core.c revision e3baac47f0e82c4be632f4f97215bb93bf16b342
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	if (rq->skip_clock_update > 0)
123		return;
124
125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126	rq->clock += delta;
127	update_rq_clock_task(rq, delta);
128}
129
130/*
131 * Debugging: various feature bits
132 */
133
134#define SCHED_FEAT(name, enabled)	\
135	(1UL << __SCHED_FEAT_##name) * enabled |
136
137const_debug unsigned int sysctl_sched_features =
138#include "features.h"
139	0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled)	\
145	#name ,
146
147static const char * const sched_feat_names[] = {
148#include "features.h"
149};
150
151#undef SCHED_FEAT
152
153static int sched_feat_show(struct seq_file *m, void *v)
154{
155	int i;
156
157	for (i = 0; i < __SCHED_FEAT_NR; i++) {
158		if (!(sysctl_sched_features & (1UL << i)))
159			seq_puts(m, "NO_");
160		seq_printf(m, "%s ", sched_feat_names[i]);
161	}
162	seq_puts(m, "\n");
163
164	return 0;
165}
166
167#ifdef HAVE_JUMP_LABEL
168
169#define jump_label_key__true  STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172#define SCHED_FEAT(name, enabled)	\
173	jump_label_key__##enabled ,
174
175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
183	if (static_key_enabled(&sched_feat_keys[i]))
184		static_key_slow_dec(&sched_feat_keys[i]);
185}
186
187static void sched_feat_enable(int i)
188{
189	if (!static_key_enabled(&sched_feat_keys[i]))
190		static_key_slow_inc(&sched_feat_keys[i]);
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
197static int sched_feat_set(char *cmp)
198{
199	int i;
200	int neg = 0;
201
202	if (strncmp(cmp, "NO_", 3) == 0) {
203		neg = 1;
204		cmp += 3;
205	}
206
207	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209			if (neg) {
210				sysctl_sched_features &= ~(1UL << i);
211				sched_feat_disable(i);
212			} else {
213				sysctl_sched_features |= (1UL << i);
214				sched_feat_enable(i);
215			}
216			break;
217		}
218	}
219
220	return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225		size_t cnt, loff_t *ppos)
226{
227	char buf[64];
228	char *cmp;
229	int i;
230
231	if (cnt > 63)
232		cnt = 63;
233
234	if (copy_from_user(&buf, ubuf, cnt))
235		return -EFAULT;
236
237	buf[cnt] = 0;
238	cmp = strstrip(buf);
239
240	i = sched_feat_set(cmp);
241	if (i == __SCHED_FEAT_NR)
242		return -EINVAL;
243
244	*ppos += cnt;
245
246	return cnt;
247}
248
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251	return single_open(filp, sched_feat_show, NULL);
252}
253
254static const struct file_operations sched_feat_fops = {
255	.open		= sched_feat_open,
256	.write		= sched_feat_write,
257	.read		= seq_read,
258	.llseek		= seq_lseek,
259	.release	= single_release,
260};
261
262static __init int sched_init_debug(void)
263{
264	debugfs_create_file("sched_features", 0644, NULL, NULL,
265			&sched_feat_fops);
266
267	return 0;
268}
269late_initcall(sched_init_debug);
270#endif /* CONFIG_SCHED_DEBUG */
271
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286/*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290unsigned int sysctl_sched_rt_period = 1000000;
291
292__read_mostly int scheduler_running;
293
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304	__acquires(rq->lock)
305{
306	struct rq *rq;
307
308	lockdep_assert_held(&p->pi_lock);
309
310	for (;;) {
311		rq = task_rq(p);
312		raw_spin_lock(&rq->lock);
313		if (likely(rq == task_rq(p)))
314			return rq;
315		raw_spin_unlock(&rq->lock);
316	}
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323	__acquires(p->pi_lock)
324	__acquires(rq->lock)
325{
326	struct rq *rq;
327
328	for (;;) {
329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330		rq = task_rq(p);
331		raw_spin_lock(&rq->lock);
332		if (likely(rq == task_rq(p)))
333			return rq;
334		raw_spin_unlock(&rq->lock);
335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336	}
337}
338
339static void __task_rq_unlock(struct rq *rq)
340	__releases(rq->lock)
341{
342	raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347	__releases(rq->lock)
348	__releases(p->pi_lock)
349{
350	raw_spin_unlock(&rq->lock);
351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358	__acquires(rq->lock)
359{
360	struct rq *rq;
361
362	local_irq_disable();
363	rq = this_rq();
364	raw_spin_lock(&rq->lock);
365
366	return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376	if (hrtimer_active(&rq->hrtick_timer))
377		hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390	raw_spin_lock(&rq->lock);
391	update_rq_clock(rq);
392	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393	raw_spin_unlock(&rq->lock);
394
395	return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399
400static int __hrtick_restart(struct rq *rq)
401{
402	struct hrtimer *timer = &rq->hrtick_timer;
403	ktime_t time = hrtimer_get_softexpires(timer);
404
405	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
412{
413	struct rq *rq = arg;
414
415	raw_spin_lock(&rq->lock);
416	__hrtick_restart(rq);
417	rq->hrtick_csd_pending = 0;
418	raw_spin_unlock(&rq->lock);
419}
420
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426void hrtick_start(struct rq *rq, u64 delay)
427{
428	struct hrtimer *timer = &rq->hrtick_timer;
429	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431	hrtimer_set_expires(timer, time);
432
433	if (rq == this_rq()) {
434		__hrtick_restart(rq);
435	} else if (!rq->hrtick_csd_pending) {
436		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437		rq->hrtick_csd_pending = 1;
438	}
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444	int cpu = (int)(long)hcpu;
445
446	switch (action) {
447	case CPU_UP_CANCELED:
448	case CPU_UP_CANCELED_FROZEN:
449	case CPU_DOWN_PREPARE:
450	case CPU_DOWN_PREPARE_FROZEN:
451	case CPU_DEAD:
452	case CPU_DEAD_FROZEN:
453		hrtick_clear(cpu_rq(cpu));
454		return NOTIFY_OK;
455	}
456
457	return NOTIFY_DONE;
458}
459
460static __init void init_hrtick(void)
461{
462	hotcpu_notifier(hotplug_hrtick, 0);
463}
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470void hrtick_start(struct rq *rq, u64 delay)
471{
472	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473			HRTIMER_MODE_REL_PINNED, 0);
474}
475
476static inline void init_hrtick(void)
477{
478}
479#endif /* CONFIG_SMP */
480
481static void init_rq_hrtick(struct rq *rq)
482{
483#ifdef CONFIG_SMP
484	rq->hrtick_csd_pending = 0;
485
486	rq->hrtick_csd.flags = 0;
487	rq->hrtick_csd.func = __hrtick_start;
488	rq->hrtick_csd.info = rq;
489#endif
490
491	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492	rq->hrtick_timer.function = hrtick;
493}
494#else	/* CONFIG_SCHED_HRTICK */
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
503static inline void init_hrtick(void)
504{
505}
506#endif	/* CONFIG_SCHED_HRTICK */
507
508/*
509 * cmpxchg based fetch_or, macro so it works for different integer types
510 */
511#define fetch_or(ptr, val)						\
512({	typeof(*(ptr)) __old, __val = *(ptr);				\
513 	for (;;) {							\
514 		__old = cmpxchg((ptr), __val, __val | (val));		\
515 		if (__old == __val)					\
516 			break;						\
517 		__val = __old;						\
518 	}								\
519 	__old;								\
520})
521
522#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
523/*
524 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
525 * this avoids any races wrt polling state changes and thereby avoids
526 * spurious IPIs.
527 */
528static bool set_nr_and_not_polling(struct task_struct *p)
529{
530	struct thread_info *ti = task_thread_info(p);
531	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
532}
533
534/*
535 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
536 *
537 * If this returns true, then the idle task promises to call
538 * sched_ttwu_pending() and reschedule soon.
539 */
540static bool set_nr_if_polling(struct task_struct *p)
541{
542	struct thread_info *ti = task_thread_info(p);
543	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
544
545	for (;;) {
546		if (!(val & _TIF_POLLING_NRFLAG))
547			return false;
548		if (val & _TIF_NEED_RESCHED)
549			return true;
550		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
551		if (old == val)
552			break;
553		val = old;
554	}
555	return true;
556}
557
558#else
559static bool set_nr_and_not_polling(struct task_struct *p)
560{
561	set_tsk_need_resched(p);
562	return true;
563}
564
565#ifdef CONFIG_SMP
566static bool set_nr_if_polling(struct task_struct *p)
567{
568	return false;
569}
570#endif
571#endif
572
573/*
574 * resched_task - mark a task 'to be rescheduled now'.
575 *
576 * On UP this means the setting of the need_resched flag, on SMP it
577 * might also involve a cross-CPU call to trigger the scheduler on
578 * the target CPU.
579 */
580void resched_task(struct task_struct *p)
581{
582	int cpu;
583
584	lockdep_assert_held(&task_rq(p)->lock);
585
586	if (test_tsk_need_resched(p))
587		return;
588
589	cpu = task_cpu(p);
590
591	if (cpu == smp_processor_id()) {
592		set_tsk_need_resched(p);
593		set_preempt_need_resched();
594		return;
595	}
596
597	if (set_nr_and_not_polling(p))
598		smp_send_reschedule(cpu);
599	else
600		trace_sched_wake_idle_without_ipi(cpu);
601}
602
603void resched_cpu(int cpu)
604{
605	struct rq *rq = cpu_rq(cpu);
606	unsigned long flags;
607
608	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
609		return;
610	resched_task(cpu_curr(cpu));
611	raw_spin_unlock_irqrestore(&rq->lock, flags);
612}
613
614#ifdef CONFIG_SMP
615#ifdef CONFIG_NO_HZ_COMMON
616/*
617 * In the semi idle case, use the nearest busy cpu for migrating timers
618 * from an idle cpu.  This is good for power-savings.
619 *
620 * We don't do similar optimization for completely idle system, as
621 * selecting an idle cpu will add more delays to the timers than intended
622 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
623 */
624int get_nohz_timer_target(int pinned)
625{
626	int cpu = smp_processor_id();
627	int i;
628	struct sched_domain *sd;
629
630	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
631		return cpu;
632
633	rcu_read_lock();
634	for_each_domain(cpu, sd) {
635		for_each_cpu(i, sched_domain_span(sd)) {
636			if (!idle_cpu(i)) {
637				cpu = i;
638				goto unlock;
639			}
640		}
641	}
642unlock:
643	rcu_read_unlock();
644	return cpu;
645}
646/*
647 * When add_timer_on() enqueues a timer into the timer wheel of an
648 * idle CPU then this timer might expire before the next timer event
649 * which is scheduled to wake up that CPU. In case of a completely
650 * idle system the next event might even be infinite time into the
651 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
652 * leaves the inner idle loop so the newly added timer is taken into
653 * account when the CPU goes back to idle and evaluates the timer
654 * wheel for the next timer event.
655 */
656static void wake_up_idle_cpu(int cpu)
657{
658	struct rq *rq = cpu_rq(cpu);
659
660	if (cpu == smp_processor_id())
661		return;
662
663	if (set_nr_and_not_polling(rq->idle))
664		smp_send_reschedule(cpu);
665	else
666		trace_sched_wake_idle_without_ipi(cpu);
667}
668
669static bool wake_up_full_nohz_cpu(int cpu)
670{
671	if (tick_nohz_full_cpu(cpu)) {
672		if (cpu != smp_processor_id() ||
673		    tick_nohz_tick_stopped())
674			smp_send_reschedule(cpu);
675		return true;
676	}
677
678	return false;
679}
680
681void wake_up_nohz_cpu(int cpu)
682{
683	if (!wake_up_full_nohz_cpu(cpu))
684		wake_up_idle_cpu(cpu);
685}
686
687static inline bool got_nohz_idle_kick(void)
688{
689	int cpu = smp_processor_id();
690
691	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
692		return false;
693
694	if (idle_cpu(cpu) && !need_resched())
695		return true;
696
697	/*
698	 * We can't run Idle Load Balance on this CPU for this time so we
699	 * cancel it and clear NOHZ_BALANCE_KICK
700	 */
701	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
702	return false;
703}
704
705#else /* CONFIG_NO_HZ_COMMON */
706
707static inline bool got_nohz_idle_kick(void)
708{
709	return false;
710}
711
712#endif /* CONFIG_NO_HZ_COMMON */
713
714#ifdef CONFIG_NO_HZ_FULL
715bool sched_can_stop_tick(void)
716{
717       struct rq *rq;
718
719       rq = this_rq();
720
721       /* Make sure rq->nr_running update is visible after the IPI */
722       smp_rmb();
723
724       /* More than one running task need preemption */
725       if (rq->nr_running > 1)
726               return false;
727
728       return true;
729}
730#endif /* CONFIG_NO_HZ_FULL */
731
732void sched_avg_update(struct rq *rq)
733{
734	s64 period = sched_avg_period();
735
736	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
737		/*
738		 * Inline assembly required to prevent the compiler
739		 * optimising this loop into a divmod call.
740		 * See __iter_div_u64_rem() for another example of this.
741		 */
742		asm("" : "+rm" (rq->age_stamp));
743		rq->age_stamp += period;
744		rq->rt_avg /= 2;
745	}
746}
747
748#endif /* CONFIG_SMP */
749
750#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
751			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
752/*
753 * Iterate task_group tree rooted at *from, calling @down when first entering a
754 * node and @up when leaving it for the final time.
755 *
756 * Caller must hold rcu_lock or sufficient equivalent.
757 */
758int walk_tg_tree_from(struct task_group *from,
759			     tg_visitor down, tg_visitor up, void *data)
760{
761	struct task_group *parent, *child;
762	int ret;
763
764	parent = from;
765
766down:
767	ret = (*down)(parent, data);
768	if (ret)
769		goto out;
770	list_for_each_entry_rcu(child, &parent->children, siblings) {
771		parent = child;
772		goto down;
773
774up:
775		continue;
776	}
777	ret = (*up)(parent, data);
778	if (ret || parent == from)
779		goto out;
780
781	child = parent;
782	parent = parent->parent;
783	if (parent)
784		goto up;
785out:
786	return ret;
787}
788
789int tg_nop(struct task_group *tg, void *data)
790{
791	return 0;
792}
793#endif
794
795static void set_load_weight(struct task_struct *p)
796{
797	int prio = p->static_prio - MAX_RT_PRIO;
798	struct load_weight *load = &p->se.load;
799
800	/*
801	 * SCHED_IDLE tasks get minimal weight:
802	 */
803	if (p->policy == SCHED_IDLE) {
804		load->weight = scale_load(WEIGHT_IDLEPRIO);
805		load->inv_weight = WMULT_IDLEPRIO;
806		return;
807	}
808
809	load->weight = scale_load(prio_to_weight[prio]);
810	load->inv_weight = prio_to_wmult[prio];
811}
812
813static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
814{
815	update_rq_clock(rq);
816	sched_info_queued(rq, p);
817	p->sched_class->enqueue_task(rq, p, flags);
818}
819
820static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
821{
822	update_rq_clock(rq);
823	sched_info_dequeued(rq, p);
824	p->sched_class->dequeue_task(rq, p, flags);
825}
826
827void activate_task(struct rq *rq, struct task_struct *p, int flags)
828{
829	if (task_contributes_to_load(p))
830		rq->nr_uninterruptible--;
831
832	enqueue_task(rq, p, flags);
833}
834
835void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
836{
837	if (task_contributes_to_load(p))
838		rq->nr_uninterruptible++;
839
840	dequeue_task(rq, p, flags);
841}
842
843static void update_rq_clock_task(struct rq *rq, s64 delta)
844{
845/*
846 * In theory, the compile should just see 0 here, and optimize out the call
847 * to sched_rt_avg_update. But I don't trust it...
848 */
849#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850	s64 steal = 0, irq_delta = 0;
851#endif
852#ifdef CONFIG_IRQ_TIME_ACCOUNTING
853	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
854
855	/*
856	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
857	 * this case when a previous update_rq_clock() happened inside a
858	 * {soft,}irq region.
859	 *
860	 * When this happens, we stop ->clock_task and only update the
861	 * prev_irq_time stamp to account for the part that fit, so that a next
862	 * update will consume the rest. This ensures ->clock_task is
863	 * monotonic.
864	 *
865	 * It does however cause some slight miss-attribution of {soft,}irq
866	 * time, a more accurate solution would be to update the irq_time using
867	 * the current rq->clock timestamp, except that would require using
868	 * atomic ops.
869	 */
870	if (irq_delta > delta)
871		irq_delta = delta;
872
873	rq->prev_irq_time += irq_delta;
874	delta -= irq_delta;
875#endif
876#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
877	if (static_key_false((&paravirt_steal_rq_enabled))) {
878		steal = paravirt_steal_clock(cpu_of(rq));
879		steal -= rq->prev_steal_time_rq;
880
881		if (unlikely(steal > delta))
882			steal = delta;
883
884		rq->prev_steal_time_rq += steal;
885		delta -= steal;
886	}
887#endif
888
889	rq->clock_task += delta;
890
891#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
892	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
893		sched_rt_avg_update(rq, irq_delta + steal);
894#endif
895}
896
897void sched_set_stop_task(int cpu, struct task_struct *stop)
898{
899	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
900	struct task_struct *old_stop = cpu_rq(cpu)->stop;
901
902	if (stop) {
903		/*
904		 * Make it appear like a SCHED_FIFO task, its something
905		 * userspace knows about and won't get confused about.
906		 *
907		 * Also, it will make PI more or less work without too
908		 * much confusion -- but then, stop work should not
909		 * rely on PI working anyway.
910		 */
911		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
912
913		stop->sched_class = &stop_sched_class;
914	}
915
916	cpu_rq(cpu)->stop = stop;
917
918	if (old_stop) {
919		/*
920		 * Reset it back to a normal scheduling class so that
921		 * it can die in pieces.
922		 */
923		old_stop->sched_class = &rt_sched_class;
924	}
925}
926
927/*
928 * __normal_prio - return the priority that is based on the static prio
929 */
930static inline int __normal_prio(struct task_struct *p)
931{
932	return p->static_prio;
933}
934
935/*
936 * Calculate the expected normal priority: i.e. priority
937 * without taking RT-inheritance into account. Might be
938 * boosted by interactivity modifiers. Changes upon fork,
939 * setprio syscalls, and whenever the interactivity
940 * estimator recalculates.
941 */
942static inline int normal_prio(struct task_struct *p)
943{
944	int prio;
945
946	if (task_has_dl_policy(p))
947		prio = MAX_DL_PRIO-1;
948	else if (task_has_rt_policy(p))
949		prio = MAX_RT_PRIO-1 - p->rt_priority;
950	else
951		prio = __normal_prio(p);
952	return prio;
953}
954
955/*
956 * Calculate the current priority, i.e. the priority
957 * taken into account by the scheduler. This value might
958 * be boosted by RT tasks, or might be boosted by
959 * interactivity modifiers. Will be RT if the task got
960 * RT-boosted. If not then it returns p->normal_prio.
961 */
962static int effective_prio(struct task_struct *p)
963{
964	p->normal_prio = normal_prio(p);
965	/*
966	 * If we are RT tasks or we were boosted to RT priority,
967	 * keep the priority unchanged. Otherwise, update priority
968	 * to the normal priority:
969	 */
970	if (!rt_prio(p->prio))
971		return p->normal_prio;
972	return p->prio;
973}
974
975/**
976 * task_curr - is this task currently executing on a CPU?
977 * @p: the task in question.
978 *
979 * Return: 1 if the task is currently executing. 0 otherwise.
980 */
981inline int task_curr(const struct task_struct *p)
982{
983	return cpu_curr(task_cpu(p)) == p;
984}
985
986static inline void check_class_changed(struct rq *rq, struct task_struct *p,
987				       const struct sched_class *prev_class,
988				       int oldprio)
989{
990	if (prev_class != p->sched_class) {
991		if (prev_class->switched_from)
992			prev_class->switched_from(rq, p);
993		p->sched_class->switched_to(rq, p);
994	} else if (oldprio != p->prio || dl_task(p))
995		p->sched_class->prio_changed(rq, p, oldprio);
996}
997
998void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
999{
1000	const struct sched_class *class;
1001
1002	if (p->sched_class == rq->curr->sched_class) {
1003		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1004	} else {
1005		for_each_class(class) {
1006			if (class == rq->curr->sched_class)
1007				break;
1008			if (class == p->sched_class) {
1009				resched_task(rq->curr);
1010				break;
1011			}
1012		}
1013	}
1014
1015	/*
1016	 * A queue event has occurred, and we're going to schedule.  In
1017	 * this case, we can save a useless back to back clock update.
1018	 */
1019	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1020		rq->skip_clock_update = 1;
1021}
1022
1023#ifdef CONFIG_SMP
1024void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1025{
1026#ifdef CONFIG_SCHED_DEBUG
1027	/*
1028	 * We should never call set_task_cpu() on a blocked task,
1029	 * ttwu() will sort out the placement.
1030	 */
1031	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1032			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1033
1034#ifdef CONFIG_LOCKDEP
1035	/*
1036	 * The caller should hold either p->pi_lock or rq->lock, when changing
1037	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1038	 *
1039	 * sched_move_task() holds both and thus holding either pins the cgroup,
1040	 * see task_group().
1041	 *
1042	 * Furthermore, all task_rq users should acquire both locks, see
1043	 * task_rq_lock().
1044	 */
1045	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1046				      lockdep_is_held(&task_rq(p)->lock)));
1047#endif
1048#endif
1049
1050	trace_sched_migrate_task(p, new_cpu);
1051
1052	if (task_cpu(p) != new_cpu) {
1053		if (p->sched_class->migrate_task_rq)
1054			p->sched_class->migrate_task_rq(p, new_cpu);
1055		p->se.nr_migrations++;
1056		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1057	}
1058
1059	__set_task_cpu(p, new_cpu);
1060}
1061
1062static void __migrate_swap_task(struct task_struct *p, int cpu)
1063{
1064	if (p->on_rq) {
1065		struct rq *src_rq, *dst_rq;
1066
1067		src_rq = task_rq(p);
1068		dst_rq = cpu_rq(cpu);
1069
1070		deactivate_task(src_rq, p, 0);
1071		set_task_cpu(p, cpu);
1072		activate_task(dst_rq, p, 0);
1073		check_preempt_curr(dst_rq, p, 0);
1074	} else {
1075		/*
1076		 * Task isn't running anymore; make it appear like we migrated
1077		 * it before it went to sleep. This means on wakeup we make the
1078		 * previous cpu our targer instead of where it really is.
1079		 */
1080		p->wake_cpu = cpu;
1081	}
1082}
1083
1084struct migration_swap_arg {
1085	struct task_struct *src_task, *dst_task;
1086	int src_cpu, dst_cpu;
1087};
1088
1089static int migrate_swap_stop(void *data)
1090{
1091	struct migration_swap_arg *arg = data;
1092	struct rq *src_rq, *dst_rq;
1093	int ret = -EAGAIN;
1094
1095	src_rq = cpu_rq(arg->src_cpu);
1096	dst_rq = cpu_rq(arg->dst_cpu);
1097
1098	double_raw_lock(&arg->src_task->pi_lock,
1099			&arg->dst_task->pi_lock);
1100	double_rq_lock(src_rq, dst_rq);
1101	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1102		goto unlock;
1103
1104	if (task_cpu(arg->src_task) != arg->src_cpu)
1105		goto unlock;
1106
1107	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1108		goto unlock;
1109
1110	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1111		goto unlock;
1112
1113	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1114	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1115
1116	ret = 0;
1117
1118unlock:
1119	double_rq_unlock(src_rq, dst_rq);
1120	raw_spin_unlock(&arg->dst_task->pi_lock);
1121	raw_spin_unlock(&arg->src_task->pi_lock);
1122
1123	return ret;
1124}
1125
1126/*
1127 * Cross migrate two tasks
1128 */
1129int migrate_swap(struct task_struct *cur, struct task_struct *p)
1130{
1131	struct migration_swap_arg arg;
1132	int ret = -EINVAL;
1133
1134	arg = (struct migration_swap_arg){
1135		.src_task = cur,
1136		.src_cpu = task_cpu(cur),
1137		.dst_task = p,
1138		.dst_cpu = task_cpu(p),
1139	};
1140
1141	if (arg.src_cpu == arg.dst_cpu)
1142		goto out;
1143
1144	/*
1145	 * These three tests are all lockless; this is OK since all of them
1146	 * will be re-checked with proper locks held further down the line.
1147	 */
1148	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1149		goto out;
1150
1151	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1152		goto out;
1153
1154	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1155		goto out;
1156
1157	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1158	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1159
1160out:
1161	return ret;
1162}
1163
1164struct migration_arg {
1165	struct task_struct *task;
1166	int dest_cpu;
1167};
1168
1169static int migration_cpu_stop(void *data);
1170
1171/*
1172 * wait_task_inactive - wait for a thread to unschedule.
1173 *
1174 * If @match_state is nonzero, it's the @p->state value just checked and
1175 * not expected to change.  If it changes, i.e. @p might have woken up,
1176 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1177 * we return a positive number (its total switch count).  If a second call
1178 * a short while later returns the same number, the caller can be sure that
1179 * @p has remained unscheduled the whole time.
1180 *
1181 * The caller must ensure that the task *will* unschedule sometime soon,
1182 * else this function might spin for a *long* time. This function can't
1183 * be called with interrupts off, or it may introduce deadlock with
1184 * smp_call_function() if an IPI is sent by the same process we are
1185 * waiting to become inactive.
1186 */
1187unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1188{
1189	unsigned long flags;
1190	int running, on_rq;
1191	unsigned long ncsw;
1192	struct rq *rq;
1193
1194	for (;;) {
1195		/*
1196		 * We do the initial early heuristics without holding
1197		 * any task-queue locks at all. We'll only try to get
1198		 * the runqueue lock when things look like they will
1199		 * work out!
1200		 */
1201		rq = task_rq(p);
1202
1203		/*
1204		 * If the task is actively running on another CPU
1205		 * still, just relax and busy-wait without holding
1206		 * any locks.
1207		 *
1208		 * NOTE! Since we don't hold any locks, it's not
1209		 * even sure that "rq" stays as the right runqueue!
1210		 * But we don't care, since "task_running()" will
1211		 * return false if the runqueue has changed and p
1212		 * is actually now running somewhere else!
1213		 */
1214		while (task_running(rq, p)) {
1215			if (match_state && unlikely(p->state != match_state))
1216				return 0;
1217			cpu_relax();
1218		}
1219
1220		/*
1221		 * Ok, time to look more closely! We need the rq
1222		 * lock now, to be *sure*. If we're wrong, we'll
1223		 * just go back and repeat.
1224		 */
1225		rq = task_rq_lock(p, &flags);
1226		trace_sched_wait_task(p);
1227		running = task_running(rq, p);
1228		on_rq = p->on_rq;
1229		ncsw = 0;
1230		if (!match_state || p->state == match_state)
1231			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1232		task_rq_unlock(rq, p, &flags);
1233
1234		/*
1235		 * If it changed from the expected state, bail out now.
1236		 */
1237		if (unlikely(!ncsw))
1238			break;
1239
1240		/*
1241		 * Was it really running after all now that we
1242		 * checked with the proper locks actually held?
1243		 *
1244		 * Oops. Go back and try again..
1245		 */
1246		if (unlikely(running)) {
1247			cpu_relax();
1248			continue;
1249		}
1250
1251		/*
1252		 * It's not enough that it's not actively running,
1253		 * it must be off the runqueue _entirely_, and not
1254		 * preempted!
1255		 *
1256		 * So if it was still runnable (but just not actively
1257		 * running right now), it's preempted, and we should
1258		 * yield - it could be a while.
1259		 */
1260		if (unlikely(on_rq)) {
1261			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1262
1263			set_current_state(TASK_UNINTERRUPTIBLE);
1264			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1265			continue;
1266		}
1267
1268		/*
1269		 * Ahh, all good. It wasn't running, and it wasn't
1270		 * runnable, which means that it will never become
1271		 * running in the future either. We're all done!
1272		 */
1273		break;
1274	}
1275
1276	return ncsw;
1277}
1278
1279/***
1280 * kick_process - kick a running thread to enter/exit the kernel
1281 * @p: the to-be-kicked thread
1282 *
1283 * Cause a process which is running on another CPU to enter
1284 * kernel-mode, without any delay. (to get signals handled.)
1285 *
1286 * NOTE: this function doesn't have to take the runqueue lock,
1287 * because all it wants to ensure is that the remote task enters
1288 * the kernel. If the IPI races and the task has been migrated
1289 * to another CPU then no harm is done and the purpose has been
1290 * achieved as well.
