6513	struct sched_domain_attr tmp;
6514
6515	/* fast path */
6516	if (!new && !cur)
6517		return 1;
6518
6519	tmp = SD_ATTR_INIT;
6520	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6521			new ? (new + idx_new) : &tmp,
6522			sizeof(struct sched_domain_attr));
6523}
6524
6525/*
6526 * Partition sched domains as specified by the 'ndoms_new'
6527 * cpumasks in the array doms_new[] of cpumasks. This compares
6528 * doms_new[] to the current sched domain partitioning, doms_cur[].
6529 * It destroys each deleted domain and builds each new domain.
6530 *
6531 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6532 * The masks don't intersect (don't overlap.) We should setup one
6533 * sched domain for each mask. CPUs not in any of the cpumasks will
6534 * not be load balanced. If the same cpumask appears both in the
6535 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6536 * it as it is.
6537 *
6538 * The passed in 'doms_new' should be allocated using
6539 * alloc_sched_domains.  This routine takes ownership of it and will
6540 * free_sched_domains it when done with it. If the caller failed the
6541 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6542 * and partition_sched_domains() will fallback to the single partition
6543 * 'fallback_doms', it also forces the domains to be rebuilt.
6544 *
6545 * If doms_new == NULL it will be replaced with cpu_online_mask.
6546 * ndoms_new == 0 is a special case for destroying existing domains,
6547 * and it will not create the default domain.
6548 *
6549 * Call with hotplug lock held
6550 */
6551void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6552			     struct sched_domain_attr *dattr_new)
6553{
6554	int i, j, n;
6555	int new_topology;
6556
6557	mutex_lock(&sched_domains_mutex);
6558
6559	/* always unregister in case we don't destroy any domains */
6560	unregister_sched_domain_sysctl();
6561
6562	/* Let architecture update cpu core mappings. */
6563	new_topology = arch_update_cpu_topology();
6564
6565	n = doms_new ? ndoms_new : 0;
6566
6567	/* Destroy deleted domains */
6568	for (i = 0; i < ndoms_cur; i++) {
6569		for (j = 0; j < n && !new_topology; j++) {
6570			if (cpumask_equal(doms_cur[i], doms_new[j])
6571			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6572				goto match1;
6573		}
6574		/* no match - a current sched domain not in new doms_new[] */
6575		detach_destroy_domains(doms_cur[i]);
6576match1:
6577		;
6578	}
6579
6580	n = ndoms_cur;
6581	if (doms_new == NULL) {
6582		n = 0;
6583		doms_new = &fallback_doms;
6584		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6585		WARN_ON_ONCE(dattr_new);
6586	}
6587
6588	/* Build new domains */
6589	for (i = 0; i < ndoms_new; i++) {
6590		for (j = 0; j < n && !new_topology; j++) {
6591			if (cpumask_equal(doms_new[i], doms_cur[j])
6592			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6593				goto match2;
6594		}
6595		/* no match - add a new doms_new */
6596		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6597match2:
6598		;
6599	}
6600
6601	/* Remember the new sched domains */
6602	if (doms_cur != &fallback_doms)
6603		free_sched_domains(doms_cur, ndoms_cur);
6604	kfree(dattr_cur);	/* kfree(NULL) is safe */
6605	doms_cur = doms_new;
6606	dattr_cur = dattr_new;
6607	ndoms_cur = ndoms_new;
6608
6609	register_sched_domain_sysctl();
6610
6611	mutex_unlock(&sched_domains_mutex);
6612}
6613
6614static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6615
6616/*
6617 * Update cpusets according to cpu_active mask.  If cpusets are
6618 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6619 * around partition_sched_domains().
6620 *
6621 * If we come here as part of a suspend/resume, don't touch cpusets because we
6622 * want to restore it back to its original state upon resume anyway.
6623 */
6624static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6625			     void *hcpu)
6626{
6627	switch (action) {
6628	case CPU_ONLINE_FROZEN:
6629	case CPU_DOWN_FAILED_FROZEN:
6630
6631		/*
6632		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6633		 * resume sequence. As long as this is not the last online
6634		 * operation in the resume sequence, just build a single sched
6635		 * domain, ignoring cpusets.
6636		 */
6637		num_cpus_frozen--;
6638		if (likely(num_cpus_frozen)) {
6639			partition_sched_domains(1, NULL, NULL);
6640			break;
6641		}
6642
6643		/*
6644		 * This is the last CPU online operation. So fall through and
6645		 * restore the original sched domains by considering the
6646		 * cpuset configurations.
6647		 */
6648
6649	case CPU_ONLINE:
6650	case CPU_DOWN_FAILED:
6651		cpuset_update_active_cpus(true);
6652		break;
6653	default:
6654		return NOTIFY_DONE;
6655	}
6656	return NOTIFY_OK;
6657}
6658
6659static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6660			       void *hcpu)
6661{
6662	switch (action) {
6663	case CPU_DOWN_PREPARE:
6664		cpuset_update_active_cpus(false);
6665		break;
6666	case CPU_DOWN_PREPARE_FROZEN:
6667		num_cpus_frozen++;
6668		partition_sched_domains(1, NULL, NULL);
6669		break;
6670	default:
6671		return NOTIFY_DONE;
6672	}
6673	return NOTIFY_OK;
6674}
6675
6676void __init sched_init_smp(void)
6677{
6678	cpumask_var_t non_isolated_cpus;
6679
6680	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6681	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6682
6683	sched_init_numa();
6684
6685	/*
6686	 * There's no userspace yet to cause hotplug operations; hence all the
6687	 * cpu masks are stable and all blatant races in the below code cannot
6688	 * happen.
