core.c revision eb95419b023abacb415e2a18fea899023ce7624d
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	assert_raw_spin_locked(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id())
528		return;
529
530	/* NEED_RESCHED must be visible before we test polling */
531	smp_mb();
532	if (!tsk_is_polling(p))
533		smp_send_reschedule(cpu);
534}
535
536void resched_cpu(int cpu)
537{
538	struct rq *rq = cpu_rq(cpu);
539	unsigned long flags;
540
541	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542		return;
543	resched_task(cpu_curr(cpu));
544	raw_spin_unlock_irqrestore(&rq->lock, flags);
545}
546
547#ifdef CONFIG_NO_HZ_COMMON
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu.  This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558	int cpu = smp_processor_id();
559	int i;
560	struct sched_domain *sd;
561
562	rcu_read_lock();
563	for_each_domain(cpu, sd) {
564		for_each_cpu(i, sched_domain_span(sd)) {
565			if (!idle_cpu(i)) {
566				cpu = i;
567				goto unlock;
568			}
569		}
570	}
571unlock:
572	rcu_read_unlock();
573	return cpu;
574}
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
585static void wake_up_idle_cpu(int cpu)
586{
587	struct rq *rq = cpu_rq(cpu);
588
589	if (cpu == smp_processor_id())
590		return;
591
592	/*
593	 * This is safe, as this function is called with the timer
594	 * wheel base lock of (cpu) held. When the CPU is on the way
595	 * to idle and has not yet set rq->curr to idle then it will
596	 * be serialized on the timer wheel base lock and take the new
597	 * timer into account automatically.
598	 */
599	if (rq->curr != rq->idle)
600		return;
601
602	/*
603	 * We can set TIF_RESCHED on the idle task of the other CPU
604	 * lockless. The worst case is that the other CPU runs the
605	 * idle task through an additional NOOP schedule()
606	 */
607	set_tsk_need_resched(rq->idle);
608
609	/* NEED_RESCHED must be visible before we test polling */
610	smp_mb();
611	if (!tsk_is_polling(rq->idle))
612		smp_send_reschedule(cpu);
613}
614
615static bool wake_up_full_nohz_cpu(int cpu)
616{
617	if (tick_nohz_full_cpu(cpu)) {
618		if (cpu != smp_processor_id() ||
619		    tick_nohz_tick_stopped())
620			smp_send_reschedule(cpu);
621		return true;
622	}
623
624	return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
629	if (!wake_up_full_nohz_cpu(cpu))
630		wake_up_idle_cpu(cpu);
631}
632
633static inline bool got_nohz_idle_kick(void)
634{
635	int cpu = smp_processor_id();
636
637	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638		return false;
639
640	if (idle_cpu(cpu) && !need_resched())
641		return true;
642
643	/*
644	 * We can't run Idle Load Balance on this CPU for this time so we
645	 * cancel it and clear NOHZ_BALANCE_KICK
646	 */
647	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648	return false;
649}
650
651#else /* CONFIG_NO_HZ_COMMON */
652
653static inline bool got_nohz_idle_kick(void)
654{
655	return false;
656}
657
658#endif /* CONFIG_NO_HZ_COMMON */
659
660#ifdef CONFIG_NO_HZ_FULL
661bool sched_can_stop_tick(void)
662{
663       struct rq *rq;
664
665       rq = this_rq();
666
667       /* Make sure rq->nr_running update is visible after the IPI */
668       smp_rmb();
669
670       /* More than one running task need preemption */
671       if (rq->nr_running > 1)
672               return false;
673
674       return true;
675}
676#endif /* CONFIG_NO_HZ_FULL */
677
678void sched_avg_update(struct rq *rq)
679{
680	s64 period = sched_avg_period();
681
682	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
683		/*
684		 * Inline assembly required to prevent the compiler
685		 * optimising this loop into a divmod call.
686		 * See __iter_div_u64_rem() for another example of this.
687		 */
688		asm("" : "+rm" (rq->age_stamp));
689		rq->age_stamp += period;
690		rq->rt_avg /= 2;
691	}
692}
693
694#else /* !CONFIG_SMP */
695void resched_task(struct task_struct *p)
696{
697	assert_raw_spin_locked(&task_rq(p)->lock);
698	set_tsk_need_resched(p);
699}
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711			     tg_visitor down, tg_visitor up, void *data)
712{
713	struct task_group *parent, *child;
714	int ret;
715
716	parent = from;
717
718down:
719	ret = (*down)(parent, data);
720	if (ret)
721		goto out;
722	list_for_each_entry_rcu(child, &parent->children, siblings) {
723		parent = child;
724		goto down;
725
726up:
727		continue;
728	}
729	ret = (*up)(parent, data);
730	if (ret || parent == from)
731		goto out;
732
733	child = parent;
734	parent = parent->parent;
735	if (parent)
736		goto up;
737out:
738	return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743	return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p)
748{
749	int prio = p->static_prio - MAX_RT_PRIO;
750	struct load_weight *load = &p->se.load;
751
752	/*
753	 * SCHED_IDLE tasks get minimal weight:
754	 */
755	if (p->policy == SCHED_IDLE) {
756		load->weight = scale_load(WEIGHT_IDLEPRIO);
757		load->inv_weight = WMULT_IDLEPRIO;
758		return;
759	}
760
761	load->weight = scale_load(prio_to_weight[prio]);
762	load->inv_weight = prio_to_wmult[prio];
763}
764
765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766{
767	update_rq_clock(rq);
768	sched_info_queued(p);
769	p->sched_class->enqueue_task(rq, p, flags);
770}
771
772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774	update_rq_clock(rq);
775	sched_info_dequeued(p);
776	p->sched_class->dequeue_task(rq, p, flags);
777}
778
779void activate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781	if (task_contributes_to_load(p))
782		rq->nr_uninterruptible--;
783
784	enqueue_task(rq, p, flags);
785}
786
787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788{
789	if (task_contributes_to_load(p))
790		rq->nr_uninterruptible++;
791
792	dequeue_task(rq, p, flags);
793}
794
795static void update_rq_clock_task(struct rq *rq, s64 delta)
796{
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802	s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807	/*
808	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809	 * this case when a previous update_rq_clock() happened inside a
810	 * {soft,}irq region.
811	 *
812	 * When this happens, we stop ->clock_task and only update the
813	 * prev_irq_time stamp to account for the part that fit, so that a next
814	 * update will consume the rest. This ensures ->clock_task is
815	 * monotonic.
816	 *
817	 * It does however cause some slight miss-attribution of {soft,}irq
818	 * time, a more accurate solution would be to update the irq_time using
819	 * the current rq->clock timestamp, except that would require using
820	 * atomic ops.
821	 */
822	if (irq_delta > delta)
823		irq_delta = delta;
824
825	rq->prev_irq_time += irq_delta;
826	delta -= irq_delta;
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829	if (static_key_false((&paravirt_steal_rq_enabled))) {
830		u64 st;
831
832		steal = paravirt_steal_clock(cpu_of(rq));
833		steal -= rq->prev_steal_time_rq;
834
835		if (unlikely(steal > delta))
836			steal = delta;
837
838		st = steal_ticks(steal);
839		steal = st * TICK_NSEC;
840
841		rq->prev_steal_time_rq += steal;
842
843		delta -= steal;
844	}
845#endif
846
847	rq->clock_task += delta;
848
849#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851		sched_rt_avg_update(rq, irq_delta + steal);
852#endif
853}
854
855void sched_set_stop_task(int cpu, struct task_struct *stop)
856{
857	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858	struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860	if (stop) {
861		/*
862		 * Make it appear like a SCHED_FIFO task, its something
863		 * userspace knows about and won't get confused about.
864		 *
865		 * Also, it will make PI more or less work without too
866		 * much confusion -- but then, stop work should not
867		 * rely on PI working anyway.
868		 */
869		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870
871		stop->sched_class = &stop_sched_class;
872	}
873
874	cpu_rq(cpu)->stop = stop;
875
876	if (old_stop) {
877		/*
878		 * Reset it back to a normal scheduling class so that
879		 * it can die in pieces.
880		 */
881		old_stop->sched_class = &rt_sched_class;
882	}
883}
884
885/*
886 * __normal_prio - return the priority that is based on the static prio
887 */
888static inline int __normal_prio(struct task_struct *p)
889{
890	return p->static_prio;
891}
892
893/*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
900static inline int normal_prio(struct task_struct *p)
901{
902	int prio;
903
904	if (task_has_rt_policy(p))
905		prio = MAX_RT_PRIO-1 - p->rt_priority;
906	else
907		prio = __normal_prio(p);
908	return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
918static int effective_prio(struct task_struct *p)
919{
920	p->normal_prio = normal_prio(p);
921	/*
922	 * If we are RT tasks or we were boosted to RT priority,
923	 * keep the priority unchanged. Otherwise, update priority
924	 * to the normal priority:
925	 */
926	if (!rt_prio(p->prio))
927		return p->normal_prio;
928	return p->prio;
929}
930
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978
979void register_task_migration_notifier(struct notifier_block *n)
980{
981	atomic_notifier_chain_register(&task_migration_notifier, n);
982}
983
984#ifdef CONFIG_SMP
985void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
986{
987#ifdef CONFIG_SCHED_DEBUG
988	/*
989	 * We should never call set_task_cpu() on a blocked task,
990	 * ttwu() will sort out the placement.
991	 */
992	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
994
995#ifdef CONFIG_LOCKDEP
996	/*
997	 * The caller should hold either p->pi_lock or rq->lock, when changing
998	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999	 *
1000	 * sched_move_task() holds both and thus holding either pins the cgroup,
1001	 * see task_group().
1002	 *
1003	 * Furthermore, all task_rq users should acquire both locks, see
1004	 * task_rq_lock().
1005	 */
1006	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007				      lockdep_is_held(&task_rq(p)->lock)));
1008#endif
1009#endif
1010
1011	trace_sched_migrate_task(p, new_cpu);
1012
1013	if (task_cpu(p) != new_cpu) {
1014		struct task_migration_notifier tmn;
1015
1016		if (p->sched_class->migrate_task_rq)
1017			p->sched_class->migrate_task_rq(p, new_cpu);
1018		p->se.nr_migrations++;
1019		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020
1021		tmn.task = p;
1022		tmn.from_cpu = task_cpu(p);
1023		tmn.to_cpu = new_cpu;
1024
1025		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026	}
1027
1028	__set_task_cpu(p, new_cpu);
1029}
1030
1031struct migration_arg {
1032	struct task_struct *task;
1033	int dest_cpu;
1034};
1035
1036static int migration_cpu_stop(void *data);
1037
1038/*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change.  If it changes, i.e. @p might have woken up,
1043 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count).  If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
1054unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1055{
1056	unsigned long flags;
1057	int running, on_rq;
1058	unsigned long ncsw;
1059	struct rq *rq;
1060
1061	for (;;) {
1062		/*
1063		 * We do the initial early heuristics without holding
1064		 * any task-queue locks at all. We'll only try to get
1065		 * the runqueue lock when things look like they will
1066		 * work out!
1067		 */
1068		rq = task_rq(p);
1069
1070		/*
1071		 * If the task is actively running on another CPU
1072		 * still, just relax and busy-wait without holding
1073		 * any locks.
1074		 *
1075		 * NOTE! Since we don't hold any locks, it's not
1076		 * even sure that "rq" stays as the right runqueue!
1077		 * But we don't care, since "task_running()" will
1078		 * return false if the runqueue has changed and p
1079		 * is actually now running somewhere else!
1080		 */
1081		while (task_running(rq, p)) {
1082			if (match_state && unlikely(p->state != match_state))
1083				return 0;
1084			cpu_relax();
1085		}
1086
1087		/*
1088		 * Ok, time to look more closely! We need the rq
1089		 * lock now, to be *sure*. If we're wrong, we'll
1090		 * just go back and repeat.
1091		 */
1092		rq = task_rq_lock(p, &flags);
1093		trace_sched_wait_task(p);
1094		running = task_running(rq, p);
1095		on_rq = p->on_rq;
1096		ncsw = 0;
1097		if (!match_state || p->state == match_state)
1098			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099		task_rq_unlock(rq, p, &flags);
1100
1101		/*
1102		 * If it changed from the expected state, bail out now.
1103		 */
1104		if (unlikely(!ncsw))
1105			break;
1106
1107		/*
1108		 * Was it really running after all now that we
1109		 * checked with the proper locks actually held?
1110		 *
1111		 * Oops. Go back and try again..
1112		 */
1113		if (unlikely(running)) {
1114			cpu_relax();
1115			continue;
1116		}
1117
1118		/*
1119		 * It's not enough that it's not actively running,
1120		 * it must be off the runqueue _entirely_, and not
1121		 * preempted!
