core.c revision de212f18e92c952533d57c5510d2790199c75734
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * Maximum bandwidth available for all -deadline tasks and groups
301 * (if group scheduling is configured) on each CPU.
302 *
303 * default: 5%
304 */
305unsigned int sysctl_sched_dl_period = 1000000;
306int sysctl_sched_dl_runtime = 50000;
307
308
309
310/*
311 * __task_rq_lock - lock the rq @p resides on.
312 */
313static inline struct rq *__task_rq_lock(struct task_struct *p)
314	__acquires(rq->lock)
315{
316	struct rq *rq;
317
318	lockdep_assert_held(&p->pi_lock);
319
320	for (;;) {
321		rq = task_rq(p);
322		raw_spin_lock(&rq->lock);
323		if (likely(rq == task_rq(p)))
324			return rq;
325		raw_spin_unlock(&rq->lock);
326	}
327}
328
329/*
330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331 */
332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333	__acquires(p->pi_lock)
334	__acquires(rq->lock)
335{
336	struct rq *rq;
337
338	for (;;) {
339		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340		rq = task_rq(p);
341		raw_spin_lock(&rq->lock);
342		if (likely(rq == task_rq(p)))
343			return rq;
344		raw_spin_unlock(&rq->lock);
345		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346	}
347}
348
349static void __task_rq_unlock(struct rq *rq)
350	__releases(rq->lock)
351{
352	raw_spin_unlock(&rq->lock);
353}
354
355static inline void
356task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
357	__releases(rq->lock)
358	__releases(p->pi_lock)
359{
360	raw_spin_unlock(&rq->lock);
361	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
362}
363
364/*
365 * this_rq_lock - lock this runqueue and disable interrupts.
366 */
367static struct rq *this_rq_lock(void)
368	__acquires(rq->lock)
369{
370	struct rq *rq;
371
372	local_irq_disable();
373	rq = this_rq();
374	raw_spin_lock(&rq->lock);
375
376	return rq;
377}
378
379#ifdef CONFIG_SCHED_HRTICK
380/*
381 * Use HR-timers to deliver accurate preemption points.
382 */
383
384static void hrtick_clear(struct rq *rq)
385{
386	if (hrtimer_active(&rq->hrtick_timer))
387		hrtimer_cancel(&rq->hrtick_timer);
388}
389
390/*
391 * High-resolution timer tick.
392 * Runs from hardirq context with interrupts disabled.
393 */
394static enum hrtimer_restart hrtick(struct hrtimer *timer)
395{
396	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
397
398	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399
400	raw_spin_lock(&rq->lock);
401	update_rq_clock(rq);
402	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
403	raw_spin_unlock(&rq->lock);
404
405	return HRTIMER_NORESTART;
406}
407
408#ifdef CONFIG_SMP
409
410static int __hrtick_restart(struct rq *rq)
411{
412	struct hrtimer *timer = &rq->hrtick_timer;
413	ktime_t time = hrtimer_get_softexpires(timer);
414
415	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
416}
417
418/*
419 * called from hardirq (IPI) context
420 */
421static void __hrtick_start(void *arg)
422{
423	struct rq *rq = arg;
424
425	raw_spin_lock(&rq->lock);
426	__hrtick_restart(rq);
427	rq->hrtick_csd_pending = 0;
428	raw_spin_unlock(&rq->lock);
429}
430
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
436void hrtick_start(struct rq *rq, u64 delay)
437{
438	struct hrtimer *timer = &rq->hrtick_timer;
439	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
440
441	hrtimer_set_expires(timer, time);
442
443	if (rq == this_rq()) {
444		__hrtick_restart(rq);
445	} else if (!rq->hrtick_csd_pending) {
446		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
447		rq->hrtick_csd_pending = 1;
448	}
449}
450
451static int
452hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
453{
454	int cpu = (int)(long)hcpu;
455
456	switch (action) {
457	case CPU_UP_CANCELED:
458	case CPU_UP_CANCELED_FROZEN:
459	case CPU_DOWN_PREPARE:
460	case CPU_DOWN_PREPARE_FROZEN:
461	case CPU_DEAD:
462	case CPU_DEAD_FROZEN:
463		hrtick_clear(cpu_rq(cpu));
464		return NOTIFY_OK;
465	}
466
467	return NOTIFY_DONE;
468}
469
470static __init void init_hrtick(void)
471{
472	hotcpu_notifier(hotplug_hrtick, 0);
473}
474#else
475/*
476 * Called to set the hrtick timer state.
477 *
478 * called with rq->lock held and irqs disabled
479 */
480void hrtick_start(struct rq *rq, u64 delay)
481{
482	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
483			HRTIMER_MODE_REL_PINNED, 0);
484}
485
486static inline void init_hrtick(void)
487{
488}
489#endif /* CONFIG_SMP */
490
491static void init_rq_hrtick(struct rq *rq)
492{
493#ifdef CONFIG_SMP
494	rq->hrtick_csd_pending = 0;
495
496	rq->hrtick_csd.flags = 0;
497	rq->hrtick_csd.func = __hrtick_start;
498	rq->hrtick_csd.info = rq;
499#endif
500
501	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
502	rq->hrtick_timer.function = hrtick;
503}
504#else	/* CONFIG_SCHED_HRTICK */
505static inline void hrtick_clear(struct rq *rq)
506{
507}
508
509static inline void init_rq_hrtick(struct rq *rq)
510{
511}
512
513static inline void init_hrtick(void)
514{
515}
516#endif	/* CONFIG_SCHED_HRTICK */
517
518/*
519 * resched_task - mark a task 'to be rescheduled now'.
520 *
521 * On UP this means the setting of the need_resched flag, on SMP it
522 * might also involve a cross-CPU call to trigger the scheduler on
523 * the target CPU.
524 */
525void resched_task(struct task_struct *p)
526{
527	int cpu;
528
529	lockdep_assert_held(&task_rq(p)->lock);
530
531	if (test_tsk_need_resched(p))
532		return;
533
534	set_tsk_need_resched(p);
535
536	cpu = task_cpu(p);
537	if (cpu == smp_processor_id()) {
538		set_preempt_need_resched();
539		return;
540	}
541
542	/* NEED_RESCHED must be visible before we test polling */
543	smp_mb();
544	if (!tsk_is_polling(p))
545		smp_send_reschedule(cpu);
546}
547
548void resched_cpu(int cpu)
549{
550	struct rq *rq = cpu_rq(cpu);
551	unsigned long flags;
552
553	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
554		return;
555	resched_task(cpu_curr(cpu));
556	raw_spin_unlock_irqrestore(&rq->lock, flags);
557}
558
559#ifdef CONFIG_SMP
560#ifdef CONFIG_NO_HZ_COMMON
561/*
562 * In the semi idle case, use the nearest busy cpu for migrating timers
563 * from an idle cpu.  This is good for power-savings.
564 *
565 * We don't do similar optimization for completely idle system, as
566 * selecting an idle cpu will add more delays to the timers than intended
567 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
568 */
569int get_nohz_timer_target(void)
570{
571	int cpu = smp_processor_id();
572	int i;
573	struct sched_domain *sd;
574
575	rcu_read_lock();
576	for_each_domain(cpu, sd) {
577		for_each_cpu(i, sched_domain_span(sd)) {
578			if (!idle_cpu(i)) {
579				cpu = i;
580				goto unlock;
581			}
582		}
583	}
584unlock:
585	rcu_read_unlock();
586	return cpu;
587}
588/*
589 * When add_timer_on() enqueues a timer into the timer wheel of an
590 * idle CPU then this timer might expire before the next timer event
591 * which is scheduled to wake up that CPU. In case of a completely
592 * idle system the next event might even be infinite time into the
593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594 * leaves the inner idle loop so the newly added timer is taken into
595 * account when the CPU goes back to idle and evaluates the timer
596 * wheel for the next timer event.
597 */
598static void wake_up_idle_cpu(int cpu)
599{
600	struct rq *rq = cpu_rq(cpu);
601
602	if (cpu == smp_processor_id())
603		return;
604
605	/*
606	 * This is safe, as this function is called with the timer
607	 * wheel base lock of (cpu) held. When the CPU is on the way
608	 * to idle and has not yet set rq->curr to idle then it will
609	 * be serialized on the timer wheel base lock and take the new
610	 * timer into account automatically.
611	 */
612	if (rq->curr != rq->idle)
613		return;
614
615	/*
616	 * We can set TIF_RESCHED on the idle task of the other CPU
617	 * lockless. The worst case is that the other CPU runs the
618	 * idle task through an additional NOOP schedule()
619	 */
620	set_tsk_need_resched(rq->idle);
621
622	/* NEED_RESCHED must be visible before we test polling */
623	smp_mb();
624	if (!tsk_is_polling(rq->idle))
625		smp_send_reschedule(cpu);
626}
627
628static bool wake_up_full_nohz_cpu(int cpu)
629{
630	if (tick_nohz_full_cpu(cpu)) {
631		if (cpu != smp_processor_id() ||
632		    tick_nohz_tick_stopped())
633			smp_send_reschedule(cpu);
634		return true;
635	}
636
637	return false;
638}
639
640void wake_up_nohz_cpu(int cpu)
641{
642	if (!wake_up_full_nohz_cpu(cpu))
643		wake_up_idle_cpu(cpu);
644}
645
646static inline bool got_nohz_idle_kick(void)
647{
648	int cpu = smp_processor_id();
649
650	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
651		return false;
652
653	if (idle_cpu(cpu) && !need_resched())
654		return true;
655
656	/*
657	 * We can't run Idle Load Balance on this CPU for this time so we
658	 * cancel it and clear NOHZ_BALANCE_KICK
659	 */
660	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
661	return false;
662}
663
664#else /* CONFIG_NO_HZ_COMMON */
665
666static inline bool got_nohz_idle_kick(void)
667{
668	return false;
669}
670
671#endif /* CONFIG_NO_HZ_COMMON */
672
673#ifdef CONFIG_NO_HZ_FULL
674bool sched_can_stop_tick(void)
675{
676       struct rq *rq;
677
678       rq = this_rq();
679
680       /* Make sure rq->nr_running update is visible after the IPI */
681       smp_rmb();
682
683       /* More than one running task need preemption */
684       if (rq->nr_running > 1)
685               return false;
686
687       return true;
688}
689#endif /* CONFIG_NO_HZ_FULL */
690
691void sched_avg_update(struct rq *rq)
692{
693	s64 period = sched_avg_period();
694
695	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
696		/*
697		 * Inline assembly required to prevent the compiler
698		 * optimising this loop into a divmod call.
699		 * See __iter_div_u64_rem() for another example of this.
700		 */
701		asm("" : "+rm" (rq->age_stamp));
702		rq->age_stamp += period;
703		rq->rt_avg /= 2;
704	}
705}
706
707#endif /* CONFIG_SMP */
708
709#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
710			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
711/*
712 * Iterate task_group tree rooted at *from, calling @down when first entering a
713 * node and @up when leaving it for the final time.
714 *
715 * Caller must hold rcu_lock or sufficient equivalent.
716 */
717int walk_tg_tree_from(struct task_group *from,
718			     tg_visitor down, tg_visitor up, void *data)
719{
720	struct task_group *parent, *child;
721	int ret;
722
723	parent = from;
724
725down:
726	ret = (*down)(parent, data);
727	if (ret)
728		goto out;
729	list_for_each_entry_rcu(child, &parent->children, siblings) {
730		parent = child;
731		goto down;
732
733up:
734		continue;
735	}
736	ret = (*up)(parent, data);
737	if (ret || parent == from)
738		goto out;
739
740	child = parent;
741	parent = parent->parent;
742	if (parent)
743		goto up;
744out:
745	return ret;
746}
747
748int tg_nop(struct task_group *tg, void *data)
749{
750	return 0;
751}
752#endif
753
754static void set_load_weight(struct task_struct *p)
755{
756	int prio = p->static_prio - MAX_RT_PRIO;
757	struct load_weight *load = &p->se.load;
758
759	/*
760	 * SCHED_IDLE tasks get minimal weight:
761	 */
762	if (p->policy == SCHED_IDLE) {
763		load->weight = scale_load(WEIGHT_IDLEPRIO);
764		load->inv_weight = WMULT_IDLEPRIO;
765		return;
766	}
767
768	load->weight = scale_load(prio_to_weight[prio]);
769	load->inv_weight = prio_to_wmult[prio];
770}
771
772static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774	update_rq_clock(rq);
775	sched_info_queued(rq, p);
776	p->sched_class->enqueue_task(rq, p, flags);
777}
778
779static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
780{
781	update_rq_clock(rq);
782	sched_info_dequeued(rq, p);
783	p->sched_class->dequeue_task(rq, p, flags);
784}
785
786void activate_task(struct rq *rq, struct task_struct *p, int flags)
787{
788	if (task_contributes_to_load(p))
789		rq->nr_uninterruptible--;
790
791	enqueue_task(rq, p, flags);
792}
793
794void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
795{
796	if (task_contributes_to_load(p))
797		rq->nr_uninterruptible++;
798
799	dequeue_task(rq, p, flags);
800}
801
802static void update_rq_clock_task(struct rq *rq, s64 delta)
803{
804/*
805 * In theory, the compile should just see 0 here, and optimize out the call
806 * to sched_rt_avg_update. But I don't trust it...
807 */
808#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
809	s64 steal = 0, irq_delta = 0;
810#endif
811#ifdef CONFIG_IRQ_TIME_ACCOUNTING
812	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
813
814	/*
815	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
816	 * this case when a previous update_rq_clock() happened inside a
817	 * {soft,}irq region.
818	 *
819	 * When this happens, we stop ->clock_task and only update the
820	 * prev_irq_time stamp to account for the part that fit, so that a next
821	 * update will consume the rest. This ensures ->clock_task is
822	 * monotonic.
823	 *
824	 * It does however cause some slight miss-attribution of {soft,}irq
825	 * time, a more accurate solution would be to update the irq_time using
826	 * the current rq->clock timestamp, except that would require using
827	 * atomic ops.
828	 */
829	if (irq_delta > delta)
830		irq_delta = delta;
831
832	rq->prev_irq_time += irq_delta;
833	delta -= irq_delta;
834#endif
835#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
836	if (static_key_false((&paravirt_steal_rq_enabled))) {
837		u64 st;
838
839		steal = paravirt_steal_clock(cpu_of(rq));
840		steal -= rq->prev_steal_time_rq;
841
842		if (unlikely(steal > delta))
843			steal = delta;
844
845		st = steal_ticks(steal);
846		steal = st * TICK_NSEC;
847
848		rq->prev_steal_time_rq += steal;
849
850		delta -= steal;
851	}
852#endif
853
854	rq->clock_task += delta;
855
856#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
857	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
858		sched_rt_avg_update(rq, irq_delta + steal);
859#endif
860}
861
862void sched_set_stop_task(int cpu, struct task_struct *stop)
863{
864	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
865	struct task_struct *old_stop = cpu_rq(cpu)->stop;
866
867	if (stop) {
868		/*
869		 * Make it appear like a SCHED_FIFO task, its something
870		 * userspace knows about and won't get confused about.
871		 *
872		 * Also, it will make PI more or less work without too
873		 * much confusion -- but then, stop work should not
874		 * rely on PI working anyway.
875		 */
876		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
877
878		stop->sched_class = &stop_sched_class;
879	}
880
881	cpu_rq(cpu)->stop = stop;
882
883	if (old_stop) {
884		/*
885		 * Reset it back to a normal scheduling class so that
886		 * it can die in pieces.
887		 */
888		old_stop->sched_class = &rt_sched_class;
889	}
890}
891
892/*
893 * __normal_prio - return the priority that is based on the static prio
894 */
895static inline int __normal_prio(struct task_struct *p)
896{
897	return p->static_prio;
898}
899
900/*
901 * Calculate the expected normal priority: i.e. priority
902 * without taking RT-inheritance into account. Might be
903 * boosted by interactivity modifiers. Changes upon fork,
904 * setprio syscalls, and whenever the interactivity
905 * estimator recalculates.
906 */
907static inline int normal_prio(struct task_struct *p)
908{
909	int prio;
910
911	if (task_has_dl_policy(p))
912		prio = MAX_DL_PRIO-1;
913	else if (task_has_rt_policy(p))
914		prio = MAX_RT_PRIO-1 - p->rt_priority;
915	else
916		prio = __normal_prio(p);
917	return prio;
918}
919
920/*
921 * Calculate the current priority, i.e. the priority
922 * taken into account by the scheduler. This value might
923 * be boosted by RT tasks, or might be boosted by
924 * interactivity modifiers. Will be RT if the task got
925 * RT-boosted. If not then it returns p->normal_prio.
926 */
927static int effective_prio(struct task_struct *p)
928{
929	p->normal_prio = normal_prio(p);
930	/*
931	 * If we are RT tasks or we were boosted to RT priority,
932	 * keep the priority unchanged. Otherwise, update priority
933	 * to the normal priority:
934	 */
935	if (!rt_prio(p->prio))
936		return p->normal_prio;
937	return p->prio;
938}
939
940/**
941 * task_curr - is this task currently executing on a CPU?
942 * @p: the task in question.
943 *
944 * Return: 1 if the task is currently executing. 0 otherwise.
945 */
946inline int task_curr(const struct task_struct *p)
947{
948	return cpu_curr(task_cpu(p)) == p;
949}
950
951static inline void check_class_changed(struct rq *rq, struct task_struct *p,
952				       const struct sched_class *prev_class,
953				       int oldprio)
954{
955	if (prev_class != p->sched_class) {
956		if (prev_class->switched_from)
957			prev_class->switched_from(rq, p);
958		p->sched_class->switched_to(rq, p);
959	} else if (oldprio != p->prio || dl_task(p))
960		p->sched_class->prio_changed(rq, p, oldprio);
961}
962
963void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
964{
965	const struct sched_class *class;
966
967	if (p->sched_class == rq->curr->sched_class) {
968		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
969	} else {
970		for_each_class(class) {
971			if (class == rq->curr->sched_class)
972				break;
973			if (class == p->sched_class) {
974				resched_task(rq->curr);
975				break;
976			}
977		}
978	}
979
980	/*
981	 * A queue event has occurred, and we're going to schedule.  In
982	 * this case, we can save a useless back to back clock update.
983	 */
984	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
985		rq->skip_clock_update = 1;
986}
987
988#ifdef CONFIG_SMP
989void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
990{
991#ifdef CONFIG_SCHED_DEBUG
992	/*
993	 * We should never call set_task_cpu() on a blocked task,
994	 * ttwu() will sort out the placement.
995	 */
996	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
997			!(task_preempt_count(p) & PREEMPT_ACTIVE));
998
999#ifdef CONFIG_LOCKDEP
1000	/*
1001	 * The caller should hold either p->pi_lock or rq->lock, when changing
1002	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1003	 *
1004	 * sched_move_task() holds both and thus holding either pins the cgroup,
1005	 * see task_group().
1006	 *
1007	 * Furthermore, all task_rq users should acquire both locks, see
1008	 * task_rq_lock().
1009	 */
1010	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1011				      lockdep_is_held(&task_rq(p)->lock)));
1012#endif
1013#endif
1014
1015	trace_sched_migrate_task(p, new_cpu);
1016
1017	if (task_cpu(p) != new_cpu) {
1018		if (p->sched_class->migrate_task_rq)
1019			p->sched_class->migrate_task_rq(p, new_cpu);
1020		p->se.nr_migrations++;
1021		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1022	}
1023
1024	__set_task_cpu(p, new_cpu);
1025}
1026
1027static void __migrate_swap_task(struct task_struct *p, int cpu)
1028{
1029	if (p->on_rq) {
1030		struct rq *src_rq, *dst_rq;
1031
1032		src_rq = task_rq(p);
1033		dst_rq = cpu_rq(cpu);
1034
1035		deactivate_task(src_rq, p, 0);
1036		set_task_cpu(p, cpu);
1037		activate_task(dst_rq, p, 0);
1038		check_preempt_curr(dst_rq, p, 0);
1039	} else {
1040		/*
1041		 * Task isn't running anymore; make it appear like we migrated
1042		 * it before it went to sleep. This means on wakeup we make the
1043		 * previous cpu our targer instead of where it really is.
1044		 */
1045		p->wake_cpu = cpu;
1046	}
1047}
1048
1049struct migration_swap_arg {
1050	struct task_struct *src_task, *dst_task;
1051	int src_cpu, dst_cpu;
1052};
1053
1054static int migrate_swap_stop(void *data)
1055{
1056	struct migration_swap_arg *arg = data;
1057	struct rq *src_rq, *dst_rq;
1058	int ret = -EAGAIN;
1059
1060	src_rq = cpu_rq(arg->src_cpu);
1061	dst_rq = cpu_rq(arg->dst_cpu);
1062
1063	double_raw_lock(&arg->src_task->pi_lock,
1064			&arg->dst_task->pi_lock);
1065	double_rq_lock(src_rq, dst_rq);
1066	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1067		goto unlock;
1068
1069	if (task_cpu(arg->src_task) != arg->src_cpu)
1070		goto unlock;
1071
1072	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1073		goto unlock;
1074
1075	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1076		goto unlock;
1077
1078	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1079	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1080
1081	ret = 0;
1082
1083unlock:
1084	double_rq_unlock(src_rq, dst_rq);
1085	raw_spin_unlock(&arg->dst_task->pi_lock);
1086	raw_spin_unlock(&arg->src_task->pi_lock);
1087
1088	return ret;
1089}
1090
1091/*
1092 * Cross migrate two tasks
1093 */
1094int migrate_swap(struct task_struct *cur, struct task_struct *p)
1095{
1096	struct migration_swap_arg arg;
1097	int ret = -EINVAL;
1098
1099	arg = (struct migration_swap_arg){
1100		.src_task = cur,
1101		.src_cpu = task_cpu(cur),
1102		.dst_task = p,
1103		.dst_cpu = task_cpu(p),
1104	};
1105
1106	if (arg.src_cpu == arg.dst_cpu)
1107		goto out;
1108
1109	/*
1110	 * These three tests are all lockless; this is OK since all of them
1111	 * will be re-checked with proper locks held further down the line.
1112	 */
1113	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1114		goto out;
1115
1116	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1117		goto out;
1118
1119	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1120		goto out;
1121
1122	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1123
1124out:
1125	return ret;
1126}
1127
1128struct migration_arg {
1129	struct task_struct *task;
1130	int dest_cpu;
1131};
1132
1133static int migration_cpu_stop(void *data);
1134
1135/*
1136 * wait_task_inactive - wait for a thread to unschedule.
1137 *
1138 * If @match_state is nonzero, it's the @p->state value just checked and
1139 * not expected to change.  If it changes, i.e. @p might have woken up,
1140 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1141 * we return a positive number (its total switch count).  If a second call
1142 * a short while later returns the same number, the caller can be sure that
1143 * @p has remained unscheduled the whole time.
1144 *
1145 * The caller must ensure that the task *will* unschedule sometime soon,
1146 * else this function might spin for a *long* time. This function can't
1147 * be called with interrupts off, or it may introduce deadlock with
1148 * smp_call_function() if an IPI is sent by the same process we are
1149 * waiting to become inactive.
1150 */
1151unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1152{
1153	unsigned long flags;
1154	int running, on_rq;
1155	unsigned long ncsw;
1156	struct rq *rq;
1157
1158	for (;;) {
1159		/*
1160		 * We do the initial early heuristics without holding
1161		 * any task-queue locks at all. We'll only try to get
1162		 * the runqueue lock when things look like they will
1163		 * work out!
1164		 */
1165		rq = task_rq(p);
1166
1167		/*
1168		 * If the task is actively running on another CPU
1169		 * still, just relax and busy-wait without holding
1170		 * any locks.
1171		 *
1172		 * NOTE! Since we don't hold any locks, it's not
1173		 * even sure that "rq" stays as the right runqueue!
1174		 * But we don't care, since "task_running()" will
1175		 * return false if the runqueue has changed and p
1176		 * is actually now running somewhere else!
1177		 */
1178		while (task_running(rq, p)) {
1179			if (match_state && unlikely(p->state != match_state))
1180				return 0;
1181			cpu_relax();
1182		}
1183
1184		/*
1185		 * Ok, time to look more closely! We need the rq
1186		 * lock now, to be *sure*. If we're wrong, we'll
1187		 * just go back and repeat.
1188		 */
1189		rq = task_rq_lock(p, &flags);
1190		trace_sched_wait_task(p);
1191		running = task_running(rq, p);
1192		on_rq = p->on_rq;
1193		ncsw = 0;
1194		if (!match_state || p->state == match_state)
1195			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1196		task_rq_unlock(rq, p, &flags);
1197
1198		/*
1199		 * If it changed from the expected state, bail out now.
1200		 */
1201		if (unlikely(!ncsw))
1202			break;
1203
1204		/*
1205		 * Was it really running after all now that we
1206		 * checked with the proper locks actually held?
1207		 *
1208		 * Oops. Go back and try again..
1209		 */
1210		if (unlikely(running)) {
1211			cpu_relax();
1212			continue;
1213		}
1214
1215		/*
1216		 * It's not enough that it's not actively running,
1217		 * it must be off the runqueue _entirely_, and not
1218		 * preempted!
1219		 *
1220		 * So if it was still runnable (but just not actively
1221		 * running right now), it's preempted, and we should
1222		 * yield - it could be a while.
1223		 */
1224		if (unlikely(on_rq)) {
1225			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1226
1227			set_current_state(TASK_UNINTERRUPTIBLE);
1228			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1229			continue;
1230		}
1231
1232		/*
1233		 * Ahh, all good. It wasn't running, and it wasn't
1234		 * runnable, which means that it will never become
1235		 * running in the future either. We're all done!
1236		 */
1237		break;
1238	}
1239
1240	return ncsw;
1241}
1242
1243/***
1244 * kick_process - kick a running thread to enter/exit the kernel
1245 * @p: the to-be-kicked thread
1246 *
1247 * Cause a process which is running on another CPU to enter
1248 * kernel-mode, without any delay. (to get signals handled.)
1249 *
1250 * NOTE: this function doesn't have to take the runqueue lock,
1251 * because all it wants to ensure is that the remote task enters
1252 * the kernel. If the IPI races and the task has been migrated
1253 * to another CPU then no harm is done and the purpose has been
1254 * achieved as well.
1255 */
1256void kick_process(struct task_struct *p)
1257{
1258	int cpu;
1259
1260	preempt_disable();
1261	cpu = task_cpu(p);
1262	if ((cpu != smp_processor_id()) && task_curr(p))
1263		smp_send_reschedule(cpu);
1264	preempt_enable();
1265}
1266EXPORT_SYMBOL_GPL(kick_process);
1267#endif /* CONFIG_SMP */
1268
1269#ifdef CONFIG_SMP
1270/*
1271 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1272 */
1273static int select_fallback_rq(int cpu, struct task_struct *p)
1274{
1275	int nid = cpu_to_node(cpu);
1276	const struct cpumask *nodemask = NULL;
1277	enum { cpuset, possible, fail } state = cpuset;
1278	int dest_cpu;
1279
1280	/*
1281	 * If the node that the cpu is on has been offlined, cpu_to_node()
1282	 * will return -1. There is no cpu on the node, and we should
1283	 * select the cpu on the other node.