6689	 */
6690	mutex_lock(&sched_domains_mutex);
6691	init_sched_domains(cpu_active_mask);
6692	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6693	if (cpumask_empty(non_isolated_cpus))
6694		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6695	mutex_unlock(&sched_domains_mutex);
6696
6697	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6698	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6699	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6700
6701	init_hrtick();
6702
6703	/* Move init over to a non-isolated CPU */
6704	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6705		BUG();
6706	sched_init_granularity();
6707	free_cpumask_var(non_isolated_cpus);
6708
6709	init_sched_rt_class();
6710	init_sched_dl_class();
6711}
6712#else
6713void __init sched_init_smp(void)
6714{
6715	sched_init_granularity();
6716}
6717#endif /* CONFIG_SMP */
6718
6719const_debug unsigned int sysctl_timer_migration = 1;
6720
6721int in_sched_functions(unsigned long addr)
6722{
6723	return in_lock_functions(addr) ||
6724		(addr >= (unsigned long)__sched_text_start
6725		&& addr < (unsigned long)__sched_text_end);
6726}
6727
6728#ifdef CONFIG_CGROUP_SCHED
6729/*
6730 * Default task group.
6731 * Every task in system belongs to this group at bootup.
6732 */
6733struct task_group root_task_group;
6734LIST_HEAD(task_groups);
6735#endif
6736
6737DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6738
6739void __init sched_init(void)
6740{
6741	int i, j;
6742	unsigned long alloc_size = 0, ptr;
6743
6744#ifdef CONFIG_FAIR_GROUP_SCHED
6745	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6746#endif
6747#ifdef CONFIG_RT_GROUP_SCHED
6748	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6749#endif
6750#ifdef CONFIG_CPUMASK_OFFSTACK
6751	alloc_size += num_possible_cpus() * cpumask_size();
6752#endif
6753	if (alloc_size) {
6754		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6755
6756#ifdef CONFIG_FAIR_GROUP_SCHED
6757		root_task_group.se = (struct sched_entity **)ptr;
6758		ptr += nr_cpu_ids * sizeof(void **);
6759
6760		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6761		ptr += nr_cpu_ids * sizeof(void **);
6762
6763#endif /* CONFIG_FAIR_GROUP_SCHED */
6764#ifdef CONFIG_RT_GROUP_SCHED
6765		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6766		ptr += nr_cpu_ids * sizeof(void **);
6767
6768		root_task_group.rt_rq = (struct rt_rq **)ptr;
6769		ptr += nr_cpu_ids * sizeof(void **);
6770
6771#endif /* CONFIG_RT_GROUP_SCHED */
6772#ifdef CONFIG_CPUMASK_OFFSTACK
6773		for_each_possible_cpu(i) {
6774			per_cpu(load_balance_mask, i) = (void *)ptr;
6775			ptr += cpumask_size();
6776		}
6777#endif /* CONFIG_CPUMASK_OFFSTACK */
6778	}
6779
6780	init_rt_bandwidth(&def_rt_bandwidth,
6781			global_rt_period(), global_rt_runtime());
6782	init_dl_bandwidth(&def_dl_bandwidth,
6783			global_rt_period(), global_rt_runtime());
6784
6785#ifdef CONFIG_SMP
6786	init_defrootdomain();
6787#endif
6788
6789#ifdef CONFIG_RT_GROUP_SCHED
6790	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6791			global_rt_period(), global_rt_runtime());
6792#endif /* CONFIG_RT_GROUP_SCHED */
6793
6794#ifdef CONFIG_CGROUP_SCHED
6795	list_add(&root_task_group.list, &task_groups);
6796	INIT_LIST_HEAD(&root_task_group.children);
6797	INIT_LIST_HEAD(&root_task_group.siblings);
6798	autogroup_init(&init_task);
6799
6800#endif /* CONFIG_CGROUP_SCHED */
6801
6802	for_each_possible_cpu(i) {
6803		struct rq *rq;
6804
6805		rq = cpu_rq(i);
6806		raw_spin_lock_init(&rq->lock);
6807		rq->nr_running = 0;
6808		rq->calc_load_active = 0;
6809		rq->calc_load_update = jiffies + LOAD_FREQ;
6810		init_cfs_rq(&rq->cfs);
6811		init_rt_rq(&rq->rt, rq);
6812		init_dl_rq(&rq->dl, rq);
6813#ifdef CONFIG_FAIR_GROUP_SCHED
6814		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6815		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6816		/*
6817		 * How much cpu bandwidth does root_task_group get?
6818		 *
6819		 * In case of task-groups formed thr' the cgroup filesystem, it
6820		 * gets 100% of the cpu resources in the system. This overall
6821		 * system cpu resource is divided among the tasks of
6822		 * root_task_group and its child task-groups in a fair manner,
6823		 * based on each entity's (task or task-group's) weight
6824		 * (se->load.weight).
