core.c revision e69f61862ab833e9b8d3c15b6ce07fd69f3bfecc
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516#ifdef CONFIG_SMP
517void resched_task(struct task_struct *p)
518{
519	int cpu;
520
521	assert_raw_spin_locked(&task_rq(p)->lock);
522
523	if (test_tsk_need_resched(p))
524		return;
525
526	set_tsk_need_resched(p);
527
528	cpu = task_cpu(p);
529	if (cpu == smp_processor_id())
530		return;
531
532	/* NEED_RESCHED must be visible before we test polling */
533	smp_mb();
534	if (!tsk_is_polling(p))
535		smp_send_reschedule(cpu);
536}
537
538void resched_cpu(int cpu)
539{
540	struct rq *rq = cpu_rq(cpu);
541	unsigned long flags;
542
543	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544		return;
545	resched_task(cpu_curr(cpu));
546	raw_spin_unlock_irqrestore(&rq->lock, flags);
547}
548
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#else /* !CONFIG_SMP */
697void resched_task(struct task_struct *p)
698{
699	assert_raw_spin_locked(&task_rq(p)->lock);
700	set_tsk_need_resched(p);
701}
702#endif /* CONFIG_SMP */
703
704#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706/*
707 * Iterate task_group tree rooted at *from, calling @down when first entering a
708 * node and @up when leaving it for the final time.
709 *
710 * Caller must hold rcu_lock or sufficient equivalent.
711 */
712int walk_tg_tree_from(struct task_group *from,
713			     tg_visitor down, tg_visitor up, void *data)
714{
715	struct task_group *parent, *child;
716	int ret;
717
718	parent = from;
719
720down:
721	ret = (*down)(parent, data);
722	if (ret)
723		goto out;
724	list_for_each_entry_rcu(child, &parent->children, siblings) {
725		parent = child;
726		goto down;
727
728up:
729		continue;
730	}
731	ret = (*up)(parent, data);
732	if (ret || parent == from)
733		goto out;
734
735	child = parent;
736	parent = parent->parent;
737	if (parent)
738		goto up;
739out:
740	return ret;
741}
742
743int tg_nop(struct task_group *tg, void *data)
744{
745	return 0;
746}
747#endif
748
749static void set_load_weight(struct task_struct *p)
750{
751	int prio = p->static_prio - MAX_RT_PRIO;
752	struct load_weight *load = &p->se.load;
753
754	/*
755	 * SCHED_IDLE tasks get minimal weight:
756	 */
757	if (p->policy == SCHED_IDLE) {
758		load->weight = scale_load(WEIGHT_IDLEPRIO);
759		load->inv_weight = WMULT_IDLEPRIO;
760		return;
761	}
762
763	load->weight = scale_load(prio_to_weight[prio]);
764	load->inv_weight = prio_to_wmult[prio];
765}
766
767static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
768{
769	update_rq_clock(rq);
770	sched_info_queued(p);
771	p->sched_class->enqueue_task(rq, p, flags);
772}
773
774static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775{
776	update_rq_clock(rq);
777	sched_info_dequeued(p);
778	p->sched_class->dequeue_task(rq, p, flags);
779}
780
781void activate_task(struct rq *rq, struct task_struct *p, int flags)
782{
783	if (task_contributes_to_load(p))
784		rq->nr_uninterruptible--;
785
786	enqueue_task(rq, p, flags);
787}
788
789void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
790{
791	if (task_contributes_to_load(p))
792		rq->nr_uninterruptible++;
793
794	dequeue_task(rq, p, flags);
795}
796
797static void update_rq_clock_task(struct rq *rq, s64 delta)
798{
799/*
800 * In theory, the compile should just see 0 here, and optimize out the call
801 * to sched_rt_avg_update. But I don't trust it...
802 */
803#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
804	s64 steal = 0, irq_delta = 0;
805#endif
806#ifdef CONFIG_IRQ_TIME_ACCOUNTING
807	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
808
809	/*
810	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
811	 * this case when a previous update_rq_clock() happened inside a
812	 * {soft,}irq region.
813	 *
814	 * When this happens, we stop ->clock_task and only update the
815	 * prev_irq_time stamp to account for the part that fit, so that a next
816	 * update will consume the rest. This ensures ->clock_task is
817	 * monotonic.
818	 *
819	 * It does however cause some slight miss-attribution of {soft,}irq
820	 * time, a more accurate solution would be to update the irq_time using
821	 * the current rq->clock timestamp, except that would require using
822	 * atomic ops.
823	 */
824	if (irq_delta > delta)
825		irq_delta = delta;
826
827	rq->prev_irq_time += irq_delta;
828	delta -= irq_delta;
829#endif
830#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
831	if (static_key_false((&paravirt_steal_rq_enabled))) {
832		u64 st;
833
834		steal = paravirt_steal_clock(cpu_of(rq));
835		steal -= rq->prev_steal_time_rq;
836
837		if (unlikely(steal > delta))
838			steal = delta;
839
840		st = steal_ticks(steal);
841		steal = st * TICK_NSEC;
842
843		rq->prev_steal_time_rq += steal;
844
845		delta -= steal;
846	}
847#endif
848
849	rq->clock_task += delta;
850
851#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
852	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
853		sched_rt_avg_update(rq, irq_delta + steal);
854#endif
855}
856
857void sched_set_stop_task(int cpu, struct task_struct *stop)
858{
859	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
860	struct task_struct *old_stop = cpu_rq(cpu)->stop;
861
862	if (stop) {
863		/*
864		 * Make it appear like a SCHED_FIFO task, its something
865		 * userspace knows about and won't get confused about.
866		 *
867		 * Also, it will make PI more or less work without too
868		 * much confusion -- but then, stop work should not
869		 * rely on PI working anyway.
870		 */
871		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
872
873		stop->sched_class = &stop_sched_class;
874	}
875
876	cpu_rq(cpu)->stop = stop;
877
878	if (old_stop) {
879		/*
880		 * Reset it back to a normal scheduling class so that
881		 * it can die in pieces.
882		 */
883		old_stop->sched_class = &rt_sched_class;
884	}
885}
886
887/*
888 * __normal_prio - return the priority that is based on the static prio
889 */
890static inline int __normal_prio(struct task_struct *p)
891{
892	return p->static_prio;
893}
894
895/*
896 * Calculate the expected normal priority: i.e. priority
897 * without taking RT-inheritance into account. Might be
898 * boosted by interactivity modifiers. Changes upon fork,
899 * setprio syscalls, and whenever the interactivity
900 * estimator recalculates.
901 */
902static inline int normal_prio(struct task_struct *p)
903{
904	int prio;
905
906	if (task_has_rt_policy(p))
907		prio = MAX_RT_PRIO-1 - p->rt_priority;
908	else
909		prio = __normal_prio(p);
910	return prio;
911}
912
913/*
914 * Calculate the current priority, i.e. the priority
915 * taken into account by the scheduler. This value might
916 * be boosted by RT tasks, or might be boosted by
917 * interactivity modifiers. Will be RT if the task got
918 * RT-boosted. If not then it returns p->normal_prio.
919 */
920static int effective_prio(struct task_struct *p)
921{
922	p->normal_prio = normal_prio(p);
923	/*
924	 * If we are RT tasks or we were boosted to RT priority,
925	 * keep the priority unchanged. Otherwise, update priority
926	 * to the normal priority:
927	 */
928	if (!rt_prio(p->prio))
929		return p->normal_prio;
930	return p->prio;
931}
932
933/**
934 * task_curr - is this task currently executing on a CPU?
935 * @p: the task in question.
936 *
937 * Return: 1 if the task is currently executing. 0 otherwise.
938 */
939inline int task_curr(const struct task_struct *p)
940{
941	return cpu_curr(task_cpu(p)) == p;
942}
943
944static inline void check_class_changed(struct rq *rq, struct task_struct *p,
945				       const struct sched_class *prev_class,
946				       int oldprio)
947{
948	if (prev_class != p->sched_class) {
949		if (prev_class->switched_from)
950			prev_class->switched_from(rq, p);
951		p->sched_class->switched_to(rq, p);
952	} else if (oldprio != p->prio)
953		p->sched_class->prio_changed(rq, p, oldprio);
954}
955
956void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
957{
958	const struct sched_class *class;
959
960	if (p->sched_class == rq->curr->sched_class) {
961		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
962	} else {
963		for_each_class(class) {
964			if (class == rq->curr->sched_class)
965				break;
966			if (class == p->sched_class) {
967				resched_task(rq->curr);
968				break;
969			}
970		}
971	}
972
973	/*
974	 * A queue event has occurred, and we're going to schedule.  In
975	 * this case, we can save a useless back to back clock update.
976	 */
977	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
978		rq->skip_clock_update = 1;
979}
980
981static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
982
983void register_task_migration_notifier(struct notifier_block *n)
984{
985	atomic_notifier_chain_register(&task_migration_notifier, n);
986}
987
988#ifdef CONFIG_SMP
989void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
990{
991#ifdef CONFIG_SCHED_DEBUG
992	/*
993	 * We should never call set_task_cpu() on a blocked task,
994	 * ttwu() will sort out the placement.
995	 */
996	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
997			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
998
999#ifdef CONFIG_LOCKDEP
1000	/*
1001	 * The caller should hold either p->pi_lock or rq->lock, when changing
1002	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1003	 *
1004	 * sched_move_task() holds both and thus holding either pins the cgroup,
1005	 * see task_group().
1006	 *
1007	 * Furthermore, all task_rq users should acquire both locks, see
1008	 * task_rq_lock().
1009	 */
1010	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1011				      lockdep_is_held(&task_rq(p)->lock)));
1012#endif
1013#endif
1014
1015	trace_sched_migrate_task(p, new_cpu);
1016
1017	if (task_cpu(p) != new_cpu) {
1018		struct task_migration_notifier tmn;
1019
1020		if (p->sched_class->migrate_task_rq)
1021			p->sched_class->migrate_task_rq(p, new_cpu);
1022		p->se.nr_migrations++;
1023		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1024
1025		tmn.task = p;
1026		tmn.from_cpu = task_cpu(p);
1027		tmn.to_cpu = new_cpu;
1028
1029		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1030	}
1031
1032	__set_task_cpu(p, new_cpu);
1033}
1034
1035struct migration_arg {
1036	struct task_struct *task;
1037	int dest_cpu;
1038};
1039
1040static int migration_cpu_stop(void *data);
1041
1042/*
1043 * wait_task_inactive - wait for a thread to unschedule.
1044 *
1045 * If @match_state is nonzero, it's the @p->state value just checked and
1046 * not expected to change.  If it changes, i.e. @p might have woken up,
1047 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1048 * we return a positive number (its total switch count).  If a second call
1049 * a short while later returns the same number, the caller can be sure that
1050 * @p has remained unscheduled the whole time.
1051 *
1052 * The caller must ensure that the task *will* unschedule sometime soon,
1053 * else this function might spin for a *long* time. This function can't
1054 * be called with interrupts off, or it may introduce deadlock with
1055 * smp_call_function() if an IPI is sent by the same process we are
1056 * waiting to become inactive.
1057 */
1058unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1059{
1060	unsigned long flags;
1061	int running, on_rq;
1062	unsigned long ncsw;
1063	struct rq *rq;
1064
1065	for (;;) {
1066		/*
1067		 * We do the initial early heuristics without holding
1068		 * any task-queue locks at all. We'll only try to get
1069		 * the runqueue lock when things look like they will
1070		 * work out!
1071		 */
1072		rq = task_rq(p);
1073
1074		/*
1075		 * If the task is actively running on another CPU
1076		 * still, just relax and busy-wait without holding
1077		 * any locks.
1078		 *
1079		 * NOTE! Since we don't hold any locks, it's not
1080		 * even sure that "rq" stays as the right runqueue!
1081		 * But we don't care, since "task_running()" will
1082		 * return false if the runqueue has changed and p
1083		 * is actually now running somewhere else!
1084		 */
1085		while (task_running(rq, p)) {
1086			if (match_state && unlikely(p->state != match_state))
1087				return 0;
1088			cpu_relax();
1089		}
1090
1091		/*
1092		 * Ok, time to look more closely! We need the rq
1093		 * lock now, to be *sure*. If we're wrong, we'll
1094		 * just go back and repeat.
1095		 */
1096		rq = task_rq_lock(p, &flags);
1097		trace_sched_wait_task(p);
1098		running = task_running(rq, p);
1099		on_rq = p->on_rq;
1100		ncsw = 0;
1101		if (!match_state || p->state == match_state)
1102			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1103		task_rq_unlock(rq, p, &flags);
1104
1105		/*
1106		 * If it changed from the expected state, bail out now.
1107		 */
1108		if (unlikely(!ncsw))
1109			break;
1110
1111		/*
1112		 * Was it really running after all now that we
1113		 * checked with the proper locks actually held?
1114		 *
1115		 * Oops. Go back and try again..
1116		 */
1117		if (unlikely(running)) {
1118			cpu_relax();
1119			continue;
1120		}
1121
1122		/*
1123		 * It's not enough that it's not actively running,
1124		 * it must be off the runqueue _entirely_, and not
1125		 * preempted!
1126		 *
1127		 * So if it was still runnable (but just not actively
1128		 * running right now), it's preempted, and we should
1129		 * yield - it could be a while.
1130		 */
1131		if (unlikely(on_rq)) {
1132			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1133
1134			set_current_state(TASK_UNINTERRUPTIBLE);
1135			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1136			continue;
1137		}
1138
1139		/*
1140		 * Ahh, all good. It wasn't running, and it wasn't
1141		 * runnable, which means that it will never become
1142		 * running in the future either. We're all done!
1143		 */
1144		break;
1145	}
1146
1147	return ncsw;
1148}
1149
1150/***
1151 * kick_process - kick a running thread to enter/exit the kernel
1152 * @p: the to-be-kicked thread
1153 *
1154 * Cause a process which is running on another CPU to enter
1155 * kernel-mode, without any delay. (to get signals handled.)
1156 *
1157 * NOTE: this function doesn't have to take the runqueue lock,
1158 * because all it wants to ensure is that the remote task enters
1159 * the kernel. If the IPI races and the task has been migrated
1160 * to another CPU then no harm is done and the purpose has been
1161 * achieved as well.
1162 */
1163void kick_process(struct task_struct *p)
1164{
1165	int cpu;
1166
1167	preempt_disable();
1168	cpu = task_cpu(p);
1169	if ((cpu != smp_processor_id()) && task_curr(p))
1170		smp_send_reschedule(cpu);
1171	preempt_enable();
1172}
1173EXPORT_SYMBOL_GPL(kick_process);
1174#endif /* CONFIG_SMP */
1175
1176#ifdef CONFIG_SMP
1177/*
1178 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1179 */
1180static int select_fallback_rq(int cpu, struct task_struct *p)
1181{
1182	int nid = cpu_to_node(cpu);
1183	const struct cpumask *nodemask = NULL;
1184	enum { cpuset, possible, fail } state = cpuset;
1185	int dest_cpu;
1186
1187	/*
1188	 * If the node that the cpu is on has been offlined, cpu_to_node()
1189	 * will return -1. There is no cpu on the node, and we should
1190	 * select the cpu on the other node.
1191	 */
1192	if (nid != -1) {
1193		nodemask = cpumask_of_node(nid);
1194
1195		/* Look for allowed, online CPU in same node. */
1196		for_each_cpu(dest_cpu, nodemask) {
1197			if (!cpu_online(dest_cpu))
1198				continue;
1199			if (!cpu_active(dest_cpu))
1200				continue;
1201			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1202				return dest_cpu;
1203		}
1204	}
1205
1206	for (;;) {
1207		/* Any allowed, online CPU? */
1208		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1209			if (!cpu_online(dest_cpu))
1210				continue;
1211			if (!cpu_active(dest_cpu))
1212				continue;
1213			goto out;
1214		}
1215
1216		switch (state) {
1217		case cpuset:
1218			/* No more Mr. Nice Guy. */
1219			cpuset_cpus_allowed_fallback(p);
1220			state = possible;
1221			break;
1222
1223		case possible:
1224			do_set_cpus_allowed(p, cpu_possible_mask);
1225			state = fail;
1226			break;
1227
1228		case fail:
1229			BUG();
1230			break;
1231		}
1232	}
1233
1234out:
1235	if (state != cpuset) {
1236		/*
1237		 * Don't tell them about moving exiting tasks or
1238		 * kernel threads (both mm NULL), since they never
1239		 * leave kernel.
1240		 */
1241		if (p->mm && printk_ratelimit()) {
1242			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1243					task_pid_nr(p), p->comm, cpu);
1244		}
1245	}
1246
1247	return dest_cpu;
1248}
1249
1250/*
1251 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1252 */
1253static inline
1254int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1255{
1256	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1257
1258	/*
1259	 * In order not to call set_task_cpu() on a blocking task we need
1260	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1261	 * cpu.
1262	 *
1263	 * Since this is common to all placement strategies, this lives here.
1264	 *
1265	 * [ this allows ->select_task() to simply return task_cpu(p) and
1266	 *   not worry about this generic constraint ]
1267	 */
1268	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1269		     !cpu_online(cpu)))
1270		cpu = select_fallback_rq(task_cpu(p), p);
1271
1272	return cpu;
1273}
1274
1275static void update_avg(u64 *avg, u64 sample)
1276{
1277	s64 diff = sample - *avg;
1278	*avg += diff >> 3;
1279}
1280#endif
1281
1282static void
1283ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1284{
1285#ifdef CONFIG_SCHEDSTATS
1286	struct rq *rq = this_rq();
1287
1288#ifdef CONFIG_SMP
1289	int this_cpu = smp_processor_id();
1290
1291	if (cpu == this_cpu) {
1292		schedstat_inc(rq, ttwu_local);
1293		schedstat_inc(p, se.statistics.nr_wakeups_local);
1294	} else {
1295		struct sched_domain *sd;
1296
1297		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1298		rcu_read_lock();
1299		for_each_domain(this_cpu, sd) {
1300			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1301				schedstat_inc(sd, ttwu_wake_remote);
1302				break;
1303			}
1304		}
1305		rcu_read_unlock();
1306	}
1307
1308	if (wake_flags & WF_MIGRATED)
1309		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1310
1311#endif /* CONFIG_SMP */
1312
1313	schedstat_inc(rq, ttwu_count);
1314	schedstat_inc(p, se.statistics.nr_wakeups);
1315
1316	if (wake_flags & WF_SYNC)
1317		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1318
1319#endif /* CONFIG_SCHEDSTATS */
1320}
1321
1322static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1323{
1324	activate_task(rq, p, en_flags);
1325	p->on_rq = 1;
1326
1327	/* if a worker is waking up, notify workqueue */
1328	if (p->flags & PF_WQ_WORKER)
1329		wq_worker_waking_up(p, cpu_of(rq));
1330}
1331
1332/*
1333 * Mark the task runnable and perform wakeup-preemption.
1334 */
1335static void
1336ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1337{
1338	check_preempt_curr(rq, p, wake_flags);
1339	trace_sched_wakeup(p, true);
1340
1341	p->state = TASK_RUNNING;
1342#ifdef CONFIG_SMP
1343	if (p->sched_class->task_woken)
1344		p->sched_class->task_woken(rq, p);
1345
1346	if (rq->idle_stamp) {
1347		u64 delta = rq_clock(rq) - rq->idle_stamp;
1348		u64 max = 2*sysctl_sched_migration_cost;
1349
1350		if (delta > max)
1351			rq->avg_idle = max;
1352		else
1353			update_avg(&rq->avg_idle, delta);
1354		rq->idle_stamp = 0;
1355	}
1356#endif
1357}
1358
1359static void
1360ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1361{
1362#ifdef CONFIG_SMP
1363	if (p->sched_contributes_to_load)
1364		rq->nr_uninterruptible--;
1365#endif
1366
1367	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1368	ttwu_do_wakeup(rq, p, wake_flags);
1369}
1370
1371/*
1372 * Called in case the task @p isn't fully descheduled from its runqueue,
1373 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1374 * since all we need to do is flip p->state to TASK_RUNNING, since
1375 * the task is still ->on_rq.
1376 */
1377static int ttwu_remote(struct task_struct *p, int wake_flags)
1378{
1379	struct rq *rq;
1380	int ret = 0;
1381
1382	rq = __task_rq_lock(p);
1383	if (p->on_rq) {
1384		/* check_preempt_curr() may use rq clock */
1385		update_rq_clock(rq);
1386		ttwu_do_wakeup(rq, p, wake_flags);
1387		ret = 1;
1388	}
1389	__task_rq_unlock(rq);
1390
1391	return ret;
1392}
1393
1394#ifdef CONFIG_SMP
1395static void sched_ttwu_pending(void)
1396{
1397	struct rq *rq = this_rq();
1398	struct llist_node *llist = llist_del_all(&rq->wake_list);
1399	struct task_struct *p;
1400
1401	raw_spin_lock(&rq->lock);
1402
1403	while (llist) {
1404		p = llist_entry(llist, struct task_struct, wake_entry);
1405		llist = llist_next(llist);
1406		ttwu_do_activate(rq, p, 0);
1407	}
1408
1409	raw_spin_unlock(&rq->lock);
1410}
1411
1412void scheduler_ipi(void)
1413{
1414	if (llist_empty(&this_rq()->wake_list)
1415			&& !tick_nohz_full_cpu(smp_processor_id())
1416			&& !got_nohz_idle_kick())
1417		return;
1418
1419	/*
1420	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1421	 * traditionally all their work was done from the interrupt return
1422	 * path. Now that we actually do some work, we need to make sure
1423	 * we do call them.
1424	 *
1425	 * Some archs already do call them, luckily irq_enter/exit nest
1426	 * properly.
1427	 *
1428	 * Arguably we should visit all archs and update all handlers,
1429	 * however a fair share of IPIs are still resched only so this would
1430	 * somewhat pessimize the simple resched case.
1431	 */
1432	irq_enter();
1433	tick_nohz_full_check();
1434	sched_ttwu_pending();
1435
1436	/*
1437	 * Check if someone kicked us for doing the nohz idle load balance.
1438	 */
1439	if (unlikely(got_nohz_idle_kick())) {
1440		this_rq()->idle_balance = 1;
1441		raise_softirq_irqoff(SCHED_SOFTIRQ);
1442	}
1443	irq_exit();
1444}
1445
1446static void ttwu_queue_remote(struct task_struct *p, int cpu)
1447{
1448	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1449		smp_send_reschedule(cpu);
1450}
1451
1452bool cpus_share_cache(int this_cpu, int that_cpu)
1453{
1454	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1455}
1456#endif /* CONFIG_SMP */
1457
1458static void ttwu_queue(struct task_struct *p, int cpu)
1459{
1460	struct rq *rq = cpu_rq(cpu);
1461
1462#if defined(CONFIG_SMP)
1463	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1464		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1465		ttwu_queue_remote(p, cpu);
1466		return;
1467	}
1468#endif
1469
1470	raw_spin_lock(&rq->lock);
1471	ttwu_do_activate(rq, p, 0);
1472	raw_spin_unlock(&rq->lock);
1473}
1474
1475/**
1476 * try_to_wake_up - wake up a thread
1477 * @p: the thread to be awakened
1478 * @state: the mask of task states that can be woken
1479 * @wake_flags: wake modifier flags (WF_*)
1480 *
1481 * Put it on the run-queue if it's not already there. The "current"
1482 * thread is always on the run-queue (except when the actual
1483 * re-schedule is in progress), and as such you're allowed to do
1484 * the simpler "current->state = TASK_RUNNING" to mark yourself
1485 * runnable without the overhead of this.
1486 *
1487 * Return: %true if @p was woken up, %false if it was already running.
1488 * or @state didn't match @p's state.
1489 */
1490static int
1491try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1492{
1493	unsigned long flags;
1494	int cpu, success = 0;
1495
1496	smp_wmb();
1497	raw_spin_lock_irqsave(&p->pi_lock, flags);
1498	if (!(p->state & state))
1499		goto out;
1500
1501	success = 1; /* we're going to change ->state */
1502	cpu = task_cpu(p);
1503
1504	if (p->on_rq && ttwu_remote(p, wake_flags))
1505		goto stat;
1506
1507#ifdef CONFIG_SMP
1508	/*
1509	 * If the owning (remote) cpu is still in the middle of schedule() with
1510	 * this task as prev, wait until its done referencing the task.
1511	 */
1512	while (p->on_cpu)
1513		cpu_relax();
1514	/*
1515	 * Pairs with the smp_wmb() in finish_lock_switch().
1516	 */
1517	smp_rmb();
1518
1519	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1520	p->state = TASK_WAKING;
1521
1522	if (p->sched_class->task_waking)
1523		p->sched_class->task_waking(p);
1524
1525	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1526	if (task_cpu(p) != cpu) {
1527		wake_flags |= WF_MIGRATED;
1528		set_task_cpu(p, cpu);
1529	}
1530#endif /* CONFIG_SMP */
1531
1532	ttwu_queue(p, cpu);
1533stat:
1534	ttwu_stat(p, cpu, wake_flags);
1535out:
1536	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1537
1538	return success;
1539}
1540
1541/**
1542 * try_to_wake_up_local - try to wake up a local task with rq lock held
1543 * @p: the thread to be awakened
1544 *
1545 * Put @p on the run-queue if it's not already there. The caller must
1546 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1547 * the current task.