1284	 */
1285	if (nid != -1) {
1286		nodemask = cpumask_of_node(nid);
1287
1288		/* Look for allowed, online CPU in same node. */
1289		for_each_cpu(dest_cpu, nodemask) {
1290			if (!cpu_online(dest_cpu))
1291				continue;
1292			if (!cpu_active(dest_cpu))
1293				continue;
1294			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1295				return dest_cpu;
1296		}
1297	}
1298
1299	for (;;) {
1300		/* Any allowed, online CPU? */
1301		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1302			if (!cpu_online(dest_cpu))
1303				continue;
1304			if (!cpu_active(dest_cpu))
1305				continue;
1306			goto out;
1307		}
1308
1309		switch (state) {
1310		case cpuset:
1311			/* No more Mr. Nice Guy. */
1312			cpuset_cpus_allowed_fallback(p);
1313			state = possible;
1314			break;
1315
1316		case possible:
1317			do_set_cpus_allowed(p, cpu_possible_mask);
1318			state = fail;
1319			break;
1320
1321		case fail:
1322			BUG();
1323			break;
1324		}
1325	}
1326
1327out:
1328	if (state != cpuset) {
1329		/*
1330		 * Don't tell them about moving exiting tasks or
1331		 * kernel threads (both mm NULL), since they never
1332		 * leave kernel.
1333		 */
1334		if (p->mm && printk_ratelimit()) {
1335			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1336					task_pid_nr(p), p->comm, cpu);
1337		}
1338	}
1339
1340	return dest_cpu;
1341}
1342
1343/*
1344 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1345 */
1346static inline
1347int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1348{
1349	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1350
1351	/*
1352	 * In order not to call set_task_cpu() on a blocking task we need
1353	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1354	 * cpu.
1355	 *
1356	 * Since this is common to all placement strategies, this lives here.
1357	 *
1358	 * [ this allows ->select_task() to simply return task_cpu(p) and
1359	 *   not worry about this generic constraint ]
1360	 */
1361	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1362		     !cpu_online(cpu)))
1363		cpu = select_fallback_rq(task_cpu(p), p);
1364
1365	return cpu;
1366}
1367
1368static void update_avg(u64 *avg, u64 sample)
1369{
1370	s64 diff = sample - *avg;
1371	*avg += diff >> 3;
1372}
1373#endif
1374
1375static void
1376ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1377{
1378#ifdef CONFIG_SCHEDSTATS
1379	struct rq *rq = this_rq();
1380
1381#ifdef CONFIG_SMP
1382	int this_cpu = smp_processor_id();
1383
1384	if (cpu == this_cpu) {
1385		schedstat_inc(rq, ttwu_local);
1386		schedstat_inc(p, se.statistics.nr_wakeups_local);
1387	} else {
1388		struct sched_domain *sd;
1389
1390		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1391		rcu_read_lock();
1392		for_each_domain(this_cpu, sd) {
1393			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1394				schedstat_inc(sd, ttwu_wake_remote);
1395				break;
1396			}
1397		}
1398		rcu_read_unlock();
1399	}
1400
1401	if (wake_flags & WF_MIGRATED)
1402		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1403
1404#endif /* CONFIG_SMP */
1405
1406	schedstat_inc(rq, ttwu_count);
1407	schedstat_inc(p, se.statistics.nr_wakeups);
1408
1409	if (wake_flags & WF_SYNC)
1410		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1411
1412#endif /* CONFIG_SCHEDSTATS */
1413}
1414
1415static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1416{
1417	activate_task(rq, p, en_flags);
1418	p->on_rq = 1;
1419
1420	/* if a worker is waking up, notify workqueue */
1421	if (p->flags & PF_WQ_WORKER)
1422		wq_worker_waking_up(p, cpu_of(rq));
1423}
1424
1425/*
1426 * Mark the task runnable and perform wakeup-preemption.
1427 */
1428static void
1429ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1430{
1431	check_preempt_curr(rq, p, wake_flags);
1432	trace_sched_wakeup(p, true);
1433
1434	p->state = TASK_RUNNING;
1435#ifdef CONFIG_SMP
1436	if (p->sched_class->task_woken)
1437		p->sched_class->task_woken(rq, p);
1438
1439	if (rq->idle_stamp) {
1440		u64 delta = rq_clock(rq) - rq->idle_stamp;
1441		u64 max = 2*rq->max_idle_balance_cost;
1442
1443		update_avg(&rq->avg_idle, delta);
1444
1445		if (rq->avg_idle > max)
1446			rq->avg_idle = max;
1447
1448		rq->idle_stamp = 0;
1449	}
1450#endif
1451}
1452
1453static void
1454ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1455{
1456#ifdef CONFIG_SMP
1457	if (p->sched_contributes_to_load)
1458		rq->nr_uninterruptible--;
1459#endif
1460
1461	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1462	ttwu_do_wakeup(rq, p, wake_flags);
1463}
1464
1465/*
1466 * Called in case the task @p isn't fully descheduled from its runqueue,
1467 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1468 * since all we need to do is flip p->state to TASK_RUNNING, since
1469 * the task is still ->on_rq.
1470 */
1471static int ttwu_remote(struct task_struct *p, int wake_flags)
1472{
1473	struct rq *rq;
1474	int ret = 0;
1475
1476	rq = __task_rq_lock(p);
1477	if (p->on_rq) {
1478		/* check_preempt_curr() may use rq clock */
1479		update_rq_clock(rq);
1480		ttwu_do_wakeup(rq, p, wake_flags);
1481		ret = 1;
1482	}
1483	__task_rq_unlock(rq);
1484
1485	return ret;
1486}
1487
1488#ifdef CONFIG_SMP
1489static void sched_ttwu_pending(void)
1490{
1491	struct rq *rq = this_rq();
1492	struct llist_node *llist = llist_del_all(&rq->wake_list);
1493	struct task_struct *p;
1494
1495	raw_spin_lock(&rq->lock);
1496
1497	while (llist) {
1498		p = llist_entry(llist, struct task_struct, wake_entry);
1499		llist = llist_next(llist);
1500		ttwu_do_activate(rq, p, 0);
1501	}
1502
1503	raw_spin_unlock(&rq->lock);
1504}
1505
1506void scheduler_ipi(void)
1507{
1508	/*
1509	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1510	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1511	 * this IPI.
1512	 */
1513	if (tif_need_resched())
1514		set_preempt_need_resched();
1515
1516	if (llist_empty(&this_rq()->wake_list)
1517			&& !tick_nohz_full_cpu(smp_processor_id())
1518			&& !got_nohz_idle_kick())
1519		return;
1520
1521	/*
1522	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1523	 * traditionally all their work was done from the interrupt return
1524	 * path. Now that we actually do some work, we need to make sure
1525	 * we do call them.
1526	 *
1527	 * Some archs already do call them, luckily irq_enter/exit nest
1528	 * properly.
1529	 *
1530	 * Arguably we should visit all archs and update all handlers,
1531	 * however a fair share of IPIs are still resched only so this would
1532	 * somewhat pessimize the simple resched case.
1533	 */
1534	irq_enter();
1535	tick_nohz_full_check();
1536	sched_ttwu_pending();
1537
1538	/*
1539	 * Check if someone kicked us for doing the nohz idle load balance.
1540	 */
1541	if (unlikely(got_nohz_idle_kick())) {
1542		this_rq()->idle_balance = 1;
1543		raise_softirq_irqoff(SCHED_SOFTIRQ);
1544	}
1545	irq_exit();
1546}
1547
1548static void ttwu_queue_remote(struct task_struct *p, int cpu)
1549{
1550	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1551		smp_send_reschedule(cpu);
1552}
1553
1554bool cpus_share_cache(int this_cpu, int that_cpu)
1555{
1556	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1557}
1558#endif /* CONFIG_SMP */
1559
1560static void ttwu_queue(struct task_struct *p, int cpu)
1561{
1562	struct rq *rq = cpu_rq(cpu);
1563
1564#if defined(CONFIG_SMP)
1565	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1566		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1567		ttwu_queue_remote(p, cpu);
1568		return;
1569	}
1570#endif
1571
1572	raw_spin_lock(&rq->lock);
1573	ttwu_do_activate(rq, p, 0);
1574	raw_spin_unlock(&rq->lock);
1575}
1576
1577/**
1578 * try_to_wake_up - wake up a thread
1579 * @p: the thread to be awakened
1580 * @state: the mask of task states that can be woken
1581 * @wake_flags: wake modifier flags (WF_*)
1582 *
1583 * Put it on the run-queue if it's not already there. The "current"
1584 * thread is always on the run-queue (except when the actual
1585 * re-schedule is in progress), and as such you're allowed to do
1586 * the simpler "current->state = TASK_RUNNING" to mark yourself
1587 * runnable without the overhead of this.
1588 *
1589 * Return: %true if @p was woken up, %false if it was already running.
1590 * or @state didn't match @p's state.
1591 */
1592static int
1593try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1594{
1595	unsigned long flags;
1596	int cpu, success = 0;
1597
1598	/*
1599	 * If we are going to wake up a thread waiting for CONDITION we
1600	 * need to ensure that CONDITION=1 done by the caller can not be
1601	 * reordered with p->state check below. This pairs with mb() in
1602	 * set_current_state() the waiting thread does.
1603	 */
1604	smp_mb__before_spinlock();
1605	raw_spin_lock_irqsave(&p->pi_lock, flags);
1606	if (!(p->state & state))
1607		goto out;
1608
1609	success = 1; /* we're going to change ->state */
1610	cpu = task_cpu(p);
1611
1612	if (p->on_rq && ttwu_remote(p, wake_flags))
1613		goto stat;
1614
1615#ifdef CONFIG_SMP
1616	/*
1617	 * If the owning (remote) cpu is still in the middle of schedule() with
1618	 * this task as prev, wait until its done referencing the task.
1619	 */
1620	while (p->on_cpu)
1621		cpu_relax();
1622	/*
1623	 * Pairs with the smp_wmb() in finish_lock_switch().
1624	 */
1625	smp_rmb();
1626
1627	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1628	p->state = TASK_WAKING;
1629
1630	if (p->sched_class->task_waking)
1631		p->sched_class->task_waking(p);
1632
1633	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1634	if (task_cpu(p) != cpu) {
1635		wake_flags |= WF_MIGRATED;
1636		set_task_cpu(p, cpu);
1637	}
1638#endif /* CONFIG_SMP */
1639
1640	ttwu_queue(p, cpu);
1641stat:
1642	ttwu_stat(p, cpu, wake_flags);
1643out:
1644	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1645
1646	return success;
1647}
1648
1649/**
1650 * try_to_wake_up_local - try to wake up a local task with rq lock held
1651 * @p: the thread to be awakened
1652 *
1653 * Put @p on the run-queue if it's not already there. The caller must
1654 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1655 * the current task.
1656 */
1657static void try_to_wake_up_local(struct task_struct *p)
1658{
1659	struct rq *rq = task_rq(p);
1660
1661	if (WARN_ON_ONCE(rq != this_rq()) ||
1662	    WARN_ON_ONCE(p == current))
1663		return;
1664
1665	lockdep_assert_held(&rq->lock);
1666
1667	if (!raw_spin_trylock(&p->pi_lock)) {
1668		raw_spin_unlock(&rq->lock);
1669		raw_spin_lock(&p->pi_lock);
1670		raw_spin_lock(&rq->lock);
1671	}
1672
1673	if (!(p->state & TASK_NORMAL))
1674		goto out;
1675
1676	if (!p->on_rq)
1677		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1678
1679	ttwu_do_wakeup(rq, p, 0);
1680	ttwu_stat(p, smp_processor_id(), 0);
1681out:
1682	raw_spin_unlock(&p->pi_lock);
1683}
1684
1685/**
1686 * wake_up_process - Wake up a specific process
1687 * @p: The process to be woken up.
1688 *
1689 * Attempt to wake up the nominated process and move it to the set of runnable
1690 * processes.
1691 *
1692 * Return: 1 if the process was woken up, 0 if it was already running.
1693 *
1694 * It may be assumed that this function implies a write memory barrier before
1695 * changing the task state if and only if any tasks are woken up.
1696 */
1697int wake_up_process(struct task_struct *p)
1698{
1699	WARN_ON(task_is_stopped_or_traced(p));
1700	return try_to_wake_up(p, TASK_NORMAL, 0);
1701}
1702EXPORT_SYMBOL(wake_up_process);
1703
1704int wake_up_state(struct task_struct *p, unsigned int state)
1705{
1706	return try_to_wake_up(p, state, 0);
1707}
1708
1709/*
1710 * Perform scheduler related setup for a newly forked process p.
1711 * p is forked by current.
1712 *
1713 * __sched_fork() is basic setup used by init_idle() too:
1714 */
1715static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1716{
1717	p->on_rq			= 0;
1718
1719	p->se.on_rq			= 0;
1720	p->se.exec_start		= 0;
1721	p->se.sum_exec_runtime		= 0;
1722	p->se.prev_sum_exec_runtime	= 0;
1723	p->se.nr_migrations		= 0;
1724	p->se.vruntime			= 0;
1725	INIT_LIST_HEAD(&p->se.group_node);
1726
1727#ifdef CONFIG_SCHEDSTATS
1728	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1729#endif
1730
1731	RB_CLEAR_NODE(&p->dl.rb_node);
1732	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1733	p->dl.dl_runtime = p->dl.runtime = 0;
1734	p->dl.dl_deadline = p->dl.deadline = 0;
1735	p->dl.dl_period = 0;
1736	p->dl.flags = 0;
1737
1738	INIT_LIST_HEAD(&p->rt.run_list);
1739
1740#ifdef CONFIG_PREEMPT_NOTIFIERS
1741	INIT_HLIST_HEAD(&p->preempt_notifiers);
1742#endif
1743
1744#ifdef CONFIG_NUMA_BALANCING
1745	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1746		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1747		p->mm->numa_scan_seq = 0;
1748	}
1749
1750	if (clone_flags & CLONE_VM)
1751		p->numa_preferred_nid = current->numa_preferred_nid;
1752	else
1753		p->numa_preferred_nid = -1;
1754
1755	p->node_stamp = 0ULL;
1756	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1757	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1758	p->numa_work.next = &p->numa_work;
1759	p->numa_faults = NULL;
1760	p->numa_faults_buffer = NULL;
1761
1762	INIT_LIST_HEAD(&p->numa_entry);
1763	p->numa_group = NULL;
1764#endif /* CONFIG_NUMA_BALANCING */
1765}
1766
1767#ifdef CONFIG_NUMA_BALANCING
1768#ifdef CONFIG_SCHED_DEBUG
1769void set_numabalancing_state(bool enabled)
1770{
1771	if (enabled)
1772		sched_feat_set("NUMA");
1773	else
1774		sched_feat_set("NO_NUMA");
1775}
1776#else
1777__read_mostly bool numabalancing_enabled;
1778
1779void set_numabalancing_state(bool enabled)
1780{
1781	numabalancing_enabled = enabled;
1782}
1783#endif /* CONFIG_SCHED_DEBUG */
1784#endif /* CONFIG_NUMA_BALANCING */
1785
1786/*
1787 * fork()/clone()-time setup:
1788 */
1789int sched_fork(unsigned long clone_flags, struct task_struct *p)
1790{
1791	unsigned long flags;
1792	int cpu = get_cpu();
1793
1794	__sched_fork(clone_flags, p);
1795	/*
1796	 * We mark the process as running here. This guarantees that
1797	 * nobody will actually run it, and a signal or other external
1798	 * event cannot wake it up and insert it on the runqueue either.
1799	 */
1800	p->state = TASK_RUNNING;
1801
1802	/*
1803	 * Make sure we do not leak PI boosting priority to the child.
1804	 */
1805	p->prio = current->normal_prio;
1806
1807	/*
1808	 * Revert to default priority/policy on fork if requested.
1809	 */
1810	if (unlikely(p->sched_reset_on_fork)) {
1811		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1812			p->policy = SCHED_NORMAL;
1813			p->static_prio = NICE_TO_PRIO(0);
1814			p->rt_priority = 0;
1815		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1816			p->static_prio = NICE_TO_PRIO(0);
1817
1818		p->prio = p->normal_prio = __normal_prio(p);
1819		set_load_weight(p);
1820
1821		/*
1822		 * We don't need the reset flag anymore after the fork. It has
1823		 * fulfilled its duty:
1824		 */
1825		p->sched_reset_on_fork = 0;
1826	}
1827
1828	if (dl_prio(p->prio)) {
1829		put_cpu();
1830		return -EAGAIN;
1831	} else if (rt_prio(p->prio)) {
1832		p->sched_class = &rt_sched_class;
1833	} else {
1834		p->sched_class = &fair_sched_class;
1835	}
1836
1837	if (p->sched_class->task_fork)
1838		p->sched_class->task_fork(p);
1839
1840	/*
1841	 * The child is not yet in the pid-hash so no cgroup attach races,
1842	 * and the cgroup is pinned to this child due to cgroup_fork()
1843	 * is ran before sched_fork().
1844	 *
1845	 * Silence PROVE_RCU.
1846	 */
1847	raw_spin_lock_irqsave(&p->pi_lock, flags);
1848	set_task_cpu(p, cpu);
1849	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1850
1851#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1852	if (likely(sched_info_on()))
1853		memset(&p->sched_info, 0, sizeof(p->sched_info));
1854#endif
1855#if defined(CONFIG_SMP)
1856	p->on_cpu = 0;
1857#endif
1858	init_task_preempt_count(p);
1859#ifdef CONFIG_SMP
1860	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1861	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1862#endif
1863
1864	put_cpu();
1865	return 0;
1866}
1867
1868unsigned long to_ratio(u64 period, u64 runtime)
1869{
1870	if (runtime == RUNTIME_INF)
1871		return 1ULL << 20;
1872
1873	/*
1874	 * Doing this here saves a lot of checks in all
1875	 * the calling paths, and returning zero seems
1876	 * safe for them anyway.
1877	 */
1878	if (period == 0)
1879		return 0;
1880
1881	return div64_u64(runtime << 20, period);
1882}
1883
1884#ifdef CONFIG_SMP
1885inline struct dl_bw *dl_bw_of(int i)
1886{
1887	return &cpu_rq(i)->rd->dl_bw;
1888}
1889
1890static inline int dl_bw_cpus(int i)
1891{
1892	struct root_domain *rd = cpu_rq(i)->rd;
1893	int cpus = 0;
1894
1895	for_each_cpu_and(i, rd->span, cpu_active_mask)
1896		cpus++;
1897
1898	return cpus;
1899}
1900#else
1901inline struct dl_bw *dl_bw_of(int i)
1902{
1903	return &cpu_rq(i)->dl.dl_bw;
1904}
1905
1906static inline int dl_bw_cpus(int i)
1907{
1908	return 1;
1909}
1910#endif
1911
1912static inline
1913void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1914{
1915	dl_b->total_bw -= tsk_bw;
1916}
1917
1918static inline
1919void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1920{
1921	dl_b->total_bw += tsk_bw;
1922}
1923
1924static inline
1925bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1926{
1927	return dl_b->bw != -1 &&
1928	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1929}
1930
1931/*
1932 * We must be sure that accepting a new task (or allowing changing the
1933 * parameters of an existing one) is consistent with the bandwidth
1934 * constraints. If yes, this function also accordingly updates the currently
1935 * allocated bandwidth to reflect the new situation.
1936 *
1937 * This function is called while holding p's rq->lock.
1938 */
1939static int dl_overflow(struct task_struct *p, int policy,
1940		       const struct sched_attr *attr)
1941{
1942
1943	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1944	u64 period = attr->sched_period;
1945	u64 runtime = attr->sched_runtime;
1946	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1947	int cpus, err = -1;
1948
1949	if (new_bw == p->dl.dl_bw)
1950		return 0;
1951
1952	/*
1953	 * Either if a task, enters, leave, or stays -deadline but changes
1954	 * its parameters, we may need to update accordingly the total
1955	 * allocated bandwidth of the container.
1956	 */
1957	raw_spin_lock(&dl_b->lock);
1958	cpus = dl_bw_cpus(task_cpu(p));
1959	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1960	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1961		__dl_add(dl_b, new_bw);
1962		err = 0;
1963	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1964		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1965		__dl_clear(dl_b, p->dl.dl_bw);
1966		__dl_add(dl_b, new_bw);
1967		err = 0;
1968	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1969		__dl_clear(dl_b, p->dl.dl_bw);
1970		err = 0;
1971	}
1972	raw_spin_unlock(&dl_b->lock);
1973
1974	return err;
1975}
1976
1977extern void init_dl_bw(struct dl_bw *dl_b);
1978
1979/*
1980 * wake_up_new_task - wake up a newly created task for the first time.
1981 *
1982 * This function will do some initial scheduler statistics housekeeping
1983 * that must be done for every newly created context, then puts the task
1984 * on the runqueue and wakes it.
1985 */
1986void wake_up_new_task(struct task_struct *p)
1987{
1988	unsigned long flags;
1989	struct rq *rq;
1990
1991	raw_spin_lock_irqsave(&p->pi_lock, flags);
1992#ifdef CONFIG_SMP
1993	/*
1994	 * Fork balancing, do it here and not earlier because:
1995	 *  - cpus_allowed can change in the fork path
1996	 *  - any previously selected cpu might disappear through hotplug
1997	 */
1998	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1999#endif
2000
2001	/* Initialize new task's runnable average */
2002	init_task_runnable_average(p);
2003	rq = __task_rq_lock(p);
2004	activate_task(rq, p, 0);
2005	p->on_rq = 1;
2006	trace_sched_wakeup_new(p, true);
2007	check_preempt_curr(rq, p, WF_FORK);
2008#ifdef CONFIG_SMP
2009	if (p->sched_class->task_woken)
2010		p->sched_class->task_woken(rq, p);
2011#endif
2012	task_rq_unlock(rq, p, &flags);
2013}
2014
2015#ifdef CONFIG_PREEMPT_NOTIFIERS
2016
2017/**
2018 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2019 * @notifier: notifier struct to register
2020 */
2021void preempt_notifier_register(struct preempt_notifier *notifier)
2022{
2023	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2024}
2025EXPORT_SYMBOL_GPL(preempt_notifier_register);
2026
2027/**
2028 * preempt_notifier_unregister - no longer interested in preemption notifications
2029 * @notifier: notifier struct to unregister
2030 *
2031 * This is safe to call from within a preemption notifier.
2032 */
2033void preempt_notifier_unregister(struct preempt_notifier *notifier)
2034{
2035	hlist_del(&notifier->link);
2036}
2037EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2038
2039static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2040{
2041	struct preempt_notifier *notifier;
2042
2043	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2044		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2045}
2046
2047static void
2048fire_sched_out_preempt_notifiers(struct task_struct *curr,
2049				 struct task_struct *next)
2050{
2051	struct preempt_notifier *notifier;
2052
2053	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2054		notifier->ops->sched_out(notifier, next);
2055}
2056
2057#else /* !CONFIG_PREEMPT_NOTIFIERS */
2058
2059static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2060{
2061}
2062
2063static void
2064fire_sched_out_preempt_notifiers(struct task_struct *curr,
2065				 struct task_struct *next)
2066{
2067}
2068
2069#endif /* CONFIG_PREEMPT_NOTIFIERS */
2070
2071/**
2072 * prepare_task_switch - prepare to switch tasks
2073 * @rq: the runqueue preparing to switch
2074 * @prev: the current task that is being switched out
2075 * @next: the task we are going to switch to.
2076 *
2077 * This is called with the rq lock held and interrupts off. It must
2078 * be paired with a subsequent finish_task_switch after the context
2079 * switch.
2080 *
2081 * prepare_task_switch sets up locking and calls architecture specific
2082 * hooks.
2083 */
2084static inline void
2085prepare_task_switch(struct rq *rq, struct task_struct *prev,
2086		    struct task_struct *next)
2087{
2088	trace_sched_switch(prev, next);
2089	sched_info_switch(rq, prev, next);
2090	perf_event_task_sched_out(prev, next);
2091	fire_sched_out_preempt_notifiers(prev, next);
2092	prepare_lock_switch(rq, next);
2093	prepare_arch_switch(next);
2094}
2095
2096/**
2097 * finish_task_switch - clean up after a task-switch
2098 * @rq: runqueue associated with task-switch
2099 * @prev: the thread we just switched away from.
2100 *
2101 * finish_task_switch must be called after the context switch, paired
2102 * with a prepare_task_switch call before the context switch.
2103 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2104 * and do any other architecture-specific cleanup actions.
2105 *
2106 * Note that we may have delayed dropping an mm in context_switch(). If
2107 * so, we finish that here outside of the runqueue lock. (Doing it
2108 * with the lock held can cause deadlocks; see schedule() for
2109 * details.)
2110 */
2111static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2112	__releases(rq->lock)
2113{
2114	struct mm_struct *mm = rq->prev_mm;
2115	long prev_state;
2116
2117	rq->prev_mm = NULL;
2118
2119	/*
2120	 * A task struct has one reference for the use as "current".
2121	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2122	 * schedule one last time. The schedule call will never return, and
2123	 * the scheduled task must drop that reference.
2124	 * The test for TASK_DEAD must occur while the runqueue locks are
2125	 * still held, otherwise prev could be scheduled on another cpu, die
2126	 * there before we look at prev->state, and then the reference would
2127	 * be dropped twice.
2128	 *		Manfred Spraul <manfred@colorfullife.com>
2129	 */
2130	prev_state = prev->state;
2131	vtime_task_switch(prev);
2132	finish_arch_switch(prev);
2133	perf_event_task_sched_in(prev, current);
2134	finish_lock_switch(rq, prev);
2135	finish_arch_post_lock_switch();
2136
2137	fire_sched_in_preempt_notifiers(current);
2138	if (mm)
2139		mmdrop(mm);
2140	if (unlikely(prev_state == TASK_DEAD)) {
2141		task_numa_free(prev);
2142
2143		if (prev->sched_class->task_dead)
2144			prev->sched_class->task_dead(prev);
2145
2146		/*
2147		 * Remove function-return probe instances associated with this
2148		 * task and put them back on the free list.
2149		 */
2150		kprobe_flush_task(prev);
2151		put_task_struct(prev);
2152	}
2153
2154	tick_nohz_task_switch(current);
2155}
2156
2157#ifdef CONFIG_SMP
2158
2159/* assumes rq->lock is held */
2160static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2161{
2162	if (prev->sched_class->pre_schedule)
2163		prev->sched_class->pre_schedule(rq, prev);
2164}
2165
2166/* rq->lock is NOT held, but preemption is disabled */
2167static inline void post_schedule(struct rq *rq)
2168{
2169	if (rq->post_schedule) {
2170		unsigned long flags;
2171
2172		raw_spin_lock_irqsave(&rq->lock, flags);
2173		if (rq->curr->sched_class->post_schedule)
2174			rq->curr->sched_class->post_schedule(rq);
2175		raw_spin_unlock_irqrestore(&rq->lock, flags);
2176
2177		rq->post_schedule = 0;
2178	}
2179}
2180
2181#else
2182
2183static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2184{
2185}
2186
2187static inline void post_schedule(struct rq *rq)
2188{
2189}
2190
2191#endif
2192
2193/**
2194 * schedule_tail - first thing a freshly forked thread must call.
2195 * @prev: the thread we just switched away from.
2196 */
2197asmlinkage void schedule_tail(struct task_struct *prev)
2198	__releases(rq->lock)
2199{
2200	struct rq *rq = this_rq();
2201
2202	finish_task_switch(rq, prev);
2203
2204	/*
2205	 * FIXME: do we need to worry about rq being invalidated by the
2206	 * task_switch?
2207	 */
2208	post_schedule(rq);
2209
2210#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2211	/* In this case, finish_task_switch does not reenable preemption */
2212	preempt_enable();
2213#endif
2214	if (current->set_child_tid)
2215		put_user(task_pid_vnr(current), current->set_child_tid);
2216}
2217
2218/*
2219 * context_switch - switch to the new MM and the new
2220 * thread's register state.