6825		 *
6826		 * In other words, if root_task_group has 10 tasks of weight
6827		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6828		 * then A0's share of the cpu resource is:
6829		 *
6830		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6831		 *
6832		 * We achieve this by letting root_task_group's tasks sit
6833		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6834		 */
6835		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6836		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6837#endif /* CONFIG_FAIR_GROUP_SCHED */
6838
6839		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6840#ifdef CONFIG_RT_GROUP_SCHED
6841		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6842		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6843#endif
6844
6845		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6846			rq->cpu_load[j] = 0;
6847
6848		rq->last_load_update_tick = jiffies;
6849
6850#ifdef CONFIG_SMP
6851		rq->sd = NULL;
6852		rq->rd = NULL;
6853		rq->cpu_power = SCHED_POWER_SCALE;
6854		rq->post_schedule = 0;
6855		rq->active_balance = 0;
6856		rq->next_balance = jiffies;
6857		rq->push_cpu = 0;
6858		rq->cpu = i;
6859		rq->online = 0;
6860		rq->idle_stamp = 0;
6861		rq->avg_idle = 2*sysctl_sched_migration_cost;
6862		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6863
6864		INIT_LIST_HEAD(&rq->cfs_tasks);
6865
6866		rq_attach_root(rq, &def_root_domain);
6867#ifdef CONFIG_NO_HZ_COMMON
6868		rq->nohz_flags = 0;
6869#endif
6870#ifdef CONFIG_NO_HZ_FULL
6871		rq->last_sched_tick = 0;
6872#endif
6873#endif
6874		init_rq_hrtick(rq);
6875		atomic_set(&rq->nr_iowait, 0);
6876	}
6877
6878	set_load_weight(&init_task);
6879
6880#ifdef CONFIG_PREEMPT_NOTIFIERS
6881	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6882#endif
6883
6884	/*
6885	 * The boot idle thread does lazy MMU switching as well:
6886	 */
6887	atomic_inc(&init_mm.mm_count);
6888	enter_lazy_tlb(&init_mm, current);
6889
6890	/*
6891	 * Make us the idle thread. Technically, schedule() should not be
6892	 * called from this thread, however somewhere below it might be,
6893	 * but because we are the idle thread, we just pick up running again
6894	 * when this runqueue becomes "idle".
6895	 */
6896	init_idle(current, smp_processor_id());
6897
6898	calc_load_update = jiffies + LOAD_FREQ;
6899
6900	/*
6901	 * During early bootup we pretend to be a normal task:
6902	 */
6903	current->sched_class = &fair_sched_class;
6904
6905#ifdef CONFIG_SMP
6906	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6907	/* May be allocated at isolcpus cmdline parse time */
6908	if (cpu_isolated_map == NULL)
6909		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6910	idle_thread_set_boot_cpu();
6911#endif
6912	init_sched_fair_class();
6913
6914	scheduler_running = 1;
6915}
6916
6917#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6918static inline int preempt_count_equals(int preempt_offset)
6919{
6920	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6921
6922	return (nested == preempt_offset);
6923}
6924
6925void __might_sleep(const char *file, int line, int preempt_offset)
6926{
6927	static unsigned long prev_jiffy;	/* ratelimiting */
6928
6929	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6930	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6931	     !is_idle_task(current)) ||
6932	    system_state != SYSTEM_RUNNING || oops_in_progress)
6933		return;
6934	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6935		return;
6936	prev_jiffy = jiffies;
6937
6938	printk(KERN_ERR
6939		"BUG: sleeping function called from invalid context at %s:%d\n",
6940			file, line);
6941	printk(KERN_ERR
6942		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6943			in_atomic(), irqs_disabled(),
6944			current->pid, current->comm);
6945
6946	debug_show_held_locks(current);
6947	if (irqs_disabled())
6948		print_irqtrace_events(current);
6949	dump_stack();
6950}
6951EXPORT_SYMBOL(__might_sleep);
6952#endif
6953
6954#ifdef CONFIG_MAGIC_SYSRQ
6955static void normalize_task(struct rq *rq, struct task_struct *p)
6956{
6957	const struct sched_class *prev_class = p->sched_class;
6958	struct sched_attr attr = {
6959		.sched_policy = SCHED_NORMAL,
6960	};
6961	int old_prio = p->prio;
6962	int on_rq;
6963
6964	on_rq = p->on_rq;
6965	if (on_rq)
6966		dequeue_task(rq, p, 0);
6967	__setscheduler(rq, p, &attr);
6968	if (on_rq) {
6969		enqueue_task(rq, p, 0);
6970		resched_task(rq->curr);
6971	}
6972
6973	check_class_changed(rq, p, prev_class, old_prio);
6974}
6975
6976void normalize_rt_tasks(void)
6977{
6978	struct task_struct *g, *p;
6979	unsigned long flags;
6980	struct rq *rq;
6981
6982	read_lock_irqsave(&tasklist_lock, flags);
6983	do_each_thread(g, p) {
6984		/*
6985		 * Only normalize user tasks:
6986		 */
6987		if (!p->mm)
6988			continue;
6989
6990		p->se.exec_start		= 0;
6991#ifdef CONFIG_SCHEDSTATS
6992		p->se.statistics.wait_start	= 0;
6993		p->se.statistics.sleep_start	= 0;
6994		p->se.statistics.block_start	= 0;
6995#endif
6996
6997		if (!dl_task(p) && !rt_task(p)) {
6998			/*
6999			 * Renice negative nice level userspace
7000			 * tasks back to 0:
7001			 */
7002			if (task_nice(p) < 0 && p->mm)
7003				set_user_nice(p, 0);
7004			continue;
7005		}
7006
7007		raw_spin_lock(&p->pi_lock);
7008		rq = __task_rq_lock(p);
7009
7010		normalize_task(rq, p);
7011
7012		__task_rq_unlock(rq);
7013		raw_spin_unlock(&p->pi_lock);
7014	} while_each_thread(g, p);
7015
7016	read_unlock_irqrestore(&tasklist_lock, flags);
7017}
7018
7019#endif /* CONFIG_MAGIC_SYSRQ */
7020
7021#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7022/*
7023 * These functions are only useful for the IA64 MCA handling, or kdb.