1548 */
1549static void try_to_wake_up_local(struct task_struct *p)
1550{
1551	struct rq *rq = task_rq(p);
1552
1553	if (WARN_ON_ONCE(rq != this_rq()) ||
1554	    WARN_ON_ONCE(p == current))
1555		return;
1556
1557	lockdep_assert_held(&rq->lock);
1558
1559	if (!raw_spin_trylock(&p->pi_lock)) {
1560		raw_spin_unlock(&rq->lock);
1561		raw_spin_lock(&p->pi_lock);
1562		raw_spin_lock(&rq->lock);
1563	}
1564
1565	if (!(p->state & TASK_NORMAL))
1566		goto out;
1567
1568	if (!p->on_rq)
1569		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1570
1571	ttwu_do_wakeup(rq, p, 0);
1572	ttwu_stat(p, smp_processor_id(), 0);
1573out:
1574	raw_spin_unlock(&p->pi_lock);
1575}
1576
1577/**
1578 * wake_up_process - Wake up a specific process
1579 * @p: The process to be woken up.
1580 *
1581 * Attempt to wake up the nominated process and move it to the set of runnable
1582 * processes.
1583 *
1584 * Return: 1 if the process was woken up, 0 if it was already running.
1585 *
1586 * It may be assumed that this function implies a write memory barrier before
1587 * changing the task state if and only if any tasks are woken up.
1588 */
1589int wake_up_process(struct task_struct *p)
1590{
1591	WARN_ON(task_is_stopped_or_traced(p));
1592	return try_to_wake_up(p, TASK_NORMAL, 0);
1593}
1594EXPORT_SYMBOL(wake_up_process);
1595
1596int wake_up_state(struct task_struct *p, unsigned int state)
1597{
1598	return try_to_wake_up(p, state, 0);
1599}
1600
1601/*
1602 * Perform scheduler related setup for a newly forked process p.
1603 * p is forked by current.
1604 *
1605 * __sched_fork() is basic setup used by init_idle() too:
1606 */
1607static void __sched_fork(struct task_struct *p)
1608{
1609	p->on_rq			= 0;
1610
1611	p->se.on_rq			= 0;
1612	p->se.exec_start		= 0;
1613	p->se.sum_exec_runtime		= 0;
1614	p->se.prev_sum_exec_runtime	= 0;
1615	p->se.nr_migrations		= 0;
1616	p->se.vruntime			= 0;
1617	INIT_LIST_HEAD(&p->se.group_node);
1618
1619#ifdef CONFIG_SCHEDSTATS
1620	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1621#endif
1622
1623	INIT_LIST_HEAD(&p->rt.run_list);
1624
1625#ifdef CONFIG_PREEMPT_NOTIFIERS
1626	INIT_HLIST_HEAD(&p->preempt_notifiers);
1627#endif
1628
1629#ifdef CONFIG_NUMA_BALANCING
1630	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1631		p->mm->numa_next_scan = jiffies;
1632		p->mm->numa_next_reset = jiffies;
1633		p->mm->numa_scan_seq = 0;
1634	}
1635
1636	p->node_stamp = 0ULL;
1637	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1638	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1639	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1640	p->numa_work.next = &p->numa_work;
1641#endif /* CONFIG_NUMA_BALANCING */
1642}
1643
1644#ifdef CONFIG_NUMA_BALANCING
1645#ifdef CONFIG_SCHED_DEBUG
1646void set_numabalancing_state(bool enabled)
1647{
1648	if (enabled)
1649		sched_feat_set("NUMA");
1650	else
1651		sched_feat_set("NO_NUMA");
1652}
1653#else
1654__read_mostly bool numabalancing_enabled;
1655
1656void set_numabalancing_state(bool enabled)
1657{
1658	numabalancing_enabled = enabled;
1659}
1660#endif /* CONFIG_SCHED_DEBUG */
1661#endif /* CONFIG_NUMA_BALANCING */
1662
1663/*
1664 * fork()/clone()-time setup:
1665 */
1666void sched_fork(struct task_struct *p)
1667{
1668	unsigned long flags;
1669	int cpu = get_cpu();
1670
1671	__sched_fork(p);
1672	/*
1673	 * We mark the process as running here. This guarantees that
1674	 * nobody will actually run it, and a signal or other external
1675	 * event cannot wake it up and insert it on the runqueue either.
1676	 */
1677	p->state = TASK_RUNNING;
1678
1679	/*
1680	 * Make sure we do not leak PI boosting priority to the child.
1681	 */
1682	p->prio = current->normal_prio;
1683
1684	/*
1685	 * Revert to default priority/policy on fork if requested.
1686	 */
1687	if (unlikely(p->sched_reset_on_fork)) {
1688		if (task_has_rt_policy(p)) {
1689			p->policy = SCHED_NORMAL;
1690			p->static_prio = NICE_TO_PRIO(0);
1691			p->rt_priority = 0;
1692		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1693			p->static_prio = NICE_TO_PRIO(0);
1694
1695		p->prio = p->normal_prio = __normal_prio(p);
1696		set_load_weight(p);
1697
1698		/*
1699		 * We don't need the reset flag anymore after the fork. It has
1700		 * fulfilled its duty:
1701		 */
1702		p->sched_reset_on_fork = 0;
1703	}
1704
1705	if (!rt_prio(p->prio))
1706		p->sched_class = &fair_sched_class;
1707
1708	if (p->sched_class->task_fork)
1709		p->sched_class->task_fork(p);
1710
1711	/*
1712	 * The child is not yet in the pid-hash so no cgroup attach races,
1713	 * and the cgroup is pinned to this child due to cgroup_fork()
1714	 * is ran before sched_fork().
1715	 *
1716	 * Silence PROVE_RCU.
1717	 */
1718	raw_spin_lock_irqsave(&p->pi_lock, flags);
1719	set_task_cpu(p, cpu);
1720	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1721
1722#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1723	if (likely(sched_info_on()))
1724		memset(&p->sched_info, 0, sizeof(p->sched_info));
1725#endif
1726#if defined(CONFIG_SMP)
1727	p->on_cpu = 0;
1728#endif
1729#ifdef CONFIG_PREEMPT_COUNT
1730	/* Want to start with kernel preemption disabled. */
1731	task_thread_info(p)->preempt_count = 1;
1732#endif
1733#ifdef CONFIG_SMP
1734	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1735#endif
1736
1737	put_cpu();
1738}
1739
1740/*
1741 * wake_up_new_task - wake up a newly created task for the first time.
1742 *
1743 * This function will do some initial scheduler statistics housekeeping
1744 * that must be done for every newly created context, then puts the task
1745 * on the runqueue and wakes it.
1746 */
1747void wake_up_new_task(struct task_struct *p)
1748{
1749	unsigned long flags;
1750	struct rq *rq;
1751
1752	raw_spin_lock_irqsave(&p->pi_lock, flags);
1753#ifdef CONFIG_SMP
1754	/*
1755	 * Fork balancing, do it here and not earlier because:
1756	 *  - cpus_allowed can change in the fork path
1757	 *  - any previously selected cpu might disappear through hotplug
1758	 */
1759	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1760#endif
1761
1762	/* Initialize new task's runnable average */
1763	init_task_runnable_average(p);
1764	rq = __task_rq_lock(p);
1765	activate_task(rq, p, 0);
1766	p->on_rq = 1;
1767	trace_sched_wakeup_new(p, true);
1768	check_preempt_curr(rq, p, WF_FORK);
1769#ifdef CONFIG_SMP
1770	if (p->sched_class->task_woken)
1771		p->sched_class->task_woken(rq, p);
1772#endif
1773	task_rq_unlock(rq, p, &flags);
1774}
1775
1776#ifdef CONFIG_PREEMPT_NOTIFIERS
1777
1778/**
1779 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1780 * @notifier: notifier struct to register
1781 */
1782void preempt_notifier_register(struct preempt_notifier *notifier)
1783{
1784	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1785}
1786EXPORT_SYMBOL_GPL(preempt_notifier_register);
1787
1788/**
1789 * preempt_notifier_unregister - no longer interested in preemption notifications
1790 * @notifier: notifier struct to unregister
1791 *
1792 * This is safe to call from within a preemption notifier.
1793 */
1794void preempt_notifier_unregister(struct preempt_notifier *notifier)
1795{
1796	hlist_del(&notifier->link);
1797}
1798EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1799
1800static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1801{
1802	struct preempt_notifier *notifier;
1803
1804	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1805		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1806}
1807
1808static void
1809fire_sched_out_preempt_notifiers(struct task_struct *curr,
1810				 struct task_struct *next)
1811{
1812	struct preempt_notifier *notifier;
1813
1814	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1815		notifier->ops->sched_out(notifier, next);
1816}
1817
1818#else /* !CONFIG_PREEMPT_NOTIFIERS */
1819
1820static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1821{
1822}
1823
1824static void
1825fire_sched_out_preempt_notifiers(struct task_struct *curr,
1826				 struct task_struct *next)
1827{
1828}
1829
1830#endif /* CONFIG_PREEMPT_NOTIFIERS */
1831
1832/**
1833 * prepare_task_switch - prepare to switch tasks
1834 * @rq: the runqueue preparing to switch
1835 * @prev: the current task that is being switched out
1836 * @next: the task we are going to switch to.
1837 *
1838 * This is called with the rq lock held and interrupts off. It must
1839 * be paired with a subsequent finish_task_switch after the context
1840 * switch.
1841 *
1842 * prepare_task_switch sets up locking and calls architecture specific
1843 * hooks.
1844 */
1845static inline void
1846prepare_task_switch(struct rq *rq, struct task_struct *prev,
1847		    struct task_struct *next)
1848{
1849	trace_sched_switch(prev, next);
1850	sched_info_switch(prev, next);
1851	perf_event_task_sched_out(prev, next);
1852	fire_sched_out_preempt_notifiers(prev, next);
1853	prepare_lock_switch(rq, next);
1854	prepare_arch_switch(next);
1855}
1856
1857/**
1858 * finish_task_switch - clean up after a task-switch
1859 * @rq: runqueue associated with task-switch
1860 * @prev: the thread we just switched away from.
1861 *
1862 * finish_task_switch must be called after the context switch, paired
1863 * with a prepare_task_switch call before the context switch.
1864 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1865 * and do any other architecture-specific cleanup actions.
1866 *
1867 * Note that we may have delayed dropping an mm in context_switch(). If
1868 * so, we finish that here outside of the runqueue lock. (Doing it
1869 * with the lock held can cause deadlocks; see schedule() for
1870 * details.)
1871 */
1872static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1873	__releases(rq->lock)
1874{
1875	struct mm_struct *mm = rq->prev_mm;
1876	long prev_state;
1877
1878	rq->prev_mm = NULL;
1879
1880	/*
1881	 * A task struct has one reference for the use as "current".
1882	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1883	 * schedule one last time. The schedule call will never return, and
1884	 * the scheduled task must drop that reference.
1885	 * The test for TASK_DEAD must occur while the runqueue locks are
1886	 * still held, otherwise prev could be scheduled on another cpu, die
1887	 * there before we look at prev->state, and then the reference would
1888	 * be dropped twice.
1889	 *		Manfred Spraul <manfred@colorfullife.com>
1890	 */
1891	prev_state = prev->state;
1892	vtime_task_switch(prev);
1893	finish_arch_switch(prev);
1894	perf_event_task_sched_in(prev, current);
1895	finish_lock_switch(rq, prev);
1896	finish_arch_post_lock_switch();
1897
1898	fire_sched_in_preempt_notifiers(current);
1899	if (mm)
1900		mmdrop(mm);
1901	if (unlikely(prev_state == TASK_DEAD)) {
1902		/*
1903		 * Remove function-return probe instances associated with this
1904		 * task and put them back on the free list.
1905		 */
1906		kprobe_flush_task(prev);
1907		put_task_struct(prev);
1908	}
1909
1910	tick_nohz_task_switch(current);
1911}
1912
1913#ifdef CONFIG_SMP
1914
1915/* assumes rq->lock is held */
1916static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1917{
1918	if (prev->sched_class->pre_schedule)
1919		prev->sched_class->pre_schedule(rq, prev);
1920}
1921
1922/* rq->lock is NOT held, but preemption is disabled */
1923static inline void post_schedule(struct rq *rq)
1924{
1925	if (rq->post_schedule) {
1926		unsigned long flags;
1927
1928		raw_spin_lock_irqsave(&rq->lock, flags);
1929		if (rq->curr->sched_class->post_schedule)
1930			rq->curr->sched_class->post_schedule(rq);
1931		raw_spin_unlock_irqrestore(&rq->lock, flags);
1932
1933		rq->post_schedule = 0;
1934	}
1935}
1936
1937#else
1938
1939static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1940{
1941}
1942
1943static inline void post_schedule(struct rq *rq)
1944{
1945}
1946
1947#endif
1948
1949/**
1950 * schedule_tail - first thing a freshly forked thread must call.
1951 * @prev: the thread we just switched away from.
1952 */
1953asmlinkage void schedule_tail(struct task_struct *prev)
1954	__releases(rq->lock)
1955{
1956	struct rq *rq = this_rq();
1957
1958	finish_task_switch(rq, prev);
1959
1960	/*
1961	 * FIXME: do we need to worry about rq being invalidated by the
1962	 * task_switch?
1963	 */
1964	post_schedule(rq);
1965
1966#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1967	/* In this case, finish_task_switch does not reenable preemption */
1968	preempt_enable();
1969#endif
1970	if (current->set_child_tid)
1971		put_user(task_pid_vnr(current), current->set_child_tid);
1972}
1973
1974/*
1975 * context_switch - switch to the new MM and the new
1976 * thread's register state.
1977 */
1978static inline void
1979context_switch(struct rq *rq, struct task_struct *prev,
1980	       struct task_struct *next)
1981{
1982	struct mm_struct *mm, *oldmm;
1983
1984	prepare_task_switch(rq, prev, next);
1985
1986	mm = next->mm;
1987	oldmm = prev->active_mm;
1988	/*
1989	 * For paravirt, this is coupled with an exit in switch_to to
1990	 * combine the page table reload and the switch backend into
1991	 * one hypercall.
1992	 */
1993	arch_start_context_switch(prev);
1994
1995	if (!mm) {
1996		next->active_mm = oldmm;
1997		atomic_inc(&oldmm->mm_count);
1998		enter_lazy_tlb(oldmm, next);
1999	} else
2000		switch_mm(oldmm, mm, next);
2001
2002	if (!prev->mm) {
2003		prev->active_mm = NULL;
2004		rq->prev_mm = oldmm;
2005	}
2006	/*
2007	 * Since the runqueue lock will be released by the next
2008	 * task (which is an invalid locking op but in the case
2009	 * of the scheduler it's an obvious special-case), so we
2010	 * do an early lockdep release here:
2011	 */
2012#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2013	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2014#endif
2015
2016	context_tracking_task_switch(prev, next);
2017	/* Here we just switch the register state and the stack. */
2018	switch_to(prev, next, prev);
2019
2020	barrier();
2021	/*
2022	 * this_rq must be evaluated again because prev may have moved
2023	 * CPUs since it called schedule(), thus the 'rq' on its stack
2024	 * frame will be invalid.
2025	 */
2026	finish_task_switch(this_rq(), prev);
2027}
2028
2029/*
2030 * nr_running and nr_context_switches:
2031 *
2032 * externally visible scheduler statistics: current number of runnable
2033 * threads, total number of context switches performed since bootup.
2034 */
2035unsigned long nr_running(void)
2036{
2037	unsigned long i, sum = 0;
2038
2039	for_each_online_cpu(i)
2040		sum += cpu_rq(i)->nr_running;
2041
2042	return sum;
2043}
2044
2045unsigned long long nr_context_switches(void)
2046{
2047	int i;
2048	unsigned long long sum = 0;
2049
2050	for_each_possible_cpu(i)
2051		sum += cpu_rq(i)->nr_switches;
2052
2053	return sum;
2054}
2055
2056unsigned long nr_iowait(void)
2057{
2058	unsigned long i, sum = 0;
2059
2060	for_each_possible_cpu(i)
2061		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2062
2063	return sum;
2064}
2065
2066unsigned long nr_iowait_cpu(int cpu)
2067{
2068	struct rq *this = cpu_rq(cpu);
2069	return atomic_read(&this->nr_iowait);
2070}
2071
2072#ifdef CONFIG_SMP
2073
2074/*
2075 * sched_exec - execve() is a valuable balancing opportunity, because at
2076 * this point the task has the smallest effective memory and cache footprint.
2077 */
2078void sched_exec(void)
2079{
2080	struct task_struct *p = current;
2081	unsigned long flags;
2082	int dest_cpu;
2083
2084	raw_spin_lock_irqsave(&p->pi_lock, flags);
2085	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2086	if (dest_cpu == smp_processor_id())
2087		goto unlock;
2088
2089	if (likely(cpu_active(dest_cpu))) {
2090		struct migration_arg arg = { p, dest_cpu };
2091
2092		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2093		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2094		return;
2095	}
2096unlock:
2097	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2098}
2099
2100#endif
2101
2102DEFINE_PER_CPU(struct kernel_stat, kstat);
2103DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2104
2105EXPORT_PER_CPU_SYMBOL(kstat);
2106EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2107
2108/*
2109 * Return any ns on the sched_clock that have not yet been accounted in
2110 * @p in case that task is currently running.
2111 *
2112 * Called with task_rq_lock() held on @rq.
2113 */
2114static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2115{
2116	u64 ns = 0;
2117
2118	if (task_current(rq, p)) {
2119		update_rq_clock(rq);
2120		ns = rq_clock_task(rq) - p->se.exec_start;
2121		if ((s64)ns < 0)
2122			ns = 0;
2123	}
2124
2125	return ns;
2126}
2127
2128unsigned long long task_delta_exec(struct task_struct *p)
2129{
2130	unsigned long flags;
2131	struct rq *rq;
2132	u64 ns = 0;
2133
2134	rq = task_rq_lock(p, &flags);
2135	ns = do_task_delta_exec(p, rq);
2136	task_rq_unlock(rq, p, &flags);
2137
2138	return ns;
2139}
2140
2141/*
2142 * Return accounted runtime for the task.
2143 * In case the task is currently running, return the runtime plus current's
2144 * pending runtime that have not been accounted yet.
2145 */
2146unsigned long long task_sched_runtime(struct task_struct *p)
2147{
2148	unsigned long flags;
2149	struct rq *rq;
2150	u64 ns = 0;
2151
2152	rq = task_rq_lock(p, &flags);
2153	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2154	task_rq_unlock(rq, p, &flags);
2155
2156	return ns;
2157}
2158
2159/*
2160 * This function gets called by the timer code, with HZ frequency.
2161 * We call it with interrupts disabled.
2162 */
2163void scheduler_tick(void)
2164{
2165	int cpu = smp_processor_id();
2166	struct rq *rq = cpu_rq(cpu);
2167	struct task_struct *curr = rq->curr;
2168
2169	sched_clock_tick();
2170
2171	raw_spin_lock(&rq->lock);
2172	update_rq_clock(rq);
2173	curr->sched_class->task_tick(rq, curr, 0);
2174	update_cpu_load_active(rq);
2175	raw_spin_unlock(&rq->lock);
2176
2177	perf_event_task_tick();
2178
2179#ifdef CONFIG_SMP
2180	rq->idle_balance = idle_cpu(cpu);
2181	trigger_load_balance(rq, cpu);
2182#endif
2183	rq_last_tick_reset(rq);
2184}
2185
2186#ifdef CONFIG_NO_HZ_FULL
2187/**
2188 * scheduler_tick_max_deferment
2189 *
2190 * Keep at least one tick per second when a single
2191 * active task is running because the scheduler doesn't
2192 * yet completely support full dynticks environment.
2193 *
2194 * This makes sure that uptime, CFS vruntime, load
2195 * balancing, etc... continue to move forward, even
2196 * with a very low granularity.
2197 *
2198 * Return: Maximum deferment in nanoseconds.
2199 */
2200u64 scheduler_tick_max_deferment(void)
2201{
2202	struct rq *rq = this_rq();
2203	unsigned long next, now = ACCESS_ONCE(jiffies);
2204
2205	next = rq->last_sched_tick + HZ;
2206
2207	if (time_before_eq(next, now))
2208		return 0;
2209
2210	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2211}
2212#endif
2213
2214notrace unsigned long get_parent_ip(unsigned long addr)
2215{
2216	if (in_lock_functions(addr)) {
2217		addr = CALLER_ADDR2;
2218		if (in_lock_functions(addr))
2219			addr = CALLER_ADDR3;
2220	}
2221	return addr;
2222}
2223
2224#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2225				defined(CONFIG_PREEMPT_TRACER))
2226
2227void __kprobes add_preempt_count(int val)
2228{
2229#ifdef CONFIG_DEBUG_PREEMPT
2230	/*
2231	 * Underflow?
2232	 */
2233	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2234		return;
2235#endif
2236	preempt_count() += val;
2237#ifdef CONFIG_DEBUG_PREEMPT
2238	/*
2239	 * Spinlock count overflowing soon?
2240	 */
2241	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2242				PREEMPT_MASK - 10);
2243#endif
2244	if (preempt_count() == val)
2245		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2246}
2247EXPORT_SYMBOL(add_preempt_count);
2248
2249void __kprobes sub_preempt_count(int val)
2250{
2251#ifdef CONFIG_DEBUG_PREEMPT
2252	/*
2253	 * Underflow?
2254	 */
2255	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2256		return;
2257	/*
2258	 * Is the spinlock portion underflowing?
2259	 */
2260	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2261			!(preempt_count() & PREEMPT_MASK)))
2262		return;
2263#endif
2264
2265	if (preempt_count() == val)
2266		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2267	preempt_count() -= val;
2268}
2269EXPORT_SYMBOL(sub_preempt_count);
2270
2271#endif
2272
2273/*
2274 * Print scheduling while atomic bug:
2275 */
2276static noinline void __schedule_bug(struct task_struct *prev)
2277{
2278	if (oops_in_progress)
2279		return;
2280
2281	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2282		prev->comm, prev->pid, preempt_count());
2283
2284	debug_show_held_locks(prev);
2285	print_modules();
2286	if (irqs_disabled())
2287		print_irqtrace_events(prev);
2288	dump_stack();
2289	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2290}
2291
2292/*
2293 * Various schedule()-time debugging checks and statistics:
2294 */
2295static inline void schedule_debug(struct task_struct *prev)
2296{
2297	/*
2298	 * Test if we are atomic. Since do_exit() needs to call into
2299	 * schedule() atomically, we ignore that path for now.
2300	 * Otherwise, whine if we are scheduling when we should not be.
2301	 */
2302	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2303		__schedule_bug(prev);
2304	rcu_sleep_check();
2305
2306	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2307
2308	schedstat_inc(this_rq(), sched_count);
2309}
2310
2311static void put_prev_task(struct rq *rq, struct task_struct *prev)
2312{
2313	if (prev->on_rq || rq->skip_clock_update < 0)
2314		update_rq_clock(rq);
2315	prev->sched_class->put_prev_task(rq, prev);
2316}
2317
2318/*
2319 * Pick up the highest-prio task:
2320 */
2321static inline struct task_struct *
2322pick_next_task(struct rq *rq)
2323{
2324	const struct sched_class *class;
2325	struct task_struct *p;
2326
2327	/*
2328	 * Optimization: we know that if all tasks are in
2329	 * the fair class we can call that function directly:
2330	 */
2331	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2332		p = fair_sched_class.pick_next_task(rq);
2333		if (likely(p))
2334			return p;
2335	}
2336
2337	for_each_class(class) {
2338		p = class->pick_next_task(rq);
2339		if (p)
2340			return p;
2341	}
2342
2343	BUG(); /* the idle class will always have a runnable task */
2344}
2345
2346/*
2347 * __schedule() is the main scheduler function.
2348 *
2349 * The main means of driving the scheduler and thus entering this function are:
2350 *
2351 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2352 *
2353 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2354 *      paths. For example, see arch/x86/entry_64.S.
2355 *
2356 *      To drive preemption between tasks, the scheduler sets the flag in timer
2357 *      interrupt handler scheduler_tick().
2358 *
2359 *   3. Wakeups don't really cause entry into schedule(). They add a
2360 *      task to the run-queue and that's it.
2361 *
2362 *      Now, if the new task added to the run-queue preempts the current
2363 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2364 *      called on the nearest possible occasion:
2365 *
2366 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2367 *
2368 *         - in syscall or exception context, at the next outmost
2369 *           preempt_enable(). (this might be as soon as the wake_up()'s
2370 *           spin_unlock()!)