1291 */
1292void kick_process(struct task_struct *p)
1293{
1294	int cpu;
1295
1296	preempt_disable();
1297	cpu = task_cpu(p);
1298	if ((cpu != smp_processor_id()) && task_curr(p))
1299		smp_send_reschedule(cpu);
1300	preempt_enable();
1301}
1302EXPORT_SYMBOL_GPL(kick_process);
1303#endif /* CONFIG_SMP */
1304
1305#ifdef CONFIG_SMP
1306/*
1307 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1308 */
1309static int select_fallback_rq(int cpu, struct task_struct *p)
1310{
1311	int nid = cpu_to_node(cpu);
1312	const struct cpumask *nodemask = NULL;
1313	enum { cpuset, possible, fail } state = cpuset;
1314	int dest_cpu;
1315
1316	/*
1317	 * If the node that the cpu is on has been offlined, cpu_to_node()
1318	 * will return -1. There is no cpu on the node, and we should
1319	 * select the cpu on the other node.
1320	 */
1321	if (nid != -1) {
1322		nodemask = cpumask_of_node(nid);
1323
1324		/* Look for allowed, online CPU in same node. */
1325		for_each_cpu(dest_cpu, nodemask) {
1326			if (!cpu_online(dest_cpu))
1327				continue;
1328			if (!cpu_active(dest_cpu))
1329				continue;
1330			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1331				return dest_cpu;
1332		}
1333	}
1334
1335	for (;;) {
1336		/* Any allowed, online CPU? */
1337		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1338			if (!cpu_online(dest_cpu))
1339				continue;
1340			if (!cpu_active(dest_cpu))
1341				continue;
1342			goto out;
1343		}
1344
1345		switch (state) {
1346		case cpuset:
1347			/* No more Mr. Nice Guy. */
1348			cpuset_cpus_allowed_fallback(p);
1349			state = possible;
1350			break;
1351
1352		case possible:
1353			do_set_cpus_allowed(p, cpu_possible_mask);
1354			state = fail;
1355			break;
1356
1357		case fail:
1358			BUG();
1359			break;
1360		}
1361	}
1362
1363out:
1364	if (state != cpuset) {
1365		/*
1366		 * Don't tell them about moving exiting tasks or
1367		 * kernel threads (both mm NULL), since they never
1368		 * leave kernel.
1369		 */
1370		if (p->mm && printk_ratelimit()) {
1371			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1372					task_pid_nr(p), p->comm, cpu);
1373		}
1374	}
1375
1376	return dest_cpu;
1377}
1378
1379/*
1380 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1381 */
1382static inline
1383int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1384{
1385	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1386
1387	/*
1388	 * In order not to call set_task_cpu() on a blocking task we need
1389	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1390	 * cpu.
1391	 *
1392	 * Since this is common to all placement strategies, this lives here.
1393	 *
1394	 * [ this allows ->select_task() to simply return task_cpu(p) and
1395	 *   not worry about this generic constraint ]
1396	 */
1397	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1398		     !cpu_online(cpu)))
1399		cpu = select_fallback_rq(task_cpu(p), p);
1400
1401	return cpu;
1402}
1403
1404static void update_avg(u64 *avg, u64 sample)
1405{
1406	s64 diff = sample - *avg;
1407	*avg += diff >> 3;
1408}
1409#endif
1410
1411static void
1412ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1413{
1414#ifdef CONFIG_SCHEDSTATS
1415	struct rq *rq = this_rq();
1416
1417#ifdef CONFIG_SMP
1418	int this_cpu = smp_processor_id();
1419
1420	if (cpu == this_cpu) {
1421		schedstat_inc(rq, ttwu_local);
1422		schedstat_inc(p, se.statistics.nr_wakeups_local);
1423	} else {
1424		struct sched_domain *sd;
1425
1426		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1427		rcu_read_lock();
1428		for_each_domain(this_cpu, sd) {
1429			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1430				schedstat_inc(sd, ttwu_wake_remote);
1431				break;
1432			}
1433		}
1434		rcu_read_unlock();
1435	}
1436
1437	if (wake_flags & WF_MIGRATED)
1438		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1439
1440#endif /* CONFIG_SMP */
1441
1442	schedstat_inc(rq, ttwu_count);
1443	schedstat_inc(p, se.statistics.nr_wakeups);
1444
1445	if (wake_flags & WF_SYNC)
1446		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1447
1448#endif /* CONFIG_SCHEDSTATS */
1449}
1450
1451static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1452{
1453	activate_task(rq, p, en_flags);
1454	p->on_rq = 1;
1455
1456	/* if a worker is waking up, notify workqueue */
1457	if (p->flags & PF_WQ_WORKER)
1458		wq_worker_waking_up(p, cpu_of(rq));
1459}
1460
1461/*
1462 * Mark the task runnable and perform wakeup-preemption.
1463 */
1464static void
1465ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1466{
1467	check_preempt_curr(rq, p, wake_flags);
1468	trace_sched_wakeup(p, true);
1469
1470	p->state = TASK_RUNNING;
1471#ifdef CONFIG_SMP
1472	if (p->sched_class->task_woken)
1473		p->sched_class->task_woken(rq, p);
1474
1475	if (rq->idle_stamp) {
1476		u64 delta = rq_clock(rq) - rq->idle_stamp;
1477		u64 max = 2*rq->max_idle_balance_cost;
1478
1479		update_avg(&rq->avg_idle, delta);
1480
1481		if (rq->avg_idle > max)
1482			rq->avg_idle = max;
1483
1484		rq->idle_stamp = 0;
1485	}
1486#endif
1487}
1488
1489static void
1490ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1491{
1492#ifdef CONFIG_SMP
1493	if (p->sched_contributes_to_load)
1494		rq->nr_uninterruptible--;
1495#endif
1496
1497	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1498	ttwu_do_wakeup(rq, p, wake_flags);
1499}
1500
1501/*
1502 * Called in case the task @p isn't fully descheduled from its runqueue,
1503 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1504 * since all we need to do is flip p->state to TASK_RUNNING, since
1505 * the task is still ->on_rq.
1506 */
1507static int ttwu_remote(struct task_struct *p, int wake_flags)
1508{
1509	struct rq *rq;
1510	int ret = 0;
1511
1512	rq = __task_rq_lock(p);
1513	if (p->on_rq) {
1514		/* check_preempt_curr() may use rq clock */
1515		update_rq_clock(rq);
1516		ttwu_do_wakeup(rq, p, wake_flags);
1517		ret = 1;
1518	}
1519	__task_rq_unlock(rq);
1520
1521	return ret;
1522}
1523
1524#ifdef CONFIG_SMP
1525void sched_ttwu_pending(void)
1526{
1527	struct rq *rq = this_rq();
1528	struct llist_node *llist = llist_del_all(&rq->wake_list);
1529	struct task_struct *p;
1530	unsigned long flags;
1531
1532	if (!llist)
1533		return;
1534
1535	raw_spin_lock_irqsave(&rq->lock, flags);
1536
1537	while (llist) {
1538		p = llist_entry(llist, struct task_struct, wake_entry);
1539		llist = llist_next(llist);
1540		ttwu_do_activate(rq, p, 0);
1541	}
1542
1543	raw_spin_unlock_irqrestore(&rq->lock, flags);
1544}
1545
1546void scheduler_ipi(void)
1547{
1548	/*
1549	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1550	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1551	 * this IPI.
1552	 */
1553	preempt_fold_need_resched();
1554
1555	if (llist_empty(&this_rq()->wake_list)
1556			&& !tick_nohz_full_cpu(smp_processor_id())
1557			&& !got_nohz_idle_kick())
1558		return;
1559
1560	/*
1561	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1562	 * traditionally all their work was done from the interrupt return
1563	 * path. Now that we actually do some work, we need to make sure
1564	 * we do call them.
1565	 *
1566	 * Some archs already do call them, luckily irq_enter/exit nest
1567	 * properly.
1568	 *
1569	 * Arguably we should visit all archs and update all handlers,
1570	 * however a fair share of IPIs are still resched only so this would
1571	 * somewhat pessimize the simple resched case.
1572	 */
1573	irq_enter();
1574	tick_nohz_full_check();
1575	sched_ttwu_pending();
1576
1577	/*
1578	 * Check if someone kicked us for doing the nohz idle load balance.
1579	 */
1580	if (unlikely(got_nohz_idle_kick())) {
1581		this_rq()->idle_balance = 1;
1582		raise_softirq_irqoff(SCHED_SOFTIRQ);
1583	}
1584	irq_exit();
1585}
1586
1587static void ttwu_queue_remote(struct task_struct *p, int cpu)
1588{
1589	struct rq *rq = cpu_rq(cpu);
1590
1591	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1592		if (!set_nr_if_polling(rq->idle))
1593			smp_send_reschedule(cpu);
1594		else
1595			trace_sched_wake_idle_without_ipi(cpu);
1596	}
1597}
1598
1599bool cpus_share_cache(int this_cpu, int that_cpu)
1600{
1601	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1602}
1603#endif /* CONFIG_SMP */
1604
1605static void ttwu_queue(struct task_struct *p, int cpu)
1606{
1607	struct rq *rq = cpu_rq(cpu);
1608
1609#if defined(CONFIG_SMP)
1610	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1611		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1612		ttwu_queue_remote(p, cpu);
1613		return;
1614	}
1615#endif
1616
1617	raw_spin_lock(&rq->lock);
1618	ttwu_do_activate(rq, p, 0);
1619	raw_spin_unlock(&rq->lock);
1620}
1621
1622/**
1623 * try_to_wake_up - wake up a thread
1624 * @p: the thread to be awakened
1625 * @state: the mask of task states that can be woken
1626 * @wake_flags: wake modifier flags (WF_*)
1627 *
1628 * Put it on the run-queue if it's not already there. The "current"
1629 * thread is always on the run-queue (except when the actual
1630 * re-schedule is in progress), and as such you're allowed to do
1631 * the simpler "current->state = TASK_RUNNING" to mark yourself
1632 * runnable without the overhead of this.
1633 *
1634 * Return: %true if @p was woken up, %false if it was already running.
1635 * or @state didn't match @p's state.
1636 */
1637static int
1638try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1639{
1640	unsigned long flags;
1641	int cpu, success = 0;
1642
1643	/*
1644	 * If we are going to wake up a thread waiting for CONDITION we
1645	 * need to ensure that CONDITION=1 done by the caller can not be
1646	 * reordered with p->state check below. This pairs with mb() in
1647	 * set_current_state() the waiting thread does.
1648	 */
1649	smp_mb__before_spinlock();
1650	raw_spin_lock_irqsave(&p->pi_lock, flags);
1651	if (!(p->state & state))
1652		goto out;
1653
1654	success = 1; /* we're going to change ->state */
1655	cpu = task_cpu(p);
1656
1657	if (p->on_rq && ttwu_remote(p, wake_flags))
1658		goto stat;
1659
1660#ifdef CONFIG_SMP
1661	/*
1662	 * If the owning (remote) cpu is still in the middle of schedule() with
1663	 * this task as prev, wait until its done referencing the task.
1664	 */
1665	while (p->on_cpu)
1666		cpu_relax();
1667	/*
1668	 * Pairs with the smp_wmb() in finish_lock_switch().
1669	 */
1670	smp_rmb();
1671
1672	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1673	p->state = TASK_WAKING;
1674
1675	if (p->sched_class->task_waking)
1676		p->sched_class->task_waking(p);
1677
1678	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1679	if (task_cpu(p) != cpu) {
1680		wake_flags |= WF_MIGRATED;
1681		set_task_cpu(p, cpu);
1682	}
1683#endif /* CONFIG_SMP */
1684
1685	ttwu_queue(p, cpu);
1686stat:
1687	ttwu_stat(p, cpu, wake_flags);
1688out:
1689	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1690
1691	return success;
1692}
1693
1694/**
1695 * try_to_wake_up_local - try to wake up a local task with rq lock held
1696 * @p: the thread to be awakened
1697 *
1698 * Put @p on the run-queue if it's not already there. The caller must
1699 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1700 * the current task.
1701 */
1702static void try_to_wake_up_local(struct task_struct *p)
1703{
1704	struct rq *rq = task_rq(p);
1705
1706	if (WARN_ON_ONCE(rq != this_rq()) ||
1707	    WARN_ON_ONCE(p == current))
1708		return;
1709
1710	lockdep_assert_held(&rq->lock);
1711
1712	if (!raw_spin_trylock(&p->pi_lock)) {
1713		raw_spin_unlock(&rq->lock);
1714		raw_spin_lock(&p->pi_lock);
1715		raw_spin_lock(&rq->lock);
1716	}
1717
1718	if (!(p->state & TASK_NORMAL))
1719		goto out;
1720
1721	if (!p->on_rq)
1722		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1723
1724	ttwu_do_wakeup(rq, p, 0);
1725	ttwu_stat(p, smp_processor_id(), 0);
1726out:
1727	raw_spin_unlock(&p->pi_lock);
1728}
1729
1730/**
1731 * wake_up_process - Wake up a specific process
1732 * @p: The process to be woken up.
1733 *
1734 * Attempt to wake up the nominated process and move it to the set of runnable
1735 * processes.
1736 *
1737 * Return: 1 if the process was woken up, 0 if it was already running.
1738 *
1739 * It may be assumed that this function implies a write memory barrier before
1740 * changing the task state if and only if any tasks are woken up.
1741 */
1742int wake_up_process(struct task_struct *p)
1743{
1744	WARN_ON(task_is_stopped_or_traced(p));
1745	return try_to_wake_up(p, TASK_NORMAL, 0);
1746}
1747EXPORT_SYMBOL(wake_up_process);
1748
1749int wake_up_state(struct task_struct *p, unsigned int state)
1750{
1751	return try_to_wake_up(p, state, 0);
1752}
1753
1754/*
1755 * Perform scheduler related setup for a newly forked process p.
1756 * p is forked by current.
1757 *
1758 * __sched_fork() is basic setup used by init_idle() too:
1759 */
1760static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1761{
1762	p->on_rq			= 0;
1763
1764	p->se.on_rq			= 0;
1765	p->se.exec_start		= 0;
1766	p->se.sum_exec_runtime		= 0;
1767	p->se.prev_sum_exec_runtime	= 0;
1768	p->se.nr_migrations		= 0;
1769	p->se.vruntime			= 0;
1770	INIT_LIST_HEAD(&p->se.group_node);
1771
1772#ifdef CONFIG_SCHEDSTATS
1773	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1774#endif
1775
1776	RB_CLEAR_NODE(&p->dl.rb_node);
1777	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1778	p->dl.dl_runtime = p->dl.runtime = 0;
1779	p->dl.dl_deadline = p->dl.deadline = 0;
1780	p->dl.dl_period = 0;
1781	p->dl.flags = 0;
1782
1783	INIT_LIST_HEAD(&p->rt.run_list);
1784
1785#ifdef CONFIG_PREEMPT_NOTIFIERS
1786	INIT_HLIST_HEAD(&p->preempt_notifiers);
1787#endif
1788
1789#ifdef CONFIG_NUMA_BALANCING
1790	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1791		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1792		p->mm->numa_scan_seq = 0;
1793	}
1794
1795	if (clone_flags & CLONE_VM)
1796		p->numa_preferred_nid = current->numa_preferred_nid;
1797	else
1798		p->numa_preferred_nid = -1;
1799
1800	p->node_stamp = 0ULL;
1801	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1802	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1803	p->numa_work.next = &p->numa_work;
1804	p->numa_faults_memory = NULL;
1805	p->numa_faults_buffer_memory = NULL;
1806	p->last_task_numa_placement = 0;
1807	p->last_sum_exec_runtime = 0;
1808
1809	INIT_LIST_HEAD(&p->numa_entry);
1810	p->numa_group = NULL;
1811#endif /* CONFIG_NUMA_BALANCING */
1812}
1813
1814#ifdef CONFIG_NUMA_BALANCING
1815#ifdef CONFIG_SCHED_DEBUG
1816void set_numabalancing_state(bool enabled)
1817{
1818	if (enabled)
1819		sched_feat_set("NUMA");
1820	else
1821		sched_feat_set("NO_NUMA");
1822}
1823#else
1824__read_mostly bool numabalancing_enabled;
1825
1826void set_numabalancing_state(bool enabled)
1827{
1828	numabalancing_enabled = enabled;
1829}
1830#endif /* CONFIG_SCHED_DEBUG */
1831
1832#ifdef CONFIG_PROC_SYSCTL
1833int sysctl_numa_balancing(struct ctl_table *table, int write,
1834			 void __user *buffer, size_t *lenp, loff_t *ppos)
1835{
1836	struct ctl_table t;
1837	int err;
1838	int state = numabalancing_enabled;
1839
1840	if (write && !capable(CAP_SYS_ADMIN))
1841		return -EPERM;
1842
1843	t = *table;
1844	t.data = &state;
1845	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1846	if (err < 0)
1847		return err;
1848	if (write)
1849		set_numabalancing_state(state);
1850	return err;
1851}
1852#endif
1853#endif
1854
1855/*
1856 * fork()/clone()-time setup:
1857 */
1858int sched_fork(unsigned long clone_flags, struct task_struct *p)
1859{
1860	unsigned long flags;
1861	int cpu = get_cpu();
1862
1863	__sched_fork(clone_flags, p);
1864	/*
1865	 * We mark the process as running here. This guarantees that
1866	 * nobody will actually run it, and a signal or other external
1867	 * event cannot wake it up and insert it on the runqueue either.
1868	 */
1869	p->state = TASK_RUNNING;
1870
1871	/*
1872	 * Make sure we do not leak PI boosting priority to the child.
1873	 */
1874	p->prio = current->normal_prio;
1875
1876	/*
1877	 * Revert to default priority/policy on fork if requested.
1878	 */
1879	if (unlikely(p->sched_reset_on_fork)) {
1880		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1881			p->policy = SCHED_NORMAL;
1882			p->static_prio = NICE_TO_PRIO(0);
1883			p->rt_priority = 0;
1884		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1885			p->static_prio = NICE_TO_PRIO(0);
1886
1887		p->prio = p->normal_prio = __normal_prio(p);
1888		set_load_weight(p);
1889
1890		/*
1891		 * We don't need the reset flag anymore after the fork. It has
1892		 * fulfilled its duty:
1893		 */
1894		p->sched_reset_on_fork = 0;
1895	}
1896
1897	if (dl_prio(p->prio)) {
1898		put_cpu();
1899		return -EAGAIN;
1900	} else if (rt_prio(p->prio)) {
1901		p->sched_class = &rt_sched_class;
1902	} else {
1903		p->sched_class = &fair_sched_class;
1904	}
1905
1906	if (p->sched_class->task_fork)
1907		p->sched_class->task_fork(p);
1908
1909	/*
1910	 * The child is not yet in the pid-hash so no cgroup attach races,
1911	 * and the cgroup is pinned to this child due to cgroup_fork()
1912	 * is ran before sched_fork().
1913	 *
1914	 * Silence PROVE_RCU.
1915	 */
1916	raw_spin_lock_irqsave(&p->pi_lock, flags);
1917	set_task_cpu(p, cpu);
1918	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1919
1920#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1921	if (likely(sched_info_on()))
1922		memset(&p->sched_info, 0, sizeof(p->sched_info));
1923#endif
1924#if defined(CONFIG_SMP)
1925	p->on_cpu = 0;
1926#endif
1927	init_task_preempt_count(p);
1928#ifdef CONFIG_SMP
1929	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1930	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1931#endif
1932
1933	put_cpu();
1934	return 0;
1935}
1936
1937unsigned long to_ratio(u64 period, u64 runtime)
1938{
1939	if (runtime == RUNTIME_INF)
1940		return 1ULL << 20;
1941
1942	/*
1943	 * Doing this here saves a lot of checks in all
1944	 * the calling paths, and returning zero seems
1945	 * safe for them anyway.
1946	 */
1947	if (period == 0)
1948		return 0;
1949
1950	return div64_u64(runtime << 20, period);
1951}
1952
1953#ifdef CONFIG_SMP
1954inline struct dl_bw *dl_bw_of(int i)
1955{
1956	return &cpu_rq(i)->rd->dl_bw;
1957}
1958
1959static inline int dl_bw_cpus(int i)
1960{
1961	struct root_domain *rd = cpu_rq(i)->rd;
1962	int cpus = 0;
1963
1964	for_each_cpu_and(i, rd->span, cpu_active_mask)
1965		cpus++;
1966
1967	return cpus;
1968}
1969#else
1970inline struct dl_bw *dl_bw_of(int i)
1971{
1972	return &cpu_rq(i)->dl.dl_bw;
1973}
1974
1975static inline int dl_bw_cpus(int i)
1976{
1977	return 1;
1978}
1979#endif
1980
1981static inline
1982void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1983{
1984	dl_b->total_bw -= tsk_bw;
1985}
1986
1987static inline
1988void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1989{
1990	dl_b->total_bw += tsk_bw;
1991}
1992
1993static inline
1994bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1995{
1996	return dl_b->bw != -1 &&
1997	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1998}
1999
2000/*
2001 * We must be sure that accepting a new task (or allowing changing the
2002 * parameters of an existing one) is consistent with the bandwidth
2003 * constraints. If yes, this function also accordingly updates the currently
2004 * allocated bandwidth to reflect the new situation.
2005 *
2006 * This function is called while holding p's rq->lock.
2007 */
2008static int dl_overflow(struct task_struct *p, int policy,
2009		       const struct sched_attr *attr)
2010{
2011
2012	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2013	u64 period = attr->sched_period ?: attr->sched_deadline;
2014	u64 runtime = attr->sched_runtime;
2015	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2016	int cpus, err = -1;
2017
2018	if (new_bw == p->dl.dl_bw)
2019		return 0;
2020
2021	/*
2022	 * Either if a task, enters, leave, or stays -deadline but changes
2023	 * its parameters, we may need to update accordingly the total
2024	 * allocated bandwidth of the container.
2025	 */
2026	raw_spin_lock(&dl_b->lock);
2027	cpus = dl_bw_cpus(task_cpu(p));
2028	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2029	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2030		__dl_add(dl_b, new_bw);
2031		err = 0;
2032	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2033		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2034		__dl_clear(dl_b, p->dl.dl_bw);
2035		__dl_add(dl_b, new_bw);
2036		err = 0;
2037	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2038		__dl_clear(dl_b, p->dl.dl_bw);
2039		err = 0;
2040	}
2041	raw_spin_unlock(&dl_b->lock);
2042
2043	return err;
2044}
2045
2046extern void init_dl_bw(struct dl_bw *dl_b);
2047
2048/*
2049 * wake_up_new_task - wake up a newly created task for the first time.
2050 *
2051 * This function will do some initial scheduler statistics housekeeping
2052 * that must be done for every newly created context, then puts the task
2053 * on the runqueue and wakes it.
2054 */
2055void wake_up_new_task(struct task_struct *p)
2056{
2057	unsigned long flags;
2058	struct rq *rq;
2059
2060	raw_spin_lock_irqsave(&p->pi_lock, flags);
2061#ifdef CONFIG_SMP
2062	/*
2063	 * Fork balancing, do it here and not earlier because:
2064	 *  - cpus_allowed can change in the fork path
2065	 *  - any previously selected cpu might disappear through hotplug
2066	 */
2067	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2068#endif
2069
2070	/* Initialize new task's runnable average */
2071	init_task_runnable_average(p);
2072	rq = __task_rq_lock(p);
2073	activate_task(rq, p, 0);
2074	p->on_rq = 1;
2075	trace_sched_wakeup_new(p, true);
2076	check_preempt_curr(rq, p, WF_FORK);
2077#ifdef CONFIG_SMP
2078	if (p->sched_class->task_woken)
2079		p->sched_class->task_woken(rq, p);
2080#endif
2081	task_rq_unlock(rq, p, &flags);
2082}
2083
2084#ifdef CONFIG_PREEMPT_NOTIFIERS
2085
2086/**
2087 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2088 * @notifier: notifier struct to register
2089 */
2090void preempt_notifier_register(struct preempt_notifier *notifier)
2091{
2092	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2093}
2094EXPORT_SYMBOL_GPL(preempt_notifier_register);
2095
2096/**
2097 * preempt_notifier_unregister - no longer interested in preemption notifications
2098 * @notifier: notifier struct to unregister
2099 *
2100 * This is safe to call from within a preemption notifier.
2101 */
2102void preempt_notifier_unregister(struct preempt_notifier *notifier)
2103{
2104	hlist_del(&notifier->link);
2105}
2106EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2107
2108static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2109{
2110	struct preempt_notifier *notifier;
2111
2112	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2113		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2114}
2115
2116static void
2117fire_sched_out_preempt_notifiers(struct task_struct *curr,
2118				 struct task_struct *next)
2119{
2120	struct preempt_notifier *notifier;
2121
2122	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2123		notifier->ops->sched_out(notifier, next);
2124}
2125
2126#else /* !CONFIG_PREEMPT_NOTIFIERS */
2127
2128static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2129{
2130}
2131
2132static void
2133fire_sched_out_preempt_notifiers(struct task_struct *curr,
2134				 struct task_struct *next)
2135{
2136}
2137
2138#endif /* CONFIG_PREEMPT_NOTIFIERS */
2139
2140/**
2141 * prepare_task_switch - prepare to switch tasks
2142 * @rq: the runqueue preparing to switch
2143 * @prev: the current task that is being switched out
2144 * @next: the task we are going to switch to.
2145 *
2146 * This is called with the rq lock held and interrupts off. It must
2147 * be paired with a subsequent finish_task_switch after the context
2148 * switch.
2149 *
2150 * prepare_task_switch sets up locking and calls architecture specific
2151 * hooks.
2152 */
2153static inline void
2154prepare_task_switch(struct rq *rq, struct task_struct *prev,
2155		    struct task_struct *next)
2156{
2157	trace_sched_switch(prev, next);
2158	sched_info_switch(rq, prev, next);
2159	perf_event_task_sched_out(prev, next);
2160	fire_sched_out_preempt_notifiers(prev, next);
2161	prepare_lock_switch(rq, next);
2162	prepare_arch_switch(next);
2163}
2164
2165/**
2166 * finish_task_switch - clean up after a task-switch
2167 * @rq: runqueue associated with task-switch
2168 * @prev: the thread we just switched away from.
2169 *
2170 * finish_task_switch must be called after the context switch, paired
2171 * with a prepare_task_switch call before the context switch.
2172 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2173 * and do any other architecture-specific cleanup actions.
2174 *
2175 * Note that we may have delayed dropping an mm in context_switch(). If
2176 * so, we finish that here outside of the runqueue lock. (Doing it
2177 * with the lock held can cause deadlocks; see schedule() for
2178 * details.)
2179 */
2180static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2181	__releases(rq->lock)
2182{
2183	struct mm_struct *mm = rq->prev_mm;
2184	long prev_state;
2185
2186	rq->prev_mm = NULL;
2187
2188	/*
2189	 * A task struct has one reference for the use as "current".
2190	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2191	 * schedule one last time. The schedule call will never return, and
2192	 * the scheduled task must drop that reference.
2193	 * The test for TASK_DEAD must occur while the runqueue locks are
2194	 * still held, otherwise prev could be scheduled on another cpu, die
2195	 * there before we look at prev->state, and then the reference would
2196	 * be dropped twice.
2197	 *		Manfred Spraul <manfred@colorfullife.com>
2198	 */
2199	prev_state = prev->state;
2200	vtime_task_switch(prev);
2201	finish_arch_switch(prev);
2202	perf_event_task_sched_in(prev, current);
2203	finish_lock_switch(rq, prev);
2204	finish_arch_post_lock_switch();
2205
2206	fire_sched_in_preempt_notifiers(current);
2207	if (mm)
2208		mmdrop(mm);
2209	if (unlikely(prev_state == TASK_DEAD)) {
2210		if (prev->sched_class->task_dead)
2211			prev->sched_class->task_dead(prev);
2212
2213		/*
2214		 * Remove function-return probe instances associated with this
2215		 * task and put them back on the free list.
2216		 */
2217		kprobe_flush_task(prev);
2218		put_task_struct(prev);
2219	}
2220
2221	tick_nohz_task_switch(current);
2222}
2223
2224#ifdef CONFIG_SMP
2225
2226/* rq->lock is NOT held, but preemption is disabled */
2227static inline void post_schedule(struct rq *rq)
2228{
2229	if (rq->post_schedule) {
2230		unsigned long flags;
2231
2232		raw_spin_lock_irqsave(&rq->lock, flags);
2233		if (rq->curr->sched_class->post_schedule)
2234			rq->curr->sched_class->post_schedule(rq);
2235		raw_spin_unlock_irqrestore(&rq->lock, flags);
2236
2237		rq->post_schedule = 0;
2238	}
2239}
2240
2241#else
2242
2243static inline void post_schedule(struct rq *rq)
2244{
2245}
2246
2247#endif
2248
2249/**
2250 * schedule_tail - first thing a freshly forked thread must call.