7024 *
7025 * They can only be called when the whole system has been
7026 * stopped - every CPU needs to be quiescent, and no scheduling
7027 * activity can take place. Using them for anything else would
7028 * be a serious bug, and as a result, they aren't even visible
7029 * under any other configuration.
7030 */
7031
7032/**
7033 * curr_task - return the current task for a given cpu.
7034 * @cpu: the processor in question.
7035 *
7036 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7037 *
7038 * Return: The current task for @cpu.
7039 */
7040struct task_struct *curr_task(int cpu)
7041{
7042	return cpu_curr(cpu);
7043}
7044
7045#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7046
7047#ifdef CONFIG_IA64
7048/**
7049 * set_curr_task - set the current task for a given cpu.
7050 * @cpu: the processor in question.
7051 * @p: the task pointer to set.
7052 *
7053 * Description: This function must only be used when non-maskable interrupts
7054 * are serviced on a separate stack. It allows the architecture to switch the
7055 * notion of the current task on a cpu in a non-blocking manner. This function
7056 * must be called with all CPU's synchronized, and interrupts disabled, the
7057 * and caller must save the original value of the current task (see
7058 * curr_task() above) and restore that value before reenabling interrupts and
7059 * re-starting the system.
7060 *
7061 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7062 */
7063void set_curr_task(int cpu, struct task_struct *p)
7064{
7065	cpu_curr(cpu) = p;
7066}
7067
7068#endif
7069
7070#ifdef CONFIG_CGROUP_SCHED
7071/* task_group_lock serializes the addition/removal of task groups */
7072static DEFINE_SPINLOCK(task_group_lock);
7073
7074static void free_sched_group(struct task_group *tg)
7075{
7076	free_fair_sched_group(tg);
7077	free_rt_sched_group(tg);
7078	autogroup_free(tg);
7079	kfree(tg);
7080}
7081
7082/* allocate runqueue etc for a new task group */
7083struct task_group *sched_create_group(struct task_group *parent)
7084{
7085	struct task_group *tg;
7086
7087	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7088	if (!tg)
7089		return ERR_PTR(-ENOMEM);
7090
7091	if (!alloc_fair_sched_group(tg, parent))
7092		goto err;
7093
7094	if (!alloc_rt_sched_group(tg, parent))
7095		goto err;
7096
7097	return tg;
7098
7099err:
7100	free_sched_group(tg);
7101	return ERR_PTR(-ENOMEM);
7102}
7103
7104void sched_online_group(struct task_group *tg, struct task_group *parent)
7105{
7106	unsigned long flags;
7107
7108	spin_lock_irqsave(&task_group_lock, flags);
7109	list_add_rcu(&tg->list, &task_groups);
7110
7111	WARN_ON(!parent); /* root should already exist */
7112
7113	tg->parent = parent;
7114	INIT_LIST_HEAD(&tg->children);
7115	list_add_rcu(&tg->siblings, &parent->children);
7116	spin_unlock_irqrestore(&task_group_lock, flags);
7117}
7118
7119/* rcu callback to free various structures associated with a task group */
7120static void free_sched_group_rcu(struct rcu_head *rhp)
7121{
7122	/* now it should be safe to free those cfs_rqs */
7123	free_sched_group(container_of(rhp, struct task_group, rcu));
7124}
7125
7126/* Destroy runqueue etc associated with a task group */
7127void sched_destroy_group(struct task_group *tg)
7128{
7129	/* wait for possible concurrent references to cfs_rqs complete */
7130	call_rcu(&tg->rcu, free_sched_group_rcu);
7131}
7132
7133void sched_offline_group(struct task_group *tg)
7134{
7135	unsigned long flags;
7136	int i;
7137
7138	/* end participation in shares distribution */
7139	for_each_possible_cpu(i)
7140		unregister_fair_sched_group(tg, i);
7141
7142	spin_lock_irqsave(&task_group_lock, flags);
7143	list_del_rcu(&tg->list);
7144	list_del_rcu(&tg->siblings);
7145	spin_unlock_irqrestore(&task_group_lock, flags);
7146}
7147
7148/* change task's runqueue when it moves between groups.
7149 *	The caller of this function should have put the task in its new group
7150 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7151 *	reflect its new group.
7152 */
7153void sched_move_task(struct task_struct *tsk)
7154{
7155	struct task_group *tg;
7156	int on_rq, running;
7157	unsigned long flags;
7158	struct rq *rq;
7159
7160	rq = task_rq_lock(tsk, &flags);
7161
7162	running = task_current(rq, tsk);
7163	on_rq = tsk->on_rq;
7164
7165	if (on_rq)
7166		dequeue_task(rq, tsk, 0);
7167	if (unlikely(running))
7168		tsk->sched_class->put_prev_task(rq, tsk);
7169
7170	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7171				lockdep_is_held(&tsk->sighand->siglock)),
7172			  struct task_group, css);
7173	tg = autogroup_task_group(tsk, tg);
7174	tsk->sched_task_group = tg;
7175
7176#ifdef CONFIG_FAIR_GROUP_SCHED
7177	if (tsk->sched_class->task_move_group)
7178		tsk->sched_class->task_move_group(tsk, on_rq);
7179	else
7180#endif
7181		set_task_rq(tsk, task_cpu(tsk));
7182
7183	if (unlikely(running))
7184		tsk->sched_class->set_curr_task(rq);
7185	if (on_rq)
7186		enqueue_task(rq, tsk, 0);
7187
7188	task_rq_unlock(rq, tsk, &flags);
7189}
7190#endif /* CONFIG_CGROUP_SCHED */
7191
7192#ifdef CONFIG_RT_GROUP_SCHED
7193/*
7194 * Ensure that the real time constraints are schedulable.