1122		 *
1123		 * So if it was still runnable (but just not actively
1124		 * running right now), it's preempted, and we should
1125		 * yield - it could be a while.
1126		 */
1127		if (unlikely(on_rq)) {
1128			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130			set_current_state(TASK_UNINTERRUPTIBLE);
1131			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132			continue;
1133		}
1134
1135		/*
1136		 * Ahh, all good. It wasn't running, and it wasn't
1137		 * runnable, which means that it will never become
1138		 * running in the future either. We're all done!
1139		 */
1140		break;
1141	}
1142
1143	return ncsw;
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesn't have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159void kick_process(struct task_struct *p)
1160{
1161	int cpu;
1162
1163	preempt_disable();
1164	cpu = task_cpu(p);
1165	if ((cpu != smp_processor_id()) && task_curr(p))
1166		smp_send_reschedule(cpu);
1167	preempt_enable();
1168}
1169EXPORT_SYMBOL_GPL(kick_process);
1170#endif /* CONFIG_SMP */
1171
1172#ifdef CONFIG_SMP
1173/*
1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175 */
1176static int select_fallback_rq(int cpu, struct task_struct *p)
1177{
1178	int nid = cpu_to_node(cpu);
1179	const struct cpumask *nodemask = NULL;
1180	enum { cpuset, possible, fail } state = cpuset;
1181	int dest_cpu;
1182
1183	/*
1184	 * If the node that the cpu is on has been offlined, cpu_to_node()
1185	 * will return -1. There is no cpu on the node, and we should
1186	 * select the cpu on the other node.
1187	 */
1188	if (nid != -1) {
1189		nodemask = cpumask_of_node(nid);
1190
1191		/* Look for allowed, online CPU in same node. */
1192		for_each_cpu(dest_cpu, nodemask) {
1193			if (!cpu_online(dest_cpu))
1194				continue;
1195			if (!cpu_active(dest_cpu))
1196				continue;
1197			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198				return dest_cpu;
1199		}
1200	}
1201
1202	for (;;) {
1203		/* Any allowed, online CPU? */
1204		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205			if (!cpu_online(dest_cpu))
1206				continue;
1207			if (!cpu_active(dest_cpu))
1208				continue;
1209			goto out;
1210		}
1211
1212		switch (state) {
1213		case cpuset:
1214			/* No more Mr. Nice Guy. */
1215			cpuset_cpus_allowed_fallback(p);
1216			state = possible;
1217			break;
1218
1219		case possible:
1220			do_set_cpus_allowed(p, cpu_possible_mask);
1221			state = fail;
1222			break;
1223
1224		case fail:
1225			BUG();
1226			break;
1227		}
1228	}
1229
1230out:
1231	if (state != cpuset) {
1232		/*
1233		 * Don't tell them about moving exiting tasks or
1234		 * kernel threads (both mm NULL), since they never
1235		 * leave kernel.
1236		 */
1237		if (p->mm && printk_ratelimit()) {
1238			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239					task_pid_nr(p), p->comm, cpu);
1240		}
1241	}
1242
1243	return dest_cpu;
1244}
1245
1246/*
1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248 */
1249static inline
1250int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251{
1252	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253
1254	/*
1255	 * In order not to call set_task_cpu() on a blocking task we need
1256	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257	 * cpu.
1258	 *
1259	 * Since this is common to all placement strategies, this lives here.
1260	 *
1261	 * [ this allows ->select_task() to simply return task_cpu(p) and
1262	 *   not worry about this generic constraint ]
1263	 */
1264	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1265		     !cpu_online(cpu)))
1266		cpu = select_fallback_rq(task_cpu(p), p);
1267
1268	return cpu;
1269}
1270
1271static void update_avg(u64 *avg, u64 sample)
1272{
1273	s64 diff = sample - *avg;
1274	*avg += diff >> 3;
1275}
1276#endif
1277
1278static void
1279ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1280{
1281#ifdef CONFIG_SCHEDSTATS
1282	struct rq *rq = this_rq();
1283
1284#ifdef CONFIG_SMP
1285	int this_cpu = smp_processor_id();
1286
1287	if (cpu == this_cpu) {
1288		schedstat_inc(rq, ttwu_local);
1289		schedstat_inc(p, se.statistics.nr_wakeups_local);
1290	} else {
1291		struct sched_domain *sd;
1292
1293		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294		rcu_read_lock();
1295		for_each_domain(this_cpu, sd) {
1296			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297				schedstat_inc(sd, ttwu_wake_remote);
1298				break;
1299			}
1300		}
1301		rcu_read_unlock();
1302	}
1303
1304	if (wake_flags & WF_MIGRATED)
1305		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
1307#endif /* CONFIG_SMP */
1308
1309	schedstat_inc(rq, ttwu_count);
1310	schedstat_inc(p, se.statistics.nr_wakeups);
1311
1312	if (wake_flags & WF_SYNC)
1313		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1314
1315#endif /* CONFIG_SCHEDSTATS */
1316}
1317
1318static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319{
1320	activate_task(rq, p, en_flags);
1321	p->on_rq = 1;
1322
1323	/* if a worker is waking up, notify workqueue */
1324	if (p->flags & PF_WQ_WORKER)
1325		wq_worker_waking_up(p, cpu_of(rq));
1326}
1327
1328/*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
1331static void
1332ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1333{
1334	check_preempt_curr(rq, p, wake_flags);
1335	trace_sched_wakeup(p, true);
1336
1337	p->state = TASK_RUNNING;
1338#ifdef CONFIG_SMP
1339	if (p->sched_class->task_woken)
1340		p->sched_class->task_woken(rq, p);
1341
1342	if (rq->idle_stamp) {
1343		u64 delta = rq_clock(rq) - rq->idle_stamp;
1344		u64 max = 2*sysctl_sched_migration_cost;
1345
1346		if (delta > max)
1347			rq->avg_idle = max;
1348		else
1349			update_avg(&rq->avg_idle, delta);
1350		rq->idle_stamp = 0;
1351	}
1352#endif
1353}
1354
1355static void
1356ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357{
1358#ifdef CONFIG_SMP
1359	if (p->sched_contributes_to_load)
1360		rq->nr_uninterruptible--;
1361#endif
1362
1363	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364	ttwu_do_wakeup(rq, p, wake_flags);
1365}
1366
1367/*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373static int ttwu_remote(struct task_struct *p, int wake_flags)
1374{
1375	struct rq *rq;
1376	int ret = 0;
1377
1378	rq = __task_rq_lock(p);
1379	if (p->on_rq) {
1380		/* check_preempt_curr() may use rq clock */
1381		update_rq_clock(rq);
1382		ttwu_do_wakeup(rq, p, wake_flags);
1383		ret = 1;
1384	}
1385	__task_rq_unlock(rq);
1386
1387	return ret;
1388}
1389
1390#ifdef CONFIG_SMP
1391static void sched_ttwu_pending(void)
1392{
1393	struct rq *rq = this_rq();
1394	struct llist_node *llist = llist_del_all(&rq->wake_list);
1395	struct task_struct *p;
1396
1397	raw_spin_lock(&rq->lock);
1398
1399	while (llist) {
1400		p = llist_entry(llist, struct task_struct, wake_entry);
1401		llist = llist_next(llist);
1402		ttwu_do_activate(rq, p, 0);
1403	}
1404
1405	raw_spin_unlock(&rq->lock);
1406}
1407
1408void scheduler_ipi(void)
1409{
1410	if (llist_empty(&this_rq()->wake_list)
1411			&& !tick_nohz_full_cpu(smp_processor_id())
1412			&& !got_nohz_idle_kick())
1413		return;
1414
1415	/*
1416	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417	 * traditionally all their work was done from the interrupt return
1418	 * path. Now that we actually do some work, we need to make sure
1419	 * we do call them.
1420	 *
1421	 * Some archs already do call them, luckily irq_enter/exit nest
1422	 * properly.
1423	 *
1424	 * Arguably we should visit all archs and update all handlers,
1425	 * however a fair share of IPIs are still resched only so this would
1426	 * somewhat pessimize the simple resched case.
1427	 */
1428	irq_enter();
1429	tick_nohz_full_check();
1430	sched_ttwu_pending();
1431
1432	/*
1433	 * Check if someone kicked us for doing the nohz idle load balance.
1434	 */
1435	if (unlikely(got_nohz_idle_kick())) {
1436		this_rq()->idle_balance = 1;
1437		raise_softirq_irqoff(SCHED_SOFTIRQ);
1438	}
1439	irq_exit();
1440}
1441
1442static void ttwu_queue_remote(struct task_struct *p, int cpu)
1443{
1444	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1445		smp_send_reschedule(cpu);
1446}
1447
1448bool cpus_share_cache(int this_cpu, int that_cpu)
1449{
1450	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1451}
1452#endif /* CONFIG_SMP */
1453
1454static void ttwu_queue(struct task_struct *p, int cpu)
1455{
1456	struct rq *rq = cpu_rq(cpu);
1457
1458#if defined(CONFIG_SMP)
1459	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1460		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1461		ttwu_queue_remote(p, cpu);
1462		return;
1463	}
1464#endif
1465
1466	raw_spin_lock(&rq->lock);
1467	ttwu_do_activate(rq, p, 0);
1468	raw_spin_unlock(&rq->lock);
1469}
1470
1471/**
1472 * try_to_wake_up - wake up a thread
1473 * @p: the thread to be awakened
1474 * @state: the mask of task states that can be woken
1475 * @wake_flags: wake modifier flags (WF_*)
1476 *
1477 * Put it on the run-queue if it's not already there. The "current"
1478 * thread is always on the run-queue (except when the actual
1479 * re-schedule is in progress), and as such you're allowed to do
1480 * the simpler "current->state = TASK_RUNNING" to mark yourself
1481 * runnable without the overhead of this.
1482 *
1483 * Returns %true if @p was woken up, %false if it was already running
1484 * or @state didn't match @p's state.
1485 */
1486static int
1487try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1488{
1489	unsigned long flags;
1490	int cpu, success = 0;
1491
1492	smp_wmb();
1493	raw_spin_lock_irqsave(&p->pi_lock, flags);
1494	if (!(p->state & state))
1495		goto out;
1496
1497	success = 1; /* we're going to change ->state */
1498	cpu = task_cpu(p);
1499
1500	if (p->on_rq && ttwu_remote(p, wake_flags))
1501		goto stat;
1502
1503#ifdef CONFIG_SMP
1504	/*
1505	 * If the owning (remote) cpu is still in the middle of schedule() with
1506	 * this task as prev, wait until its done referencing the task.
1507	 */
1508	while (p->on_cpu)
1509		cpu_relax();
1510	/*
1511	 * Pairs with the smp_wmb() in finish_lock_switch().
1512	 */
1513	smp_rmb();
1514
1515	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516	p->state = TASK_WAKING;
1517
1518	if (p->sched_class->task_waking)
1519		p->sched_class->task_waking(p);
1520
1521	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522	if (task_cpu(p) != cpu) {
1523		wake_flags |= WF_MIGRATED;
1524		set_task_cpu(p, cpu);
1525	}
1526#endif /* CONFIG_SMP */
1527
1528	ttwu_queue(p, cpu);
1529stat:
1530	ttwu_stat(p, cpu, wake_flags);
1531out:
1532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1533
1534	return success;
1535}
1536
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
1541 * Put @p on the run-queue if it's not already there. The caller must
1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543 * the current task.
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547	struct rq *rq = task_rq(p);
1548
1549	if (WARN_ON_ONCE(rq != this_rq()) ||
1550	    WARN_ON_ONCE(p == current))
1551		return;
1552
1553	lockdep_assert_held(&rq->lock);
1554
1555	if (!raw_spin_trylock(&p->pi_lock)) {
1556		raw_spin_unlock(&rq->lock);
1557		raw_spin_lock(&p->pi_lock);
1558		raw_spin_lock(&rq->lock);
1559	}
1560
1561	if (!(p->state & TASK_NORMAL))
1562		goto out;
1563
1564	if (!p->on_rq)
1565		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
1567	ttwu_do_wakeup(rq, p, 0);
1568	ttwu_stat(p, smp_processor_id(), 0);
1569out:
1570	raw_spin_unlock(&p->pi_lock);
1571}
1572
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes.  Returns 1 if the process was woken up, 0 if it was already
1579 * running.
1580 *
1581 * It may be assumed that this function implies a write memory barrier before
1582 * changing the task state if and only if any tasks are woken up.