2371 *
2372 *         - in IRQ context, return from interrupt-handler to
2373 *           preemptible context
2374 *
2375 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2376 *         then at the next:
2377 *
2378 *          - cond_resched() call
2379 *          - explicit schedule() call
2380 *          - return from syscall or exception to user-space
2381 *          - return from interrupt-handler to user-space
2382 */
2383static void __sched __schedule(void)
2384{
2385	struct task_struct *prev, *next;
2386	unsigned long *switch_count;
2387	struct rq *rq;
2388	int cpu;
2389
2390need_resched:
2391	preempt_disable();
2392	cpu = smp_processor_id();
2393	rq = cpu_rq(cpu);
2394	rcu_note_context_switch(cpu);
2395	prev = rq->curr;
2396
2397	schedule_debug(prev);
2398
2399	if (sched_feat(HRTICK))
2400		hrtick_clear(rq);
2401
2402	raw_spin_lock_irq(&rq->lock);
2403
2404	switch_count = &prev->nivcsw;
2405	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2406		if (unlikely(signal_pending_state(prev->state, prev))) {
2407			prev->state = TASK_RUNNING;
2408		} else {
2409			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2410			prev->on_rq = 0;
2411
2412			/*
2413			 * If a worker went to sleep, notify and ask workqueue
2414			 * whether it wants to wake up a task to maintain
2415			 * concurrency.
2416			 */
2417			if (prev->flags & PF_WQ_WORKER) {
2418				struct task_struct *to_wakeup;
2419
2420				to_wakeup = wq_worker_sleeping(prev, cpu);
2421				if (to_wakeup)
2422					try_to_wake_up_local(to_wakeup);
2423			}
2424		}
2425		switch_count = &prev->nvcsw;
2426	}
2427
2428	pre_schedule(rq, prev);
2429
2430	if (unlikely(!rq->nr_running))
2431		idle_balance(cpu, rq);
2432
2433	put_prev_task(rq, prev);
2434	next = pick_next_task(rq);
2435	clear_tsk_need_resched(prev);
2436	rq->skip_clock_update = 0;
2437
2438	if (likely(prev != next)) {
2439		rq->nr_switches++;
2440		rq->curr = next;
2441		++*switch_count;
2442
2443		context_switch(rq, prev, next); /* unlocks the rq */
2444		/*
2445		 * The context switch have flipped the stack from under us
2446		 * and restored the local variables which were saved when
2447		 * this task called schedule() in the past. prev == current
2448		 * is still correct, but it can be moved to another cpu/rq.
2449		 */
2450		cpu = smp_processor_id();
2451		rq = cpu_rq(cpu);
2452	} else
2453		raw_spin_unlock_irq(&rq->lock);
2454
2455	post_schedule(rq);
2456
2457	sched_preempt_enable_no_resched();
2458	if (need_resched())
2459		goto need_resched;
2460}
2461
2462static inline void sched_submit_work(struct task_struct *tsk)
2463{
2464	if (!tsk->state || tsk_is_pi_blocked(tsk))
2465		return;
2466	/*
2467	 * If we are going to sleep and we have plugged IO queued,
2468	 * make sure to submit it to avoid deadlocks.
2469	 */
2470	if (blk_needs_flush_plug(tsk))
2471		blk_schedule_flush_plug(tsk);
2472}
2473
2474asmlinkage void __sched schedule(void)
2475{
2476	struct task_struct *tsk = current;
2477
2478	sched_submit_work(tsk);
2479	__schedule();
2480}
2481EXPORT_SYMBOL(schedule);
2482
2483#ifdef CONFIG_CONTEXT_TRACKING
2484asmlinkage void __sched schedule_user(void)
2485{
2486	/*
2487	 * If we come here after a random call to set_need_resched(),
2488	 * or we have been woken up remotely but the IPI has not yet arrived,
2489	 * we haven't yet exited the RCU idle mode. Do it here manually until
2490	 * we find a better solution.
2491	 */
2492	user_exit();
2493	schedule();
2494	user_enter();
2495}
2496#endif
2497
2498/**
2499 * schedule_preempt_disabled - called with preemption disabled
2500 *
2501 * Returns with preemption disabled. Note: preempt_count must be 1
2502 */
2503void __sched schedule_preempt_disabled(void)
2504{
2505	sched_preempt_enable_no_resched();
2506	schedule();
2507	preempt_disable();
2508}
2509
2510#ifdef CONFIG_PREEMPT
2511/*
2512 * this is the entry point to schedule() from in-kernel preemption
2513 * off of preempt_enable. Kernel preemptions off return from interrupt
2514 * occur there and call schedule directly.
2515 */
2516asmlinkage void __sched notrace preempt_schedule(void)
2517{
2518	struct thread_info *ti = current_thread_info();
2519
2520	/*
2521	 * If there is a non-zero preempt_count or interrupts are disabled,
2522	 * we do not want to preempt the current task. Just return..
2523	 */
2524	if (likely(ti->preempt_count || irqs_disabled()))
2525		return;
2526
2527	do {
2528		add_preempt_count_notrace(PREEMPT_ACTIVE);
2529		__schedule();
2530		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2531
2532		/*
2533		 * Check again in case we missed a preemption opportunity
2534		 * between schedule and now.
2535		 */
2536		barrier();
2537	} while (need_resched());
2538}
2539EXPORT_SYMBOL(preempt_schedule);
2540
2541/*
2542 * this is the entry point to schedule() from kernel preemption
2543 * off of irq context.
2544 * Note, that this is called and return with irqs disabled. This will
2545 * protect us against recursive calling from irq.
2546 */
2547asmlinkage void __sched preempt_schedule_irq(void)
2548{
2549	struct thread_info *ti = current_thread_info();
2550	enum ctx_state prev_state;
2551
2552	/* Catch callers which need to be fixed */
2553	BUG_ON(ti->preempt_count || !irqs_disabled());
2554
2555	prev_state = exception_enter();
2556
2557	do {
2558		add_preempt_count(PREEMPT_ACTIVE);
2559		local_irq_enable();
2560		__schedule();
2561		local_irq_disable();
2562		sub_preempt_count(PREEMPT_ACTIVE);
2563
2564		/*
2565		 * Check again in case we missed a preemption opportunity
2566		 * between schedule and now.
2567		 */
2568		barrier();
2569	} while (need_resched());
2570
2571	exception_exit(prev_state);
2572}
2573
2574#endif /* CONFIG_PREEMPT */
2575
2576int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2577			  void *key)
2578{
2579	return try_to_wake_up(curr->private, mode, wake_flags);
2580}
2581EXPORT_SYMBOL(default_wake_function);
2582
2583/*
2584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2586 * number) then we wake all the non-exclusive tasks and one exclusive task.
2587 *
2588 * There are circumstances in which we can try to wake a task which has already
2589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2591 */
2592static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2593			int nr_exclusive, int wake_flags, void *key)
2594{
2595	wait_queue_t *curr, *next;
2596
2597	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2598		unsigned flags = curr->flags;
2599
2600		if (curr->func(curr, mode, wake_flags, key) &&
2601				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2602			break;
2603	}
2604}
2605
2606/**
2607 * __wake_up - wake up threads blocked on a waitqueue.
2608 * @q: the waitqueue
2609 * @mode: which threads
2610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2611 * @key: is directly passed to the wakeup function
2612 *
2613 * It may be assumed that this function implies a write memory barrier before
2614 * changing the task state if and only if any tasks are woken up.
2615 */
2616void __wake_up(wait_queue_head_t *q, unsigned int mode,
2617			int nr_exclusive, void *key)
2618{
2619	unsigned long flags;
2620
2621	spin_lock_irqsave(&q->lock, flags);
2622	__wake_up_common(q, mode, nr_exclusive, 0, key);
2623	spin_unlock_irqrestore(&q->lock, flags);
2624}
2625EXPORT_SYMBOL(__wake_up);
2626
2627/*
2628 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2629 */
2630void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2631{
2632	__wake_up_common(q, mode, nr, 0, NULL);
2633}
2634EXPORT_SYMBOL_GPL(__wake_up_locked);
2635
2636void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2637{
2638	__wake_up_common(q, mode, 1, 0, key);
2639}
2640EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2641
2642/**
2643 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2644 * @q: the waitqueue
2645 * @mode: which threads
2646 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2647 * @key: opaque value to be passed to wakeup targets
2648 *
2649 * The sync wakeup differs that the waker knows that it will schedule
2650 * away soon, so while the target thread will be woken up, it will not
2651 * be migrated to another CPU - ie. the two threads are 'synchronized'
2652 * with each other. This can prevent needless bouncing between CPUs.
2653 *
2654 * On UP it can prevent extra preemption.
2655 *
2656 * It may be assumed that this function implies a write memory barrier before
2657 * changing the task state if and only if any tasks are woken up.
2658 */
2659void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2660			int nr_exclusive, void *key)
2661{
2662	unsigned long flags;
2663	int wake_flags = WF_SYNC;
2664
2665	if (unlikely(!q))
2666		return;
2667
2668	if (unlikely(!nr_exclusive))
2669		wake_flags = 0;
2670
2671	spin_lock_irqsave(&q->lock, flags);
2672	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2673	spin_unlock_irqrestore(&q->lock, flags);
2674}
2675EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2676
2677/*
2678 * __wake_up_sync - see __wake_up_sync_key()
2679 */
2680void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2681{
2682	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2683}
2684EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2685
2686/**
2687 * complete: - signals a single thread waiting on this completion
2688 * @x:  holds the state of this particular completion
2689 *
2690 * This will wake up a single thread waiting on this completion. Threads will be
2691 * awakened in the same order in which they were queued.
2692 *
2693 * See also complete_all(), wait_for_completion() and related routines.
2694 *
2695 * It may be assumed that this function implies a write memory barrier before
2696 * changing the task state if and only if any tasks are woken up.
2697 */
2698void complete(struct completion *x)
2699{
2700	unsigned long flags;
2701
2702	spin_lock_irqsave(&x->wait.lock, flags);
2703	x->done++;
2704	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2705	spin_unlock_irqrestore(&x->wait.lock, flags);
2706}
2707EXPORT_SYMBOL(complete);
2708
2709/**
2710 * complete_all: - signals all threads waiting on this completion
2711 * @x:  holds the state of this particular completion
2712 *
2713 * This will wake up all threads waiting on this particular completion event.
2714 *
2715 * It may be assumed that this function implies a write memory barrier before
2716 * changing the task state if and only if any tasks are woken up.
2717 */
2718void complete_all(struct completion *x)
2719{
2720	unsigned long flags;
2721
2722	spin_lock_irqsave(&x->wait.lock, flags);
2723	x->done += UINT_MAX/2;
2724	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2725	spin_unlock_irqrestore(&x->wait.lock, flags);
2726}
2727EXPORT_SYMBOL(complete_all);
2728
2729static inline long __sched
2730do_wait_for_common(struct completion *x,
2731		   long (*action)(long), long timeout, int state)
2732{
2733	if (!x->done) {
2734		DECLARE_WAITQUEUE(wait, current);
2735
2736		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2737		do {
2738			if (signal_pending_state(state, current)) {
2739				timeout = -ERESTARTSYS;
2740				break;
2741			}
2742			__set_current_state(state);
2743			spin_unlock_irq(&x->wait.lock);
2744			timeout = action(timeout);
2745			spin_lock_irq(&x->wait.lock);
2746		} while (!x->done && timeout);
2747		__remove_wait_queue(&x->wait, &wait);
2748		if (!x->done)
2749			return timeout;
2750	}
2751	x->done--;
2752	return timeout ?: 1;
2753}
2754
2755static inline long __sched
2756__wait_for_common(struct completion *x,
2757		  long (*action)(long), long timeout, int state)
2758{
2759	might_sleep();
2760
2761	spin_lock_irq(&x->wait.lock);
2762	timeout = do_wait_for_common(x, action, timeout, state);
2763	spin_unlock_irq(&x->wait.lock);
2764	return timeout;
2765}
2766
2767static long __sched
2768wait_for_common(struct completion *x, long timeout, int state)
2769{
2770	return __wait_for_common(x, schedule_timeout, timeout, state);
2771}
2772
2773static long __sched
2774wait_for_common_io(struct completion *x, long timeout, int state)
2775{
2776	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2777}
2778
2779/**
2780 * wait_for_completion: - waits for completion of a task
2781 * @x:  holds the state of this particular completion
2782 *
2783 * This waits to be signaled for completion of a specific task. It is NOT
2784 * interruptible and there is no timeout.
2785 *
2786 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2787 * and interrupt capability. Also see complete().
2788 */
2789void __sched wait_for_completion(struct completion *x)
2790{
2791	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2792}
2793EXPORT_SYMBOL(wait_for_completion);
2794
2795/**
2796 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2797 * @x:  holds the state of this particular completion
2798 * @timeout:  timeout value in jiffies
2799 *
2800 * This waits for either a completion of a specific task to be signaled or for a
2801 * specified timeout to expire. The timeout is in jiffies. It is not
2802 * interruptible.
2803 *
2804 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2805 * till timeout) if completed.
2806 */
2807unsigned long __sched
2808wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2809{
2810	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2811}
2812EXPORT_SYMBOL(wait_for_completion_timeout);
2813
2814/**
2815 * wait_for_completion_io: - waits for completion of a task
2816 * @x:  holds the state of this particular completion
2817 *
2818 * This waits to be signaled for completion of a specific task. It is NOT
2819 * interruptible and there is no timeout. The caller is accounted as waiting
2820 * for IO.
2821 */
2822void __sched wait_for_completion_io(struct completion *x)
2823{
2824	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2825}
2826EXPORT_SYMBOL(wait_for_completion_io);
2827
2828/**
2829 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2830 * @x:  holds the state of this particular completion
2831 * @timeout:  timeout value in jiffies
2832 *
2833 * This waits for either a completion of a specific task to be signaled or for a
2834 * specified timeout to expire. The timeout is in jiffies. It is not
2835 * interruptible. The caller is accounted as waiting for IO.
2836 *
2837 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2838 * till timeout) if completed.
2839 */
2840unsigned long __sched
2841wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2842{
2843	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2844}
2845EXPORT_SYMBOL(wait_for_completion_io_timeout);
2846
2847/**
2848 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2849 * @x:  holds the state of this particular completion
2850 *
2851 * This waits for completion of a specific task to be signaled. It is
2852 * interruptible.
2853 *
2854 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2855 */
2856int __sched wait_for_completion_interruptible(struct completion *x)
2857{
2858	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2859	if (t == -ERESTARTSYS)
2860		return t;
2861	return 0;
2862}
2863EXPORT_SYMBOL(wait_for_completion_interruptible);
2864
2865/**
2866 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2867 * @x:  holds the state of this particular completion
2868 * @timeout:  timeout value in jiffies
2869 *
2870 * This waits for either a completion of a specific task to be signaled or for a
2871 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2872 *
2873 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2874 * or number of jiffies left till timeout) if completed.
2875 */
2876long __sched
2877wait_for_completion_interruptible_timeout(struct completion *x,
2878					  unsigned long timeout)
2879{
2880	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2881}
2882EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2883
2884/**
2885 * wait_for_completion_killable: - waits for completion of a task (killable)
2886 * @x:  holds the state of this particular completion
2887 *
2888 * This waits to be signaled for completion of a specific task. It can be
2889 * interrupted by a kill signal.
2890 *
2891 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2892 */
2893int __sched wait_for_completion_killable(struct completion *x)
2894{
2895	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2896	if (t == -ERESTARTSYS)
2897		return t;
2898	return 0;
2899}
2900EXPORT_SYMBOL(wait_for_completion_killable);
2901
2902/**
2903 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2904 * @x:  holds the state of this particular completion
2905 * @timeout:  timeout value in jiffies
2906 *
2907 * This waits for either a completion of a specific task to be
2908 * signaled or for a specified timeout to expire. It can be
2909 * interrupted by a kill signal. The timeout is in jiffies.
2910 *
2911 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2912 * or number of jiffies left till timeout) if completed.
2913 */
2914long __sched
2915wait_for_completion_killable_timeout(struct completion *x,
2916				     unsigned long timeout)
2917{
2918	return wait_for_common(x, timeout, TASK_KILLABLE);
2919}
2920EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2921
2922/**
2923 *	try_wait_for_completion - try to decrement a completion without blocking
2924 *	@x:	completion structure
2925 *
2926 *	Return: 0 if a decrement cannot be done without blocking
2927 *		 1 if a decrement succeeded.
2928 *
2929 *	If a completion is being used as a counting completion,
2930 *	attempt to decrement the counter without blocking. This
2931 *	enables us to avoid waiting if the resource the completion
2932 *	is protecting is not available.
2933 */
2934bool try_wait_for_completion(struct completion *x)
2935{
2936	unsigned long flags;
2937	int ret = 1;
2938
2939	spin_lock_irqsave(&x->wait.lock, flags);
2940	if (!x->done)
2941		ret = 0;
2942	else
2943		x->done--;
2944	spin_unlock_irqrestore(&x->wait.lock, flags);
2945	return ret;
2946}
2947EXPORT_SYMBOL(try_wait_for_completion);
2948
2949/**
2950 *	completion_done - Test to see if a completion has any waiters
2951 *	@x:	completion structure
2952 *
2953 *	Return: 0 if there are waiters (wait_for_completion() in progress)
2954 *		 1 if there are no waiters.
2955 *
2956 */
2957bool completion_done(struct completion *x)
2958{
2959	unsigned long flags;
2960	int ret = 1;
2961
2962	spin_lock_irqsave(&x->wait.lock, flags);
2963	if (!x->done)
2964		ret = 0;
2965	spin_unlock_irqrestore(&x->wait.lock, flags);
2966	return ret;
2967}
2968EXPORT_SYMBOL(completion_done);
2969
2970static long __sched
2971sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2972{
2973	unsigned long flags;
2974	wait_queue_t wait;
2975
2976	init_waitqueue_entry(&wait, current);
2977
2978	__set_current_state(state);
2979
2980	spin_lock_irqsave(&q->lock, flags);
2981	__add_wait_queue(q, &wait);
2982	spin_unlock(&q->lock);
2983	timeout = schedule_timeout(timeout);
2984	spin_lock_irq(&q->lock);
2985	__remove_wait_queue(q, &wait);
2986	spin_unlock_irqrestore(&q->lock, flags);
2987
2988	return timeout;
2989}
2990
2991void __sched interruptible_sleep_on(wait_queue_head_t *q)
2992{
2993	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2994}
2995EXPORT_SYMBOL(interruptible_sleep_on);
2996
2997long __sched
2998interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2999{
3000	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3001}
3002EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3003
3004void __sched sleep_on(wait_queue_head_t *q)
3005{
3006	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3007}
3008EXPORT_SYMBOL(sleep_on);
3009
3010long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3011{
3012	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3013}
3014EXPORT_SYMBOL(sleep_on_timeout);
3015
3016#ifdef CONFIG_RT_MUTEXES
3017
3018/*
3019 * rt_mutex_setprio - set the current priority of a task
3020 * @p: task
3021 * @prio: prio value (kernel-internal form)
3022 *
3023 * This function changes the 'effective' priority of a task. It does
3024 * not touch ->normal_prio like __setscheduler().
3025 *
3026 * Used by the rt_mutex code to implement priority inheritance logic.
3027 */
3028void rt_mutex_setprio(struct task_struct *p, int prio)
3029{
3030	int oldprio, on_rq, running;
3031	struct rq *rq;
3032	const struct sched_class *prev_class;
3033
3034	BUG_ON(prio < 0 || prio > MAX_PRIO);
3035
3036	rq = __task_rq_lock(p);
3037
3038	/*
3039	 * Idle task boosting is a nono in general. There is one
3040	 * exception, when PREEMPT_RT and NOHZ is active:
3041	 *
3042	 * The idle task calls get_next_timer_interrupt() and holds
3043	 * the timer wheel base->lock on the CPU and another CPU wants
3044	 * to access the timer (probably to cancel it). We can safely
3045	 * ignore the boosting request, as the idle CPU runs this code
3046	 * with interrupts disabled and will complete the lock
3047	 * protected section without being interrupted. So there is no
3048	 * real need to boost.
3049	 */
3050	if (unlikely(p == rq->idle)) {
3051		WARN_ON(p != rq->curr);
3052		WARN_ON(p->pi_blocked_on);
3053		goto out_unlock;
3054	}
3055
3056	trace_sched_pi_setprio(p, prio);
3057	oldprio = p->prio;
3058	prev_class = p->sched_class;
3059	on_rq = p->on_rq;
3060	running = task_current(rq, p);
3061	if (on_rq)
3062		dequeue_task(rq, p, 0);
3063	if (running)
3064		p->sched_class->put_prev_task(rq, p);
3065
3066	if (rt_prio(prio))
3067		p->sched_class = &rt_sched_class;
3068	else
3069		p->sched_class = &fair_sched_class;
3070
3071	p->prio = prio;
3072
3073	if (running)
3074		p->sched_class->set_curr_task(rq);
3075	if (on_rq)
3076		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3077
3078	check_class_changed(rq, p, prev_class, oldprio);
3079out_unlock:
3080	__task_rq_unlock(rq);
3081}
3082#endif
3083void set_user_nice(struct task_struct *p, long nice)
3084{
3085	int old_prio, delta, on_rq;
3086	unsigned long flags;
3087	struct rq *rq;
3088
3089	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3090		return;
3091	/*
3092	 * We have to be careful, if called from sys_setpriority(),
3093	 * the task might be in the middle of scheduling on another CPU.
3094	 */
3095	rq = task_rq_lock(p, &flags);
3096	/*
3097	 * The RT priorities are set via sched_setscheduler(), but we still
3098	 * allow the 'normal' nice value to be set - but as expected
3099	 * it wont have any effect on scheduling until the task is
3100	 * SCHED_FIFO/SCHED_RR:
3101	 */
3102	if (task_has_rt_policy(p)) {
3103		p->static_prio = NICE_TO_PRIO(nice);
3104		goto out_unlock;
3105	}
3106	on_rq = p->on_rq;
3107	if (on_rq)
3108		dequeue_task(rq, p, 0);
3109
3110	p->static_prio = NICE_TO_PRIO(nice);
3111	set_load_weight(p);
3112	old_prio = p->prio;
3113	p->prio = effective_prio(p);
3114	delta = p->prio - old_prio;
3115
3116	if (on_rq) {
3117		enqueue_task(rq, p, 0);
3118		/*
3119		 * If the task increased its priority or is running and
3120		 * lowered its priority, then reschedule its CPU:
3121		 */
3122		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3123			resched_task(rq->curr);
3124	}
3125out_unlock:
3126	task_rq_unlock(rq, p, &flags);
3127}
3128EXPORT_SYMBOL(set_user_nice);
3129
3130/*
3131 * can_nice - check if a task can reduce its nice value
3132 * @p: task
3133 * @nice: nice value
3134 */
3135int can_nice(const struct task_struct *p, const int nice)
3136{
3137	/* convert nice value [19,-20] to rlimit style value [1,40] */
3138	int nice_rlim = 20 - nice;
3139
3140	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3141		capable(CAP_SYS_NICE));
3142}
3143
3144#ifdef __ARCH_WANT_SYS_NICE
3145
3146/*
3147 * sys_nice - change the priority of the current process.
3148 * @increment: priority increment
3149 *
3150 * sys_setpriority is a more generic, but much slower function that
3151 * does similar things.
3152 */
3153SYSCALL_DEFINE1(nice, int, increment)
3154{
3155	long nice, retval;
3156
3157	/*
3158	 * Setpriority might change our priority at the same moment.
3159	 * We don't have to worry. Conceptually one call occurs first
3160	 * and we have a single winner.
3161	 */
3162	if (increment < -40)
3163		increment = -40;
3164	if (increment > 40)
3165		increment = 40;
3166
3167	nice = TASK_NICE(current) + increment;
3168	if (nice < -20)
3169		nice = -20;
3170	if (nice > 19)
3171		nice = 19;
3172
3173	if (increment < 0 && !can_nice(current, nice))
3174		return -EPERM;
3175
3176	retval = security_task_setnice(current, nice);
3177	if (retval)
3178		return retval;
3179
3180	set_user_nice(current, nice);
3181	return 0;
3182}
3183
3184#endif
3185
3186/**
3187 * task_prio - return the priority value of a given task.
3188 * @p: the task in question.
3189 *
3190 * Return: The priority value as seen by users in /proc.
3191 * RT tasks are offset by -200. Normal tasks are centered
3192 * around 0, value goes from -16 to +15.
3193 */
3194int task_prio(const struct task_struct *p)
3195{
3196	return p->prio - MAX_RT_PRIO;
3197}
3198
3199/**
3200 * task_nice - return the nice value of a given task.
3201 * @p: the task in question.
3202 *
3203 * Return: The nice value [ -20 ... 0 ... 19 ].
3204 */
3205int task_nice(const struct task_struct *p)
3206{
3207	return TASK_NICE(p);
3208}
3209EXPORT_SYMBOL(task_nice);
3210
3211/**
3212 * idle_cpu - is a given cpu idle currently?
3213 * @cpu: the processor in question.
3214 *
3215 * Return: 1 if the CPU is currently idle. 0 otherwise.