7195 */
7196static DEFINE_MUTEX(rt_constraints_mutex);
7197
7198/* Must be called with tasklist_lock held */
7199static inline int tg_has_rt_tasks(struct task_group *tg)
7200{
7201	struct task_struct *g, *p;
7202
7203	do_each_thread(g, p) {
7204		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7205			return 1;
7206	} while_each_thread(g, p);
7207
7208	return 0;
7209}
7210
7211struct rt_schedulable_data {
7212	struct task_group *tg;
7213	u64 rt_period;
7214	u64 rt_runtime;
7215};
7216
7217static int tg_rt_schedulable(struct task_group *tg, void *data)
7218{
7219	struct rt_schedulable_data *d = data;
7220	struct task_group *child;
7221	unsigned long total, sum = 0;
7222	u64 period, runtime;
7223
7224	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7225	runtime = tg->rt_bandwidth.rt_runtime;
7226
7227	if (tg == d->tg) {
7228		period = d->rt_period;
7229		runtime = d->rt_runtime;
7230	}
7231
7232	/*
7233	 * Cannot have more runtime than the period.
7234	 */
7235	if (runtime > period && runtime != RUNTIME_INF)
7236		return -EINVAL;
7237
7238	/*
7239	 * Ensure we don't starve existing RT tasks.
7240	 */
7241	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7242		return -EBUSY;
7243
7244	total = to_ratio(period, runtime);
7245
7246	/*
7247	 * Nobody can have more than the global setting allows.
7248	 */
7249	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7250		return -EINVAL;
7251
7252	/*
7253	 * The sum of our children's runtime should not exceed our own.
7254	 */
7255	list_for_each_entry_rcu(child, &tg->children, siblings) {
7256		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7257		runtime = child->rt_bandwidth.rt_runtime;
7258
7259		if (child == d->tg) {
7260			period = d->rt_period;
7261			runtime = d->rt_runtime;
7262		}
7263
7264		sum += to_ratio(period, runtime);
7265	}
7266
7267	if (sum > total)
7268		return -EINVAL;
7269
7270	return 0;
7271}
7272
7273static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7274{
7275	int ret;
7276
7277	struct rt_schedulable_data data = {
7278		.tg = tg,
7279		.rt_period = period,
7280		.rt_runtime = runtime,
7281	};
7282
7283	rcu_read_lock();
7284	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7285	rcu_read_unlock();
7286
7287	return ret;
7288}
7289
7290static int tg_set_rt_bandwidth(struct task_group *tg,
7291		u64 rt_period, u64 rt_runtime)
7292{
7293	int i, err = 0;
7294
7295	mutex_lock(&rt_constraints_mutex);
7296	read_lock(&tasklist_lock);
7297	err = __rt_schedulable(tg, rt_period, rt_runtime);
7298	if (err)
7299		goto unlock;
7300
7301	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7302	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7303	tg->rt_bandwidth.rt_runtime = rt_runtime;
7304
7305	for_each_possible_cpu(i) {
7306		struct rt_rq *rt_rq = tg->rt_rq[i];
7307
7308		raw_spin_lock(&rt_rq->rt_runtime_lock);
7309		rt_rq->rt_runtime = rt_runtime;
7310		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7311	}
7312	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7313unlock:
7314	read_unlock(&tasklist_lock);
7315	mutex_unlock(&rt_constraints_mutex);
7316
7317	return err;
7318}
7319
7320static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7321{
7322	u64 rt_runtime, rt_period;
7323
7324	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7325	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7326	if (rt_runtime_us < 0)
7327		rt_runtime = RUNTIME_INF;
7328
7329	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7330}
7331
7332static long sched_group_rt_runtime(struct task_group *tg)
7333{
7334	u64 rt_runtime_us;
7335
7336	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7337		return -1;
7338
7339	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7340	do_div(rt_runtime_us, NSEC_PER_USEC);
7341	return rt_runtime_us;
7342}
7343
7344static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7345{
7346	u64 rt_runtime, rt_period;
7347
7348	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7349	rt_runtime = tg->rt_bandwidth.rt_runtime;
7350
7351	if (rt_period == 0)
7352		return -EINVAL;
7353
7354	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7355}
7356
7357static long sched_group_rt_period(struct task_group *tg)
7358{
7359	u64 rt_period_us;
7360
7361	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7362	do_div(rt_period_us, NSEC_PER_USEC);
7363	return rt_period_us;
7364}
7365#endif /* CONFIG_RT_GROUP_SCHED */
7366
7367#ifdef CONFIG_RT_GROUP_SCHED
7368static int sched_rt_global_constraints(void)
7369{
7370	int ret = 0;
7371
7372	mutex_lock(&rt_constraints_mutex);
7373	read_lock(&tasklist_lock);
7374	ret = __rt_schedulable(NULL, 0, 0);
7375	read_unlock(&tasklist_lock);
7376	mutex_unlock(&rt_constraints_mutex);
7377
7378	return ret;
7379}
7380
7381static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7382{
7383	/* Don't accept realtime tasks when there is no way for them to run */
7384	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7385		return 0;
7386
7387	return 1;
7388}
7389
7390#else /* !CONFIG_RT_GROUP_SCHED */
7391static int sched_rt_global_constraints(void)
7392{
7393	unsigned long flags;
7394	int i, ret = 0;
7395
7396	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7397	for_each_possible_cpu(i) {
7398		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7399
7400		raw_spin_lock(&rt_rq->rt_runtime_lock);
7401		rt_rq->rt_runtime = global_rt_runtime();
7402		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7403	}
7404	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7405
7406	return ret;
7407}
7408#endif /* CONFIG_RT_GROUP_SCHED */
7409
7410static int sched_dl_global_constraints(void)
7411{
7412	u64 runtime = global_rt_runtime();
7413	u64 period = global_rt_period();
7414	u64 new_bw = to_ratio(period, runtime);
7415	int cpu, ret = 0;
7416
7417	/*
7418	 * Here we want to check the bandwidth not being set to some
7419	 * value smaller than the currently allocated bandwidth in
7420	 * any of the root_domains.