1583 */
1584int wake_up_process(struct task_struct *p)
1585{
1586	WARN_ON(task_is_stopped_or_traced(p));
1587	return try_to_wake_up(p, TASK_NORMAL, 0);
1588}
1589EXPORT_SYMBOL(wake_up_process);
1590
1591int wake_up_state(struct task_struct *p, unsigned int state)
1592{
1593	return try_to_wake_up(p, state, 0);
1594}
1595
1596/*
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
1599 *
1600 * __sched_fork() is basic setup used by init_idle() too:
1601 */
1602static void __sched_fork(struct task_struct *p)
1603{
1604	p->on_rq			= 0;
1605
1606	p->se.on_rq			= 0;
1607	p->se.exec_start		= 0;
1608	p->se.sum_exec_runtime		= 0;
1609	p->se.prev_sum_exec_runtime	= 0;
1610	p->se.nr_migrations		= 0;
1611	p->se.vruntime			= 0;
1612	INIT_LIST_HEAD(&p->se.group_node);
1613
1614#ifdef CONFIG_SCHEDSTATS
1615	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1616#endif
1617
1618	INIT_LIST_HEAD(&p->rt.run_list);
1619
1620#ifdef CONFIG_PREEMPT_NOTIFIERS
1621	INIT_HLIST_HEAD(&p->preempt_notifiers);
1622#endif
1623
1624#ifdef CONFIG_NUMA_BALANCING
1625	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1626		p->mm->numa_next_scan = jiffies;
1627		p->mm->numa_next_reset = jiffies;
1628		p->mm->numa_scan_seq = 0;
1629	}
1630
1631	p->node_stamp = 0ULL;
1632	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1633	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1634	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1635	p->numa_work.next = &p->numa_work;
1636#endif /* CONFIG_NUMA_BALANCING */
1637}
1638
1639#ifdef CONFIG_NUMA_BALANCING
1640#ifdef CONFIG_SCHED_DEBUG
1641void set_numabalancing_state(bool enabled)
1642{
1643	if (enabled)
1644		sched_feat_set("NUMA");
1645	else
1646		sched_feat_set("NO_NUMA");
1647}
1648#else
1649__read_mostly bool numabalancing_enabled;
1650
1651void set_numabalancing_state(bool enabled)
1652{
1653	numabalancing_enabled = enabled;
1654}
1655#endif /* CONFIG_SCHED_DEBUG */
1656#endif /* CONFIG_NUMA_BALANCING */
1657
1658/*
1659 * fork()/clone()-time setup:
1660 */
1661void sched_fork(struct task_struct *p)
1662{
1663	unsigned long flags;
1664	int cpu = get_cpu();
1665
1666	__sched_fork(p);
1667	/*
1668	 * We mark the process as running here. This guarantees that
1669	 * nobody will actually run it, and a signal or other external
1670	 * event cannot wake it up and insert it on the runqueue either.
1671	 */
1672	p->state = TASK_RUNNING;
1673
1674	/*
1675	 * Make sure we do not leak PI boosting priority to the child.
1676	 */
1677	p->prio = current->normal_prio;
1678
1679	/*
1680	 * Revert to default priority/policy on fork if requested.
1681	 */
1682	if (unlikely(p->sched_reset_on_fork)) {
1683		if (task_has_rt_policy(p)) {
1684			p->policy = SCHED_NORMAL;
1685			p->static_prio = NICE_TO_PRIO(0);
1686			p->rt_priority = 0;
1687		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1688			p->static_prio = NICE_TO_PRIO(0);
1689
1690		p->prio = p->normal_prio = __normal_prio(p);
1691		set_load_weight(p);
1692
1693		/*
1694		 * We don't need the reset flag anymore after the fork. It has
1695		 * fulfilled its duty:
1696		 */
1697		p->sched_reset_on_fork = 0;
1698	}
1699
1700	if (!rt_prio(p->prio))
1701		p->sched_class = &fair_sched_class;
1702
1703	if (p->sched_class->task_fork)
1704		p->sched_class->task_fork(p);
1705
1706	/*
1707	 * The child is not yet in the pid-hash so no cgroup attach races,
1708	 * and the cgroup is pinned to this child due to cgroup_fork()
1709	 * is ran before sched_fork().
1710	 *
1711	 * Silence PROVE_RCU.
1712	 */
1713	raw_spin_lock_irqsave(&p->pi_lock, flags);
1714	set_task_cpu(p, cpu);
1715	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1716
1717#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1718	if (likely(sched_info_on()))
1719		memset(&p->sched_info, 0, sizeof(p->sched_info));
1720#endif
1721#if defined(CONFIG_SMP)
1722	p->on_cpu = 0;
1723#endif
1724#ifdef CONFIG_PREEMPT_COUNT
1725	/* Want to start with kernel preemption disabled. */
1726	task_thread_info(p)->preempt_count = 1;
1727#endif
1728#ifdef CONFIG_SMP
1729	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1730#endif
1731
1732	put_cpu();
1733}
1734
1735/*
1736 * wake_up_new_task - wake up a newly created task for the first time.
1737 *
1738 * This function will do some initial scheduler statistics housekeeping
1739 * that must be done for every newly created context, then puts the task
1740 * on the runqueue and wakes it.
1741 */
1742void wake_up_new_task(struct task_struct *p)
1743{
1744	unsigned long flags;
1745	struct rq *rq;
1746
1747	raw_spin_lock_irqsave(&p->pi_lock, flags);
1748#ifdef CONFIG_SMP
1749	/*
1750	 * Fork balancing, do it here and not earlier because:
1751	 *  - cpus_allowed can change in the fork path
1752	 *  - any previously selected cpu might disappear through hotplug
1753	 */
1754	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1755#endif
1756
1757	/* Initialize new task's runnable average */
1758	init_task_runnable_average(p);
1759	rq = __task_rq_lock(p);
1760	activate_task(rq, p, 0);
1761	p->on_rq = 1;
1762	trace_sched_wakeup_new(p, true);
1763	check_preempt_curr(rq, p, WF_FORK);
1764#ifdef CONFIG_SMP
1765	if (p->sched_class->task_woken)
1766		p->sched_class->task_woken(rq, p);
1767#endif
1768	task_rq_unlock(rq, p, &flags);
1769}
1770
1771#ifdef CONFIG_PREEMPT_NOTIFIERS
1772
1773/**
1774 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1775 * @notifier: notifier struct to register
1776 */
1777void preempt_notifier_register(struct preempt_notifier *notifier)
1778{
1779	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1780}
1781EXPORT_SYMBOL_GPL(preempt_notifier_register);
1782
1783/**
1784 * preempt_notifier_unregister - no longer interested in preemption notifications
1785 * @notifier: notifier struct to unregister
1786 *
1787 * This is safe to call from within a preemption notifier.
1788 */
1789void preempt_notifier_unregister(struct preempt_notifier *notifier)
1790{
1791	hlist_del(&notifier->link);
1792}
1793EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1794
1795static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1796{
1797	struct preempt_notifier *notifier;
1798
1799	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1800		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1801}
1802
1803static void
1804fire_sched_out_preempt_notifiers(struct task_struct *curr,
1805				 struct task_struct *next)
1806{
1807	struct preempt_notifier *notifier;
1808
1809	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1810		notifier->ops->sched_out(notifier, next);
1811}
1812
1813#else /* !CONFIG_PREEMPT_NOTIFIERS */
1814
1815static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1816{
1817}
1818
1819static void
1820fire_sched_out_preempt_notifiers(struct task_struct *curr,
1821				 struct task_struct *next)
1822{
1823}
1824
1825#endif /* CONFIG_PREEMPT_NOTIFIERS */
1826
1827/**
1828 * prepare_task_switch - prepare to switch tasks
1829 * @rq: the runqueue preparing to switch
1830 * @prev: the current task that is being switched out
1831 * @next: the task we are going to switch to.
1832 *
1833 * This is called with the rq lock held and interrupts off. It must
1834 * be paired with a subsequent finish_task_switch after the context
1835 * switch.
1836 *
1837 * prepare_task_switch sets up locking and calls architecture specific
1838 * hooks.
1839 */
1840static inline void
1841prepare_task_switch(struct rq *rq, struct task_struct *prev,
1842		    struct task_struct *next)
1843{
1844	trace_sched_switch(prev, next);
1845	sched_info_switch(prev, next);
1846	perf_event_task_sched_out(prev, next);
1847	fire_sched_out_preempt_notifiers(prev, next);
1848	prepare_lock_switch(rq, next);
1849	prepare_arch_switch(next);
1850}
1851
1852/**
1853 * finish_task_switch - clean up after a task-switch
1854 * @rq: runqueue associated with task-switch
1855 * @prev: the thread we just switched away from.
1856 *
1857 * finish_task_switch must be called after the context switch, paired
1858 * with a prepare_task_switch call before the context switch.
1859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1860 * and do any other architecture-specific cleanup actions.
1861 *
1862 * Note that we may have delayed dropping an mm in context_switch(). If
1863 * so, we finish that here outside of the runqueue lock. (Doing it
1864 * with the lock held can cause deadlocks; see schedule() for
1865 * details.)
1866 */
1867static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1868	__releases(rq->lock)
1869{
1870	struct mm_struct *mm = rq->prev_mm;
1871	long prev_state;
1872
1873	rq->prev_mm = NULL;
1874
1875	/*
1876	 * A task struct has one reference for the use as "current".
1877	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1878	 * schedule one last time. The schedule call will never return, and
1879	 * the scheduled task must drop that reference.
1880	 * The test for TASK_DEAD must occur while the runqueue locks are
1881	 * still held, otherwise prev could be scheduled on another cpu, die
1882	 * there before we look at prev->state, and then the reference would
1883	 * be dropped twice.
1884	 *		Manfred Spraul <manfred@colorfullife.com>
1885	 */
1886	prev_state = prev->state;
1887	vtime_task_switch(prev);
1888	finish_arch_switch(prev);
1889	perf_event_task_sched_in(prev, current);
1890	finish_lock_switch(rq, prev);
1891	finish_arch_post_lock_switch();
1892
1893	fire_sched_in_preempt_notifiers(current);
1894	if (mm)
1895		mmdrop(mm);
1896	if (unlikely(prev_state == TASK_DEAD)) {
1897		/*
1898		 * Remove function-return probe instances associated with this
1899		 * task and put them back on the free list.
1900		 */
1901		kprobe_flush_task(prev);
1902		put_task_struct(prev);
1903	}
1904
1905	tick_nohz_task_switch(current);
1906}
1907
1908#ifdef CONFIG_SMP
1909
1910/* assumes rq->lock is held */
1911static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1912{
1913	if (prev->sched_class->pre_schedule)
1914		prev->sched_class->pre_schedule(rq, prev);
1915}
1916
1917/* rq->lock is NOT held, but preemption is disabled */
1918static inline void post_schedule(struct rq *rq)
1919{
1920	if (rq->post_schedule) {
1921		unsigned long flags;
1922
1923		raw_spin_lock_irqsave(&rq->lock, flags);
1924		if (rq->curr->sched_class->post_schedule)
1925			rq->curr->sched_class->post_schedule(rq);
1926		raw_spin_unlock_irqrestore(&rq->lock, flags);
1927
1928		rq->post_schedule = 0;
1929	}
1930}
1931
1932#else
1933
1934static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1935{
1936}
1937
1938static inline void post_schedule(struct rq *rq)
1939{
1940}
1941
1942#endif
1943
1944/**
1945 * schedule_tail - first thing a freshly forked thread must call.
1946 * @prev: the thread we just switched away from.
1947 */
1948asmlinkage void schedule_tail(struct task_struct *prev)
1949	__releases(rq->lock)
1950{
1951	struct rq *rq = this_rq();
1952
1953	finish_task_switch(rq, prev);
1954
1955	/*
1956	 * FIXME: do we need to worry about rq being invalidated by the
1957	 * task_switch?
1958	 */
1959	post_schedule(rq);
1960
1961#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1962	/* In this case, finish_task_switch does not reenable preemption */
1963	preempt_enable();
1964#endif
1965	if (current->set_child_tid)
1966		put_user(task_pid_vnr(current), current->set_child_tid);
1967}
1968
1969/*
1970 * context_switch - switch to the new MM and the new
1971 * thread's register state.
1972 */
1973static inline void
1974context_switch(struct rq *rq, struct task_struct *prev,
1975	       struct task_struct *next)
1976{
1977	struct mm_struct *mm, *oldmm;
1978
1979	prepare_task_switch(rq, prev, next);
1980
1981	mm = next->mm;
1982	oldmm = prev->active_mm;
1983	/*
1984	 * For paravirt, this is coupled with an exit in switch_to to
1985	 * combine the page table reload and the switch backend into
1986	 * one hypercall.