3216 */
3217int idle_cpu(int cpu)
3218{
3219	struct rq *rq = cpu_rq(cpu);
3220
3221	if (rq->curr != rq->idle)
3222		return 0;
3223
3224	if (rq->nr_running)
3225		return 0;
3226
3227#ifdef CONFIG_SMP
3228	if (!llist_empty(&rq->wake_list))
3229		return 0;
3230#endif
3231
3232	return 1;
3233}
3234
3235/**
3236 * idle_task - return the idle task for a given cpu.
3237 * @cpu: the processor in question.
3238 *
3239 * Return: The idle task for the cpu @cpu.
3240 */
3241struct task_struct *idle_task(int cpu)
3242{
3243	return cpu_rq(cpu)->idle;
3244}
3245
3246/**
3247 * find_process_by_pid - find a process with a matching PID value.
3248 * @pid: the pid in question.
3249 *
3250 * The task of @pid, if found. %NULL otherwise.
3251 */
3252static struct task_struct *find_process_by_pid(pid_t pid)
3253{
3254	return pid ? find_task_by_vpid(pid) : current;
3255}
3256
3257/* Actually do priority change: must hold rq lock. */
3258static void
3259__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3260{
3261	p->policy = policy;
3262	p->rt_priority = prio;
3263	p->normal_prio = normal_prio(p);
3264	/* we are holding p->pi_lock already */
3265	p->prio = rt_mutex_getprio(p);
3266	if (rt_prio(p->prio))
3267		p->sched_class = &rt_sched_class;
3268	else
3269		p->sched_class = &fair_sched_class;
3270	set_load_weight(p);
3271}
3272
3273/*
3274 * check the target process has a UID that matches the current process's
3275 */
3276static bool check_same_owner(struct task_struct *p)
3277{
3278	const struct cred *cred = current_cred(), *pcred;
3279	bool match;
3280
3281	rcu_read_lock();
3282	pcred = __task_cred(p);
3283	match = (uid_eq(cred->euid, pcred->euid) ||
3284		 uid_eq(cred->euid, pcred->uid));
3285	rcu_read_unlock();
3286	return match;
3287}
3288
3289static int __sched_setscheduler(struct task_struct *p, int policy,
3290				const struct sched_param *param, bool user)
3291{
3292	int retval, oldprio, oldpolicy = -1, on_rq, running;
3293	unsigned long flags;
3294	const struct sched_class *prev_class;
3295	struct rq *rq;
3296	int reset_on_fork;
3297
3298	/* may grab non-irq protected spin_locks */
3299	BUG_ON(in_interrupt());
3300recheck:
3301	/* double check policy once rq lock held */
3302	if (policy < 0) {
3303		reset_on_fork = p->sched_reset_on_fork;
3304		policy = oldpolicy = p->policy;
3305	} else {
3306		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3307		policy &= ~SCHED_RESET_ON_FORK;
3308
3309		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3310				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3311				policy != SCHED_IDLE)
3312			return -EINVAL;
3313	}
3314
3315	/*
3316	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3317	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3318	 * SCHED_BATCH and SCHED_IDLE is 0.
3319	 */
3320	if (param->sched_priority < 0 ||
3321	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3322	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3323		return -EINVAL;
3324	if (rt_policy(policy) != (param->sched_priority != 0))
3325		return -EINVAL;
3326
3327	/*
3328	 * Allow unprivileged RT tasks to decrease priority:
3329	 */
3330	if (user && !capable(CAP_SYS_NICE)) {
3331		if (rt_policy(policy)) {
3332			unsigned long rlim_rtprio =
3333					task_rlimit(p, RLIMIT_RTPRIO);
3334
3335			/* can't set/change the rt policy */
3336			if (policy != p->policy && !rlim_rtprio)
3337				return -EPERM;
3338
3339			/* can't increase priority */
3340			if (param->sched_priority > p->rt_priority &&
3341			    param->sched_priority > rlim_rtprio)
3342				return -EPERM;
3343		}
3344
3345		/*
3346		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3347		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3348		 */
3349		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3350			if (!can_nice(p, TASK_NICE(p)))
3351				return -EPERM;
3352		}
3353
3354		/* can't change other user's priorities */
3355		if (!check_same_owner(p))
3356			return -EPERM;
3357
3358		/* Normal users shall not reset the sched_reset_on_fork flag */
3359		if (p->sched_reset_on_fork && !reset_on_fork)
3360			return -EPERM;
3361	}
3362
3363	if (user) {
3364		retval = security_task_setscheduler(p);
3365		if (retval)
3366			return retval;
3367	}
3368
3369	/*
3370	 * make sure no PI-waiters arrive (or leave) while we are
3371	 * changing the priority of the task:
3372	 *
3373	 * To be able to change p->policy safely, the appropriate
3374	 * runqueue lock must be held.
3375	 */
3376	rq = task_rq_lock(p, &flags);
3377
3378	/*
3379	 * Changing the policy of the stop threads its a very bad idea
3380	 */
3381	if (p == rq->stop) {
3382		task_rq_unlock(rq, p, &flags);
3383		return -EINVAL;
3384	}
3385
3386	/*
3387	 * If not changing anything there's no need to proceed further:
3388	 */
3389	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3390			param->sched_priority == p->rt_priority))) {
3391		task_rq_unlock(rq, p, &flags);
3392		return 0;
3393	}
3394
3395#ifdef CONFIG_RT_GROUP_SCHED
3396	if (user) {
3397		/*
3398		 * Do not allow realtime tasks into groups that have no runtime
3399		 * assigned.
3400		 */
3401		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3402				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3403				!task_group_is_autogroup(task_group(p))) {
3404			task_rq_unlock(rq, p, &flags);
3405			return -EPERM;
3406		}
3407	}
3408#endif
3409
3410	/* recheck policy now with rq lock held */
3411	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3412		policy = oldpolicy = -1;
3413		task_rq_unlock(rq, p, &flags);
3414		goto recheck;
3415	}
3416	on_rq = p->on_rq;
3417	running = task_current(rq, p);
3418	if (on_rq)
3419		dequeue_task(rq, p, 0);
3420	if (running)
3421		p->sched_class->put_prev_task(rq, p);
3422
3423	p->sched_reset_on_fork = reset_on_fork;
3424
3425	oldprio = p->prio;
3426	prev_class = p->sched_class;
3427	__setscheduler(rq, p, policy, param->sched_priority);
3428
3429	if (running)
3430		p->sched_class->set_curr_task(rq);
3431	if (on_rq)
3432		enqueue_task(rq, p, 0);
3433
3434	check_class_changed(rq, p, prev_class, oldprio);
3435	task_rq_unlock(rq, p, &flags);
3436
3437	rt_mutex_adjust_pi(p);
3438
3439	return 0;
3440}
3441
3442/**
3443 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3444 * @p: the task in question.
3445 * @policy: new policy.
3446 * @param: structure containing the new RT priority.
3447 *
3448 * Return: 0 on success. An error code otherwise.
3449 *
3450 * NOTE that the task may be already dead.
3451 */
3452int sched_setscheduler(struct task_struct *p, int policy,
3453		       const struct sched_param *param)
3454{
3455	return __sched_setscheduler(p, policy, param, true);
3456}
3457EXPORT_SYMBOL_GPL(sched_setscheduler);
3458
3459/**
3460 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3461 * @p: the task in question.
3462 * @policy: new policy.
3463 * @param: structure containing the new RT priority.
3464 *
3465 * Just like sched_setscheduler, only don't bother checking if the
3466 * current context has permission.  For example, this is needed in
3467 * stop_machine(): we create temporary high priority worker threads,
3468 * but our caller might not have that capability.
3469 *
3470 * Return: 0 on success. An error code otherwise.
3471 */
3472int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3473			       const struct sched_param *param)
3474{
3475	return __sched_setscheduler(p, policy, param, false);
3476}
3477
3478static int
3479do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3480{
3481	struct sched_param lparam;
3482	struct task_struct *p;
3483	int retval;
3484
3485	if (!param || pid < 0)
3486		return -EINVAL;
3487	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3488		return -EFAULT;
3489
3490	rcu_read_lock();
3491	retval = -ESRCH;
3492	p = find_process_by_pid(pid);
3493	if (p != NULL)
3494		retval = sched_setscheduler(p, policy, &lparam);
3495	rcu_read_unlock();
3496
3497	return retval;
3498}
3499
3500/**
3501 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3502 * @pid: the pid in question.
3503 * @policy: new policy.
3504 * @param: structure containing the new RT priority.
3505 *
3506 * Return: 0 on success. An error code otherwise.
3507 */
3508SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3509		struct sched_param __user *, param)
3510{
3511	/* negative values for policy are not valid */
3512	if (policy < 0)
3513		return -EINVAL;
3514
3515	return do_sched_setscheduler(pid, policy, param);
3516}
3517
3518/**
3519 * sys_sched_setparam - set/change the RT priority of a thread
3520 * @pid: the pid in question.
3521 * @param: structure containing the new RT priority.
3522 *
3523 * Return: 0 on success. An error code otherwise.
3524 */
3525SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3526{
3527	return do_sched_setscheduler(pid, -1, param);
3528}
3529
3530/**
3531 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3532 * @pid: the pid in question.
3533 *
3534 * Return: On success, the policy of the thread. Otherwise, a negative error
3535 * code.
3536 */
3537SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3538{
3539	struct task_struct *p;
3540	int retval;
3541
3542	if (pid < 0)
3543		return -EINVAL;
3544
3545	retval = -ESRCH;
3546	rcu_read_lock();
3547	p = find_process_by_pid(pid);
3548	if (p) {
3549		retval = security_task_getscheduler(p);
3550		if (!retval)
3551			retval = p->policy
3552				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3553	}
3554	rcu_read_unlock();
3555	return retval;
3556}
3557
3558/**
3559 * sys_sched_getparam - get the RT priority of a thread
3560 * @pid: the pid in question.
3561 * @param: structure containing the RT priority.
3562 *
3563 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3564 * code.
3565 */
3566SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3567{
3568	struct sched_param lp;
3569	struct task_struct *p;
3570	int retval;
3571
3572	if (!param || pid < 0)
3573		return -EINVAL;
3574
3575	rcu_read_lock();
3576	p = find_process_by_pid(pid);
3577	retval = -ESRCH;
3578	if (!p)
3579		goto out_unlock;
3580
3581	retval = security_task_getscheduler(p);
3582	if (retval)
3583		goto out_unlock;
3584
3585	lp.sched_priority = p->rt_priority;
3586	rcu_read_unlock();
3587
3588	/*
3589	 * This one might sleep, we cannot do it with a spinlock held ...
3590	 */
3591	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3592
3593	return retval;
3594
3595out_unlock:
3596	rcu_read_unlock();
3597	return retval;
3598}
3599
3600long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3601{
3602	cpumask_var_t cpus_allowed, new_mask;
3603	struct task_struct *p;
3604	int retval;
3605
3606	get_online_cpus();
3607	rcu_read_lock();
3608
3609	p = find_process_by_pid(pid);
3610	if (!p) {
3611		rcu_read_unlock();
3612		put_online_cpus();
3613		return -ESRCH;
3614	}
3615
3616	/* Prevent p going away */
3617	get_task_struct(p);
3618	rcu_read_unlock();
3619
3620	if (p->flags & PF_NO_SETAFFINITY) {
3621		retval = -EINVAL;
3622		goto out_put_task;
3623	}
3624	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3625		retval = -ENOMEM;
3626		goto out_put_task;
3627	}
3628	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3629		retval = -ENOMEM;
3630		goto out_free_cpus_allowed;
3631	}
3632	retval = -EPERM;
3633	if (!check_same_owner(p)) {
3634		rcu_read_lock();
3635		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3636			rcu_read_unlock();
3637			goto out_unlock;
3638		}
3639		rcu_read_unlock();
3640	}
3641
3642	retval = security_task_setscheduler(p);
3643	if (retval)
3644		goto out_unlock;
3645
3646	cpuset_cpus_allowed(p, cpus_allowed);
3647	cpumask_and(new_mask, in_mask, cpus_allowed);
3648again:
3649	retval = set_cpus_allowed_ptr(p, new_mask);
3650
3651	if (!retval) {
3652		cpuset_cpus_allowed(p, cpus_allowed);
3653		if (!cpumask_subset(new_mask, cpus_allowed)) {
3654			/*
3655			 * We must have raced with a concurrent cpuset
3656			 * update. Just reset the cpus_allowed to the
3657			 * cpuset's cpus_allowed
3658			 */
3659			cpumask_copy(new_mask, cpus_allowed);
3660			goto again;
3661		}
3662	}
3663out_unlock:
3664	free_cpumask_var(new_mask);
3665out_free_cpus_allowed:
3666	free_cpumask_var(cpus_allowed);
3667out_put_task:
3668	put_task_struct(p);
3669	put_online_cpus();
3670	return retval;
3671}
3672
3673static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3674			     struct cpumask *new_mask)
3675{
3676	if (len < cpumask_size())
3677		cpumask_clear(new_mask);
3678	else if (len > cpumask_size())
3679		len = cpumask_size();
3680
3681	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3682}
3683
3684/**
3685 * sys_sched_setaffinity - set the cpu affinity of a process
3686 * @pid: pid of the process
3687 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3688 * @user_mask_ptr: user-space pointer to the new cpu mask
3689 *
3690 * Return: 0 on success. An error code otherwise.
3691 */
3692SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3693		unsigned long __user *, user_mask_ptr)
3694{
3695	cpumask_var_t new_mask;
3696	int retval;
3697
3698	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3699		return -ENOMEM;
3700
3701	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3702	if (retval == 0)
3703		retval = sched_setaffinity(pid, new_mask);
3704	free_cpumask_var(new_mask);
3705	return retval;
3706}
3707
3708long sched_getaffinity(pid_t pid, struct cpumask *mask)
3709{
3710	struct task_struct *p;
3711	unsigned long flags;
3712	int retval;
3713
3714	get_online_cpus();
3715	rcu_read_lock();
3716
3717	retval = -ESRCH;
3718	p = find_process_by_pid(pid);
3719	if (!p)
3720		goto out_unlock;
3721
3722	retval = security_task_getscheduler(p);
3723	if (retval)
3724		goto out_unlock;
3725
3726	raw_spin_lock_irqsave(&p->pi_lock, flags);
3727	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3728	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3729
3730out_unlock:
3731	rcu_read_unlock();
3732	put_online_cpus();
3733
3734	return retval;
3735}
3736
3737/**
3738 * sys_sched_getaffinity - get the cpu affinity of a process
3739 * @pid: pid of the process
3740 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3741 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3742 *
3743 * Return: 0 on success. An error code otherwise.
3744 */
3745SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3746		unsigned long __user *, user_mask_ptr)
3747{
3748	int ret;
3749	cpumask_var_t mask;
3750
3751	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3752		return -EINVAL;
3753	if (len & (sizeof(unsigned long)-1))
3754		return -EINVAL;
3755
3756	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3757		return -ENOMEM;
3758
3759	ret = sched_getaffinity(pid, mask);
3760	if (ret == 0) {
3761		size_t retlen = min_t(size_t, len, cpumask_size());
3762
3763		if (copy_to_user(user_mask_ptr, mask, retlen))
3764			ret = -EFAULT;
3765		else
3766			ret = retlen;
3767	}
3768	free_cpumask_var(mask);
3769
3770	return ret;
3771}
3772
3773/**
3774 * sys_sched_yield - yield the current processor to other threads.
3775 *
3776 * This function yields the current CPU to other tasks. If there are no
3777 * other threads running on this CPU then this function will return.
3778 *
3779 * Return: 0.
3780 */
3781SYSCALL_DEFINE0(sched_yield)
3782{
3783	struct rq *rq = this_rq_lock();
3784
3785	schedstat_inc(rq, yld_count);
3786	current->sched_class->yield_task(rq);
3787
3788	/*
3789	 * Since we are going to call schedule() anyway, there's
3790	 * no need to preempt or enable interrupts:
3791	 */
3792	__release(rq->lock);
3793	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3794	do_raw_spin_unlock(&rq->lock);
3795	sched_preempt_enable_no_resched();
3796
3797	schedule();
3798
3799	return 0;
3800}
3801
3802static inline int should_resched(void)
3803{
3804	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3805}
3806
3807static void __cond_resched(void)
3808{
3809	add_preempt_count(PREEMPT_ACTIVE);
3810	__schedule();
3811	sub_preempt_count(PREEMPT_ACTIVE);
3812}
3813
3814int __sched _cond_resched(void)
3815{
3816	if (should_resched()) {
3817		__cond_resched();
3818		return 1;
3819	}
3820	return 0;
3821}
3822EXPORT_SYMBOL(_cond_resched);
3823
3824/*
3825 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3826 * call schedule, and on return reacquire the lock.
3827 *
3828 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3829 * operations here to prevent schedule() from being called twice (once via
3830 * spin_unlock(), once by hand).
3831 */
3832int __cond_resched_lock(spinlock_t *lock)
3833{
3834	int resched = should_resched();
3835	int ret = 0;
3836
3837	lockdep_assert_held(lock);
3838
3839	if (spin_needbreak(lock) || resched) {
3840		spin_unlock(lock);
3841		if (resched)
3842			__cond_resched();
3843		else
3844			cpu_relax();
3845		ret = 1;
3846		spin_lock(lock);
3847	}
3848	return ret;
3849}
3850EXPORT_SYMBOL(__cond_resched_lock);
3851
3852int __sched __cond_resched_softirq(void)
3853{
3854	BUG_ON(!in_softirq());
3855
3856	if (should_resched()) {
3857		local_bh_enable();
3858		__cond_resched();
3859		local_bh_disable();
3860		return 1;
3861	}
3862	return 0;
3863}
3864EXPORT_SYMBOL(__cond_resched_softirq);
3865
3866/**
3867 * yield - yield the current processor to other threads.
3868 *
3869 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3870 *
3871 * The scheduler is at all times free to pick the calling task as the most
3872 * eligible task to run, if removing the yield() call from your code breaks
3873 * it, its already broken.
3874 *
3875 * Typical broken usage is:
3876 *
3877 * while (!event)
3878 * 	yield();
3879 *
3880 * where one assumes that yield() will let 'the other' process run that will
3881 * make event true. If the current task is a SCHED_FIFO task that will never
3882 * happen. Never use yield() as a progress guarantee!!
3883 *
3884 * If you want to use yield() to wait for something, use wait_event().
3885 * If you want to use yield() to be 'nice' for others, use cond_resched().
3886 * If you still want to use yield(), do not!
3887 */
3888void __sched yield(void)
3889{
3890	set_current_state(TASK_RUNNING);
3891	sys_sched_yield();
3892}
3893EXPORT_SYMBOL(yield);
3894
3895/**
3896 * yield_to - yield the current processor to another thread in
3897 * your thread group, or accelerate that thread toward the
3898 * processor it's on.
3899 * @p: target task
3900 * @preempt: whether task preemption is allowed or not
3901 *
3902 * It's the caller's job to ensure that the target task struct
3903 * can't go away on us before we can do any checks.
3904 *
3905 * Return:
3906 *	true (>0) if we indeed boosted the target task.
3907 *	false (0) if we failed to boost the target.
3908 *	-ESRCH if there's no task to yield to.
3909 */
3910bool __sched yield_to(struct task_struct *p, bool preempt)
3911{
3912	struct task_struct *curr = current;
3913	struct rq *rq, *p_rq;
3914	unsigned long flags;
3915	int yielded = 0;
3916
3917	local_irq_save(flags);
3918	rq = this_rq();
3919
3920again:
3921	p_rq = task_rq(p);
3922	/*
3923	 * If we're the only runnable task on the rq and target rq also
3924	 * has only one task, there's absolutely no point in yielding.
3925	 */
3926	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3927		yielded = -ESRCH;
3928		goto out_irq;
3929	}
3930
3931	double_rq_lock(rq, p_rq);
3932	while (task_rq(p) != p_rq) {
3933		double_rq_unlock(rq, p_rq);
3934		goto again;
3935	}
3936
3937	if (!curr->sched_class->yield_to_task)
3938		goto out_unlock;
3939
3940	if (curr->sched_class != p->sched_class)
3941		goto out_unlock;
3942
3943	if (task_running(p_rq, p) || p->state)
3944		goto out_unlock;
3945
3946	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3947	if (yielded) {
3948		schedstat_inc(rq, yld_count);
3949		/*
3950		 * Make p's CPU reschedule; pick_next_entity takes care of
3951		 * fairness.
3952		 */
3953		if (preempt && rq != p_rq)
3954			resched_task(p_rq->curr);
3955	}
3956
3957out_unlock:
3958	double_rq_unlock(rq, p_rq);
3959out_irq:
3960	local_irq_restore(flags);
3961
3962	if (yielded > 0)
3963		schedule();
3964
3965	return yielded;
3966}
3967EXPORT_SYMBOL_GPL(yield_to);
3968
3969/*
3970 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3971 * that process accounting knows that this is a task in IO wait state.
3972 */
3973void __sched io_schedule(void)
3974{
3975	struct rq *rq = raw_rq();
3976
3977	delayacct_blkio_start();
3978	atomic_inc(&rq->nr_iowait);
3979	blk_flush_plug(current);
3980	current->in_iowait = 1;
3981	schedule();
3982	current->in_iowait = 0;
3983	atomic_dec(&rq->nr_iowait);
3984	delayacct_blkio_end();
3985}
3986EXPORT_SYMBOL(io_schedule);
3987
3988long __sched io_schedule_timeout(long timeout)
3989{
3990	struct rq *rq = raw_rq();
3991	long ret;
3992
3993	delayacct_blkio_start();
3994	atomic_inc(&rq->nr_iowait);
3995	blk_flush_plug(current);
3996	current->in_iowait = 1;
3997	ret = schedule_timeout(timeout);
3998	current->in_iowait = 0;
3999	atomic_dec(&rq->nr_iowait);
4000	delayacct_blkio_end();
4001	return ret;
4002}
4003
4004/**
4005 * sys_sched_get_priority_max - return maximum RT priority.
4006 * @policy: scheduling class.
4007 *
4008 * Return: On success, this syscall returns the maximum
4009 * rt_priority that can be used by a given scheduling class.
4010 * On failure, a negative error code is returned.
4011 */
4012SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4013{
4014	int ret = -EINVAL;
4015
4016	switch (policy) {
4017	case SCHED_FIFO:
4018	case SCHED_RR:
4019		ret = MAX_USER_RT_PRIO-1;
4020		break;
4021	case SCHED_NORMAL:
4022	case SCHED_BATCH:
4023	case SCHED_IDLE:
4024		ret = 0;
4025		break;
4026	}
4027	return ret;
4028}
4029
4030/**
4031 * sys_sched_get_priority_min - return minimum RT priority.
4032 * @policy: scheduling class.
4033 *
4034 * Return: On success, this syscall returns the minimum
4035 * rt_priority that can be used by a given scheduling class.
4036 * On failure, a negative error code is returned.
4037 */
4038SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4039{
4040	int ret = -EINVAL;
4041
4042	switch (policy) {
4043	case SCHED_FIFO:
4044	case SCHED_RR:
4045		ret = 1;
4046		break;
4047	case SCHED_NORMAL:
4048	case SCHED_BATCH:
4049	case SCHED_IDLE:
4050		ret = 0;
4051	}
4052	return ret;
4053}
4054
4055/**
4056 * sys_sched_rr_get_interval - return the default timeslice of a process.
4057 * @pid: pid of the process.
4058 * @interval: userspace pointer to the timeslice value.
4059 *
4060 * this syscall writes the default timeslice value of a given process
4061 * into the user-space timespec buffer. A value of '0' means infinity.
4062 *
4063 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4064 * an error code.