7421	 *
7422	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7423	 * cycling on root_domains... Discussion on different/better
7424	 * solutions is welcome!
7425	 */
7426	for_each_possible_cpu(cpu) {
7427		struct dl_bw *dl_b = dl_bw_of(cpu);
7428
7429		raw_spin_lock(&dl_b->lock);
7430		if (new_bw < dl_b->total_bw)
7431			ret = -EBUSY;
7432		raw_spin_unlock(&dl_b->lock);
7433
7434		if (ret)
7435			break;
7436	}
7437
7438	return ret;
7439}
7440
7441static void sched_dl_do_global(void)
7442{
7443	u64 new_bw = -1;
7444	int cpu;
7445
7446	def_dl_bandwidth.dl_period = global_rt_period();
7447	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7448
7449	if (global_rt_runtime() != RUNTIME_INF)
7450		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7451
7452	/*
7453	 * FIXME: As above...
7454	 */
7455	for_each_possible_cpu(cpu) {
7456		struct dl_bw *dl_b = dl_bw_of(cpu);
7457
7458		raw_spin_lock(&dl_b->lock);
7459		dl_b->bw = new_bw;
7460		raw_spin_unlock(&dl_b->lock);
7461	}
7462}
7463
7464static int sched_rt_global_validate(void)
7465{
7466	if (sysctl_sched_rt_period <= 0)
7467		return -EINVAL;
7468
7469	if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7470		return -EINVAL;
7471
7472	return 0;
7473}
7474
7475static void sched_rt_do_global(void)
7476{
7477	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7478	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7479}
7480
7481int sched_rt_handler(struct ctl_table *table, int write,
7482		void __user *buffer, size_t *lenp,
7483		loff_t *ppos)
7484{
7485	int old_period, old_runtime;
7486	static DEFINE_MUTEX(mutex);
7487	int ret;
7488
7489	mutex_lock(&mutex);
7490	old_period = sysctl_sched_rt_period;
7491	old_runtime = sysctl_sched_rt_runtime;
7492
7493	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7494
7495	if (!ret && write) {
7496		ret = sched_rt_global_validate();
7497		if (ret)
7498			goto undo;
7499
7500		ret = sched_rt_global_constraints();
7501		if (ret)
7502			goto undo;
7503
7504		ret = sched_dl_global_constraints();
7505		if (ret)
7506			goto undo;
7507
7508		sched_rt_do_global();
7509		sched_dl_do_global();
7510	}
7511	if (0) {
7512undo:
7513		sysctl_sched_rt_period = old_period;
7514		sysctl_sched_rt_runtime = old_runtime;
7515	}
7516	mutex_unlock(&mutex);
7517
7518	return ret;
7519}
7520
7521int sched_rr_handler(struct ctl_table *table, int write,
7522		void __user *buffer, size_t *lenp,
7523		loff_t *ppos)
7524{
7525	int ret;
7526	static DEFINE_MUTEX(mutex);
7527
7528	mutex_lock(&mutex);
7529	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7530	/* make sure that internally we keep jiffies */
7531	/* also, writing zero resets timeslice to default */
7532	if (!ret && write) {
7533		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7534			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7535	}
7536	mutex_unlock(&mutex);
7537	return ret;
7538}
7539
7540#ifdef CONFIG_CGROUP_SCHED
7541
7542static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7543{
7544	return css ? container_of(css, struct task_group, css) : NULL;
7545}
7546
7547static struct cgroup_subsys_state *
7548cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7549{
7550	struct task_group *parent = css_tg(parent_css);
7551	struct task_group *tg;
7552
7553	if (!parent) {
7554		/* This is early initialization for the top cgroup */
7555		return &root_task_group.css;
7556	}
7557
7558	tg = sched_create_group(parent);
7559	if (IS_ERR(tg))
7560		return ERR_PTR(-ENOMEM);
7561
7562	return &tg->css;
7563}
7564
7565static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7566{
7567	struct task_group *tg = css_tg(css);
7568	struct task_group *parent = css_tg(css_parent(css));
7569
7570	if (parent)
7571		sched_online_group(tg, parent);
7572	return 0;
7573}
7574
7575static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7576{
7577	struct task_group *tg = css_tg(css);
7578
7579	sched_destroy_group(tg);
7580}
7581
7582static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7583{
7584	struct task_group *tg = css_tg(css);
7585
7586	sched_offline_group(tg);
7587}
7588
7589static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7590				 struct cgroup_taskset *tset)
7591{
7592	struct task_struct *task;
7593
7594	cgroup_taskset_for_each(task, css, tset) {
7595#ifdef CONFIG_RT_GROUP_SCHED
7596		if (!sched_rt_can_attach(css_tg(css), task))
7597			return -EINVAL;
7598#else
7599		/* We don't support RT-tasks being in separate groups */
7600		if (task->sched_class != &fair_sched_class)
7601			return -EINVAL;
7602#endif
7603	}
7604	return 0;
7605}
7606
7607static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7608			      struct cgroup_taskset *tset)
7609{
7610	struct task_struct *task;
7611
7612	cgroup_taskset_for_each(task, css, tset)
7613		sched_move_task(task);
7614}
7615
7616static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7617			    struct cgroup_subsys_state *old_css,
7618			    struct task_struct *task)
7619{
7620	/*
7621	 * cgroup_exit() is called in the copy_process() failure path.