1987	 */
1988	arch_start_context_switch(prev);
1989
1990	if (!mm) {
1991		next->active_mm = oldmm;
1992		atomic_inc(&oldmm->mm_count);
1993		enter_lazy_tlb(oldmm, next);
1994	} else
1995		switch_mm(oldmm, mm, next);
1996
1997	if (!prev->mm) {
1998		prev->active_mm = NULL;
1999		rq->prev_mm = oldmm;
2000	}
2001	/*
2002	 * Since the runqueue lock will be released by the next
2003	 * task (which is an invalid locking op but in the case
2004	 * of the scheduler it's an obvious special-case), so we
2005	 * do an early lockdep release here:
2006	 */
2007#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2008	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2009#endif
2010
2011	context_tracking_task_switch(prev, next);
2012	/* Here we just switch the register state and the stack. */
2013	switch_to(prev, next, prev);
2014
2015	barrier();
2016	/*
2017	 * this_rq must be evaluated again because prev may have moved
2018	 * CPUs since it called schedule(), thus the 'rq' on its stack
2019	 * frame will be invalid.
2020	 */
2021	finish_task_switch(this_rq(), prev);
2022}
2023
2024/*
2025 * nr_running and nr_context_switches:
2026 *
2027 * externally visible scheduler statistics: current number of runnable
2028 * threads, total number of context switches performed since bootup.
2029 */
2030unsigned long nr_running(void)
2031{
2032	unsigned long i, sum = 0;
2033
2034	for_each_online_cpu(i)
2035		sum += cpu_rq(i)->nr_running;
2036
2037	return sum;
2038}
2039
2040unsigned long long nr_context_switches(void)
2041{
2042	int i;
2043	unsigned long long sum = 0;
2044
2045	for_each_possible_cpu(i)
2046		sum += cpu_rq(i)->nr_switches;
2047
2048	return sum;
2049}
2050
2051unsigned long nr_iowait(void)
2052{
2053	unsigned long i, sum = 0;
2054
2055	for_each_possible_cpu(i)
2056		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2057
2058	return sum;
2059}
2060
2061unsigned long nr_iowait_cpu(int cpu)
2062{
2063	struct rq *this = cpu_rq(cpu);
2064	return atomic_read(&this->nr_iowait);
2065}
2066
2067#ifdef CONFIG_SMP
2068
2069/*
2070 * sched_exec - execve() is a valuable balancing opportunity, because at
2071 * this point the task has the smallest effective memory and cache footprint.
2072 */
2073void sched_exec(void)
2074{
2075	struct task_struct *p = current;
2076	unsigned long flags;
2077	int dest_cpu;
2078
2079	raw_spin_lock_irqsave(&p->pi_lock, flags);
2080	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2081	if (dest_cpu == smp_processor_id())
2082		goto unlock;
2083
2084	if (likely(cpu_active(dest_cpu))) {
2085		struct migration_arg arg = { p, dest_cpu };
2086
2087		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2088		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2089		return;
2090	}
2091unlock:
2092	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2093}
2094
2095#endif
2096
2097DEFINE_PER_CPU(struct kernel_stat, kstat);
2098DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2099
2100EXPORT_PER_CPU_SYMBOL(kstat);
2101EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2102
2103/*
2104 * Return any ns on the sched_clock that have not yet been accounted in
2105 * @p in case that task is currently running.
2106 *
2107 * Called with task_rq_lock() held on @rq.
2108 */
2109static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2110{
2111	u64 ns = 0;
2112
2113	if (task_current(rq, p)) {
2114		update_rq_clock(rq);
2115		ns = rq_clock_task(rq) - p->se.exec_start;
2116		if ((s64)ns < 0)
2117			ns = 0;
2118	}
2119
2120	return ns;
2121}
2122
2123unsigned long long task_delta_exec(struct task_struct *p)
2124{
2125	unsigned long flags;
2126	struct rq *rq;
2127	u64 ns = 0;
2128
2129	rq = task_rq_lock(p, &flags);
2130	ns = do_task_delta_exec(p, rq);
2131	task_rq_unlock(rq, p, &flags);
2132
2133	return ns;
2134}
2135
2136/*
2137 * Return accounted runtime for the task.
2138 * In case the task is currently running, return the runtime plus current's
2139 * pending runtime that have not been accounted yet.
2140 */
2141unsigned long long task_sched_runtime(struct task_struct *p)
2142{
2143	unsigned long flags;
2144	struct rq *rq;
2145	u64 ns = 0;
2146
2147	rq = task_rq_lock(p, &flags);
2148	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2149	task_rq_unlock(rq, p, &flags);
2150
2151	return ns;
2152}
2153
2154/*
2155 * This function gets called by the timer code, with HZ frequency.
2156 * We call it with interrupts disabled.
2157 */
2158void scheduler_tick(void)
2159{
2160	int cpu = smp_processor_id();
2161	struct rq *rq = cpu_rq(cpu);
2162	struct task_struct *curr = rq->curr;
2163
2164	sched_clock_tick();
2165
2166	raw_spin_lock(&rq->lock);
2167	update_rq_clock(rq);
2168	curr->sched_class->task_tick(rq, curr, 0);
2169	update_cpu_load_active(rq);
2170	raw_spin_unlock(&rq->lock);
2171
2172	perf_event_task_tick();
2173
2174#ifdef CONFIG_SMP
2175	rq->idle_balance = idle_cpu(cpu);
2176	trigger_load_balance(rq, cpu);
2177#endif
2178	rq_last_tick_reset(rq);
2179}
2180
2181#ifdef CONFIG_NO_HZ_FULL
2182/**
2183 * scheduler_tick_max_deferment
2184 *
2185 * Keep at least one tick per second when a single
2186 * active task is running because the scheduler doesn't
2187 * yet completely support full dynticks environment.
2188 *
2189 * This makes sure that uptime, CFS vruntime, load
2190 * balancing, etc... continue to move forward, even
2191 * with a very low granularity.
2192 */
2193u64 scheduler_tick_max_deferment(void)
2194{
2195	struct rq *rq = this_rq();
2196	unsigned long next, now = ACCESS_ONCE(jiffies);
2197
2198	next = rq->last_sched_tick + HZ;
2199
2200	if (time_before_eq(next, now))
2201		return 0;
2202
2203	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2204}
2205#endif
2206
2207notrace unsigned long get_parent_ip(unsigned long addr)
2208{
2209	if (in_lock_functions(addr)) {
2210		addr = CALLER_ADDR2;
2211		if (in_lock_functions(addr))
2212			addr = CALLER_ADDR3;
2213	}
2214	return addr;
2215}
2216
2217#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2218				defined(CONFIG_PREEMPT_TRACER))
2219
2220void __kprobes add_preempt_count(int val)
2221{
2222#ifdef CONFIG_DEBUG_PREEMPT
2223	/*
2224	 * Underflow?
2225	 */
2226	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2227		return;
2228#endif
2229	preempt_count() += val;
2230#ifdef CONFIG_DEBUG_PREEMPT
2231	/*
2232	 * Spinlock count overflowing soon?
2233	 */
2234	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2235				PREEMPT_MASK - 10);
2236#endif
2237	if (preempt_count() == val)
2238		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2239}
2240EXPORT_SYMBOL(add_preempt_count);
2241
2242void __kprobes sub_preempt_count(int val)
2243{
2244#ifdef CONFIG_DEBUG_PREEMPT
2245	/*
2246	 * Underflow?
2247	 */
2248	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2249		return;
2250	/*
2251	 * Is the spinlock portion underflowing?
2252	 */
2253	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2254			!(preempt_count() & PREEMPT_MASK)))
2255		return;
2256#endif
2257
2258	if (preempt_count() == val)
2259		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2260	preempt_count() -= val;
2261}
2262EXPORT_SYMBOL(sub_preempt_count);
2263
2264#endif
2265
2266/*
2267 * Print scheduling while atomic bug:
2268 */
2269static noinline void __schedule_bug(struct task_struct *prev)
2270{
2271	if (oops_in_progress)
2272		return;
2273
2274	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2275		prev->comm, prev->pid, preempt_count());
2276
2277	debug_show_held_locks(prev);
2278	print_modules();
2279	if (irqs_disabled())
2280		print_irqtrace_events(prev);
2281	dump_stack();
2282	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2283}
2284
2285/*
2286 * Various schedule()-time debugging checks and statistics:
2287 */
2288static inline void schedule_debug(struct task_struct *prev)
2289{
2290	/*
2291	 * Test if we are atomic. Since do_exit() needs to call into
2292	 * schedule() atomically, we ignore that path for now.
2293	 * Otherwise, whine if we are scheduling when we should not be.
2294	 */
2295	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2296		__schedule_bug(prev);
2297	rcu_sleep_check();
2298
2299	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2300
2301	schedstat_inc(this_rq(), sched_count);
2302}
2303
2304static void put_prev_task(struct rq *rq, struct task_struct *prev)
2305{
2306	if (prev->on_rq || rq->skip_clock_update < 0)
2307		update_rq_clock(rq);
2308	prev->sched_class->put_prev_task(rq, prev);
2309}
2310
2311/*
2312 * Pick up the highest-prio task:
2313 */
2314static inline struct task_struct *
2315pick_next_task(struct rq *rq)
2316{
2317	const struct sched_class *class;
2318	struct task_struct *p;
2319
2320	/*
2321	 * Optimization: we know that if all tasks are in
2322	 * the fair class we can call that function directly:
2323	 */
2324	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2325		p = fair_sched_class.pick_next_task(rq);
2326		if (likely(p))
2327			return p;
2328	}
2329
2330	for_each_class(class) {
2331		p = class->pick_next_task(rq);
2332		if (p)
2333			return p;
2334	}
2335
2336	BUG(); /* the idle class will always have a runnable task */
2337}
2338
2339/*
2340 * __schedule() is the main scheduler function.
2341 *
2342 * The main means of driving the scheduler and thus entering this function are:
2343 *
2344 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2345 *
2346 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2347 *      paths. For example, see arch/x86/entry_64.S.
2348 *
2349 *      To drive preemption between tasks, the scheduler sets the flag in timer
2350 *      interrupt handler scheduler_tick().
2351 *
2352 *   3. Wakeups don't really cause entry into schedule(). They add a
2353 *      task to the run-queue and that's it.
2354 *
2355 *      Now, if the new task added to the run-queue preempts the current
2356 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2357 *      called on the nearest possible occasion:
2358 *
2359 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2360 *
2361 *         - in syscall or exception context, at the next outmost
2362 *           preempt_enable(). (this might be as soon as the wake_up()'s
2363 *           spin_unlock()!)
2364 *
2365 *         - in IRQ context, return from interrupt-handler to
2366 *           preemptible context
2367 *
2368 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2369 *         then at the next:
2370 *
2371 *          - cond_resched() call
2372 *          - explicit schedule() call
2373 *          - return from syscall or exception to user-space
2374 *          - return from interrupt-handler to user-space
2375 */
2376static void __sched __schedule(void)
2377{
2378	struct task_struct *prev, *next;
2379	unsigned long *switch_count;
2380	struct rq *rq;
2381	int cpu;
2382
2383need_resched:
2384	preempt_disable();
2385	cpu = smp_processor_id();
2386	rq = cpu_rq(cpu);
2387	rcu_note_context_switch(cpu);
2388	prev = rq->curr;
2389
2390	schedule_debug(prev);
2391
2392	if (sched_feat(HRTICK))
2393		hrtick_clear(rq);
2394
2395	raw_spin_lock_irq(&rq->lock);
2396
2397	switch_count = &prev->nivcsw;
2398	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2399		if (unlikely(signal_pending_state(prev->state, prev))) {
2400			prev->state = TASK_RUNNING;
2401		} else {
2402			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2403			prev->on_rq = 0;
2404
2405			/*
2406			 * If a worker went to sleep, notify and ask workqueue
2407			 * whether it wants to wake up a task to maintain
2408			 * concurrency.
2409			 */
2410			if (prev->flags & PF_WQ_WORKER) {
2411				struct task_struct *to_wakeup;
2412
2413				to_wakeup = wq_worker_sleeping(prev, cpu);
2414				if (to_wakeup)
2415					try_to_wake_up_local(to_wakeup);
2416			}
2417		}
2418		switch_count = &prev->nvcsw;
2419	}
2420
2421	pre_schedule(rq, prev);
2422
2423	if (unlikely(!rq->nr_running))
2424		idle_balance(cpu, rq);
2425
2426	put_prev_task(rq, prev);
2427	next = pick_next_task(rq);
2428	clear_tsk_need_resched(prev);
2429	rq->skip_clock_update = 0;
2430
2431	if (likely(prev != next)) {
2432		rq->nr_switches++;
2433		rq->curr = next;
2434		++*switch_count;
2435
2436		context_switch(rq, prev, next); /* unlocks the rq */
2437		/*
2438		 * The context switch have flipped the stack from under us
2439		 * and restored the local variables which were saved when
2440		 * this task called schedule() in the past. prev == current
2441		 * is still correct, but it can be moved to another cpu/rq.