4065 */
4066SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4067		struct timespec __user *, interval)
4068{
4069	struct task_struct *p;
4070	unsigned int time_slice;
4071	unsigned long flags;
4072	struct rq *rq;
4073	int retval;
4074	struct timespec t;
4075
4076	if (pid < 0)
4077		return -EINVAL;
4078
4079	retval = -ESRCH;
4080	rcu_read_lock();
4081	p = find_process_by_pid(pid);
4082	if (!p)
4083		goto out_unlock;
4084
4085	retval = security_task_getscheduler(p);
4086	if (retval)
4087		goto out_unlock;
4088
4089	rq = task_rq_lock(p, &flags);
4090	time_slice = p->sched_class->get_rr_interval(rq, p);
4091	task_rq_unlock(rq, p, &flags);
4092
4093	rcu_read_unlock();
4094	jiffies_to_timespec(time_slice, &t);
4095	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4096	return retval;
4097
4098out_unlock:
4099	rcu_read_unlock();
4100	return retval;
4101}
4102
4103static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4104
4105void sched_show_task(struct task_struct *p)
4106{
4107	unsigned long free = 0;
4108	int ppid;
4109	unsigned state;
4110
4111	state = p->state ? __ffs(p->state) + 1 : 0;
4112	printk(KERN_INFO "%-15.15s %c", p->comm,
4113		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4114#if BITS_PER_LONG == 32
4115	if (state == TASK_RUNNING)
4116		printk(KERN_CONT " running  ");
4117	else
4118		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4119#else
4120	if (state == TASK_RUNNING)
4121		printk(KERN_CONT "  running task    ");
4122	else
4123		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4124#endif
4125#ifdef CONFIG_DEBUG_STACK_USAGE
4126	free = stack_not_used(p);
4127#endif
4128	rcu_read_lock();
4129	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4130	rcu_read_unlock();
4131	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4132		task_pid_nr(p), ppid,
4133		(unsigned long)task_thread_info(p)->flags);
4134
4135	print_worker_info(KERN_INFO, p);
4136	show_stack(p, NULL);
4137}
4138
4139void show_state_filter(unsigned long state_filter)
4140{
4141	struct task_struct *g, *p;
4142
4143#if BITS_PER_LONG == 32
4144	printk(KERN_INFO
4145		"  task                PC stack   pid father\n");
4146#else
4147	printk(KERN_INFO
4148		"  task                        PC stack   pid father\n");
4149#endif
4150	rcu_read_lock();
4151	do_each_thread(g, p) {
4152		/*
4153		 * reset the NMI-timeout, listing all files on a slow
4154		 * console might take a lot of time:
4155		 */
4156		touch_nmi_watchdog();
4157		if (!state_filter || (p->state & state_filter))
4158			sched_show_task(p);
4159	} while_each_thread(g, p);
4160
4161	touch_all_softlockup_watchdogs();
4162
4163#ifdef CONFIG_SCHED_DEBUG
4164	sysrq_sched_debug_show();
4165#endif
4166	rcu_read_unlock();
4167	/*
4168	 * Only show locks if all tasks are dumped:
4169	 */
4170	if (!state_filter)
4171		debug_show_all_locks();
4172}
4173
4174void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4175{
4176	idle->sched_class = &idle_sched_class;
4177}
4178
4179/**
4180 * init_idle - set up an idle thread for a given CPU
4181 * @idle: task in question
4182 * @cpu: cpu the idle task belongs to
4183 *
4184 * NOTE: this function does not set the idle thread's NEED_RESCHED
4185 * flag, to make booting more robust.
4186 */
4187void __cpuinit init_idle(struct task_struct *idle, int cpu)
4188{
4189	struct rq *rq = cpu_rq(cpu);
4190	unsigned long flags;
4191
4192	raw_spin_lock_irqsave(&rq->lock, flags);
4193
4194	__sched_fork(idle);
4195	idle->state = TASK_RUNNING;
4196	idle->se.exec_start = sched_clock();
4197
4198	do_set_cpus_allowed(idle, cpumask_of(cpu));
4199	/*
4200	 * We're having a chicken and egg problem, even though we are
4201	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4202	 * lockdep check in task_group() will fail.
4203	 *
4204	 * Similar case to sched_fork(). / Alternatively we could
4205	 * use task_rq_lock() here and obtain the other rq->lock.
4206	 *
4207	 * Silence PROVE_RCU
4208	 */
4209	rcu_read_lock();
4210	__set_task_cpu(idle, cpu);
4211	rcu_read_unlock();
4212
4213	rq->curr = rq->idle = idle;
4214#if defined(CONFIG_SMP)
4215	idle->on_cpu = 1;
4216#endif
4217	raw_spin_unlock_irqrestore(&rq->lock, flags);
4218
4219	/* Set the preempt count _outside_ the spinlocks! */
4220	task_thread_info(idle)->preempt_count = 0;
4221
4222	/*
4223	 * The idle tasks have their own, simple scheduling class:
4224	 */
4225	idle->sched_class = &idle_sched_class;
4226	ftrace_graph_init_idle_task(idle, cpu);
4227	vtime_init_idle(idle, cpu);
4228#if defined(CONFIG_SMP)
4229	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4230#endif
4231}
4232
4233#ifdef CONFIG_SMP
4234void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4235{
4236	if (p->sched_class && p->sched_class->set_cpus_allowed)
4237		p->sched_class->set_cpus_allowed(p, new_mask);
4238
4239	cpumask_copy(&p->cpus_allowed, new_mask);
4240	p->nr_cpus_allowed = cpumask_weight(new_mask);
4241}
4242
4243/*
4244 * This is how migration works:
4245 *
4246 * 1) we invoke migration_cpu_stop() on the target CPU using
4247 *    stop_one_cpu().
4248 * 2) stopper starts to run (implicitly forcing the migrated thread
4249 *    off the CPU)
4250 * 3) it checks whether the migrated task is still in the wrong runqueue.
4251 * 4) if it's in the wrong runqueue then the migration thread removes
4252 *    it and puts it into the right queue.
4253 * 5) stopper completes and stop_one_cpu() returns and the migration
4254 *    is done.
4255 */
4256
4257/*
4258 * Change a given task's CPU affinity. Migrate the thread to a
4259 * proper CPU and schedule it away if the CPU it's executing on
4260 * is removed from the allowed bitmask.
4261 *
4262 * NOTE: the caller must have a valid reference to the task, the
4263 * task must not exit() & deallocate itself prematurely. The
4264 * call is not atomic; no spinlocks may be held.
4265 */
4266int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4267{
4268	unsigned long flags;
4269	struct rq *rq;
4270	unsigned int dest_cpu;
4271	int ret = 0;
4272
4273	rq = task_rq_lock(p, &flags);
4274
4275	if (cpumask_equal(&p->cpus_allowed, new_mask))
4276		goto out;
4277
4278	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4279		ret = -EINVAL;
4280		goto out;
4281	}
4282
4283	do_set_cpus_allowed(p, new_mask);
4284
4285	/* Can the task run on the task's current CPU? If so, we're done */
4286	if (cpumask_test_cpu(task_cpu(p), new_mask))
4287		goto out;
4288
4289	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4290	if (p->on_rq) {
4291		struct migration_arg arg = { p, dest_cpu };
4292		/* Need help from migration thread: drop lock and wait. */
4293		task_rq_unlock(rq, p, &flags);
4294		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4295		tlb_migrate_finish(p->mm);
4296		return 0;
4297	}
4298out:
4299	task_rq_unlock(rq, p, &flags);
4300
4301	return ret;
4302}
4303EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4304
4305/*
4306 * Move (not current) task off this cpu, onto dest cpu. We're doing
4307 * this because either it can't run here any more (set_cpus_allowed()
4308 * away from this CPU, or CPU going down), or because we're
4309 * attempting to rebalance this task on exec (sched_exec).
4310 *
4311 * So we race with normal scheduler movements, but that's OK, as long
4312 * as the task is no longer on this CPU.
4313 *
4314 * Returns non-zero if task was successfully migrated.
4315 */
4316static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4317{
4318	struct rq *rq_dest, *rq_src;
4319	int ret = 0;
4320
4321	if (unlikely(!cpu_active(dest_cpu)))
4322		return ret;
4323
4324	rq_src = cpu_rq(src_cpu);
4325	rq_dest = cpu_rq(dest_cpu);
4326
4327	raw_spin_lock(&p->pi_lock);
4328	double_rq_lock(rq_src, rq_dest);
4329	/* Already moved. */
4330	if (task_cpu(p) != src_cpu)
4331		goto done;
4332	/* Affinity changed (again). */
4333	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4334		goto fail;
4335
4336	/*
4337	 * If we're not on a rq, the next wake-up will ensure we're
4338	 * placed properly.
4339	 */
4340	if (p->on_rq) {
4341		dequeue_task(rq_src, p, 0);
4342		set_task_cpu(p, dest_cpu);
4343		enqueue_task(rq_dest, p, 0);
4344		check_preempt_curr(rq_dest, p, 0);
4345	}
4346done:
4347	ret = 1;
4348fail:
4349	double_rq_unlock(rq_src, rq_dest);
4350	raw_spin_unlock(&p->pi_lock);
4351	return ret;
4352}
4353
4354/*
4355 * migration_cpu_stop - this will be executed by a highprio stopper thread
4356 * and performs thread migration by bumping thread off CPU then
4357 * 'pushing' onto another runqueue.
4358 */
4359static int migration_cpu_stop(void *data)
4360{
4361	struct migration_arg *arg = data;
4362
4363	/*
4364	 * The original target cpu might have gone down and we might
4365	 * be on another cpu but it doesn't matter.
4366	 */
4367	local_irq_disable();
4368	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4369	local_irq_enable();
4370	return 0;
4371}
4372
4373#ifdef CONFIG_HOTPLUG_CPU
4374
4375/*
4376 * Ensures that the idle task is using init_mm right before its cpu goes
4377 * offline.
4378 */
4379void idle_task_exit(void)
4380{
4381	struct mm_struct *mm = current->active_mm;
4382
4383	BUG_ON(cpu_online(smp_processor_id()));
4384
4385	if (mm != &init_mm)
4386		switch_mm(mm, &init_mm, current);
4387	mmdrop(mm);
4388}
4389
4390/*
4391 * Since this CPU is going 'away' for a while, fold any nr_active delta
4392 * we might have. Assumes we're called after migrate_tasks() so that the
4393 * nr_active count is stable.
4394 *
4395 * Also see the comment "Global load-average calculations".
4396 */
4397static void calc_load_migrate(struct rq *rq)
4398{
4399	long delta = calc_load_fold_active(rq);
4400	if (delta)
4401		atomic_long_add(delta, &calc_load_tasks);
4402}
4403
4404/*
4405 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4406 * try_to_wake_up()->select_task_rq().
4407 *
4408 * Called with rq->lock held even though we'er in stop_machine() and
4409 * there's no concurrency possible, we hold the required locks anyway
4410 * because of lock validation efforts.
4411 */
4412static void migrate_tasks(unsigned int dead_cpu)
4413{
4414	struct rq *rq = cpu_rq(dead_cpu);
4415	struct task_struct *next, *stop = rq->stop;
4416	int dest_cpu;
4417
4418	/*
4419	 * Fudge the rq selection such that the below task selection loop
4420	 * doesn't get stuck on the currently eligible stop task.
4421	 *
4422	 * We're currently inside stop_machine() and the rq is either stuck
4423	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4424	 * either way we should never end up calling schedule() until we're
4425	 * done here.
4426	 */
4427	rq->stop = NULL;
4428
4429	/*
4430	 * put_prev_task() and pick_next_task() sched
4431	 * class method both need to have an up-to-date
4432	 * value of rq->clock[_task]
4433	 */
4434	update_rq_clock(rq);
4435
4436	for ( ; ; ) {
4437		/*
4438		 * There's this thread running, bail when that's the only
4439		 * remaining thread.
4440		 */
4441		if (rq->nr_running == 1)
4442			break;
4443
4444		next = pick_next_task(rq);
4445		BUG_ON(!next);
4446		next->sched_class->put_prev_task(rq, next);
4447
4448		/* Find suitable destination for @next, with force if needed. */
4449		dest_cpu = select_fallback_rq(dead_cpu, next);
4450		raw_spin_unlock(&rq->lock);
4451
4452		__migrate_task(next, dead_cpu, dest_cpu);
4453
4454		raw_spin_lock(&rq->lock);
4455	}
4456
4457	rq->stop = stop;
4458}
4459
4460#endif /* CONFIG_HOTPLUG_CPU */
4461
4462#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4463
4464static struct ctl_table sd_ctl_dir[] = {
4465	{
4466		.procname	= "sched_domain",
4467		.mode		= 0555,
4468	},
4469	{}
4470};
4471
4472static struct ctl_table sd_ctl_root[] = {
4473	{
4474		.procname	= "kernel",
4475		.mode		= 0555,
4476		.child		= sd_ctl_dir,
4477	},
4478	{}
4479};
4480
4481static struct ctl_table *sd_alloc_ctl_entry(int n)
4482{
4483	struct ctl_table *entry =
4484		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4485
4486	return entry;
4487}
4488
4489static void sd_free_ctl_entry(struct ctl_table **tablep)
4490{
4491	struct ctl_table *entry;
4492
4493	/*
4494	 * In the intermediate directories, both the child directory and
4495	 * procname are dynamically allocated and could fail but the mode
4496	 * will always be set. In the lowest directory the names are
4497	 * static strings and all have proc handlers.
4498	 */
4499	for (entry = *tablep; entry->mode; entry++) {
4500		if (entry->child)
4501			sd_free_ctl_entry(&entry->child);
4502		if (entry->proc_handler == NULL)
4503			kfree(entry->procname);
4504	}
4505
4506	kfree(*tablep);
4507	*tablep = NULL;
4508}
4509
4510static int min_load_idx = 0;
4511static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4512
4513static void
4514set_table_entry(struct ctl_table *entry,
4515		const char *procname, void *data, int maxlen,
4516		umode_t mode, proc_handler *proc_handler,
4517		bool load_idx)
4518{
4519	entry->procname = procname;
4520	entry->data = data;
4521	entry->maxlen = maxlen;
4522	entry->mode = mode;
4523	entry->proc_handler = proc_handler;
4524
4525	if (load_idx) {
4526		entry->extra1 = &min_load_idx;
4527		entry->extra2 = &max_load_idx;
4528	}
4529}
4530
4531static struct ctl_table *
4532sd_alloc_ctl_domain_table(struct sched_domain *sd)
4533{
4534	struct ctl_table *table = sd_alloc_ctl_entry(13);
4535
4536	if (table == NULL)
4537		return NULL;
4538
4539	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4540		sizeof(long), 0644, proc_doulongvec_minmax, false);
4541	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4542		sizeof(long), 0644, proc_doulongvec_minmax, false);
4543	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4544		sizeof(int), 0644, proc_dointvec_minmax, true);
4545	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4546		sizeof(int), 0644, proc_dointvec_minmax, true);
4547	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4548		sizeof(int), 0644, proc_dointvec_minmax, true);
4549	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4550		sizeof(int), 0644, proc_dointvec_minmax, true);
4551	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4552		sizeof(int), 0644, proc_dointvec_minmax, true);
4553	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4554		sizeof(int), 0644, proc_dointvec_minmax, false);
4555	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4556		sizeof(int), 0644, proc_dointvec_minmax, false);
4557	set_table_entry(&table[9], "cache_nice_tries",
4558		&sd->cache_nice_tries,
4559		sizeof(int), 0644, proc_dointvec_minmax, false);
4560	set_table_entry(&table[10], "flags", &sd->flags,
4561		sizeof(int), 0644, proc_dointvec_minmax, false);
4562	set_table_entry(&table[11], "name", sd->name,
4563		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4564	/* &table[12] is terminator */
4565
4566	return table;
4567}
4568
4569static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4570{
4571	struct ctl_table *entry, *table;
4572	struct sched_domain *sd;
4573	int domain_num = 0, i;
4574	char buf[32];
4575
4576	for_each_domain(cpu, sd)
4577		domain_num++;
4578	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4579	if (table == NULL)
4580		return NULL;
4581
4582	i = 0;
4583	for_each_domain(cpu, sd) {
4584		snprintf(buf, 32, "domain%d", i);
4585		entry->procname = kstrdup(buf, GFP_KERNEL);
4586		entry->mode = 0555;
4587		entry->child = sd_alloc_ctl_domain_table(sd);
4588		entry++;
4589		i++;
4590	}
4591	return table;
4592}
4593
4594static struct ctl_table_header *sd_sysctl_header;
4595static void register_sched_domain_sysctl(void)
4596{
4597	int i, cpu_num = num_possible_cpus();
4598	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4599	char buf[32];
4600
4601	WARN_ON(sd_ctl_dir[0].child);
4602	sd_ctl_dir[0].child = entry;
4603
4604	if (entry == NULL)
4605		return;
4606
4607	for_each_possible_cpu(i) {
4608		snprintf(buf, 32, "cpu%d", i);
4609		entry->procname = kstrdup(buf, GFP_KERNEL);
4610		entry->mode = 0555;
4611		entry->child = sd_alloc_ctl_cpu_table(i);
4612		entry++;
4613	}
4614
4615	WARN_ON(sd_sysctl_header);
4616	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4617}
4618
4619/* may be called multiple times per register */
4620static void unregister_sched_domain_sysctl(void)
4621{
4622	if (sd_sysctl_header)
4623		unregister_sysctl_table(sd_sysctl_header);
4624	sd_sysctl_header = NULL;
4625	if (sd_ctl_dir[0].child)
4626		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4627}
4628#else
4629static void register_sched_domain_sysctl(void)
4630{
4631}
4632static void unregister_sched_domain_sysctl(void)
4633{
4634}
4635#endif
4636
4637static void set_rq_online(struct rq *rq)
4638{
4639	if (!rq->online) {
4640		const struct sched_class *class;
4641
4642		cpumask_set_cpu(rq->cpu, rq->rd->online);
4643		rq->online = 1;
4644
4645		for_each_class(class) {
4646			if (class->rq_online)
4647				class->rq_online(rq);
4648		}
4649	}
4650}
4651
4652static void set_rq_offline(struct rq *rq)
4653{
4654	if (rq->online) {
4655		const struct sched_class *class;
4656
4657		for_each_class(class) {
4658			if (class->rq_offline)
4659				class->rq_offline(rq);
4660		}
4661
4662		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4663		rq->online = 0;
4664	}
4665}
4666
4667/*
4668 * migration_call - callback that gets triggered when a CPU is added.
4669 * Here we can start up the necessary migration thread for the new CPU.
4670 */
4671static int __cpuinit
4672migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4673{
4674	int cpu = (long)hcpu;
4675	unsigned long flags;
4676	struct rq *rq = cpu_rq(cpu);
4677
4678	switch (action & ~CPU_TASKS_FROZEN) {
4679
4680	case CPU_UP_PREPARE:
4681		rq->calc_load_update = calc_load_update;
4682		break;
4683
4684	case CPU_ONLINE:
4685		/* Update our root-domain */
4686		raw_spin_lock_irqsave(&rq->lock, flags);
4687		if (rq->rd) {
4688			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4689
4690			set_rq_online(rq);
4691		}
4692		raw_spin_unlock_irqrestore(&rq->lock, flags);
4693		break;
4694
4695#ifdef CONFIG_HOTPLUG_CPU
4696	case CPU_DYING:
4697		sched_ttwu_pending();
4698		/* Update our root-domain */
4699		raw_spin_lock_irqsave(&rq->lock, flags);
4700		if (rq->rd) {
4701			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4702			set_rq_offline(rq);
4703		}
4704		migrate_tasks(cpu);
4705		BUG_ON(rq->nr_running != 1); /* the migration thread */
4706		raw_spin_unlock_irqrestore(&rq->lock, flags);
4707		break;
4708
4709	case CPU_DEAD:
4710		calc_load_migrate(rq);
4711		break;
4712#endif
4713	}
4714
4715	update_max_interval();
4716
4717	return NOTIFY_OK;
4718}
4719
4720/*
4721 * Register at high priority so that task migration (migrate_all_tasks)
4722 * happens before everything else.  This has to be lower priority than
4723 * the notifier in the perf_event subsystem, though.
4724 */
4725static struct notifier_block __cpuinitdata migration_notifier = {
4726	.notifier_call = migration_call,
4727	.priority = CPU_PRI_MIGRATION,
4728};
4729
4730static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4731				      unsigned long action, void *hcpu)
4732{
4733	switch (action & ~CPU_TASKS_FROZEN) {
4734	case CPU_STARTING:
4735	case CPU_DOWN_FAILED:
4736		set_cpu_active((long)hcpu, true);
4737		return NOTIFY_OK;
4738	default:
4739		return NOTIFY_DONE;
4740	}
4741}
4742
4743static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4744					unsigned long action, void *hcpu)
4745{
4746	switch (action & ~CPU_TASKS_FROZEN) {
4747	case CPU_DOWN_PREPARE:
4748		set_cpu_active((long)hcpu, false);
4749		return NOTIFY_OK;
4750	default:
4751		return NOTIFY_DONE;
4752	}
4753}
4754
4755static int __init migration_init(void)
4756{
4757	void *cpu = (void *)(long)smp_processor_id();
4758	int err;
4759
4760	/* Initialize migration for the boot CPU */
4761	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4762	BUG_ON(err == NOTIFY_BAD);
4763	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4764	register_cpu_notifier(&migration_notifier);
4765
4766	/* Register cpu active notifiers */
4767	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4768	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4769
4770	return 0;
4771}
4772early_initcall(migration_init);
4773#endif
4774
4775#ifdef CONFIG_SMP
4776
4777static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4778
4779#ifdef CONFIG_SCHED_DEBUG
4780
4781static __read_mostly int sched_debug_enabled;
4782
4783static int __init sched_debug_setup(char *str)
4784{
4785	sched_debug_enabled = 1;
4786
4787	return 0;
4788}
4789early_param("sched_debug", sched_debug_setup);
4790
4791static inline bool sched_debug(void)
4792{
4793	return sched_debug_enabled;
4794}
4795
4796static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4797				  struct cpumask *groupmask)
4798{
4799	struct sched_group *group = sd->groups;
4800	char str[256];
4801
4802	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4803	cpumask_clear(groupmask);
4804
4805	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4806
4807	if (!(sd->flags & SD_LOAD_BALANCE)) {
4808		printk("does not load-balance\n");
4809		if (sd->parent)
4810			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4811					" has parent");
4812		return -1;
4813	}
4814
4815	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4816
4817	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4818		printk(KERN_ERR "ERROR: domain->span does not contain "
4819				"CPU%d\n", cpu);
4820	}
4821	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4822		printk(KERN_ERR "ERROR: domain->groups does not contain"
4823				" CPU%d\n", cpu);
4824	}
4825
4826	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4827	do {
4828		if (!group) {
4829			printk("\n");
4830			printk(KERN_ERR "ERROR: group is NULL\n");
4831			break;
4832		}
4833
4834		/*
4835		 * Even though we initialize ->power to something semi-sane,
4836		 * we leave power_orig unset. This allows us to detect if
4837		 * domain iteration is still funny without causing /0 traps.
4838		 */
4839		if (!group->sgp->power_orig) {
4840			printk(KERN_CONT "\n");
4841			printk(KERN_ERR "ERROR: domain->cpu_power not "
4842					"set\n");
4843			break;
4844		}
4845
4846		if (!cpumask_weight(sched_group_cpus(group))) {
4847			printk(KERN_CONT "\n");
4848			printk(KERN_ERR "ERROR: empty group\n");
4849			break;
4850		}
4851
4852		if (!(sd->flags & SD_OVERLAP) &&
4853		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4854			printk(KERN_CONT "\n");
4855			printk(KERN_ERR "ERROR: repeated CPUs\n");
4856			break;
4857		}
4858
4859		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4860
4861		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4862
4863		printk(KERN_CONT " %s", str);
4864		if (group->sgp->power != SCHED_POWER_SCALE) {
4865			printk(KERN_CONT " (cpu_power = %d)",
4866				group->sgp->power);
4867		}
4868
4869		group = group->next;
4870	} while (group != sd->groups);
4871	printk(KERN_CONT "\n");
4872
4873	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4874		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4875
4876	if (sd->parent &&
4877	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4878		printk(KERN_ERR "ERROR: parent span is not a superset "
4879			"of domain->span\n");
4880	return 0;
4881}
4882
4883static void sched_domain_debug(struct sched_domain *sd, int cpu)
4884{
4885	int level = 0;
4886
4887	if (!sched_debug_enabled)
4888		return;
4889
4890	if (!sd) {
4891		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4892		return;
4893	}
4894
4895	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4896
4897	for (;;) {
4898		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4899			break;
4900		level++;
4901		sd = sd->parent;
4902		if (!sd)
4903			break;
4904	}
4905}
4906#else /* !CONFIG_SCHED_DEBUG */
4907# define sched_domain_debug(sd, cpu) do { } while (0)
4908static inline bool sched_debug(void)
4909{
4910	return false;
4911}
4912#endif /* CONFIG_SCHED_DEBUG */
4913
4914static int sd_degenerate(struct sched_domain *sd)
4915{
4916	if (cpumask_weight(sched_domain_span(sd)) == 1)
4917		return 1;
4918
4919	/* Following flags need at least 2 groups */
4920	if (sd->flags & (SD_LOAD_BALANCE |
4921			 SD_BALANCE_NEWIDLE |
4922			 SD_BALANCE_FORK |
4923			 SD_BALANCE_EXEC |
4924			 SD_SHARE_CPUPOWER |
4925			 SD_SHARE_PKG_RESOURCES)) {
4926		if (sd->groups != sd->groups->next)
4927			return 0;
4928	}
4929
4930	/* Following flags don't use groups */
4931	if (sd->flags & (SD_WAKE_AFFINE))
4932		return 0;
4933
4934	return 1;
4935}
4936
4937static int
4938sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4939{
4940	unsigned long cflags = sd->flags, pflags = parent->flags;
4941
4942	if (sd_degenerate(parent))
4943		return 1;
4944
4945	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4946		return 0;
4947
4948	/* Flags needing groups don't count if only 1 group in parent */
4949	if (parent->groups == parent->groups->next) {
4950		pflags &= ~(SD_LOAD_BALANCE |
4951				SD_BALANCE_NEWIDLE |
4952				SD_BALANCE_FORK |
4953				SD_BALANCE_EXEC |
4954				SD_SHARE_CPUPOWER |
4955				SD_SHARE_PKG_RESOURCES);
4956		if (nr_node_ids == 1)
4957			pflags &= ~SD_SERIALIZE;
4958	}
4959	if (~cflags & pflags)
4960		return 0;
4961
4962	return 1;
4963}
4964
4965static void free_rootdomain(struct rcu_head *rcu)
4966{
4967	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4968
4969	cpupri_cleanup(&rd->cpupri);
4970	free_cpumask_var(rd->rto_mask);
4971	free_cpumask_var(rd->online);
4972	free_cpumask_var(rd->span);
4973	kfree(rd);
4974}
4975
4976static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4977{
4978	struct root_domain *old_rd = NULL;
4979	unsigned long flags;
4980
4981	raw_spin_lock_irqsave(&rq->lock, flags);
4982
4983	if (rq->rd) {
4984		old_rd = rq->rd;
4985
4986		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4987			set_rq_offline(rq);
4988
4989		cpumask_clear_cpu(rq->cpu, old_rd->span);
4990
4991		/*
4992		 * If we dont want to free the old_rt yet then
4993		 * set old_rd to NULL to skip the freeing later
4994		 * in this function:
4995		 */
4996		if (!atomic_dec_and_test(&old_rd->refcount))
4997			old_rd = NULL;
4998	}
4999
5000	atomic_inc(&rd->refcount);
5001	rq->rd = rd;
5002
5003	cpumask_set_cpu(rq->cpu, rd->span);
5004	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5005		set_rq_online(rq);
5006
5007	raw_spin_unlock_irqrestore(&rq->lock, flags);
5008
5009	if (old_rd)
5010		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5011}
5012
5013static int init_rootdomain(struct root_domain *rd)
5014{
5015	memset(rd, 0, sizeof(*rd));
5016
5017	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5018		goto out;
5019	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5020		goto free_span;
5021	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5022		goto free_online;
5023
5024	if (cpupri_init(&rd->cpupri) != 0)
5025		goto free_rto_mask;
5026	return 0;
5027
5028free_rto_mask:
5029	free_cpumask_var(rd->rto_mask);
5030free_online:
5031	free_cpumask_var(rd->online);
5032free_span:
5033	free_cpumask_var(rd->span);
5034out:
5035	return -ENOMEM;
5036}
5037
5038/*
5039 * By default the system creates a single root-domain with all cpus as
5040 * members (mimicking the global state we have today).