7622	 * Ignore this case since the task hasn't ran yet, this avoids
7623	 * trying to poke a half freed task state from generic code.
7624	 */
7625	if (!(task->flags & PF_EXITING))
7626		return;
7627
7628	sched_move_task(task);
7629}
7630
7631#ifdef CONFIG_FAIR_GROUP_SCHED
7632static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7633				struct cftype *cftype, u64 shareval)
7634{
7635	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7636}
7637
7638static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7639			       struct cftype *cft)
7640{
7641	struct task_group *tg = css_tg(css);
7642
7643	return (u64) scale_load_down(tg->shares);
7644}
7645
7646#ifdef CONFIG_CFS_BANDWIDTH
7647static DEFINE_MUTEX(cfs_constraints_mutex);
7648
7649const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7650const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7651
7652static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7653
7654static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7655{
7656	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7657	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7658
7659	if (tg == &root_task_group)
7660		return -EINVAL;
7661
7662	/*
7663	 * Ensure we have at some amount of bandwidth every period.  This is
7664	 * to prevent reaching a state of large arrears when throttled via
7665	 * entity_tick() resulting in prolonged exit starvation.
7666	 */
7667	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7668		return -EINVAL;
7669
7670	/*
7671	 * Likewise, bound things on the otherside by preventing insane quota
7672	 * periods.  This also allows us to normalize in computing quota
7673	 * feasibility.
7674	 */
7675	if (period > max_cfs_quota_period)
7676		return -EINVAL;
7677
7678	mutex_lock(&cfs_constraints_mutex);
7679	ret = __cfs_schedulable(tg, period, quota);
7680	if (ret)
7681		goto out_unlock;
7682
7683	runtime_enabled = quota != RUNTIME_INF;
7684	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7685	/*
7686	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7687	 * before making related changes, and on->off must occur afterwards
7688	 */
7689	if (runtime_enabled && !runtime_was_enabled)
7690		cfs_bandwidth_usage_inc();
7691	raw_spin_lock_irq(&cfs_b->lock);
7692	cfs_b->period = ns_to_ktime(period);
7693	cfs_b->quota = quota;
7694
7695	__refill_cfs_bandwidth_runtime(cfs_b);
7696	/* restart the period timer (if active) to handle new period expiry */
7697	if (runtime_enabled && cfs_b->timer_active) {
7698		/* force a reprogram */
7699		cfs_b->timer_active = 0;
7700		__start_cfs_bandwidth(cfs_b);
7701	}
7702	raw_spin_unlock_irq(&cfs_b->lock);
7703
7704	for_each_possible_cpu(i) {
7705		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7706		struct rq *rq = cfs_rq->rq;
7707
7708		raw_spin_lock_irq(&rq->lock);
7709		cfs_rq->runtime_enabled = runtime_enabled;
7710		cfs_rq->runtime_remaining = 0;
7711
7712		if (cfs_rq->throttled)
7713			unthrottle_cfs_rq(cfs_rq);
7714		raw_spin_unlock_irq(&rq->lock);
7715	}
7716	if (runtime_was_enabled && !runtime_enabled)
7717		cfs_bandwidth_usage_dec();
7718out_unlock:
7719	mutex_unlock(&cfs_constraints_mutex);
7720
7721	return ret;
7722}
7723
7724int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7725{
7726	u64 quota, period;
7727
7728	period = ktime_to_ns(tg->cfs_bandwidth.period);
7729	if (cfs_quota_us < 0)
7730		quota = RUNTIME_INF;
7731	else
7732		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7733
7734	return tg_set_cfs_bandwidth(tg, period, quota);
7735}
7736
7737long tg_get_cfs_quota(struct task_group *tg)
7738{
7739	u64 quota_us;
7740
7741	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7742		return -1;
7743
7744	quota_us = tg->cfs_bandwidth.quota;
7745	do_div(quota_us, NSEC_PER_USEC);
7746
7747	return quota_us;
7748}
7749
7750int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7751{
7752	u64 quota, period;
7753
7754	period = (u64)cfs_period_us * NSEC_PER_USEC;
7755	quota = tg->cfs_bandwidth.quota;
7756
7757	return tg_set_cfs_bandwidth(tg, period, quota);
7758}
7759
7760long tg_get_cfs_period(struct task_group *tg)
7761{
7762	u64 cfs_period_us;
7763
7764	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7765	do_div(cfs_period_us, NSEC_PER_USEC);
7766
7767	return cfs_period_us;
7768}
7769
7770static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7771				  struct cftype *cft)
7772{
7773	return tg_get_cfs_quota(css_tg(css));
7774}
7775
7776static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7777				   struct cftype *cftype, s64 cfs_quota_us)
7778{
7779	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7780}
7781
7782static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7783				   struct cftype *cft)
7784{
7785	return tg_get_cfs_period(css_tg(css));
7786}
7787