2251 * @prev: the thread we just switched away from.
2252 */
2253asmlinkage __visible void schedule_tail(struct task_struct *prev)
2254	__releases(rq->lock)
2255{
2256	struct rq *rq = this_rq();
2257
2258	finish_task_switch(rq, prev);
2259
2260	/*
2261	 * FIXME: do we need to worry about rq being invalidated by the
2262	 * task_switch?
2263	 */
2264	post_schedule(rq);
2265
2266#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2267	/* In this case, finish_task_switch does not reenable preemption */
2268	preempt_enable();
2269#endif
2270	if (current->set_child_tid)
2271		put_user(task_pid_vnr(current), current->set_child_tid);
2272}
2273
2274/*
2275 * context_switch - switch to the new MM and the new
2276 * thread's register state.
2277 */
2278static inline void
2279context_switch(struct rq *rq, struct task_struct *prev,
2280	       struct task_struct *next)
2281{
2282	struct mm_struct *mm, *oldmm;
2283
2284	prepare_task_switch(rq, prev, next);
2285
2286	mm = next->mm;
2287	oldmm = prev->active_mm;
2288	/*
2289	 * For paravirt, this is coupled with an exit in switch_to to
2290	 * combine the page table reload and the switch backend into
2291	 * one hypercall.
2292	 */
2293	arch_start_context_switch(prev);
2294
2295	if (!mm) {
2296		next->active_mm = oldmm;
2297		atomic_inc(&oldmm->mm_count);
2298		enter_lazy_tlb(oldmm, next);
2299	} else
2300		switch_mm(oldmm, mm, next);
2301
2302	if (!prev->mm) {
2303		prev->active_mm = NULL;
2304		rq->prev_mm = oldmm;
2305	}
2306	/*
2307	 * Since the runqueue lock will be released by the next
2308	 * task (which is an invalid locking op but in the case
2309	 * of the scheduler it's an obvious special-case), so we
2310	 * do an early lockdep release here:
2311	 */
2312#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2313	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2314#endif
2315
2316	context_tracking_task_switch(prev, next);
2317	/* Here we just switch the register state and the stack. */
2318	switch_to(prev, next, prev);
2319
2320	barrier();
2321	/*
2322	 * this_rq must be evaluated again because prev may have moved
2323	 * CPUs since it called schedule(), thus the 'rq' on its stack
2324	 * frame will be invalid.
2325	 */
2326	finish_task_switch(this_rq(), prev);
2327}
2328
2329/*
2330 * nr_running and nr_context_switches:
2331 *
2332 * externally visible scheduler statistics: current number of runnable
2333 * threads, total number of context switches performed since bootup.
2334 */
2335unsigned long nr_running(void)
2336{
2337	unsigned long i, sum = 0;
2338
2339	for_each_online_cpu(i)
2340		sum += cpu_rq(i)->nr_running;
2341
2342	return sum;
2343}
2344
2345unsigned long long nr_context_switches(void)
2346{
2347	int i;
2348	unsigned long long sum = 0;
2349
2350	for_each_possible_cpu(i)
2351		sum += cpu_rq(i)->nr_switches;
2352
2353	return sum;
2354}
2355
2356unsigned long nr_iowait(void)
2357{
2358	unsigned long i, sum = 0;
2359
2360	for_each_possible_cpu(i)
2361		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2362
2363	return sum;
2364}
2365
2366unsigned long nr_iowait_cpu(int cpu)
2367{
2368	struct rq *this = cpu_rq(cpu);
2369	return atomic_read(&this->nr_iowait);
2370}
2371
2372#ifdef CONFIG_SMP
2373
2374/*
2375 * sched_exec - execve() is a valuable balancing opportunity, because at
2376 * this point the task has the smallest effective memory and cache footprint.
2377 */
2378void sched_exec(void)
2379{
2380	struct task_struct *p = current;
2381	unsigned long flags;
2382	int dest_cpu;
2383
2384	raw_spin_lock_irqsave(&p->pi_lock, flags);
2385	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2386	if (dest_cpu == smp_processor_id())
2387		goto unlock;
2388
2389	if (likely(cpu_active(dest_cpu))) {
2390		struct migration_arg arg = { p, dest_cpu };
2391
2392		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2393		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2394		return;
2395	}
2396unlock:
2397	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2398}
2399
2400#endif
2401
2402DEFINE_PER_CPU(struct kernel_stat, kstat);
2403DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2404
2405EXPORT_PER_CPU_SYMBOL(kstat);
2406EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2407
2408/*
2409 * Return any ns on the sched_clock that have not yet been accounted in
2410 * @p in case that task is currently running.
2411 *
2412 * Called with task_rq_lock() held on @rq.
2413 */
2414static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2415{
2416	u64 ns = 0;
2417
2418	if (task_current(rq, p)) {
2419		update_rq_clock(rq);
2420		ns = rq_clock_task(rq) - p->se.exec_start;
2421		if ((s64)ns < 0)
2422			ns = 0;
2423	}
2424
2425	return ns;
2426}
2427
2428unsigned long long task_delta_exec(struct task_struct *p)
2429{
2430	unsigned long flags;
2431	struct rq *rq;
2432	u64 ns = 0;
2433
2434	rq = task_rq_lock(p, &flags);
2435	ns = do_task_delta_exec(p, rq);
2436	task_rq_unlock(rq, p, &flags);
2437
2438	return ns;
2439}
2440
2441/*
2442 * Return accounted runtime for the task.
2443 * In case the task is currently running, return the runtime plus current's
2444 * pending runtime that have not been accounted yet.
2445 */
2446unsigned long long task_sched_runtime(struct task_struct *p)
2447{
2448	unsigned long flags;
2449	struct rq *rq;
2450	u64 ns = 0;
2451
2452#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2453	/*
2454	 * 64-bit doesn't need locks to atomically read a 64bit value.
2455	 * So we have a optimization chance when the task's delta_exec is 0.
2456	 * Reading ->on_cpu is racy, but this is ok.
2457	 *
2458	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2459	 * If we race with it entering cpu, unaccounted time is 0. This is
2460	 * indistinguishable from the read occurring a few cycles earlier.
2461	 */
2462	if (!p->on_cpu)
2463		return p->se.sum_exec_runtime;
2464#endif
2465
2466	rq = task_rq_lock(p, &flags);
2467	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2468	task_rq_unlock(rq, p, &flags);
2469
2470	return ns;
2471}
2472
2473/*
2474 * This function gets called by the timer code, with HZ frequency.
2475 * We call it with interrupts disabled.
2476 */
2477void scheduler_tick(void)
2478{
2479	int cpu = smp_processor_id();
2480	struct rq *rq = cpu_rq(cpu);
2481	struct task_struct *curr = rq->curr;
2482
2483	sched_clock_tick();
2484
2485	raw_spin_lock(&rq->lock);
2486	update_rq_clock(rq);
2487	curr->sched_class->task_tick(rq, curr, 0);
2488	update_cpu_load_active(rq);
2489	raw_spin_unlock(&rq->lock);
2490
2491	perf_event_task_tick();
2492
2493#ifdef CONFIG_SMP
2494	rq->idle_balance = idle_cpu(cpu);
2495	trigger_load_balance(rq);
2496#endif
2497	rq_last_tick_reset(rq);
2498}
2499
2500#ifdef CONFIG_NO_HZ_FULL
2501/**
2502 * scheduler_tick_max_deferment
2503 *
2504 * Keep at least one tick per second when a single
2505 * active task is running because the scheduler doesn't
2506 * yet completely support full dynticks environment.
2507 *
2508 * This makes sure that uptime, CFS vruntime, load
2509 * balancing, etc... continue to move forward, even
2510 * with a very low granularity.
2511 *
2512 * Return: Maximum deferment in nanoseconds.
2513 */
2514u64 scheduler_tick_max_deferment(void)
2515{
2516	struct rq *rq = this_rq();
2517	unsigned long next, now = ACCESS_ONCE(jiffies);
2518
2519	next = rq->last_sched_tick + HZ;
2520
2521	if (time_before_eq(next, now))
2522		return 0;
2523
2524	return jiffies_to_nsecs(next - now);
2525}
2526#endif
2527
2528notrace unsigned long get_parent_ip(unsigned long addr)
2529{
2530	if (in_lock_functions(addr)) {
2531		addr = CALLER_ADDR2;
2532		if (in_lock_functions(addr))
2533			addr = CALLER_ADDR3;
2534	}
2535	return addr;
2536}
2537
2538#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2539				defined(CONFIG_PREEMPT_TRACER))
2540
2541void __kprobes preempt_count_add(int val)
2542{
2543#ifdef CONFIG_DEBUG_PREEMPT
2544	/*
2545	 * Underflow?
2546	 */
2547	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2548		return;
2549#endif
2550	__preempt_count_add(val);
2551#ifdef CONFIG_DEBUG_PREEMPT
2552	/*
2553	 * Spinlock count overflowing soon?
2554	 */
2555	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2556				PREEMPT_MASK - 10);
2557#endif
2558	if (preempt_count() == val) {
2559		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2560#ifdef CONFIG_DEBUG_PREEMPT
2561		current->preempt_disable_ip = ip;
2562#endif
2563		trace_preempt_off(CALLER_ADDR0, ip);
2564	}
2565}
2566EXPORT_SYMBOL(preempt_count_add);
2567
2568void __kprobes preempt_count_sub(int val)
2569{
2570#ifdef CONFIG_DEBUG_PREEMPT
2571	/*
2572	 * Underflow?
2573	 */
2574	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2575		return;
2576	/*
2577	 * Is the spinlock portion underflowing?
2578	 */
2579	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2580			!(preempt_count() & PREEMPT_MASK)))
2581		return;
2582#endif
2583
2584	if (preempt_count() == val)
2585		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2586	__preempt_count_sub(val);
2587}
2588EXPORT_SYMBOL(preempt_count_sub);
2589
2590#endif
2591
2592/*
2593 * Print scheduling while atomic bug:
2594 */
2595static noinline void __schedule_bug(struct task_struct *prev)
2596{
2597	if (oops_in_progress)
2598		return;
2599
2600	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2601		prev->comm, prev->pid, preempt_count());
2602
2603	debug_show_held_locks(prev);
2604	print_modules();
2605	if (irqs_disabled())
2606		print_irqtrace_events(prev);
2607#ifdef CONFIG_DEBUG_PREEMPT
2608	if (in_atomic_preempt_off()) {
2609		pr_err("Preemption disabled at:");
2610		print_ip_sym(current->preempt_disable_ip);
2611		pr_cont("\n");
2612	}
2613#endif
2614	dump_stack();
2615	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2616}
2617
2618/*
2619 * Various schedule()-time debugging checks and statistics:
2620 */
2621static inline void schedule_debug(struct task_struct *prev)
2622{
2623	/*
2624	 * Test if we are atomic. Since do_exit() needs to call into
2625	 * schedule() atomically, we ignore that path. Otherwise whine
2626	 * if we are scheduling when we should not.
2627	 */
2628	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2629		__schedule_bug(prev);
2630	rcu_sleep_check();
2631
2632	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2633
2634	schedstat_inc(this_rq(), sched_count);
2635}
2636
2637/*
2638 * Pick up the highest-prio task:
2639 */
2640static inline struct task_struct *
2641pick_next_task(struct rq *rq, struct task_struct *prev)
2642{
2643	const struct sched_class *class = &fair_sched_class;
2644	struct task_struct *p;
2645
2646	/*
2647	 * Optimization: we know that if all tasks are in
2648	 * the fair class we can call that function directly:
2649	 */
2650	if (likely(prev->sched_class == class &&
2651		   rq->nr_running == rq->cfs.h_nr_running)) {
2652		p = fair_sched_class.pick_next_task(rq, prev);
2653		if (unlikely(p == RETRY_TASK))
2654			goto again;
2655
2656		/* assumes fair_sched_class->next == idle_sched_class */
2657		if (unlikely(!p))
2658			p = idle_sched_class.pick_next_task(rq, prev);
2659
2660		return p;
2661	}
2662
2663again:
2664	for_each_class(class) {
2665		p = class->pick_next_task(rq, prev);
2666		if (p) {
2667			if (unlikely(p == RETRY_TASK))
2668				goto again;
2669			return p;
2670		}
2671	}
2672
2673	BUG(); /* the idle class will always have a runnable task */
2674}
2675
2676/*
2677 * __schedule() is the main scheduler function.
2678 *
2679 * The main means of driving the scheduler and thus entering this function are:
2680 *
2681 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2682 *
2683 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2684 *      paths. For example, see arch/x86/entry_64.S.
2685 *
2686 *      To drive preemption between tasks, the scheduler sets the flag in timer
2687 *      interrupt handler scheduler_tick().
2688 *
2689 *   3. Wakeups don't really cause entry into schedule(). They add a
2690 *      task to the run-queue and that's it.
2691 *
2692 *      Now, if the new task added to the run-queue preempts the current
2693 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2694 *      called on the nearest possible occasion:
2695 *
2696 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2697 *
2698 *         - in syscall or exception context, at the next outmost
2699 *           preempt_enable(). (this might be as soon as the wake_up()'s
2700 *           spin_unlock()!)
2701 *
2702 *         - in IRQ context, return from interrupt-handler to
2703 *           preemptible context
2704 *
2705 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2706 *         then at the next:
2707 *
2708 *          - cond_resched() call
2709 *          - explicit schedule() call
2710 *          - return from syscall or exception to user-space
2711 *          - return from interrupt-handler to user-space
2712 */
2713static void __sched __schedule(void)
2714{
2715	struct task_struct *prev, *next;
2716	unsigned long *switch_count;
2717	struct rq *rq;
2718	int cpu;
2719
2720need_resched:
2721	preempt_disable();
2722	cpu = smp_processor_id();
2723	rq = cpu_rq(cpu);
2724	rcu_note_context_switch(cpu);
2725	prev = rq->curr;
2726
2727	schedule_debug(prev);
2728
2729	if (sched_feat(HRTICK))
2730		hrtick_clear(rq);
2731
2732	/*
2733	 * Make sure that signal_pending_state()->signal_pending() below
2734	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2735	 * done by the caller to avoid the race with signal_wake_up().
2736	 */
2737	smp_mb__before_spinlock();
2738	raw_spin_lock_irq(&rq->lock);
2739
2740	switch_count = &prev->nivcsw;
2741	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2742		if (unlikely(signal_pending_state(prev->state, prev))) {
2743			prev->state = TASK_RUNNING;
2744		} else {
2745			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2746			prev->on_rq = 0;
2747
2748			/*
2749			 * If a worker went to sleep, notify and ask workqueue
2750			 * whether it wants to wake up a task to maintain
2751			 * concurrency.
2752			 */
2753			if (prev->flags & PF_WQ_WORKER) {
2754				struct task_struct *to_wakeup;
2755
2756				to_wakeup = wq_worker_sleeping(prev, cpu);
2757				if (to_wakeup)
2758					try_to_wake_up_local(to_wakeup);
2759			}
2760		}
2761		switch_count = &prev->nvcsw;
2762	}
2763
2764	if (prev->on_rq || rq->skip_clock_update < 0)
2765		update_rq_clock(rq);
2766
2767	next = pick_next_task(rq, prev);
2768	clear_tsk_need_resched(prev);
2769	clear_preempt_need_resched();
2770	rq->skip_clock_update = 0;
2771
2772	if (likely(prev != next)) {
2773		rq->nr_switches++;
2774		rq->curr = next;
2775		++*switch_count;
2776
2777		context_switch(rq, prev, next); /* unlocks the rq */
2778		/*
2779		 * The context switch have flipped the stack from under us
2780		 * and restored the local variables which were saved when
2781		 * this task called schedule() in the past. prev == current
2782		 * is still correct, but it can be moved to another cpu/rq.
2783		 */
2784		cpu = smp_processor_id();
2785		rq = cpu_rq(cpu);
2786	} else
2787		raw_spin_unlock_irq(&rq->lock);
2788
2789	post_schedule(rq);
2790
2791	sched_preempt_enable_no_resched();
2792	if (need_resched())
2793		goto need_resched;
2794}
2795
2796static inline void sched_submit_work(struct task_struct *tsk)
2797{
2798	if (!tsk->state || tsk_is_pi_blocked(tsk))
2799		return;
2800	/*
2801	 * If we are going to sleep and we have plugged IO queued,
2802	 * make sure to submit it to avoid deadlocks.
2803	 */
2804	if (blk_needs_flush_plug(tsk))
2805		blk_schedule_flush_plug(tsk);
2806}
2807
2808asmlinkage __visible void __sched schedule(void)
2809{
2810	struct task_struct *tsk = current;
2811
2812	sched_submit_work(tsk);
2813	__schedule();
2814}
2815EXPORT_SYMBOL(schedule);
2816
2817#ifdef CONFIG_CONTEXT_TRACKING
2818asmlinkage __visible void __sched schedule_user(void)
2819{
2820	/*
2821	 * If we come here after a random call to set_need_resched(),
2822	 * or we have been woken up remotely but the IPI has not yet arrived,
2823	 * we haven't yet exited the RCU idle mode. Do it here manually until
2824	 * we find a better solution.
2825	 */
2826	user_exit();
2827	schedule();
2828	user_enter();
2829}
2830#endif
2831
2832/**
2833 * schedule_preempt_disabled - called with preemption disabled
2834 *
2835 * Returns with preemption disabled. Note: preempt_count must be 1
2836 */
2837void __sched schedule_preempt_disabled(void)
2838{
2839	sched_preempt_enable_no_resched();
2840	schedule();
2841	preempt_disable();
2842}
2843
2844#ifdef CONFIG_PREEMPT
2845/*
2846 * this is the entry point to schedule() from in-kernel preemption
2847 * off of preempt_enable. Kernel preemptions off return from interrupt
2848 * occur there and call schedule directly.
2849 */
2850asmlinkage __visible void __sched notrace preempt_schedule(void)
2851{
2852	/*
2853	 * If there is a non-zero preempt_count or interrupts are disabled,
2854	 * we do not want to preempt the current task. Just return..
2855	 */
2856	if (likely(!preemptible()))
2857		return;
2858
2859	do {
2860		__preempt_count_add(PREEMPT_ACTIVE);
2861		__schedule();
2862		__preempt_count_sub(PREEMPT_ACTIVE);
2863
2864		/*
2865		 * Check again in case we missed a preemption opportunity
2866		 * between schedule and now.
2867		 */
2868		barrier();
2869	} while (need_resched());
2870}
2871EXPORT_SYMBOL(preempt_schedule);
2872#endif /* CONFIG_PREEMPT */
2873
2874/*
2875 * this is the entry point to schedule() from kernel preemption
2876 * off of irq context.
2877 * Note, that this is called and return with irqs disabled. This will
2878 * protect us against recursive calling from irq.
2879 */
2880asmlinkage __visible void __sched preempt_schedule_irq(void)
2881{
2882	enum ctx_state prev_state;
2883
2884	/* Catch callers which need to be fixed */
2885	BUG_ON(preempt_count() || !irqs_disabled());
2886
2887	prev_state = exception_enter();
2888
2889	do {
2890		__preempt_count_add(PREEMPT_ACTIVE);
2891		local_irq_enable();
2892		__schedule();
2893		local_irq_disable();
2894		__preempt_count_sub(PREEMPT_ACTIVE);
2895
2896		/*
2897		 * Check again in case we missed a preemption opportunity
2898		 * between schedule and now.
2899		 */
2900		barrier();
2901	} while (need_resched());
2902
2903	exception_exit(prev_state);
2904}
2905
2906int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2907			  void *key)
2908{
2909	return try_to_wake_up(curr->private, mode, wake_flags);
2910}
2911EXPORT_SYMBOL(default_wake_function);
2912
2913#ifdef CONFIG_RT_MUTEXES
2914
2915/*
2916 * rt_mutex_setprio - set the current priority of a task
2917 * @p: task
2918 * @prio: prio value (kernel-internal form)
2919 *
2920 * This function changes the 'effective' priority of a task. It does
2921 * not touch ->normal_prio like __setscheduler().
2922 *
2923 * Used by the rt_mutex code to implement priority inheritance
2924 * logic. Call site only calls if the priority of the task changed.
2925 */
2926void rt_mutex_setprio(struct task_struct *p, int prio)
2927{
2928	int oldprio, on_rq, running, enqueue_flag = 0;
2929	struct rq *rq;
2930	const struct sched_class *prev_class;
2931
2932	BUG_ON(prio > MAX_PRIO);
2933
2934	rq = __task_rq_lock(p);
2935
2936	/*
2937	 * Idle task boosting is a nono in general. There is one
2938	 * exception, when PREEMPT_RT and NOHZ is active:
2939	 *
2940	 * The idle task calls get_next_timer_interrupt() and holds
2941	 * the timer wheel base->lock on the CPU and another CPU wants
2942	 * to access the timer (probably to cancel it). We can safely
2943	 * ignore the boosting request, as the idle CPU runs this code
2944	 * with interrupts disabled and will complete the lock
2945	 * protected section without being interrupted. So there is no
2946	 * real need to boost.
2947	 */
2948	if (unlikely(p == rq->idle)) {
2949		WARN_ON(p != rq->curr);
2950		WARN_ON(p->pi_blocked_on);
2951		goto out_unlock;
2952	}
2953
2954	trace_sched_pi_setprio(p, prio);
2955	p->pi_top_task = rt_mutex_get_top_task(p);
2956	oldprio = p->prio;
2957	prev_class = p->sched_class;
2958	on_rq = p->on_rq;
2959	running = task_current(rq, p);
2960	if (on_rq)
2961		dequeue_task(rq, p, 0);
2962	if (running)
2963		p->sched_class->put_prev_task(rq, p);
2964
2965	/*
2966	 * Boosting condition are:
2967	 * 1. -rt task is running and holds mutex A
2968	 *      --> -dl task blocks on mutex A
2969	 *
2970	 * 2. -dl task is running and holds mutex A
2971	 *      --> -dl task blocks on mutex A and could preempt the
2972	 *          running task
2973	 */
2974	if (dl_prio(prio)) {
2975		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2976			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2977			p->dl.dl_boosted = 1;
2978			p->dl.dl_throttled = 0;
2979			enqueue_flag = ENQUEUE_REPLENISH;
2980		} else
2981			p->dl.dl_boosted = 0;
2982		p->sched_class = &dl_sched_class;
2983	} else if (rt_prio(prio)) {
2984		if (dl_prio(oldprio))
2985			p->dl.dl_boosted = 0;
2986		if (oldprio < prio)
2987			enqueue_flag = ENQUEUE_HEAD;
2988		p->sched_class = &rt_sched_class;
2989	} else {
2990		if (dl_prio(oldprio))
2991			p->dl.dl_boosted = 0;
2992		p->sched_class = &fair_sched_class;
2993	}
2994
2995	p->prio = prio;
2996
2997	if (running)
2998		p->sched_class->set_curr_task(rq);
2999	if (on_rq)
3000		enqueue_task(rq, p, enqueue_flag);
3001
3002	check_class_changed(rq, p, prev_class, oldprio);
3003out_unlock:
3004	__task_rq_unlock(rq);
3005}
3006#endif
3007
3008void set_user_nice(struct task_struct *p, long nice)
3009{
3010	int old_prio, delta, on_rq;
3011	unsigned long flags;
3012	struct rq *rq;
3013
3014	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3015		return;
3016	/*
3017	 * We have to be careful, if called from sys_setpriority(),
3018	 * the task might be in the middle of scheduling on another CPU.
3019	 */
3020	rq = task_rq_lock(p, &flags);
3021	/*
3022	 * The RT priorities are set via sched_setscheduler(), but we still
3023	 * allow the 'normal' nice value to be set - but as expected
3024	 * it wont have any effect on scheduling until the task is
3025	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3026	 */
3027	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3028		p->static_prio = NICE_TO_PRIO(nice);
3029		goto out_unlock;
3030	}
3031	on_rq = p->on_rq;
3032	if (on_rq)
3033		dequeue_task(rq, p, 0);
3034
3035	p->static_prio = NICE_TO_PRIO(nice);
3036	set_load_weight(p);
3037	old_prio = p->prio;
3038	p->prio = effective_prio(p);
3039	delta = p->prio - old_prio;
3040
3041	if (on_rq) {
3042		enqueue_task(rq, p, 0);
3043		/*
3044		 * If the task increased its priority or is running and
3045		 * lowered its priority, then reschedule its CPU:
3046		 */
3047		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3048			resched_task(rq->curr);
3049	}
3050out_unlock:
3051	task_rq_unlock(rq, p, &flags);
3052}
3053EXPORT_SYMBOL(set_user_nice);
3054
3055/*
3056 * can_nice - check if a task can reduce its nice value
3057 * @p: task
3058 * @nice: nice value
3059 */
3060int can_nice(const struct task_struct *p, const int nice)
3061{
3062	/* convert nice value [19,-20] to rlimit style value [1,40] */
3063	int nice_rlim = nice_to_rlimit(nice);
3064
3065	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3066		capable(CAP_SYS_NICE));
3067}
3068
3069#ifdef __ARCH_WANT_SYS_NICE
3070
3071/*
3072 * sys_nice - change the priority of the current process.
3073 * @increment: priority increment
3074 *
3075 * sys_setpriority is a more generic, but much slower function that
3076 * does similar things.
3077 */
3078SYSCALL_DEFINE1(nice, int, increment)
3079{
3080	long nice, retval;
3081
3082	/*
3083	 * Setpriority might change our priority at the same moment.
3084	 * We don't have to worry. Conceptually one call occurs first
3085	 * and we have a single winner.
3086	 */
3087	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3088	nice = task_nice(current) + increment;
3089
3090	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3091	if (increment < 0 && !can_nice(current, nice))
3092		return -EPERM;
3093
3094	retval = security_task_setnice(current, nice);
3095	if (retval)
3096		return retval;
3097
3098	set_user_nice(current, nice);
3099	return 0;
3100}
3101
3102#endif
3103
3104/**
3105 * task_prio - return the priority value of a given task.
3106 * @p: the task in question.
3107 *
3108 * Return: The priority value as seen by users in /proc.
3109 * RT tasks are offset by -200. Normal tasks are centered
3110 * around 0, value goes from -16 to +15.
3111 */
3112int task_prio(const struct task_struct *p)
3113{
3114	return p->prio - MAX_RT_PRIO;
3115}
3116
3117/**
3118 * idle_cpu - is a given cpu idle currently?
3119 * @cpu: the processor in question.
3120 *
3121 * Return: 1 if the CPU is currently idle. 0 otherwise.
3122 */
3123int idle_cpu(int cpu)
3124{
3125	struct rq *rq = cpu_rq(cpu);
3126
3127	if (rq->curr != rq->idle)
3128		return 0;
3129
3130	if (rq->nr_running)
3131		return 0;
3132
3133#ifdef CONFIG_SMP
3134	if (!llist_empty(&rq->wake_list))
3135		return 0;
3136#endif
3137
3138	return 1;
3139}
3140
3141/**
3142 * idle_task - return the idle task for a given cpu.
3143 * @cpu: the processor in question.
3144 *
3145 * Return: The idle task for the cpu @cpu.
3146 */
3147struct task_struct *idle_task(int cpu)
3148{
3149	return cpu_rq(cpu)->idle;
3150}
3151
3152/**
3153 * find_process_by_pid - find a process with a matching PID value.
3154 * @pid: the pid in question.
3155 *
3156 * The task of @pid, if found. %NULL otherwise.
3157 */
3158static struct task_struct *find_process_by_pid(pid_t pid)
3159{
3160	return pid ? find_task_by_vpid(pid) : current;
3161}
3162
3163/*
3164 * This function initializes the sched_dl_entity of a newly becoming
3165 * SCHED_DEADLINE task.
3166 *
3167 * Only the static values are considered here, the actual runtime and the
3168 * absolute deadline will be properly calculated when the task is enqueued
3169 * for the first time with its new policy.