5041 */
5042struct root_domain def_root_domain;
5043
5044static void init_defrootdomain(void)
5045{
5046	init_rootdomain(&def_root_domain);
5047
5048	atomic_set(&def_root_domain.refcount, 1);
5049}
5050
5051static struct root_domain *alloc_rootdomain(void)
5052{
5053	struct root_domain *rd;
5054
5055	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5056	if (!rd)
5057		return NULL;
5058
5059	if (init_rootdomain(rd) != 0) {
5060		kfree(rd);
5061		return NULL;
5062	}
5063
5064	return rd;
5065}
5066
5067static void free_sched_groups(struct sched_group *sg, int free_sgp)
5068{
5069	struct sched_group *tmp, *first;
5070
5071	if (!sg)
5072		return;
5073
5074	first = sg;
5075	do {
5076		tmp = sg->next;
5077
5078		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5079			kfree(sg->sgp);
5080
5081		kfree(sg);
5082		sg = tmp;
5083	} while (sg != first);
5084}
5085
5086static void free_sched_domain(struct rcu_head *rcu)
5087{
5088	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5089
5090	/*
5091	 * If its an overlapping domain it has private groups, iterate and
5092	 * nuke them all.
5093	 */
5094	if (sd->flags & SD_OVERLAP) {
5095		free_sched_groups(sd->groups, 1);
5096	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5097		kfree(sd->groups->sgp);
5098		kfree(sd->groups);
5099	}
5100	kfree(sd);
5101}
5102
5103static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5104{
5105	call_rcu(&sd->rcu, free_sched_domain);
5106}
5107
5108static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5109{
5110	for (; sd; sd = sd->parent)
5111		destroy_sched_domain(sd, cpu);
5112}
5113
5114/*
5115 * Keep a special pointer to the highest sched_domain that has
5116 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5117 * allows us to avoid some pointer chasing select_idle_sibling().
5118 *
5119 * Also keep a unique ID per domain (we use the first cpu number in
5120 * the cpumask of the domain), this allows us to quickly tell if
5121 * two cpus are in the same cache domain, see cpus_share_cache().
5122 */
5123DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5124DEFINE_PER_CPU(int, sd_llc_id);
5125
5126static void update_top_cache_domain(int cpu)
5127{
5128	struct sched_domain *sd;
5129	int id = cpu;
5130
5131	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5132	if (sd)
5133		id = cpumask_first(sched_domain_span(sd));
5134
5135	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5136	per_cpu(sd_llc_id, cpu) = id;
5137}
5138
5139/*
5140 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5141 * hold the hotplug lock.
5142 */
5143static void
5144cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5145{
5146	struct rq *rq = cpu_rq(cpu);
5147	struct sched_domain *tmp;
5148
5149	/* Remove the sched domains which do not contribute to scheduling. */
5150	for (tmp = sd; tmp; ) {
5151		struct sched_domain *parent = tmp->parent;
5152		if (!parent)
5153			break;
5154
5155		if (sd_parent_degenerate(tmp, parent)) {
5156			tmp->parent = parent->parent;
5157			if (parent->parent)
5158				parent->parent->child = tmp;
5159			destroy_sched_domain(parent, cpu);
5160		} else
5161			tmp = tmp->parent;
5162	}
5163
5164	if (sd && sd_degenerate(sd)) {
5165		tmp = sd;
5166		sd = sd->parent;
5167		destroy_sched_domain(tmp, cpu);
5168		if (sd)
5169			sd->child = NULL;
5170	}
5171
5172	sched_domain_debug(sd, cpu);
5173
5174	rq_attach_root(rq, rd);
5175	tmp = rq->sd;
5176	rcu_assign_pointer(rq->sd, sd);
5177	destroy_sched_domains(tmp, cpu);
5178
5179	update_top_cache_domain(cpu);
5180}
5181
5182/* cpus with isolated domains */
5183static cpumask_var_t cpu_isolated_map;
5184
5185/* Setup the mask of cpus configured for isolated domains */
5186static int __init isolated_cpu_setup(char *str)
5187{
5188	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5189	cpulist_parse(str, cpu_isolated_map);
5190	return 1;
5191}
5192
5193__setup("isolcpus=", isolated_cpu_setup);
5194
5195static const struct cpumask *cpu_cpu_mask(int cpu)
5196{
5197	return cpumask_of_node(cpu_to_node(cpu));
5198}
5199
5200struct sd_data {
5201	struct sched_domain **__percpu sd;
5202	struct sched_group **__percpu sg;
5203	struct sched_group_power **__percpu sgp;
5204};
5205
5206struct s_data {
5207	struct sched_domain ** __percpu sd;
5208	struct root_domain	*rd;
5209};
5210
5211enum s_alloc {
5212	sa_rootdomain,
5213	sa_sd,
5214	sa_sd_storage,
5215	sa_none,
5216};
5217
5218struct sched_domain_topology_level;
5219
5220typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5221typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5222
5223#define SDTL_OVERLAP	0x01
5224
5225struct sched_domain_topology_level {
5226	sched_domain_init_f init;
5227	sched_domain_mask_f mask;
5228	int		    flags;
5229	int		    numa_level;
5230	struct sd_data      data;
5231};
5232
5233/*
5234 * Build an iteration mask that can exclude certain CPUs from the upwards
5235 * domain traversal.
5236 *
5237 * Asymmetric node setups can result in situations where the domain tree is of
5238 * unequal depth, make sure to skip domains that already cover the entire
5239 * range.
5240 *
5241 * In that case build_sched_domains() will have terminated the iteration early
5242 * and our sibling sd spans will be empty. Domains should always include the
5243 * cpu they're built on, so check that.
5244 *
5245 */
5246static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5247{
5248	const struct cpumask *span = sched_domain_span(sd);
5249	struct sd_data *sdd = sd->private;
5250	struct sched_domain *sibling;
5251	int i;
5252
5253	for_each_cpu(i, span) {
5254		sibling = *per_cpu_ptr(sdd->sd, i);
5255		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5256			continue;
5257
5258		cpumask_set_cpu(i, sched_group_mask(sg));
5259	}
5260}
5261
5262/*
5263 * Return the canonical balance cpu for this group, this is the first cpu
5264 * of this group that's also in the iteration mask.
5265 */
5266int group_balance_cpu(struct sched_group *sg)
5267{
5268	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5269}
5270
5271static int
5272build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5273{
5274	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5275	const struct cpumask *span = sched_domain_span(sd);
5276	struct cpumask *covered = sched_domains_tmpmask;
5277	struct sd_data *sdd = sd->private;
5278	struct sched_domain *child;
5279	int i;
5280
5281	cpumask_clear(covered);
5282
5283	for_each_cpu(i, span) {
5284		struct cpumask *sg_span;
5285
5286		if (cpumask_test_cpu(i, covered))
5287			continue;
5288
5289		child = *per_cpu_ptr(sdd->sd, i);
5290
5291		/* See the comment near build_group_mask(). */
5292		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5293			continue;
5294
5295		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5296				GFP_KERNEL, cpu_to_node(cpu));
5297
5298		if (!sg)
5299			goto fail;
5300
5301		sg_span = sched_group_cpus(sg);
5302		if (child->child) {
5303			child = child->child;
5304			cpumask_copy(sg_span, sched_domain_span(child));
5305		} else
5306			cpumask_set_cpu(i, sg_span);
5307
5308		cpumask_or(covered, covered, sg_span);
5309
5310		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5311		if (atomic_inc_return(&sg->sgp->ref) == 1)
5312			build_group_mask(sd, sg);
5313
5314		/*
5315		 * Initialize sgp->power such that even if we mess up the
5316		 * domains and no possible iteration will get us here, we won't
5317		 * die on a /0 trap.
5318		 */
5319		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5320
5321		/*
5322		 * Make sure the first group of this domain contains the
5323		 * canonical balance cpu. Otherwise the sched_domain iteration
5324		 * breaks. See update_sg_lb_stats().
5325		 */
5326		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5327		    group_balance_cpu(sg) == cpu)
5328			groups = sg;
5329
5330		if (!first)
5331			first = sg;
5332		if (last)
5333			last->next = sg;
5334		last = sg;
5335		last->next = first;
5336	}
5337	sd->groups = groups;
5338
5339	return 0;
5340
5341fail:
5342	free_sched_groups(first, 0);
5343
5344	return -ENOMEM;
5345}
5346
5347static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5348{
5349	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5350	struct sched_domain *child = sd->child;
5351
5352	if (child)
5353		cpu = cpumask_first(sched_domain_span(child));
5354
5355	if (sg) {
5356		*sg = *per_cpu_ptr(sdd->sg, cpu);
5357		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5358		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5359	}
5360
5361	return cpu;
5362}
5363
5364/*
5365 * build_sched_groups will build a circular linked list of the groups
5366 * covered by the given span, and will set each group's ->cpumask correctly,
5367 * and ->cpu_power to 0.
5368 *
5369 * Assumes the sched_domain tree is fully constructed
5370 */
5371static int
5372build_sched_groups(struct sched_domain *sd, int cpu)
5373{
5374	struct sched_group *first = NULL, *last = NULL;
5375	struct sd_data *sdd = sd->private;
5376	const struct cpumask *span = sched_domain_span(sd);
5377	struct cpumask *covered;
5378	int i;
5379
5380	get_group(cpu, sdd, &sd->groups);
5381	atomic_inc(&sd->groups->ref);
5382
5383	if (cpu != cpumask_first(span))
5384		return 0;
5385
5386	lockdep_assert_held(&sched_domains_mutex);
5387	covered = sched_domains_tmpmask;
5388
5389	cpumask_clear(covered);
5390
5391	for_each_cpu(i, span) {
5392		struct sched_group *sg;
5393		int group, j;
5394
5395		if (cpumask_test_cpu(i, covered))
5396			continue;
5397
5398		group = get_group(i, sdd, &sg);
5399		cpumask_clear(sched_group_cpus(sg));
5400		sg->sgp->power = 0;
5401		cpumask_setall(sched_group_mask(sg));
5402
5403		for_each_cpu(j, span) {
5404			if (get_group(j, sdd, NULL) != group)
5405				continue;
5406
5407			cpumask_set_cpu(j, covered);
5408			cpumask_set_cpu(j, sched_group_cpus(sg));
5409		}
5410
5411		if (!first)
5412			first = sg;
5413		if (last)
5414			last->next = sg;
5415		last = sg;
5416	}
5417	last->next = first;
5418
5419	return 0;
5420}
5421
5422/*
5423 * Initialize sched groups cpu_power.
5424 *
5425 * cpu_power indicates the capacity of sched group, which is used while
5426 * distributing the load between different sched groups in a sched domain.
5427 * Typically cpu_power for all the groups in a sched domain will be same unless
5428 * there are asymmetries in the topology. If there are asymmetries, group
5429 * having more cpu_power will pickup more load compared to the group having
5430 * less cpu_power.
5431 */
5432static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5433{
5434	struct sched_group *sg = sd->groups;
5435
5436	WARN_ON(!sg);
5437
5438	do {
5439		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5440		sg = sg->next;
5441	} while (sg != sd->groups);
5442
5443	if (cpu != group_balance_cpu(sg))
5444		return;
5445
5446	update_group_power(sd, cpu);
5447	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5448}
5449
5450int __weak arch_sd_sibling_asym_packing(void)
5451{
5452       return 0*SD_ASYM_PACKING;
5453}
5454
5455/*
5456 * Initializers for schedule domains
5457 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5458 */
5459
5460#ifdef CONFIG_SCHED_DEBUG
5461# define SD_INIT_NAME(sd, type)		sd->name = #type
5462#else
5463# define SD_INIT_NAME(sd, type)		do { } while (0)
5464#endif
5465
5466#define SD_INIT_FUNC(type)						\
5467static noinline struct sched_domain *					\
5468sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5469{									\
5470	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5471	*sd = SD_##type##_INIT;						\
5472	SD_INIT_NAME(sd, type);						\
5473	sd->private = &tl->data;					\
5474	return sd;							\
5475}
5476
5477SD_INIT_FUNC(CPU)
5478#ifdef CONFIG_SCHED_SMT
5479 SD_INIT_FUNC(SIBLING)
5480#endif
5481#ifdef CONFIG_SCHED_MC
5482 SD_INIT_FUNC(MC)
5483#endif
5484#ifdef CONFIG_SCHED_BOOK
5485 SD_INIT_FUNC(BOOK)
5486#endif
5487
5488static int default_relax_domain_level = -1;
5489int sched_domain_level_max;
5490
5491static int __init setup_relax_domain_level(char *str)
5492{
5493	if (kstrtoint(str, 0, &default_relax_domain_level))
5494		pr_warn("Unable to set relax_domain_level\n");
5495
5496	return 1;
5497}
5498__setup("relax_domain_level=", setup_relax_domain_level);
5499
5500static void set_domain_attribute(struct sched_domain *sd,
5501				 struct sched_domain_attr *attr)
5502{
5503	int request;
5504
5505	if (!attr || attr->relax_domain_level < 0) {
5506		if (default_relax_domain_level < 0)
5507			return;
5508		else
5509			request = default_relax_domain_level;
5510	} else
5511		request = attr->relax_domain_level;
5512	if (request < sd->level) {
5513		/* turn off idle balance on this domain */
5514		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5515	} else {
5516		/* turn on idle balance on this domain */
5517		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5518	}
5519}
5520
5521static void __sdt_free(const struct cpumask *cpu_map);
5522static int __sdt_alloc(const struct cpumask *cpu_map);
5523
5524static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5525				 const struct cpumask *cpu_map)
5526{
5527	switch (what) {
5528	case sa_rootdomain:
5529		if (!atomic_read(&d->rd->refcount))
5530			free_rootdomain(&d->rd->rcu); /* fall through */
5531	case sa_sd:
5532		free_percpu(d->sd); /* fall through */
5533	case sa_sd_storage:
5534		__sdt_free(cpu_map); /* fall through */
5535	case sa_none:
5536		break;
5537	}
5538}
5539
5540static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5541						   const struct cpumask *cpu_map)
5542{
5543	memset(d, 0, sizeof(*d));
5544
5545	if (__sdt_alloc(cpu_map))
5546		return sa_sd_storage;
5547	d->sd = alloc_percpu(struct sched_domain *);
5548	if (!d->sd)
5549		return sa_sd_storage;
5550	d->rd = alloc_rootdomain();
5551	if (!d->rd)
5552		return sa_sd;
5553	return sa_rootdomain;
5554}
5555
5556/*
5557 * NULL the sd_data elements we've used to build the sched_domain and
5558 * sched_group structure so that the subsequent __free_domain_allocs()
5559 * will not free the data we're using.
5560 */
5561static void claim_allocations(int cpu, struct sched_domain *sd)
5562{
5563	struct sd_data *sdd = sd->private;
5564
5565	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5566	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5567
5568	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5569		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5570
5571	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5572		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5573}
5574
5575#ifdef CONFIG_SCHED_SMT
5576static const struct cpumask *cpu_smt_mask(int cpu)
5577{
5578	return topology_thread_cpumask(cpu);
5579}
5580#endif
5581
5582/*
5583 * Topology list, bottom-up.
5584 */
5585static struct sched_domain_topology_level default_topology[] = {
5586#ifdef CONFIG_SCHED_SMT
5587	{ sd_init_SIBLING, cpu_smt_mask, },
5588#endif
5589#ifdef CONFIG_SCHED_MC
5590	{ sd_init_MC, cpu_coregroup_mask, },
5591#endif
5592#ifdef CONFIG_SCHED_BOOK
5593	{ sd_init_BOOK, cpu_book_mask, },
5594#endif
5595	{ sd_init_CPU, cpu_cpu_mask, },
5596	{ NULL, },
5597};
5598
5599static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5600
5601#define for_each_sd_topology(tl)			\
5602	for (tl = sched_domain_topology; tl->init; tl++)
5603
5604#ifdef CONFIG_NUMA
5605
5606static int sched_domains_numa_levels;
5607static int *sched_domains_numa_distance;
5608static struct cpumask ***sched_domains_numa_masks;
5609static int sched_domains_curr_level;
5610
5611static inline int sd_local_flags(int level)
5612{
5613	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5614		return 0;
5615
5616	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5617}
5618
5619static struct sched_domain *
5620sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5621{
5622	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5623	int level = tl->numa_level;
5624	int sd_weight = cpumask_weight(
5625			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5626
5627	*sd = (struct sched_domain){
5628		.min_interval		= sd_weight,
5629		.max_interval		= 2*sd_weight,
5630		.busy_factor		= 32,
5631		.imbalance_pct		= 125,
5632		.cache_nice_tries	= 2,
5633		.busy_idx		= 3,
5634		.idle_idx		= 2,
5635		.newidle_idx		= 0,
5636		.wake_idx		= 0,
5637		.forkexec_idx		= 0,
5638
5639		.flags			= 1*SD_LOAD_BALANCE
5640					| 1*SD_BALANCE_NEWIDLE
5641					| 0*SD_BALANCE_EXEC
5642					| 0*SD_BALANCE_FORK
5643					| 0*SD_BALANCE_WAKE
5644					| 0*SD_WAKE_AFFINE
5645					| 0*SD_SHARE_CPUPOWER
5646					| 0*SD_SHARE_PKG_RESOURCES
5647					| 1*SD_SERIALIZE
5648					| 0*SD_PREFER_SIBLING
5649					| sd_local_flags(level)
5650					,
5651		.last_balance		= jiffies,
5652		.balance_interval	= sd_weight,
5653	};
5654	SD_INIT_NAME(sd, NUMA);
5655	sd->private = &tl->data;
5656
5657	/*
5658	 * Ugly hack to pass state to sd_numa_mask()...
5659	 */
5660	sched_domains_curr_level = tl->numa_level;
5661
5662	return sd;
5663}
5664
5665static const struct cpumask *sd_numa_mask(int cpu)
5666{
5667	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5668}
5669
5670static void sched_numa_warn(const char *str)
5671{
5672	static int done = false;
5673	int i,j;
5674
5675	if (done)
5676		return;
5677
5678	done = true;
5679
5680	printk(KERN_WARNING "ERROR: %s\n\n", str);
5681
5682	for (i = 0; i < nr_node_ids; i++) {
5683		printk(KERN_WARNING "  ");
5684		for (j = 0; j < nr_node_ids; j++)
5685			printk(KERN_CONT "%02d ", node_distance(i,j));
5686		printk(KERN_CONT "\n");
5687	}
5688	printk(KERN_WARNING "\n");
5689}
5690
5691static bool find_numa_distance(int distance)
5692{
5693	int i;
5694
5695	if (distance == node_distance(0, 0))
5696		return true;
5697
5698	for (i = 0; i < sched_domains_numa_levels; i++) {
5699		if (sched_domains_numa_distance[i] == distance)
5700			return true;
5701	}
5702
5703	return false;
5704}
5705
5706static void sched_init_numa(void)
5707{
5708	int next_distance, curr_distance = node_distance(0, 0);
5709	struct sched_domain_topology_level *tl;
5710	int level = 0;
5711	int i, j, k;
5712
5713	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5714	if (!sched_domains_numa_distance)
5715		return;
5716
5717	/*
5718	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5719	 * unique distances in the node_distance() table.
5720	 *
5721	 * Assumes node_distance(0,j) includes all distances in
5722	 * node_distance(i,j) in order to avoid cubic time.
5723	 */
5724	next_distance = curr_distance;
5725	for (i = 0; i < nr_node_ids; i++) {
5726		for (j = 0; j < nr_node_ids; j++) {
5727			for (k = 0; k < nr_node_ids; k++) {
5728				int distance = node_distance(i, k);
5729
5730				if (distance > curr_distance &&
5731				    (distance < next_distance ||
5732				     next_distance == curr_distance))
5733					next_distance = distance;
5734
5735				/*
5736				 * While not a strong assumption it would be nice to know
5737				 * about cases where if node A is connected to B, B is not
5738				 * equally connected to A.
5739				 */
5740				if (sched_debug() && node_distance(k, i) != distance)
5741					sched_numa_warn("Node-distance not symmetric");
5742
5743				if (sched_debug() && i && !find_numa_distance(distance))
5744					sched_numa_warn("Node-0 not representative");
5745			}
5746			if (next_distance != curr_distance) {
5747				sched_domains_numa_distance[level++] = next_distance;
5748				sched_domains_numa_levels = level;
5749				curr_distance = next_distance;
5750			} else break;
5751		}
5752
5753		/*
5754		 * In case of sched_debug() we verify the above assumption.
5755		 */
5756		if (!sched_debug())
5757			break;
5758	}
5759	/*
5760	 * 'level' contains the number of unique distances, excluding the
5761	 * identity distance node_distance(i,i).
5762	 *
5763	 * The sched_domains_numa_distance[] array includes the actual distance
5764	 * numbers.
5765	 */
5766
5767	/*
5768	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5769	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5770	 * the array will contain less then 'level' members. This could be
5771	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5772	 * in other functions.
5773	 *
5774	 * We reset it to 'level' at the end of this function.
5775	 */
5776	sched_domains_numa_levels = 0;
5777
5778	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5779	if (!sched_domains_numa_masks)
5780		return;
5781
5782	/*
5783	 * Now for each level, construct a mask per node which contains all
5784	 * cpus of nodes that are that many hops away from us.
5785	 */
5786	for (i = 0; i < level; i++) {
5787		sched_domains_numa_masks[i] =
5788			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5789		if (!sched_domains_numa_masks[i])
5790			return;
5791
5792		for (j = 0; j < nr_node_ids; j++) {
5793			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5794			if (!mask)
5795				return;
5796
5797			sched_domains_numa_masks[i][j] = mask;
5798
5799			for (k = 0; k < nr_node_ids; k++) {
5800				if (node_distance(j, k) > sched_domains_numa_distance[i])
5801					continue;
5802
5803				cpumask_or(mask, mask, cpumask_of_node(k));
5804			}
5805		}
5806	}
5807
5808	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5809			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5810	if (!tl)
5811		return;
5812
5813	/*
5814	 * Copy the default topology bits..
5815	 */
5816	for (i = 0; default_topology[i].init; i++)
5817		tl[i] = default_topology[i];
5818
5819	/*
5820	 * .. and append 'j' levels of NUMA goodness.