2221 */
2222static inline void
2223context_switch(struct rq *rq, struct task_struct *prev,
2224	       struct task_struct *next)
2225{
2226	struct mm_struct *mm, *oldmm;
2227
2228	prepare_task_switch(rq, prev, next);
2229
2230	mm = next->mm;
2231	oldmm = prev->active_mm;
2232	/*
2233	 * For paravirt, this is coupled with an exit in switch_to to
2234	 * combine the page table reload and the switch backend into
2235	 * one hypercall.
2236	 */
2237	arch_start_context_switch(prev);
2238
2239	if (!mm) {
2240		next->active_mm = oldmm;
2241		atomic_inc(&oldmm->mm_count);
2242		enter_lazy_tlb(oldmm, next);
2243	} else
2244		switch_mm(oldmm, mm, next);
2245
2246	if (!prev->mm) {
2247		prev->active_mm = NULL;
2248		rq->prev_mm = oldmm;
2249	}
2250	/*
2251	 * Since the runqueue lock will be released by the next
2252	 * task (which is an invalid locking op but in the case
2253	 * of the scheduler it's an obvious special-case), so we
2254	 * do an early lockdep release here:
2255	 */
2256#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2257	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2258#endif
2259
2260	context_tracking_task_switch(prev, next);
2261	/* Here we just switch the register state and the stack. */
2262	switch_to(prev, next, prev);
2263
2264	barrier();
2265	/*
2266	 * this_rq must be evaluated again because prev may have moved
2267	 * CPUs since it called schedule(), thus the 'rq' on its stack
2268	 * frame will be invalid.
2269	 */
2270	finish_task_switch(this_rq(), prev);
2271}
2272
2273/*
2274 * nr_running and nr_context_switches:
2275 *
2276 * externally visible scheduler statistics: current number of runnable
2277 * threads, total number of context switches performed since bootup.
2278 */
2279unsigned long nr_running(void)
2280{
2281	unsigned long i, sum = 0;
2282
2283	for_each_online_cpu(i)
2284		sum += cpu_rq(i)->nr_running;
2285
2286	return sum;
2287}
2288
2289unsigned long long nr_context_switches(void)
2290{
2291	int i;
2292	unsigned long long sum = 0;
2293
2294	for_each_possible_cpu(i)
2295		sum += cpu_rq(i)->nr_switches;
2296
2297	return sum;
2298}
2299
2300unsigned long nr_iowait(void)
2301{
2302	unsigned long i, sum = 0;
2303
2304	for_each_possible_cpu(i)
2305		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2306
2307	return sum;
2308}
2309
2310unsigned long nr_iowait_cpu(int cpu)
2311{
2312	struct rq *this = cpu_rq(cpu);
2313	return atomic_read(&this->nr_iowait);
2314}
2315
2316#ifdef CONFIG_SMP
2317
2318/*
2319 * sched_exec - execve() is a valuable balancing opportunity, because at
2320 * this point the task has the smallest effective memory and cache footprint.
2321 */
2322void sched_exec(void)
2323{
2324	struct task_struct *p = current;
2325	unsigned long flags;
2326	int dest_cpu;
2327
2328	raw_spin_lock_irqsave(&p->pi_lock, flags);
2329	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2330	if (dest_cpu == smp_processor_id())
2331		goto unlock;
2332
2333	if (likely(cpu_active(dest_cpu))) {
2334		struct migration_arg arg = { p, dest_cpu };
2335
2336		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2337		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2338		return;
2339	}
2340unlock:
2341	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2342}
2343
2344#endif
2345
2346DEFINE_PER_CPU(struct kernel_stat, kstat);
2347DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2348
2349EXPORT_PER_CPU_SYMBOL(kstat);
2350EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2351
2352/*
2353 * Return any ns on the sched_clock that have not yet been accounted in
2354 * @p in case that task is currently running.
2355 *
2356 * Called with task_rq_lock() held on @rq.
2357 */
2358static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2359{
2360	u64 ns = 0;
2361
2362	if (task_current(rq, p)) {
2363		update_rq_clock(rq);
2364		ns = rq_clock_task(rq) - p->se.exec_start;
2365		if ((s64)ns < 0)
2366			ns = 0;
2367	}
2368
2369	return ns;
2370}
2371
2372unsigned long long task_delta_exec(struct task_struct *p)
2373{
2374	unsigned long flags;
2375	struct rq *rq;
2376	u64 ns = 0;
2377
2378	rq = task_rq_lock(p, &flags);
2379	ns = do_task_delta_exec(p, rq);
2380	task_rq_unlock(rq, p, &flags);
2381
2382	return ns;
2383}
2384
2385/*
2386 * Return accounted runtime for the task.
2387 * In case the task is currently running, return the runtime plus current's
2388 * pending runtime that have not been accounted yet.
2389 */
2390unsigned long long task_sched_runtime(struct task_struct *p)
2391{
2392	unsigned long flags;
2393	struct rq *rq;
2394	u64 ns = 0;
2395
2396#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2397	/*
2398	 * 64-bit doesn't need locks to atomically read a 64bit value.
2399	 * So we have a optimization chance when the task's delta_exec is 0.
2400	 * Reading ->on_cpu is racy, but this is ok.
2401	 *
2402	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2403	 * If we race with it entering cpu, unaccounted time is 0. This is
2404	 * indistinguishable from the read occurring a few cycles earlier.
2405	 */
2406	if (!p->on_cpu)
2407		return p->se.sum_exec_runtime;
2408#endif
2409
2410	rq = task_rq_lock(p, &flags);
2411	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2412	task_rq_unlock(rq, p, &flags);
2413
2414	return ns;
2415}
2416
2417/*
2418 * This function gets called by the timer code, with HZ frequency.
2419 * We call it with interrupts disabled.
2420 */
2421void scheduler_tick(void)
2422{
2423	int cpu = smp_processor_id();
2424	struct rq *rq = cpu_rq(cpu);
2425	struct task_struct *curr = rq->curr;
2426
2427	sched_clock_tick();
2428
2429	raw_spin_lock(&rq->lock);
2430	update_rq_clock(rq);
2431	curr->sched_class->task_tick(rq, curr, 0);
2432	update_cpu_load_active(rq);
2433	raw_spin_unlock(&rq->lock);
2434
2435	perf_event_task_tick();
2436
2437#ifdef CONFIG_SMP
2438	rq->idle_balance = idle_cpu(cpu);
2439	trigger_load_balance(rq, cpu);
2440#endif
2441	rq_last_tick_reset(rq);
2442}
2443
2444#ifdef CONFIG_NO_HZ_FULL
2445/**
2446 * scheduler_tick_max_deferment
2447 *
2448 * Keep at least one tick per second when a single
2449 * active task is running because the scheduler doesn't
2450 * yet completely support full dynticks environment.
2451 *
2452 * This makes sure that uptime, CFS vruntime, load
2453 * balancing, etc... continue to move forward, even
2454 * with a very low granularity.
2455 *
2456 * Return: Maximum deferment in nanoseconds.
2457 */
2458u64 scheduler_tick_max_deferment(void)
2459{
2460	struct rq *rq = this_rq();
2461	unsigned long next, now = ACCESS_ONCE(jiffies);
2462
2463	next = rq->last_sched_tick + HZ;
2464
2465	if (time_before_eq(next, now))
2466		return 0;
2467
2468	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2469}
2470#endif
2471
2472notrace unsigned long get_parent_ip(unsigned long addr)
2473{
2474	if (in_lock_functions(addr)) {
2475		addr = CALLER_ADDR2;
2476		if (in_lock_functions(addr))
2477			addr = CALLER_ADDR3;
2478	}
2479	return addr;
2480}
2481
2482#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2483				defined(CONFIG_PREEMPT_TRACER))
2484
2485void __kprobes preempt_count_add(int val)
2486{
2487#ifdef CONFIG_DEBUG_PREEMPT
2488	/*
2489	 * Underflow?
2490	 */
2491	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2492		return;
2493#endif
2494	__preempt_count_add(val);
2495#ifdef CONFIG_DEBUG_PREEMPT
2496	/*
2497	 * Spinlock count overflowing soon?
2498	 */
2499	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2500				PREEMPT_MASK - 10);
2501#endif
2502	if (preempt_count() == val)
2503		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2504}
2505EXPORT_SYMBOL(preempt_count_add);
2506
2507void __kprobes preempt_count_sub(int val)
2508{
2509#ifdef CONFIG_DEBUG_PREEMPT
2510	/*
2511	 * Underflow?
2512	 */
2513	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2514		return;
2515	/*
2516	 * Is the spinlock portion underflowing?
2517	 */
2518	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2519			!(preempt_count() & PREEMPT_MASK)))
2520		return;
2521#endif
2522
2523	if (preempt_count() == val)
2524		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2525	__preempt_count_sub(val);
2526}
2527EXPORT_SYMBOL(preempt_count_sub);
2528
2529#endif
2530
2531/*
2532 * Print scheduling while atomic bug:
2533 */
2534static noinline void __schedule_bug(struct task_struct *prev)
2535{
2536	if (oops_in_progress)
2537		return;
2538
2539	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2540		prev->comm, prev->pid, preempt_count());
2541
2542	debug_show_held_locks(prev);
2543	print_modules();
2544	if (irqs_disabled())
2545		print_irqtrace_events(prev);
2546	dump_stack();
2547	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2548}
2549
2550/*
2551 * Various schedule()-time debugging checks and statistics:
2552 */
2553static inline void schedule_debug(struct task_struct *prev)
2554{
2555	/*
2556	 * Test if we are atomic. Since do_exit() needs to call into
2557	 * schedule() atomically, we ignore that path. Otherwise whine
2558	 * if we are scheduling when we should not.
2559	 */
2560	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2561		__schedule_bug(prev);
2562	rcu_sleep_check();
2563
2564	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2565
2566	schedstat_inc(this_rq(), sched_count);
2567}
2568
2569static void put_prev_task(struct rq *rq, struct task_struct *prev)
2570{
2571	if (prev->on_rq || rq->skip_clock_update < 0)
2572		update_rq_clock(rq);
2573	prev->sched_class->put_prev_task(rq, prev);
2574}
2575
2576/*
2577 * Pick up the highest-prio task:
2578 */
2579static inline struct task_struct *
2580pick_next_task(struct rq *rq)
2581{
2582	const struct sched_class *class;
2583	struct task_struct *p;
2584
2585	/*
2586	 * Optimization: we know that if all tasks are in
2587	 * the fair class we can call that function directly:
2588	 */
2589	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2590		p = fair_sched_class.pick_next_task(rq);
2591		if (likely(p))
2592			return p;
2593	}
2594
2595	for_each_class(class) {
2596		p = class->pick_next_task(rq);
2597		if (p)
2598			return p;
2599	}
2600
2601	BUG(); /* the idle class will always have a runnable task */
2602}
2603
2604/*
2605 * __schedule() is the main scheduler function.
2606 *
2607 * The main means of driving the scheduler and thus entering this function are:
2608 *
2609 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2610 *
2611 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2612 *      paths. For example, see arch/x86/entry_64.S.
2613 *
2614 *      To drive preemption between tasks, the scheduler sets the flag in timer
2615 *      interrupt handler scheduler_tick().
2616 *
2617 *   3. Wakeups don't really cause entry into schedule(). They add a
2618 *      task to the run-queue and that's it.
2619 *
2620 *      Now, if the new task added to the run-queue preempts the current
2621 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2622 *      called on the nearest possible occasion:
2623 *
2624 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2625 *
2626 *         - in syscall or exception context, at the next outmost
2627 *           preempt_enable(). (this might be as soon as the wake_up()'s
2628 *           spin_unlock()!)
2629 *
2630 *         - in IRQ context, return from interrupt-handler to
2631 *           preemptible context
2632 *
2633 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2634 *         then at the next:
2635 *
2636 *          - cond_resched() call
2637 *          - explicit schedule() call
2638 *          - return from syscall or exception to user-space
2639 *          - return from interrupt-handler to user-space
2640 */
2641static void __sched __schedule(void)
2642{
2643	struct task_struct *prev, *next;
2644	unsigned long *switch_count;
2645	struct rq *rq;
2646	int cpu;
2647
2648need_resched:
2649	preempt_disable();
2650	cpu = smp_processor_id();
2651	rq = cpu_rq(cpu);
2652	rcu_note_context_switch(cpu);
2653	prev = rq->curr;
2654
2655	schedule_debug(prev);
2656
2657	if (sched_feat(HRTICK))
2658		hrtick_clear(rq);
2659
2660	/*
2661	 * Make sure that signal_pending_state()->signal_pending() below
2662	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2663	 * done by the caller to avoid the race with signal_wake_up().
2664	 */
2665	smp_mb__before_spinlock();
2666	raw_spin_lock_irq(&rq->lock);
2667
2668	switch_count = &prev->nivcsw;
2669	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2670		if (unlikely(signal_pending_state(prev->state, prev))) {
2671			prev->state = TASK_RUNNING;
2672		} else {
2673			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2674			prev->on_rq = 0;
2675
2676			/*
2677			 * If a worker went to sleep, notify and ask workqueue
2678			 * whether it wants to wake up a task to maintain
2679			 * concurrency.
2680			 */
2681			if (prev->flags & PF_WQ_WORKER) {
2682				struct task_struct *to_wakeup;
2683
2684				to_wakeup = wq_worker_sleeping(prev, cpu);
2685				if (to_wakeup)
2686					try_to_wake_up_local(to_wakeup);
2687			}
2688		}
2689		switch_count = &prev->nvcsw;
2690	}
2691
2692	pre_schedule(rq, prev);
2693
2694	if (unlikely(!rq->nr_running))
2695		idle_balance(cpu, rq);
2696
2697	put_prev_task(rq, prev);
2698	next = pick_next_task(rq);
2699	clear_tsk_need_resched(prev);
2700	clear_preempt_need_resched();
2701	rq->skip_clock_update = 0;
2702
2703	if (likely(prev != next)) {
2704		rq->nr_switches++;
2705		rq->curr = next;
2706		++*switch_count;
2707
2708		context_switch(rq, prev, next); /* unlocks the rq */
2709		/*
2710		 * The context switch have flipped the stack from under us
2711		 * and restored the local variables which were saved when
2712		 * this task called schedule() in the past. prev == current
2713		 * is still correct, but it can be moved to another cpu/rq.
2714		 */
2715		cpu = smp_processor_id();
2716		rq = cpu_rq(cpu);
2717	} else
2718		raw_spin_unlock_irq(&rq->lock);
2719
2720	post_schedule(rq);
2721
2722	sched_preempt_enable_no_resched();
2723	if (need_resched())
2724		goto need_resched;
2725}
2726
2727static inline void sched_submit_work(struct task_struct *tsk)
2728{
2729	if (!tsk->state || tsk_is_pi_blocked(tsk))
2730		return;
2731	/*
2732	 * If we are going to sleep and we have plugged IO queued,
2733	 * make sure to submit it to avoid deadlocks.
2734	 */
2735	if (blk_needs_flush_plug(tsk))
2736		blk_schedule_flush_plug(tsk);
2737}
2738
2739asmlinkage void __sched schedule(void)
2740{
2741	struct task_struct *tsk = current;
2742
2743	sched_submit_work(tsk);
2744	__schedule();
2745}
2746EXPORT_SYMBOL(schedule);
2747
2748#ifdef CONFIG_CONTEXT_TRACKING
2749asmlinkage void __sched schedule_user(void)
2750{
2751	/*
2752	 * If we come here after a random call to set_need_resched(),
2753	 * or we have been woken up remotely but the IPI has not yet arrived,
2754	 * we haven't yet exited the RCU idle mode. Do it here manually until
2755	 * we find a better solution.
2756	 */
2757	user_exit();
2758	schedule();
2759	user_enter();
2760}
2761#endif
2762
2763/**
2764 * schedule_preempt_disabled - called with preemption disabled
2765 *
2766 * Returns with preemption disabled. Note: preempt_count must be 1
2767 */
2768void __sched schedule_preempt_disabled(void)
2769{
2770	sched_preempt_enable_no_resched();
2771	schedule();
2772	preempt_disable();
2773}
2774
2775#ifdef CONFIG_PREEMPT
2776/*
2777 * this is the entry point to schedule() from in-kernel preemption
2778 * off of preempt_enable. Kernel preemptions off return from interrupt
2779 * occur there and call schedule directly.
2780 */
2781asmlinkage void __sched notrace preempt_schedule(void)
2782{
2783	/*
2784	 * If there is a non-zero preempt_count or interrupts are disabled,
2785	 * we do not want to preempt the current task. Just return..
2786	 */
2787	if (likely(!preemptible()))
2788		return;
2789
2790	do {
2791		__preempt_count_add(PREEMPT_ACTIVE);
2792		__schedule();
2793		__preempt_count_sub(PREEMPT_ACTIVE);
2794
2795		/*
2796		 * Check again in case we missed a preemption opportunity
2797		 * between schedule and now.
2798		 */
2799		barrier();
2800	} while (need_resched());
2801}
2802EXPORT_SYMBOL(preempt_schedule);
2803#endif /* CONFIG_PREEMPT */
2804
2805/*
2806 * this is the entry point to schedule() from kernel preemption
2807 * off of irq context.
2808 * Note, that this is called and return with irqs disabled. This will
2809 * protect us against recursive calling from irq.
2810 */
2811asmlinkage void __sched preempt_schedule_irq(void)
2812{
2813	enum ctx_state prev_state;
2814
2815	/* Catch callers which need to be fixed */
2816	BUG_ON(preempt_count() || !irqs_disabled());
2817
2818	prev_state = exception_enter();
2819
2820	do {
2821		__preempt_count_add(PREEMPT_ACTIVE);
2822		local_irq_enable();
2823		__schedule();
2824		local_irq_disable();
2825		__preempt_count_sub(PREEMPT_ACTIVE);
2826
2827		/*
2828		 * Check again in case we missed a preemption opportunity
2829		 * between schedule and now.
2830		 */
2831		barrier();
2832	} while (need_resched());
2833
2834	exception_exit(prev_state);
2835}
2836
2837int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2838			  void *key)
2839{
2840	return try_to_wake_up(curr->private, mode, wake_flags);
2841}
2842EXPORT_SYMBOL(default_wake_function);
2843
2844static long __sched
2845sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2846{
2847	unsigned long flags;
2848	wait_queue_t wait;
2849
2850	init_waitqueue_entry(&wait, current);
2851
2852	__set_current_state(state);
2853
2854	spin_lock_irqsave(&q->lock, flags);
2855	__add_wait_queue(q, &wait);
2856	spin_unlock(&q->lock);
2857	timeout = schedule_timeout(timeout);
2858	spin_lock_irq(&q->lock);
2859	__remove_wait_queue(q, &wait);
2860	spin_unlock_irqrestore(&q->lock, flags);
2861
2862	return timeout;
2863}
2864
2865void __sched interruptible_sleep_on(wait_queue_head_t *q)
2866{
2867	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2868}
2869EXPORT_SYMBOL(interruptible_sleep_on);
2870
2871long __sched
2872interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2873{
2874	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2875}
2876EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2877
2878void __sched sleep_on(wait_queue_head_t *q)
2879{
2880	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2881}
2882EXPORT_SYMBOL(sleep_on);
2883
2884long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2885{
2886	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2887}
2888EXPORT_SYMBOL(sleep_on_timeout);
2889
2890#ifdef CONFIG_RT_MUTEXES
2891
2892/*
2893 * rt_mutex_setprio - set the current priority of a task
2894 * @p: task
2895 * @prio: prio value (kernel-internal form)
2896 *
2897 * This function changes the 'effective' priority of a task. It does
2898 * not touch ->normal_prio like __setscheduler().
2899 *
2900 * Used by the rt_mutex code to implement priority inheritance logic.
2901 */
2902void rt_mutex_setprio(struct task_struct *p, int prio)
2903{
2904	int oldprio, on_rq, running, enqueue_flag = 0;
2905	struct rq *rq;
2906	const struct sched_class *prev_class;
2907
2908	BUG_ON(prio > MAX_PRIO);
2909
2910	rq = __task_rq_lock(p);
2911
2912	/*
2913	 * Idle task boosting is a nono in general. There is one
2914	 * exception, when PREEMPT_RT and NOHZ is active:
2915	 *
2916	 * The idle task calls get_next_timer_interrupt() and holds
2917	 * the timer wheel base->lock on the CPU and another CPU wants
2918	 * to access the timer (probably to cancel it). We can safely
2919	 * ignore the boosting request, as the idle CPU runs this code
2920	 * with interrupts disabled and will complete the lock
2921	 * protected section without being interrupted. So there is no
2922	 * real need to boost.
2923	 */
2924	if (unlikely(p == rq->idle)) {
2925		WARN_ON(p != rq->curr);
2926		WARN_ON(p->pi_blocked_on);
2927		goto out_unlock;
2928	}
2929
2930	trace_sched_pi_setprio(p, prio);
2931	p->pi_top_task = rt_mutex_get_top_task(p);
2932	oldprio = p->prio;
2933	prev_class = p->sched_class;
2934	on_rq = p->on_rq;
2935	running = task_current(rq, p);
2936	if (on_rq)
2937		dequeue_task(rq, p, 0);
2938	if (running)
2939		p->sched_class->put_prev_task(rq, p);
2940
2941	/*
2942	 * Boosting condition are:
2943	 * 1. -rt task is running and holds mutex A
2944	 *      --> -dl task blocks on mutex A
2945	 *
2946	 * 2. -dl task is running and holds mutex A
2947	 *      --> -dl task blocks on mutex A and could preempt the
2948	 *          running task
2949	 */
2950	if (dl_prio(prio)) {
2951		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2952			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2953			p->dl.dl_boosted = 1;
2954			p->dl.dl_throttled = 0;
2955			enqueue_flag = ENQUEUE_REPLENISH;
2956		} else
2957			p->dl.dl_boosted = 0;
2958		p->sched_class = &dl_sched_class;
2959	} else if (rt_prio(prio)) {
2960		if (dl_prio(oldprio))
2961			p->dl.dl_boosted = 0;
2962		if (oldprio < prio)
2963			enqueue_flag = ENQUEUE_HEAD;
2964		p->sched_class = &rt_sched_class;
2965	} else {
2966		if (dl_prio(oldprio))
2967			p->dl.dl_boosted = 0;
2968		p->sched_class = &fair_sched_class;
2969	}
2970
2971	p->prio = prio;
2972
2973	if (running)
2974		p->sched_class->set_curr_task(rq);
2975	if (on_rq)
2976		enqueue_task(rq, p, enqueue_flag);
2977
2978	check_class_changed(rq, p, prev_class, oldprio);
2979out_unlock:
2980	__task_rq_unlock(rq);
2981}
2982#endif
2983
2984void set_user_nice(struct task_struct *p, long nice)
2985{
2986	int old_prio, delta, on_rq;
2987	unsigned long flags;
2988	struct rq *rq;
2989
2990	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2991		return;
2992	/*
2993	 * We have to be careful, if called from sys_setpriority(),
2994	 * the task might be in the middle of scheduling on another CPU.
2995	 */
2996	rq = task_rq_lock(p, &flags);
2997	/*
2998	 * The RT priorities are set via sched_setscheduler(), but we still
2999	 * allow the 'normal' nice value to be set - but as expected
3000	 * it wont have any effect on scheduling until the task is
3001	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3002	 */
3003	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3004		p->static_prio = NICE_TO_PRIO(nice);
3005		goto out_unlock;
3006	}
3007	on_rq = p->on_rq;
3008	if (on_rq)
3009		dequeue_task(rq, p, 0);
3010
3011	p->static_prio = NICE_TO_PRIO(nice);
3012	set_load_weight(p);
3013	old_prio = p->prio;
3014	p->prio = effective_prio(p);
3015	delta = p->prio - old_prio;
3016
3017	if (on_rq) {
3018		enqueue_task(rq, p, 0);
3019		/*
3020		 * If the task increased its priority or is running and
3021		 * lowered its priority, then reschedule its CPU:
3022		 */
3023		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3024			resched_task(rq->curr);
3025	}
3026out_unlock:
3027	task_rq_unlock(rq, p, &flags);
3028}
3029EXPORT_SYMBOL(set_user_nice);
3030
3031/*
3032 * can_nice - check if a task can reduce its nice value
3033 * @p: task
3034 * @nice: nice value
3035 */
3036int can_nice(const struct task_struct *p, const int nice)
3037{
3038	/* convert nice value [19,-20] to rlimit style value [1,40] */
3039	int nice_rlim = 20 - nice;
3040
3041	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3042		capable(CAP_SYS_NICE));
3043}
3044
3045#ifdef __ARCH_WANT_SYS_NICE
3046
3047/*
3048 * sys_nice - change the priority of the current process.
3049 * @increment: priority increment
3050 *
3051 * sys_setpriority is a more generic, but much slower function that
3052 * does similar things.
3053 */
3054SYSCALL_DEFINE1(nice, int, increment)
3055{
3056	long nice, retval;
3057
3058	/*
3059	 * Setpriority might change our priority at the same moment.
3060	 * We don't have to worry. Conceptually one call occurs first
3061	 * and we have a single winner.
3062	 */
3063	if (increment < -40)
3064		increment = -40;
3065	if (increment > 40)
3066		increment = 40;
3067
3068	nice = TASK_NICE(current) + increment;
3069	if (nice < -20)
3070		nice = -20;
3071	if (nice > 19)
3072		nice = 19;
3073
3074	if (increment < 0 && !can_nice(current, nice))
3075		return -EPERM;
3076
3077	retval = security_task_setnice(current, nice);
3078	if (retval)
3079		return retval;
3080
3081	set_user_nice(current, nice);
3082	return 0;
3083}
3084
3085#endif
3086
3087/**
3088 * task_prio - return the priority value of a given task.
3089 * @p: the task in question.
3090 *
3091 * Return: The priority value as seen by users in /proc.
3092 * RT tasks are offset by -200. Normal tasks are centered
3093 * around 0, value goes from -16 to +15.
3094 */
3095int task_prio(const struct task_struct *p)
3096{
3097	return p->prio - MAX_RT_PRIO;
3098}
3099
3100/**
3101 * task_nice - return the nice value of a given task.
3102 * @p: the task in question.
3103 *
3104 * Return: The nice value [ -20 ... 0 ... 19 ].
3105 */
3106int task_nice(const struct task_struct *p)
3107{
3108	return TASK_NICE(p);
3109}
3110EXPORT_SYMBOL(task_nice);
3111
3112/**
3113 * idle_cpu - is a given cpu idle currently?
3114 * @cpu: the processor in question.
3115 *
3116 * Return: 1 if the CPU is currently idle. 0 otherwise.
3117 */
3118int idle_cpu(int cpu)
3119{
3120	struct rq *rq = cpu_rq(cpu);
3121
3122	if (rq->curr != rq->idle)
3123		return 0;
3124
3125	if (rq->nr_running)
3126		return 0;
3127
3128#ifdef CONFIG_SMP
3129	if (!llist_empty(&rq->wake_list))
3130		return 0;
3131#endif
3132
3133	return 1;
3134}
3135
3136/**
3137 * idle_task - return the idle task for a given cpu.
3138 * @cpu: the processor in question.
3139 *
3140 * Return: The idle task for the cpu @cpu.
3141 */
3142struct task_struct *idle_task(int cpu)
3143{
3144	return cpu_rq(cpu)->idle;
3145}
3146
3147/**
3148 * find_process_by_pid - find a process with a matching PID value.
3149 * @pid: the pid in question.
3150 *
3151 * The task of @pid, if found. %NULL otherwise.
3152 */
3153static struct task_struct *find_process_by_pid(pid_t pid)
3154{
3155	return pid ? find_task_by_vpid(pid) : current;
3156}
3157
3158/*
3159 * This function initializes the sched_dl_entity of a newly becoming
3160 * SCHED_DEADLINE task.
3161 *
3162 * Only the static values are considered here, the actual runtime and the
3163 * absolute deadline will be properly calculated when the task is enqueued
3164 * for the first time with its new policy.