3170 */
3171static void
3172__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3173{
3174	struct sched_dl_entity *dl_se = &p->dl;
3175
3176	init_dl_task_timer(dl_se);
3177	dl_se->dl_runtime = attr->sched_runtime;
3178	dl_se->dl_deadline = attr->sched_deadline;
3179	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3180	dl_se->flags = attr->sched_flags;
3181	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3182	dl_se->dl_throttled = 0;
3183	dl_se->dl_new = 1;
3184	dl_se->dl_yielded = 0;
3185}
3186
3187static void __setscheduler_params(struct task_struct *p,
3188		const struct sched_attr *attr)
3189{
3190	int policy = attr->sched_policy;
3191
3192	if (policy == -1) /* setparam */
3193		policy = p->policy;
3194
3195	p->policy = policy;
3196
3197	if (dl_policy(policy))
3198		__setparam_dl(p, attr);
3199	else if (fair_policy(policy))
3200		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3201
3202	/*
3203	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3204	 * !rt_policy. Always setting this ensures that things like
3205	 * getparam()/getattr() don't report silly values for !rt tasks.
3206	 */
3207	p->rt_priority = attr->sched_priority;
3208	p->normal_prio = normal_prio(p);
3209	set_load_weight(p);
3210}
3211
3212/* Actually do priority change: must hold pi & rq lock. */
3213static void __setscheduler(struct rq *rq, struct task_struct *p,
3214			   const struct sched_attr *attr)
3215{
3216	__setscheduler_params(p, attr);
3217
3218	/*
3219	 * If we get here, there was no pi waiters boosting the
3220	 * task. It is safe to use the normal prio.
3221	 */
3222	p->prio = normal_prio(p);
3223
3224	if (dl_prio(p->prio))
3225		p->sched_class = &dl_sched_class;
3226	else if (rt_prio(p->prio))
3227		p->sched_class = &rt_sched_class;
3228	else
3229		p->sched_class = &fair_sched_class;
3230}
3231
3232static void
3233__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3234{
3235	struct sched_dl_entity *dl_se = &p->dl;
3236
3237	attr->sched_priority = p->rt_priority;
3238	attr->sched_runtime = dl_se->dl_runtime;
3239	attr->sched_deadline = dl_se->dl_deadline;
3240	attr->sched_period = dl_se->dl_period;
3241	attr->sched_flags = dl_se->flags;
3242}
3243
3244/*
3245 * This function validates the new parameters of a -deadline task.
3246 * We ask for the deadline not being zero, and greater or equal
3247 * than the runtime, as well as the period of being zero or
3248 * greater than deadline. Furthermore, we have to be sure that
3249 * user parameters are above the internal resolution of 1us (we
3250 * check sched_runtime only since it is always the smaller one) and
3251 * below 2^63 ns (we have to check both sched_deadline and
3252 * sched_period, as the latter can be zero).
3253 */
3254static bool
3255__checkparam_dl(const struct sched_attr *attr)
3256{
3257	/* deadline != 0 */
3258	if (attr->sched_deadline == 0)
3259		return false;
3260
3261	/*
3262	 * Since we truncate DL_SCALE bits, make sure we're at least
3263	 * that big.
3264	 */
3265	if (attr->sched_runtime < (1ULL << DL_SCALE))
3266		return false;
3267
3268	/*
3269	 * Since we use the MSB for wrap-around and sign issues, make
3270	 * sure it's not set (mind that period can be equal to zero).
3271	 */
3272	if (attr->sched_deadline & (1ULL << 63) ||
3273	    attr->sched_period & (1ULL << 63))
3274		return false;
3275
3276	/* runtime <= deadline <= period (if period != 0) */
3277	if ((attr->sched_period != 0 &&
3278	     attr->sched_period < attr->sched_deadline) ||
3279	    attr->sched_deadline < attr->sched_runtime)
3280		return false;
3281
3282	return true;
3283}
3284
3285/*
3286 * check the target process has a UID that matches the current process's
3287 */
3288static bool check_same_owner(struct task_struct *p)
3289{
3290	const struct cred *cred = current_cred(), *pcred;
3291	bool match;
3292
3293	rcu_read_lock();
3294	pcred = __task_cred(p);
3295	match = (uid_eq(cred->euid, pcred->euid) ||
3296		 uid_eq(cred->euid, pcred->uid));
3297	rcu_read_unlock();
3298	return match;
3299}
3300
3301static int __sched_setscheduler(struct task_struct *p,
3302				const struct sched_attr *attr,
3303				bool user)
3304{
3305	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3306		      MAX_RT_PRIO - 1 - attr->sched_priority;
3307	int retval, oldprio, oldpolicy = -1, on_rq, running;
3308	int policy = attr->sched_policy;
3309	unsigned long flags;
3310	const struct sched_class *prev_class;
3311	struct rq *rq;
3312	int reset_on_fork;
3313
3314	/* may grab non-irq protected spin_locks */
3315	BUG_ON(in_interrupt());
3316recheck:
3317	/* double check policy once rq lock held */
3318	if (policy < 0) {
3319		reset_on_fork = p->sched_reset_on_fork;
3320		policy = oldpolicy = p->policy;
3321	} else {
3322		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3323
3324		if (policy != SCHED_DEADLINE &&
3325				policy != SCHED_FIFO && policy != SCHED_RR &&
3326				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3327				policy != SCHED_IDLE)
3328			return -EINVAL;
3329	}
3330
3331	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3332		return -EINVAL;
3333
3334	/*
3335	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3336	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3337	 * SCHED_BATCH and SCHED_IDLE is 0.
3338	 */
3339	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3340	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3341		return -EINVAL;
3342	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3343	    (rt_policy(policy) != (attr->sched_priority != 0)))
3344		return -EINVAL;
3345
3346	/*
3347	 * Allow unprivileged RT tasks to decrease priority:
3348	 */
3349	if (user && !capable(CAP_SYS_NICE)) {
3350		if (fair_policy(policy)) {
3351			if (attr->sched_nice < task_nice(p) &&
3352			    !can_nice(p, attr->sched_nice))
3353				return -EPERM;
3354		}
3355
3356		if (rt_policy(policy)) {
3357			unsigned long rlim_rtprio =
3358					task_rlimit(p, RLIMIT_RTPRIO);
3359
3360			/* can't set/change the rt policy */
3361			if (policy != p->policy && !rlim_rtprio)
3362				return -EPERM;
3363
3364			/* can't increase priority */
3365			if (attr->sched_priority > p->rt_priority &&
3366			    attr->sched_priority > rlim_rtprio)
3367				return -EPERM;
3368		}
3369
3370		 /*
3371		  * Can't set/change SCHED_DEADLINE policy at all for now
3372		  * (safest behavior); in the future we would like to allow
3373		  * unprivileged DL tasks to increase their relative deadline
3374		  * or reduce their runtime (both ways reducing utilization)
3375		  */
3376		if (dl_policy(policy))
3377			return -EPERM;
3378
3379		/*
3380		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3381		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3382		 */
3383		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3384			if (!can_nice(p, task_nice(p)))
3385				return -EPERM;
3386		}
3387
3388		/* can't change other user's priorities */
3389		if (!check_same_owner(p))
3390			return -EPERM;
3391
3392		/* Normal users shall not reset the sched_reset_on_fork flag */
3393		if (p->sched_reset_on_fork && !reset_on_fork)
3394			return -EPERM;
3395	}
3396
3397	if (user) {
3398		retval = security_task_setscheduler(p);
3399		if (retval)
3400			return retval;
3401	}
3402
3403	/*
3404	 * make sure no PI-waiters arrive (or leave) while we are
3405	 * changing the priority of the task:
3406	 *
3407	 * To be able to change p->policy safely, the appropriate
3408	 * runqueue lock must be held.
3409	 */
3410	rq = task_rq_lock(p, &flags);
3411
3412	/*
3413	 * Changing the policy of the stop threads its a very bad idea
3414	 */
3415	if (p == rq->stop) {
3416		task_rq_unlock(rq, p, &flags);
3417		return -EINVAL;
3418	}
3419
3420	/*
3421	 * If not changing anything there's no need to proceed further,
3422	 * but store a possible modification of reset_on_fork.
3423	 */
3424	if (unlikely(policy == p->policy)) {
3425		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3426			goto change;
3427		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3428			goto change;
3429		if (dl_policy(policy))
3430			goto change;
3431
3432		p->sched_reset_on_fork = reset_on_fork;
3433		task_rq_unlock(rq, p, &flags);
3434		return 0;
3435	}
3436change:
3437
3438	if (user) {
3439#ifdef CONFIG_RT_GROUP_SCHED
3440		/*
3441		 * Do not allow realtime tasks into groups that have no runtime
3442		 * assigned.
3443		 */
3444		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3445				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3446				!task_group_is_autogroup(task_group(p))) {
3447			task_rq_unlock(rq, p, &flags);
3448			return -EPERM;
3449		}
3450#endif
3451#ifdef CONFIG_SMP
3452		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3453			cpumask_t *span = rq->rd->span;
3454
3455			/*
3456			 * Don't allow tasks with an affinity mask smaller than
3457			 * the entire root_domain to become SCHED_DEADLINE. We
3458			 * will also fail if there's no bandwidth available.
3459			 */
3460			if (!cpumask_subset(span, &p->cpus_allowed) ||
3461			    rq->rd->dl_bw.bw == 0) {
3462				task_rq_unlock(rq, p, &flags);
3463				return -EPERM;
3464			}
3465		}
3466#endif
3467	}
3468
3469	/* recheck policy now with rq lock held */
3470	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3471		policy = oldpolicy = -1;
3472		task_rq_unlock(rq, p, &flags);
3473		goto recheck;
3474	}
3475
3476	/*
3477	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3478	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3479	 * is available.
3480	 */
3481	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3482		task_rq_unlock(rq, p, &flags);
3483		return -EBUSY;
3484	}
3485
3486	p->sched_reset_on_fork = reset_on_fork;
3487	oldprio = p->prio;
3488
3489	/*
3490	 * Special case for priority boosted tasks.
3491	 *
3492	 * If the new priority is lower or equal (user space view)
3493	 * than the current (boosted) priority, we just store the new
3494	 * normal parameters and do not touch the scheduler class and
3495	 * the runqueue. This will be done when the task deboost
3496	 * itself.
3497	 */
3498	if (rt_mutex_check_prio(p, newprio)) {
3499		__setscheduler_params(p, attr);
3500		task_rq_unlock(rq, p, &flags);
3501		return 0;
3502	}
3503
3504	on_rq = p->on_rq;
3505	running = task_current(rq, p);
3506	if (on_rq)
3507		dequeue_task(rq, p, 0);
3508	if (running)
3509		p->sched_class->put_prev_task(rq, p);
3510
3511	prev_class = p->sched_class;
3512	__setscheduler(rq, p, attr);
3513
3514	if (running)
3515		p->sched_class->set_curr_task(rq);
3516	if (on_rq) {
3517		/*
3518		 * We enqueue to tail when the priority of a task is
3519		 * increased (user space view).
3520		 */
3521		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3522	}
3523
3524	check_class_changed(rq, p, prev_class, oldprio);
3525	task_rq_unlock(rq, p, &flags);
3526
3527	rt_mutex_adjust_pi(p);
3528
3529	return 0;
3530}
3531
3532static int _sched_setscheduler(struct task_struct *p, int policy,
3533			       const struct sched_param *param, bool check)
3534{
3535	struct sched_attr attr = {
3536		.sched_policy   = policy,
3537		.sched_priority = param->sched_priority,
3538		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3539	};
3540
3541	/*
3542	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3543	 */
3544	if (policy & SCHED_RESET_ON_FORK) {
3545		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3546		policy &= ~SCHED_RESET_ON_FORK;
3547		attr.sched_policy = policy;
3548	}
3549
3550	return __sched_setscheduler(p, &attr, check);
3551}
3552/**
3553 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3554 * @p: the task in question.
3555 * @policy: new policy.
3556 * @param: structure containing the new RT priority.
3557 *
3558 * Return: 0 on success. An error code otherwise.
3559 *
3560 * NOTE that the task may be already dead.
3561 */
3562int sched_setscheduler(struct task_struct *p, int policy,
3563		       const struct sched_param *param)
3564{
3565	return _sched_setscheduler(p, policy, param, true);
3566}
3567EXPORT_SYMBOL_GPL(sched_setscheduler);
3568
3569int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3570{
3571	return __sched_setscheduler(p, attr, true);
3572}
3573EXPORT_SYMBOL_GPL(sched_setattr);
3574
3575/**
3576 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3577 * @p: the task in question.
3578 * @policy: new policy.
3579 * @param: structure containing the new RT priority.
3580 *
3581 * Just like sched_setscheduler, only don't bother checking if the
3582 * current context has permission.  For example, this is needed in
3583 * stop_machine(): we create temporary high priority worker threads,
3584 * but our caller might not have that capability.
3585 *
3586 * Return: 0 on success. An error code otherwise.
3587 */
3588int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3589			       const struct sched_param *param)
3590{
3591	return _sched_setscheduler(p, policy, param, false);
3592}
3593
3594static int
3595do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3596{
3597	struct sched_param lparam;
3598	struct task_struct *p;
3599	int retval;
3600
3601	if (!param || pid < 0)
3602		return -EINVAL;
3603	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3604		return -EFAULT;
3605
3606	rcu_read_lock();
3607	retval = -ESRCH;
3608	p = find_process_by_pid(pid);
3609	if (p != NULL)
3610		retval = sched_setscheduler(p, policy, &lparam);
3611	rcu_read_unlock();
3612
3613	return retval;
3614}
3615
3616/*
3617 * Mimics kernel/events/core.c perf_copy_attr().
3618 */
3619static int sched_copy_attr(struct sched_attr __user *uattr,
3620			   struct sched_attr *attr)
3621{
3622	u32 size;
3623	int ret;
3624
3625	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3626		return -EFAULT;
3627
3628	/*
3629	 * zero the full structure, so that a short copy will be nice.
3630	 */
3631	memset(attr, 0, sizeof(*attr));
3632
3633	ret = get_user(size, &uattr->size);
3634	if (ret)
3635		return ret;
3636
3637	if (size > PAGE_SIZE)	/* silly large */
3638		goto err_size;
3639
3640	if (!size)		/* abi compat */
3641		size = SCHED_ATTR_SIZE_VER0;
3642
3643	if (size < SCHED_ATTR_SIZE_VER0)
3644		goto err_size;
3645
3646	/*
3647	 * If we're handed a bigger struct than we know of,
3648	 * ensure all the unknown bits are 0 - i.e. new
3649	 * user-space does not rely on any kernel feature
3650	 * extensions we dont know about yet.
3651	 */
3652	if (size > sizeof(*attr)) {
3653		unsigned char __user *addr;
3654		unsigned char __user *end;
3655		unsigned char val;
3656
3657		addr = (void __user *)uattr + sizeof(*attr);
3658		end  = (void __user *)uattr + size;
3659
3660		for (; addr < end; addr++) {
3661			ret = get_user(val, addr);
3662			if (ret)
3663				return ret;
3664			if (val)
3665				goto err_size;
3666		}
3667		size = sizeof(*attr);
3668	}
3669
3670	ret = copy_from_user(attr, uattr, size);
3671	if (ret)
3672		return -EFAULT;
3673
3674	/*
3675	 * XXX: do we want to be lenient like existing syscalls; or do we want
3676	 * to be strict and return an error on out-of-bounds values?
3677	 */
3678	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3679
3680	return 0;
3681
3682err_size:
3683	put_user(sizeof(*attr), &uattr->size);
3684	return -E2BIG;
3685}
3686
3687/**
3688 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3689 * @pid: the pid in question.
3690 * @policy: new policy.
3691 * @param: structure containing the new RT priority.
3692 *
3693 * Return: 0 on success. An error code otherwise.
3694 */
3695SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3696		struct sched_param __user *, param)
3697{
3698	/* negative values for policy are not valid */
3699	if (policy < 0)
3700		return -EINVAL;
3701
3702	return do_sched_setscheduler(pid, policy, param);
3703}
3704
3705/**
3706 * sys_sched_setparam - set/change the RT priority of a thread
3707 * @pid: the pid in question.
3708 * @param: structure containing the new RT priority.
3709 *
3710 * Return: 0 on success. An error code otherwise.
3711 */
3712SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3713{
3714	return do_sched_setscheduler(pid, -1, param);
3715}
3716
3717/**
3718 * sys_sched_setattr - same as above, but with extended sched_attr
3719 * @pid: the pid in question.
3720 * @uattr: structure containing the extended parameters.
3721 * @flags: for future extension.
3722 */
3723SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3724			       unsigned int, flags)
3725{
3726	struct sched_attr attr;
3727	struct task_struct *p;
3728	int retval;
3729
3730	if (!uattr || pid < 0 || flags)
3731		return -EINVAL;
3732
3733	retval = sched_copy_attr(uattr, &attr);
3734	if (retval)
3735		return retval;
3736
3737	if (attr.sched_policy < 0)
3738		return -EINVAL;
3739
3740	rcu_read_lock();
3741	retval = -ESRCH;
3742	p = find_process_by_pid(pid);
3743	if (p != NULL)
3744		retval = sched_setattr(p, &attr);
3745	rcu_read_unlock();
3746
3747	return retval;
3748}
3749
3750/**
3751 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3752 * @pid: the pid in question.
3753 *
3754 * Return: On success, the policy of the thread. Otherwise, a negative error
3755 * code.
3756 */
3757SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3758{
3759	struct task_struct *p;
3760	int retval;
3761
3762	if (pid < 0)
3763		return -EINVAL;
3764
3765	retval = -ESRCH;
3766	rcu_read_lock();
3767	p = find_process_by_pid(pid);
3768	if (p) {
3769		retval = security_task_getscheduler(p);
3770		if (!retval)
3771			retval = p->policy
3772				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3773	}
3774	rcu_read_unlock();
3775	return retval;
3776}
3777
3778/**
3779 * sys_sched_getparam - get the RT priority of a thread
3780 * @pid: the pid in question.
3781 * @param: structure containing the RT priority.
3782 *
3783 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3784 * code.
3785 */
3786SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3787{
3788	struct sched_param lp = { .sched_priority = 0 };
3789	struct task_struct *p;
3790	int retval;
3791
3792	if (!param || pid < 0)
3793		return -EINVAL;
3794
3795	rcu_read_lock();
3796	p = find_process_by_pid(pid);
3797	retval = -ESRCH;
3798	if (!p)
3799		goto out_unlock;
3800
3801	retval = security_task_getscheduler(p);
3802	if (retval)
3803		goto out_unlock;
3804
3805	if (task_has_rt_policy(p))
3806		lp.sched_priority = p->rt_priority;
3807	rcu_read_unlock();
3808
3809	/*
3810	 * This one might sleep, we cannot do it with a spinlock held ...
3811	 */
3812	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3813
3814	return retval;
3815
3816out_unlock:
3817	rcu_read_unlock();
3818	return retval;
3819}
3820
3821static int sched_read_attr(struct sched_attr __user *uattr,
3822			   struct sched_attr *attr,
3823			   unsigned int usize)
3824{
3825	int ret;
3826
3827	if (!access_ok(VERIFY_WRITE, uattr, usize))
3828		return -EFAULT;
3829
3830	/*
3831	 * If we're handed a smaller struct than we know of,
3832	 * ensure all the unknown bits are 0 - i.e. old
3833	 * user-space does not get uncomplete information.
3834	 */
3835	if (usize < sizeof(*attr)) {
3836		unsigned char *addr;
3837		unsigned char *end;
3838
3839		addr = (void *)attr + usize;
3840		end  = (void *)attr + sizeof(*attr);
3841
3842		for (; addr < end; addr++) {
3843			if (*addr)
3844				return -EFBIG;
3845		}
3846
3847		attr->size = usize;
3848	}
3849
3850	ret = copy_to_user(uattr, attr, attr->size);
3851	if (ret)
3852		return -EFAULT;
3853
3854	return 0;
3855}
3856
3857/**
3858 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3859 * @pid: the pid in question.
3860 * @uattr: structure containing the extended parameters.
3861 * @size: sizeof(attr) for fwd/bwd comp.
3862 * @flags: for future extension.
3863 */
3864SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3865		unsigned int, size, unsigned int, flags)
3866{
3867	struct sched_attr attr = {
3868		.size = sizeof(struct sched_attr),
3869	};
3870	struct task_struct *p;
3871	int retval;
3872
3873	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3874	    size < SCHED_ATTR_SIZE_VER0 || flags)
3875		return -EINVAL;
3876
3877	rcu_read_lock();
3878	p = find_process_by_pid(pid);
3879	retval = -ESRCH;
3880	if (!p)
3881		goto out_unlock;
3882
3883	retval = security_task_getscheduler(p);
3884	if (retval)
3885		goto out_unlock;
3886
3887	attr.sched_policy = p->policy;
3888	if (p->sched_reset_on_fork)
3889		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3890	if (task_has_dl_policy(p))
3891		__getparam_dl(p, &attr);
3892	else if (task_has_rt_policy(p))
3893		attr.sched_priority = p->rt_priority;
3894	else
3895		attr.sched_nice = task_nice(p);
3896
3897	rcu_read_unlock();
3898
3899	retval = sched_read_attr(uattr, &attr, size);
3900	return retval;
3901
3902out_unlock:
3903	rcu_read_unlock();
3904	return retval;
3905}
3906
3907long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3908{
3909	cpumask_var_t cpus_allowed, new_mask;
3910	struct task_struct *p;
3911	int retval;
3912
3913	rcu_read_lock();
3914
3915	p = find_process_by_pid(pid);
3916	if (!p) {
3917		rcu_read_unlock();
3918		return -ESRCH;
3919	}
3920
3921	/* Prevent p going away */
3922	get_task_struct(p);
3923	rcu_read_unlock();
3924
3925	if (p->flags & PF_NO_SETAFFINITY) {
3926		retval = -EINVAL;
3927		goto out_put_task;
3928	}
3929	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3930		retval = -ENOMEM;
3931		goto out_put_task;
3932	}
3933	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3934		retval = -ENOMEM;
3935		goto out_free_cpus_allowed;
3936	}
3937	retval = -EPERM;
3938	if (!check_same_owner(p)) {
3939		rcu_read_lock();
3940		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3941			rcu_read_unlock();
3942			goto out_unlock;
3943		}
3944		rcu_read_unlock();
3945	}
3946
3947	retval = security_task_setscheduler(p);
3948	if (retval)
3949		goto out_unlock;
3950
3951
3952	cpuset_cpus_allowed(p, cpus_allowed);
3953	cpumask_and(new_mask, in_mask, cpus_allowed);
3954
3955	/*
3956	 * Since bandwidth control happens on root_domain basis,
3957	 * if admission test is enabled, we only admit -deadline
3958	 * tasks allowed to run on all the CPUs in the task's
3959	 * root_domain.
3960	 */
3961#ifdef CONFIG_SMP
3962	if (task_has_dl_policy(p)) {
3963		const struct cpumask *span = task_rq(p)->rd->span;
3964
3965		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3966			retval = -EBUSY;
3967			goto out_unlock;
3968		}
3969	}
3970#endif
3971again:
3972	retval = set_cpus_allowed_ptr(p, new_mask);
3973
3974	if (!retval) {
3975		cpuset_cpus_allowed(p, cpus_allowed);
3976		if (!cpumask_subset(new_mask, cpus_allowed)) {
3977			/*
3978			 * We must have raced with a concurrent cpuset
3979			 * update. Just reset the cpus_allowed to the
3980			 * cpuset's cpus_allowed
3981			 */
3982			cpumask_copy(new_mask, cpus_allowed);
3983			goto again;
3984		}
3985	}
3986out_unlock:
3987	free_cpumask_var(new_mask);
3988out_free_cpus_allowed:
3989	free_cpumask_var(cpus_allowed);
3990out_put_task:
3991	put_task_struct(p);
3992	return retval;
3993}
3994
3995static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3996			     struct cpumask *new_mask)
3997{
3998	if (len < cpumask_size())
3999		cpumask_clear(new_mask);
4000	else if (len > cpumask_size())
4001		len = cpumask_size();
4002
4003	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4004}
4005
4006/**
4007 * sys_sched_setaffinity - set the cpu affinity of a process
4008 * @pid: pid of the process
4009 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4010 * @user_mask_ptr: user-space pointer to the new cpu mask
4011 *
4012 * Return: 0 on success. An error code otherwise.
4013 */
4014SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4015		unsigned long __user *, user_mask_ptr)
4016{
4017	cpumask_var_t new_mask;
4018	int retval;
4019
4020	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4021		return -ENOMEM;
4022
4023	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4024	if (retval == 0)
4025		retval = sched_setaffinity(pid, new_mask);
4026	free_cpumask_var(new_mask);
4027	return retval;
4028}
4029
4030long sched_getaffinity(pid_t pid, struct cpumask *mask)
4031{
4032	struct task_struct *p;
4033	unsigned long flags;
4034	int retval;
4035
4036	rcu_read_lock();
4037
4038	retval = -ESRCH;
4039	p = find_process_by_pid(pid);
4040	if (!p)
4041		goto out_unlock;
4042
4043	retval = security_task_getscheduler(p);
4044	if (retval)
4045		goto out_unlock;
4046
4047	raw_spin_lock_irqsave(&p->pi_lock, flags);
4048	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4049	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4050
4051out_unlock:
4052	rcu_read_unlock();
4053
4054	return retval;
4055}
4056
4057/**
4058 * sys_sched_getaffinity - get the cpu affinity of a process
4059 * @pid: pid of the process
4060 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4061 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4062 *
4063 * Return: 0 on success. An error code otherwise.
4064 */
4065SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4066		unsigned long __user *, user_mask_ptr)
4067{
4068	int ret;
4069	cpumask_var_t mask;
4070
4071	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4072		return -EINVAL;
4073	if (len & (sizeof(unsigned long)-1))
4074		return -EINVAL;
4075
4076	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4077		return -ENOMEM;
4078
4079	ret = sched_getaffinity(pid, mask);
4080	if (ret == 0) {
4081		size_t retlen = min_t(size_t, len, cpumask_size());
4082
4083		if (copy_to_user(user_mask_ptr, mask, retlen))
4084			ret = -EFAULT;
4085		else
4086			ret = retlen;
4087	}
4088	free_cpumask_var(mask);
4089
4090	return ret;
4091}
4092
4093/**
4094 * sys_sched_yield - yield the current processor to other threads.
4095 *
4096 * This function yields the current CPU to other tasks. If there are no
4097 * other threads running on this CPU then this function will return.
4098 *
4099 * Return: 0.
4100 */
4101SYSCALL_DEFINE0(sched_yield)
4102{
4103	struct rq *rq = this_rq_lock();
4104
4105	schedstat_inc(rq, yld_count);
4106	current->sched_class->yield_task(rq);
4107
4108	/*
4109	 * Since we are going to call schedule() anyway, there's
4110	 * no need to preempt or enable interrupts:
4111	 */
4112	__release(rq->lock);
4113	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4114	do_raw_spin_unlock(&rq->lock);
4115	sched_preempt_enable_no_resched();
4116
4117	schedule();
4118
4119	return 0;
4120}
4121
4122static void __cond_resched(void)
4123{
4124	__preempt_count_add(PREEMPT_ACTIVE);
4125	__schedule();
4126	__preempt_count_sub(PREEMPT_ACTIVE);
4127}
4128
4129int __sched _cond_resched(void)
4130{
4131	if (should_resched()) {
4132		__cond_resched();
4133		return 1;
4134	}
4135	return 0;
4136}
4137EXPORT_SYMBOL(_cond_resched);
4138
4139/*
4140 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4141 * call schedule, and on return reacquire the lock.
4142 *
4143 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4144 * operations here to prevent schedule() from being called twice (once via
4145 * spin_unlock(), once by hand).
4146 */
4147int __cond_resched_lock(spinlock_t *lock)
4148{
4149	int resched = should_resched();
4150	int ret = 0;
4151
4152	lockdep_assert_held(lock);
4153
4154	if (spin_needbreak(lock) || resched) {
4155		spin_unlock(lock);
4156		if (resched)
4157			__cond_resched();
4158		else
4159			cpu_relax();
4160		ret = 1;
4161		spin_lock(lock);
4162	}
4163	return ret;
4164}
4165EXPORT_SYMBOL(__cond_resched_lock);
4166
4167int __sched __cond_resched_softirq(void)
4168{
4169	BUG_ON(!in_softirq());
4170
4171	if (should_resched()) {
4172		local_bh_enable();
4173		__cond_resched();
4174		local_bh_disable();
4175		return 1;
4176	}
4177	return 0;
4178}
4179EXPORT_SYMBOL(__cond_resched_softirq);
4180
4181/**
4182 * yield - yield the current processor to other threads.
4183 *
4184 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4185 *
4186 * The scheduler is at all times free to pick the calling task as the most
4187 * eligible task to run, if removing the yield() call from your code breaks
4188 * it, its already broken.