2442		 */
2443		cpu = smp_processor_id();
2444		rq = cpu_rq(cpu);
2445	} else
2446		raw_spin_unlock_irq(&rq->lock);
2447
2448	post_schedule(rq);
2449
2450	sched_preempt_enable_no_resched();
2451	if (need_resched())
2452		goto need_resched;
2453}
2454
2455static inline void sched_submit_work(struct task_struct *tsk)
2456{
2457	if (!tsk->state || tsk_is_pi_blocked(tsk))
2458		return;
2459	/*
2460	 * If we are going to sleep and we have plugged IO queued,
2461	 * make sure to submit it to avoid deadlocks.
2462	 */
2463	if (blk_needs_flush_plug(tsk))
2464		blk_schedule_flush_plug(tsk);
2465}
2466
2467asmlinkage void __sched schedule(void)
2468{
2469	struct task_struct *tsk = current;
2470
2471	sched_submit_work(tsk);
2472	__schedule();
2473}
2474EXPORT_SYMBOL(schedule);
2475
2476#ifdef CONFIG_CONTEXT_TRACKING
2477asmlinkage void __sched schedule_user(void)
2478{
2479	/*
2480	 * If we come here after a random call to set_need_resched(),
2481	 * or we have been woken up remotely but the IPI has not yet arrived,
2482	 * we haven't yet exited the RCU idle mode. Do it here manually until
2483	 * we find a better solution.
2484	 */
2485	user_exit();
2486	schedule();
2487	user_enter();
2488}
2489#endif
2490
2491/**
2492 * schedule_preempt_disabled - called with preemption disabled
2493 *
2494 * Returns with preemption disabled. Note: preempt_count must be 1
2495 */
2496void __sched schedule_preempt_disabled(void)
2497{
2498	sched_preempt_enable_no_resched();
2499	schedule();
2500	preempt_disable();
2501}
2502
2503#ifdef CONFIG_PREEMPT
2504/*
2505 * this is the entry point to schedule() from in-kernel preemption
2506 * off of preempt_enable. Kernel preemptions off return from interrupt
2507 * occur there and call schedule directly.
2508 */
2509asmlinkage void __sched notrace preempt_schedule(void)
2510{
2511	struct thread_info *ti = current_thread_info();
2512
2513	/*
2514	 * If there is a non-zero preempt_count or interrupts are disabled,
2515	 * we do not want to preempt the current task. Just return..
2516	 */
2517	if (likely(ti->preempt_count || irqs_disabled()))
2518		return;
2519
2520	do {
2521		add_preempt_count_notrace(PREEMPT_ACTIVE);
2522		__schedule();
2523		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2524
2525		/*
2526		 * Check again in case we missed a preemption opportunity
2527		 * between schedule and now.
2528		 */
2529		barrier();
2530	} while (need_resched());
2531}
2532EXPORT_SYMBOL(preempt_schedule);
2533
2534/*
2535 * this is the entry point to schedule() from kernel preemption
2536 * off of irq context.
2537 * Note, that this is called and return with irqs disabled. This will
2538 * protect us against recursive calling from irq.
2539 */
2540asmlinkage void __sched preempt_schedule_irq(void)
2541{
2542	struct thread_info *ti = current_thread_info();
2543	enum ctx_state prev_state;
2544
2545	/* Catch callers which need to be fixed */
2546	BUG_ON(ti->preempt_count || !irqs_disabled());
2547
2548	prev_state = exception_enter();
2549
2550	do {
2551		add_preempt_count(PREEMPT_ACTIVE);
2552		local_irq_enable();
2553		__schedule();
2554		local_irq_disable();
2555		sub_preempt_count(PREEMPT_ACTIVE);
2556
2557		/*
2558		 * Check again in case we missed a preemption opportunity
2559		 * between schedule and now.
2560		 */
2561		barrier();
2562	} while (need_resched());
2563
2564	exception_exit(prev_state);
2565}
2566
2567#endif /* CONFIG_PREEMPT */
2568
2569int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2570			  void *key)
2571{
2572	return try_to_wake_up(curr->private, mode, wake_flags);
2573}
2574EXPORT_SYMBOL(default_wake_function);
2575
2576/*
2577 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2578 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2579 * number) then we wake all the non-exclusive tasks and one exclusive task.
2580 *
2581 * There are circumstances in which we can try to wake a task which has already
2582 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2583 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2584 */
2585static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2586			int nr_exclusive, int wake_flags, void *key)
2587{
2588	wait_queue_t *curr, *next;
2589
2590	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2591		unsigned flags = curr->flags;
2592
2593		if (curr->func(curr, mode, wake_flags, key) &&
2594				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2595			break;
2596	}
2597}
2598
2599/**
2600 * __wake_up - wake up threads blocked on a waitqueue.
2601 * @q: the waitqueue
2602 * @mode: which threads
2603 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2604 * @key: is directly passed to the wakeup function
2605 *
2606 * It may be assumed that this function implies a write memory barrier before
2607 * changing the task state if and only if any tasks are woken up.
2608 */
2609void __wake_up(wait_queue_head_t *q, unsigned int mode,
2610			int nr_exclusive, void *key)
2611{
2612	unsigned long flags;
2613
2614	spin_lock_irqsave(&q->lock, flags);
2615	__wake_up_common(q, mode, nr_exclusive, 0, key);
2616	spin_unlock_irqrestore(&q->lock, flags);
2617}
2618EXPORT_SYMBOL(__wake_up);
2619
2620/*
2621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2622 */
2623void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2624{
2625	__wake_up_common(q, mode, nr, 0, NULL);
2626}
2627EXPORT_SYMBOL_GPL(__wake_up_locked);
2628
2629void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2630{
2631	__wake_up_common(q, mode, 1, 0, key);
2632}
2633EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2634
2635/**
2636 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2637 * @q: the waitqueue
2638 * @mode: which threads
2639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2640 * @key: opaque value to be passed to wakeup targets
2641 *
2642 * The sync wakeup differs that the waker knows that it will schedule
2643 * away soon, so while the target thread will be woken up, it will not
2644 * be migrated to another CPU - ie. the two threads are 'synchronized'
2645 * with each other. This can prevent needless bouncing between CPUs.
2646 *
2647 * On UP it can prevent extra preemption.
2648 *
2649 * It may be assumed that this function implies a write memory barrier before
2650 * changing the task state if and only if any tasks are woken up.
2651 */
2652void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2653			int nr_exclusive, void *key)
2654{
2655	unsigned long flags;
2656	int wake_flags = WF_SYNC;
2657
2658	if (unlikely(!q))
2659		return;
2660
2661	if (unlikely(!nr_exclusive))
2662		wake_flags = 0;
2663
2664	spin_lock_irqsave(&q->lock, flags);
2665	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2666	spin_unlock_irqrestore(&q->lock, flags);
2667}
2668EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2669
2670/*
2671 * __wake_up_sync - see __wake_up_sync_key()
2672 */
2673void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2674{
2675	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2676}
2677EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2678
2679/**
2680 * complete: - signals a single thread waiting on this completion
2681 * @x:  holds the state of this particular completion
2682 *
2683 * This will wake up a single thread waiting on this completion. Threads will be
2684 * awakened in the same order in which they were queued.
2685 *
2686 * See also complete_all(), wait_for_completion() and related routines.
2687 *
2688 * It may be assumed that this function implies a write memory barrier before
2689 * changing the task state if and only if any tasks are woken up.
2690 */
2691void complete(struct completion *x)
2692{
2693	unsigned long flags;
2694
2695	spin_lock_irqsave(&x->wait.lock, flags);
2696	x->done++;
2697	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2698	spin_unlock_irqrestore(&x->wait.lock, flags);
2699}
2700EXPORT_SYMBOL(complete);
2701
2702/**
2703 * complete_all: - signals all threads waiting on this completion
2704 * @x:  holds the state of this particular completion
2705 *
2706 * This will wake up all threads waiting on this particular completion event.
2707 *
2708 * It may be assumed that this function implies a write memory barrier before
2709 * changing the task state if and only if any tasks are woken up.
2710 */
2711void complete_all(struct completion *x)
2712{
2713	unsigned long flags;
2714
2715	spin_lock_irqsave(&x->wait.lock, flags);
2716	x->done += UINT_MAX/2;
2717	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2718	spin_unlock_irqrestore(&x->wait.lock, flags);
2719}
2720EXPORT_SYMBOL(complete_all);
2721
2722static inline long __sched
2723do_wait_for_common(struct completion *x,
2724		   long (*action)(long), long timeout, int state)
2725{
2726	if (!x->done) {
2727		DECLARE_WAITQUEUE(wait, current);
2728
2729		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2730		do {
2731			if (signal_pending_state(state, current)) {
2732				timeout = -ERESTARTSYS;
2733				break;
2734			}
2735			__set_current_state(state);
2736			spin_unlock_irq(&x->wait.lock);
2737			timeout = action(timeout);
2738			spin_lock_irq(&x->wait.lock);
2739		} while (!x->done && timeout);
2740		__remove_wait_queue(&x->wait, &wait);
2741		if (!x->done)
2742			return timeout;
2743	}
2744	x->done--;
2745	return timeout ?: 1;
2746}
2747
2748static inline long __sched
2749__wait_for_common(struct completion *x,
2750		  long (*action)(long), long timeout, int state)
2751{
2752	might_sleep();
2753
2754	spin_lock_irq(&x->wait.lock);
2755	timeout = do_wait_for_common(x, action, timeout, state);
2756	spin_unlock_irq(&x->wait.lock);
2757	return timeout;
2758}
2759
2760static long __sched
2761wait_for_common(struct completion *x, long timeout, int state)
2762{
2763	return __wait_for_common(x, schedule_timeout, timeout, state);
2764}
2765
2766static long __sched
2767wait_for_common_io(struct completion *x, long timeout, int state)
2768{
2769	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2770}
2771
2772/**
2773 * wait_for_completion: - waits for completion of a task
2774 * @x:  holds the state of this particular completion
2775 *
2776 * This waits to be signaled for completion of a specific task. It is NOT
2777 * interruptible and there is no timeout.
2778 *
2779 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2780 * and interrupt capability. Also see complete().
2781 */
2782void __sched wait_for_completion(struct completion *x)
2783{
2784	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2785}
2786EXPORT_SYMBOL(wait_for_completion);
2787
2788/**
2789 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2790 * @x:  holds the state of this particular completion
2791 * @timeout:  timeout value in jiffies
2792 *
2793 * This waits for either a completion of a specific task to be signaled or for a
2794 * specified timeout to expire. The timeout is in jiffies. It is not
2795 * interruptible.
2796 *
2797 * The return value is 0 if timed out, and positive (at least 1, or number of
2798 * jiffies left till timeout) if completed.
2799 */
2800unsigned long __sched
2801wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2802{
2803	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2804}
2805EXPORT_SYMBOL(wait_for_completion_timeout);
2806
2807/**
2808 * wait_for_completion_io: - waits for completion of a task
2809 * @x:  holds the state of this particular completion
2810 *
2811 * This waits to be signaled for completion of a specific task. It is NOT
2812 * interruptible and there is no timeout. The caller is accounted as waiting
2813 * for IO.
2814 */
2815void __sched wait_for_completion_io(struct completion *x)
2816{
2817	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2818}
2819EXPORT_SYMBOL(wait_for_completion_io);
2820
2821/**
2822 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2823 * @x:  holds the state of this particular completion
2824 * @timeout:  timeout value in jiffies
2825 *
2826 * This waits for either a completion of a specific task to be signaled or for a
2827 * specified timeout to expire. The timeout is in jiffies. It is not
2828 * interruptible. The caller is accounted as waiting for IO.
2829 *
2830 * The return value is 0 if timed out, and positive (at least 1, or number of
2831 * jiffies left till timeout) if completed.
2832 */
2833unsigned long __sched
2834wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2835{
2836	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2837}
2838EXPORT_SYMBOL(wait_for_completion_io_timeout);
2839
2840/**
2841 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2842 * @x:  holds the state of this particular completion
2843 *
2844 * This waits for completion of a specific task to be signaled. It is
2845 * interruptible.
2846 *
2847 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2848 */
2849int __sched wait_for_completion_interruptible(struct completion *x)
2850{
2851	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2852	if (t == -ERESTARTSYS)
2853		return t;
2854	return 0;
2855}
2856EXPORT_SYMBOL(wait_for_completion_interruptible);
2857
2858/**
2859 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2860 * @x:  holds the state of this particular completion
2861 * @timeout:  timeout value in jiffies
2862 *
2863 * This waits for either a completion of a specific task to be signaled or for a
2864 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2865 *
2866 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2867 * positive (at least 1, or number of jiffies left till timeout) if completed.