7788static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7789				    struct cftype *cftype, u64 cfs_period_us)
7790{
7791	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7792}
7793
7794struct cfs_schedulable_data {
7795	struct task_group *tg;
7796	u64 period, quota;
7797};
7798
7799/*
7800 * normalize group quota/period to be quota/max_period
7801 * note: units are usecs
7802 */
7803static u64 normalize_cfs_quota(struct task_group *tg,
7804			       struct cfs_schedulable_data *d)
7805{
7806	u64 quota, period;
7807
7808	if (tg == d->tg) {
7809		period = d->period;
7810		quota = d->quota;
7811	} else {
7812		period = tg_get_cfs_period(tg);
7813		quota = tg_get_cfs_quota(tg);
7814	}
7815
7816	/* note: these should typically be equivalent */
7817	if (quota == RUNTIME_INF || quota == -1)
7818		return RUNTIME_INF;
7819
7820	return to_ratio(period, quota);
7821}
7822
7823static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7824{
7825	struct cfs_schedulable_data *d = data;
7826	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7827	s64 quota = 0, parent_quota = -1;
7828
7829	if (!tg->parent) {
7830		quota = RUNTIME_INF;
7831	} else {
7832		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7833
7834		quota = normalize_cfs_quota(tg, d);
7835		parent_quota = parent_b->hierarchal_quota;
7836
7837		/*
7838		 * ensure max(child_quota) <= parent_quota, inherit when no
7839		 * limit is set
7840		 */
7841		if (quota == RUNTIME_INF)
7842			quota = parent_quota;
7843		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7844			return -EINVAL;
7845	}
7846	cfs_b->hierarchal_quota = quota;
7847
7848	return 0;
7849}
7850
7851static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7852{
7853	int ret;
7854	struct cfs_schedulable_data data = {
7855		.tg = tg,
7856		.period = period,
7857		.quota = quota,
7858	};
7859
7860	if (quota != RUNTIME_INF) {
7861		do_div(data.period, NSEC_PER_USEC);
7862		do_div(data.quota, NSEC_PER_USEC);
7863	}
7864
7865	rcu_read_lock();
7866	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7867	rcu_read_unlock();
7868
7869	return ret;
7870}
7871
7872static int cpu_stats_show(struct seq_file *sf, void *v)
7873{
7874	struct task_group *tg = css_tg(seq_css(sf));
7875	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7876
7877	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7878	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7879	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7880
7881	return 0;
7882}
7883#endif /* CONFIG_CFS_BANDWIDTH */
7884#endif /* CONFIG_FAIR_GROUP_SCHED */
7885
7886#ifdef CONFIG_RT_GROUP_SCHED
7887static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7888				struct cftype *cft, s64 val)
7889{
7890	return sched_group_set_rt_runtime(css_tg(css), val);
7891}
7892
7893static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7894			       struct cftype *cft)
7895{
7896	return sched_group_rt_runtime(css_tg(css));
7897}
7898
7899static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7900				    struct cftype *cftype, u64 rt_period_us)
7901{
7902	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7903}
7904
7905static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7906				   struct cftype *cft)
7907{
7908	return sched_group_rt_period(css_tg(css));
7909}
7910#endif /* CONFIG_RT_GROUP_SCHED */
7911
7912static struct cftype cpu_files[] = {
7913#ifdef CONFIG_FAIR_GROUP_SCHED
7914	{
7915		.name = "shares",
7916		.read_u64 = cpu_shares_read_u64,
7917		.write_u64 = cpu_shares_write_u64,
7918	},
7919#endif
7920#ifdef CONFIG_CFS_BANDWIDTH
7921	{
7922		.name = "cfs_quota_us",
7923		.read_s64 = cpu_cfs_quota_read_s64,
7924		.write_s64 = cpu_cfs_quota_write_s64,
7925	},
7926	{
7927		.name = "cfs_period_us",
7928		.read_u64 = cpu_cfs_period_read_u64,
7929		.write_u64 = cpu_cfs_period_write_u64,
7930	},
7931	{
7932		.name = "stat",
7933		.seq_show = cpu_stats_show,
7934	},
7935#endif
7936#ifdef CONFIG_RT_GROUP_SCHED
7937	{
7938		.name = "rt_runtime_us",
7939		.read_s64 = cpu_rt_runtime_read,
7940		.write_s64 = cpu_rt_runtime_write,
7941	},
7942	{
7943		.name = "rt_period_us",
7944		.read_u64 = cpu_rt_period_read_uint,
7945		.write_u64 = cpu_rt_period_write_uint,
7946	},
7947#endif
7948	{ }	/* terminate */
7949};
7950
7951struct cgroup_subsys cpu_cgroup_subsys = {
7952	.name		= "cpu",
7953	.css_alloc	= cpu_cgroup_css_alloc,
7954	.css_free	= cpu_cgroup_css_free,
7955	.css_online	= cpu_cgroup_css_online,
7956	.css_offline	= cpu_cgroup_css_offline,
7957	.can_attach	= cpu_cgroup_can_attach,
7958	.attach		= cpu_cgroup_attach,
7959	.exit		= cpu_cgroup_exit,
7960	.subsys_id	= cpu_cgroup_subsys_id,
7961	.base_cftypes	= cpu_files,
7962	.early_init	= 1,
7963};
7964
7965#endif	/* CONFIG_CGROUP_SCHED */
7966
7967void dump_cpu_task(int cpu)
7968{
7969	pr_info("Task dump for CPU %d:\n", cpu);
7970	sched_show_task(cpu_curr(cpu));
7971}
7972