5821	 */
5822	for (j = 0; j < level; i++, j++) {
5823		tl[i] = (struct sched_domain_topology_level){
5824			.init = sd_numa_init,
5825			.mask = sd_numa_mask,
5826			.flags = SDTL_OVERLAP,
5827			.numa_level = j,
5828		};
5829	}
5830
5831	sched_domain_topology = tl;
5832
5833	sched_domains_numa_levels = level;
5834}
5835
5836static void sched_domains_numa_masks_set(int cpu)
5837{
5838	int i, j;
5839	int node = cpu_to_node(cpu);
5840
5841	for (i = 0; i < sched_domains_numa_levels; i++) {
5842		for (j = 0; j < nr_node_ids; j++) {
5843			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5844				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5845		}
5846	}
5847}
5848
5849static void sched_domains_numa_masks_clear(int cpu)
5850{
5851	int i, j;
5852	for (i = 0; i < sched_domains_numa_levels; i++) {
5853		for (j = 0; j < nr_node_ids; j++)
5854			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5855	}
5856}
5857
5858/*
5859 * Update sched_domains_numa_masks[level][node] array when new cpus
5860 * are onlined.
5861 */
5862static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5863					   unsigned long action,
5864					   void *hcpu)
5865{
5866	int cpu = (long)hcpu;
5867
5868	switch (action & ~CPU_TASKS_FROZEN) {
5869	case CPU_ONLINE:
5870		sched_domains_numa_masks_set(cpu);
5871		break;
5872
5873	case CPU_DEAD:
5874		sched_domains_numa_masks_clear(cpu);
5875		break;
5876
5877	default:
5878		return NOTIFY_DONE;
5879	}
5880
5881	return NOTIFY_OK;
5882}
5883#else
5884static inline void sched_init_numa(void)
5885{
5886}
5887
5888static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5889					   unsigned long action,
5890					   void *hcpu)
5891{
5892	return 0;
5893}
5894#endif /* CONFIG_NUMA */
5895
5896static int __sdt_alloc(const struct cpumask *cpu_map)
5897{
5898	struct sched_domain_topology_level *tl;
5899	int j;
5900
5901	for_each_sd_topology(tl) {
5902		struct sd_data *sdd = &tl->data;
5903
5904		sdd->sd = alloc_percpu(struct sched_domain *);
5905		if (!sdd->sd)
5906			return -ENOMEM;
5907
5908		sdd->sg = alloc_percpu(struct sched_group *);
5909		if (!sdd->sg)
5910			return -ENOMEM;
5911
5912		sdd->sgp = alloc_percpu(struct sched_group_power *);
5913		if (!sdd->sgp)
5914			return -ENOMEM;
5915
5916		for_each_cpu(j, cpu_map) {
5917			struct sched_domain *sd;
5918			struct sched_group *sg;
5919			struct sched_group_power *sgp;
5920
5921		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5922					GFP_KERNEL, cpu_to_node(j));
5923			if (!sd)
5924				return -ENOMEM;
5925
5926			*per_cpu_ptr(sdd->sd, j) = sd;
5927
5928			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5929					GFP_KERNEL, cpu_to_node(j));
5930			if (!sg)
5931				return -ENOMEM;
5932
5933			sg->next = sg;
5934
5935			*per_cpu_ptr(sdd->sg, j) = sg;
5936
5937			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5938					GFP_KERNEL, cpu_to_node(j));
5939			if (!sgp)
5940				return -ENOMEM;
5941
5942			*per_cpu_ptr(sdd->sgp, j) = sgp;
5943		}
5944	}
5945
5946	return 0;
5947}
5948
5949static void __sdt_free(const struct cpumask *cpu_map)
5950{
5951	struct sched_domain_topology_level *tl;
5952	int j;
5953
5954	for_each_sd_topology(tl) {
5955		struct sd_data *sdd = &tl->data;
5956
5957		for_each_cpu(j, cpu_map) {
5958			struct sched_domain *sd;
5959
5960			if (sdd->sd) {
5961				sd = *per_cpu_ptr(sdd->sd, j);
5962				if (sd && (sd->flags & SD_OVERLAP))
5963					free_sched_groups(sd->groups, 0);
5964				kfree(*per_cpu_ptr(sdd->sd, j));
5965			}
5966
5967			if (sdd->sg)
5968				kfree(*per_cpu_ptr(sdd->sg, j));
5969			if (sdd->sgp)
5970				kfree(*per_cpu_ptr(sdd->sgp, j));
5971		}
5972		free_percpu(sdd->sd);
5973		sdd->sd = NULL;
5974		free_percpu(sdd->sg);
5975		sdd->sg = NULL;
5976		free_percpu(sdd->sgp);
5977		sdd->sgp = NULL;
5978	}
5979}
5980
5981struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5982		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5983		struct sched_domain *child, int cpu)
5984{
5985	struct sched_domain *sd = tl->init(tl, cpu);
5986	if (!sd)
5987		return child;
5988
5989	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5990	if (child) {
5991		sd->level = child->level + 1;
5992		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5993		child->parent = sd;
5994		sd->child = child;
5995	}
5996	set_domain_attribute(sd, attr);
5997
5998	return sd;
5999}
6000
6001/*
6002 * Build sched domains for a given set of cpus and attach the sched domains
6003 * to the individual cpus
6004 */
6005static int build_sched_domains(const struct cpumask *cpu_map,
6006			       struct sched_domain_attr *attr)
6007{
6008	enum s_alloc alloc_state;
6009	struct sched_domain *sd;
6010	struct s_data d;
6011	int i, ret = -ENOMEM;
6012
6013	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6014	if (alloc_state != sa_rootdomain)
6015		goto error;
6016
6017	/* Set up domains for cpus specified by the cpu_map. */
6018	for_each_cpu(i, cpu_map) {
6019		struct sched_domain_topology_level *tl;
6020
6021		sd = NULL;
6022		for_each_sd_topology(tl) {
6023			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6024			if (tl == sched_domain_topology)
6025				*per_cpu_ptr(d.sd, i) = sd;
6026			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6027				sd->flags |= SD_OVERLAP;
6028			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6029				break;
6030		}
6031	}
6032
6033	/* Build the groups for the domains */
6034	for_each_cpu(i, cpu_map) {
6035		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6036			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6037			if (sd->flags & SD_OVERLAP) {
6038				if (build_overlap_sched_groups(sd, i))
6039					goto error;
6040			} else {
6041				if (build_sched_groups(sd, i))
6042					goto error;
6043			}
6044		}
6045	}
6046
6047	/* Calculate CPU power for physical packages and nodes */
6048	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6049		if (!cpumask_test_cpu(i, cpu_map))
6050			continue;
6051
6052		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6053			claim_allocations(i, sd);
6054			init_sched_groups_power(i, sd);
6055		}
6056	}
6057
6058	/* Attach the domains */
6059	rcu_read_lock();
6060	for_each_cpu(i, cpu_map) {
6061		sd = *per_cpu_ptr(d.sd, i);
6062		cpu_attach_domain(sd, d.rd, i);
6063	}
6064	rcu_read_unlock();
6065
6066	ret = 0;
6067error:
6068	__free_domain_allocs(&d, alloc_state, cpu_map);
6069	return ret;
6070}
6071
6072static cpumask_var_t *doms_cur;	/* current sched domains */
6073static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6074static struct sched_domain_attr *dattr_cur;
6075				/* attribues of custom domains in 'doms_cur' */
6076
6077/*
6078 * Special case: If a kmalloc of a doms_cur partition (array of
6079 * cpumask) fails, then fallback to a single sched domain,
6080 * as determined by the single cpumask fallback_doms.
6081 */
6082static cpumask_var_t fallback_doms;
6083
6084/*
6085 * arch_update_cpu_topology lets virtualized architectures update the
6086 * cpu core maps. It is supposed to return 1 if the topology changed
6087 * or 0 if it stayed the same.
6088 */
6089int __attribute__((weak)) arch_update_cpu_topology(void)
6090{
6091	return 0;
6092}
6093
6094cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6095{
6096	int i;
6097	cpumask_var_t *doms;
6098
6099	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6100	if (!doms)
6101		return NULL;
6102	for (i = 0; i < ndoms; i++) {
6103		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6104			free_sched_domains(doms, i);
6105			return NULL;
6106		}
6107	}
6108	return doms;
6109}
6110
6111void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6112{
6113	unsigned int i;
6114	for (i = 0; i < ndoms; i++)
6115		free_cpumask_var(doms[i]);
6116	kfree(doms);
6117}
6118
6119/*
6120 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6121 * For now this just excludes isolated cpus, but could be used to
6122 * exclude other special cases in the future.
6123 */
6124static int init_sched_domains(const struct cpumask *cpu_map)
6125{
6126	int err;
6127
6128	arch_update_cpu_topology();
6129	ndoms_cur = 1;
6130	doms_cur = alloc_sched_domains(ndoms_cur);
6131	if (!doms_cur)
6132		doms_cur = &fallback_doms;
6133	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6134	err = build_sched_domains(doms_cur[0], NULL);
6135	register_sched_domain_sysctl();
6136
6137	return err;
6138}
6139
6140/*
6141 * Detach sched domains from a group of cpus specified in cpu_map
6142 * These cpus will now be attached to the NULL domain
6143 */
6144static void detach_destroy_domains(const struct cpumask *cpu_map)
6145{
6146	int i;
6147
6148	rcu_read_lock();
6149	for_each_cpu(i, cpu_map)
6150		cpu_attach_domain(NULL, &def_root_domain, i);
6151	rcu_read_unlock();
6152}
6153
6154/* handle null as "default" */
6155static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6156			struct sched_domain_attr *new, int idx_new)
6157{
6158	struct sched_domain_attr tmp;
6159
6160	/* fast path */
6161	if (!new && !cur)
6162		return 1;
6163
6164	tmp = SD_ATTR_INIT;
6165	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6166			new ? (new + idx_new) : &tmp,
6167			sizeof(struct sched_domain_attr));
6168}
6169
6170/*
6171 * Partition sched domains as specified by the 'ndoms_new'
6172 * cpumasks in the array doms_new[] of cpumasks. This compares
6173 * doms_new[] to the current sched domain partitioning, doms_cur[].
6174 * It destroys each deleted domain and builds each new domain.
6175 *
6176 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6177 * The masks don't intersect (don't overlap.) We should setup one
6178 * sched domain for each mask. CPUs not in any of the cpumasks will
6179 * not be load balanced. If the same cpumask appears both in the
6180 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6181 * it as it is.
6182 *
6183 * The passed in 'doms_new' should be allocated using
6184 * alloc_sched_domains.  This routine takes ownership of it and will
6185 * free_sched_domains it when done with it. If the caller failed the
6186 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6187 * and partition_sched_domains() will fallback to the single partition
6188 * 'fallback_doms', it also forces the domains to be rebuilt.
6189 *
6190 * If doms_new == NULL it will be replaced with cpu_online_mask.
6191 * ndoms_new == 0 is a special case for destroying existing domains,
6192 * and it will not create the default domain.
6193 *
6194 * Call with hotplug lock held
6195 */
6196void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6197			     struct sched_domain_attr *dattr_new)
6198{
6199	int i, j, n;
6200	int new_topology;
6201
6202	mutex_lock(&sched_domains_mutex);
6203
6204	/* always unregister in case we don't destroy any domains */
6205	unregister_sched_domain_sysctl();
6206
6207	/* Let architecture update cpu core mappings. */
6208	new_topology = arch_update_cpu_topology();
6209
6210	n = doms_new ? ndoms_new : 0;
6211
6212	/* Destroy deleted domains */
6213	for (i = 0; i < ndoms_cur; i++) {
6214		for (j = 0; j < n && !new_topology; j++) {
6215			if (cpumask_equal(doms_cur[i], doms_new[j])
6216			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6217				goto match1;
6218		}
6219		/* no match - a current sched domain not in new doms_new[] */
6220		detach_destroy_domains(doms_cur[i]);
6221match1:
6222		;
6223	}
6224
6225	if (doms_new == NULL) {
6226		ndoms_cur = 0;
6227		doms_new = &fallback_doms;
6228		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6229		WARN_ON_ONCE(dattr_new);
6230	}
6231
6232	/* Build new domains */
6233	for (i = 0; i < ndoms_new; i++) {
6234		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6235			if (cpumask_equal(doms_new[i], doms_cur[j])
6236			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6237				goto match2;
6238		}
6239		/* no match - add a new doms_new */
6240		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6241match2:
6242		;
6243	}
6244
6245	/* Remember the new sched domains */
6246	if (doms_cur != &fallback_doms)
6247		free_sched_domains(doms_cur, ndoms_cur);
6248	kfree(dattr_cur);	/* kfree(NULL) is safe */
6249	doms_cur = doms_new;
6250	dattr_cur = dattr_new;
6251	ndoms_cur = ndoms_new;
6252
6253	register_sched_domain_sysctl();
6254
6255	mutex_unlock(&sched_domains_mutex);
6256}
6257
6258static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6259
6260/*
6261 * Update cpusets according to cpu_active mask.  If cpusets are
6262 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6263 * around partition_sched_domains().
6264 *
6265 * If we come here as part of a suspend/resume, don't touch cpusets because we
6266 * want to restore it back to its original state upon resume anyway.
6267 */
6268static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6269			     void *hcpu)
6270{
6271	switch (action) {
6272	case CPU_ONLINE_FROZEN:
6273	case CPU_DOWN_FAILED_FROZEN:
6274
6275		/*
6276		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6277		 * resume sequence. As long as this is not the last online
6278		 * operation in the resume sequence, just build a single sched
6279		 * domain, ignoring cpusets.
6280		 */
6281		num_cpus_frozen--;
6282		if (likely(num_cpus_frozen)) {
6283			partition_sched_domains(1, NULL, NULL);
6284			break;
6285		}
6286
6287		/*
6288		 * This is the last CPU online operation. So fall through and
6289		 * restore the original sched domains by considering the
6290		 * cpuset configurations.
6291		 */
6292
6293	case CPU_ONLINE:
6294	case CPU_DOWN_FAILED:
6295		cpuset_update_active_cpus(true);
6296		break;
6297	default:
6298		return NOTIFY_DONE;
6299	}
6300	return NOTIFY_OK;
6301}
6302
6303static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6304			       void *hcpu)
6305{
6306	switch (action) {
6307	case CPU_DOWN_PREPARE:
6308		cpuset_update_active_cpus(false);
6309		break;
6310	case CPU_DOWN_PREPARE_FROZEN:
6311		num_cpus_frozen++;
6312		partition_sched_domains(1, NULL, NULL);
6313		break;
6314	default:
6315		return NOTIFY_DONE;
6316	}
6317	return NOTIFY_OK;
6318}
6319
6320void __init sched_init_smp(void)
6321{
6322	cpumask_var_t non_isolated_cpus;
6323
6324	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6325	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6326
6327	sched_init_numa();
6328
6329	get_online_cpus();
6330	mutex_lock(&sched_domains_mutex);
6331	init_sched_domains(cpu_active_mask);
6332	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6333	if (cpumask_empty(non_isolated_cpus))
6334		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6335	mutex_unlock(&sched_domains_mutex);
6336	put_online_cpus();
6337
6338	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6339	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6340	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6341
6342	init_hrtick();
6343
6344	/* Move init over to a non-isolated CPU */
6345	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6346		BUG();
6347	sched_init_granularity();
6348	free_cpumask_var(non_isolated_cpus);
6349
6350	init_sched_rt_class();
6351}
6352#else
6353void __init sched_init_smp(void)
6354{
6355	sched_init_granularity();
6356}
6357#endif /* CONFIG_SMP */
6358
6359const_debug unsigned int sysctl_timer_migration = 1;
6360
6361int in_sched_functions(unsigned long addr)
6362{
6363	return in_lock_functions(addr) ||
6364		(addr >= (unsigned long)__sched_text_start
6365		&& addr < (unsigned long)__sched_text_end);
6366}
6367
6368#ifdef CONFIG_CGROUP_SCHED
6369/*
6370 * Default task group.
6371 * Every task in system belongs to this group at bootup.
6372 */
6373struct task_group root_task_group;
6374LIST_HEAD(task_groups);
6375#endif
6376
6377DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6378
6379void __init sched_init(void)
6380{
6381	int i, j;
6382	unsigned long alloc_size = 0, ptr;
6383
6384#ifdef CONFIG_FAIR_GROUP_SCHED
6385	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6386#endif
6387#ifdef CONFIG_RT_GROUP_SCHED
6388	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6389#endif
6390#ifdef CONFIG_CPUMASK_OFFSTACK
6391	alloc_size += num_possible_cpus() * cpumask_size();
6392#endif
6393	if (alloc_size) {
6394		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6395
6396#ifdef CONFIG_FAIR_GROUP_SCHED
6397		root_task_group.se = (struct sched_entity **)ptr;
6398		ptr += nr_cpu_ids * sizeof(void **);
6399
6400		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6401		ptr += nr_cpu_ids * sizeof(void **);
6402
6403#endif /* CONFIG_FAIR_GROUP_SCHED */
6404#ifdef CONFIG_RT_GROUP_SCHED
6405		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6406		ptr += nr_cpu_ids * sizeof(void **);
6407
6408		root_task_group.rt_rq = (struct rt_rq **)ptr;
6409		ptr += nr_cpu_ids * sizeof(void **);
6410
6411#endif /* CONFIG_RT_GROUP_SCHED */
6412#ifdef CONFIG_CPUMASK_OFFSTACK
6413		for_each_possible_cpu(i) {
6414			per_cpu(load_balance_mask, i) = (void *)ptr;
6415			ptr += cpumask_size();
6416		}
6417#endif /* CONFIG_CPUMASK_OFFSTACK */
6418	}
6419
6420#ifdef CONFIG_SMP
6421	init_defrootdomain();
6422#endif
6423
6424	init_rt_bandwidth(&def_rt_bandwidth,
6425			global_rt_period(), global_rt_runtime());
6426
6427#ifdef CONFIG_RT_GROUP_SCHED
6428	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6429			global_rt_period(), global_rt_runtime());
6430#endif /* CONFIG_RT_GROUP_SCHED */
6431
6432#ifdef CONFIG_CGROUP_SCHED
6433	list_add(&root_task_group.list, &task_groups);
6434	INIT_LIST_HEAD(&root_task_group.children);
6435	INIT_LIST_HEAD(&root_task_group.siblings);
6436	autogroup_init(&init_task);
6437
6438#endif /* CONFIG_CGROUP_SCHED */
6439
6440	for_each_possible_cpu(i) {
6441		struct rq *rq;
6442
6443		rq = cpu_rq(i);
6444		raw_spin_lock_init(&rq->lock);
6445		rq->nr_running = 0;
6446		rq->calc_load_active = 0;
6447		rq->calc_load_update = jiffies + LOAD_FREQ;
6448		init_cfs_rq(&rq->cfs);
6449		init_rt_rq(&rq->rt, rq);
6450#ifdef CONFIG_FAIR_GROUP_SCHED
6451		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6452		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6453		/*
6454		 * How much cpu bandwidth does root_task_group get?
6455		 *
6456		 * In case of task-groups formed thr' the cgroup filesystem, it
6457		 * gets 100% of the cpu resources in the system. This overall
6458		 * system cpu resource is divided among the tasks of
6459		 * root_task_group and its child task-groups in a fair manner,
6460		 * based on each entity's (task or task-group's) weight
6461		 * (se->load.weight).
6462		 *
6463		 * In other words, if root_task_group has 10 tasks of weight
6464		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6465		 * then A0's share of the cpu resource is:
6466		 *
6467		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6468		 *
6469		 * We achieve this by letting root_task_group's tasks sit
6470		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6471		 */
6472		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6473		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6474#endif /* CONFIG_FAIR_GROUP_SCHED */
6475
6476		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6477#ifdef CONFIG_RT_GROUP_SCHED
6478		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6479		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6480#endif
6481
6482		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6483			rq->cpu_load[j] = 0;
6484
6485		rq->last_load_update_tick = jiffies;
6486
6487#ifdef CONFIG_SMP
6488		rq->sd = NULL;
6489		rq->rd = NULL;
6490		rq->cpu_power = SCHED_POWER_SCALE;
6491		rq->post_schedule = 0;
6492		rq->active_balance = 0;
6493		rq->next_balance = jiffies;
6494		rq->push_cpu = 0;
6495		rq->cpu = i;
6496		rq->online = 0;
6497		rq->idle_stamp = 0;
6498		rq->avg_idle = 2*sysctl_sched_migration_cost;
6499
6500		INIT_LIST_HEAD(&rq->cfs_tasks);
6501
6502		rq_attach_root(rq, &def_root_domain);
6503#ifdef CONFIG_NO_HZ_COMMON
6504		rq->nohz_flags = 0;
6505#endif
6506#ifdef CONFIG_NO_HZ_FULL
6507		rq->last_sched_tick = 0;
6508#endif
6509#endif
6510		init_rq_hrtick(rq);
6511		atomic_set(&rq->nr_iowait, 0);
6512	}
6513
6514	set_load_weight(&init_task);
6515
6516#ifdef CONFIG_PREEMPT_NOTIFIERS
6517	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6518#endif
6519
6520#ifdef CONFIG_RT_MUTEXES
6521	plist_head_init(&init_task.pi_waiters);
6522#endif
6523
6524	/*
6525	 * The boot idle thread does lazy MMU switching as well:
6526	 */
6527	atomic_inc(&init_mm.mm_count);
6528	enter_lazy_tlb(&init_mm, current);
6529
6530	/*
6531	 * Make us the idle thread. Technically, schedule() should not be
6532	 * called from this thread, however somewhere below it might be,
6533	 * but because we are the idle thread, we just pick up running again
6534	 * when this runqueue becomes "idle".
6535	 */
6536	init_idle(current, smp_processor_id());
6537
6538	calc_load_update = jiffies + LOAD_FREQ;
6539
6540	/*
6541	 * During early bootup we pretend to be a normal task:
6542	 */
6543	current->sched_class = &fair_sched_class;
6544
6545#ifdef CONFIG_SMP
6546	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6547	/* May be allocated at isolcpus cmdline parse time */
6548	if (cpu_isolated_map == NULL)
6549		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6550	idle_thread_set_boot_cpu();
6551#endif
6552	init_sched_fair_class();
6553
6554	scheduler_running = 1;
6555}
6556
6557#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6558static inline int preempt_count_equals(int preempt_offset)
6559{
6560	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6561
6562	return (nested == preempt_offset);
6563}
6564
6565void __might_sleep(const char *file, int line, int preempt_offset)
6566{
6567	static unsigned long prev_jiffy;	/* ratelimiting */
6568
6569	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6570	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6571	    system_state != SYSTEM_RUNNING || oops_in_progress)
6572		return;
6573	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6574		return;
6575	prev_jiffy = jiffies;
6576
6577	printk(KERN_ERR
6578		"BUG: sleeping function called from invalid context at %s:%d\n",
6579			file, line);
6580	printk(KERN_ERR
6581		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6582			in_atomic(), irqs_disabled(),
6583			current->pid, current->comm);
6584
6585	debug_show_held_locks(current);
6586	if (irqs_disabled())
6587		print_irqtrace_events(current);
6588	dump_stack();
6589}
6590EXPORT_SYMBOL(__might_sleep);
6591#endif
6592
6593#ifdef CONFIG_MAGIC_SYSRQ
6594static void normalize_task(struct rq *rq, struct task_struct *p)
6595{
6596	const struct sched_class *prev_class = p->sched_class;
6597	int old_prio = p->prio;
6598	int on_rq;
6599
6600	on_rq = p->on_rq;
6601	if (on_rq)
6602		dequeue_task(rq, p, 0);
6603	__setscheduler(rq, p, SCHED_NORMAL, 0);
6604	if (on_rq) {
6605		enqueue_task(rq, p, 0);
6606		resched_task(rq->curr);
6607	}
6608
6609	check_class_changed(rq, p, prev_class, old_prio);
6610}
6611
6612void normalize_rt_tasks(void)
6613{
6614	struct task_struct *g, *p;
6615	unsigned long flags;
6616	struct rq *rq;
6617
6618	read_lock_irqsave(&tasklist_lock, flags);
6619	do_each_thread(g, p) {
6620		/*
6621		 * Only normalize user tasks:
6622		 */
6623		if (!p->mm)
6624			continue;
6625
6626		p->se.exec_start		= 0;
6627#ifdef CONFIG_SCHEDSTATS
6628		p->se.statistics.wait_start	= 0;
6629		p->se.statistics.sleep_start	= 0;
6630		p->se.statistics.block_start	= 0;
6631#endif
6632
6633		if (!rt_task(p)) {
6634			/*
6635			 * Renice negative nice level userspace
6636			 * tasks back to 0:
6637			 */
6638			if (TASK_NICE(p) < 0 && p->mm)
6639				set_user_nice(p, 0);
6640			continue;
6641		}
6642
6643		raw_spin_lock(&p->pi_lock);
6644		rq = __task_rq_lock(p);
6645
6646		normalize_task(rq, p);
6647
6648		__task_rq_unlock(rq);
6649		raw_spin_unlock(&p->pi_lock);
6650	} while_each_thread(g, p);
6651
6652	read_unlock_irqrestore(&tasklist_lock, flags);
6653}
6654
6655#endif /* CONFIG_MAGIC_SYSRQ */
6656
6657#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6658/*
6659 * These functions are only useful for the IA64 MCA handling, or kdb.