2868 */
2869long __sched
2870wait_for_completion_interruptible_timeout(struct completion *x,
2871					  unsigned long timeout)
2872{
2873	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2874}
2875EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2876
2877/**
2878 * wait_for_completion_killable: - waits for completion of a task (killable)
2879 * @x:  holds the state of this particular completion
2880 *
2881 * This waits to be signaled for completion of a specific task. It can be
2882 * interrupted by a kill signal.
2883 *
2884 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2885 */
2886int __sched wait_for_completion_killable(struct completion *x)
2887{
2888	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2889	if (t == -ERESTARTSYS)
2890		return t;
2891	return 0;
2892}
2893EXPORT_SYMBOL(wait_for_completion_killable);
2894
2895/**
2896 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2897 * @x:  holds the state of this particular completion
2898 * @timeout:  timeout value in jiffies
2899 *
2900 * This waits for either a completion of a specific task to be
2901 * signaled or for a specified timeout to expire. It can be
2902 * interrupted by a kill signal. The timeout is in jiffies.
2903 *
2904 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2905 * positive (at least 1, or number of jiffies left till timeout) if completed.
2906 */
2907long __sched
2908wait_for_completion_killable_timeout(struct completion *x,
2909				     unsigned long timeout)
2910{
2911	return wait_for_common(x, timeout, TASK_KILLABLE);
2912}
2913EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2914
2915/**
2916 *	try_wait_for_completion - try to decrement a completion without blocking
2917 *	@x:	completion structure
2918 *
2919 *	Returns: 0 if a decrement cannot be done without blocking
2920 *		 1 if a decrement succeeded.
2921 *
2922 *	If a completion is being used as a counting completion,
2923 *	attempt to decrement the counter without blocking. This
2924 *	enables us to avoid waiting if the resource the completion
2925 *	is protecting is not available.
2926 */
2927bool try_wait_for_completion(struct completion *x)
2928{
2929	unsigned long flags;
2930	int ret = 1;
2931
2932	spin_lock_irqsave(&x->wait.lock, flags);
2933	if (!x->done)
2934		ret = 0;
2935	else
2936		x->done--;
2937	spin_unlock_irqrestore(&x->wait.lock, flags);
2938	return ret;
2939}
2940EXPORT_SYMBOL(try_wait_for_completion);
2941
2942/**
2943 *	completion_done - Test to see if a completion has any waiters
2944 *	@x:	completion structure
2945 *
2946 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
2947 *		 1 if there are no waiters.
2948 *
2949 */
2950bool completion_done(struct completion *x)
2951{
2952	unsigned long flags;
2953	int ret = 1;
2954
2955	spin_lock_irqsave(&x->wait.lock, flags);
2956	if (!x->done)
2957		ret = 0;
2958	spin_unlock_irqrestore(&x->wait.lock, flags);
2959	return ret;
2960}
2961EXPORT_SYMBOL(completion_done);
2962
2963static long __sched
2964sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2965{
2966	unsigned long flags;
2967	wait_queue_t wait;
2968
2969	init_waitqueue_entry(&wait, current);
2970
2971	__set_current_state(state);
2972
2973	spin_lock_irqsave(&q->lock, flags);
2974	__add_wait_queue(q, &wait);
2975	spin_unlock(&q->lock);
2976	timeout = schedule_timeout(timeout);
2977	spin_lock_irq(&q->lock);
2978	__remove_wait_queue(q, &wait);
2979	spin_unlock_irqrestore(&q->lock, flags);
2980
2981	return timeout;
2982}
2983
2984void __sched interruptible_sleep_on(wait_queue_head_t *q)
2985{
2986	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2987}
2988EXPORT_SYMBOL(interruptible_sleep_on);
2989
2990long __sched
2991interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2992{
2993	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2994}
2995EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2996
2997void __sched sleep_on(wait_queue_head_t *q)
2998{
2999	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3000}
3001EXPORT_SYMBOL(sleep_on);
3002
3003long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3004{
3005	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3006}
3007EXPORT_SYMBOL(sleep_on_timeout);
3008
3009#ifdef CONFIG_RT_MUTEXES
3010
3011/*
3012 * rt_mutex_setprio - set the current priority of a task
3013 * @p: task
3014 * @prio: prio value (kernel-internal form)
3015 *
3016 * This function changes the 'effective' priority of a task. It does
3017 * not touch ->normal_prio like __setscheduler().
3018 *
3019 * Used by the rt_mutex code to implement priority inheritance logic.
3020 */
3021void rt_mutex_setprio(struct task_struct *p, int prio)
3022{
3023	int oldprio, on_rq, running;
3024	struct rq *rq;
3025	const struct sched_class *prev_class;
3026
3027	BUG_ON(prio < 0 || prio > MAX_PRIO);
3028
3029	rq = __task_rq_lock(p);
3030
3031	/*
3032	 * Idle task boosting is a nono in general. There is one
3033	 * exception, when PREEMPT_RT and NOHZ is active:
3034	 *
3035	 * The idle task calls get_next_timer_interrupt() and holds
3036	 * the timer wheel base->lock on the CPU and another CPU wants
3037	 * to access the timer (probably to cancel it). We can safely
3038	 * ignore the boosting request, as the idle CPU runs this code
3039	 * with interrupts disabled and will complete the lock
3040	 * protected section without being interrupted. So there is no
3041	 * real need to boost.
3042	 */
3043	if (unlikely(p == rq->idle)) {
3044		WARN_ON(p != rq->curr);
3045		WARN_ON(p->pi_blocked_on);
3046		goto out_unlock;
3047	}
3048
3049	trace_sched_pi_setprio(p, prio);
3050	oldprio = p->prio;
3051	prev_class = p->sched_class;
3052	on_rq = p->on_rq;
3053	running = task_current(rq, p);
3054	if (on_rq)
3055		dequeue_task(rq, p, 0);
3056	if (running)
3057		p->sched_class->put_prev_task(rq, p);
3058
3059	if (rt_prio(prio))
3060		p->sched_class = &rt_sched_class;
3061	else
3062		p->sched_class = &fair_sched_class;
3063
3064	p->prio = prio;
3065
3066	if (running)
3067		p->sched_class->set_curr_task(rq);
3068	if (on_rq)
3069		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3070
3071	check_class_changed(rq, p, prev_class, oldprio);
3072out_unlock:
3073	__task_rq_unlock(rq);
3074}
3075#endif
3076void set_user_nice(struct task_struct *p, long nice)
3077{
3078	int old_prio, delta, on_rq;
3079	unsigned long flags;
3080	struct rq *rq;
3081
3082	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3083		return;
3084	/*
3085	 * We have to be careful, if called from sys_setpriority(),
3086	 * the task might be in the middle of scheduling on another CPU.
3087	 */
3088	rq = task_rq_lock(p, &flags);
3089	/*
3090	 * The RT priorities are set via sched_setscheduler(), but we still
3091	 * allow the 'normal' nice value to be set - but as expected
3092	 * it wont have any effect on scheduling until the task is
3093	 * SCHED_FIFO/SCHED_RR:
3094	 */
3095	if (task_has_rt_policy(p)) {
3096		p->static_prio = NICE_TO_PRIO(nice);
3097		goto out_unlock;
3098	}
3099	on_rq = p->on_rq;
3100	if (on_rq)
3101		dequeue_task(rq, p, 0);
3102
3103	p->static_prio = NICE_TO_PRIO(nice);
3104	set_load_weight(p);
3105	old_prio = p->prio;
3106	p->prio = effective_prio(p);
3107	delta = p->prio - old_prio;
3108
3109	if (on_rq) {
3110		enqueue_task(rq, p, 0);
3111		/*
3112		 * If the task increased its priority or is running and
3113		 * lowered its priority, then reschedule its CPU:
3114		 */
3115		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3116			resched_task(rq->curr);
3117	}
3118out_unlock:
3119	task_rq_unlock(rq, p, &flags);
3120}
3121EXPORT_SYMBOL(set_user_nice);
3122
3123/*
3124 * can_nice - check if a task can reduce its nice value
3125 * @p: task
3126 * @nice: nice value
3127 */
3128int can_nice(const struct task_struct *p, const int nice)
3129{
3130	/* convert nice value [19,-20] to rlimit style value [1,40] */
3131	int nice_rlim = 20 - nice;
3132
3133	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3134		capable(CAP_SYS_NICE));
3135}
3136
3137#ifdef __ARCH_WANT_SYS_NICE
3138
3139/*
3140 * sys_nice - change the priority of the current process.
3141 * @increment: priority increment
3142 *
3143 * sys_setpriority is a more generic, but much slower function that
3144 * does similar things.
3145 */
3146SYSCALL_DEFINE1(nice, int, increment)
3147{
3148	long nice, retval;
3149
3150	/*
3151	 * Setpriority might change our priority at the same moment.
3152	 * We don't have to worry. Conceptually one call occurs first
3153	 * and we have a single winner.
3154	 */
3155	if (increment < -40)
3156		increment = -40;
3157	if (increment > 40)
3158		increment = 40;
3159
3160	nice = TASK_NICE(current) + increment;
3161	if (nice < -20)
3162		nice = -20;
3163	if (nice > 19)
3164		nice = 19;
3165
3166	if (increment < 0 && !can_nice(current, nice))
3167		return -EPERM;
3168
3169	retval = security_task_setnice(current, nice);
3170	if (retval)
3171		return retval;
3172
3173	set_user_nice(current, nice);
3174	return 0;
3175}
3176
3177#endif
3178
3179/**
3180 * task_prio - return the priority value of a given task.
3181 * @p: the task in question.
3182 *
3183 * This is the priority value as seen by users in /proc.
3184 * RT tasks are offset by -200. Normal tasks are centered
3185 * around 0, value goes from -16 to +15.
3186 */
3187int task_prio(const struct task_struct *p)
3188{
3189	return p->prio - MAX_RT_PRIO;
3190}
3191
3192/**
3193 * task_nice - return the nice value of a given task.
3194 * @p: the task in question.
3195 */
3196int task_nice(const struct task_struct *p)
3197{
3198	return TASK_NICE(p);
3199}
3200EXPORT_SYMBOL(task_nice);
3201
3202/**
3203 * idle_cpu - is a given cpu idle currently?
3204 * @cpu: the processor in question.
3205 */
3206int idle_cpu(int cpu)
3207{
3208	struct rq *rq = cpu_rq(cpu);
3209
3210	if (rq->curr != rq->idle)
3211		return 0;
3212
3213	if (rq->nr_running)
3214		return 0;
3215
3216#ifdef CONFIG_SMP
3217	if (!llist_empty(&rq->wake_list))
3218		return 0;
3219#endif
3220
3221	return 1;
3222}
3223
3224/**
3225 * idle_task - return the idle task for a given cpu.
3226 * @cpu: the processor in question.
3227 */
3228struct task_struct *idle_task(int cpu)
3229{
3230	return cpu_rq(cpu)->idle;
3231}
3232
3233/**
3234 * find_process_by_pid - find a process with a matching PID value.
3235 * @pid: the pid in question.
3236 */
3237static struct task_struct *find_process_by_pid(pid_t pid)
3238{
3239	return pid ? find_task_by_vpid(pid) : current;
3240}
3241
3242/* Actually do priority change: must hold rq lock. */
3243static void
3244__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3245{
3246	p->policy = policy;
3247	p->rt_priority = prio;
3248	p->normal_prio = normal_prio(p);
3249	/* we are holding p->pi_lock already */
3250	p->prio = rt_mutex_getprio(p);
3251	if (rt_prio(p->prio))
3252		p->sched_class = &rt_sched_class;
3253	else
3254		p->sched_class = &fair_sched_class;
3255	set_load_weight(p);
3256}
3257
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263	const struct cred *cred = current_cred(), *pcred;
3264	bool match;
3265
3266	rcu_read_lock();
3267	pcred = __task_cred(p);
3268	match = (uid_eq(cred->euid, pcred->euid) ||
3269		 uid_eq(cred->euid, pcred->uid));
3270	rcu_read_unlock();
3271	return match;
3272}
3273
3274static int __sched_setscheduler(struct task_struct *p, int policy,
3275				const struct sched_param *param, bool user)
3276{
3277	int retval, oldprio, oldpolicy = -1, on_rq, running;
3278	unsigned long flags;
3279	const struct sched_class *prev_class;
3280	struct rq *rq;
3281	int reset_on_fork;
3282
3283	/* may grab non-irq protected spin_locks */
3284	BUG_ON(in_interrupt());
3285recheck:
3286	/* double check policy once rq lock held */
3287	if (policy < 0) {
3288		reset_on_fork = p->sched_reset_on_fork;
3289		policy = oldpolicy = p->policy;
3290	} else {
3291		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3292		policy &= ~SCHED_RESET_ON_FORK;
3293
3294		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3295				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3296				policy != SCHED_IDLE)
3297			return -EINVAL;
3298	}
3299
3300	/*
3301	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3302	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3303	 * SCHED_BATCH and SCHED_IDLE is 0.