4189 *
4190 * Typical broken usage is:
4191 *
4192 * while (!event)
4193 * 	yield();
4194 *
4195 * where one assumes that yield() will let 'the other' process run that will
4196 * make event true. If the current task is a SCHED_FIFO task that will never
4197 * happen. Never use yield() as a progress guarantee!!
4198 *
4199 * If you want to use yield() to wait for something, use wait_event().
4200 * If you want to use yield() to be 'nice' for others, use cond_resched().
4201 * If you still want to use yield(), do not!
4202 */
4203void __sched yield(void)
4204{
4205	set_current_state(TASK_RUNNING);
4206	sys_sched_yield();
4207}
4208EXPORT_SYMBOL(yield);
4209
4210/**
4211 * yield_to - yield the current processor to another thread in
4212 * your thread group, or accelerate that thread toward the
4213 * processor it's on.
4214 * @p: target task
4215 * @preempt: whether task preemption is allowed or not
4216 *
4217 * It's the caller's job to ensure that the target task struct
4218 * can't go away on us before we can do any checks.
4219 *
4220 * Return:
4221 *	true (>0) if we indeed boosted the target task.
4222 *	false (0) if we failed to boost the target.
4223 *	-ESRCH if there's no task to yield to.
4224 */
4225int __sched yield_to(struct task_struct *p, bool preempt)
4226{
4227	struct task_struct *curr = current;
4228	struct rq *rq, *p_rq;
4229	unsigned long flags;
4230	int yielded = 0;
4231
4232	local_irq_save(flags);
4233	rq = this_rq();
4234
4235again:
4236	p_rq = task_rq(p);
4237	/*
4238	 * If we're the only runnable task on the rq and target rq also
4239	 * has only one task, there's absolutely no point in yielding.
4240	 */
4241	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4242		yielded = -ESRCH;
4243		goto out_irq;
4244	}
4245
4246	double_rq_lock(rq, p_rq);
4247	if (task_rq(p) != p_rq) {
4248		double_rq_unlock(rq, p_rq);
4249		goto again;
4250	}
4251
4252	if (!curr->sched_class->yield_to_task)
4253		goto out_unlock;
4254
4255	if (curr->sched_class != p->sched_class)
4256		goto out_unlock;
4257
4258	if (task_running(p_rq, p) || p->state)
4259		goto out_unlock;
4260
4261	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4262	if (yielded) {
4263		schedstat_inc(rq, yld_count);
4264		/*
4265		 * Make p's CPU reschedule; pick_next_entity takes care of
4266		 * fairness.
4267		 */
4268		if (preempt && rq != p_rq)
4269			resched_task(p_rq->curr);
4270	}
4271
4272out_unlock:
4273	double_rq_unlock(rq, p_rq);
4274out_irq:
4275	local_irq_restore(flags);
4276
4277	if (yielded > 0)
4278		schedule();
4279
4280	return yielded;
4281}
4282EXPORT_SYMBOL_GPL(yield_to);
4283
4284/*
4285 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4286 * that process accounting knows that this is a task in IO wait state.
4287 */
4288void __sched io_schedule(void)
4289{
4290	struct rq *rq = raw_rq();
4291
4292	delayacct_blkio_start();
4293	atomic_inc(&rq->nr_iowait);
4294	blk_flush_plug(current);
4295	current->in_iowait = 1;
4296	schedule();
4297	current->in_iowait = 0;
4298	atomic_dec(&rq->nr_iowait);
4299	delayacct_blkio_end();
4300}
4301EXPORT_SYMBOL(io_schedule);
4302
4303long __sched io_schedule_timeout(long timeout)
4304{
4305	struct rq *rq = raw_rq();
4306	long ret;
4307
4308	delayacct_blkio_start();
4309	atomic_inc(&rq->nr_iowait);
4310	blk_flush_plug(current);
4311	current->in_iowait = 1;
4312	ret = schedule_timeout(timeout);
4313	current->in_iowait = 0;
4314	atomic_dec(&rq->nr_iowait);
4315	delayacct_blkio_end();
4316	return ret;
4317}
4318
4319/**
4320 * sys_sched_get_priority_max - return maximum RT priority.
4321 * @policy: scheduling class.
4322 *
4323 * Return: On success, this syscall returns the maximum
4324 * rt_priority that can be used by a given scheduling class.
4325 * On failure, a negative error code is returned.
4326 */
4327SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4328{
4329	int ret = -EINVAL;
4330
4331	switch (policy) {
4332	case SCHED_FIFO:
4333	case SCHED_RR:
4334		ret = MAX_USER_RT_PRIO-1;
4335		break;
4336	case SCHED_DEADLINE:
4337	case SCHED_NORMAL:
4338	case SCHED_BATCH:
4339	case SCHED_IDLE:
4340		ret = 0;
4341		break;
4342	}
4343	return ret;
4344}
4345
4346/**
4347 * sys_sched_get_priority_min - return minimum RT priority.
4348 * @policy: scheduling class.
4349 *
4350 * Return: On success, this syscall returns the minimum
4351 * rt_priority that can be used by a given scheduling class.
4352 * On failure, a negative error code is returned.
4353 */
4354SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4355{
4356	int ret = -EINVAL;
4357
4358	switch (policy) {
4359	case SCHED_FIFO:
4360	case SCHED_RR:
4361		ret = 1;
4362		break;
4363	case SCHED_DEADLINE:
4364	case SCHED_NORMAL:
4365	case SCHED_BATCH:
4366	case SCHED_IDLE:
4367		ret = 0;
4368	}
4369	return ret;
4370}
4371
4372/**
4373 * sys_sched_rr_get_interval - return the default timeslice of a process.
4374 * @pid: pid of the process.
4375 * @interval: userspace pointer to the timeslice value.
4376 *
4377 * this syscall writes the default timeslice value of a given process
4378 * into the user-space timespec buffer. A value of '0' means infinity.
4379 *
4380 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4381 * an error code.
4382 */
4383SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4384		struct timespec __user *, interval)
4385{
4386	struct task_struct *p;
4387	unsigned int time_slice;
4388	unsigned long flags;
4389	struct rq *rq;
4390	int retval;
4391	struct timespec t;
4392
4393	if (pid < 0)
4394		return -EINVAL;
4395
4396	retval = -ESRCH;
4397	rcu_read_lock();
4398	p = find_process_by_pid(pid);
4399	if (!p)
4400		goto out_unlock;
4401
4402	retval = security_task_getscheduler(p);
4403	if (retval)
4404		goto out_unlock;
4405
4406	rq = task_rq_lock(p, &flags);
4407	time_slice = 0;
4408	if (p->sched_class->get_rr_interval)
4409		time_slice = p->sched_class->get_rr_interval(rq, p);
4410	task_rq_unlock(rq, p, &flags);
4411
4412	rcu_read_unlock();
4413	jiffies_to_timespec(time_slice, &t);
4414	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4415	return retval;
4416
4417out_unlock:
4418	rcu_read_unlock();
4419	return retval;
4420}
4421
4422static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4423
4424void sched_show_task(struct task_struct *p)
4425{
4426	unsigned long free = 0;
4427	int ppid;
4428	unsigned state;
4429
4430	state = p->state ? __ffs(p->state) + 1 : 0;
4431	printk(KERN_INFO "%-15.15s %c", p->comm,
4432		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4433#if BITS_PER_LONG == 32
4434	if (state == TASK_RUNNING)
4435		printk(KERN_CONT " running  ");
4436	else
4437		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4438#else
4439	if (state == TASK_RUNNING)
4440		printk(KERN_CONT "  running task    ");
4441	else
4442		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4443#endif
4444#ifdef CONFIG_DEBUG_STACK_USAGE
4445	free = stack_not_used(p);
4446#endif
4447	rcu_read_lock();
4448	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4449	rcu_read_unlock();
4450	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4451		task_pid_nr(p), ppid,
4452		(unsigned long)task_thread_info(p)->flags);
4453
4454	print_worker_info(KERN_INFO, p);
4455	show_stack(p, NULL);
4456}
4457
4458void show_state_filter(unsigned long state_filter)
4459{
4460	struct task_struct *g, *p;
4461
4462#if BITS_PER_LONG == 32
4463	printk(KERN_INFO
4464		"  task                PC stack   pid father\n");
4465#else
4466	printk(KERN_INFO
4467		"  task                        PC stack   pid father\n");
4468#endif
4469	rcu_read_lock();
4470	do_each_thread(g, p) {
4471		/*
4472		 * reset the NMI-timeout, listing all files on a slow
4473		 * console might take a lot of time:
4474		 */
4475		touch_nmi_watchdog();
4476		if (!state_filter || (p->state & state_filter))
4477			sched_show_task(p);
4478	} while_each_thread(g, p);
4479
4480	touch_all_softlockup_watchdogs();
4481
4482#ifdef CONFIG_SCHED_DEBUG
4483	sysrq_sched_debug_show();
4484#endif
4485	rcu_read_unlock();
4486	/*
4487	 * Only show locks if all tasks are dumped:
4488	 */
4489	if (!state_filter)
4490		debug_show_all_locks();
4491}
4492
4493void init_idle_bootup_task(struct task_struct *idle)
4494{
4495	idle->sched_class = &idle_sched_class;
4496}
4497
4498/**
4499 * init_idle - set up an idle thread for a given CPU
4500 * @idle: task in question
4501 * @cpu: cpu the idle task belongs to
4502 *
4503 * NOTE: this function does not set the idle thread's NEED_RESCHED
4504 * flag, to make booting more robust.
4505 */
4506void init_idle(struct task_struct *idle, int cpu)
4507{
4508	struct rq *rq = cpu_rq(cpu);
4509	unsigned long flags;
4510
4511	raw_spin_lock_irqsave(&rq->lock, flags);
4512
4513	__sched_fork(0, idle);
4514	idle->state = TASK_RUNNING;
4515	idle->se.exec_start = sched_clock();
4516
4517	do_set_cpus_allowed(idle, cpumask_of(cpu));
4518	/*
4519	 * We're having a chicken and egg problem, even though we are
4520	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4521	 * lockdep check in task_group() will fail.
4522	 *
4523	 * Similar case to sched_fork(). / Alternatively we could
4524	 * use task_rq_lock() here and obtain the other rq->lock.
4525	 *
4526	 * Silence PROVE_RCU
4527	 */
4528	rcu_read_lock();
4529	__set_task_cpu(idle, cpu);
4530	rcu_read_unlock();
4531
4532	rq->curr = rq->idle = idle;
4533	idle->on_rq = 1;
4534#if defined(CONFIG_SMP)
4535	idle->on_cpu = 1;
4536#endif
4537	raw_spin_unlock_irqrestore(&rq->lock, flags);
4538
4539	/* Set the preempt count _outside_ the spinlocks! */
4540	init_idle_preempt_count(idle, cpu);
4541
4542	/*
4543	 * The idle tasks have their own, simple scheduling class:
4544	 */
4545	idle->sched_class = &idle_sched_class;
4546	ftrace_graph_init_idle_task(idle, cpu);
4547	vtime_init_idle(idle, cpu);
4548#if defined(CONFIG_SMP)
4549	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4550#endif
4551}
4552
4553#ifdef CONFIG_SMP
4554void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4555{
4556	if (p->sched_class && p->sched_class->set_cpus_allowed)
4557		p->sched_class->set_cpus_allowed(p, new_mask);
4558
4559	cpumask_copy(&p->cpus_allowed, new_mask);
4560	p->nr_cpus_allowed = cpumask_weight(new_mask);
4561}
4562
4563/*
4564 * This is how migration works:
4565 *
4566 * 1) we invoke migration_cpu_stop() on the target CPU using
4567 *    stop_one_cpu().
4568 * 2) stopper starts to run (implicitly forcing the migrated thread
4569 *    off the CPU)
4570 * 3) it checks whether the migrated task is still in the wrong runqueue.
4571 * 4) if it's in the wrong runqueue then the migration thread removes
4572 *    it and puts it into the right queue.
4573 * 5) stopper completes and stop_one_cpu() returns and the migration
4574 *    is done.
4575 */
4576
4577/*
4578 * Change a given task's CPU affinity. Migrate the thread to a
4579 * proper CPU and schedule it away if the CPU it's executing on
4580 * is removed from the allowed bitmask.
4581 *
4582 * NOTE: the caller must have a valid reference to the task, the
4583 * task must not exit() & deallocate itself prematurely. The
4584 * call is not atomic; no spinlocks may be held.
4585 */
4586int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4587{
4588	unsigned long flags;
4589	struct rq *rq;
4590	unsigned int dest_cpu;
4591	int ret = 0;
4592
4593	rq = task_rq_lock(p, &flags);
4594
4595	if (cpumask_equal(&p->cpus_allowed, new_mask))
4596		goto out;
4597
4598	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4599		ret = -EINVAL;
4600		goto out;
4601	}
4602
4603	do_set_cpus_allowed(p, new_mask);
4604
4605	/* Can the task run on the task's current CPU? If so, we're done */
4606	if (cpumask_test_cpu(task_cpu(p), new_mask))
4607		goto out;
4608
4609	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4610	if (p->on_rq) {
4611		struct migration_arg arg = { p, dest_cpu };
4612		/* Need help from migration thread: drop lock and wait. */
4613		task_rq_unlock(rq, p, &flags);
4614		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4615		tlb_migrate_finish(p->mm);
4616		return 0;
4617	}
4618out:
4619	task_rq_unlock(rq, p, &flags);
4620
4621	return ret;
4622}
4623EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4624
4625/*
4626 * Move (not current) task off this cpu, onto dest cpu. We're doing
4627 * this because either it can't run here any more (set_cpus_allowed()
4628 * away from this CPU, or CPU going down), or because we're
4629 * attempting to rebalance this task on exec (sched_exec).
4630 *
4631 * So we race with normal scheduler movements, but that's OK, as long
4632 * as the task is no longer on this CPU.
4633 *
4634 * Returns non-zero if task was successfully migrated.
4635 */
4636static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4637{
4638	struct rq *rq_dest, *rq_src;
4639	int ret = 0;
4640
4641	if (unlikely(!cpu_active(dest_cpu)))
4642		return ret;
4643
4644	rq_src = cpu_rq(src_cpu);
4645	rq_dest = cpu_rq(dest_cpu);
4646
4647	raw_spin_lock(&p->pi_lock);
4648	double_rq_lock(rq_src, rq_dest);
4649	/* Already moved. */
4650	if (task_cpu(p) != src_cpu)
4651		goto done;
4652	/* Affinity changed (again). */
4653	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4654		goto fail;
4655
4656	/*
4657	 * If we're not on a rq, the next wake-up will ensure we're
4658	 * placed properly.
4659	 */
4660	if (p->on_rq) {
4661		dequeue_task(rq_src, p, 0);
4662		set_task_cpu(p, dest_cpu);
4663		enqueue_task(rq_dest, p, 0);
4664		check_preempt_curr(rq_dest, p, 0);
4665	}
4666done:
4667	ret = 1;
4668fail:
4669	double_rq_unlock(rq_src, rq_dest);
4670	raw_spin_unlock(&p->pi_lock);
4671	return ret;
4672}
4673
4674#ifdef CONFIG_NUMA_BALANCING
4675/* Migrate current task p to target_cpu */
4676int migrate_task_to(struct task_struct *p, int target_cpu)
4677{
4678	struct migration_arg arg = { p, target_cpu };
4679	int curr_cpu = task_cpu(p);
4680
4681	if (curr_cpu == target_cpu)
4682		return 0;
4683
4684	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4685		return -EINVAL;
4686
4687	/* TODO: This is not properly updating schedstats */
4688
4689	trace_sched_move_numa(p, curr_cpu, target_cpu);
4690	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4691}
4692
4693/*
4694 * Requeue a task on a given node and accurately track the number of NUMA
4695 * tasks on the runqueues
4696 */
4697void sched_setnuma(struct task_struct *p, int nid)
4698{
4699	struct rq *rq;
4700	unsigned long flags;
4701	bool on_rq, running;
4702
4703	rq = task_rq_lock(p, &flags);
4704	on_rq = p->on_rq;
4705	running = task_current(rq, p);
4706
4707	if (on_rq)
4708		dequeue_task(rq, p, 0);
4709	if (running)
4710		p->sched_class->put_prev_task(rq, p);
4711
4712	p->numa_preferred_nid = nid;
4713
4714	if (running)
4715		p->sched_class->set_curr_task(rq);
4716	if (on_rq)
4717		enqueue_task(rq, p, 0);
4718	task_rq_unlock(rq, p, &flags);
4719}
4720#endif
4721
4722/*
4723 * migration_cpu_stop - this will be executed by a highprio stopper thread
4724 * and performs thread migration by bumping thread off CPU then
4725 * 'pushing' onto another runqueue.
4726 */
4727static int migration_cpu_stop(void *data)
4728{
4729	struct migration_arg *arg = data;
4730
4731	/*
4732	 * The original target cpu might have gone down and we might
4733	 * be on another cpu but it doesn't matter.
4734	 */
4735	local_irq_disable();
4736	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4737	local_irq_enable();
4738	return 0;
4739}
4740
4741#ifdef CONFIG_HOTPLUG_CPU
4742
4743/*
4744 * Ensures that the idle task is using init_mm right before its cpu goes
4745 * offline.
4746 */
4747void idle_task_exit(void)
4748{
4749	struct mm_struct *mm = current->active_mm;
4750
4751	BUG_ON(cpu_online(smp_processor_id()));
4752
4753	if (mm != &init_mm) {
4754		switch_mm(mm, &init_mm, current);
4755		finish_arch_post_lock_switch();
4756	}
4757	mmdrop(mm);
4758}
4759
4760/*
4761 * Since this CPU is going 'away' for a while, fold any nr_active delta
4762 * we might have. Assumes we're called after migrate_tasks() so that the
4763 * nr_active count is stable.
4764 *
4765 * Also see the comment "Global load-average calculations".
4766 */
4767static void calc_load_migrate(struct rq *rq)
4768{
4769	long delta = calc_load_fold_active(rq);
4770	if (delta)
4771		atomic_long_add(delta, &calc_load_tasks);
4772}
4773
4774static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4775{
4776}
4777
4778static const struct sched_class fake_sched_class = {
4779	.put_prev_task = put_prev_task_fake,
4780};
4781
4782static struct task_struct fake_task = {
4783	/*
4784	 * Avoid pull_{rt,dl}_task()
4785	 */
4786	.prio = MAX_PRIO + 1,
4787	.sched_class = &fake_sched_class,
4788};
4789
4790/*
4791 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4792 * try_to_wake_up()->select_task_rq().
4793 *
4794 * Called with rq->lock held even though we'er in stop_machine() and
4795 * there's no concurrency possible, we hold the required locks anyway
4796 * because of lock validation efforts.
4797 */
4798static void migrate_tasks(unsigned int dead_cpu)
4799{
4800	struct rq *rq = cpu_rq(dead_cpu);
4801	struct task_struct *next, *stop = rq->stop;
4802	int dest_cpu;
4803
4804	/*
4805	 * Fudge the rq selection such that the below task selection loop
4806	 * doesn't get stuck on the currently eligible stop task.
4807	 *
4808	 * We're currently inside stop_machine() and the rq is either stuck
4809	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4810	 * either way we should never end up calling schedule() until we're
4811	 * done here.
4812	 */
4813	rq->stop = NULL;
4814
4815	/*
4816	 * put_prev_task() and pick_next_task() sched
4817	 * class method both need to have an up-to-date
4818	 * value of rq->clock[_task]
4819	 */
4820	update_rq_clock(rq);
4821
4822	for ( ; ; ) {
4823		/*
4824		 * There's this thread running, bail when that's the only
4825		 * remaining thread.
4826		 */
4827		if (rq->nr_running == 1)
4828			break;
4829
4830		next = pick_next_task(rq, &fake_task);
4831		BUG_ON(!next);
4832		next->sched_class->put_prev_task(rq, next);
4833
4834		/* Find suitable destination for @next, with force if needed. */
4835		dest_cpu = select_fallback_rq(dead_cpu, next);
4836		raw_spin_unlock(&rq->lock);
4837
4838		__migrate_task(next, dead_cpu, dest_cpu);
4839
4840		raw_spin_lock(&rq->lock);
4841	}
4842
4843	rq->stop = stop;
4844}
4845
4846#endif /* CONFIG_HOTPLUG_CPU */
4847
4848#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4849
4850static struct ctl_table sd_ctl_dir[] = {
4851	{
4852		.procname	= "sched_domain",
4853		.mode		= 0555,
4854	},
4855	{}
4856};
4857
4858static struct ctl_table sd_ctl_root[] = {
4859	{
4860		.procname	= "kernel",
4861		.mode		= 0555,
4862		.child		= sd_ctl_dir,
4863	},
4864	{}
4865};
4866
4867static struct ctl_table *sd_alloc_ctl_entry(int n)
4868{
4869	struct ctl_table *entry =
4870		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4871
4872	return entry;
4873}
4874
4875static void sd_free_ctl_entry(struct ctl_table **tablep)
4876{
4877	struct ctl_table *entry;
4878
4879	/*
4880	 * In the intermediate directories, both the child directory and
4881	 * procname are dynamically allocated and could fail but the mode
4882	 * will always be set. In the lowest directory the names are
4883	 * static strings and all have proc handlers.
4884	 */
4885	for (entry = *tablep; entry->mode; entry++) {
4886		if (entry->child)
4887			sd_free_ctl_entry(&entry->child);
4888		if (entry->proc_handler == NULL)
4889			kfree(entry->procname);
4890	}
4891
4892	kfree(*tablep);
4893	*tablep = NULL;
4894}
4895
4896static int min_load_idx = 0;
4897static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4898
4899static void
4900set_table_entry(struct ctl_table *entry,
4901		const char *procname, void *data, int maxlen,
4902		umode_t mode, proc_handler *proc_handler,
4903		bool load_idx)
4904{
4905	entry->procname = procname;
4906	entry->data = data;
4907	entry->maxlen = maxlen;
4908	entry->mode = mode;
4909	entry->proc_handler = proc_handler;
4910
4911	if (load_idx) {
4912		entry->extra1 = &min_load_idx;
4913		entry->extra2 = &max_load_idx;
4914	}
4915}
4916
4917static struct ctl_table *
4918sd_alloc_ctl_domain_table(struct sched_domain *sd)
4919{
4920	struct ctl_table *table = sd_alloc_ctl_entry(14);
4921
4922	if (table == NULL)
4923		return NULL;
4924
4925	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4926		sizeof(long), 0644, proc_doulongvec_minmax, false);
4927	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4928		sizeof(long), 0644, proc_doulongvec_minmax, false);
4929	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4930		sizeof(int), 0644, proc_dointvec_minmax, true);
4931	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4932		sizeof(int), 0644, proc_dointvec_minmax, true);
4933	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4934		sizeof(int), 0644, proc_dointvec_minmax, true);
4935	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4936		sizeof(int), 0644, proc_dointvec_minmax, true);
4937	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4938		sizeof(int), 0644, proc_dointvec_minmax, true);
4939	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4940		sizeof(int), 0644, proc_dointvec_minmax, false);
4941	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4942		sizeof(int), 0644, proc_dointvec_minmax, false);
4943	set_table_entry(&table[9], "cache_nice_tries",
4944		&sd->cache_nice_tries,
4945		sizeof(int), 0644, proc_dointvec_minmax, false);
4946	set_table_entry(&table[10], "flags", &sd->flags,
4947		sizeof(int), 0644, proc_dointvec_minmax, false);
4948	set_table_entry(&table[11], "max_newidle_lb_cost",
4949		&sd->max_newidle_lb_cost,
4950		sizeof(long), 0644, proc_doulongvec_minmax, false);
4951	set_table_entry(&table[12], "name", sd->name,
4952		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4953	/* &table[13] is terminator */
4954
4955	return table;
4956}
4957
4958static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4959{
4960	struct ctl_table *entry, *table;
4961	struct sched_domain *sd;
4962	int domain_num = 0, i;
4963	char buf[32];
4964
4965	for_each_domain(cpu, sd)
4966		domain_num++;
4967	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4968	if (table == NULL)
4969		return NULL;
4970
4971	i = 0;
4972	for_each_domain(cpu, sd) {
4973		snprintf(buf, 32, "domain%d", i);
4974		entry->procname = kstrdup(buf, GFP_KERNEL);
4975		entry->mode = 0555;
4976		entry->child = sd_alloc_ctl_domain_table(sd);
4977		entry++;
4978		i++;
4979	}
4980	return table;
4981}
4982
4983static struct ctl_table_header *sd_sysctl_header;
4984static void register_sched_domain_sysctl(void)
4985{
4986	int i, cpu_num = num_possible_cpus();
4987	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4988	char buf[32];
4989
4990	WARN_ON(sd_ctl_dir[0].child);
4991	sd_ctl_dir[0].child = entry;
4992
4993	if (entry == NULL)
4994		return;
4995
4996	for_each_possible_cpu(i) {
4997		snprintf(buf, 32, "cpu%d", i);
4998		entry->procname = kstrdup(buf, GFP_KERNEL);
4999		entry->mode = 0555;
5000		entry->child = sd_alloc_ctl_cpu_table(i);
5001		entry++;
5002	}
5003
5004	WARN_ON(sd_sysctl_header);
5005	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5006}
5007
5008/* may be called multiple times per register */
5009static void unregister_sched_domain_sysctl(void)
5010{
5011	if (sd_sysctl_header)
5012		unregister_sysctl_table(sd_sysctl_header);
5013	sd_sysctl_header = NULL;
5014	if (sd_ctl_dir[0].child)
5015		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5016}
5017#else
5018static void register_sched_domain_sysctl(void)
5019{
5020}
5021static void unregister_sched_domain_sysctl(void)
5022{
5023}
5024#endif
5025
5026static void set_rq_online(struct rq *rq)
5027{
5028	if (!rq->online) {
5029		const struct sched_class *class;
5030
5031		cpumask_set_cpu(rq->cpu, rq->rd->online);
5032		rq->online = 1;
5033
5034		for_each_class(class) {
5035			if (class->rq_online)
5036				class->rq_online(rq);
5037		}
5038	}
5039}
5040
5041static void set_rq_offline(struct rq *rq)
5042{
5043	if (rq->online) {
5044		const struct sched_class *class;
5045
5046		for_each_class(class) {
5047			if (class->rq_offline)
5048				class->rq_offline(rq);
5049		}
5050
5051		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5052		rq->online = 0;
5053	}
5054}
5055
5056/*
5057 * migration_call - callback that gets triggered when a CPU is added.
5058 * Here we can start up the necessary migration thread for the new CPU.
5059 */
5060static int
5061migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5062{
5063	int cpu = (long)hcpu;
5064	unsigned long flags;
5065	struct rq *rq = cpu_rq(cpu);
5066
5067	switch (action & ~CPU_TASKS_FROZEN) {
5068
5069	case CPU_UP_PREPARE:
5070		rq->calc_load_update = calc_load_update;
5071		break;
5072
5073	case CPU_ONLINE:
5074		/* Update our root-domain */
5075		raw_spin_lock_irqsave(&rq->lock, flags);
5076		if (rq->rd) {
5077			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5078
5079			set_rq_online(rq);
5080		}
5081		raw_spin_unlock_irqrestore(&rq->lock, flags);
5082		break;
5083
5084#ifdef CONFIG_HOTPLUG_CPU
5085	case CPU_DYING:
5086		sched_ttwu_pending();
5087		/* Update our root-domain */
5088		raw_spin_lock_irqsave(&rq->lock, flags);
5089		if (rq->rd) {
5090			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5091			set_rq_offline(rq);
5092		}
5093		migrate_tasks(cpu);
5094		BUG_ON(rq->nr_running != 1); /* the migration thread */
5095		raw_spin_unlock_irqrestore(&rq->lock, flags);
5096		break;
5097
5098	case CPU_DEAD:
5099		calc_load_migrate(rq);
5100		break;
5101#endif
5102	}
5103
5104	update_max_interval();
5105
5106	return NOTIFY_OK;
5107}
5108
5109/*
5110 * Register at high priority so that task migration (migrate_all_tasks)
5111 * happens before everything else.  This has to be lower priority than
5112 * the notifier in the perf_event subsystem, though.