3165 */
3166static void
3167__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3168{
3169	struct sched_dl_entity *dl_se = &p->dl;
3170
3171	init_dl_task_timer(dl_se);
3172	dl_se->dl_runtime = attr->sched_runtime;
3173	dl_se->dl_deadline = attr->sched_deadline;
3174	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3175	dl_se->flags = attr->sched_flags;
3176	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3177	dl_se->dl_throttled = 0;
3178	dl_se->dl_new = 1;
3179}
3180
3181/* Actually do priority change: must hold pi & rq lock. */
3182static void __setscheduler(struct rq *rq, struct task_struct *p,
3183			   const struct sched_attr *attr)
3184{
3185	int policy = attr->sched_policy;
3186
3187	p->policy = policy;
3188
3189	if (dl_policy(policy))
3190		__setparam_dl(p, attr);
3191	else if (rt_policy(policy))
3192		p->rt_priority = attr->sched_priority;
3193	else
3194		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3195
3196	p->normal_prio = normal_prio(p);
3197	p->prio = rt_mutex_getprio(p);
3198
3199	if (dl_prio(p->prio))
3200		p->sched_class = &dl_sched_class;
3201	else if (rt_prio(p->prio))
3202		p->sched_class = &rt_sched_class;
3203	else
3204		p->sched_class = &fair_sched_class;
3205
3206	set_load_weight(p);
3207}
3208
3209static void
3210__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3211{
3212	struct sched_dl_entity *dl_se = &p->dl;
3213
3214	attr->sched_priority = p->rt_priority;
3215	attr->sched_runtime = dl_se->dl_runtime;
3216	attr->sched_deadline = dl_se->dl_deadline;
3217	attr->sched_period = dl_se->dl_period;
3218	attr->sched_flags = dl_se->flags;
3219}
3220
3221/*
3222 * This function validates the new parameters of a -deadline task.
3223 * We ask for the deadline not being zero, and greater or equal
3224 * than the runtime, as well as the period of being zero or
3225 * greater than deadline. Furthermore, we have to be sure that
3226 * user parameters are above the internal resolution (1us); we
3227 * check sched_runtime only since it is always the smaller one.
3228 */
3229static bool
3230__checkparam_dl(const struct sched_attr *attr)
3231{
3232	return attr && attr->sched_deadline != 0 &&
3233		(attr->sched_period == 0 ||
3234		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3235		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3236		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3237}
3238
3239/*
3240 * check the target process has a UID that matches the current process's
3241 */
3242static bool check_same_owner(struct task_struct *p)
3243{
3244	const struct cred *cred = current_cred(), *pcred;
3245	bool match;
3246
3247	rcu_read_lock();
3248	pcred = __task_cred(p);
3249	match = (uid_eq(cred->euid, pcred->euid) ||
3250		 uid_eq(cred->euid, pcred->uid));
3251	rcu_read_unlock();
3252	return match;
3253}
3254
3255static int __sched_setscheduler(struct task_struct *p,
3256				const struct sched_attr *attr,
3257				bool user)
3258{
3259	int retval, oldprio, oldpolicy = -1, on_rq, running;
3260	int policy = attr->sched_policy;
3261	unsigned long flags;
3262	const struct sched_class *prev_class;
3263	struct rq *rq;
3264	int reset_on_fork;
3265
3266	/* may grab non-irq protected spin_locks */
3267	BUG_ON(in_interrupt());
3268recheck:
3269	/* double check policy once rq lock held */
3270	if (policy < 0) {
3271		reset_on_fork = p->sched_reset_on_fork;
3272		policy = oldpolicy = p->policy;
3273	} else {
3274		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3275		policy &= ~SCHED_RESET_ON_FORK;
3276
3277		if (policy != SCHED_DEADLINE &&
3278				policy != SCHED_FIFO && policy != SCHED_RR &&
3279				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3280				policy != SCHED_IDLE)
3281			return -EINVAL;
3282	}
3283
3284	/*
3285	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3286	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3287	 * SCHED_BATCH and SCHED_IDLE is 0.
3288	 */
3289	if (attr->sched_priority < 0 ||
3290	    (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3291	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3292		return -EINVAL;
3293	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3294	    (rt_policy(policy) != (attr->sched_priority != 0)))
3295		return -EINVAL;
3296
3297	/*
3298	 * Allow unprivileged RT tasks to decrease priority:
3299	 */
3300	if (user && !capable(CAP_SYS_NICE)) {
3301		if (fair_policy(policy)) {
3302			if (!can_nice(p, attr->sched_nice))
3303				return -EPERM;
3304		}
3305
3306		if (rt_policy(policy)) {
3307			unsigned long rlim_rtprio =
3308					task_rlimit(p, RLIMIT_RTPRIO);
3309
3310			/* can't set/change the rt policy */
3311			if (policy != p->policy && !rlim_rtprio)
3312				return -EPERM;
3313
3314			/* can't increase priority */
3315			if (attr->sched_priority > p->rt_priority &&
3316			    attr->sched_priority > rlim_rtprio)
3317				return -EPERM;
3318		}
3319
3320		/*
3321		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3322		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3323		 */
3324		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3325			if (!can_nice(p, TASK_NICE(p)))
3326				return -EPERM;
3327		}
3328
3329		/* can't change other user's priorities */
3330		if (!check_same_owner(p))
3331			return -EPERM;
3332
3333		/* Normal users shall not reset the sched_reset_on_fork flag */
3334		if (p->sched_reset_on_fork && !reset_on_fork)
3335			return -EPERM;
3336	}
3337
3338	if (user) {
3339		retval = security_task_setscheduler(p);
3340		if (retval)
3341			return retval;
3342	}
3343
3344	/*
3345	 * make sure no PI-waiters arrive (or leave) while we are
3346	 * changing the priority of the task:
3347	 *
3348	 * To be able to change p->policy safely, the appropriate
3349	 * runqueue lock must be held.
3350	 */
3351	rq = task_rq_lock(p, &flags);
3352
3353	/*
3354	 * Changing the policy of the stop threads its a very bad idea
3355	 */
3356	if (p == rq->stop) {
3357		task_rq_unlock(rq, p, &flags);
3358		return -EINVAL;
3359	}
3360
3361	/*
3362	 * If not changing anything there's no need to proceed further:
3363	 */
3364	if (unlikely(policy == p->policy)) {
3365		if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3366			goto change;
3367		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3368			goto change;
3369		if (dl_policy(policy))
3370			goto change;
3371
3372		task_rq_unlock(rq, p, &flags);
3373		return 0;
3374	}
3375change:
3376
3377	if (user) {
3378#ifdef CONFIG_RT_GROUP_SCHED
3379		/*
3380		 * Do not allow realtime tasks into groups that have no runtime
3381		 * assigned.
3382		 */
3383		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3384				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3385				!task_group_is_autogroup(task_group(p))) {
3386			task_rq_unlock(rq, p, &flags);
3387			return -EPERM;
3388		}
3389#endif
3390#ifdef CONFIG_SMP
3391		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3392			cpumask_t *span = rq->rd->span;
3393
3394			/*
3395			 * Don't allow tasks with an affinity mask smaller than
3396			 * the entire root_domain to become SCHED_DEADLINE. We
3397			 * will also fail if there's no bandwidth available.
3398			 */
3399			if (!cpumask_subset(span, &p->cpus_allowed) ||
3400			    rq->rd->dl_bw.bw == 0) {
3401				task_rq_unlock(rq, p, &flags);
3402				return -EPERM;
3403			}
3404		}
3405#endif
3406	}
3407
3408	/* recheck policy now with rq lock held */
3409	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3410		policy = oldpolicy = -1;
3411		task_rq_unlock(rq, p, &flags);
3412		goto recheck;
3413	}
3414
3415	/*
3416	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3417	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3418	 * is available.
3419	 */
3420	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3421		task_rq_unlock(rq, p, &flags);
3422		return -EBUSY;
3423	}
3424
3425	on_rq = p->on_rq;
3426	running = task_current(rq, p);
3427	if (on_rq)
3428		dequeue_task(rq, p, 0);
3429	if (running)
3430		p->sched_class->put_prev_task(rq, p);
3431
3432	p->sched_reset_on_fork = reset_on_fork;
3433
3434	oldprio = p->prio;
3435	prev_class = p->sched_class;
3436	__setscheduler(rq, p, attr);
3437
3438	if (running)
3439		p->sched_class->set_curr_task(rq);
3440	if (on_rq)
3441		enqueue_task(rq, p, 0);
3442
3443	check_class_changed(rq, p, prev_class, oldprio);
3444	task_rq_unlock(rq, p, &flags);
3445
3446	rt_mutex_adjust_pi(p);
3447
3448	return 0;
3449}
3450
3451/**
3452 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3453 * @p: the task in question.
3454 * @policy: new policy.
3455 * @param: structure containing the new RT priority.
3456 *
3457 * Return: 0 on success. An error code otherwise.
3458 *
3459 * NOTE that the task may be already dead.
3460 */
3461int sched_setscheduler(struct task_struct *p, int policy,
3462		       const struct sched_param *param)
3463{
3464	struct sched_attr attr = {
3465		.sched_policy   = policy,
3466		.sched_priority = param->sched_priority
3467	};
3468	return __sched_setscheduler(p, &attr, true);
3469}
3470EXPORT_SYMBOL_GPL(sched_setscheduler);
3471
3472int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3473{
3474	return __sched_setscheduler(p, attr, true);
3475}
3476EXPORT_SYMBOL_GPL(sched_setattr);
3477
3478/**
3479 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3480 * @p: the task in question.
3481 * @policy: new policy.
3482 * @param: structure containing the new RT priority.
3483 *
3484 * Just like sched_setscheduler, only don't bother checking if the
3485 * current context has permission.  For example, this is needed in
3486 * stop_machine(): we create temporary high priority worker threads,
3487 * but our caller might not have that capability.
3488 *
3489 * Return: 0 on success. An error code otherwise.
3490 */
3491int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3492			       const struct sched_param *param)
3493{
3494	struct sched_attr attr = {
3495		.sched_policy   = policy,
3496		.sched_priority = param->sched_priority
3497	};
3498	return __sched_setscheduler(p, &attr, false);
3499}
3500
3501static int
3502do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3503{
3504	struct sched_param lparam;
3505	struct task_struct *p;
3506	int retval;
3507
3508	if (!param || pid < 0)
3509		return -EINVAL;
3510	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3511		return -EFAULT;
3512
3513	rcu_read_lock();
3514	retval = -ESRCH;
3515	p = find_process_by_pid(pid);
3516	if (p != NULL)
3517		retval = sched_setscheduler(p, policy, &lparam);
3518	rcu_read_unlock();
3519
3520	return retval;
3521}
3522
3523/*
3524 * Mimics kernel/events/core.c perf_copy_attr().
3525 */
3526static int sched_copy_attr(struct sched_attr __user *uattr,
3527			   struct sched_attr *attr)
3528{
3529	u32 size;
3530	int ret;
3531
3532	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3533		return -EFAULT;
3534
3535	/*
3536	 * zero the full structure, so that a short copy will be nice.
3537	 */
3538	memset(attr, 0, sizeof(*attr));
3539
3540	ret = get_user(size, &uattr->size);
3541	if (ret)
3542		return ret;
3543
3544	if (size > PAGE_SIZE)	/* silly large */
3545		goto err_size;
3546
3547	if (!size)		/* abi compat */
3548		size = SCHED_ATTR_SIZE_VER0;
3549
3550	if (size < SCHED_ATTR_SIZE_VER0)
3551		goto err_size;
3552
3553	/*
3554	 * If we're handed a bigger struct than we know of,
3555	 * ensure all the unknown bits are 0 - i.e. new
3556	 * user-space does not rely on any kernel feature
3557	 * extensions we dont know about yet.
3558	 */
3559	if (size > sizeof(*attr)) {
3560		unsigned char __user *addr;
3561		unsigned char __user *end;
3562		unsigned char val;
3563
3564		addr = (void __user *)uattr + sizeof(*attr);
3565		end  = (void __user *)uattr + size;
3566
3567		for (; addr < end; addr++) {
3568			ret = get_user(val, addr);
3569			if (ret)
3570				return ret;
3571			if (val)
3572				goto err_size;
3573		}
3574		size = sizeof(*attr);
3575	}
3576
3577	ret = copy_from_user(attr, uattr, size);
3578	if (ret)
3579		return -EFAULT;
3580
3581	/*
3582	 * XXX: do we want to be lenient like existing syscalls; or do we want
3583	 * to be strict and return an error on out-of-bounds values?
3584	 */
3585	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3586
3587out:
3588	return ret;
3589
3590err_size:
3591	put_user(sizeof(*attr), &uattr->size);
3592	ret = -E2BIG;
3593	goto out;
3594}
3595
3596/**
3597 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3598 * @pid: the pid in question.
3599 * @policy: new policy.
3600 * @param: structure containing the new RT priority.
3601 *
3602 * Return: 0 on success. An error code otherwise.
3603 */
3604SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3605		struct sched_param __user *, param)
3606{
3607	/* negative values for policy are not valid */
3608	if (policy < 0)
3609		return -EINVAL;
3610
3611	return do_sched_setscheduler(pid, policy, param);
3612}
3613
3614/**
3615 * sys_sched_setparam - set/change the RT priority of a thread
3616 * @pid: the pid in question.
3617 * @param: structure containing the new RT priority.
3618 *
3619 * Return: 0 on success. An error code otherwise.
3620 */
3621SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3622{
3623	return do_sched_setscheduler(pid, -1, param);
3624}
3625
3626/**
3627 * sys_sched_setattr - same as above, but with extended sched_attr
3628 * @pid: the pid in question.
3629 * @attr: structure containing the extended parameters.
3630 */
3631SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3632{
3633	struct sched_attr attr;
3634	struct task_struct *p;
3635	int retval;
3636
3637	if (!uattr || pid < 0)
3638		return -EINVAL;
3639
3640	if (sched_copy_attr(uattr, &attr))
3641		return -EFAULT;
3642
3643	rcu_read_lock();
3644	retval = -ESRCH;
3645	p = find_process_by_pid(pid);
3646	if (p != NULL)
3647		retval = sched_setattr(p, &attr);
3648	rcu_read_unlock();
3649
3650	return retval;
3651}
3652
3653/**
3654 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3655 * @pid: the pid in question.
3656 *
3657 * Return: On success, the policy of the thread. Otherwise, a negative error
3658 * code.
3659 */
3660SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3661{
3662	struct task_struct *p;
3663	int retval;
3664
3665	if (pid < 0)
3666		return -EINVAL;
3667
3668	retval = -ESRCH;
3669	rcu_read_lock();
3670	p = find_process_by_pid(pid);
3671	if (p) {
3672		retval = security_task_getscheduler(p);
3673		if (!retval)
3674			retval = p->policy
3675				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3676	}
3677	rcu_read_unlock();
3678	return retval;
3679}
3680
3681/**
3682 * sys_sched_getparam - get the RT priority of a thread
3683 * @pid: the pid in question.
3684 * @param: structure containing the RT priority.
3685 *
3686 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3687 * code.
3688 */
3689SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3690{
3691	struct sched_param lp;
3692	struct task_struct *p;
3693	int retval;
3694
3695	if (!param || pid < 0)
3696		return -EINVAL;
3697
3698	rcu_read_lock();
3699	p = find_process_by_pid(pid);
3700	retval = -ESRCH;
3701	if (!p)
3702		goto out_unlock;
3703
3704	retval = security_task_getscheduler(p);
3705	if (retval)
3706		goto out_unlock;
3707
3708	if (task_has_dl_policy(p)) {
3709		retval = -EINVAL;
3710		goto out_unlock;
3711	}
3712	lp.sched_priority = p->rt_priority;
3713	rcu_read_unlock();
3714
3715	/*
3716	 * This one might sleep, we cannot do it with a spinlock held ...
3717	 */
3718	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3719
3720	return retval;
3721
3722out_unlock:
3723	rcu_read_unlock();
3724	return retval;
3725}
3726
3727static int sched_read_attr(struct sched_attr __user *uattr,
3728			   struct sched_attr *attr,
3729			   unsigned int usize)
3730{
3731	int ret;
3732
3733	if (!access_ok(VERIFY_WRITE, uattr, usize))
3734		return -EFAULT;
3735
3736	/*
3737	 * If we're handed a smaller struct than we know of,
3738	 * ensure all the unknown bits are 0 - i.e. old
3739	 * user-space does not get uncomplete information.
3740	 */
3741	if (usize < sizeof(*attr)) {
3742		unsigned char *addr;
3743		unsigned char *end;
3744
3745		addr = (void *)attr + usize;
3746		end  = (void *)attr + sizeof(*attr);
3747
3748		for (; addr < end; addr++) {
3749			if (*addr)
3750				goto err_size;
3751		}
3752
3753		attr->size = usize;
3754	}
3755
3756	ret = copy_to_user(uattr, attr, usize);
3757	if (ret)
3758		return -EFAULT;
3759
3760out:
3761	return ret;
3762
3763err_size:
3764	ret = -E2BIG;
3765	goto out;
3766}
3767
3768/**
3769 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3770 * @pid: the pid in question.
3771 * @attr: structure containing the extended parameters.
3772 * @size: sizeof(attr) for fwd/bwd comp.
3773 */
3774SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3775		unsigned int, size)
3776{
3777	struct sched_attr attr = {
3778		.size = sizeof(struct sched_attr),
3779	};
3780	struct task_struct *p;
3781	int retval;
3782
3783	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3784	    size < SCHED_ATTR_SIZE_VER0)
3785		return -EINVAL;
3786
3787	rcu_read_lock();
3788	p = find_process_by_pid(pid);
3789	retval = -ESRCH;
3790	if (!p)
3791		goto out_unlock;
3792
3793	retval = security_task_getscheduler(p);
3794	if (retval)
3795		goto out_unlock;
3796
3797	attr.sched_policy = p->policy;
3798	if (task_has_dl_policy(p))
3799		__getparam_dl(p, &attr);
3800	else if (task_has_rt_policy(p))
3801		attr.sched_priority = p->rt_priority;
3802	else
3803		attr.sched_nice = TASK_NICE(p);
3804
3805	rcu_read_unlock();
3806
3807	retval = sched_read_attr(uattr, &attr, size);
3808	return retval;
3809
3810out_unlock:
3811	rcu_read_unlock();
3812	return retval;
3813}
3814
3815long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3816{
3817	cpumask_var_t cpus_allowed, new_mask;
3818	struct task_struct *p;
3819	int retval;
3820
3821	rcu_read_lock();
3822
3823	p = find_process_by_pid(pid);
3824	if (!p) {
3825		rcu_read_unlock();
3826		return -ESRCH;
3827	}
3828
3829	/* Prevent p going away */
3830	get_task_struct(p);
3831	rcu_read_unlock();
3832
3833	if (p->flags & PF_NO_SETAFFINITY) {
3834		retval = -EINVAL;
3835		goto out_put_task;
3836	}
3837	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3838		retval = -ENOMEM;
3839		goto out_put_task;
3840	}
3841	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3842		retval = -ENOMEM;
3843		goto out_free_cpus_allowed;
3844	}
3845	retval = -EPERM;
3846	if (!check_same_owner(p)) {
3847		rcu_read_lock();
3848		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3849			rcu_read_unlock();
3850			goto out_unlock;
3851		}
3852		rcu_read_unlock();
3853	}
3854
3855	retval = security_task_setscheduler(p);
3856	if (retval)
3857		goto out_unlock;
3858
3859
3860	cpuset_cpus_allowed(p, cpus_allowed);
3861	cpumask_and(new_mask, in_mask, cpus_allowed);
3862
3863	/*
3864	 * Since bandwidth control happens on root_domain basis,
3865	 * if admission test is enabled, we only admit -deadline
3866	 * tasks allowed to run on all the CPUs in the task's
3867	 * root_domain.
3868	 */
3869#ifdef CONFIG_SMP
3870	if (task_has_dl_policy(p)) {
3871		const struct cpumask *span = task_rq(p)->rd->span;
3872
3873		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3874			retval = -EBUSY;
3875			goto out_unlock;
3876		}
3877	}
3878#endif
3879again:
3880	retval = set_cpus_allowed_ptr(p, new_mask);
3881
3882	if (!retval) {
3883		cpuset_cpus_allowed(p, cpus_allowed);
3884		if (!cpumask_subset(new_mask, cpus_allowed)) {
3885			/*
3886			 * We must have raced with a concurrent cpuset
3887			 * update. Just reset the cpus_allowed to the
3888			 * cpuset's cpus_allowed
3889			 */
3890			cpumask_copy(new_mask, cpus_allowed);
3891			goto again;
3892		}
3893	}
3894out_unlock:
3895	free_cpumask_var(new_mask);
3896out_free_cpus_allowed:
3897	free_cpumask_var(cpus_allowed);
3898out_put_task:
3899	put_task_struct(p);
3900	return retval;
3901}
3902
3903static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3904			     struct cpumask *new_mask)
3905{
3906	if (len < cpumask_size())
3907		cpumask_clear(new_mask);
3908	else if (len > cpumask_size())
3909		len = cpumask_size();
3910
3911	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3912}
3913
3914/**
3915 * sys_sched_setaffinity - set the cpu affinity of a process
3916 * @pid: pid of the process
3917 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3918 * @user_mask_ptr: user-space pointer to the new cpu mask
3919 *
3920 * Return: 0 on success. An error code otherwise.
3921 */
3922SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3923		unsigned long __user *, user_mask_ptr)
3924{
3925	cpumask_var_t new_mask;
3926	int retval;
3927
3928	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3929		return -ENOMEM;
3930
3931	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3932	if (retval == 0)
3933		retval = sched_setaffinity(pid, new_mask);
3934	free_cpumask_var(new_mask);
3935	return retval;
3936}
3937
3938long sched_getaffinity(pid_t pid, struct cpumask *mask)
3939{
3940	struct task_struct *p;
3941	unsigned long flags;
3942	int retval;
3943
3944	rcu_read_lock();
3945
3946	retval = -ESRCH;
3947	p = find_process_by_pid(pid);
3948	if (!p)
3949		goto out_unlock;
3950
3951	retval = security_task_getscheduler(p);
3952	if (retval)
3953		goto out_unlock;
3954
3955	raw_spin_lock_irqsave(&p->pi_lock, flags);
3956	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3957	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3958
3959out_unlock:
3960	rcu_read_unlock();
3961
3962	return retval;
3963}
3964
3965/**
3966 * sys_sched_getaffinity - get the cpu affinity of a process
3967 * @pid: pid of the process
3968 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3969 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3970 *
3971 * Return: 0 on success. An error code otherwise.
3972 */
3973SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3974		unsigned long __user *, user_mask_ptr)
3975{
3976	int ret;
3977	cpumask_var_t mask;
3978
3979	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3980		return -EINVAL;
3981	if (len & (sizeof(unsigned long)-1))
3982		return -EINVAL;
3983
3984	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3985		return -ENOMEM;
3986
3987	ret = sched_getaffinity(pid, mask);
3988	if (ret == 0) {
3989		size_t retlen = min_t(size_t, len, cpumask_size());
3990
3991		if (copy_to_user(user_mask_ptr, mask, retlen))
3992			ret = -EFAULT;
3993		else
3994			ret = retlen;
3995	}
3996	free_cpumask_var(mask);
3997
3998	return ret;
3999}
4000
4001/**
4002 * sys_sched_yield - yield the current processor to other threads.
4003 *
4004 * This function yields the current CPU to other tasks. If there are no
4005 * other threads running on this CPU then this function will return.
4006 *
4007 * Return: 0.
4008 */
4009SYSCALL_DEFINE0(sched_yield)
4010{
4011	struct rq *rq = this_rq_lock();
4012
4013	schedstat_inc(rq, yld_count);
4014	current->sched_class->yield_task(rq);
4015
4016	/*
4017	 * Since we are going to call schedule() anyway, there's
4018	 * no need to preempt or enable interrupts:
4019	 */
4020	__release(rq->lock);
4021	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4022	do_raw_spin_unlock(&rq->lock);
4023	sched_preempt_enable_no_resched();
4024
4025	schedule();
4026
4027	return 0;
4028}
4029
4030static void __cond_resched(void)
4031{
4032	__preempt_count_add(PREEMPT_ACTIVE);
4033	__schedule();
4034	__preempt_count_sub(PREEMPT_ACTIVE);
4035}
4036
4037int __sched _cond_resched(void)
4038{
4039	if (should_resched()) {
4040		__cond_resched();
4041		return 1;
4042	}
4043	return 0;
4044}
4045EXPORT_SYMBOL(_cond_resched);
4046
4047/*
4048 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4049 * call schedule, and on return reacquire the lock.
4050 *
4051 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4052 * operations here to prevent schedule() from being called twice (once via
4053 * spin_unlock(), once by hand).
4054 */
4055int __cond_resched_lock(spinlock_t *lock)
4056{
4057	int resched = should_resched();
4058	int ret = 0;
4059
4060	lockdep_assert_held(lock);
4061
4062	if (spin_needbreak(lock) || resched) {
4063		spin_unlock(lock);
4064		if (resched)
4065			__cond_resched();
4066		else
4067			cpu_relax();
4068		ret = 1;
4069		spin_lock(lock);
4070	}
4071	return ret;
4072}
4073EXPORT_SYMBOL(__cond_resched_lock);
4074
4075int __sched __cond_resched_softirq(void)
4076{
4077	BUG_ON(!in_softirq());
4078
4079	if (should_resched()) {
4080		local_bh_enable();
4081		__cond_resched();
4082		local_bh_disable();
4083		return 1;
4084	}
4085	return 0;
4086}
4087EXPORT_SYMBOL(__cond_resched_softirq);
4088
4089/**
4090 * yield - yield the current processor to other threads.
4091 *
4092 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4093 *
4094 * The scheduler is at all times free to pick the calling task as the most
4095 * eligible task to run, if removing the yield() call from your code breaks
4096 * it, its already broken.
4097 *
4098 * Typical broken usage is:
4099 *
4100 * while (!event)
4101 * 	yield();
4102 *
4103 * where one assumes that yield() will let 'the other' process run that will
4104 * make event true. If the current task is a SCHED_FIFO task that will never
4105 * happen. Never use yield() as a progress guarantee!!
4106 *
4107 * If you want to use yield() to wait for something, use wait_event().
4108 * If you want to use yield() to be 'nice' for others, use cond_resched().
4109 * If you still want to use yield(), do not!
4110 */
4111void __sched yield(void)
4112{
4113	set_current_state(TASK_RUNNING);
4114	sys_sched_yield();
4115}
4116EXPORT_SYMBOL(yield);
4117
4118/**
4119 * yield_to - yield the current processor to another thread in
4120 * your thread group, or accelerate that thread toward the
4121 * processor it's on.
4122 * @p: target task
4123 * @preempt: whether task preemption is allowed or not
4124 *
4125 * It's the caller's job to ensure that the target task struct
4126 * can't go away on us before we can do any checks.
4127 *
4128 * Return:
4129 *	true (>0) if we indeed boosted the target task.
4130 *	false (0) if we failed to boost the target.
4131 *	-ESRCH if there's no task to yield to.
4132 */
4133bool __sched yield_to(struct task_struct *p, bool preempt)
4134{
4135	struct task_struct *curr = current;
4136	struct rq *rq, *p_rq;
4137	unsigned long flags;
4138	int yielded = 0;
4139
4140	local_irq_save(flags);
4141	rq = this_rq();
4142
4143again:
4144	p_rq = task_rq(p);
4145	/*
4146	 * If we're the only runnable task on the rq and target rq also
4147	 * has only one task, there's absolutely no point in yielding.