3304	 */
3305	if (param->sched_priority < 0 ||
3306	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3307	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3308		return -EINVAL;
3309	if (rt_policy(policy) != (param->sched_priority != 0))
3310		return -EINVAL;
3311
3312	/*
3313	 * Allow unprivileged RT tasks to decrease priority:
3314	 */
3315	if (user && !capable(CAP_SYS_NICE)) {
3316		if (rt_policy(policy)) {
3317			unsigned long rlim_rtprio =
3318					task_rlimit(p, RLIMIT_RTPRIO);
3319
3320			/* can't set/change the rt policy */
3321			if (policy != p->policy && !rlim_rtprio)
3322				return -EPERM;
3323
3324			/* can't increase priority */
3325			if (param->sched_priority > p->rt_priority &&
3326			    param->sched_priority > rlim_rtprio)
3327				return -EPERM;
3328		}
3329
3330		/*
3331		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3332		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3333		 */
3334		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3335			if (!can_nice(p, TASK_NICE(p)))
3336				return -EPERM;
3337		}
3338
3339		/* can't change other user's priorities */
3340		if (!check_same_owner(p))
3341			return -EPERM;
3342
3343		/* Normal users shall not reset the sched_reset_on_fork flag */
3344		if (p->sched_reset_on_fork && !reset_on_fork)
3345			return -EPERM;
3346	}
3347
3348	if (user) {
3349		retval = security_task_setscheduler(p);
3350		if (retval)
3351			return retval;
3352	}
3353
3354	/*
3355	 * make sure no PI-waiters arrive (or leave) while we are
3356	 * changing the priority of the task:
3357	 *
3358	 * To be able to change p->policy safely, the appropriate
3359	 * runqueue lock must be held.
3360	 */
3361	rq = task_rq_lock(p, &flags);
3362
3363	/*
3364	 * Changing the policy of the stop threads its a very bad idea
3365	 */
3366	if (p == rq->stop) {
3367		task_rq_unlock(rq, p, &flags);
3368		return -EINVAL;
3369	}
3370
3371	/*
3372	 * If not changing anything there's no need to proceed further:
3373	 */
3374	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3375			param->sched_priority == p->rt_priority))) {
3376		task_rq_unlock(rq, p, &flags);
3377		return 0;
3378	}
3379
3380#ifdef CONFIG_RT_GROUP_SCHED
3381	if (user) {
3382		/*
3383		 * Do not allow realtime tasks into groups that have no runtime
3384		 * assigned.
3385		 */
3386		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3387				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3388				!task_group_is_autogroup(task_group(p))) {
3389			task_rq_unlock(rq, p, &flags);
3390			return -EPERM;
3391		}
3392	}
3393#endif
3394
3395	/* recheck policy now with rq lock held */
3396	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397		policy = oldpolicy = -1;
3398		task_rq_unlock(rq, p, &flags);
3399		goto recheck;
3400	}
3401	on_rq = p->on_rq;
3402	running = task_current(rq, p);
3403	if (on_rq)
3404		dequeue_task(rq, p, 0);
3405	if (running)
3406		p->sched_class->put_prev_task(rq, p);
3407
3408	p->sched_reset_on_fork = reset_on_fork;
3409
3410	oldprio = p->prio;
3411	prev_class = p->sched_class;
3412	__setscheduler(rq, p, policy, param->sched_priority);
3413
3414	if (running)
3415		p->sched_class->set_curr_task(rq);
3416	if (on_rq)
3417		enqueue_task(rq, p, 0);
3418
3419	check_class_changed(rq, p, prev_class, oldprio);
3420	task_rq_unlock(rq, p, &flags);
3421
3422	rt_mutex_adjust_pi(p);
3423
3424	return 0;
3425}
3426
3427/**
3428 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3429 * @p: the task in question.
3430 * @policy: new policy.
3431 * @param: structure containing the new RT priority.
3432 *
3433 * NOTE that the task may be already dead.
3434 */
3435int sched_setscheduler(struct task_struct *p, int policy,
3436		       const struct sched_param *param)
3437{
3438	return __sched_setscheduler(p, policy, param, true);
3439}
3440EXPORT_SYMBOL_GPL(sched_setscheduler);
3441
3442/**
3443 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3444 * @p: the task in question.
3445 * @policy: new policy.
3446 * @param: structure containing the new RT priority.
3447 *
3448 * Just like sched_setscheduler, only don't bother checking if the
3449 * current context has permission.  For example, this is needed in
3450 * stop_machine(): we create temporary high priority worker threads,
3451 * but our caller might not have that capability.
3452 */
3453int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3454			       const struct sched_param *param)
3455{
3456	return __sched_setscheduler(p, policy, param, false);
3457}
3458
3459static int
3460do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3461{
3462	struct sched_param lparam;
3463	struct task_struct *p;
3464	int retval;
3465
3466	if (!param || pid < 0)
3467		return -EINVAL;
3468	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3469		return -EFAULT;
3470
3471	rcu_read_lock();
3472	retval = -ESRCH;
3473	p = find_process_by_pid(pid);
3474	if (p != NULL)
3475		retval = sched_setscheduler(p, policy, &lparam);
3476	rcu_read_unlock();
3477
3478	return retval;
3479}
3480
3481/**
3482 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3483 * @pid: the pid in question.
3484 * @policy: new policy.
3485 * @param: structure containing the new RT priority.
3486 */
3487SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3488		struct sched_param __user *, param)
3489{
3490	/* negative values for policy are not valid */
3491	if (policy < 0)
3492		return -EINVAL;
3493
3494	return do_sched_setscheduler(pid, policy, param);
3495}
3496
3497/**
3498 * sys_sched_setparam - set/change the RT priority of a thread
3499 * @pid: the pid in question.
3500 * @param: structure containing the new RT priority.
3501 */
3502SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3503{
3504	return do_sched_setscheduler(pid, -1, param);
3505}
3506
3507/**
3508 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3509 * @pid: the pid in question.
3510 */
3511SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3512{
3513	struct task_struct *p;
3514	int retval;
3515
3516	if (pid < 0)
3517		return -EINVAL;
3518
3519	retval = -ESRCH;
3520	rcu_read_lock();
3521	p = find_process_by_pid(pid);
3522	if (p) {
3523		retval = security_task_getscheduler(p);
3524		if (!retval)
3525			retval = p->policy
3526				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3527	}
3528	rcu_read_unlock();
3529	return retval;
3530}
3531
3532/**
3533 * sys_sched_getparam - get the RT priority of a thread
3534 * @pid: the pid in question.
3535 * @param: structure containing the RT priority.
3536 */
3537SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3538{
3539	struct sched_param lp;
3540	struct task_struct *p;
3541	int retval;
3542
3543	if (!param || pid < 0)
3544		return -EINVAL;
3545
3546	rcu_read_lock();
3547	p = find_process_by_pid(pid);
3548	retval = -ESRCH;
3549	if (!p)
3550		goto out_unlock;
3551
3552	retval = security_task_getscheduler(p);
3553	if (retval)
3554		goto out_unlock;
3555
3556	lp.sched_priority = p->rt_priority;
3557	rcu_read_unlock();
3558
3559	/*
3560	 * This one might sleep, we cannot do it with a spinlock held ...
3561	 */
3562	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3563
3564	return retval;
3565
3566out_unlock:
3567	rcu_read_unlock();
3568	return retval;
3569}
3570
3571long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3572{
3573	cpumask_var_t cpus_allowed, new_mask;
3574	struct task_struct *p;
3575	int retval;
3576
3577	get_online_cpus();
3578	rcu_read_lock();
3579
3580	p = find_process_by_pid(pid);
3581	if (!p) {
3582		rcu_read_unlock();
3583		put_online_cpus();
3584		return -ESRCH;
3585	}
3586
3587	/* Prevent p going away */
3588	get_task_struct(p);
3589	rcu_read_unlock();
3590
3591	if (p->flags & PF_NO_SETAFFINITY) {
3592		retval = -EINVAL;
3593		goto out_put_task;
3594	}
3595	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3596		retval = -ENOMEM;
3597		goto out_put_task;
3598	}
3599	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3600		retval = -ENOMEM;
3601		goto out_free_cpus_allowed;
3602	}
3603	retval = -EPERM;
3604	if (!check_same_owner(p)) {
3605		rcu_read_lock();
3606		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3607			rcu_read_unlock();
3608			goto out_unlock;
3609		}
3610		rcu_read_unlock();
3611	}
3612
3613	retval = security_task_setscheduler(p);
3614	if (retval)
3615		goto out_unlock;
3616
3617	cpuset_cpus_allowed(p, cpus_allowed);
3618	cpumask_and(new_mask, in_mask, cpus_allowed);
3619again:
3620	retval = set_cpus_allowed_ptr(p, new_mask);
3621
3622	if (!retval) {
3623		cpuset_cpus_allowed(p, cpus_allowed);
3624		if (!cpumask_subset(new_mask, cpus_allowed)) {
3625			/*
3626			 * We must have raced with a concurrent cpuset
3627			 * update. Just reset the cpus_allowed to the
3628			 * cpuset's cpus_allowed
3629			 */
3630			cpumask_copy(new_mask, cpus_allowed);
3631			goto again;
3632		}
3633	}
3634out_unlock:
3635	free_cpumask_var(new_mask);
3636out_free_cpus_allowed:
3637	free_cpumask_var(cpus_allowed);
3638out_put_task:
3639	put_task_struct(p);
3640	put_online_cpus();
3641	return retval;
3642}
3643
3644static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3645			     struct cpumask *new_mask)
3646{
3647	if (len < cpumask_size())
3648		cpumask_clear(new_mask);
3649	else if (len > cpumask_size())
3650		len = cpumask_size();
3651
3652	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3653}
3654
3655/**
3656 * sys_sched_setaffinity - set the cpu affinity of a process
3657 * @pid: pid of the process
3658 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3659 * @user_mask_ptr: user-space pointer to the new cpu mask
3660 */
3661SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3662		unsigned long __user *, user_mask_ptr)
3663{
3664	cpumask_var_t new_mask;
3665	int retval;
3666
3667	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3668		return -ENOMEM;
3669
3670	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3671	if (retval == 0)
3672		retval = sched_setaffinity(pid, new_mask);
3673	free_cpumask_var(new_mask);
3674	return retval;
3675}
3676
3677long sched_getaffinity(pid_t pid, struct cpumask *mask)
3678{
3679	struct task_struct *p;
3680	unsigned long flags;
3681	int retval;
3682
3683	get_online_cpus();
3684	rcu_read_lock();
3685
3686	retval = -ESRCH;
3687	p = find_process_by_pid(pid);
3688	if (!p)
3689		goto out_unlock;
3690
3691	retval = security_task_getscheduler(p);
3692	if (retval)
3693		goto out_unlock;
3694
3695	raw_spin_lock_irqsave(&p->pi_lock, flags);
3696	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3697	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3698
3699out_unlock:
3700	rcu_read_unlock();
3701	put_online_cpus();
3702
3703	return retval;
3704}
3705
3706/**
3707 * sys_sched_getaffinity - get the cpu affinity of a process
3708 * @pid: pid of the process
3709 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3710 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3711 */
3712SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3713		unsigned long __user *, user_mask_ptr)
3714{
3715	int ret;
3716	cpumask_var_t mask;
3717
3718	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3719		return -EINVAL;
3720	if (len & (sizeof(unsigned long)-1))
3721		return -EINVAL;
3722
3723	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3724		return -ENOMEM;
3725
3726	ret = sched_getaffinity(pid, mask);
3727	if (ret == 0) {
3728		size_t retlen = min_t(size_t, len, cpumask_size());
3729
3730		if (copy_to_user(user_mask_ptr, mask, retlen))
3731			ret = -EFAULT;
3732		else
3733			ret = retlen;
3734	}
3735	free_cpumask_var(mask);
3736
3737	return ret;
3738}
3739
3740/**
3741 * sys_sched_yield - yield the current processor to other threads.
3742 *
3743 * This function yields the current CPU to other tasks. If there are no
3744 * other threads running on this CPU then this function will return.