5113 */
5114static struct notifier_block migration_notifier = {
5115	.notifier_call = migration_call,
5116	.priority = CPU_PRI_MIGRATION,
5117};
5118
5119static void __cpuinit set_cpu_rq_start_time(void)
5120{
5121	int cpu = smp_processor_id();
5122	struct rq *rq = cpu_rq(cpu);
5123	rq->age_stamp = sched_clock_cpu(cpu);
5124}
5125
5126static int sched_cpu_active(struct notifier_block *nfb,
5127				      unsigned long action, void *hcpu)
5128{
5129	switch (action & ~CPU_TASKS_FROZEN) {
5130	case CPU_STARTING:
5131		set_cpu_rq_start_time();
5132		return NOTIFY_OK;
5133	case CPU_DOWN_FAILED:
5134		set_cpu_active((long)hcpu, true);
5135		return NOTIFY_OK;
5136	default:
5137		return NOTIFY_DONE;
5138	}
5139}
5140
5141static int sched_cpu_inactive(struct notifier_block *nfb,
5142					unsigned long action, void *hcpu)
5143{
5144	unsigned long flags;
5145	long cpu = (long)hcpu;
5146
5147	switch (action & ~CPU_TASKS_FROZEN) {
5148	case CPU_DOWN_PREPARE:
5149		set_cpu_active(cpu, false);
5150
5151		/* explicitly allow suspend */
5152		if (!(action & CPU_TASKS_FROZEN)) {
5153			struct dl_bw *dl_b = dl_bw_of(cpu);
5154			bool overflow;
5155			int cpus;
5156
5157			raw_spin_lock_irqsave(&dl_b->lock, flags);
5158			cpus = dl_bw_cpus(cpu);
5159			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5160			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5161
5162			if (overflow)
5163				return notifier_from_errno(-EBUSY);
5164		}
5165		return NOTIFY_OK;
5166	}
5167
5168	return NOTIFY_DONE;
5169}
5170
5171static int __init migration_init(void)
5172{
5173	void *cpu = (void *)(long)smp_processor_id();
5174	int err;
5175
5176	/* Initialize migration for the boot CPU */
5177	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5178	BUG_ON(err == NOTIFY_BAD);
5179	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5180	register_cpu_notifier(&migration_notifier);
5181
5182	/* Register cpu active notifiers */
5183	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5184	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5185
5186	return 0;
5187}
5188early_initcall(migration_init);
5189#endif
5190
5191#ifdef CONFIG_SMP
5192
5193static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5194
5195#ifdef CONFIG_SCHED_DEBUG
5196
5197static __read_mostly int sched_debug_enabled;
5198
5199static int __init sched_debug_setup(char *str)
5200{
5201	sched_debug_enabled = 1;
5202
5203	return 0;
5204}
5205early_param("sched_debug", sched_debug_setup);
5206
5207static inline bool sched_debug(void)
5208{
5209	return sched_debug_enabled;
5210}
5211
5212static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5213				  struct cpumask *groupmask)
5214{
5215	struct sched_group *group = sd->groups;
5216	char str[256];
5217
5218	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5219	cpumask_clear(groupmask);
5220
5221	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5222
5223	if (!(sd->flags & SD_LOAD_BALANCE)) {
5224		printk("does not load-balance\n");
5225		if (sd->parent)
5226			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5227					" has parent");
5228		return -1;
5229	}
5230
5231	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5232
5233	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5234		printk(KERN_ERR "ERROR: domain->span does not contain "
5235				"CPU%d\n", cpu);
5236	}
5237	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5238		printk(KERN_ERR "ERROR: domain->groups does not contain"
5239				" CPU%d\n", cpu);
5240	}
5241
5242	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5243	do {
5244		if (!group) {
5245			printk("\n");
5246			printk(KERN_ERR "ERROR: group is NULL\n");
5247			break;
5248		}
5249
5250		/*
5251		 * Even though we initialize ->capacity to something semi-sane,
5252		 * we leave capacity_orig unset. This allows us to detect if
5253		 * domain iteration is still funny without causing /0 traps.
5254		 */
5255		if (!group->sgc->capacity_orig) {
5256			printk(KERN_CONT "\n");
5257			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5258			break;
5259		}
5260
5261		if (!cpumask_weight(sched_group_cpus(group))) {
5262			printk(KERN_CONT "\n");
5263			printk(KERN_ERR "ERROR: empty group\n");
5264			break;
5265		}
5266
5267		if (!(sd->flags & SD_OVERLAP) &&
5268		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5269			printk(KERN_CONT "\n");
5270			printk(KERN_ERR "ERROR: repeated CPUs\n");
5271			break;
5272		}
5273
5274		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5275
5276		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5277
5278		printk(KERN_CONT " %s", str);
5279		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5280			printk(KERN_CONT " (cpu_capacity = %d)",
5281				group->sgc->capacity);
5282		}
5283
5284		group = group->next;
5285	} while (group != sd->groups);
5286	printk(KERN_CONT "\n");
5287
5288	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5289		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5290
5291	if (sd->parent &&
5292	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5293		printk(KERN_ERR "ERROR: parent span is not a superset "
5294			"of domain->span\n");
5295	return 0;
5296}
5297
5298static void sched_domain_debug(struct sched_domain *sd, int cpu)
5299{
5300	int level = 0;
5301
5302	if (!sched_debug_enabled)
5303		return;
5304
5305	if (!sd) {
5306		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5307		return;
5308	}
5309
5310	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5311
5312	for (;;) {
5313		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5314			break;
5315		level++;
5316		sd = sd->parent;
5317		if (!sd)
5318			break;
5319	}
5320}
5321#else /* !CONFIG_SCHED_DEBUG */
5322# define sched_domain_debug(sd, cpu) do { } while (0)
5323static inline bool sched_debug(void)
5324{
5325	return false;
5326}
5327#endif /* CONFIG_SCHED_DEBUG */
5328
5329static int sd_degenerate(struct sched_domain *sd)
5330{
5331	if (cpumask_weight(sched_domain_span(sd)) == 1)
5332		return 1;
5333
5334	/* Following flags need at least 2 groups */
5335	if (sd->flags & (SD_LOAD_BALANCE |
5336			 SD_BALANCE_NEWIDLE |
5337			 SD_BALANCE_FORK |
5338			 SD_BALANCE_EXEC |
5339			 SD_SHARE_CPUCAPACITY |
5340			 SD_SHARE_PKG_RESOURCES |
5341			 SD_SHARE_POWERDOMAIN)) {
5342		if (sd->groups != sd->groups->next)
5343			return 0;
5344	}
5345
5346	/* Following flags don't use groups */
5347	if (sd->flags & (SD_WAKE_AFFINE))
5348		return 0;
5349
5350	return 1;
5351}
5352
5353static int
5354sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5355{
5356	unsigned long cflags = sd->flags, pflags = parent->flags;
5357
5358	if (sd_degenerate(parent))
5359		return 1;
5360
5361	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5362		return 0;
5363
5364	/* Flags needing groups don't count if only 1 group in parent */
5365	if (parent->groups == parent->groups->next) {
5366		pflags &= ~(SD_LOAD_BALANCE |
5367				SD_BALANCE_NEWIDLE |
5368				SD_BALANCE_FORK |
5369				SD_BALANCE_EXEC |
5370				SD_SHARE_CPUCAPACITY |
5371				SD_SHARE_PKG_RESOURCES |
5372				SD_PREFER_SIBLING |
5373				SD_SHARE_POWERDOMAIN);
5374		if (nr_node_ids == 1)
5375			pflags &= ~SD_SERIALIZE;
5376	}
5377	if (~cflags & pflags)
5378		return 0;
5379
5380	return 1;
5381}
5382
5383static void free_rootdomain(struct rcu_head *rcu)
5384{
5385	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5386
5387	cpupri_cleanup(&rd->cpupri);
5388	cpudl_cleanup(&rd->cpudl);
5389	free_cpumask_var(rd->dlo_mask);
5390	free_cpumask_var(rd->rto_mask);
5391	free_cpumask_var(rd->online);
5392	free_cpumask_var(rd->span);
5393	kfree(rd);
5394}
5395
5396static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5397{
5398	struct root_domain *old_rd = NULL;
5399	unsigned long flags;
5400
5401	raw_spin_lock_irqsave(&rq->lock, flags);
5402
5403	if (rq->rd) {
5404		old_rd = rq->rd;
5405
5406		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5407			set_rq_offline(rq);
5408
5409		cpumask_clear_cpu(rq->cpu, old_rd->span);
5410
5411		/*
5412		 * If we dont want to free the old_rd yet then
5413		 * set old_rd to NULL to skip the freeing later
5414		 * in this function:
5415		 */
5416		if (!atomic_dec_and_test(&old_rd->refcount))
5417			old_rd = NULL;
5418	}
5419
5420	atomic_inc(&rd->refcount);
5421	rq->rd = rd;
5422
5423	cpumask_set_cpu(rq->cpu, rd->span);
5424	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5425		set_rq_online(rq);
5426
5427	raw_spin_unlock_irqrestore(&rq->lock, flags);
5428
5429	if (old_rd)
5430		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5431}
5432
5433static int init_rootdomain(struct root_domain *rd)
5434{
5435	memset(rd, 0, sizeof(*rd));
5436
5437	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5438		goto out;
5439	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5440		goto free_span;
5441	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5442		goto free_online;
5443	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5444		goto free_dlo_mask;
5445
5446	init_dl_bw(&rd->dl_bw);
5447	if (cpudl_init(&rd->cpudl) != 0)
5448		goto free_dlo_mask;
5449
5450	if (cpupri_init(&rd->cpupri) != 0)
5451		goto free_rto_mask;
5452	return 0;
5453
5454free_rto_mask:
5455	free_cpumask_var(rd->rto_mask);
5456free_dlo_mask:
5457	free_cpumask_var(rd->dlo_mask);
5458free_online:
5459	free_cpumask_var(rd->online);
5460free_span:
5461	free_cpumask_var(rd->span);
5462out:
5463	return -ENOMEM;
5464}
5465
5466/*
5467 * By default the system creates a single root-domain with all cpus as
5468 * members (mimicking the global state we have today).
5469 */
5470struct root_domain def_root_domain;
5471
5472static void init_defrootdomain(void)
5473{
5474	init_rootdomain(&def_root_domain);
5475
5476	atomic_set(&def_root_domain.refcount, 1);
5477}
5478
5479static struct root_domain *alloc_rootdomain(void)
5480{
5481	struct root_domain *rd;
5482
5483	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5484	if (!rd)
5485		return NULL;
5486
5487	if (init_rootdomain(rd) != 0) {
5488		kfree(rd);
5489		return NULL;
5490	}
5491
5492	return rd;
5493}
5494
5495static void free_sched_groups(struct sched_group *sg, int free_sgc)
5496{
5497	struct sched_group *tmp, *first;
5498
5499	if (!sg)
5500		return;
5501
5502	first = sg;
5503	do {
5504		tmp = sg->next;
5505
5506		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5507			kfree(sg->sgc);
5508
5509		kfree(sg);
5510		sg = tmp;
5511	} while (sg != first);
5512}
5513
5514static void free_sched_domain(struct rcu_head *rcu)
5515{
5516	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5517
5518	/*
5519	 * If its an overlapping domain it has private groups, iterate and
5520	 * nuke them all.
5521	 */
5522	if (sd->flags & SD_OVERLAP) {
5523		free_sched_groups(sd->groups, 1);
5524	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5525		kfree(sd->groups->sgc);
5526		kfree(sd->groups);
5527	}
5528	kfree(sd);
5529}
5530
5531static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5532{
5533	call_rcu(&sd->rcu, free_sched_domain);
5534}
5535
5536static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5537{
5538	for (; sd; sd = sd->parent)
5539		destroy_sched_domain(sd, cpu);
5540}
5541
5542/*
5543 * Keep a special pointer to the highest sched_domain that has
5544 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5545 * allows us to avoid some pointer chasing select_idle_sibling().
5546 *
5547 * Also keep a unique ID per domain (we use the first cpu number in
5548 * the cpumask of the domain), this allows us to quickly tell if
5549 * two cpus are in the same cache domain, see cpus_share_cache().
5550 */
5551DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5552DEFINE_PER_CPU(int, sd_llc_size);
5553DEFINE_PER_CPU(int, sd_llc_id);
5554DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5555DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5556DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5557
5558static void update_top_cache_domain(int cpu)
5559{
5560	struct sched_domain *sd;
5561	struct sched_domain *busy_sd = NULL;
5562	int id = cpu;
5563	int size = 1;
5564
5565	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5566	if (sd) {
5567		id = cpumask_first(sched_domain_span(sd));
5568		size = cpumask_weight(sched_domain_span(sd));
5569		busy_sd = sd->parent; /* sd_busy */
5570	}
5571	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5572
5573	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5574	per_cpu(sd_llc_size, cpu) = size;
5575	per_cpu(sd_llc_id, cpu) = id;
5576
5577	sd = lowest_flag_domain(cpu, SD_NUMA);
5578	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5579
5580	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5581	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5582}
5583
5584/*
5585 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5586 * hold the hotplug lock.
5587 */
5588static void
5589cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5590{
5591	struct rq *rq = cpu_rq(cpu);
5592	struct sched_domain *tmp;
5593
5594	/* Remove the sched domains which do not contribute to scheduling. */
5595	for (tmp = sd; tmp; ) {
5596		struct sched_domain *parent = tmp->parent;
5597		if (!parent)
5598			break;
5599
5600		if (sd_parent_degenerate(tmp, parent)) {
5601			tmp->parent = parent->parent;
5602			if (parent->parent)
5603				parent->parent->child = tmp;
5604			/*
5605			 * Transfer SD_PREFER_SIBLING down in case of a
5606			 * degenerate parent; the spans match for this
5607			 * so the property transfers.
5608			 */
5609			if (parent->flags & SD_PREFER_SIBLING)
5610				tmp->flags |= SD_PREFER_SIBLING;
5611			destroy_sched_domain(parent, cpu);
5612		} else
5613			tmp = tmp->parent;
5614	}
5615
5616	if (sd && sd_degenerate(sd)) {
5617		tmp = sd;
5618		sd = sd->parent;
5619		destroy_sched_domain(tmp, cpu);
5620		if (sd)
5621			sd->child = NULL;
5622	}
5623
5624	sched_domain_debug(sd, cpu);
5625
5626	rq_attach_root(rq, rd);
5627	tmp = rq->sd;
5628	rcu_assign_pointer(rq->sd, sd);
5629	destroy_sched_domains(tmp, cpu);
5630
5631	update_top_cache_domain(cpu);
5632}
5633
5634/* cpus with isolated domains */
5635static cpumask_var_t cpu_isolated_map;
5636
5637/* Setup the mask of cpus configured for isolated domains */
5638static int __init isolated_cpu_setup(char *str)
5639{
5640	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5641	cpulist_parse(str, cpu_isolated_map);
5642	return 1;
5643}
5644
5645__setup("isolcpus=", isolated_cpu_setup);
5646
5647struct s_data {
5648	struct sched_domain ** __percpu sd;
5649	struct root_domain	*rd;
5650};
5651
5652enum s_alloc {
5653	sa_rootdomain,
5654	sa_sd,
5655	sa_sd_storage,
5656	sa_none,
5657};
5658
5659/*
5660 * Build an iteration mask that can exclude certain CPUs from the upwards
5661 * domain traversal.
5662 *
5663 * Asymmetric node setups can result in situations where the domain tree is of
5664 * unequal depth, make sure to skip domains that already cover the entire
5665 * range.
5666 *
5667 * In that case build_sched_domains() will have terminated the iteration early
5668 * and our sibling sd spans will be empty. Domains should always include the
5669 * cpu they're built on, so check that.
5670 *
5671 */
5672static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5673{
5674	const struct cpumask *span = sched_domain_span(sd);
5675	struct sd_data *sdd = sd->private;
5676	struct sched_domain *sibling;
5677	int i;
5678
5679	for_each_cpu(i, span) {
5680		sibling = *per_cpu_ptr(sdd->sd, i);
5681		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5682			continue;
5683
5684		cpumask_set_cpu(i, sched_group_mask(sg));
5685	}
5686}
5687
5688/*
5689 * Return the canonical balance cpu for this group, this is the first cpu
5690 * of this group that's also in the iteration mask.
5691 */
5692int group_balance_cpu(struct sched_group *sg)
5693{
5694	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5695}
5696
5697static int
5698build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5699{
5700	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5701	const struct cpumask *span = sched_domain_span(sd);
5702	struct cpumask *covered = sched_domains_tmpmask;
5703	struct sd_data *sdd = sd->private;
5704	struct sched_domain *child;
5705	int i;
5706
5707	cpumask_clear(covered);
5708
5709	for_each_cpu(i, span) {
5710		struct cpumask *sg_span;
5711
5712		if (cpumask_test_cpu(i, covered))
5713			continue;
5714
5715		child = *per_cpu_ptr(sdd->sd, i);
5716
5717		/* See the comment near build_group_mask(). */
5718		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5719			continue;
5720
5721		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5722				GFP_KERNEL, cpu_to_node(cpu));
5723
5724		if (!sg)
5725			goto fail;
5726
5727		sg_span = sched_group_cpus(sg);
5728		if (child->child) {
5729			child = child->child;
5730			cpumask_copy(sg_span, sched_domain_span(child));
5731		} else
5732			cpumask_set_cpu(i, sg_span);
5733
5734		cpumask_or(covered, covered, sg_span);
5735
5736		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5737		if (atomic_inc_return(&sg->sgc->ref) == 1)
5738			build_group_mask(sd, sg);
5739
5740		/*
5741		 * Initialize sgc->capacity such that even if we mess up the
5742		 * domains and no possible iteration will get us here, we won't
5743		 * die on a /0 trap.
5744		 */
5745		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5746		sg->sgc->capacity_orig = sg->sgc->capacity;
5747
5748		/*
5749		 * Make sure the first group of this domain contains the
5750		 * canonical balance cpu. Otherwise the sched_domain iteration
5751		 * breaks. See update_sg_lb_stats().
5752		 */
5753		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5754		    group_balance_cpu(sg) == cpu)
5755			groups = sg;
5756
5757		if (!first)
5758			first = sg;
5759		if (last)
5760			last->next = sg;
5761		last = sg;
5762		last->next = first;
5763	}
5764	sd->groups = groups;
5765
5766	return 0;
5767
5768fail:
5769	free_sched_groups(first, 0);
5770
5771	return -ENOMEM;
5772}
5773
5774static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5775{
5776	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5777	struct sched_domain *child = sd->child;
5778
5779	if (child)
5780		cpu = cpumask_first(sched_domain_span(child));
5781
5782	if (sg) {
5783		*sg = *per_cpu_ptr(sdd->sg, cpu);
5784		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5785		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5786	}
5787
5788	return cpu;
5789}
5790
5791/*
5792 * build_sched_groups will build a circular linked list of the groups
5793 * covered by the given span, and will set each group's ->cpumask correctly,
5794 * and ->cpu_capacity to 0.
5795 *
5796 * Assumes the sched_domain tree is fully constructed
5797 */
5798static int
5799build_sched_groups(struct sched_domain *sd, int cpu)
5800{
5801	struct sched_group *first = NULL, *last = NULL;
5802	struct sd_data *sdd = sd->private;
5803	const struct cpumask *span = sched_domain_span(sd);
5804	struct cpumask *covered;
5805	int i;
5806
5807	get_group(cpu, sdd, &sd->groups);
5808	atomic_inc(&sd->groups->ref);
5809
5810	if (cpu != cpumask_first(span))
5811		return 0;
5812
5813	lockdep_assert_held(&sched_domains_mutex);
5814	covered = sched_domains_tmpmask;
5815
5816	cpumask_clear(covered);
5817
5818	for_each_cpu(i, span) {
5819		struct sched_group *sg;
5820		int group, j;
5821
5822		if (cpumask_test_cpu(i, covered))
5823			continue;
5824
5825		group = get_group(i, sdd, &sg);
5826		cpumask_setall(sched_group_mask(sg));
5827
5828		for_each_cpu(j, span) {
5829			if (get_group(j, sdd, NULL) != group)
5830				continue;
5831
5832			cpumask_set_cpu(j, covered);
5833			cpumask_set_cpu(j, sched_group_cpus(sg));
5834		}
5835
5836		if (!first)
5837			first = sg;
5838		if (last)
5839			last->next = sg;
5840		last = sg;
5841	}
5842	last->next = first;
5843
5844	return 0;
5845}
5846
5847/*
5848 * Initialize sched groups cpu_capacity.
5849 *
5850 * cpu_capacity indicates the capacity of sched group, which is used while
5851 * distributing the load between different sched groups in a sched domain.
5852 * Typically cpu_capacity for all the groups in a sched domain will be same
5853 * unless there are asymmetries in the topology. If there are asymmetries,
5854 * group having more cpu_capacity will pickup more load compared to the
5855 * group having less cpu_capacity.
5856 */
5857static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5858{
5859	struct sched_group *sg = sd->groups;
5860
5861	WARN_ON(!sg);
5862
5863	do {
5864		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5865		sg = sg->next;
5866	} while (sg != sd->groups);
5867
5868	if (cpu != group_balance_cpu(sg))
5869		return;
5870
5871	update_group_capacity(sd, cpu);
5872	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5873}
5874
5875/*
5876 * Initializers for schedule domains
5877 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5878 */
5879
5880static int default_relax_domain_level = -1;
5881int sched_domain_level_max;
5882
5883static int __init setup_relax_domain_level(char *str)
5884{
5885	if (kstrtoint(str, 0, &default_relax_domain_level))
5886		pr_warn("Unable to set relax_domain_level\n");
5887
5888	return 1;
5889}
5890__setup("relax_domain_level=", setup_relax_domain_level);
5891
5892static void set_domain_attribute(struct sched_domain *sd,
5893				 struct sched_domain_attr *attr)
5894{
5895	int request;
5896
5897	if (!attr || attr->relax_domain_level < 0) {
5898		if (default_relax_domain_level < 0)
5899			return;
5900		else
5901			request = default_relax_domain_level;
5902	} else
5903		request = attr->relax_domain_level;
5904	if (request < sd->level) {
5905		/* turn off idle balance on this domain */
5906		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5907	} else {
5908		/* turn on idle balance on this domain */
5909		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5910	}
5911}
5912
5913static void __sdt_free(const struct cpumask *cpu_map);
5914static int __sdt_alloc(const struct cpumask *cpu_map);
5915
5916static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5917				 const struct cpumask *cpu_map)
5918{
5919	switch (what) {
5920	case sa_rootdomain:
5921		if (!atomic_read(&d->rd->refcount))
5922			free_rootdomain(&d->rd->rcu); /* fall through */
5923	case sa_sd:
5924		free_percpu(d->sd); /* fall through */
5925	case sa_sd_storage:
5926		__sdt_free(cpu_map); /* fall through */
5927	case sa_none:
5928		break;
5929	}
5930}
5931
5932static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5933						   const struct cpumask *cpu_map)
5934{
5935	memset(d, 0, sizeof(*d));
5936
5937	if (__sdt_alloc(cpu_map))
5938		return sa_sd_storage;
5939	d->sd = alloc_percpu(struct sched_domain *);
5940	if (!d->sd)
5941		return sa_sd_storage;
5942	d->rd = alloc_rootdomain();
5943	if (!d->rd)
5944		return sa_sd;
5945	return sa_rootdomain;
5946}
5947
5948/*
5949 * NULL the sd_data elements we've used to build the sched_domain and
5950 * sched_group structure so that the subsequent __free_domain_allocs()
5951 * will not free the data we're using.
5952 */
5953static void claim_allocations(int cpu, struct sched_domain *sd)
5954{
5955	struct sd_data *sdd = sd->private;
5956
5957	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5958	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5959
5960	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5961		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5962
5963	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5964		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5965}
5966
5967#ifdef CONFIG_NUMA
5968static int sched_domains_numa_levels;
5969static int *sched_domains_numa_distance;
5970static struct cpumask ***sched_domains_numa_masks;
5971static int sched_domains_curr_level;
5972#endif
5973
5974/*
5975 * SD_flags allowed in topology descriptions.
5976 *
5977 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
5978 * SD_SHARE_PKG_RESOURCES - describes shared caches
5979 * SD_NUMA                - describes NUMA topologies
5980 * SD_SHARE_POWERDOMAIN   - describes shared power domain
5981 *
5982 * Odd one out:
5983 * SD_ASYM_PACKING        - describes SMT quirks
5984 */
5985#define TOPOLOGY_SD_FLAGS		\
5986	(SD_SHARE_CPUCAPACITY |		\
5987	 SD_SHARE_PKG_RESOURCES |	\
5988	 SD_NUMA |			\
5989	 SD_ASYM_PACKING |		\
5990	 SD_SHARE_POWERDOMAIN)
5991
5992static struct sched_domain *
5993sd_init(struct sched_domain_topology_level *tl, int cpu)
5994{
5995	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5996	int sd_weight, sd_flags = 0;
5997
5998#ifdef CONFIG_NUMA
5999	/*
6000	 * Ugly hack to pass state to sd_numa_mask()...
6001	 */
6002	sched_domains_curr_level = tl->numa_level;
6003#endif
6004
6005	sd_weight = cpumask_weight(tl->mask(cpu));
6006
6007	if (tl->sd_flags)
6008		sd_flags = (*tl->sd_flags)();
6009	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6010			"wrong sd_flags in topology description\n"))
6011		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6012
6013	*sd = (struct sched_domain){
6014		.min_interval		= sd_weight,
6015		.max_interval		= 2*sd_weight,
6016		.busy_factor		= 32,
6017		.imbalance_pct		= 125,
6018
6019		.cache_nice_tries	= 0,
6020		.busy_idx		= 0,
6021		.idle_idx		= 0,
6022		.newidle_idx		= 0,
6023		.wake_idx		= 0,
6024		.forkexec_idx		= 0,
6025
6026		.flags			= 1*SD_LOAD_BALANCE
6027					| 1*SD_BALANCE_NEWIDLE
6028					| 1*SD_BALANCE_EXEC
6029					| 1*SD_BALANCE_FORK
6030					| 0*SD_BALANCE_WAKE
6031					| 1*SD_WAKE_AFFINE
6032					| 0*SD_SHARE_CPUCAPACITY
6033					| 0*SD_SHARE_PKG_RESOURCES
6034					| 0*SD_SERIALIZE
6035					| 0*SD_PREFER_SIBLING
6036					| 0*SD_NUMA
6037					| sd_flags
6038					,
6039
6040		.last_balance		= jiffies,
6041		.balance_interval	= sd_weight,
6042		.smt_gain		= 0,
6043		.max_newidle_lb_cost	= 0,
6044		.next_decay_max_lb_cost	= jiffies,
6045#ifdef CONFIG_SCHED_DEBUG
6046		.name			= tl->name,
6047#endif
6048	};
6049
6050	/*
6051	 * Convert topological properties into behaviour.
6052	 */
6053
6054	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6055		sd->imbalance_pct = 110;
6056		sd->smt_gain = 1178; /* ~15% */
6057
6058	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6059		sd->imbalance_pct = 117;
6060		sd->cache_nice_tries = 1;
6061		sd->busy_idx = 2;
6062
6063#ifdef CONFIG_NUMA
6064	} else if (sd->flags & SD_NUMA) {
6065		sd->cache_nice_tries = 2;
6066		sd->busy_idx = 3;
6067		sd->idle_idx = 2;
6068
6069		sd->flags |= SD_SERIALIZE;
6070		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6071			sd->flags &= ~(SD_BALANCE_EXEC |
6072				       SD_BALANCE_FORK |
6073				       SD_WAKE_AFFINE);
6074		}
6075
6076#endif
6077	} else {
6078		sd->flags |= SD_PREFER_SIBLING;
6079		sd->cache_nice_tries = 1;
6080		sd->busy_idx = 2;
6081		sd->idle_idx = 1;
6082	}
6083
6084	sd->private = &tl->data;
6085
6086	return sd;
6087}
6088
6089/*
6090 * Topology list, bottom-up.