4148	 */
4149	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4150		yielded = -ESRCH;
4151		goto out_irq;
4152	}
4153
4154	double_rq_lock(rq, p_rq);
4155	if (task_rq(p) != p_rq) {
4156		double_rq_unlock(rq, p_rq);
4157		goto again;
4158	}
4159
4160	if (!curr->sched_class->yield_to_task)
4161		goto out_unlock;
4162
4163	if (curr->sched_class != p->sched_class)
4164		goto out_unlock;
4165
4166	if (task_running(p_rq, p) || p->state)
4167		goto out_unlock;
4168
4169	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4170	if (yielded) {
4171		schedstat_inc(rq, yld_count);
4172		/*
4173		 * Make p's CPU reschedule; pick_next_entity takes care of
4174		 * fairness.
4175		 */
4176		if (preempt && rq != p_rq)
4177			resched_task(p_rq->curr);
4178	}
4179
4180out_unlock:
4181	double_rq_unlock(rq, p_rq);
4182out_irq:
4183	local_irq_restore(flags);
4184
4185	if (yielded > 0)
4186		schedule();
4187
4188	return yielded;
4189}
4190EXPORT_SYMBOL_GPL(yield_to);
4191
4192/*
4193 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4194 * that process accounting knows that this is a task in IO wait state.
4195 */
4196void __sched io_schedule(void)
4197{
4198	struct rq *rq = raw_rq();
4199
4200	delayacct_blkio_start();
4201	atomic_inc(&rq->nr_iowait);
4202	blk_flush_plug(current);
4203	current->in_iowait = 1;
4204	schedule();
4205	current->in_iowait = 0;
4206	atomic_dec(&rq->nr_iowait);
4207	delayacct_blkio_end();
4208}
4209EXPORT_SYMBOL(io_schedule);
4210
4211long __sched io_schedule_timeout(long timeout)
4212{
4213	struct rq *rq = raw_rq();
4214	long ret;
4215
4216	delayacct_blkio_start();
4217	atomic_inc(&rq->nr_iowait);
4218	blk_flush_plug(current);
4219	current->in_iowait = 1;
4220	ret = schedule_timeout(timeout);
4221	current->in_iowait = 0;
4222	atomic_dec(&rq->nr_iowait);
4223	delayacct_blkio_end();
4224	return ret;
4225}
4226
4227/**
4228 * sys_sched_get_priority_max - return maximum RT priority.
4229 * @policy: scheduling class.
4230 *
4231 * Return: On success, this syscall returns the maximum
4232 * rt_priority that can be used by a given scheduling class.
4233 * On failure, a negative error code is returned.
4234 */
4235SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4236{
4237	int ret = -EINVAL;
4238
4239	switch (policy) {
4240	case SCHED_FIFO:
4241	case SCHED_RR:
4242		ret = MAX_USER_RT_PRIO-1;
4243		break;
4244	case SCHED_DEADLINE:
4245	case SCHED_NORMAL:
4246	case SCHED_BATCH:
4247	case SCHED_IDLE:
4248		ret = 0;
4249		break;
4250	}
4251	return ret;
4252}
4253
4254/**
4255 * sys_sched_get_priority_min - return minimum RT priority.
4256 * @policy: scheduling class.
4257 *
4258 * Return: On success, this syscall returns the minimum
4259 * rt_priority that can be used by a given scheduling class.
4260 * On failure, a negative error code is returned.
4261 */
4262SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4263{
4264	int ret = -EINVAL;
4265
4266	switch (policy) {
4267	case SCHED_FIFO:
4268	case SCHED_RR:
4269		ret = 1;
4270		break;
4271	case SCHED_DEADLINE:
4272	case SCHED_NORMAL:
4273	case SCHED_BATCH:
4274	case SCHED_IDLE:
4275		ret = 0;
4276	}
4277	return ret;
4278}
4279
4280/**
4281 * sys_sched_rr_get_interval - return the default timeslice of a process.
4282 * @pid: pid of the process.
4283 * @interval: userspace pointer to the timeslice value.
4284 *
4285 * this syscall writes the default timeslice value of a given process
4286 * into the user-space timespec buffer. A value of '0' means infinity.
4287 *
4288 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4289 * an error code.
4290 */
4291SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4292		struct timespec __user *, interval)
4293{
4294	struct task_struct *p;
4295	unsigned int time_slice;
4296	unsigned long flags;
4297	struct rq *rq;
4298	int retval;
4299	struct timespec t;
4300
4301	if (pid < 0)
4302		return -EINVAL;
4303
4304	retval = -ESRCH;
4305	rcu_read_lock();
4306	p = find_process_by_pid(pid);
4307	if (!p)
4308		goto out_unlock;
4309
4310	retval = security_task_getscheduler(p);
4311	if (retval)
4312		goto out_unlock;
4313
4314	rq = task_rq_lock(p, &flags);
4315	time_slice = p->sched_class->get_rr_interval(rq, p);
4316	task_rq_unlock(rq, p, &flags);
4317
4318	rcu_read_unlock();
4319	jiffies_to_timespec(time_slice, &t);
4320	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4321	return retval;
4322
4323out_unlock:
4324	rcu_read_unlock();
4325	return retval;
4326}
4327
4328static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4329
4330void sched_show_task(struct task_struct *p)
4331{
4332	unsigned long free = 0;
4333	int ppid;
4334	unsigned state;
4335
4336	state = p->state ? __ffs(p->state) + 1 : 0;
4337	printk(KERN_INFO "%-15.15s %c", p->comm,
4338		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4339#if BITS_PER_LONG == 32
4340	if (state == TASK_RUNNING)
4341		printk(KERN_CONT " running  ");
4342	else
4343		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4344#else
4345	if (state == TASK_RUNNING)
4346		printk(KERN_CONT "  running task    ");
4347	else
4348		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4349#endif
4350#ifdef CONFIG_DEBUG_STACK_USAGE
4351	free = stack_not_used(p);
4352#endif
4353	rcu_read_lock();
4354	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4355	rcu_read_unlock();
4356	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4357		task_pid_nr(p), ppid,
4358		(unsigned long)task_thread_info(p)->flags);
4359
4360	print_worker_info(KERN_INFO, p);
4361	show_stack(p, NULL);
4362}
4363
4364void show_state_filter(unsigned long state_filter)
4365{
4366	struct task_struct *g, *p;
4367
4368#if BITS_PER_LONG == 32
4369	printk(KERN_INFO
4370		"  task                PC stack   pid father\n");
4371#else
4372	printk(KERN_INFO
4373		"  task                        PC stack   pid father\n");
4374#endif
4375	rcu_read_lock();
4376	do_each_thread(g, p) {
4377		/*
4378		 * reset the NMI-timeout, listing all files on a slow
4379		 * console might take a lot of time:
4380		 */
4381		touch_nmi_watchdog();
4382		if (!state_filter || (p->state & state_filter))
4383			sched_show_task(p);
4384	} while_each_thread(g, p);
4385
4386	touch_all_softlockup_watchdogs();
4387
4388#ifdef CONFIG_SCHED_DEBUG
4389	sysrq_sched_debug_show();
4390#endif
4391	rcu_read_unlock();
4392	/*
4393	 * Only show locks if all tasks are dumped:
4394	 */
4395	if (!state_filter)
4396		debug_show_all_locks();
4397}
4398
4399void init_idle_bootup_task(struct task_struct *idle)
4400{
4401	idle->sched_class = &idle_sched_class;
4402}
4403
4404/**
4405 * init_idle - set up an idle thread for a given CPU
4406 * @idle: task in question
4407 * @cpu: cpu the idle task belongs to
4408 *
4409 * NOTE: this function does not set the idle thread's NEED_RESCHED
4410 * flag, to make booting more robust.
4411 */
4412void init_idle(struct task_struct *idle, int cpu)
4413{
4414	struct rq *rq = cpu_rq(cpu);
4415	unsigned long flags;
4416
4417	raw_spin_lock_irqsave(&rq->lock, flags);
4418
4419	__sched_fork(0, idle);
4420	idle->state = TASK_RUNNING;
4421	idle->se.exec_start = sched_clock();
4422
4423	do_set_cpus_allowed(idle, cpumask_of(cpu));
4424	/*
4425	 * We're having a chicken and egg problem, even though we are
4426	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4427	 * lockdep check in task_group() will fail.
4428	 *
4429	 * Similar case to sched_fork(). / Alternatively we could
4430	 * use task_rq_lock() here and obtain the other rq->lock.
4431	 *
4432	 * Silence PROVE_RCU
4433	 */
4434	rcu_read_lock();
4435	__set_task_cpu(idle, cpu);
4436	rcu_read_unlock();
4437
4438	rq->curr = rq->idle = idle;
4439#if defined(CONFIG_SMP)
4440	idle->on_cpu = 1;
4441#endif
4442	raw_spin_unlock_irqrestore(&rq->lock, flags);
4443
4444	/* Set the preempt count _outside_ the spinlocks! */
4445	init_idle_preempt_count(idle, cpu);
4446
4447	/*
4448	 * The idle tasks have their own, simple scheduling class:
4449	 */
4450	idle->sched_class = &idle_sched_class;
4451	ftrace_graph_init_idle_task(idle, cpu);
4452	vtime_init_idle(idle, cpu);
4453#if defined(CONFIG_SMP)
4454	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4455#endif
4456}
4457
4458#ifdef CONFIG_SMP
4459void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4460{
4461	if (p->sched_class && p->sched_class->set_cpus_allowed)
4462		p->sched_class->set_cpus_allowed(p, new_mask);
4463
4464	cpumask_copy(&p->cpus_allowed, new_mask);
4465	p->nr_cpus_allowed = cpumask_weight(new_mask);
4466}
4467
4468/*
4469 * This is how migration works:
4470 *
4471 * 1) we invoke migration_cpu_stop() on the target CPU using
4472 *    stop_one_cpu().
4473 * 2) stopper starts to run (implicitly forcing the migrated thread
4474 *    off the CPU)
4475 * 3) it checks whether the migrated task is still in the wrong runqueue.
4476 * 4) if it's in the wrong runqueue then the migration thread removes
4477 *    it and puts it into the right queue.
4478 * 5) stopper completes and stop_one_cpu() returns and the migration
4479 *    is done.
4480 */
4481
4482/*
4483 * Change a given task's CPU affinity. Migrate the thread to a
4484 * proper CPU and schedule it away if the CPU it's executing on
4485 * is removed from the allowed bitmask.
4486 *
4487 * NOTE: the caller must have a valid reference to the task, the
4488 * task must not exit() & deallocate itself prematurely. The
4489 * call is not atomic; no spinlocks may be held.
4490 */
4491int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4492{
4493	unsigned long flags;
4494	struct rq *rq;
4495	unsigned int dest_cpu;
4496	int ret = 0;
4497
4498	rq = task_rq_lock(p, &flags);
4499
4500	if (cpumask_equal(&p->cpus_allowed, new_mask))
4501		goto out;
4502
4503	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4504		ret = -EINVAL;
4505		goto out;
4506	}
4507
4508	do_set_cpus_allowed(p, new_mask);
4509
4510	/* Can the task run on the task's current CPU? If so, we're done */
4511	if (cpumask_test_cpu(task_cpu(p), new_mask))
4512		goto out;
4513
4514	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4515	if (p->on_rq) {
4516		struct migration_arg arg = { p, dest_cpu };
4517		/* Need help from migration thread: drop lock and wait. */
4518		task_rq_unlock(rq, p, &flags);
4519		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4520		tlb_migrate_finish(p->mm);
4521		return 0;
4522	}
4523out:
4524	task_rq_unlock(rq, p, &flags);
4525
4526	return ret;
4527}
4528EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4529
4530/*
4531 * Move (not current) task off this cpu, onto dest cpu. We're doing
4532 * this because either it can't run here any more (set_cpus_allowed()
4533 * away from this CPU, or CPU going down), or because we're
4534 * attempting to rebalance this task on exec (sched_exec).
4535 *
4536 * So we race with normal scheduler movements, but that's OK, as long
4537 * as the task is no longer on this CPU.
4538 *
4539 * Returns non-zero if task was successfully migrated.
4540 */
4541static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4542{
4543	struct rq *rq_dest, *rq_src;
4544	int ret = 0;
4545
4546	if (unlikely(!cpu_active(dest_cpu)))
4547		return ret;
4548
4549	rq_src = cpu_rq(src_cpu);
4550	rq_dest = cpu_rq(dest_cpu);
4551
4552	raw_spin_lock(&p->pi_lock);
4553	double_rq_lock(rq_src, rq_dest);
4554	/* Already moved. */
4555	if (task_cpu(p) != src_cpu)
4556		goto done;
4557	/* Affinity changed (again). */
4558	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4559		goto fail;
4560
4561	/*
4562	 * If we're not on a rq, the next wake-up will ensure we're
4563	 * placed properly.
4564	 */
4565	if (p->on_rq) {
4566		dequeue_task(rq_src, p, 0);
4567		set_task_cpu(p, dest_cpu);
4568		enqueue_task(rq_dest, p, 0);
4569		check_preempt_curr(rq_dest, p, 0);
4570	}
4571done:
4572	ret = 1;
4573fail:
4574	double_rq_unlock(rq_src, rq_dest);
4575	raw_spin_unlock(&p->pi_lock);
4576	return ret;
4577}
4578
4579#ifdef CONFIG_NUMA_BALANCING
4580/* Migrate current task p to target_cpu */
4581int migrate_task_to(struct task_struct *p, int target_cpu)
4582{
4583	struct migration_arg arg = { p, target_cpu };
4584	int curr_cpu = task_cpu(p);
4585
4586	if (curr_cpu == target_cpu)
4587		return 0;
4588
4589	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4590		return -EINVAL;
4591
4592	/* TODO: This is not properly updating schedstats */
4593
4594	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4595}
4596
4597/*
4598 * Requeue a task on a given node and accurately track the number of NUMA
4599 * tasks on the runqueues
4600 */
4601void sched_setnuma(struct task_struct *p, int nid)
4602{
4603	struct rq *rq;
4604	unsigned long flags;
4605	bool on_rq, running;
4606
4607	rq = task_rq_lock(p, &flags);
4608	on_rq = p->on_rq;
4609	running = task_current(rq, p);
4610
4611	if (on_rq)
4612		dequeue_task(rq, p, 0);
4613	if (running)
4614		p->sched_class->put_prev_task(rq, p);
4615
4616	p->numa_preferred_nid = nid;
4617
4618	if (running)
4619		p->sched_class->set_curr_task(rq);
4620	if (on_rq)
4621		enqueue_task(rq, p, 0);
4622	task_rq_unlock(rq, p, &flags);
4623}
4624#endif
4625
4626/*
4627 * migration_cpu_stop - this will be executed by a highprio stopper thread
4628 * and performs thread migration by bumping thread off CPU then
4629 * 'pushing' onto another runqueue.
4630 */
4631static int migration_cpu_stop(void *data)
4632{
4633	struct migration_arg *arg = data;
4634
4635	/*
4636	 * The original target cpu might have gone down and we might
4637	 * be on another cpu but it doesn't matter.
4638	 */
4639	local_irq_disable();
4640	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4641	local_irq_enable();
4642	return 0;
4643}
4644
4645#ifdef CONFIG_HOTPLUG_CPU
4646
4647/*
4648 * Ensures that the idle task is using init_mm right before its cpu goes
4649 * offline.
4650 */
4651void idle_task_exit(void)
4652{
4653	struct mm_struct *mm = current->active_mm;
4654
4655	BUG_ON(cpu_online(smp_processor_id()));
4656
4657	if (mm != &init_mm)
4658		switch_mm(mm, &init_mm, current);
4659	mmdrop(mm);
4660}
4661
4662/*
4663 * Since this CPU is going 'away' for a while, fold any nr_active delta
4664 * we might have. Assumes we're called after migrate_tasks() so that the
4665 * nr_active count is stable.
4666 *
4667 * Also see the comment "Global load-average calculations".
4668 */
4669static void calc_load_migrate(struct rq *rq)
4670{
4671	long delta = calc_load_fold_active(rq);
4672	if (delta)
4673		atomic_long_add(delta, &calc_load_tasks);
4674}
4675
4676/*
4677 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4678 * try_to_wake_up()->select_task_rq().
4679 *
4680 * Called with rq->lock held even though we'er in stop_machine() and
4681 * there's no concurrency possible, we hold the required locks anyway
4682 * because of lock validation efforts.
4683 */
4684static void migrate_tasks(unsigned int dead_cpu)
4685{
4686	struct rq *rq = cpu_rq(dead_cpu);
4687	struct task_struct *next, *stop = rq->stop;
4688	int dest_cpu;
4689
4690	/*
4691	 * Fudge the rq selection such that the below task selection loop
4692	 * doesn't get stuck on the currently eligible stop task.
4693	 *
4694	 * We're currently inside stop_machine() and the rq is either stuck
4695	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4696	 * either way we should never end up calling schedule() until we're
4697	 * done here.
4698	 */
4699	rq->stop = NULL;
4700
4701	/*
4702	 * put_prev_task() and pick_next_task() sched
4703	 * class method both need to have an up-to-date
4704	 * value of rq->clock[_task]
4705	 */
4706	update_rq_clock(rq);
4707
4708	for ( ; ; ) {
4709		/*
4710		 * There's this thread running, bail when that's the only
4711		 * remaining thread.
4712		 */
4713		if (rq->nr_running == 1)
4714			break;
4715
4716		next = pick_next_task(rq);
4717		BUG_ON(!next);
4718		next->sched_class->put_prev_task(rq, next);
4719
4720		/* Find suitable destination for @next, with force if needed. */
4721		dest_cpu = select_fallback_rq(dead_cpu, next);
4722		raw_spin_unlock(&rq->lock);
4723
4724		__migrate_task(next, dead_cpu, dest_cpu);
4725
4726		raw_spin_lock(&rq->lock);
4727	}
4728
4729	rq->stop = stop;
4730}
4731
4732#endif /* CONFIG_HOTPLUG_CPU */
4733
4734#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4735
4736static struct ctl_table sd_ctl_dir[] = {
4737	{
4738		.procname	= "sched_domain",
4739		.mode		= 0555,
4740	},
4741	{}
4742};
4743
4744static struct ctl_table sd_ctl_root[] = {
4745	{
4746		.procname	= "kernel",
4747		.mode		= 0555,
4748		.child		= sd_ctl_dir,
4749	},
4750	{}
4751};
4752
4753static struct ctl_table *sd_alloc_ctl_entry(int n)
4754{
4755	struct ctl_table *entry =
4756		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4757
4758	return entry;
4759}
4760
4761static void sd_free_ctl_entry(struct ctl_table **tablep)
4762{
4763	struct ctl_table *entry;
4764
4765	/*
4766	 * In the intermediate directories, both the child directory and
4767	 * procname are dynamically allocated and could fail but the mode
4768	 * will always be set. In the lowest directory the names are
4769	 * static strings and all have proc handlers.
4770	 */
4771	for (entry = *tablep; entry->mode; entry++) {
4772		if (entry->child)
4773			sd_free_ctl_entry(&entry->child);
4774		if (entry->proc_handler == NULL)
4775			kfree(entry->procname);
4776	}
4777
4778	kfree(*tablep);
4779	*tablep = NULL;
4780}
4781
4782static int min_load_idx = 0;
4783static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4784
4785static void
4786set_table_entry(struct ctl_table *entry,
4787		const char *procname, void *data, int maxlen,
4788		umode_t mode, proc_handler *proc_handler,
4789		bool load_idx)
4790{
4791	entry->procname = procname;
4792	entry->data = data;
4793	entry->maxlen = maxlen;
4794	entry->mode = mode;
4795	entry->proc_handler = proc_handler;
4796
4797	if (load_idx) {
4798		entry->extra1 = &min_load_idx;
4799		entry->extra2 = &max_load_idx;
4800	}
4801}
4802
4803static struct ctl_table *
4804sd_alloc_ctl_domain_table(struct sched_domain *sd)
4805{
4806	struct ctl_table *table = sd_alloc_ctl_entry(13);
4807
4808	if (table == NULL)
4809		return NULL;
4810
4811	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4812		sizeof(long), 0644, proc_doulongvec_minmax, false);
4813	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4814		sizeof(long), 0644, proc_doulongvec_minmax, false);
4815	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4816		sizeof(int), 0644, proc_dointvec_minmax, true);
4817	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4818		sizeof(int), 0644, proc_dointvec_minmax, true);
4819	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4820		sizeof(int), 0644, proc_dointvec_minmax, true);
4821	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4822		sizeof(int), 0644, proc_dointvec_minmax, true);
4823	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4824		sizeof(int), 0644, proc_dointvec_minmax, true);
4825	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4826		sizeof(int), 0644, proc_dointvec_minmax, false);
4827	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4828		sizeof(int), 0644, proc_dointvec_minmax, false);
4829	set_table_entry(&table[9], "cache_nice_tries",
4830		&sd->cache_nice_tries,
4831		sizeof(int), 0644, proc_dointvec_minmax, false);
4832	set_table_entry(&table[10], "flags", &sd->flags,
4833		sizeof(int), 0644, proc_dointvec_minmax, false);
4834	set_table_entry(&table[11], "name", sd->name,
4835		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4836	/* &table[12] is terminator */
4837
4838	return table;
4839}
4840
4841static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4842{
4843	struct ctl_table *entry, *table;
4844	struct sched_domain *sd;
4845	int domain_num = 0, i;
4846	char buf[32];
4847
4848	for_each_domain(cpu, sd)
4849		domain_num++;
4850	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4851	if (table == NULL)
4852		return NULL;
4853
4854	i = 0;
4855	for_each_domain(cpu, sd) {
4856		snprintf(buf, 32, "domain%d", i);
4857		entry->procname = kstrdup(buf, GFP_KERNEL);
4858		entry->mode = 0555;
4859		entry->child = sd_alloc_ctl_domain_table(sd);
4860		entry++;
4861		i++;
4862	}
4863	return table;
4864}
4865
4866static struct ctl_table_header *sd_sysctl_header;
4867static void register_sched_domain_sysctl(void)
4868{
4869	int i, cpu_num = num_possible_cpus();
4870	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4871	char buf[32];
4872
4873	WARN_ON(sd_ctl_dir[0].child);
4874	sd_ctl_dir[0].child = entry;
4875
4876	if (entry == NULL)
4877		return;
4878
4879	for_each_possible_cpu(i) {
4880		snprintf(buf, 32, "cpu%d", i);
4881		entry->procname = kstrdup(buf, GFP_KERNEL);
4882		entry->mode = 0555;
4883		entry->child = sd_alloc_ctl_cpu_table(i);
4884		entry++;
4885	}
4886
4887	WARN_ON(sd_sysctl_header);
4888	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4889}
4890
4891/* may be called multiple times per register */
4892static void unregister_sched_domain_sysctl(void)
4893{
4894	if (sd_sysctl_header)
4895		unregister_sysctl_table(sd_sysctl_header);
4896	sd_sysctl_header = NULL;
4897	if (sd_ctl_dir[0].child)
4898		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4899}
4900#else
4901static void register_sched_domain_sysctl(void)
4902{
4903}
4904static void unregister_sched_domain_sysctl(void)
4905{
4906}
4907#endif
4908
4909static void set_rq_online(struct rq *rq)
4910{
4911	if (!rq->online) {
4912		const struct sched_class *class;
4913
4914		cpumask_set_cpu(rq->cpu, rq->rd->online);
4915		rq->online = 1;
4916
4917		for_each_class(class) {
4918			if (class->rq_online)
4919				class->rq_online(rq);
4920		}
4921	}
4922}
4923
4924static void set_rq_offline(struct rq *rq)
4925{
4926	if (rq->online) {
4927		const struct sched_class *class;
4928
4929		for_each_class(class) {
4930			if (class->rq_offline)
4931				class->rq_offline(rq);
4932		}
4933
4934		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4935		rq->online = 0;
4936	}
4937}
4938
4939/*
4940 * migration_call - callback that gets triggered when a CPU is added.
4941 * Here we can start up the necessary migration thread for the new CPU.
4942 */
4943static int
4944migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4945{
4946	int cpu = (long)hcpu;
4947	unsigned long flags;
4948	struct rq *rq = cpu_rq(cpu);
4949
4950	switch (action & ~CPU_TASKS_FROZEN) {
4951
4952	case CPU_UP_PREPARE:
4953		rq->calc_load_update = calc_load_update;
4954		break;
4955
4956	case CPU_ONLINE:
4957		/* Update our root-domain */
4958		raw_spin_lock_irqsave(&rq->lock, flags);
4959		if (rq->rd) {
4960			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4961
4962			set_rq_online(rq);
4963		}
4964		raw_spin_unlock_irqrestore(&rq->lock, flags);
4965		break;
4966
4967#ifdef CONFIG_HOTPLUG_CPU
4968	case CPU_DYING:
4969		sched_ttwu_pending();
4970		/* Update our root-domain */
4971		raw_spin_lock_irqsave(&rq->lock, flags);
4972		if (rq->rd) {
4973			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4974			set_rq_offline(rq);
4975		}
4976		migrate_tasks(cpu);
4977		BUG_ON(rq->nr_running != 1); /* the migration thread */
4978		raw_spin_unlock_irqrestore(&rq->lock, flags);
4979		break;
4980
4981	case CPU_DEAD:
4982		calc_load_migrate(rq);
4983		break;
4984#endif
4985	}
4986
4987	update_max_interval();
4988
4989	return NOTIFY_OK;
4990}
4991
4992/*
4993 * Register at high priority so that task migration (migrate_all_tasks)
4994 * happens before everything else.  This has to be lower priority than
4995 * the notifier in the perf_event subsystem, though.
4996 */
4997static struct notifier_block migration_notifier = {
4998	.notifier_call = migration_call,
4999	.priority = CPU_PRI_MIGRATION,
5000};
5001
5002static int sched_cpu_active(struct notifier_block *nfb,
5003				      unsigned long action, void *hcpu)
5004{
5005	switch (action & ~CPU_TASKS_FROZEN) {
5006	case CPU_STARTING:
5007	case CPU_DOWN_FAILED:
5008		set_cpu_active((long)hcpu, true);
5009		return NOTIFY_OK;
5010	default:
5011		return NOTIFY_DONE;
5012	}
5013}
5014
5015static int sched_cpu_inactive(struct notifier_block *nfb,
5016					unsigned long action, void *hcpu)
5017{
5018	unsigned long flags;
5019	long cpu = (long)hcpu;
5020
5021	switch (action & ~CPU_TASKS_FROZEN) {
5022	case CPU_DOWN_PREPARE:
5023		set_cpu_active(cpu, false);
5024
5025		/* explicitly allow suspend */
5026		if (!(action & CPU_TASKS_FROZEN)) {
5027			struct dl_bw *dl_b = dl_bw_of(cpu);
5028			bool overflow;
5029			int cpus;
5030
5031			raw_spin_lock_irqsave(&dl_b->lock, flags);
5032			cpus = dl_bw_cpus(cpu);
5033			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5034			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5035
5036			if (overflow)
5037				return notifier_from_errno(-EBUSY);
5038		}
5039		return NOTIFY_OK;
5040	}
5041
5042	return NOTIFY_DONE;
5043}
5044
5045static int __init migration_init(void)
5046{
5047	void *cpu = (void *)(long)smp_processor_id();
5048	int err;
5049
5050	/* Initialize migration for the boot CPU */
5051	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5052	BUG_ON(err == NOTIFY_BAD);
5053	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5054	register_cpu_notifier(&migration_notifier);
5055
5056	/* Register cpu active notifiers */
5057	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5058	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5059
5060	return 0;
5061}
5062early_initcall(migration_init);
5063#endif
5064
5065#ifdef CONFIG_SMP
5066
5067static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5068
5069#ifdef CONFIG_SCHED_DEBUG
5070
5071static __read_mostly int sched_debug_enabled;
5072
5073static int __init sched_debug_setup(char *str)
5074{
5075	sched_debug_enabled = 1;
5076
5077	return 0;
5078}
5079early_param("sched_debug", sched_debug_setup);
5080
5081static inline bool sched_debug(void)
5082{
5083	return sched_debug_enabled;
5084}
5085
5086static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5087				  struct cpumask *groupmask)
5088{
5089	struct sched_group *group = sd->groups;
5090	char str[256];
5091
5092	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5093	cpumask_clear(groupmask);
5094
5095	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5096
5097	if (!(sd->flags & SD_LOAD_BALANCE)) {
5098		printk("does not load-balance\n");
5099		if (sd->parent)
5100			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5101					" has parent");
5102		return -1;
5103	}
5104
5105	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5106
5107	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5108		printk(KERN_ERR "ERROR: domain->span does not contain "
5109				"CPU%d\n", cpu);
5110	}
5111	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5112		printk(KERN_ERR "ERROR: domain->groups does not contain"
5113				" CPU%d\n", cpu);
5114	}
5115
5116	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5117	do {
5118		if (!group) {
5119			printk("\n");
5120			printk(KERN_ERR "ERROR: group is NULL\n");
5121			break;
5122		}
5123
5124		/*
5125		 * Even though we initialize ->power to something semi-sane,
5126		 * we leave power_orig unset. This allows us to detect if
5127		 * domain iteration is still funny without causing /0 traps.