6660 *
6661 * They can only be called when the whole system has been
6662 * stopped - every CPU needs to be quiescent, and no scheduling
6663 * activity can take place. Using them for anything else would
6664 * be a serious bug, and as a result, they aren't even visible
6665 * under any other configuration.
6666 */
6667
6668/**
6669 * curr_task - return the current task for a given cpu.
6670 * @cpu: the processor in question.
6671 *
6672 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6673 *
6674 * Return: The current task for @cpu.
6675 */
6676struct task_struct *curr_task(int cpu)
6677{
6678	return cpu_curr(cpu);
6679}
6680
6681#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6682
6683#ifdef CONFIG_IA64
6684/**
6685 * set_curr_task - set the current task for a given cpu.
6686 * @cpu: the processor in question.
6687 * @p: the task pointer to set.
6688 *
6689 * Description: This function must only be used when non-maskable interrupts
6690 * are serviced on a separate stack. It allows the architecture to switch the
6691 * notion of the current task on a cpu in a non-blocking manner. This function
6692 * must be called with all CPU's synchronized, and interrupts disabled, the
6693 * and caller must save the original value of the current task (see
6694 * curr_task() above) and restore that value before reenabling interrupts and
6695 * re-starting the system.
6696 *
6697 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6698 */
6699void set_curr_task(int cpu, struct task_struct *p)
6700{
6701	cpu_curr(cpu) = p;
6702}
6703
6704#endif
6705
6706#ifdef CONFIG_CGROUP_SCHED
6707/* task_group_lock serializes the addition/removal of task groups */
6708static DEFINE_SPINLOCK(task_group_lock);
6709
6710static void free_sched_group(struct task_group *tg)
6711{
6712	free_fair_sched_group(tg);
6713	free_rt_sched_group(tg);
6714	autogroup_free(tg);
6715	kfree(tg);
6716}
6717
6718/* allocate runqueue etc for a new task group */
6719struct task_group *sched_create_group(struct task_group *parent)
6720{
6721	struct task_group *tg;
6722
6723	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6724	if (!tg)
6725		return ERR_PTR(-ENOMEM);
6726
6727	if (!alloc_fair_sched_group(tg, parent))
6728		goto err;
6729
6730	if (!alloc_rt_sched_group(tg, parent))
6731		goto err;
6732
6733	return tg;
6734
6735err:
6736	free_sched_group(tg);
6737	return ERR_PTR(-ENOMEM);
6738}
6739
6740void sched_online_group(struct task_group *tg, struct task_group *parent)
6741{
6742	unsigned long flags;
6743
6744	spin_lock_irqsave(&task_group_lock, flags);
6745	list_add_rcu(&tg->list, &task_groups);
6746
6747	WARN_ON(!parent); /* root should already exist */
6748
6749	tg->parent = parent;
6750	INIT_LIST_HEAD(&tg->children);
6751	list_add_rcu(&tg->siblings, &parent->children);
6752	spin_unlock_irqrestore(&task_group_lock, flags);
6753}
6754
6755/* rcu callback to free various structures associated with a task group */
6756static void free_sched_group_rcu(struct rcu_head *rhp)
6757{
6758	/* now it should be safe to free those cfs_rqs */
6759	free_sched_group(container_of(rhp, struct task_group, rcu));
6760}
6761
6762/* Destroy runqueue etc associated with a task group */
6763void sched_destroy_group(struct task_group *tg)
6764{
6765	/* wait for possible concurrent references to cfs_rqs complete */
6766	call_rcu(&tg->rcu, free_sched_group_rcu);
6767}
6768
6769void sched_offline_group(struct task_group *tg)
6770{
6771	unsigned long flags;
6772	int i;
6773
6774	/* end participation in shares distribution */
6775	for_each_possible_cpu(i)
6776		unregister_fair_sched_group(tg, i);
6777
6778	spin_lock_irqsave(&task_group_lock, flags);
6779	list_del_rcu(&tg->list);
6780	list_del_rcu(&tg->siblings);
6781	spin_unlock_irqrestore(&task_group_lock, flags);
6782}
6783
6784/* change task's runqueue when it moves between groups.
6785 *	The caller of this function should have put the task in its new group
6786 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6787 *	reflect its new group.
6788 */
6789void sched_move_task(struct task_struct *tsk)
6790{
6791	struct task_group *tg;
6792	int on_rq, running;
6793	unsigned long flags;
6794	struct rq *rq;
6795
6796	rq = task_rq_lock(tsk, &flags);
6797
6798	running = task_current(rq, tsk);
6799	on_rq = tsk->on_rq;
6800
6801	if (on_rq)
6802		dequeue_task(rq, tsk, 0);
6803	if (unlikely(running))
6804		tsk->sched_class->put_prev_task(rq, tsk);
6805
6806	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6807				lockdep_is_held(&tsk->sighand->siglock)),
6808			  struct task_group, css);
6809	tg = autogroup_task_group(tsk, tg);
6810	tsk->sched_task_group = tg;
6811
6812#ifdef CONFIG_FAIR_GROUP_SCHED
6813	if (tsk->sched_class->task_move_group)
6814		tsk->sched_class->task_move_group(tsk, on_rq);
6815	else
6816#endif
6817		set_task_rq(tsk, task_cpu(tsk));
6818
6819	if (unlikely(running))
6820		tsk->sched_class->set_curr_task(rq);
6821	if (on_rq)
6822		enqueue_task(rq, tsk, 0);
6823
6824	task_rq_unlock(rq, tsk, &flags);
6825}
6826#endif /* CONFIG_CGROUP_SCHED */
6827
6828#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6829static unsigned long to_ratio(u64 period, u64 runtime)
6830{
6831	if (runtime == RUNTIME_INF)
6832		return 1ULL << 20;
6833
6834	return div64_u64(runtime << 20, period);
6835}
6836#endif
6837
6838#ifdef CONFIG_RT_GROUP_SCHED
6839/*
6840 * Ensure that the real time constraints are schedulable.
6841 */
6842static DEFINE_MUTEX(rt_constraints_mutex);
6843
6844/* Must be called with tasklist_lock held */
6845static inline int tg_has_rt_tasks(struct task_group *tg)
6846{
6847	struct task_struct *g, *p;
6848
6849	do_each_thread(g, p) {
6850		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6851			return 1;
6852	} while_each_thread(g, p);
6853
6854	return 0;
6855}
6856
6857struct rt_schedulable_data {
6858	struct task_group *tg;
6859	u64 rt_period;
6860	u64 rt_runtime;
6861};
6862
6863static int tg_rt_schedulable(struct task_group *tg, void *data)
6864{
6865	struct rt_schedulable_data *d = data;
6866	struct task_group *child;
6867	unsigned long total, sum = 0;
6868	u64 period, runtime;
6869
6870	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6871	runtime = tg->rt_bandwidth.rt_runtime;
6872
6873	if (tg == d->tg) {
6874		period = d->rt_period;
6875		runtime = d->rt_runtime;
6876	}
6877
6878	/*
6879	 * Cannot have more runtime than the period.
6880	 */
6881	if (runtime > period && runtime != RUNTIME_INF)
6882		return -EINVAL;
6883
6884	/*
6885	 * Ensure we don't starve existing RT tasks.
6886	 */
6887	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6888		return -EBUSY;
6889
6890	total = to_ratio(period, runtime);
6891
6892	/*
6893	 * Nobody can have more than the global setting allows.
6894	 */
6895	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6896		return -EINVAL;
6897
6898	/*
6899	 * The sum of our children's runtime should not exceed our own.
6900	 */
6901	list_for_each_entry_rcu(child, &tg->children, siblings) {
6902		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6903		runtime = child->rt_bandwidth.rt_runtime;
6904
6905		if (child == d->tg) {
6906			period = d->rt_period;
6907			runtime = d->rt_runtime;
6908		}
6909
6910		sum += to_ratio(period, runtime);
6911	}
6912
6913	if (sum > total)
6914		return -EINVAL;
6915
6916	return 0;
6917}
6918
6919static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6920{
6921	int ret;
6922
6923	struct rt_schedulable_data data = {
6924		.tg = tg,
6925		.rt_period = period,
6926		.rt_runtime = runtime,
6927	};
6928
6929	rcu_read_lock();
6930	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6931	rcu_read_unlock();
6932
6933	return ret;
6934}
6935
6936static int tg_set_rt_bandwidth(struct task_group *tg,
6937		u64 rt_period, u64 rt_runtime)
6938{
6939	int i, err = 0;
6940
6941	mutex_lock(&rt_constraints_mutex);
6942	read_lock(&tasklist_lock);
6943	err = __rt_schedulable(tg, rt_period, rt_runtime);
6944	if (err)
6945		goto unlock;
6946
6947	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6948	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6949	tg->rt_bandwidth.rt_runtime = rt_runtime;
6950
6951	for_each_possible_cpu(i) {
6952		struct rt_rq *rt_rq = tg->rt_rq[i];
6953
6954		raw_spin_lock(&rt_rq->rt_runtime_lock);
6955		rt_rq->rt_runtime = rt_runtime;
6956		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6957	}
6958	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6959unlock:
6960	read_unlock(&tasklist_lock);
6961	mutex_unlock(&rt_constraints_mutex);
6962
6963	return err;
6964}
6965
6966static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6967{
6968	u64 rt_runtime, rt_period;
6969
6970	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6971	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6972	if (rt_runtime_us < 0)
6973		rt_runtime = RUNTIME_INF;
6974
6975	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6976}
6977
6978static long sched_group_rt_runtime(struct task_group *tg)
6979{
6980	u64 rt_runtime_us;
6981
6982	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6983		return -1;
6984
6985	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6986	do_div(rt_runtime_us, NSEC_PER_USEC);
6987	return rt_runtime_us;
6988}
6989
6990static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6991{
6992	u64 rt_runtime, rt_period;
6993
6994	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6995	rt_runtime = tg->rt_bandwidth.rt_runtime;
6996
6997	if (rt_period == 0)
6998		return -EINVAL;
6999
7000	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7001}
7002
7003static long sched_group_rt_period(struct task_group *tg)
7004{
7005	u64 rt_period_us;
7006
7007	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7008	do_div(rt_period_us, NSEC_PER_USEC);
7009	return rt_period_us;
7010}
7011
7012static int sched_rt_global_constraints(void)
7013{
7014	u64 runtime, period;
7015	int ret = 0;
7016
7017	if (sysctl_sched_rt_period <= 0)
7018		return -EINVAL;
7019
7020	runtime = global_rt_runtime();
7021	period = global_rt_period();
7022
7023	/*
7024	 * Sanity check on the sysctl variables.
7025	 */
7026	if (runtime > period && runtime != RUNTIME_INF)
7027		return -EINVAL;
7028
7029	mutex_lock(&rt_constraints_mutex);
7030	read_lock(&tasklist_lock);
7031	ret = __rt_schedulable(NULL, 0, 0);
7032	read_unlock(&tasklist_lock);
7033	mutex_unlock(&rt_constraints_mutex);
7034
7035	return ret;
7036}
7037
7038static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7039{
7040	/* Don't accept realtime tasks when there is no way for them to run */
7041	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7042		return 0;
7043
7044	return 1;
7045}
7046
7047#else /* !CONFIG_RT_GROUP_SCHED */
7048static int sched_rt_global_constraints(void)
7049{
7050	unsigned long flags;
7051	int i;
7052
7053	if (sysctl_sched_rt_period <= 0)
7054		return -EINVAL;
7055
7056	/*
7057	 * There's always some RT tasks in the root group
7058	 * -- migration, kstopmachine etc..
7059	 */
7060	if (sysctl_sched_rt_runtime == 0)
7061		return -EBUSY;
7062
7063	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7064	for_each_possible_cpu(i) {
7065		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7066
7067		raw_spin_lock(&rt_rq->rt_runtime_lock);
7068		rt_rq->rt_runtime = global_rt_runtime();
7069		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7070	}
7071	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7072
7073	return 0;
7074}
7075#endif /* CONFIG_RT_GROUP_SCHED */
7076
7077int sched_rr_handler(struct ctl_table *table, int write,
7078		void __user *buffer, size_t *lenp,
7079		loff_t *ppos)
7080{
7081	int ret;
7082	static DEFINE_MUTEX(mutex);
7083
7084	mutex_lock(&mutex);
7085	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7086	/* make sure that internally we keep jiffies */
7087	/* also, writing zero resets timeslice to default */
7088	if (!ret && write) {
7089		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7090			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7091	}
7092	mutex_unlock(&mutex);
7093	return ret;
7094}
7095
7096int sched_rt_handler(struct ctl_table *table, int write,
7097		void __user *buffer, size_t *lenp,
7098		loff_t *ppos)
7099{
7100	int ret;
7101	int old_period, old_runtime;
7102	static DEFINE_MUTEX(mutex);
7103
7104	mutex_lock(&mutex);
7105	old_period = sysctl_sched_rt_period;
7106	old_runtime = sysctl_sched_rt_runtime;
7107
7108	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7109
7110	if (!ret && write) {
7111		ret = sched_rt_global_constraints();
7112		if (ret) {
7113			sysctl_sched_rt_period = old_period;
7114			sysctl_sched_rt_runtime = old_runtime;
7115		} else {
7116			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7117			def_rt_bandwidth.rt_period =
7118				ns_to_ktime(global_rt_period());
7119		}
7120	}
7121	mutex_unlock(&mutex);
7122
7123	return ret;
7124}
7125
7126#ifdef CONFIG_CGROUP_SCHED
7127
7128/* return corresponding task_group object of a cgroup */
7129static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7130{
7131	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7132			    struct task_group, css);
7133}
7134
7135static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7136{
7137	struct task_group *tg, *parent;
7138
7139	if (!cgrp->parent) {
7140		/* This is early initialization for the top cgroup */
7141		return &root_task_group.css;
7142	}
7143
7144	parent = cgroup_tg(cgrp->parent);
7145	tg = sched_create_group(parent);
7146	if (IS_ERR(tg))
7147		return ERR_PTR(-ENOMEM);
7148
7149	return &tg->css;
7150}
7151
7152static int cpu_cgroup_css_online(struct cgroup *cgrp)
7153{
7154	struct task_group *tg = cgroup_tg(cgrp);
7155	struct task_group *parent;
7156
7157	if (!cgrp->parent)
7158		return 0;
7159
7160	parent = cgroup_tg(cgrp->parent);
7161	sched_online_group(tg, parent);
7162	return 0;
7163}
7164
7165static void cpu_cgroup_css_free(struct cgroup *cgrp)
7166{
7167	struct task_group *tg = cgroup_tg(cgrp);
7168
7169	sched_destroy_group(tg);
7170}
7171
7172static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7173{
7174	struct task_group *tg = cgroup_tg(cgrp);
7175
7176	sched_offline_group(tg);
7177}
7178
7179static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7180				 struct cgroup_taskset *tset)
7181{
7182	struct task_struct *task;
7183
7184	cgroup_taskset_for_each(task, cgrp, tset) {
7185#ifdef CONFIG_RT_GROUP_SCHED
7186		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7187			return -EINVAL;
7188#else
7189		/* We don't support RT-tasks being in separate groups */
7190		if (task->sched_class != &fair_sched_class)
7191			return -EINVAL;
7192#endif
7193	}
7194	return 0;
7195}
7196
7197static void cpu_cgroup_attach(struct cgroup *cgrp,
7198			      struct cgroup_taskset *tset)
7199{
7200	struct task_struct *task;
7201
7202	cgroup_taskset_for_each(task, cgrp, tset)
7203		sched_move_task(task);
7204}
7205
7206static void
7207cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7208		struct task_struct *task)
7209{
7210	/*
7211	 * cgroup_exit() is called in the copy_process() failure path.
7212	 * Ignore this case since the task hasn't ran yet, this avoids
7213	 * trying to poke a half freed task state from generic code.
7214	 */
7215	if (!(task->flags & PF_EXITING))
7216		return;
7217
7218	sched_move_task(task);
7219}
7220
7221#ifdef CONFIG_FAIR_GROUP_SCHED
7222static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7223				u64 shareval)
7224{
7225	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7226}
7227
7228static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7229{
7230	struct task_group *tg = cgroup_tg(cgrp);
7231
7232	return (u64) scale_load_down(tg->shares);
7233}
7234
7235#ifdef CONFIG_CFS_BANDWIDTH
7236static DEFINE_MUTEX(cfs_constraints_mutex);
7237
7238const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7239const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7240
7241static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7242
7243static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7244{
7245	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7246	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7247
7248	if (tg == &root_task_group)
7249		return -EINVAL;
7250
7251	/*
7252	 * Ensure we have at some amount of bandwidth every period.  This is
7253	 * to prevent reaching a state of large arrears when throttled via
7254	 * entity_tick() resulting in prolonged exit starvation.
7255	 */
7256	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7257		return -EINVAL;
7258
7259	/*
7260	 * Likewise, bound things on the otherside by preventing insane quota
7261	 * periods.  This also allows us to normalize in computing quota
7262	 * feasibility.
7263	 */
7264	if (period > max_cfs_quota_period)
7265		return -EINVAL;
7266
7267	mutex_lock(&cfs_constraints_mutex);
7268	ret = __cfs_schedulable(tg, period, quota);
7269	if (ret)
7270		goto out_unlock;
7271
7272	runtime_enabled = quota != RUNTIME_INF;
7273	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7274	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7275	raw_spin_lock_irq(&cfs_b->lock);
7276	cfs_b->period = ns_to_ktime(period);
7277	cfs_b->quota = quota;
7278
7279	__refill_cfs_bandwidth_runtime(cfs_b);
7280	/* restart the period timer (if active) to handle new period expiry */
7281	if (runtime_enabled && cfs_b->timer_active) {
7282		/* force a reprogram */
7283		cfs_b->timer_active = 0;
7284		__start_cfs_bandwidth(cfs_b);
7285	}
7286	raw_spin_unlock_irq(&cfs_b->lock);
7287
7288	for_each_possible_cpu(i) {
7289		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7290		struct rq *rq = cfs_rq->rq;
7291
7292		raw_spin_lock_irq(&rq->lock);
7293		cfs_rq->runtime_enabled = runtime_enabled;
7294		cfs_rq->runtime_remaining = 0;
7295
7296		if (cfs_rq->throttled)
7297			unthrottle_cfs_rq(cfs_rq);
7298		raw_spin_unlock_irq(&rq->lock);
7299	}
7300out_unlock:
7301	mutex_unlock(&cfs_constraints_mutex);
7302
7303	return ret;
7304}
7305
7306int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7307{
7308	u64 quota, period;
7309
7310	period = ktime_to_ns(tg->cfs_bandwidth.period);
7311	if (cfs_quota_us < 0)
7312		quota = RUNTIME_INF;
7313	else
7314		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7315
7316	return tg_set_cfs_bandwidth(tg, period, quota);
7317}
7318
7319long tg_get_cfs_quota(struct task_group *tg)
7320{
7321	u64 quota_us;
7322
7323	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7324		return -1;
7325
7326	quota_us = tg->cfs_bandwidth.quota;
7327	do_div(quota_us, NSEC_PER_USEC);
7328
7329	return quota_us;
7330}
7331
7332int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7333{
7334	u64 quota, period;
7335
7336	period = (u64)cfs_period_us * NSEC_PER_USEC;
7337	quota = tg->cfs_bandwidth.quota;
7338
7339	return tg_set_cfs_bandwidth(tg, period, quota);
7340}
7341
7342long tg_get_cfs_period(struct task_group *tg)
7343{
7344	u64 cfs_period_us;
7345
7346	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7347	do_div(cfs_period_us, NSEC_PER_USEC);
7348
7349	return cfs_period_us;
7350}
7351
7352static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7353{
7354	return tg_get_cfs_quota(cgroup_tg(cgrp));
7355}
7356
7357static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7358				s64 cfs_quota_us)
7359{
7360	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7361}
7362
7363static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7364{
7365	return tg_get_cfs_period(cgroup_tg(cgrp));
7366}
7367
7368static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7369				u64 cfs_period_us)
7370{
7371	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7372}
7373
7374struct cfs_schedulable_data {
7375	struct task_group *tg;
7376	u64 period, quota;
7377};
7378
7379/*
7380 * normalize group quota/period to be quota/max_period
7381 * note: units are usecs
7382 */
7383static u64 normalize_cfs_quota(struct task_group *tg,
7384			       struct cfs_schedulable_data *d)
7385{
7386	u64 quota, period;
7387
7388	if (tg == d->tg) {
7389		period = d->period;
7390		quota = d->quota;
7391	} else {
7392		period = tg_get_cfs_period(tg);
7393		quota = tg_get_cfs_quota(tg);
7394	}
7395
7396	/* note: these should typically be equivalent */
7397	if (quota == RUNTIME_INF || quota == -1)
7398		return RUNTIME_INF;
7399
7400	return to_ratio(period, quota);
7401}
7402
7403static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7404{
7405	struct cfs_schedulable_data *d = data;
7406	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7407	s64 quota = 0, parent_quota = -1;
7408
7409	if (!tg->parent) {
7410		quota = RUNTIME_INF;
7411	} else {
7412		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7413
7414		quota = normalize_cfs_quota(tg, d);
7415		parent_quota = parent_b->hierarchal_quota;
7416
7417		/*
7418		 * ensure max(child_quota) <= parent_quota, inherit when no
7419		 * limit is set
7420		 */
7421		if (quota == RUNTIME_INF)
7422			quota = parent_quota;
7423		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7424			return -EINVAL;
7425	}
7426	cfs_b->hierarchal_quota = quota;
7427
7428	return 0;
7429}
7430
7431static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7432{
7433	int ret;
7434	struct cfs_schedulable_data data = {
7435		.tg = tg,
7436		.period = period,
7437		.quota = quota,
7438	};
7439
7440	if (quota != RUNTIME_INF) {
7441		do_div(data.period, NSEC_PER_USEC);
7442		do_div(data.quota, NSEC_PER_USEC);
7443	}
7444
7445	rcu_read_lock();
7446	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7447	rcu_read_unlock();
7448
7449	return ret;
7450}
7451
7452static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7453		struct cgroup_map_cb *cb)
7454{
7455	struct task_group *tg = cgroup_tg(cgrp);
7456	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7457
7458	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7459	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7460	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7461
7462	return 0;
7463}
7464#endif /* CONFIG_CFS_BANDWIDTH */
7465#endif /* CONFIG_FAIR_GROUP_SCHED */
7466
7467#ifdef CONFIG_RT_GROUP_SCHED
7468static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7469				s64 val)
7470{
7471	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7472}
7473
7474static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7475{
7476	return sched_group_rt_runtime(cgroup_tg(cgrp));
7477}
7478
7479static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7480		u64 rt_period_us)
7481{
7482	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7483}
7484
7485static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7486{
7487	return sched_group_rt_period(cgroup_tg(cgrp));
7488}
7489#endif /* CONFIG_RT_GROUP_SCHED */
7490
7491static struct cftype cpu_files[] = {
7492#ifdef CONFIG_FAIR_GROUP_SCHED
7493	{
7494		.name = "shares",
7495		.read_u64 = cpu_shares_read_u64,
7496		.write_u64 = cpu_shares_write_u64,
7497	},
7498#endif
7499#ifdef CONFIG_CFS_BANDWIDTH
7500	{
7501		.name = "cfs_quota_us",
7502		.read_s64 = cpu_cfs_quota_read_s64,
7503		.write_s64 = cpu_cfs_quota_write_s64,
7504	},
7505	{
7506		.name = "cfs_period_us",
7507		.read_u64 = cpu_cfs_period_read_u64,
7508		.write_u64 = cpu_cfs_period_write_u64,
7509	},
7510	{
7511		.name = "stat",
7512		.read_map = cpu_stats_show,
7513	},
7514#endif
7515#ifdef CONFIG_RT_GROUP_SCHED
7516	{
7517		.name = "rt_runtime_us",
7518		.read_s64 = cpu_rt_runtime_read,
7519		.write_s64 = cpu_rt_runtime_write,
7520	},
7521	{
7522		.name = "rt_period_us",
7523		.read_u64 = cpu_rt_period_read_uint,
7524		.write_u64 = cpu_rt_period_write_uint,
7525	},
7526#endif
7527	{ }	/* terminate */
7528};
7529
7530struct cgroup_subsys cpu_cgroup_subsys = {
7531	.name		= "cpu",
7532	.css_alloc	= cpu_cgroup_css_alloc,
7533	.css_free	= cpu_cgroup_css_free,
7534	.css_online	= cpu_cgroup_css_online,
7535	.css_offline	= cpu_cgroup_css_offline,
7536	.can_attach	= cpu_cgroup_can_attach,
7537	.attach		= cpu_cgroup_attach,
7538	.exit		= cpu_cgroup_exit,
7539	.subsys_id	= cpu_cgroup_subsys_id,
7540	.base_cftypes	= cpu_files,
7541	.early_init	= 1,
7542};
7543
7544#endif	/* CONFIG_CGROUP_SCHED */
7545
7546void dump_cpu_task(int cpu)
7547{
7548	pr_info("Task dump for CPU %d:\n", cpu);
7549	sched_show_task(cpu_curr(cpu));
7550}
7551