6091 */
6092static struct sched_domain_topology_level default_topology[] = {
6093#ifdef CONFIG_SCHED_SMT
6094	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6095#endif
6096#ifdef CONFIG_SCHED_MC
6097	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6098#endif
6099	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6100	{ NULL, },
6101};
6102
6103struct sched_domain_topology_level *sched_domain_topology = default_topology;
6104
6105#define for_each_sd_topology(tl)			\
6106	for (tl = sched_domain_topology; tl->mask; tl++)
6107
6108void set_sched_topology(struct sched_domain_topology_level *tl)
6109{
6110	sched_domain_topology = tl;
6111}
6112
6113#ifdef CONFIG_NUMA
6114
6115static const struct cpumask *sd_numa_mask(int cpu)
6116{
6117	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6118}
6119
6120static void sched_numa_warn(const char *str)
6121{
6122	static int done = false;
6123	int i,j;
6124
6125	if (done)
6126		return;
6127
6128	done = true;
6129
6130	printk(KERN_WARNING "ERROR: %s\n\n", str);
6131
6132	for (i = 0; i < nr_node_ids; i++) {
6133		printk(KERN_WARNING "  ");
6134		for (j = 0; j < nr_node_ids; j++)
6135			printk(KERN_CONT "%02d ", node_distance(i,j));
6136		printk(KERN_CONT "\n");
6137	}
6138	printk(KERN_WARNING "\n");
6139}
6140
6141static bool find_numa_distance(int distance)
6142{
6143	int i;
6144
6145	if (distance == node_distance(0, 0))
6146		return true;
6147
6148	for (i = 0; i < sched_domains_numa_levels; i++) {
6149		if (sched_domains_numa_distance[i] == distance)
6150			return true;
6151	}
6152
6153	return false;
6154}
6155
6156static void sched_init_numa(void)
6157{
6158	int next_distance, curr_distance = node_distance(0, 0);
6159	struct sched_domain_topology_level *tl;
6160	int level = 0;
6161	int i, j, k;
6162
6163	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6164	if (!sched_domains_numa_distance)
6165		return;
6166
6167	/*
6168	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6169	 * unique distances in the node_distance() table.
6170	 *
6171	 * Assumes node_distance(0,j) includes all distances in
6172	 * node_distance(i,j) in order to avoid cubic time.
6173	 */
6174	next_distance = curr_distance;
6175	for (i = 0; i < nr_node_ids; i++) {
6176		for (j = 0; j < nr_node_ids; j++) {
6177			for (k = 0; k < nr_node_ids; k++) {
6178				int distance = node_distance(i, k);
6179
6180				if (distance > curr_distance &&
6181				    (distance < next_distance ||
6182				     next_distance == curr_distance))
6183					next_distance = distance;
6184
6185				/*
6186				 * While not a strong assumption it would be nice to know
6187				 * about cases where if node A is connected to B, B is not
6188				 * equally connected to A.
6189				 */
6190				if (sched_debug() && node_distance(k, i) != distance)
6191					sched_numa_warn("Node-distance not symmetric");
6192
6193				if (sched_debug() && i && !find_numa_distance(distance))
6194					sched_numa_warn("Node-0 not representative");
6195			}
6196			if (next_distance != curr_distance) {
6197				sched_domains_numa_distance[level++] = next_distance;
6198				sched_domains_numa_levels = level;
6199				curr_distance = next_distance;
6200			} else break;
6201		}
6202
6203		/*
6204		 * In case of sched_debug() we verify the above assumption.
6205		 */
6206		if (!sched_debug())
6207			break;
6208	}
6209	/*
6210	 * 'level' contains the number of unique distances, excluding the
6211	 * identity distance node_distance(i,i).
6212	 *
6213	 * The sched_domains_numa_distance[] array includes the actual distance
6214	 * numbers.
6215	 */
6216
6217	/*
6218	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6219	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6220	 * the array will contain less then 'level' members. This could be
6221	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6222	 * in other functions.
6223	 *
6224	 * We reset it to 'level' at the end of this function.
6225	 */
6226	sched_domains_numa_levels = 0;
6227
6228	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6229	if (!sched_domains_numa_masks)
6230		return;
6231
6232	/*
6233	 * Now for each level, construct a mask per node which contains all
6234	 * cpus of nodes that are that many hops away from us.
6235	 */
6236	for (i = 0; i < level; i++) {
6237		sched_domains_numa_masks[i] =
6238			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6239		if (!sched_domains_numa_masks[i])
6240			return;
6241
6242		for (j = 0; j < nr_node_ids; j++) {
6243			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6244			if (!mask)
6245				return;
6246
6247			sched_domains_numa_masks[i][j] = mask;
6248
6249			for (k = 0; k < nr_node_ids; k++) {
6250				if (node_distance(j, k) > sched_domains_numa_distance[i])
6251					continue;
6252
6253				cpumask_or(mask, mask, cpumask_of_node(k));
6254			}
6255		}
6256	}
6257
6258	/* Compute default topology size */
6259	for (i = 0; sched_domain_topology[i].mask; i++);
6260
6261	tl = kzalloc((i + level + 1) *
6262			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6263	if (!tl)
6264		return;
6265
6266	/*
6267	 * Copy the default topology bits..
6268	 */
6269	for (i = 0; sched_domain_topology[i].mask; i++)
6270		tl[i] = sched_domain_topology[i];
6271
6272	/*
6273	 * .. and append 'j' levels of NUMA goodness.
6274	 */
6275	for (j = 0; j < level; i++, j++) {
6276		tl[i] = (struct sched_domain_topology_level){
6277			.mask = sd_numa_mask,
6278			.sd_flags = cpu_numa_flags,
6279			.flags = SDTL_OVERLAP,
6280			.numa_level = j,
6281			SD_INIT_NAME(NUMA)
6282		};
6283	}
6284
6285	sched_domain_topology = tl;
6286
6287	sched_domains_numa_levels = level;
6288}
6289
6290static void sched_domains_numa_masks_set(int cpu)
6291{
6292	int i, j;
6293	int node = cpu_to_node(cpu);
6294
6295	for (i = 0; i < sched_domains_numa_levels; i++) {
6296		for (j = 0; j < nr_node_ids; j++) {
6297			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6298				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6299		}
6300	}
6301}
6302
6303static void sched_domains_numa_masks_clear(int cpu)
6304{
6305	int i, j;
6306	for (i = 0; i < sched_domains_numa_levels; i++) {
6307		for (j = 0; j < nr_node_ids; j++)
6308			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6309	}
6310}
6311
6312/*
6313 * Update sched_domains_numa_masks[level][node] array when new cpus
6314 * are onlined.
6315 */
6316static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6317					   unsigned long action,
6318					   void *hcpu)
6319{
6320	int cpu = (long)hcpu;
6321
6322	switch (action & ~CPU_TASKS_FROZEN) {
6323	case CPU_ONLINE:
6324		sched_domains_numa_masks_set(cpu);
6325		break;
6326
6327	case CPU_DEAD:
6328		sched_domains_numa_masks_clear(cpu);
6329		break;
6330
6331	default:
6332		return NOTIFY_DONE;
6333	}
6334
6335	return NOTIFY_OK;
6336}
6337#else
6338static inline void sched_init_numa(void)
6339{
6340}
6341
6342static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6343					   unsigned long action,
6344					   void *hcpu)
6345{
6346	return 0;
6347}
6348#endif /* CONFIG_NUMA */
6349
6350static int __sdt_alloc(const struct cpumask *cpu_map)
6351{
6352	struct sched_domain_topology_level *tl;
6353	int j;
6354
6355	for_each_sd_topology(tl) {
6356		struct sd_data *sdd = &tl->data;
6357
6358		sdd->sd = alloc_percpu(struct sched_domain *);
6359		if (!sdd->sd)
6360			return -ENOMEM;
6361
6362		sdd->sg = alloc_percpu(struct sched_group *);
6363		if (!sdd->sg)
6364			return -ENOMEM;
6365
6366		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6367		if (!sdd->sgc)
6368			return -ENOMEM;
6369
6370		for_each_cpu(j, cpu_map) {
6371			struct sched_domain *sd;
6372			struct sched_group *sg;
6373			struct sched_group_capacity *sgc;
6374
6375		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6376					GFP_KERNEL, cpu_to_node(j));
6377			if (!sd)
6378				return -ENOMEM;
6379
6380			*per_cpu_ptr(sdd->sd, j) = sd;
6381
6382			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6383					GFP_KERNEL, cpu_to_node(j));
6384			if (!sg)
6385				return -ENOMEM;
6386
6387			sg->next = sg;
6388
6389			*per_cpu_ptr(sdd->sg, j) = sg;
6390
6391			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6392					GFP_KERNEL, cpu_to_node(j));
6393			if (!sgc)
6394				return -ENOMEM;
6395
6396			*per_cpu_ptr(sdd->sgc, j) = sgc;
6397		}
6398	}
6399
6400	return 0;
6401}
6402
6403static void __sdt_free(const struct cpumask *cpu_map)
6404{
6405	struct sched_domain_topology_level *tl;
6406	int j;
6407
6408	for_each_sd_topology(tl) {
6409		struct sd_data *sdd = &tl->data;
6410
6411		for_each_cpu(j, cpu_map) {
6412			struct sched_domain *sd;
6413
6414			if (sdd->sd) {
6415				sd = *per_cpu_ptr(sdd->sd, j);
6416				if (sd && (sd->flags & SD_OVERLAP))
6417					free_sched_groups(sd->groups, 0);
6418				kfree(*per_cpu_ptr(sdd->sd, j));
6419			}
6420
6421			if (sdd->sg)
6422				kfree(*per_cpu_ptr(sdd->sg, j));
6423			if (sdd->sgc)
6424				kfree(*per_cpu_ptr(sdd->sgc, j));
6425		}
6426		free_percpu(sdd->sd);
6427		sdd->sd = NULL;
6428		free_percpu(sdd->sg);
6429		sdd->sg = NULL;
6430		free_percpu(sdd->sgc);
6431		sdd->sgc = NULL;
6432	}
6433}
6434
6435struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6436		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6437		struct sched_domain *child, int cpu)
6438{
6439	struct sched_domain *sd = sd_init(tl, cpu);
6440	if (!sd)
6441		return child;
6442
6443	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6444	if (child) {
6445		sd->level = child->level + 1;
6446		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6447		child->parent = sd;
6448		sd->child = child;
6449	}
6450	set_domain_attribute(sd, attr);
6451
6452	return sd;
6453}
6454
6455/*
6456 * Build sched domains for a given set of cpus and attach the sched domains
6457 * to the individual cpus
6458 */
6459static int build_sched_domains(const struct cpumask *cpu_map,
6460			       struct sched_domain_attr *attr)
6461{
6462	enum s_alloc alloc_state;
6463	struct sched_domain *sd;
6464	struct s_data d;
6465	int i, ret = -ENOMEM;
6466
6467	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6468	if (alloc_state != sa_rootdomain)
6469		goto error;
6470
6471	/* Set up domains for cpus specified by the cpu_map. */
6472	for_each_cpu(i, cpu_map) {
6473		struct sched_domain_topology_level *tl;
6474
6475		sd = NULL;
6476		for_each_sd_topology(tl) {
6477			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6478			if (tl == sched_domain_topology)
6479				*per_cpu_ptr(d.sd, i) = sd;
6480			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6481				sd->flags |= SD_OVERLAP;
6482			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6483				break;
6484		}
6485	}
6486
6487	/* Build the groups for the domains */
6488	for_each_cpu(i, cpu_map) {
6489		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6490			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6491			if (sd->flags & SD_OVERLAP) {
6492				if (build_overlap_sched_groups(sd, i))
6493					goto error;
6494			} else {
6495				if (build_sched_groups(sd, i))
6496					goto error;
6497			}
6498		}
6499	}
6500
6501	/* Calculate CPU capacity for physical packages and nodes */
6502	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6503		if (!cpumask_test_cpu(i, cpu_map))
6504			continue;
6505
6506		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6507			claim_allocations(i, sd);
6508			init_sched_groups_capacity(i, sd);
6509		}
6510	}
6511
6512	/* Attach the domains */
6513	rcu_read_lock();
6514	for_each_cpu(i, cpu_map) {
6515		sd = *per_cpu_ptr(d.sd, i);
6516		cpu_attach_domain(sd, d.rd, i);
6517	}
6518	rcu_read_unlock();
6519
6520	ret = 0;
6521error:
6522	__free_domain_allocs(&d, alloc_state, cpu_map);
6523	return ret;
6524}
6525
6526static cpumask_var_t *doms_cur;	/* current sched domains */
6527static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6528static struct sched_domain_attr *dattr_cur;
6529				/* attribues of custom domains in 'doms_cur' */
6530
6531/*
6532 * Special case: If a kmalloc of a doms_cur partition (array of
6533 * cpumask) fails, then fallback to a single sched domain,
6534 * as determined by the single cpumask fallback_doms.
6535 */
6536static cpumask_var_t fallback_doms;
6537
6538/*
6539 * arch_update_cpu_topology lets virtualized architectures update the
6540 * cpu core maps. It is supposed to return 1 if the topology changed
6541 * or 0 if it stayed the same.
6542 */
6543int __weak arch_update_cpu_topology(void)
6544{
6545	return 0;
6546}
6547
6548cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6549{
6550	int i;
6551	cpumask_var_t *doms;
6552
6553	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6554	if (!doms)
6555		return NULL;
6556	for (i = 0; i < ndoms; i++) {
6557		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6558			free_sched_domains(doms, i);
6559			return NULL;
6560		}
6561	}
6562	return doms;
6563}
6564
6565void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6566{
6567	unsigned int i;
6568	for (i = 0; i < ndoms; i++)
6569		free_cpumask_var(doms[i]);
6570	kfree(doms);
6571}
6572
6573/*
6574 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6575 * For now this just excludes isolated cpus, but could be used to
6576 * exclude other special cases in the future.
6577 */
6578static int init_sched_domains(const struct cpumask *cpu_map)
6579{
6580	int err;
6581
6582	arch_update_cpu_topology();
6583	ndoms_cur = 1;
6584	doms_cur = alloc_sched_domains(ndoms_cur);
6585	if (!doms_cur)
6586		doms_cur = &fallback_doms;
6587	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6588	err = build_sched_domains(doms_cur[0], NULL);
6589	register_sched_domain_sysctl();
6590
6591	return err;
6592}
6593
6594/*
6595 * Detach sched domains from a group of cpus specified in cpu_map
6596 * These cpus will now be attached to the NULL domain
6597 */
6598static void detach_destroy_domains(const struct cpumask *cpu_map)
6599{
6600	int i;
6601
6602	rcu_read_lock();
6603	for_each_cpu(i, cpu_map)
6604		cpu_attach_domain(NULL, &def_root_domain, i);
6605	rcu_read_unlock();
6606}
6607
6608/* handle null as "default" */
6609static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6610			struct sched_domain_attr *new, int idx_new)
6611{
6612	struct sched_domain_attr tmp;
6613
6614	/* fast path */
6615	if (!new && !cur)
6616		return 1;
6617
6618	tmp = SD_ATTR_INIT;
6619	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6620			new ? (new + idx_new) : &tmp,
6621			sizeof(struct sched_domain_attr));
6622}
6623
6624/*
6625 * Partition sched domains as specified by the 'ndoms_new'
6626 * cpumasks in the array doms_new[] of cpumasks. This compares
6627 * doms_new[] to the current sched domain partitioning, doms_cur[].
6628 * It destroys each deleted domain and builds each new domain.
6629 *
6630 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6631 * The masks don't intersect (don't overlap.) We should setup one
6632 * sched domain for each mask. CPUs not in any of the cpumasks will
6633 * not be load balanced. If the same cpumask appears both in the
6634 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6635 * it as it is.
6636 *
6637 * The passed in 'doms_new' should be allocated using
6638 * alloc_sched_domains.  This routine takes ownership of it and will
6639 * free_sched_domains it when done with it. If the caller failed the
6640 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6641 * and partition_sched_domains() will fallback to the single partition
6642 * 'fallback_doms', it also forces the domains to be rebuilt.
6643 *
6644 * If doms_new == NULL it will be replaced with cpu_online_mask.
6645 * ndoms_new == 0 is a special case for destroying existing domains,
6646 * and it will not create the default domain.
6647 *
6648 * Call with hotplug lock held
6649 */
6650void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6651			     struct sched_domain_attr *dattr_new)
6652{
6653	int i, j, n;
6654	int new_topology;
6655
6656	mutex_lock(&sched_domains_mutex);
6657
6658	/* always unregister in case we don't destroy any domains */
6659	unregister_sched_domain_sysctl();
6660
6661	/* Let architecture update cpu core mappings. */
6662	new_topology = arch_update_cpu_topology();
6663
6664	n = doms_new ? ndoms_new : 0;
6665
6666	/* Destroy deleted domains */
6667	for (i = 0; i < ndoms_cur; i++) {
6668		for (j = 0; j < n && !new_topology; j++) {
6669			if (cpumask_equal(doms_cur[i], doms_new[j])
6670			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6671				goto match1;
6672		}
6673		/* no match - a current sched domain not in new doms_new[] */
6674		detach_destroy_domains(doms_cur[i]);
6675match1:
6676		;
6677	}
6678
6679	n = ndoms_cur;
6680	if (doms_new == NULL) {
6681		n = 0;
6682		doms_new = &fallback_doms;
6683		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6684		WARN_ON_ONCE(dattr_new);
6685	}
6686
6687	/* Build new domains */
6688	for (i = 0; i < ndoms_new; i++) {
6689		for (j = 0; j < n && !new_topology; j++) {
6690			if (cpumask_equal(doms_new[i], doms_cur[j])
6691			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6692				goto match2;
6693		}
6694		/* no match - add a new doms_new */
6695		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6696match2:
6697		;
6698	}
6699
6700	/* Remember the new sched domains */
6701	if (doms_cur != &fallback_doms)
6702		free_sched_domains(doms_cur, ndoms_cur);
6703	kfree(dattr_cur);	/* kfree(NULL) is safe */
6704	doms_cur = doms_new;
6705	dattr_cur = dattr_new;
6706	ndoms_cur = ndoms_new;
6707
6708	register_sched_domain_sysctl();
6709
6710	mutex_unlock(&sched_domains_mutex);
6711}
6712
6713static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6714
6715/*
6716 * Update cpusets according to cpu_active mask.  If cpusets are
6717 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6718 * around partition_sched_domains().
6719 *
6720 * If we come here as part of a suspend/resume, don't touch cpusets because we
6721 * want to restore it back to its original state upon resume anyway.
6722 */
6723static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6724			     void *hcpu)
6725{
6726	switch (action) {
6727	case CPU_ONLINE_FROZEN:
6728	case CPU_DOWN_FAILED_FROZEN:
6729
6730		/*
6731		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6732		 * resume sequence. As long as this is not the last online
6733		 * operation in the resume sequence, just build a single sched
6734		 * domain, ignoring cpusets.
6735		 */
6736		num_cpus_frozen--;
6737		if (likely(num_cpus_frozen)) {
6738			partition_sched_domains(1, NULL, NULL);
6739			break;
6740		}
6741
6742		/*
6743		 * This is the last CPU online operation. So fall through and
6744		 * restore the original sched domains by considering the
6745		 * cpuset configurations.
6746		 */
6747
6748	case CPU_ONLINE:
6749	case CPU_DOWN_FAILED:
6750		cpuset_update_active_cpus(true);
6751		break;
6752	default:
6753		return NOTIFY_DONE;
6754	}
6755	return NOTIFY_OK;
6756}
6757
6758static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6759			       void *hcpu)
6760{
6761	switch (action) {
6762	case CPU_DOWN_PREPARE:
6763		cpuset_update_active_cpus(false);
6764		break;
6765	case CPU_DOWN_PREPARE_FROZEN:
6766		num_cpus_frozen++;
6767		partition_sched_domains(1, NULL, NULL);
6768		break;
6769	default:
6770		return NOTIFY_DONE;
6771	}
6772	return NOTIFY_OK;
6773}
6774
6775void __init sched_init_smp(void)
6776{
6777	cpumask_var_t non_isolated_cpus;
6778
6779	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6780	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6781
6782	sched_init_numa();
6783
6784	/*
6785	 * There's no userspace yet to cause hotplug operations; hence all the
6786	 * cpu masks are stable and all blatant races in the below code cannot
6787	 * happen.
6788	 */
6789	mutex_lock(&sched_domains_mutex);
6790	init_sched_domains(cpu_active_mask);
6791	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6792	if (cpumask_empty(non_isolated_cpus))
6793		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6794	mutex_unlock(&sched_domains_mutex);
6795
6796	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6797	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6798	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6799
6800	init_hrtick();
6801
6802	/* Move init over to a non-isolated CPU */
6803	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6804		BUG();
6805	sched_init_granularity();
6806	free_cpumask_var(non_isolated_cpus);
6807
6808	init_sched_rt_class();
6809	init_sched_dl_class();
6810}
6811#else
6812void __init sched_init_smp(void)
6813{
6814	sched_init_granularity();
6815}
6816#endif /* CONFIG_SMP */
6817
6818const_debug unsigned int sysctl_timer_migration = 1;
6819
6820int in_sched_functions(unsigned long addr)
6821{
6822	return in_lock_functions(addr) ||
6823		(addr >= (unsigned long)__sched_text_start
6824		&& addr < (unsigned long)__sched_text_end);
6825}
6826
6827#ifdef CONFIG_CGROUP_SCHED
6828/*
6829 * Default task group.
6830 * Every task in system belongs to this group at bootup.
6831 */
6832struct task_group root_task_group;
6833LIST_HEAD(task_groups);
6834#endif
6835
6836DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6837
6838void __init sched_init(void)
6839{
6840	int i, j;
6841	unsigned long alloc_size = 0, ptr;
6842
6843#ifdef CONFIG_FAIR_GROUP_SCHED
6844	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6845#endif
6846#ifdef CONFIG_RT_GROUP_SCHED
6847	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6848#endif
6849#ifdef CONFIG_CPUMASK_OFFSTACK
6850	alloc_size += num_possible_cpus() * cpumask_size();
6851#endif
6852	if (alloc_size) {
6853		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6854
6855#ifdef CONFIG_FAIR_GROUP_SCHED
6856		root_task_group.se = (struct sched_entity **)ptr;
6857		ptr += nr_cpu_ids * sizeof(void **);
6858
6859		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6860		ptr += nr_cpu_ids * sizeof(void **);
6861
6862#endif /* CONFIG_FAIR_GROUP_SCHED */
6863#ifdef CONFIG_RT_GROUP_SCHED
6864		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6865		ptr += nr_cpu_ids * sizeof(void **);
6866
6867		root_task_group.rt_rq = (struct rt_rq **)ptr;
6868		ptr += nr_cpu_ids * sizeof(void **);
6869
6870#endif /* CONFIG_RT_GROUP_SCHED */
6871#ifdef CONFIG_CPUMASK_OFFSTACK
6872		for_each_possible_cpu(i) {
6873			per_cpu(load_balance_mask, i) = (void *)ptr;
6874			ptr += cpumask_size();
6875		}
6876#endif /* CONFIG_CPUMASK_OFFSTACK */
6877	}
6878
6879	init_rt_bandwidth(&def_rt_bandwidth,
6880			global_rt_period(), global_rt_runtime());
6881	init_dl_bandwidth(&def_dl_bandwidth,
6882			global_rt_period(), global_rt_runtime());
6883
6884#ifdef CONFIG_SMP
6885	init_defrootdomain();
6886#endif
6887
6888#ifdef CONFIG_RT_GROUP_SCHED
6889	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6890			global_rt_period(), global_rt_runtime());
6891#endif /* CONFIG_RT_GROUP_SCHED */
6892
6893#ifdef CONFIG_CGROUP_SCHED
6894	list_add(&root_task_group.list, &task_groups);
6895	INIT_LIST_HEAD(&root_task_group.children);
6896	INIT_LIST_HEAD(&root_task_group.siblings);
6897	autogroup_init(&init_task);
6898
6899#endif /* CONFIG_CGROUP_SCHED */
6900
6901	for_each_possible_cpu(i) {
6902		struct rq *rq;
6903
6904		rq = cpu_rq(i);
6905		raw_spin_lock_init(&rq->lock);
6906		rq->nr_running = 0;
6907		rq->calc_load_active = 0;
6908		rq->calc_load_update = jiffies + LOAD_FREQ;
6909		init_cfs_rq(&rq->cfs);
6910		init_rt_rq(&rq->rt, rq);
6911		init_dl_rq(&rq->dl, rq);
6912#ifdef CONFIG_FAIR_GROUP_SCHED
6913		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6914		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6915		/*
6916		 * How much cpu bandwidth does root_task_group get?
6917		 *
6918		 * In case of task-groups formed thr' the cgroup filesystem, it
6919		 * gets 100% of the cpu resources in the system. This overall
6920		 * system cpu resource is divided among the tasks of
6921		 * root_task_group and its child task-groups in a fair manner,
6922		 * based on each entity's (task or task-group's) weight
6923		 * (se->load.weight).
6924		 *
6925		 * In other words, if root_task_group has 10 tasks of weight
6926		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6927		 * then A0's share of the cpu resource is:
6928		 *
6929		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6930		 *
6931		 * We achieve this by letting root_task_group's tasks sit
6932		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6933		 */
6934		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6935		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6936#endif /* CONFIG_FAIR_GROUP_SCHED */
6937
6938		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6939#ifdef CONFIG_RT_GROUP_SCHED
6940		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6941#endif
6942
6943		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6944			rq->cpu_load[j] = 0;
6945
6946		rq->last_load_update_tick = jiffies;
6947
6948#ifdef CONFIG_SMP
6949		rq->sd = NULL;
6950		rq->rd = NULL;
6951		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6952		rq->post_schedule = 0;
6953		rq->active_balance = 0;
6954		rq->next_balance = jiffies;
6955		rq->push_cpu = 0;
6956		rq->cpu = i;
6957		rq->online = 0;
6958		rq->idle_stamp = 0;
6959		rq->avg_idle = 2*sysctl_sched_migration_cost;
6960		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6961
6962		INIT_LIST_HEAD(&rq->cfs_tasks);
6963
6964		rq_attach_root(rq, &def_root_domain);
6965#ifdef CONFIG_NO_HZ_COMMON
6966		rq->nohz_flags = 0;
6967#endif
6968#ifdef CONFIG_NO_HZ_FULL
6969		rq->last_sched_tick = 0;
6970#endif
6971#endif
6972		init_rq_hrtick(rq);
6973		atomic_set(&rq->nr_iowait, 0);
6974	}
6975
6976	set_load_weight(&init_task);
6977
6978#ifdef CONFIG_PREEMPT_NOTIFIERS
6979	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6980#endif
6981
6982	/*
6983	 * The boot idle thread does lazy MMU switching as well:
6984	 */
6985	atomic_inc(&init_mm.mm_count);
6986	enter_lazy_tlb(&init_mm, current);
6987
6988	/*
6989	 * Make us the idle thread. Technically, schedule() should not be
6990	 * called from this thread, however somewhere below it might be,
6991	 * but because we are the idle thread, we just pick up running again
6992	 * when this runqueue becomes "idle".
6993	 */
6994	init_idle(current, smp_processor_id());
6995
6996	calc_load_update = jiffies + LOAD_FREQ;
6997
6998	/*
6999	 * During early bootup we pretend to be a normal task:
7000	 */
7001	current->sched_class = &fair_sched_class;
7002
7003#ifdef CONFIG_SMP
7004	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7005	/* May be allocated at isolcpus cmdline parse time */
7006	if (cpu_isolated_map == NULL)
7007		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7008	idle_thread_set_boot_cpu();
7009	set_cpu_rq_start_time();
7010#endif
7011	init_sched_fair_class();
7012
7013	scheduler_running = 1;
7014}
7015
7016#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7017static inline int preempt_count_equals(int preempt_offset)
7018{
7019	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7020
7021	return (nested == preempt_offset);
7022}
7023
7024void __might_sleep(const char *file, int line, int preempt_offset)
7025{
7026	static unsigned long prev_jiffy;	/* ratelimiting */
7027
7028	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7029	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7030	     !is_idle_task(current)) ||
7031	    system_state != SYSTEM_RUNNING || oops_in_progress)
7032		return;
7033	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7034		return;
7035	prev_jiffy = jiffies;
7036
7037	printk(KERN_ERR
7038		"BUG: sleeping function called from invalid context at %s:%d\n",
7039			file, line);
7040	printk(KERN_ERR
7041		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7042			in_atomic(), irqs_disabled(),
7043			current->pid, current->comm);
7044
7045	debug_show_held_locks(current);
7046	if (irqs_disabled())
7047		print_irqtrace_events(current);
7048#ifdef CONFIG_DEBUG_PREEMPT
7049	if (!preempt_count_equals(preempt_offset)) {
7050		pr_err("Preemption disabled at:");
7051		print_ip_sym(current->preempt_disable_ip);
7052		pr_cont("\n");
7053	}
7054#endif
7055	dump_stack();
7056}
7057EXPORT_SYMBOL(__might_sleep);
7058#endif
7059
7060#ifdef CONFIG_MAGIC_SYSRQ
7061static void normalize_task(struct rq *rq, struct task_struct *p)
7062{
7063	const struct sched_class *prev_class = p->sched_class;
7064	struct sched_attr attr = {
7065		.sched_policy = SCHED_NORMAL,
7066	};
7067	int old_prio = p->prio;
7068	int on_rq;
7069
7070	on_rq = p->on_rq;
7071	if (on_rq)
7072		dequeue_task(rq, p, 0);
7073	__setscheduler(rq, p, &attr);
7074	if (on_rq) {
7075		enqueue_task(rq, p, 0);
7076		resched_task(rq->curr);
7077	}
7078
7079	check_class_changed(rq, p, prev_class, old_prio);
7080}
7081
7082void normalize_rt_tasks(void)
7083{
7084	struct task_struct *g, *p;
7085	unsigned long flags;
7086	struct rq *rq;
7087
7088	read_lock_irqsave(&tasklist_lock, flags);
7089	do_each_thread(g, p) {
7090		/*
7091		 * Only normalize user tasks:
7092		 */
7093		if (!p->mm)
7094			continue;
7095
7096		p->se.exec_start		= 0;
7097#ifdef CONFIG_SCHEDSTATS
7098		p->se.statistics.wait_start	= 0;
7099		p->se.statistics.sleep_start	= 0;
7100		p->se.statistics.block_start	= 0;
7101#endif
7102
7103		if (!dl_task(p) && !rt_task(p)) {
7104			/*
7105			 * Renice negative nice level userspace
7106			 * tasks back to 0:
7107			 */
7108			if (task_nice(p) < 0 && p->mm)
7109				set_user_nice(p, 0);
7110			continue;
7111		}
7112
7113		raw_spin_lock(&p->pi_lock);
7114		rq = __task_rq_lock(p);
7115
7116		normalize_task(rq, p);
7117
7118		__task_rq_unlock(rq);
7119		raw_spin_unlock(&p->pi_lock);
7120	} while_each_thread(g, p);
7121
7122	read_unlock_irqrestore(&tasklist_lock, flags);
7123}
7124
7125#endif /* CONFIG_MAGIC_SYSRQ */
7126
7127#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7128/*
7129 * These functions are only useful for the IA64 MCA handling, or kdb.