5128		 */
5129		if (!group->sgp->power_orig) {
5130			printk(KERN_CONT "\n");
5131			printk(KERN_ERR "ERROR: domain->cpu_power not "
5132					"set\n");
5133			break;
5134		}
5135
5136		if (!cpumask_weight(sched_group_cpus(group))) {
5137			printk(KERN_CONT "\n");
5138			printk(KERN_ERR "ERROR: empty group\n");
5139			break;
5140		}
5141
5142		if (!(sd->flags & SD_OVERLAP) &&
5143		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5144			printk(KERN_CONT "\n");
5145			printk(KERN_ERR "ERROR: repeated CPUs\n");
5146			break;
5147		}
5148
5149		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5150
5151		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5152
5153		printk(KERN_CONT " %s", str);
5154		if (group->sgp->power != SCHED_POWER_SCALE) {
5155			printk(KERN_CONT " (cpu_power = %d)",
5156				group->sgp->power);
5157		}
5158
5159		group = group->next;
5160	} while (group != sd->groups);
5161	printk(KERN_CONT "\n");
5162
5163	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5164		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5165
5166	if (sd->parent &&
5167	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5168		printk(KERN_ERR "ERROR: parent span is not a superset "
5169			"of domain->span\n");
5170	return 0;
5171}
5172
5173static void sched_domain_debug(struct sched_domain *sd, int cpu)
5174{
5175	int level = 0;
5176
5177	if (!sched_debug_enabled)
5178		return;
5179
5180	if (!sd) {
5181		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5182		return;
5183	}
5184
5185	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5186
5187	for (;;) {
5188		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5189			break;
5190		level++;
5191		sd = sd->parent;
5192		if (!sd)
5193			break;
5194	}
5195}
5196#else /* !CONFIG_SCHED_DEBUG */
5197# define sched_domain_debug(sd, cpu) do { } while (0)
5198static inline bool sched_debug(void)
5199{
5200	return false;
5201}
5202#endif /* CONFIG_SCHED_DEBUG */
5203
5204static int sd_degenerate(struct sched_domain *sd)
5205{
5206	if (cpumask_weight(sched_domain_span(sd)) == 1)
5207		return 1;
5208
5209	/* Following flags need at least 2 groups */
5210	if (sd->flags & (SD_LOAD_BALANCE |
5211			 SD_BALANCE_NEWIDLE |
5212			 SD_BALANCE_FORK |
5213			 SD_BALANCE_EXEC |
5214			 SD_SHARE_CPUPOWER |
5215			 SD_SHARE_PKG_RESOURCES)) {
5216		if (sd->groups != sd->groups->next)
5217			return 0;
5218	}
5219
5220	/* Following flags don't use groups */
5221	if (sd->flags & (SD_WAKE_AFFINE))
5222		return 0;
5223
5224	return 1;
5225}
5226
5227static int
5228sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5229{
5230	unsigned long cflags = sd->flags, pflags = parent->flags;
5231
5232	if (sd_degenerate(parent))
5233		return 1;
5234
5235	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5236		return 0;
5237
5238	/* Flags needing groups don't count if only 1 group in parent */
5239	if (parent->groups == parent->groups->next) {
5240		pflags &= ~(SD_LOAD_BALANCE |
5241				SD_BALANCE_NEWIDLE |
5242				SD_BALANCE_FORK |
5243				SD_BALANCE_EXEC |
5244				SD_SHARE_CPUPOWER |
5245				SD_SHARE_PKG_RESOURCES |
5246				SD_PREFER_SIBLING);
5247		if (nr_node_ids == 1)
5248			pflags &= ~SD_SERIALIZE;
5249	}
5250	if (~cflags & pflags)
5251		return 0;
5252
5253	return 1;
5254}
5255
5256static void free_rootdomain(struct rcu_head *rcu)
5257{
5258	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5259
5260	cpupri_cleanup(&rd->cpupri);
5261	cpudl_cleanup(&rd->cpudl);
5262	free_cpumask_var(rd->dlo_mask);
5263	free_cpumask_var(rd->rto_mask);
5264	free_cpumask_var(rd->online);
5265	free_cpumask_var(rd->span);
5266	kfree(rd);
5267}
5268
5269static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5270{
5271	struct root_domain *old_rd = NULL;
5272	unsigned long flags;
5273
5274	raw_spin_lock_irqsave(&rq->lock, flags);
5275
5276	if (rq->rd) {
5277		old_rd = rq->rd;
5278
5279		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5280			set_rq_offline(rq);
5281
5282		cpumask_clear_cpu(rq->cpu, old_rd->span);
5283
5284		/*
5285		 * If we dont want to free the old_rd yet then
5286		 * set old_rd to NULL to skip the freeing later
5287		 * in this function:
5288		 */
5289		if (!atomic_dec_and_test(&old_rd->refcount))
5290			old_rd = NULL;
5291	}
5292
5293	atomic_inc(&rd->refcount);
5294	rq->rd = rd;
5295
5296	cpumask_set_cpu(rq->cpu, rd->span);
5297	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5298		set_rq_online(rq);
5299
5300	raw_spin_unlock_irqrestore(&rq->lock, flags);
5301
5302	if (old_rd)
5303		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5304}
5305
5306static int init_rootdomain(struct root_domain *rd)
5307{
5308	memset(rd, 0, sizeof(*rd));
5309
5310	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5311		goto out;
5312	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5313		goto free_span;
5314	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5315		goto free_online;
5316	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5317		goto free_dlo_mask;
5318
5319	init_dl_bw(&rd->dl_bw);
5320	if (cpudl_init(&rd->cpudl) != 0)
5321		goto free_dlo_mask;
5322
5323	if (cpupri_init(&rd->cpupri) != 0)
5324		goto free_rto_mask;
5325	return 0;
5326
5327free_rto_mask:
5328	free_cpumask_var(rd->rto_mask);
5329free_dlo_mask:
5330	free_cpumask_var(rd->dlo_mask);
5331free_online:
5332	free_cpumask_var(rd->online);
5333free_span:
5334	free_cpumask_var(rd->span);
5335out:
5336	return -ENOMEM;
5337}
5338
5339/*
5340 * By default the system creates a single root-domain with all cpus as
5341 * members (mimicking the global state we have today).
5342 */
5343struct root_domain def_root_domain;
5344
5345static void init_defrootdomain(void)
5346{
5347	init_rootdomain(&def_root_domain);
5348
5349	atomic_set(&def_root_domain.refcount, 1);
5350}
5351
5352static struct root_domain *alloc_rootdomain(void)
5353{
5354	struct root_domain *rd;
5355
5356	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5357	if (!rd)
5358		return NULL;
5359
5360	if (init_rootdomain(rd) != 0) {
5361		kfree(rd);
5362		return NULL;
5363	}
5364
5365	return rd;
5366}
5367
5368static void free_sched_groups(struct sched_group *sg, int free_sgp)
5369{
5370	struct sched_group *tmp, *first;
5371
5372	if (!sg)
5373		return;
5374
5375	first = sg;
5376	do {
5377		tmp = sg->next;
5378
5379		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5380			kfree(sg->sgp);
5381
5382		kfree(sg);
5383		sg = tmp;
5384	} while (sg != first);
5385}
5386
5387static void free_sched_domain(struct rcu_head *rcu)
5388{
5389	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5390
5391	/*
5392	 * If its an overlapping domain it has private groups, iterate and
5393	 * nuke them all.
5394	 */
5395	if (sd->flags & SD_OVERLAP) {
5396		free_sched_groups(sd->groups, 1);
5397	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5398		kfree(sd->groups->sgp);
5399		kfree(sd->groups);
5400	}
5401	kfree(sd);
5402}
5403
5404static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5405{
5406	call_rcu(&sd->rcu, free_sched_domain);
5407}
5408
5409static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5410{
5411	for (; sd; sd = sd->parent)
5412		destroy_sched_domain(sd, cpu);
5413}
5414
5415/*
5416 * Keep a special pointer to the highest sched_domain that has
5417 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5418 * allows us to avoid some pointer chasing select_idle_sibling().
5419 *
5420 * Also keep a unique ID per domain (we use the first cpu number in
5421 * the cpumask of the domain), this allows us to quickly tell if
5422 * two cpus are in the same cache domain, see cpus_share_cache().
5423 */
5424DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5425DEFINE_PER_CPU(int, sd_llc_size);
5426DEFINE_PER_CPU(int, sd_llc_id);
5427DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5428DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5429DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5430
5431static void update_top_cache_domain(int cpu)
5432{
5433	struct sched_domain *sd;
5434	struct sched_domain *busy_sd = NULL;
5435	int id = cpu;
5436	int size = 1;
5437
5438	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5439	if (sd) {
5440		id = cpumask_first(sched_domain_span(sd));
5441		size = cpumask_weight(sched_domain_span(sd));
5442		busy_sd = sd->parent; /* sd_busy */
5443	}
5444	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5445
5446	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5447	per_cpu(sd_llc_size, cpu) = size;
5448	per_cpu(sd_llc_id, cpu) = id;
5449
5450	sd = lowest_flag_domain(cpu, SD_NUMA);
5451	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5452
5453	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5454	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5455}
5456
5457/*
5458 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5459 * hold the hotplug lock.
5460 */
5461static void
5462cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5463{
5464	struct rq *rq = cpu_rq(cpu);
5465	struct sched_domain *tmp;
5466
5467	/* Remove the sched domains which do not contribute to scheduling. */
5468	for (tmp = sd; tmp; ) {
5469		struct sched_domain *parent = tmp->parent;
5470		if (!parent)
5471			break;
5472
5473		if (sd_parent_degenerate(tmp, parent)) {
5474			tmp->parent = parent->parent;
5475			if (parent->parent)
5476				parent->parent->child = tmp;
5477			/*
5478			 * Transfer SD_PREFER_SIBLING down in case of a
5479			 * degenerate parent; the spans match for this
5480			 * so the property transfers.
5481			 */
5482			if (parent->flags & SD_PREFER_SIBLING)
5483				tmp->flags |= SD_PREFER_SIBLING;
5484			destroy_sched_domain(parent, cpu);
5485		} else
5486			tmp = tmp->parent;
5487	}
5488
5489	if (sd && sd_degenerate(sd)) {
5490		tmp = sd;
5491		sd = sd->parent;
5492		destroy_sched_domain(tmp, cpu);
5493		if (sd)
5494			sd->child = NULL;
5495	}
5496
5497	sched_domain_debug(sd, cpu);
5498
5499	rq_attach_root(rq, rd);
5500	tmp = rq->sd;
5501	rcu_assign_pointer(rq->sd, sd);
5502	destroy_sched_domains(tmp, cpu);
5503
5504	update_top_cache_domain(cpu);
5505}
5506
5507/* cpus with isolated domains */
5508static cpumask_var_t cpu_isolated_map;
5509
5510/* Setup the mask of cpus configured for isolated domains */
5511static int __init isolated_cpu_setup(char *str)
5512{
5513	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5514	cpulist_parse(str, cpu_isolated_map);
5515	return 1;
5516}
5517
5518__setup("isolcpus=", isolated_cpu_setup);
5519
5520static const struct cpumask *cpu_cpu_mask(int cpu)
5521{
5522	return cpumask_of_node(cpu_to_node(cpu));
5523}
5524
5525struct sd_data {
5526	struct sched_domain **__percpu sd;
5527	struct sched_group **__percpu sg;
5528	struct sched_group_power **__percpu sgp;
5529};
5530
5531struct s_data {
5532	struct sched_domain ** __percpu sd;
5533	struct root_domain	*rd;
5534};
5535
5536enum s_alloc {
5537	sa_rootdomain,
5538	sa_sd,
5539	sa_sd_storage,
5540	sa_none,
5541};
5542
5543struct sched_domain_topology_level;
5544
5545typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5546typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5547
5548#define SDTL_OVERLAP	0x01
5549
5550struct sched_domain_topology_level {
5551	sched_domain_init_f init;
5552	sched_domain_mask_f mask;
5553	int		    flags;
5554	int		    numa_level;
5555	struct sd_data      data;
5556};
5557
5558/*
5559 * Build an iteration mask that can exclude certain CPUs from the upwards
5560 * domain traversal.
5561 *
5562 * Asymmetric node setups can result in situations where the domain tree is of
5563 * unequal depth, make sure to skip domains that already cover the entire
5564 * range.
5565 *
5566 * In that case build_sched_domains() will have terminated the iteration early
5567 * and our sibling sd spans will be empty. Domains should always include the
5568 * cpu they're built on, so check that.
5569 *
5570 */
5571static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5572{
5573	const struct cpumask *span = sched_domain_span(sd);
5574	struct sd_data *sdd = sd->private;
5575	struct sched_domain *sibling;
5576	int i;
5577
5578	for_each_cpu(i, span) {
5579		sibling = *per_cpu_ptr(sdd->sd, i);
5580		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5581			continue;
5582
5583		cpumask_set_cpu(i, sched_group_mask(sg));
5584	}
5585}
5586
5587/*
5588 * Return the canonical balance cpu for this group, this is the first cpu
5589 * of this group that's also in the iteration mask.
5590 */
5591int group_balance_cpu(struct sched_group *sg)
5592{
5593	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5594}
5595
5596static int
5597build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5598{
5599	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5600	const struct cpumask *span = sched_domain_span(sd);
5601	struct cpumask *covered = sched_domains_tmpmask;
5602	struct sd_data *sdd = sd->private;
5603	struct sched_domain *child;
5604	int i;
5605
5606	cpumask_clear(covered);
5607
5608	for_each_cpu(i, span) {
5609		struct cpumask *sg_span;
5610
5611		if (cpumask_test_cpu(i, covered))
5612			continue;
5613
5614		child = *per_cpu_ptr(sdd->sd, i);
5615
5616		/* See the comment near build_group_mask(). */
5617		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5618			continue;
5619
5620		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5621				GFP_KERNEL, cpu_to_node(cpu));
5622
5623		if (!sg)
5624			goto fail;
5625
5626		sg_span = sched_group_cpus(sg);
5627		if (child->child) {
5628			child = child->child;
5629			cpumask_copy(sg_span, sched_domain_span(child));
5630		} else
5631			cpumask_set_cpu(i, sg_span);
5632
5633		cpumask_or(covered, covered, sg_span);
5634
5635		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5636		if (atomic_inc_return(&sg->sgp->ref) == 1)
5637			build_group_mask(sd, sg);
5638
5639		/*
5640		 * Initialize sgp->power such that even if we mess up the
5641		 * domains and no possible iteration will get us here, we won't
5642		 * die on a /0 trap.
5643		 */
5644		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5645		sg->sgp->power_orig = sg->sgp->power;
5646
5647		/*
5648		 * Make sure the first group of this domain contains the
5649		 * canonical balance cpu. Otherwise the sched_domain iteration
5650		 * breaks. See update_sg_lb_stats().
5651		 */
5652		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5653		    group_balance_cpu(sg) == cpu)
5654			groups = sg;
5655
5656		if (!first)
5657			first = sg;
5658		if (last)
5659			last->next = sg;
5660		last = sg;
5661		last->next = first;
5662	}
5663	sd->groups = groups;
5664
5665	return 0;
5666
5667fail:
5668	free_sched_groups(first, 0);
5669
5670	return -ENOMEM;
5671}
5672
5673static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5674{
5675	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5676	struct sched_domain *child = sd->child;
5677
5678	if (child)
5679		cpu = cpumask_first(sched_domain_span(child));
5680
5681	if (sg) {
5682		*sg = *per_cpu_ptr(sdd->sg, cpu);
5683		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5684		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5685	}
5686
5687	return cpu;
5688}
5689
5690/*
5691 * build_sched_groups will build a circular linked list of the groups
5692 * covered by the given span, and will set each group's ->cpumask correctly,
5693 * and ->cpu_power to 0.
5694 *
5695 * Assumes the sched_domain tree is fully constructed
5696 */
5697static int
5698build_sched_groups(struct sched_domain *sd, int cpu)
5699{
5700	struct sched_group *first = NULL, *last = NULL;
5701	struct sd_data *sdd = sd->private;
5702	const struct cpumask *span = sched_domain_span(sd);
5703	struct cpumask *covered;
5704	int i;
5705
5706	get_group(cpu, sdd, &sd->groups);
5707	atomic_inc(&sd->groups->ref);
5708
5709	if (cpu != cpumask_first(span))
5710		return 0;
5711
5712	lockdep_assert_held(&sched_domains_mutex);
5713	covered = sched_domains_tmpmask;
5714
5715	cpumask_clear(covered);
5716
5717	for_each_cpu(i, span) {
5718		struct sched_group *sg;
5719		int group, j;
5720
5721		if (cpumask_test_cpu(i, covered))
5722			continue;
5723
5724		group = get_group(i, sdd, &sg);
5725		cpumask_clear(sched_group_cpus(sg));
5726		sg->sgp->power = 0;
5727		cpumask_setall(sched_group_mask(sg));
5728
5729		for_each_cpu(j, span) {
5730			if (get_group(j, sdd, NULL) != group)
5731				continue;
5732
5733			cpumask_set_cpu(j, covered);
5734			cpumask_set_cpu(j, sched_group_cpus(sg));
5735		}
5736
5737		if (!first)
5738			first = sg;
5739		if (last)
5740			last->next = sg;
5741		last = sg;
5742	}
5743	last->next = first;
5744
5745	return 0;
5746}
5747
5748/*
5749 * Initialize sched groups cpu_power.
5750 *
5751 * cpu_power indicates the capacity of sched group, which is used while
5752 * distributing the load between different sched groups in a sched domain.
5753 * Typically cpu_power for all the groups in a sched domain will be same unless
5754 * there are asymmetries in the topology. If there are asymmetries, group
5755 * having more cpu_power will pickup more load compared to the group having
5756 * less cpu_power.
5757 */
5758static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5759{
5760	struct sched_group *sg = sd->groups;
5761
5762	WARN_ON(!sg);
5763
5764	do {
5765		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5766		sg = sg->next;
5767	} while (sg != sd->groups);
5768
5769	if (cpu != group_balance_cpu(sg))
5770		return;
5771
5772	update_group_power(sd, cpu);
5773	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5774}
5775
5776int __weak arch_sd_sibling_asym_packing(void)
5777{
5778       return 0*SD_ASYM_PACKING;
5779}
5780
5781/*
5782 * Initializers for schedule domains
5783 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5784 */
5785
5786#ifdef CONFIG_SCHED_DEBUG
5787# define SD_INIT_NAME(sd, type)		sd->name = #type
5788#else
5789# define SD_INIT_NAME(sd, type)		do { } while (0)
5790#endif
5791
5792#define SD_INIT_FUNC(type)						\
5793static noinline struct sched_domain *					\
5794sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5795{									\
5796	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5797	*sd = SD_##type##_INIT;						\
5798	SD_INIT_NAME(sd, type);						\
5799	sd->private = &tl->data;					\
5800	return sd;							\
5801}
5802
5803SD_INIT_FUNC(CPU)
5804#ifdef CONFIG_SCHED_SMT
5805 SD_INIT_FUNC(SIBLING)
5806#endif
5807#ifdef CONFIG_SCHED_MC
5808 SD_INIT_FUNC(MC)
5809#endif
5810#ifdef CONFIG_SCHED_BOOK
5811 SD_INIT_FUNC(BOOK)
5812#endif
5813
5814static int default_relax_domain_level = -1;
5815int sched_domain_level_max;
5816
5817static int __init setup_relax_domain_level(char *str)
5818{
5819	if (kstrtoint(str, 0, &default_relax_domain_level))
5820		pr_warn("Unable to set relax_domain_level\n");
5821
5822	return 1;
5823}
5824__setup("relax_domain_level=", setup_relax_domain_level);
5825
5826static void set_domain_attribute(struct sched_domain *sd,
5827				 struct sched_domain_attr *attr)
5828{
5829	int request;
5830
5831	if (!attr || attr->relax_domain_level < 0) {
5832		if (default_relax_domain_level < 0)
5833			return;
5834		else
5835			request = default_relax_domain_level;
5836	} else
5837		request = attr->relax_domain_level;
5838	if (request < sd->level) {
5839		/* turn off idle balance on this domain */
5840		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5841	} else {
5842		/* turn on idle balance on this domain */
5843		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5844	}
5845}
5846
5847static void __sdt_free(const struct cpumask *cpu_map);
5848static int __sdt_alloc(const struct cpumask *cpu_map);
5849
5850static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5851				 const struct cpumask *cpu_map)
5852{
5853	switch (what) {
5854	case sa_rootdomain:
5855		if (!atomic_read(&d->rd->refcount))
5856			free_rootdomain(&d->rd->rcu); /* fall through */
5857	case sa_sd:
5858		free_percpu(d->sd); /* fall through */
5859	case sa_sd_storage:
5860		__sdt_free(cpu_map); /* fall through */
5861	case sa_none:
5862		break;
5863	}
5864}
5865
5866static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5867						   const struct cpumask *cpu_map)
5868{
5869	memset(d, 0, sizeof(*d));
5870
5871	if (__sdt_alloc(cpu_map))
5872		return sa_sd_storage;
5873	d->sd = alloc_percpu(struct sched_domain *);
5874	if (!d->sd)
5875		return sa_sd_storage;
5876	d->rd = alloc_rootdomain();
5877	if (!d->rd)
5878		return sa_sd;
5879	return sa_rootdomain;
5880}
5881
5882/*
5883 * NULL the sd_data elements we've used to build the sched_domain and
5884 * sched_group structure so that the subsequent __free_domain_allocs()
5885 * will not free the data we're using.
5886 */
5887static void claim_allocations(int cpu, struct sched_domain *sd)
5888{
5889	struct sd_data *sdd = sd->private;
5890
5891	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5892	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5893
5894	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5895		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5896
5897	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5898		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5899}
5900
5901#ifdef CONFIG_SCHED_SMT
5902static const struct cpumask *cpu_smt_mask(int cpu)
5903{
5904	return topology_thread_cpumask(cpu);
5905}
5906#endif
5907
5908/*
5909 * Topology list, bottom-up.
5910 */
5911static struct sched_domain_topology_level default_topology[] = {
5912#ifdef CONFIG_SCHED_SMT
5913	{ sd_init_SIBLING, cpu_smt_mask, },
5914#endif
5915#ifdef CONFIG_SCHED_MC
5916	{ sd_init_MC, cpu_coregroup_mask, },
5917#endif
5918#ifdef CONFIG_SCHED_BOOK
5919	{ sd_init_BOOK, cpu_book_mask, },
5920#endif
5921	{ sd_init_CPU, cpu_cpu_mask, },
5922	{ NULL, },
5923};
5924
5925static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5926
5927#define for_each_sd_topology(tl)			\
5928	for (tl = sched_domain_topology; tl->init; tl++)
5929
5930#ifdef CONFIG_NUMA
5931
5932static int sched_domains_numa_levels;
5933static int *sched_domains_numa_distance;
5934static struct cpumask ***sched_domains_numa_masks;
5935static int sched_domains_curr_level;
5936
5937static inline int sd_local_flags(int level)
5938{
5939	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5940		return 0;
5941
5942	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5943}
5944
5945static struct sched_domain *
5946sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5947{
5948	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5949	int level = tl->numa_level;
5950	int sd_weight = cpumask_weight(
5951			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5952
5953	*sd = (struct sched_domain){
5954		.min_interval		= sd_weight,
5955		.max_interval		= 2*sd_weight,
5956		.busy_factor		= 32,
5957		.imbalance_pct		= 125,
5958		.cache_nice_tries	= 2,
5959		.busy_idx		= 3,
5960		.idle_idx		= 2,
5961		.newidle_idx		= 0,
5962		.wake_idx		= 0,
5963		.forkexec_idx		= 0,
5964
5965		.flags			= 1*SD_LOAD_BALANCE
5966					| 1*SD_BALANCE_NEWIDLE
5967					| 0*SD_BALANCE_EXEC
5968					| 0*SD_BALANCE_FORK
5969					| 0*SD_BALANCE_WAKE
5970					| 0*SD_WAKE_AFFINE
5971					| 0*SD_SHARE_CPUPOWER
5972					| 0*SD_SHARE_PKG_RESOURCES
5973					| 1*SD_SERIALIZE
5974					| 0*SD_PREFER_SIBLING
5975					| 1*SD_NUMA
5976					| sd_local_flags(level)
5977					,
5978		.last_balance		= jiffies,
5979		.balance_interval	= sd_weight,
5980	};
5981	SD_INIT_NAME(sd, NUMA);
5982	sd->private = &tl->data;
5983
5984	/*
5985	 * Ugly hack to pass state to sd_numa_mask()...
5986	 */
5987	sched_domains_curr_level = tl->numa_level;
5988
5989	return sd;
5990}
5991
5992static const struct cpumask *sd_numa_mask(int cpu)
5993{
5994	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5995}
5996
5997static void sched_numa_warn(const char *str)
5998{
5999	static int done = false;
6000	int i,j;
6001
6002	if (done)
6003		return;
6004
6005	done = true;
6006
6007	printk(KERN_WARNING "ERROR: %s\n\n", str);
6008
6009	for (i = 0; i < nr_node_ids; i++) {
6010		printk(KERN_WARNING "  ");
6011		for (j = 0; j < nr_node_ids; j++)
6012			printk(KERN_CONT "%02d ", node_distance(i,j));
6013		printk(KERN_CONT "\n");
6014	}
6015	printk(KERN_WARNING "\n");
6016}
6017
6018static bool find_numa_distance(int distance)
6019{
6020	int i;
6021
6022	if (distance == node_distance(0, 0))
6023		return true;
6024
6025	for (i = 0; i < sched_domains_numa_levels; i++) {
6026		if (sched_domains_numa_distance[i] == distance)
6027			return true;
6028	}
6029
6030	return false;
6031}
6032
6033static void sched_init_numa(void)
6034{
6035	int next_distance, curr_distance = node_distance(0, 0);
6036	struct sched_domain_topology_level *tl;
6037	int level = 0;
6038	int i, j, k;
6039
6040	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6041	if (!sched_domains_numa_distance)
6042		return;
6043
6044	/*
6045	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6046	 * unique distances in the node_distance() table.
6047	 *
6048	 * Assumes node_distance(0,j) includes all distances in
6049	 * node_distance(i,j) in order to avoid cubic time.
6050	 */
6051	next_distance = curr_distance;
6052	for (i = 0; i < nr_node_ids; i++) {
6053		for (j = 0; j < nr_node_ids; j++) {
6054			for (k = 0; k < nr_node_ids; k++) {
6055				int distance = node_distance(i, k);
6056
6057				if (distance > curr_distance &&
6058				    (distance < next_distance ||
6059				     next_distance == curr_distance))
6060					next_distance = distance;
6061
6062				/*
6063				 * While not a strong assumption it would be nice to know
6064				 * about cases where if node A is connected to B, B is not
6065				 * equally connected to A.
6066				 */
6067				if (sched_debug() && node_distance(k, i) != distance)
6068					sched_numa_warn("Node-distance not symmetric");
6069
6070				if (sched_debug() && i && !find_numa_distance(distance))
6071					sched_numa_warn("Node-0 not representative");
6072			}
6073			if (next_distance != curr_distance) {
6074				sched_domains_numa_distance[level++] = next_distance;
6075				sched_domains_numa_levels = level;
6076				curr_distance = next_distance;
6077			} else break;
6078		}
6079
6080		/*
6081		 * In case of sched_debug() we verify the above assumption.
6082		 */
6083		if (!sched_debug())
6084			break;
6085	}
6086	/*
6087	 * 'level' contains the number of unique distances, excluding the
6088	 * identity distance node_distance(i,i).
6089	 *
6090	 * The sched_domains_numa_distance[] array includes the actual distance
6091	 * numbers.
6092	 */
6093
6094	/*
6095	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6096	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6097	 * the array will contain less then 'level' members. This could be
6098	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6099	 * in other functions.
6100	 *
6101	 * We reset it to 'level' at the end of this function.
6102	 */
6103	sched_domains_numa_levels = 0;
6104
6105	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6106	if (!sched_domains_numa_masks)
6107		return;
6108
6109	/*
6110	 * Now for each level, construct a mask per node which contains all
6111	 * cpus of nodes that are that many hops away from us.
6112	 */
6113	for (i = 0; i < level; i++) {
6114		sched_domains_numa_masks[i] =
6115			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6116		if (!sched_domains_numa_masks[i])
6117			return;
6118
6119		for (j = 0; j < nr_node_ids; j++) {
6120			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6121			if (!mask)
6122				return;
6123
6124			sched_domains_numa_masks[i][j] = mask;
6125
6126			for (k = 0; k < nr_node_ids; k++) {
6127				if (node_distance(j, k) > sched_domains_numa_distance[i])
6128					continue;
6129
6130				cpumask_or(mask, mask, cpumask_of_node(k));
6131			}
6132		}
6133	}
6134
6135	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6136			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6137	if (!tl)
6138		return;
6139
6140	/*
6141	 * Copy the default topology bits..
6142	 */
6143	for (i = 0; default_topology[i].init; i++)
6144		tl[i] = default_topology[i];
6145
6146	/*
6147	 * .. and append 'j' levels of NUMA goodness.
6148	 */
6149	for (j = 0; j < level; i++, j++) {
6150		tl[i] = (struct sched_domain_topology_level){
6151			.init = sd_numa_init,
6152			.mask = sd_numa_mask,
6153			.flags = SDTL_OVERLAP,
6154			.numa_level = j,
6155		};
6156	}
6157
6158	sched_domain_topology = tl;
6159
6160	sched_domains_numa_levels = level;
6161}
6162
6163static void sched_domains_numa_masks_set(int cpu)
6164{
6165	int i, j;
6166	int node = cpu_to_node(cpu);
6167
6168	for (i = 0; i < sched_domains_numa_levels; i++) {
6169		for (j = 0; j < nr_node_ids; j++) {
6170			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6171				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6172		}
6173	}
6174}
6175
6176static void sched_domains_numa_masks_clear(int cpu)
6177{
6178	int i, j;
6179	for (i = 0; i < sched_domains_numa_levels; i++) {
6180		for (j = 0; j < nr_node_ids; j++)
6181			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6182	}
6183}
6184
6185/*
6186 * Update sched_domains_numa_masks[level][node] array when new cpus
6187 * are onlined.
6188 */
6189static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6190					   unsigned long action,
6191					   void *hcpu)
6192{
6193	int cpu = (long)hcpu;
6194
6195	switch (action & ~CPU_TASKS_FROZEN) {
6196	case CPU_ONLINE:
6197		sched_domains_numa_masks_set(cpu);
6198		break;
6199
6200	case CPU_DEAD:
6201		sched_domains_numa_masks_clear(cpu);
6202		break;
6203
6204	default:
6205		return NOTIFY_DONE;
6206	}
6207
6208	return NOTIFY_OK;
6209}
6210#else
6211static inline void sched_init_numa(void)
6212{
6213}
6214
6215static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6216					   unsigned long action,
6217					   void *hcpu)
6218{
6219	return 0;
6220}
6221#endif /* CONFIG_NUMA */
6222
6223static int __sdt_alloc(const struct cpumask *cpu_map)
6224{
6225	struct sched_domain_topology_level *tl;
6226	int j;
6227
6228	for_each_sd_topology(tl) {
6229		struct sd_data *sdd = &tl->data;
6230
6231		sdd->sd = alloc_percpu(struct sched_domain *);
6232		if (!sdd->sd)
6233			return -ENOMEM;
6234
6235		sdd->sg = alloc_percpu(struct sched_group *);
6236		if (!sdd->sg)
6237			return -ENOMEM;
6238
6239		sdd->sgp = alloc_percpu(struct sched_group_power *);
6240		if (!sdd->sgp)
6241			return -ENOMEM;
6242
6243		for_each_cpu(j, cpu_map) {
6244			struct sched_domain *sd;
6245			struct sched_group *sg;
6246			struct sched_group_power *sgp;
6247
6248		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6249					GFP_KERNEL, cpu_to_node(j));
6250			if (!sd)
6251				return -ENOMEM;
6252
6253			*per_cpu_ptr(sdd->sd, j) = sd;
6254
6255			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6256					GFP_KERNEL, cpu_to_node(j));
6257			if (!sg)
6258				return -ENOMEM;
6259
6260			sg->next = sg;
6261
6262			*per_cpu_ptr(sdd->sg, j) = sg;
6263
6264			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6265					GFP_KERNEL, cpu_to_node(j));
6266			if (!sgp)
6267				return -ENOMEM;
6268
6269			*per_cpu_ptr(sdd->sgp, j) = sgp;
6270		}
6271	}
6272
6273	return 0;
6274}
6275
6276static void __sdt_free(const struct cpumask *cpu_map)
6277{
6278	struct sched_domain_topology_level *tl;
6279	int j;
6280
6281	for_each_sd_topology(tl) {
6282		struct sd_data *sdd = &tl->data;
6283
6284		for_each_cpu(j, cpu_map) {
6285			struct sched_domain *sd;
6286
6287			if (sdd->sd) {
6288				sd = *per_cpu_ptr(sdd->sd, j);
6289				if (sd && (sd->flags & SD_OVERLAP))
6290					free_sched_groups(sd->groups, 0);
6291				kfree(*per_cpu_ptr(sdd->sd, j));
6292			}
6293
6294			if (sdd->sg)
6295				kfree(*per_cpu_ptr(sdd->sg, j));
6296			if (sdd->sgp)
6297				kfree(*per_cpu_ptr(sdd->sgp, j));
6298		}
6299		free_percpu(sdd->sd);
6300		sdd->sd = NULL;
6301		free_percpu(sdd->sg);
6302		sdd->sg = NULL;
6303		free_percpu(sdd->sgp);
6304		sdd->sgp = NULL;
6305	}
6306}
6307
6308struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6309		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6310		struct sched_domain *child, int cpu)
6311{
6312	struct sched_domain *sd = tl->init(tl, cpu);
6313	if (!sd)
6314		return child;
6315
6316	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6317	if (child) {
6318		sd->level = child->level + 1;
6319		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6320		child->parent = sd;
6321		sd->child = child;
6322	}
6323	set_domain_attribute(sd, attr);
6324
6325	return sd;
6326}
6327
6328/*
6329 * Build sched domains for a given set of cpus and attach the sched domains
6330 * to the individual cpus
6331 */
6332static int build_sched_domains(const struct cpumask *cpu_map,
6333			       struct sched_domain_attr *attr)
6334{
6335	enum s_alloc alloc_state;
6336	struct sched_domain *sd;
6337	struct s_data d;
6338	int i, ret = -ENOMEM;
6339
6340	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6341	if (alloc_state != sa_rootdomain)
6342		goto error;
6343
6344	/* Set up domains for cpus specified by the cpu_map. */
6345	for_each_cpu(i, cpu_map) {
6346		struct sched_domain_topology_level *tl;
6347
6348		sd = NULL;
6349		for_each_sd_topology(tl) {
6350			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6351			if (tl == sched_domain_topology)
6352				*per_cpu_ptr(d.sd, i) = sd;
6353			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6354				sd->flags |= SD_OVERLAP;
6355			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6356				break;
6357		}
6358	}
6359
6360	/* Build the groups for the domains */
6361	for_each_cpu(i, cpu_map) {
6362		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6363			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6364			if (sd->flags & SD_OVERLAP) {
6365				if (build_overlap_sched_groups(sd, i))
6366					goto error;
6367			} else {
6368				if (build_sched_groups(sd, i))
6369					goto error;
6370			}
6371		}
6372	}
6373
6374	/* Calculate CPU power for physical packages and nodes */
6375	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6376		if (!cpumask_test_cpu(i, cpu_map))
6377			continue;
6378
6379		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6380			claim_allocations(i, sd);
6381			init_sched_groups_power(i, sd);
6382		}
6383	}
6384
6385	/* Attach the domains */
6386	rcu_read_lock();
6387	for_each_cpu(i, cpu_map) {
6388		sd = *per_cpu_ptr(d.sd, i);
6389		cpu_attach_domain(sd, d.rd, i);
6390	}
6391	rcu_read_unlock();
6392
6393	ret = 0;
6394error:
6395	__free_domain_allocs(&d, alloc_state, cpu_map);
6396	return ret;
6397}
6398
6399static cpumask_var_t *doms_cur;	/* current sched domains */
6400static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6401static struct sched_domain_attr *dattr_cur;
6402				/* attribues of custom domains in 'doms_cur' */
6403
6404/*
6405 * Special case: If a kmalloc of a doms_cur partition (array of
6406 * cpumask) fails, then fallback to a single sched domain,
6407 * as determined by the single cpumask fallback_doms.
6408 */
6409static cpumask_var_t fallback_doms;
6410
6411/*
6412 * arch_update_cpu_topology lets virtualized architectures update the
6413 * cpu core maps. It is supposed to return 1 if the topology changed
6414 * or 0 if it stayed the same.
6415 */
6416int __attribute__((weak)) arch_update_cpu_topology(void)
6417{
6418	return 0;
6419}
6420
6421cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6422{
6423	int i;
6424	cpumask_var_t *doms;
6425
6426	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6427	if (!doms)
6428		return NULL;
6429	for (i = 0; i < ndoms; i++) {
6430		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6431			free_sched_domains(doms, i);
6432			return NULL;
6433		}
6434	}
6435	return doms;
6436}
6437
6438void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6439{
6440	unsigned int i;
6441	for (i = 0; i < ndoms; i++)
6442		free_cpumask_var(doms[i]);
6443	kfree(doms);
6444}
6445
6446/*
6447 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6448 * For now this just excludes isolated cpus, but could be used to
6449 * exclude other special cases in the future.
6450 */
6451static int init_sched_domains(const struct cpumask *cpu_map)
6452{
6453	int err;
6454
6455	arch_update_cpu_topology();
6456	ndoms_cur = 1;
6457	doms_cur = alloc_sched_domains(ndoms_cur);
6458	if (!doms_cur)
6459		doms_cur = &fallback_doms;
6460	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6461	err = build_sched_domains(doms_cur[0], NULL);
6462	register_sched_domain_sysctl();
6463
6464	return err;
6465}
6466
6467/*
6468 * Detach sched domains from a group of cpus specified in cpu_map
6469 * These cpus will now be attached to the NULL domain
6470 */
6471static void detach_destroy_domains(const struct cpumask *cpu_map)
6472{
6473	int i;
6474
6475	rcu_read_lock();
6476	for_each_cpu(i, cpu_map)
6477		cpu_attach_domain(NULL, &def_root_domain, i);
6478	rcu_read_unlock();
6479}
6480
6481/* handle null as "default" */
6482static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6483			struct sched_domain_attr *new, int idx_new)
6484{
6485	struct sched_domain_attr tmp;
6486
6487	/* fast path */
6488	if (!new && !cur)
6489		return 1;
6490
6491	tmp = SD_ATTR_INIT;
6492	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6493			new ? (new + idx_new) : &tmp,
6494			sizeof(struct sched_domain_attr));
6495}
6496
6497/*
6498 * Partition sched domains as specified by the 'ndoms_new'
6499 * cpumasks in the array doms_new[] of cpumasks. This compares
6500 * doms_new[] to the current sched domain partitioning, doms_cur[].
6501 * It destroys each deleted domain and builds each new domain.
6502 *
6503 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6504 * The masks don't intersect (don't overlap.) We should setup one
6505 * sched domain for each mask. CPUs not in any of the cpumasks will
6506 * not be load balanced. If the same cpumask appears both in the
6507 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6508 * it as it is.
6509 *
6510 * The passed in 'doms_new' should be allocated using
6511 * alloc_sched_domains.  This routine takes ownership of it and will
6512 * free_sched_domains it when done with it. If the caller failed the
6513 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6514 * and partition_sched_domains() will fallback to the single partition
6515 * 'fallback_doms', it also forces the domains to be rebuilt.
6516 *
6517 * If doms_new == NULL it will be replaced with cpu_online_mask.
6518 * ndoms_new == 0 is a special case for destroying existing domains,
6519 * and it will not create the default domain.
6520 *
6521 * Call with hotplug lock held
6522 */
6523void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6524			     struct sched_domain_attr *dattr_new)
6525{
6526	int i, j, n;
6527	int new_topology;
6528
6529	mutex_lock(&sched_domains_mutex);
6530
6531	/* always unregister in case we don't destroy any domains */
6532	unregister_sched_domain_sysctl();
6533
6534	/* Let architecture update cpu core mappings. */
6535	new_topology = arch_update_cpu_topology();
6536
6537	n = doms_new ? ndoms_new : 0;
6538
6539	/* Destroy deleted domains */
6540	for (i = 0; i < ndoms_cur; i++) {
6541		for (j = 0; j < n && !new_topology; j++) {
6542			if (cpumask_equal(doms_cur[i], doms_new[j])
6543			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6544				goto match1;
6545		}
6546		/* no match - a current sched domain not in new doms_new[] */
6547		detach_destroy_domains(doms_cur[i]);
6548match1:
6549		;
6550	}
6551
6552	n = ndoms_cur;
6553	if (doms_new == NULL) {
6554		n = 0;
6555		doms_new = &fallback_doms;
6556		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6557		WARN_ON_ONCE(dattr_new);
6558	}
6559
6560	/* Build new domains */
6561	for (i = 0; i < ndoms_new; i++) {
6562		for (j = 0; j < n && !new_topology; j++) {
6563			if (cpumask_equal(doms_new[i], doms_cur[j])
6564			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6565				goto match2;
6566		}
6567		/* no match - add a new doms_new */
6568		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6569match2:
6570		;
6571	}
6572
6573	/* Remember the new sched domains */
6574	if (doms_cur != &fallback_doms)
6575		free_sched_domains(doms_cur, ndoms_cur);
6576	kfree(dattr_cur);	/* kfree(NULL) is safe */
6577	doms_cur = doms_new;
6578	dattr_cur = dattr_new;
6579	ndoms_cur = ndoms_new;
6580
6581	register_sched_domain_sysctl();
6582
6583	mutex_unlock(&sched_domains_mutex);
6584}
6585
6586static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6587
6588/*
6589 * Update cpusets according to cpu_active mask.  If cpusets are
6590 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6591 * around partition_sched_domains().
6592 *
6593 * If we come here as part of a suspend/resume, don't touch cpusets because we
6594 * want to restore it back to its original state upon resume anyway.
6595 */
6596static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6597			     void *hcpu)
6598{
6599	switch (action) {
6600	case CPU_ONLINE_FROZEN:
6601	case CPU_DOWN_FAILED_FROZEN:
6602
6603		/*
6604		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6605		 * resume sequence. As long as this is not the last online
6606		 * operation in the resume sequence, just build a single sched
6607		 * domain, ignoring cpusets.
6608		 */
6609		num_cpus_frozen--;
6610		if (likely(num_cpus_frozen)) {
6611			partition_sched_domains(1, NULL, NULL);
6612			break;
6613		}
6614
6615		/*
6616		 * This is the last CPU online operation. So fall through and
6617		 * restore the original sched domains by considering the
6618		 * cpuset configurations.
6619		 */
6620
6621	case CPU_ONLINE:
6622	case CPU_DOWN_FAILED:
6623		cpuset_update_active_cpus(true);
6624		break;
6625	default:
6626		return NOTIFY_DONE;
6627	}
6628	return NOTIFY_OK;
6629}
6630
6631static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6632			       void *hcpu)
6633{
6634	switch (action) {
6635	case CPU_DOWN_PREPARE:
6636		cpuset_update_active_cpus(false);
6637		break;
6638	case CPU_DOWN_PREPARE_FROZEN:
6639		num_cpus_frozen++;
6640		partition_sched_domains(1, NULL, NULL);
6641		break;
6642	default:
6643		return NOTIFY_DONE;
6644	}
6645	return NOTIFY_OK;
6646}
6647
6648void __init sched_init_smp(void)
6649{
6650	cpumask_var_t non_isolated_cpus;
6651
6652	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6653	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6654
6655	sched_init_numa();
6656
6657	/*
6658	 * There's no userspace yet to cause hotplug operations; hence all the
6659	 * cpu masks are stable and all blatant races in the below code cannot
6660	 * happen.
6661	 */
6662	mutex_lock(&sched_domains_mutex);
6663	init_sched_domains(cpu_active_mask);
6664	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6665	if (cpumask_empty(non_isolated_cpus))
6666		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6667	mutex_unlock(&sched_domains_mutex);
6668
6669	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6670	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6671	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6672
6673	init_hrtick();
6674
6675	/* Move init over to a non-isolated CPU */
6676	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6677		BUG();
6678	sched_init_granularity();
6679	free_cpumask_var(non_isolated_cpus);
6680
6681	init_sched_rt_class();
6682	init_sched_dl_class();
6683}
6684#else
6685void __init sched_init_smp(void)
6686{
6687	sched_init_granularity();
6688}
6689#endif /* CONFIG_SMP */
6690
6691const_debug unsigned int sysctl_timer_migration = 1;
6692
6693int in_sched_functions(unsigned long addr)
6694{
6695	return in_lock_functions(addr) ||
6696		(addr >= (unsigned long)__sched_text_start
6697		&& addr < (unsigned long)__sched_text_end);
6698}
6699
6700#ifdef CONFIG_CGROUP_SCHED
6701/*
6702 * Default task group.
6703 * Every task in system belongs to this group at bootup.
6704 */
6705struct task_group root_task_group;
6706LIST_HEAD(task_groups);
6707#endif
6708
6709DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6710
6711void __init sched_init(void)
6712{
6713	int i, j;
6714	unsigned long alloc_size = 0, ptr;
6715
6716#ifdef CONFIG_FAIR_GROUP_SCHED
6717	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6718#endif
6719#ifdef CONFIG_RT_GROUP_SCHED
6720	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6721#endif
6722#ifdef CONFIG_CPUMASK_OFFSTACK
6723	alloc_size += num_possible_cpus() * cpumask_size();
6724#endif
6725	if (alloc_size) {
6726		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6727
6728#ifdef CONFIG_FAIR_GROUP_SCHED
6729		root_task_group.se = (struct sched_entity **)ptr;
6730		ptr += nr_cpu_ids * sizeof(void **);
6731
6732		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6733		ptr += nr_cpu_ids * sizeof(void **);
6734
6735#endif /* CONFIG_FAIR_GROUP_SCHED */
6736#ifdef CONFIG_RT_GROUP_SCHED
6737		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6738		ptr += nr_cpu_ids * sizeof(void **);
6739
6740		root_task_group.rt_rq = (struct rt_rq **)ptr;
6741		ptr += nr_cpu_ids * sizeof(void **);
6742
6743#endif /* CONFIG_RT_GROUP_SCHED */
6744#ifdef CONFIG_CPUMASK_OFFSTACK
6745		for_each_possible_cpu(i) {
6746			per_cpu(load_balance_mask, i) = (void *)ptr;
6747			ptr += cpumask_size();
6748		}
6749#endif /* CONFIG_CPUMASK_OFFSTACK */
6750	}
6751
6752	init_rt_bandwidth(&def_rt_bandwidth,
6753			global_rt_period(), global_rt_runtime());
6754	init_dl_bandwidth(&def_dl_bandwidth,
6755			global_rt_period(), global_rt_runtime());
6756
6757#ifdef CONFIG_SMP
6758	init_defrootdomain();
6759#endif
6760
6761#ifdef CONFIG_RT_GROUP_SCHED
6762	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6763			global_rt_period(), global_rt_runtime());
6764#endif /* CONFIG_RT_GROUP_SCHED */
6765
6766#ifdef CONFIG_CGROUP_SCHED
6767	list_add(&root_task_group.list, &task_groups);
6768	INIT_LIST_HEAD(&root_task_group.children);
6769	INIT_LIST_HEAD(&root_task_group.siblings);
6770	autogroup_init(&init_task);
6771
6772#endif /* CONFIG_CGROUP_SCHED */
6773
6774	for_each_possible_cpu(i) {
6775		struct rq *rq;
6776
6777		rq = cpu_rq(i);
6778		raw_spin_lock_init(&rq->lock);
6779		rq->nr_running = 0;
6780		rq->calc_load_active = 0;
6781		rq->calc_load_update = jiffies + LOAD_FREQ;
6782		init_cfs_rq(&rq->cfs);
6783		init_rt_rq(&rq->rt, rq);
6784		init_dl_rq(&rq->dl, rq);
6785#ifdef CONFIG_FAIR_GROUP_SCHED
6786		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6787		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6788		/*
6789		 * How much cpu bandwidth does root_task_group get?
6790		 *
6791		 * In case of task-groups formed thr' the cgroup filesystem, it
6792		 * gets 100% of the cpu resources in the system. This overall
6793		 * system cpu resource is divided among the tasks of
6794		 * root_task_group and its child task-groups in a fair manner,
6795		 * based on each entity's (task or task-group's) weight
6796		 * (se->load.weight).
6797		 *
6798		 * In other words, if root_task_group has 10 tasks of weight
6799		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6800		 * then A0's share of the cpu resource is:
6801		 *
6802		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6803		 *
6804		 * We achieve this by letting root_task_group's tasks sit
6805		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6806		 */
6807		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6808		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6809#endif /* CONFIG_FAIR_GROUP_SCHED */
6810
6811		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6812#ifdef CONFIG_RT_GROUP_SCHED
6813		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6814		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6815#endif
6816
6817		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6818			rq->cpu_load[j] = 0;
6819
6820		rq->last_load_update_tick = jiffies;
6821
6822#ifdef CONFIG_SMP
6823		rq->sd = NULL;
6824		rq->rd = NULL;
6825		rq->cpu_power = SCHED_POWER_SCALE;
6826		rq->post_schedule = 0;
6827		rq->active_balance = 0;
6828		rq->next_balance = jiffies;
6829		rq->push_cpu = 0;
6830		rq->cpu = i;
6831		rq->online = 0;
6832		rq->idle_stamp = 0;
6833		rq->avg_idle = 2*sysctl_sched_migration_cost;
6834		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6835
6836		INIT_LIST_HEAD(&rq->cfs_tasks);
6837
6838		rq_attach_root(rq, &def_root_domain);
6839#ifdef CONFIG_NO_HZ_COMMON
6840		rq->nohz_flags = 0;
6841#endif
6842#ifdef CONFIG_NO_HZ_FULL
6843		rq->last_sched_tick = 0;
6844#endif
6845#endif
6846		init_rq_hrtick(rq);
6847		atomic_set(&rq->nr_iowait, 0);
6848	}
6849
6850	set_load_weight(&init_task);
6851
6852#ifdef CONFIG_PREEMPT_NOTIFIERS
6853	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6854#endif
6855
6856	/*
6857	 * The boot idle thread does lazy MMU switching as well:
6858	 */
6859	atomic_inc(&init_mm.mm_count);
6860	enter_lazy_tlb(&init_mm, current);
6861
6862	/*
6863	 * Make us the idle thread. Technically, schedule() should not be
6864	 * called from this thread, however somewhere below it might be,
6865	 * but because we are the idle thread, we just pick up running again
6866	 * when this runqueue becomes "idle".
6867	 */
6868	init_idle(current, smp_processor_id());
6869
6870	calc_load_update = jiffies + LOAD_FREQ;
6871
6872	/*
6873	 * During early bootup we pretend to be a normal task:
6874	 */
6875	current->sched_class = &fair_sched_class;
6876
6877#ifdef CONFIG_SMP
6878	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6879	/* May be allocated at isolcpus cmdline parse time */
6880	if (cpu_isolated_map == NULL)
6881		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6882	idle_thread_set_boot_cpu();
6883#endif
6884	init_sched_fair_class();
6885
6886	scheduler_running = 1;
6887}
6888
6889#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6890static inline int preempt_count_equals(int preempt_offset)
6891{
6892	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6893
6894	return (nested == preempt_offset);
6895}
6896
6897void __might_sleep(const char *file, int line, int preempt_offset)
6898{
6899	static unsigned long prev_jiffy;	/* ratelimiting */
6900
6901	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6902	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6903	    system_state != SYSTEM_RUNNING || oops_in_progress)
6904		return;
6905	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6906		return;
6907	prev_jiffy = jiffies;
6908
6909	printk(KERN_ERR
6910		"BUG: sleeping function called from invalid context at %s:%d\n",
6911			file, line);
6912	printk(KERN_ERR
6913		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6914			in_atomic(), irqs_disabled(),
6915			current->pid, current->comm);
6916
6917	debug_show_held_locks(current);
6918	if (irqs_disabled())
6919		print_irqtrace_events(current);
6920	dump_stack();
6921}
6922EXPORT_SYMBOL(__might_sleep);
6923#endif
6924
6925#ifdef CONFIG_MAGIC_SYSRQ
6926static void normalize_task(struct rq *rq, struct task_struct *p)
6927{
6928	const struct sched_class *prev_class = p->sched_class;
6929	struct sched_attr attr = {
6930		.sched_policy = SCHED_NORMAL,
6931	};
6932	int old_prio = p->prio;
6933	int on_rq;
6934
6935	on_rq = p->on_rq;
6936	if (on_rq)
6937		dequeue_task(rq, p, 0);
6938	__setscheduler(rq, p, &attr);
6939	if (on_rq) {
6940		enqueue_task(rq, p, 0);
6941		resched_task(rq->curr);
6942	}
6943
6944	check_class_changed(rq, p, prev_class, old_prio);
6945}
6946
6947void normalize_rt_tasks(void)
6948{
6949	struct task_struct *g, *p;
6950	unsigned long flags;
6951	struct rq *rq;
6952
6953	read_lock_irqsave(&tasklist_lock, flags);
6954	do_each_thread(g, p) {
6955		/*
6956		 * Only normalize user tasks:
6957		 */
6958		if (!p->mm)
6959			continue;
6960
6961		p->se.exec_start		= 0;
6962#ifdef CONFIG_SCHEDSTATS
6963		p->se.statistics.wait_start	= 0;
6964		p->se.statistics.sleep_start	= 0;
6965		p->se.statistics.block_start	= 0;
6966#endif
6967
6968		if (!dl_task(p) && !rt_task(p)) {
6969			/*
6970			 * Renice negative nice level userspace
6971			 * tasks back to 0:
6972			 */
6973			if (TASK_NICE(p) < 0 && p->mm)
6974				set_user_nice(p, 0);
6975			continue;
6976		}
6977
6978		raw_spin_lock(&p->pi_lock);
6979		rq = __task_rq_lock(p);
6980
6981		normalize_task(rq, p);
6982
6983		__task_rq_unlock(rq);
6984		raw_spin_unlock(&p->pi_lock);
6985	} while_each_thread(g, p);
6986
6987	read_unlock_irqrestore(&tasklist_lock, flags);
6988}
6989
6990#endif /* CONFIG_MAGIC_SYSRQ */
6991
6992#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6993/*
6994 * These functions are only useful for the IA64 MCA handling, or kdb.