7130 *
7131 * They can only be called when the whole system has been
7132 * stopped - every CPU needs to be quiescent, and no scheduling
7133 * activity can take place. Using them for anything else would
7134 * be a serious bug, and as a result, they aren't even visible
7135 * under any other configuration.
7136 */
7137
7138/**
7139 * curr_task - return the current task for a given cpu.
7140 * @cpu: the processor in question.
7141 *
7142 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7143 *
7144 * Return: The current task for @cpu.
7145 */
7146struct task_struct *curr_task(int cpu)
7147{
7148	return cpu_curr(cpu);
7149}
7150
7151#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7152
7153#ifdef CONFIG_IA64
7154/**
7155 * set_curr_task - set the current task for a given cpu.
7156 * @cpu: the processor in question.
7157 * @p: the task pointer to set.
7158 *
7159 * Description: This function must only be used when non-maskable interrupts
7160 * are serviced on a separate stack. It allows the architecture to switch the
7161 * notion of the current task on a cpu in a non-blocking manner. This function
7162 * must be called with all CPU's synchronized, and interrupts disabled, the
7163 * and caller must save the original value of the current task (see
7164 * curr_task() above) and restore that value before reenabling interrupts and
7165 * re-starting the system.
7166 *
7167 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7168 */
7169void set_curr_task(int cpu, struct task_struct *p)
7170{
7171	cpu_curr(cpu) = p;
7172}
7173
7174#endif
7175
7176#ifdef CONFIG_CGROUP_SCHED
7177/* task_group_lock serializes the addition/removal of task groups */
7178static DEFINE_SPINLOCK(task_group_lock);
7179
7180static void free_sched_group(struct task_group *tg)
7181{
7182	free_fair_sched_group(tg);
7183	free_rt_sched_group(tg);
7184	autogroup_free(tg);
7185	kfree(tg);
7186}
7187
7188/* allocate runqueue etc for a new task group */
7189struct task_group *sched_create_group(struct task_group *parent)
7190{
7191	struct task_group *tg;
7192
7193	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7194	if (!tg)
7195		return ERR_PTR(-ENOMEM);
7196
7197	if (!alloc_fair_sched_group(tg, parent))
7198		goto err;
7199
7200	if (!alloc_rt_sched_group(tg, parent))
7201		goto err;
7202
7203	return tg;
7204
7205err:
7206	free_sched_group(tg);
7207	return ERR_PTR(-ENOMEM);
7208}
7209
7210void sched_online_group(struct task_group *tg, struct task_group *parent)
7211{
7212	unsigned long flags;
7213
7214	spin_lock_irqsave(&task_group_lock, flags);
7215	list_add_rcu(&tg->list, &task_groups);
7216
7217	WARN_ON(!parent); /* root should already exist */
7218
7219	tg->parent = parent;
7220	INIT_LIST_HEAD(&tg->children);
7221	list_add_rcu(&tg->siblings, &parent->children);
7222	spin_unlock_irqrestore(&task_group_lock, flags);
7223}
7224
7225/* rcu callback to free various structures associated with a task group */
7226static void free_sched_group_rcu(struct rcu_head *rhp)
7227{
7228	/* now it should be safe to free those cfs_rqs */
7229	free_sched_group(container_of(rhp, struct task_group, rcu));
7230}
7231
7232/* Destroy runqueue etc associated with a task group */
7233void sched_destroy_group(struct task_group *tg)
7234{
7235	/* wait for possible concurrent references to cfs_rqs complete */
7236	call_rcu(&tg->rcu, free_sched_group_rcu);
7237}
7238
7239void sched_offline_group(struct task_group *tg)
7240{
7241	unsigned long flags;
7242	int i;
7243
7244	/* end participation in shares distribution */
7245	for_each_possible_cpu(i)
7246		unregister_fair_sched_group(tg, i);
7247
7248	spin_lock_irqsave(&task_group_lock, flags);
7249	list_del_rcu(&tg->list);
7250	list_del_rcu(&tg->siblings);
7251	spin_unlock_irqrestore(&task_group_lock, flags);
7252}
7253
7254/* change task's runqueue when it moves between groups.
7255 *	The caller of this function should have put the task in its new group
7256 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7257 *	reflect its new group.
7258 */
7259void sched_move_task(struct task_struct *tsk)
7260{
7261	struct task_group *tg;
7262	int on_rq, running;
7263	unsigned long flags;
7264	struct rq *rq;
7265
7266	rq = task_rq_lock(tsk, &flags);
7267
7268	running = task_current(rq, tsk);
7269	on_rq = tsk->on_rq;
7270
7271	if (on_rq)
7272		dequeue_task(rq, tsk, 0);
7273	if (unlikely(running))
7274		tsk->sched_class->put_prev_task(rq, tsk);
7275
7276	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7277				lockdep_is_held(&tsk->sighand->siglock)),
7278			  struct task_group, css);
7279	tg = autogroup_task_group(tsk, tg);
7280	tsk->sched_task_group = tg;
7281
7282#ifdef CONFIG_FAIR_GROUP_SCHED
7283	if (tsk->sched_class->task_move_group)
7284		tsk->sched_class->task_move_group(tsk, on_rq);
7285	else
7286#endif
7287		set_task_rq(tsk, task_cpu(tsk));
7288
7289	if (unlikely(running))
7290		tsk->sched_class->set_curr_task(rq);
7291	if (on_rq)
7292		enqueue_task(rq, tsk, 0);
7293
7294	task_rq_unlock(rq, tsk, &flags);
7295}
7296#endif /* CONFIG_CGROUP_SCHED */
7297
7298#ifdef CONFIG_RT_GROUP_SCHED
7299/*
7300 * Ensure that the real time constraints are schedulable.
7301 */
7302static DEFINE_MUTEX(rt_constraints_mutex);
7303
7304/* Must be called with tasklist_lock held */
7305static inline int tg_has_rt_tasks(struct task_group *tg)
7306{
7307	struct task_struct *g, *p;
7308
7309	do_each_thread(g, p) {
7310		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7311			return 1;
7312	} while_each_thread(g, p);
7313
7314	return 0;
7315}
7316
7317struct rt_schedulable_data {
7318	struct task_group *tg;
7319	u64 rt_period;
7320	u64 rt_runtime;
7321};
7322
7323static int tg_rt_schedulable(struct task_group *tg, void *data)
7324{
7325	struct rt_schedulable_data *d = data;
7326	struct task_group *child;
7327	unsigned long total, sum = 0;
7328	u64 period, runtime;
7329
7330	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7331	runtime = tg->rt_bandwidth.rt_runtime;
7332
7333	if (tg == d->tg) {
7334		period = d->rt_period;
7335		runtime = d->rt_runtime;
7336	}
7337
7338	/*
7339	 * Cannot have more runtime than the period.
7340	 */
7341	if (runtime > period && runtime != RUNTIME_INF)
7342		return -EINVAL;
7343
7344	/*
7345	 * Ensure we don't starve existing RT tasks.
7346	 */
7347	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7348		return -EBUSY;
7349
7350	total = to_ratio(period, runtime);
7351
7352	/*
7353	 * Nobody can have more than the global setting allows.
7354	 */
7355	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7356		return -EINVAL;
7357
7358	/*
7359	 * The sum of our children's runtime should not exceed our own.
7360	 */
7361	list_for_each_entry_rcu(child, &tg->children, siblings) {
7362		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7363		runtime = child->rt_bandwidth.rt_runtime;
7364
7365		if (child == d->tg) {
7366			period = d->rt_period;
7367			runtime = d->rt_runtime;
7368		}
7369
7370		sum += to_ratio(period, runtime);
7371	}
7372
7373	if (sum > total)
7374		return -EINVAL;
7375
7376	return 0;
7377}
7378
7379static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7380{
7381	int ret;
7382
7383	struct rt_schedulable_data data = {
7384		.tg = tg,
7385		.rt_period = period,
7386		.rt_runtime = runtime,
7387	};
7388
7389	rcu_read_lock();
7390	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7391	rcu_read_unlock();
7392
7393	return ret;
7394}
7395
7396static int tg_set_rt_bandwidth(struct task_group *tg,
7397		u64 rt_period, u64 rt_runtime)
7398{
7399	int i, err = 0;
7400
7401	mutex_lock(&rt_constraints_mutex);
7402	read_lock(&tasklist_lock);
7403	err = __rt_schedulable(tg, rt_period, rt_runtime);
7404	if (err)
7405		goto unlock;
7406
7407	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7408	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7409	tg->rt_bandwidth.rt_runtime = rt_runtime;
7410
7411	for_each_possible_cpu(i) {
7412		struct rt_rq *rt_rq = tg->rt_rq[i];
7413
7414		raw_spin_lock(&rt_rq->rt_runtime_lock);
7415		rt_rq->rt_runtime = rt_runtime;
7416		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7417	}
7418	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7419unlock:
7420	read_unlock(&tasklist_lock);
7421	mutex_unlock(&rt_constraints_mutex);
7422
7423	return err;
7424}
7425
7426static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7427{
7428	u64 rt_runtime, rt_period;
7429
7430	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7431	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7432	if (rt_runtime_us < 0)
7433		rt_runtime = RUNTIME_INF;
7434
7435	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7436}
7437
7438static long sched_group_rt_runtime(struct task_group *tg)
7439{
7440	u64 rt_runtime_us;
7441
7442	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7443		return -1;
7444
7445	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7446	do_div(rt_runtime_us, NSEC_PER_USEC);
7447	return rt_runtime_us;
7448}
7449
7450static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7451{
7452	u64 rt_runtime, rt_period;
7453
7454	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7455	rt_runtime = tg->rt_bandwidth.rt_runtime;
7456
7457	if (rt_period == 0)
7458		return -EINVAL;
7459
7460	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7461}
7462
7463static long sched_group_rt_period(struct task_group *tg)
7464{
7465	u64 rt_period_us;
7466
7467	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7468	do_div(rt_period_us, NSEC_PER_USEC);
7469	return rt_period_us;
7470}
7471#endif /* CONFIG_RT_GROUP_SCHED */
7472
7473#ifdef CONFIG_RT_GROUP_SCHED
7474static int sched_rt_global_constraints(void)
7475{
7476	int ret = 0;
7477
7478	mutex_lock(&rt_constraints_mutex);
7479	read_lock(&tasklist_lock);
7480	ret = __rt_schedulable(NULL, 0, 0);
7481	read_unlock(&tasklist_lock);
7482	mutex_unlock(&rt_constraints_mutex);
7483
7484	return ret;
7485}
7486
7487static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7488{
7489	/* Don't accept realtime tasks when there is no way for them to run */
7490	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7491		return 0;
7492
7493	return 1;
7494}
7495
7496#else /* !CONFIG_RT_GROUP_SCHED */
7497static int sched_rt_global_constraints(void)
7498{
7499	unsigned long flags;
7500	int i, ret = 0;
7501
7502	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7503	for_each_possible_cpu(i) {
7504		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7505
7506		raw_spin_lock(&rt_rq->rt_runtime_lock);
7507		rt_rq->rt_runtime = global_rt_runtime();
7508		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7509	}
7510	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7511
7512	return ret;
7513}
7514#endif /* CONFIG_RT_GROUP_SCHED */
7515
7516static int sched_dl_global_constraints(void)
7517{
7518	u64 runtime = global_rt_runtime();
7519	u64 period = global_rt_period();
7520	u64 new_bw = to_ratio(period, runtime);
7521	int cpu, ret = 0;
7522	unsigned long flags;
7523
7524	/*
7525	 * Here we want to check the bandwidth not being set to some
7526	 * value smaller than the currently allocated bandwidth in
7527	 * any of the root_domains.
7528	 *
7529	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7530	 * cycling on root_domains... Discussion on different/better
7531	 * solutions is welcome!
7532	 */
7533	for_each_possible_cpu(cpu) {
7534		struct dl_bw *dl_b = dl_bw_of(cpu);
7535
7536		raw_spin_lock_irqsave(&dl_b->lock, flags);
7537		if (new_bw < dl_b->total_bw)
7538			ret = -EBUSY;
7539		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7540
7541		if (ret)
7542			break;
7543	}
7544
7545	return ret;
7546}
7547
7548static void sched_dl_do_global(void)
7549{
7550	u64 new_bw = -1;
7551	int cpu;
7552	unsigned long flags;
7553
7554	def_dl_bandwidth.dl_period = global_rt_period();
7555	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7556
7557	if (global_rt_runtime() != RUNTIME_INF)
7558		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7559
7560	/*
7561	 * FIXME: As above...
7562	 */
7563	for_each_possible_cpu(cpu) {
7564		struct dl_bw *dl_b = dl_bw_of(cpu);
7565
7566		raw_spin_lock_irqsave(&dl_b->lock, flags);
7567		dl_b->bw = new_bw;
7568		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7569	}
7570}
7571
7572static int sched_rt_global_validate(void)
7573{
7574	if (sysctl_sched_rt_period <= 0)
7575		return -EINVAL;
7576
7577	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7578		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7579		return -EINVAL;
7580
7581	return 0;
7582}
7583
7584static void sched_rt_do_global(void)
7585{
7586	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7587	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7588}
7589
7590int sched_rt_handler(struct ctl_table *table, int write,
7591		void __user *buffer, size_t *lenp,
7592		loff_t *ppos)
7593{
7594	int old_period, old_runtime;
7595	static DEFINE_MUTEX(mutex);
7596	int ret;
7597
7598	mutex_lock(&mutex);
7599	old_period = sysctl_sched_rt_period;
7600	old_runtime = sysctl_sched_rt_runtime;
7601
7602	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7603
7604	if (!ret && write) {
7605		ret = sched_rt_global_validate();
7606		if (ret)
7607			goto undo;
7608
7609		ret = sched_rt_global_constraints();
7610		if (ret)
7611			goto undo;
7612
7613		ret = sched_dl_global_constraints();
7614		if (ret)
7615			goto undo;
7616
7617		sched_rt_do_global();
7618		sched_dl_do_global();
7619	}
7620	if (0) {
7621undo:
7622		sysctl_sched_rt_period = old_period;
7623		sysctl_sched_rt_runtime = old_runtime;
7624	}
7625	mutex_unlock(&mutex);
7626
7627	return ret;
7628}
7629
7630int sched_rr_handler(struct ctl_table *table, int write,
7631		void __user *buffer, size_t *lenp,
7632		loff_t *ppos)
7633{
7634	int ret;
7635	static DEFINE_MUTEX(mutex);
7636
7637	mutex_lock(&mutex);
7638	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7639	/* make sure that internally we keep jiffies */
7640	/* also, writing zero resets timeslice to default */
7641	if (!ret && write) {
7642		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7643			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7644	}
7645	mutex_unlock(&mutex);
7646	return ret;
7647}
7648
7649#ifdef CONFIG_CGROUP_SCHED
7650
7651static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7652{
7653	return css ? container_of(css, struct task_group, css) : NULL;
7654}
7655
7656static struct cgroup_subsys_state *
7657cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7658{
7659	struct task_group *parent = css_tg(parent_css);
7660	struct task_group *tg;
7661
7662	if (!parent) {
7663		/* This is early initialization for the top cgroup */
7664		return &root_task_group.css;
7665	}
7666
7667	tg = sched_create_group(parent);
7668	if (IS_ERR(tg))
7669		return ERR_PTR(-ENOMEM);
7670
7671	return &tg->css;
7672}
7673
7674static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7675{
7676	struct task_group *tg = css_tg(css);
7677	struct task_group *parent = css_tg(css_parent(css));
7678
7679	if (parent)
7680		sched_online_group(tg, parent);
7681	return 0;
7682}
7683
7684static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7685{
7686	struct task_group *tg = css_tg(css);
7687
7688	sched_destroy_group(tg);
7689}
7690
7691static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7692{
7693	struct task_group *tg = css_tg(css);
7694
7695	sched_offline_group(tg);
7696}
7697
7698static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7699				 struct cgroup_taskset *tset)
7700{
7701	struct task_struct *task;
7702
7703	cgroup_taskset_for_each(task, tset) {
7704#ifdef CONFIG_RT_GROUP_SCHED
7705		if (!sched_rt_can_attach(css_tg(css), task))
7706			return -EINVAL;
7707#else
7708		/* We don't support RT-tasks being in separate groups */
7709		if (task->sched_class != &fair_sched_class)
7710			return -EINVAL;
7711#endif
7712	}
7713	return 0;
7714}
7715
7716static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7717			      struct cgroup_taskset *tset)
7718{
7719	struct task_struct *task;
7720
7721	cgroup_taskset_for_each(task, tset)
7722		sched_move_task(task);
7723}
7724
7725static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7726			    struct cgroup_subsys_state *old_css,
7727			    struct task_struct *task)
7728{
7729	/*
7730	 * cgroup_exit() is called in the copy_process() failure path.
7731	 * Ignore this case since the task hasn't ran yet, this avoids
7732	 * trying to poke a half freed task state from generic code.
7733	 */
7734	if (!(task->flags & PF_EXITING))
7735		return;
7736
7737	sched_move_task(task);
7738}
7739
7740#ifdef CONFIG_FAIR_GROUP_SCHED
7741static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7742				struct cftype *cftype, u64 shareval)
7743{
7744	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7745}
7746
7747static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7748			       struct cftype *cft)
7749{
7750	struct task_group *tg = css_tg(css);
7751
7752	return (u64) scale_load_down(tg->shares);
7753}
7754
7755#ifdef CONFIG_CFS_BANDWIDTH
7756static DEFINE_MUTEX(cfs_constraints_mutex);
7757
7758const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7759const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7760
7761static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7762
7763static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7764{
7765	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7766	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7767
7768	if (tg == &root_task_group)
7769		return -EINVAL;
7770
7771	/*
7772	 * Ensure we have at some amount of bandwidth every period.  This is
7773	 * to prevent reaching a state of large arrears when throttled via
7774	 * entity_tick() resulting in prolonged exit starvation.
7775	 */
7776	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7777		return -EINVAL;
7778
7779	/*
7780	 * Likewise, bound things on the otherside by preventing insane quota
7781	 * periods.  This also allows us to normalize in computing quota
7782	 * feasibility.
7783	 */
7784	if (period > max_cfs_quota_period)
7785		return -EINVAL;
7786
7787	mutex_lock(&cfs_constraints_mutex);
7788	ret = __cfs_schedulable(tg, period, quota);
7789	if (ret)
7790		goto out_unlock;
7791
7792	runtime_enabled = quota != RUNTIME_INF;
7793	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7794	/*
7795	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7796	 * before making related changes, and on->off must occur afterwards
7797	 */
7798	if (runtime_enabled && !runtime_was_enabled)
7799		cfs_bandwidth_usage_inc();
7800	raw_spin_lock_irq(&cfs_b->lock);
7801	cfs_b->period = ns_to_ktime(period);
7802	cfs_b->quota = quota;
7803
7804	__refill_cfs_bandwidth_runtime(cfs_b);
7805	/* restart the period timer (if active) to handle new period expiry */
7806	if (runtime_enabled && cfs_b->timer_active) {
7807		/* force a reprogram */
7808		cfs_b->timer_active = 0;
7809		__start_cfs_bandwidth(cfs_b);
7810	}
7811	raw_spin_unlock_irq(&cfs_b->lock);
7812
7813	for_each_possible_cpu(i) {
7814		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7815		struct rq *rq = cfs_rq->rq;
7816
7817		raw_spin_lock_irq(&rq->lock);
7818		cfs_rq->runtime_enabled = runtime_enabled;
7819		cfs_rq->runtime_remaining = 0;
7820
7821		if (cfs_rq->throttled)
7822			unthrottle_cfs_rq(cfs_rq);
7823		raw_spin_unlock_irq(&rq->lock);
7824	}
7825	if (runtime_was_enabled && !runtime_enabled)
7826		cfs_bandwidth_usage_dec();
7827out_unlock:
7828	mutex_unlock(&cfs_constraints_mutex);
7829
7830	return ret;
7831}
7832
7833int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7834{
7835	u64 quota, period;
7836
7837	period = ktime_to_ns(tg->cfs_bandwidth.period);
7838	if (cfs_quota_us < 0)
7839		quota = RUNTIME_INF;
7840	else
7841		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7842
7843	return tg_set_cfs_bandwidth(tg, period, quota);
7844}
7845
7846long tg_get_cfs_quota(struct task_group *tg)
7847{
7848	u64 quota_us;
7849
7850	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7851		return -1;
7852
7853	quota_us = tg->cfs_bandwidth.quota;
7854	do_div(quota_us, NSEC_PER_USEC);
7855
7856	return quota_us;
7857}
7858
7859int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7860{
7861	u64 quota, period;
7862
7863	period = (u64)cfs_period_us * NSEC_PER_USEC;
7864	quota = tg->cfs_bandwidth.quota;
7865
7866	return tg_set_cfs_bandwidth(tg, period, quota);
7867}
7868
7869long tg_get_cfs_period(struct task_group *tg)
7870{
7871	u64 cfs_period_us;
7872
7873	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7874	do_div(cfs_period_us, NSEC_PER_USEC);
7875
7876	return cfs_period_us;
7877}
7878
7879static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7880				  struct cftype *cft)
7881{
7882	return tg_get_cfs_quota(css_tg(css));
7883}
7884
7885static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7886				   struct cftype *cftype, s64 cfs_quota_us)
7887{
7888	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7889}
7890
7891static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7892				   struct cftype *cft)
7893{
7894	return tg_get_cfs_period(css_tg(css));
7895}
7896
7897static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7898				    struct cftype *cftype, u64 cfs_period_us)
7899{
7900	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7901}
7902
7903struct cfs_schedulable_data {
7904	struct task_group *tg;
7905	u64 period, quota;
7906};
7907
7908/*
7909 * normalize group quota/period to be quota/max_period
7910 * note: units are usecs
7911 */
7912static u64 normalize_cfs_quota(struct task_group *tg,
7913			       struct cfs_schedulable_data *d)
7914{
7915	u64 quota, period;
7916
7917	if (tg == d->tg) {
7918		period = d->period;
7919		quota = d->quota;
7920	} else {
7921		period = tg_get_cfs_period(tg);
7922		quota = tg_get_cfs_quota(tg);
7923	}
7924
7925	/* note: these should typically be equivalent */
7926	if (quota == RUNTIME_INF || quota == -1)
7927		return RUNTIME_INF;
7928
7929	return to_ratio(period, quota);
7930}
7931
7932static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7933{
7934	struct cfs_schedulable_data *d = data;
7935	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7936	s64 quota = 0, parent_quota = -1;
7937
7938	if (!tg->parent) {
7939		quota = RUNTIME_INF;
7940	} else {
7941		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7942
7943		quota = normalize_cfs_quota(tg, d);
7944		parent_quota = parent_b->hierarchal_quota;
7945
7946		/*
7947		 * ensure max(child_quota) <= parent_quota, inherit when no
7948		 * limit is set
7949		 */
7950		if (quota == RUNTIME_INF)
7951			quota = parent_quota;
7952		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7953			return -EINVAL;
7954	}
7955	cfs_b->hierarchal_quota = quota;
7956
7957	return 0;
7958}
7959
7960static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7961{
7962	int ret;
7963	struct cfs_schedulable_data data = {
7964		.tg = tg,
7965		.period = period,
7966		.quota = quota,
7967	};
7968
7969	if (quota != RUNTIME_INF) {
7970		do_div(data.period, NSEC_PER_USEC);
7971		do_div(data.quota, NSEC_PER_USEC);
7972	}
7973
7974	rcu_read_lock();
7975	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7976	rcu_read_unlock();
7977
7978	return ret;
7979}
7980
7981static int cpu_stats_show(struct seq_file *sf, void *v)
7982{
7983	struct task_group *tg = css_tg(seq_css(sf));
7984	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7985
7986	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7987	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7988	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7989
7990	return 0;
7991}
7992#endif /* CONFIG_CFS_BANDWIDTH */
7993#endif /* CONFIG_FAIR_GROUP_SCHED */
7994
7995#ifdef CONFIG_RT_GROUP_SCHED
7996static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7997				struct cftype *cft, s64 val)
7998{
7999	return sched_group_set_rt_runtime(css_tg(css), val);
8000}
8001
8002static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8003			       struct cftype *cft)
8004{
8005	return sched_group_rt_runtime(css_tg(css));
8006}
8007
8008static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8009				    struct cftype *cftype, u64 rt_period_us)
8010{
8011	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8012}
8013
8014static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8015				   struct cftype *cft)
8016{
8017	return sched_group_rt_period(css_tg(css));
8018}
8019#endif /* CONFIG_RT_GROUP_SCHED */
8020
8021static struct cftype cpu_files[] = {
8022#ifdef CONFIG_FAIR_GROUP_SCHED
8023	{
8024		.name = "shares",
8025		.read_u64 = cpu_shares_read_u64,
8026		.write_u64 = cpu_shares_write_u64,
8027	},
8028#endif
8029#ifdef CONFIG_CFS_BANDWIDTH
8030	{
8031		.name = "cfs_quota_us",
8032		.read_s64 = cpu_cfs_quota_read_s64,
8033		.write_s64 = cpu_cfs_quota_write_s64,
8034	},
8035	{
8036		.name = "cfs_period_us",
8037		.read_u64 = cpu_cfs_period_read_u64,
8038		.write_u64 = cpu_cfs_period_write_u64,
8039	},
8040	{
8041		.name = "stat",
8042		.seq_show = cpu_stats_show,
8043	},
8044#endif
8045#ifdef CONFIG_RT_GROUP_SCHED
8046	{
8047		.name = "rt_runtime_us",
8048		.read_s64 = cpu_rt_runtime_read,
8049		.write_s64 = cpu_rt_runtime_write,
8050	},
8051	{
8052		.name = "rt_period_us",
8053		.read_u64 = cpu_rt_period_read_uint,
8054		.write_u64 = cpu_rt_period_write_uint,
8055	},
8056#endif
8057	{ }	/* terminate */
8058};
8059
8060struct cgroup_subsys cpu_cgrp_subsys = {
8061	.css_alloc	= cpu_cgroup_css_alloc,
8062	.css_free	= cpu_cgroup_css_free,
8063	.css_online	= cpu_cgroup_css_online,
8064	.css_offline	= cpu_cgroup_css_offline,
8065	.can_attach	= cpu_cgroup_can_attach,
8066	.attach		= cpu_cgroup_attach,
8067	.exit		= cpu_cgroup_exit,
8068	.base_cftypes	= cpu_files,
8069	.early_init	= 1,
8070};
8071
8072#endif	/* CONFIG_CGROUP_SCHED */
8073
8074void dump_cpu_task(int cpu)
8075{
8076	pr_info("Task dump for CPU %d:\n", cpu);
8077	sched_show_task(cpu_curr(cpu));
8078}
8079