6995 *
6996 * They can only be called when the whole system has been
6997 * stopped - every CPU needs to be quiescent, and no scheduling
6998 * activity can take place. Using them for anything else would
6999 * be a serious bug, and as a result, they aren't even visible
7000 * under any other configuration.
7001 */
7002
7003/**
7004 * curr_task - return the current task for a given cpu.
7005 * @cpu: the processor in question.
7006 *
7007 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7008 *
7009 * Return: The current task for @cpu.
7010 */
7011struct task_struct *curr_task(int cpu)
7012{
7013	return cpu_curr(cpu);
7014}
7015
7016#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7017
7018#ifdef CONFIG_IA64
7019/**
7020 * set_curr_task - set the current task for a given cpu.
7021 * @cpu: the processor in question.
7022 * @p: the task pointer to set.
7023 *
7024 * Description: This function must only be used when non-maskable interrupts
7025 * are serviced on a separate stack. It allows the architecture to switch the
7026 * notion of the current task on a cpu in a non-blocking manner. This function
7027 * must be called with all CPU's synchronized, and interrupts disabled, the
7028 * and caller must save the original value of the current task (see
7029 * curr_task() above) and restore that value before reenabling interrupts and
7030 * re-starting the system.
7031 *
7032 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7033 */
7034void set_curr_task(int cpu, struct task_struct *p)
7035{
7036	cpu_curr(cpu) = p;
7037}
7038
7039#endif
7040
7041#ifdef CONFIG_CGROUP_SCHED
7042/* task_group_lock serializes the addition/removal of task groups */
7043static DEFINE_SPINLOCK(task_group_lock);
7044
7045static void free_sched_group(struct task_group *tg)
7046{
7047	free_fair_sched_group(tg);
7048	free_rt_sched_group(tg);
7049	autogroup_free(tg);
7050	kfree(tg);
7051}
7052
7053/* allocate runqueue etc for a new task group */
7054struct task_group *sched_create_group(struct task_group *parent)
7055{
7056	struct task_group *tg;
7057
7058	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7059	if (!tg)
7060		return ERR_PTR(-ENOMEM);
7061
7062	if (!alloc_fair_sched_group(tg, parent))
7063		goto err;
7064
7065	if (!alloc_rt_sched_group(tg, parent))
7066		goto err;
7067
7068	return tg;
7069
7070err:
7071	free_sched_group(tg);
7072	return ERR_PTR(-ENOMEM);
7073}
7074
7075void sched_online_group(struct task_group *tg, struct task_group *parent)
7076{
7077	unsigned long flags;
7078
7079	spin_lock_irqsave(&task_group_lock, flags);
7080	list_add_rcu(&tg->list, &task_groups);
7081
7082	WARN_ON(!parent); /* root should already exist */
7083
7084	tg->parent = parent;
7085	INIT_LIST_HEAD(&tg->children);
7086	list_add_rcu(&tg->siblings, &parent->children);
7087	spin_unlock_irqrestore(&task_group_lock, flags);
7088}
7089
7090/* rcu callback to free various structures associated with a task group */
7091static void free_sched_group_rcu(struct rcu_head *rhp)
7092{
7093	/* now it should be safe to free those cfs_rqs */
7094	free_sched_group(container_of(rhp, struct task_group, rcu));
7095}
7096
7097/* Destroy runqueue etc associated with a task group */
7098void sched_destroy_group(struct task_group *tg)
7099{
7100	/* wait for possible concurrent references to cfs_rqs complete */
7101	call_rcu(&tg->rcu, free_sched_group_rcu);
7102}
7103
7104void sched_offline_group(struct task_group *tg)
7105{
7106	unsigned long flags;
7107	int i;
7108
7109	/* end participation in shares distribution */
7110	for_each_possible_cpu(i)
7111		unregister_fair_sched_group(tg, i);
7112
7113	spin_lock_irqsave(&task_group_lock, flags);
7114	list_del_rcu(&tg->list);
7115	list_del_rcu(&tg->siblings);
7116	spin_unlock_irqrestore(&task_group_lock, flags);
7117}
7118
7119/* change task's runqueue when it moves between groups.
7120 *	The caller of this function should have put the task in its new group
7121 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7122 *	reflect its new group.
7123 */
7124void sched_move_task(struct task_struct *tsk)
7125{
7126	struct task_group *tg;
7127	int on_rq, running;
7128	unsigned long flags;
7129	struct rq *rq;
7130
7131	rq = task_rq_lock(tsk, &flags);
7132
7133	running = task_current(rq, tsk);
7134	on_rq = tsk->on_rq;
7135
7136	if (on_rq)
7137		dequeue_task(rq, tsk, 0);
7138	if (unlikely(running))
7139		tsk->sched_class->put_prev_task(rq, tsk);
7140
7141	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7142				lockdep_is_held(&tsk->sighand->siglock)),
7143			  struct task_group, css);
7144	tg = autogroup_task_group(tsk, tg);
7145	tsk->sched_task_group = tg;
7146
7147#ifdef CONFIG_FAIR_GROUP_SCHED
7148	if (tsk->sched_class->task_move_group)
7149		tsk->sched_class->task_move_group(tsk, on_rq);
7150	else
7151#endif
7152		set_task_rq(tsk, task_cpu(tsk));
7153
7154	if (unlikely(running))
7155		tsk->sched_class->set_curr_task(rq);
7156	if (on_rq)
7157		enqueue_task(rq, tsk, 0);
7158
7159	task_rq_unlock(rq, tsk, &flags);
7160}
7161#endif /* CONFIG_CGROUP_SCHED */
7162
7163#ifdef CONFIG_RT_GROUP_SCHED
7164/*
7165 * Ensure that the real time constraints are schedulable.
7166 */
7167static DEFINE_MUTEX(rt_constraints_mutex);
7168
7169/* Must be called with tasklist_lock held */
7170static inline int tg_has_rt_tasks(struct task_group *tg)
7171{
7172	struct task_struct *g, *p;
7173
7174	do_each_thread(g, p) {
7175		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7176			return 1;
7177	} while_each_thread(g, p);
7178
7179	return 0;
7180}
7181
7182struct rt_schedulable_data {
7183	struct task_group *tg;
7184	u64 rt_period;
7185	u64 rt_runtime;
7186};
7187
7188static int tg_rt_schedulable(struct task_group *tg, void *data)
7189{
7190	struct rt_schedulable_data *d = data;
7191	struct task_group *child;
7192	unsigned long total, sum = 0;
7193	u64 period, runtime;
7194
7195	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7196	runtime = tg->rt_bandwidth.rt_runtime;
7197
7198	if (tg == d->tg) {
7199		period = d->rt_period;
7200		runtime = d->rt_runtime;
7201	}
7202
7203	/*
7204	 * Cannot have more runtime than the period.
7205	 */
7206	if (runtime > period && runtime != RUNTIME_INF)
7207		return -EINVAL;
7208
7209	/*
7210	 * Ensure we don't starve existing RT tasks.
7211	 */
7212	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7213		return -EBUSY;
7214
7215	total = to_ratio(period, runtime);
7216
7217	/*
7218	 * Nobody can have more than the global setting allows.
7219	 */
7220	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7221		return -EINVAL;
7222
7223	/*
7224	 * The sum of our children's runtime should not exceed our own.
7225	 */
7226	list_for_each_entry_rcu(child, &tg->children, siblings) {
7227		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7228		runtime = child->rt_bandwidth.rt_runtime;
7229
7230		if (child == d->tg) {
7231			period = d->rt_period;
7232			runtime = d->rt_runtime;
7233		}
7234
7235		sum += to_ratio(period, runtime);
7236	}
7237
7238	if (sum > total)
7239		return -EINVAL;
7240
7241	return 0;
7242}
7243
7244static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7245{
7246	int ret;
7247
7248	struct rt_schedulable_data data = {
7249		.tg = tg,
7250		.rt_period = period,
7251		.rt_runtime = runtime,
7252	};
7253
7254	rcu_read_lock();
7255	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7256	rcu_read_unlock();
7257
7258	return ret;
7259}
7260
7261static int tg_set_rt_bandwidth(struct task_group *tg,
7262		u64 rt_period, u64 rt_runtime)
7263{
7264	int i, err = 0;
7265
7266	mutex_lock(&rt_constraints_mutex);
7267	read_lock(&tasklist_lock);
7268	err = __rt_schedulable(tg, rt_period, rt_runtime);
7269	if (err)
7270		goto unlock;
7271
7272	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7273	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7274	tg->rt_bandwidth.rt_runtime = rt_runtime;
7275
7276	for_each_possible_cpu(i) {
7277		struct rt_rq *rt_rq = tg->rt_rq[i];
7278
7279		raw_spin_lock(&rt_rq->rt_runtime_lock);
7280		rt_rq->rt_runtime = rt_runtime;
7281		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7282	}
7283	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7284unlock:
7285	read_unlock(&tasklist_lock);
7286	mutex_unlock(&rt_constraints_mutex);
7287
7288	return err;
7289}
7290
7291static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7292{
7293	u64 rt_runtime, rt_period;
7294
7295	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7296	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7297	if (rt_runtime_us < 0)
7298		rt_runtime = RUNTIME_INF;
7299
7300	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7301}
7302
7303static long sched_group_rt_runtime(struct task_group *tg)
7304{
7305	u64 rt_runtime_us;
7306
7307	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7308		return -1;
7309
7310	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7311	do_div(rt_runtime_us, NSEC_PER_USEC);
7312	return rt_runtime_us;
7313}
7314
7315static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7316{
7317	u64 rt_runtime, rt_period;
7318
7319	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7320	rt_runtime = tg->rt_bandwidth.rt_runtime;
7321
7322	if (rt_period == 0)
7323		return -EINVAL;
7324
7325	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7326}
7327
7328static long sched_group_rt_period(struct task_group *tg)
7329{
7330	u64 rt_period_us;
7331
7332	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7333	do_div(rt_period_us, NSEC_PER_USEC);
7334	return rt_period_us;
7335}
7336#endif /* CONFIG_RT_GROUP_SCHED */
7337
7338#ifdef CONFIG_RT_GROUP_SCHED
7339static int sched_rt_global_constraints(void)
7340{
7341	int ret = 0;
7342
7343	mutex_lock(&rt_constraints_mutex);
7344	read_lock(&tasklist_lock);
7345	ret = __rt_schedulable(NULL, 0, 0);
7346	read_unlock(&tasklist_lock);
7347	mutex_unlock(&rt_constraints_mutex);
7348
7349	return ret;
7350}
7351
7352static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7353{
7354	/* Don't accept realtime tasks when there is no way for them to run */
7355	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7356		return 0;
7357
7358	return 1;
7359}
7360
7361#else /* !CONFIG_RT_GROUP_SCHED */
7362static int sched_rt_global_constraints(void)
7363{
7364	unsigned long flags;
7365	int i, ret = 0;
7366
7367	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7368	for_each_possible_cpu(i) {
7369		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7370
7371		raw_spin_lock(&rt_rq->rt_runtime_lock);
7372		rt_rq->rt_runtime = global_rt_runtime();
7373		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7374	}
7375	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7376
7377	return ret;
7378}
7379#endif /* CONFIG_RT_GROUP_SCHED */
7380
7381static int sched_dl_global_constraints(void)
7382{
7383	u64 runtime = global_rt_runtime();
7384	u64 period = global_rt_period();
7385	u64 new_bw = to_ratio(period, runtime);
7386	int cpu, ret = 0;
7387
7388	/*
7389	 * Here we want to check the bandwidth not being set to some
7390	 * value smaller than the currently allocated bandwidth in
7391	 * any of the root_domains.
7392	 *
7393	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7394	 * cycling on root_domains... Discussion on different/better
7395	 * solutions is welcome!
7396	 */
7397	for_each_possible_cpu(cpu) {
7398		struct dl_bw *dl_b = dl_bw_of(cpu);
7399
7400		raw_spin_lock(&dl_b->lock);
7401		if (new_bw < dl_b->total_bw)
7402			ret = -EBUSY;
7403		raw_spin_unlock(&dl_b->lock);
7404
7405		if (ret)
7406			break;
7407	}
7408
7409	return ret;
7410}
7411
7412static void sched_dl_do_global(void)
7413{
7414	u64 new_bw = -1;
7415	int cpu;
7416
7417	def_dl_bandwidth.dl_period = global_rt_period();
7418	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7419
7420	if (global_rt_runtime() != RUNTIME_INF)
7421		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7422
7423	/*
7424	 * FIXME: As above...
7425	 */
7426	for_each_possible_cpu(cpu) {
7427		struct dl_bw *dl_b = dl_bw_of(cpu);
7428
7429		raw_spin_lock(&dl_b->lock);
7430		dl_b->bw = new_bw;
7431		raw_spin_unlock(&dl_b->lock);
7432	}
7433}
7434
7435static int sched_rt_global_validate(void)
7436{
7437	if (sysctl_sched_rt_period <= 0)
7438		return -EINVAL;
7439
7440	if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7441		return -EINVAL;
7442
7443	return 0;
7444}
7445
7446static void sched_rt_do_global(void)
7447{
7448	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7449	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7450}
7451
7452int sched_rt_handler(struct ctl_table *table, int write,
7453		void __user *buffer, size_t *lenp,
7454		loff_t *ppos)
7455{
7456	int old_period, old_runtime;
7457	static DEFINE_MUTEX(mutex);
7458	int ret;
7459
7460	mutex_lock(&mutex);
7461	old_period = sysctl_sched_rt_period;
7462	old_runtime = sysctl_sched_rt_runtime;
7463
7464	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7465
7466	if (!ret && write) {
7467		ret = sched_rt_global_validate();
7468		if (ret)
7469			goto undo;
7470
7471		ret = sched_rt_global_constraints();
7472		if (ret)
7473			goto undo;
7474
7475		ret = sched_dl_global_constraints();
7476		if (ret)
7477			goto undo;
7478
7479		sched_rt_do_global();
7480		sched_dl_do_global();
7481	}
7482	if (0) {
7483undo:
7484		sysctl_sched_rt_period = old_period;
7485		sysctl_sched_rt_runtime = old_runtime;
7486	}
7487	mutex_unlock(&mutex);
7488
7489	return ret;
7490}
7491
7492int sched_rr_handler(struct ctl_table *table, int write,
7493		void __user *buffer, size_t *lenp,
7494		loff_t *ppos)
7495{
7496	int ret;
7497	static DEFINE_MUTEX(mutex);
7498
7499	mutex_lock(&mutex);
7500	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7501	/* make sure that internally we keep jiffies */
7502	/* also, writing zero resets timeslice to default */
7503	if (!ret && write) {
7504		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7505			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7506	}
7507	mutex_unlock(&mutex);
7508	return ret;
7509}
7510
7511#ifdef CONFIG_CGROUP_SCHED
7512
7513static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7514{
7515	return css ? container_of(css, struct task_group, css) : NULL;
7516}
7517
7518static struct cgroup_subsys_state *
7519cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7520{
7521	struct task_group *parent = css_tg(parent_css);
7522	struct task_group *tg;
7523
7524	if (!parent) {
7525		/* This is early initialization for the top cgroup */
7526		return &root_task_group.css;
7527	}
7528
7529	tg = sched_create_group(parent);
7530	if (IS_ERR(tg))
7531		return ERR_PTR(-ENOMEM);
7532
7533	return &tg->css;
7534}
7535
7536static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7537{
7538	struct task_group *tg = css_tg(css);
7539	struct task_group *parent = css_tg(css_parent(css));
7540
7541	if (parent)
7542		sched_online_group(tg, parent);
7543	return 0;
7544}
7545
7546static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7547{
7548	struct task_group *tg = css_tg(css);
7549
7550	sched_destroy_group(tg);
7551}
7552
7553static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7554{
7555	struct task_group *tg = css_tg(css);
7556
7557	sched_offline_group(tg);
7558}
7559
7560static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7561				 struct cgroup_taskset *tset)
7562{
7563	struct task_struct *task;
7564
7565	cgroup_taskset_for_each(task, css, tset) {
7566#ifdef CONFIG_RT_GROUP_SCHED
7567		if (!sched_rt_can_attach(css_tg(css), task))
7568			return -EINVAL;
7569#else
7570		/* We don't support RT-tasks being in separate groups */
7571		if (task->sched_class != &fair_sched_class)
7572			return -EINVAL;
7573#endif
7574	}
7575	return 0;
7576}
7577
7578static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7579			      struct cgroup_taskset *tset)
7580{
7581	struct task_struct *task;
7582
7583	cgroup_taskset_for_each(task, css, tset)
7584		sched_move_task(task);
7585}
7586
7587static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7588			    struct cgroup_subsys_state *old_css,
7589			    struct task_struct *task)
7590{
7591	/*
7592	 * cgroup_exit() is called in the copy_process() failure path.
7593	 * Ignore this case since the task hasn't ran yet, this avoids
7594	 * trying to poke a half freed task state from generic code.
7595	 */
7596	if (!(task->flags & PF_EXITING))
7597		return;
7598
7599	sched_move_task(task);
7600}
7601
7602#ifdef CONFIG_FAIR_GROUP_SCHED
7603static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7604				struct cftype *cftype, u64 shareval)
7605{
7606	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7607}
7608
7609static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7610			       struct cftype *cft)
7611{
7612	struct task_group *tg = css_tg(css);
7613
7614	return (u64) scale_load_down(tg->shares);
7615}
7616
7617#ifdef CONFIG_CFS_BANDWIDTH
7618static DEFINE_MUTEX(cfs_constraints_mutex);
7619
7620const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7621const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7622
7623static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7624
7625static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7626{
7627	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7628	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7629
7630	if (tg == &root_task_group)
7631		return -EINVAL;
7632
7633	/*
7634	 * Ensure we have at some amount of bandwidth every period.  This is
7635	 * to prevent reaching a state of large arrears when throttled via
7636	 * entity_tick() resulting in prolonged exit starvation.
7637	 */
7638	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7639		return -EINVAL;
7640
7641	/*
7642	 * Likewise, bound things on the otherside by preventing insane quota
7643	 * periods.  This also allows us to normalize in computing quota
7644	 * feasibility.
7645	 */
7646	if (period > max_cfs_quota_period)
7647		return -EINVAL;
7648
7649	mutex_lock(&cfs_constraints_mutex);
7650	ret = __cfs_schedulable(tg, period, quota);
7651	if (ret)
7652		goto out_unlock;
7653
7654	runtime_enabled = quota != RUNTIME_INF;
7655	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7656	/*
7657	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7658	 * before making related changes, and on->off must occur afterwards
7659	 */
7660	if (runtime_enabled && !runtime_was_enabled)
7661		cfs_bandwidth_usage_inc();
7662	raw_spin_lock_irq(&cfs_b->lock);
7663	cfs_b->period = ns_to_ktime(period);
7664	cfs_b->quota = quota;
7665
7666	__refill_cfs_bandwidth_runtime(cfs_b);
7667	/* restart the period timer (if active) to handle new period expiry */
7668	if (runtime_enabled && cfs_b->timer_active) {
7669		/* force a reprogram */
7670		cfs_b->timer_active = 0;
7671		__start_cfs_bandwidth(cfs_b);
7672	}
7673	raw_spin_unlock_irq(&cfs_b->lock);
7674
7675	for_each_possible_cpu(i) {
7676		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7677		struct rq *rq = cfs_rq->rq;
7678
7679		raw_spin_lock_irq(&rq->lock);
7680		cfs_rq->runtime_enabled = runtime_enabled;
7681		cfs_rq->runtime_remaining = 0;
7682
7683		if (cfs_rq->throttled)
7684			unthrottle_cfs_rq(cfs_rq);
7685		raw_spin_unlock_irq(&rq->lock);
7686	}
7687	if (runtime_was_enabled && !runtime_enabled)
7688		cfs_bandwidth_usage_dec();
7689out_unlock:
7690	mutex_unlock(&cfs_constraints_mutex);
7691
7692	return ret;
7693}
7694
7695int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7696{
7697	u64 quota, period;
7698
7699	period = ktime_to_ns(tg->cfs_bandwidth.period);
7700	if (cfs_quota_us < 0)
7701		quota = RUNTIME_INF;
7702	else
7703		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7704
7705	return tg_set_cfs_bandwidth(tg, period, quota);
7706}
7707
7708long tg_get_cfs_quota(struct task_group *tg)
7709{
7710	u64 quota_us;
7711
7712	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7713		return -1;
7714
7715	quota_us = tg->cfs_bandwidth.quota;
7716	do_div(quota_us, NSEC_PER_USEC);
7717
7718	return quota_us;
7719}
7720
7721int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7722{
7723	u64 quota, period;
7724
7725	period = (u64)cfs_period_us * NSEC_PER_USEC;
7726	quota = tg->cfs_bandwidth.quota;
7727
7728	return tg_set_cfs_bandwidth(tg, period, quota);
7729}
7730
7731long tg_get_cfs_period(struct task_group *tg)
7732{
7733	u64 cfs_period_us;
7734
7735	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7736	do_div(cfs_period_us, NSEC_PER_USEC);
7737
7738	return cfs_period_us;
7739}
7740
7741static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7742				  struct cftype *cft)
7743{
7744	return tg_get_cfs_quota(css_tg(css));
7745}
7746
7747static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7748				   struct cftype *cftype, s64 cfs_quota_us)
7749{
7750	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7751}
7752
7753static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7754				   struct cftype *cft)
7755{
7756	return tg_get_cfs_period(css_tg(css));
7757}
7758
7759static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7760				    struct cftype *cftype, u64 cfs_period_us)
7761{
7762	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7763}
7764
7765struct cfs_schedulable_data {
7766	struct task_group *tg;
7767	u64 period, quota;
7768};
7769
7770/*
7771 * normalize group quota/period to be quota/max_period
7772 * note: units are usecs
7773 */
7774static u64 normalize_cfs_quota(struct task_group *tg,
7775			       struct cfs_schedulable_data *d)
7776{
7777	u64 quota, period;
7778
7779	if (tg == d->tg) {
7780		period = d->period;
7781		quota = d->quota;
7782	} else {
7783		period = tg_get_cfs_period(tg);
7784		quota = tg_get_cfs_quota(tg);
7785	}
7786
7787	/* note: these should typically be equivalent */
7788	if (quota == RUNTIME_INF || quota == -1)
7789		return RUNTIME_INF;
7790
7791	return to_ratio(period, quota);
7792}
7793
7794static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7795{
7796	struct cfs_schedulable_data *d = data;
7797	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7798	s64 quota = 0, parent_quota = -1;
7799
7800	if (!tg->parent) {
7801		quota = RUNTIME_INF;
7802	} else {
7803		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7804
7805		quota = normalize_cfs_quota(tg, d);
7806		parent_quota = parent_b->hierarchal_quota;
7807
7808		/*
7809		 * ensure max(child_quota) <= parent_quota, inherit when no
7810		 * limit is set
7811		 */
7812		if (quota == RUNTIME_INF)
7813			quota = parent_quota;
7814		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7815			return -EINVAL;
7816	}
7817	cfs_b->hierarchal_quota = quota;
7818
7819	return 0;
7820}
7821
7822static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7823{
7824	int ret;
7825	struct cfs_schedulable_data data = {
7826		.tg = tg,
7827		.period = period,
7828		.quota = quota,
7829	};
7830
7831	if (quota != RUNTIME_INF) {
7832		do_div(data.period, NSEC_PER_USEC);
7833		do_div(data.quota, NSEC_PER_USEC);
7834	}
7835
7836	rcu_read_lock();
7837	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7838	rcu_read_unlock();
7839
7840	return ret;
7841}
7842
7843static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7844		struct cgroup_map_cb *cb)
7845{
7846	struct task_group *tg = css_tg(css);
7847	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7848
7849	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7850	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7851	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7852
7853	return 0;
7854}
7855#endif /* CONFIG_CFS_BANDWIDTH */
7856#endif /* CONFIG_FAIR_GROUP_SCHED */
7857
7858#ifdef CONFIG_RT_GROUP_SCHED
7859static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7860				struct cftype *cft, s64 val)
7861{
7862	return sched_group_set_rt_runtime(css_tg(css), val);
7863}
7864
7865static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7866			       struct cftype *cft)
7867{
7868	return sched_group_rt_runtime(css_tg(css));
7869}
7870
7871static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7872				    struct cftype *cftype, u64 rt_period_us)
7873{
7874	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7875}
7876
7877static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7878				   struct cftype *cft)
7879{
7880	return sched_group_rt_period(css_tg(css));
7881}
7882#endif /* CONFIG_RT_GROUP_SCHED */
7883
7884static struct cftype cpu_files[] = {
7885#ifdef CONFIG_FAIR_GROUP_SCHED
7886	{
7887		.name = "shares",
7888		.read_u64 = cpu_shares_read_u64,
7889		.write_u64 = cpu_shares_write_u64,
7890	},
7891#endif
7892#ifdef CONFIG_CFS_BANDWIDTH
7893	{
7894		.name = "cfs_quota_us",
7895		.read_s64 = cpu_cfs_quota_read_s64,
7896		.write_s64 = cpu_cfs_quota_write_s64,
7897	},
7898	{
7899		.name = "cfs_period_us",
7900		.read_u64 = cpu_cfs_period_read_u64,
7901		.write_u64 = cpu_cfs_period_write_u64,
7902	},
7903	{
7904		.name = "stat",
7905		.read_map = cpu_stats_show,
7906	},
7907#endif
7908#ifdef CONFIG_RT_GROUP_SCHED
7909	{
7910		.name = "rt_runtime_us",
7911		.read_s64 = cpu_rt_runtime_read,
7912		.write_s64 = cpu_rt_runtime_write,
7913	},
7914	{
7915		.name = "rt_period_us",
7916		.read_u64 = cpu_rt_period_read_uint,
7917		.write_u64 = cpu_rt_period_write_uint,
7918	},
7919#endif
7920	{ }	/* terminate */
7921};
7922
7923struct cgroup_subsys cpu_cgroup_subsys = {
7924	.name		= "cpu",
7925	.css_alloc	= cpu_cgroup_css_alloc,
7926	.css_free	= cpu_cgroup_css_free,
7927	.css_online	= cpu_cgroup_css_online,
7928	.css_offline	= cpu_cgroup_css_offline,
7929	.can_attach	= cpu_cgroup_can_attach,
7930	.attach		= cpu_cgroup_attach,
7931	.exit		= cpu_cgroup_exit,
7932	.subsys_id	= cpu_cgroup_subsys_id,
7933	.base_cftypes	= cpu_files,
7934	.early_init	= 1,
7935};
7936
7937#endif	/* CONFIG_CGROUP_SCHED */
7938
7939void dump_cpu_task(int cpu)
7940{
7941	pr_info("Task dump for CPU %d:\n", cpu);
7942	sched_show_task(cpu_curr(cpu));
7943}
7944