3745 */
3746SYSCALL_DEFINE0(sched_yield)
3747{
3748	struct rq *rq = this_rq_lock();
3749
3750	schedstat_inc(rq, yld_count);
3751	current->sched_class->yield_task(rq);
3752
3753	/*
3754	 * Since we are going to call schedule() anyway, there's
3755	 * no need to preempt or enable interrupts:
3756	 */
3757	__release(rq->lock);
3758	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3759	do_raw_spin_unlock(&rq->lock);
3760	sched_preempt_enable_no_resched();
3761
3762	schedule();
3763
3764	return 0;
3765}
3766
3767static inline int should_resched(void)
3768{
3769	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3770}
3771
3772static void __cond_resched(void)
3773{
3774	add_preempt_count(PREEMPT_ACTIVE);
3775	__schedule();
3776	sub_preempt_count(PREEMPT_ACTIVE);
3777}
3778
3779int __sched _cond_resched(void)
3780{
3781	if (should_resched()) {
3782		__cond_resched();
3783		return 1;
3784	}
3785	return 0;
3786}
3787EXPORT_SYMBOL(_cond_resched);
3788
3789/*
3790 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3791 * call schedule, and on return reacquire the lock.
3792 *
3793 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3794 * operations here to prevent schedule() from being called twice (once via
3795 * spin_unlock(), once by hand).
3796 */
3797int __cond_resched_lock(spinlock_t *lock)
3798{
3799	int resched = should_resched();
3800	int ret = 0;
3801
3802	lockdep_assert_held(lock);
3803
3804	if (spin_needbreak(lock) || resched) {
3805		spin_unlock(lock);
3806		if (resched)
3807			__cond_resched();
3808		else
3809			cpu_relax();
3810		ret = 1;
3811		spin_lock(lock);
3812	}
3813	return ret;
3814}
3815EXPORT_SYMBOL(__cond_resched_lock);
3816
3817int __sched __cond_resched_softirq(void)
3818{
3819	BUG_ON(!in_softirq());
3820
3821	if (should_resched()) {
3822		local_bh_enable();
3823		__cond_resched();
3824		local_bh_disable();
3825		return 1;
3826	}
3827	return 0;
3828}
3829EXPORT_SYMBOL(__cond_resched_softirq);
3830
3831/**
3832 * yield - yield the current processor to other threads.
3833 *
3834 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3835 *
3836 * The scheduler is at all times free to pick the calling task as the most
3837 * eligible task to run, if removing the yield() call from your code breaks
3838 * it, its already broken.
3839 *
3840 * Typical broken usage is:
3841 *
3842 * while (!event)
3843 * 	yield();
3844 *
3845 * where one assumes that yield() will let 'the other' process run that will
3846 * make event true. If the current task is a SCHED_FIFO task that will never
3847 * happen. Never use yield() as a progress guarantee!!
3848 *
3849 * If you want to use yield() to wait for something, use wait_event().
3850 * If you want to use yield() to be 'nice' for others, use cond_resched().
3851 * If you still want to use yield(), do not!
3852 */
3853void __sched yield(void)
3854{
3855	set_current_state(TASK_RUNNING);
3856	sys_sched_yield();
3857}
3858EXPORT_SYMBOL(yield);
3859
3860/**
3861 * yield_to - yield the current processor to another thread in
3862 * your thread group, or accelerate that thread toward the
3863 * processor it's on.
3864 * @p: target task
3865 * @preempt: whether task preemption is allowed or not
3866 *
3867 * It's the caller's job to ensure that the target task struct
3868 * can't go away on us before we can do any checks.
3869 *
3870 * Returns:
3871 *	true (>0) if we indeed boosted the target task.
3872 *	false (0) if we failed to boost the target.
3873 *	-ESRCH if there's no task to yield to.
3874 */
3875bool __sched yield_to(struct task_struct *p, bool preempt)
3876{
3877	struct task_struct *curr = current;
3878	struct rq *rq, *p_rq;
3879	unsigned long flags;
3880	int yielded = 0;
3881
3882	local_irq_save(flags);
3883	rq = this_rq();
3884
3885again:
3886	p_rq = task_rq(p);
3887	/*
3888	 * If we're the only runnable task on the rq and target rq also
3889	 * has only one task, there's absolutely no point in yielding.
3890	 */
3891	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3892		yielded = -ESRCH;
3893		goto out_irq;
3894	}
3895
3896	double_rq_lock(rq, p_rq);
3897	while (task_rq(p) != p_rq) {
3898		double_rq_unlock(rq, p_rq);
3899		goto again;
3900	}
3901
3902	if (!curr->sched_class->yield_to_task)
3903		goto out_unlock;
3904
3905	if (curr->sched_class != p->sched_class)
3906		goto out_unlock;
3907
3908	if (task_running(p_rq, p) || p->state)
3909		goto out_unlock;
3910
3911	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3912	if (yielded) {
3913		schedstat_inc(rq, yld_count);
3914		/*
3915		 * Make p's CPU reschedule; pick_next_entity takes care of
3916		 * fairness.
3917		 */
3918		if (preempt && rq != p_rq)
3919			resched_task(p_rq->curr);
3920	}
3921
3922out_unlock:
3923	double_rq_unlock(rq, p_rq);
3924out_irq:
3925	local_irq_restore(flags);
3926
3927	if (yielded > 0)
3928		schedule();
3929
3930	return yielded;
3931}
3932EXPORT_SYMBOL_GPL(yield_to);
3933
3934/*
3935 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3936 * that process accounting knows that this is a task in IO wait state.
3937 */
3938void __sched io_schedule(void)
3939{
3940	struct rq *rq = raw_rq();
3941
3942	delayacct_blkio_start();
3943	atomic_inc(&rq->nr_iowait);
3944	blk_flush_plug(current);
3945	current->in_iowait = 1;
3946	schedule();
3947	current->in_iowait = 0;
3948	atomic_dec(&rq->nr_iowait);
3949	delayacct_blkio_end();
3950}
3951EXPORT_SYMBOL(io_schedule);
3952
3953long __sched io_schedule_timeout(long timeout)
3954{
3955	struct rq *rq = raw_rq();
3956	long ret;
3957
3958	delayacct_blkio_start();
3959	atomic_inc(&rq->nr_iowait);
3960	blk_flush_plug(current);
3961	current->in_iowait = 1;
3962	ret = schedule_timeout(timeout);
3963	current->in_iowait = 0;
3964	atomic_dec(&rq->nr_iowait);
3965	delayacct_blkio_end();
3966	return ret;
3967}
3968
3969/**
3970 * sys_sched_get_priority_max - return maximum RT priority.
3971 * @policy: scheduling class.
3972 *
3973 * this syscall returns the maximum rt_priority that can be used
3974 * by a given scheduling class.
3975 */
3976SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3977{
3978	int ret = -EINVAL;
3979
3980	switch (policy) {
3981	case SCHED_FIFO:
3982	case SCHED_RR:
3983		ret = MAX_USER_RT_PRIO-1;
3984		break;
3985	case SCHED_NORMAL:
3986	case SCHED_BATCH:
3987	case SCHED_IDLE:
3988		ret = 0;
3989		break;
3990	}
3991	return ret;
3992}
3993
3994/**
3995 * sys_sched_get_priority_min - return minimum RT priority.
3996 * @policy: scheduling class.
3997 *
3998 * this syscall returns the minimum rt_priority that can be used
3999 * by a given scheduling class.
4000 */
4001SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4002{
4003	int ret = -EINVAL;
4004
4005	switch (policy) {
4006	case SCHED_FIFO:
4007	case SCHED_RR:
4008		ret = 1;
4009		break;
4010	case SCHED_NORMAL:
4011	case SCHED_BATCH:
4012	case SCHED_IDLE:
4013		ret = 0;
4014	}
4015	return ret;
4016}
4017
4018/**
4019 * sys_sched_rr_get_interval - return the default timeslice of a process.
4020 * @pid: pid of the process.
4021 * @interval: userspace pointer to the timeslice value.
4022 *
4023 * this syscall writes the default timeslice value of a given process
4024 * into the user-space timespec buffer. A value of '0' means infinity.
4025 */
4026SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4027		struct timespec __user *, interval)
4028{
4029	struct task_struct *p;
4030	unsigned int time_slice;
4031	unsigned long flags;
4032	struct rq *rq;
4033	int retval;
4034	struct timespec t;
4035
4036	if (pid < 0)
4037		return -EINVAL;
4038
4039	retval = -ESRCH;
4040	rcu_read_lock();
4041	p = find_process_by_pid(pid);
4042	if (!p)
4043		goto out_unlock;
4044
4045	retval = security_task_getscheduler(p);
4046	if (retval)
4047		goto out_unlock;
4048
4049	rq = task_rq_lock(p, &flags);
4050	time_slice = p->sched_class->get_rr_interval(rq, p);
4051	task_rq_unlock(rq, p, &flags);
4052
4053	rcu_read_unlock();
4054	jiffies_to_timespec(time_slice, &t);
4055	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4056	return retval;
4057
4058out_unlock:
4059	rcu_read_unlock();
4060	return retval;
4061}
4062
4063static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4064
4065void sched_show_task(struct task_struct *p)
4066{
4067	unsigned long free = 0;
4068	int ppid;
4069	unsigned state;
4070
4071	state = p->state ? __ffs(p->state) + 1 : 0;
4072	printk(KERN_INFO "%-15.15s %c", p->comm,
4073		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4074#if BITS_PER_LONG == 32
4075	if (state == TASK_RUNNING)
4076		printk(KERN_CONT " running  ");
4077	else
4078		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4079#else
4080	if (state == TASK_RUNNING)
4081		printk(KERN_CONT "  running task    ");
4082	else
4083		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4084#endif
4085#ifdef CONFIG_DEBUG_STACK_USAGE
4086	free = stack_not_used(p);
4087#endif
4088	rcu_read_lock();
4089	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4090	rcu_read_unlock();
4091	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4092		task_pid_nr(p), ppid,
4093		(unsigned long)task_thread_info(p)->flags);
4094
4095	print_worker_info(KERN_INFO, p);
4096	show_stack(p, NULL);
4097}
4098
4099void show_state_filter(unsigned long state_filter)
4100{
4101	struct task_struct *g, *p;
4102
4103#if BITS_PER_LONG == 32
4104	printk(KERN_INFO
4105		"  task                PC stack   pid father\n");
4106#else
4107	printk(KERN_INFO
4108		"  task                        PC stack   pid father\n");
4109#endif
4110	rcu_read_lock();
4111	do_each_thread(g, p) {
4112		/*
4113		 * reset the NMI-timeout, listing all files on a slow
4114		 * console might take a lot of time:
4115		 */
4116		touch_nmi_watchdog();
4117		if (!state_filter || (p->state & state_filter))
4118			sched_show_task(p);
4119	} while_each_thread(g, p);
4120
4121	touch_all_softlockup_watchdogs();
4122
4123#ifdef CONFIG_SCHED_DEBUG
4124	sysrq_sched_debug_show();
4125#endif
4126	rcu_read_unlock();
4127	/*
4128	 * Only show locks if all tasks are dumped:
4129	 */
4130	if (!state_filter)
4131		debug_show_all_locks();
4132}
4133
4134void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4135{
4136	idle->sched_class = &idle_sched_class;
4137}
4138
4139/**
4140 * init_idle - set up an idle thread for a given CPU
4141 * @idle: task in question
4142 * @cpu: cpu the idle task belongs to
4143 *
4144 * NOTE: this function does not set the idle thread's NEED_RESCHED
4145 * flag, to make booting more robust.
4146 */
4147void __cpuinit init_idle(struct task_struct *idle, int cpu)
4148{
4149	struct rq *rq = cpu_rq(cpu);
4150	unsigned long flags;
4151
4152	raw_spin_lock_irqsave(&rq->lock, flags);
4153
4154	__sched_fork(idle);
4155	idle->state = TASK_RUNNING;
4156	idle->se.exec_start = sched_clock();
4157
4158	do_set_cpus_allowed(idle, cpumask_of(cpu));
4159	/*
4160	 * We're having a chicken and egg problem, even though we are
4161	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4162	 * lockdep check in task_group() will fail.
4163	 *
4164	 * Similar case to sched_fork(). / Alternatively we could
4165	 * use task_rq_lock() here and obtain the other rq->lock.
4166	 *
4167	 * Silence PROVE_RCU
4168	 */
4169	rcu_read_lock();
4170	__set_task_cpu(idle, cpu);
4171	rcu_read_unlock();
4172
4173	rq->curr = rq->idle = idle;
4174#if defined(CONFIG_SMP)
4175	idle->on_cpu = 1;
4176#endif
4177	raw_spin_unlock_irqrestore(&rq->lock, flags);
4178
4179	/* Set the preempt count _outside_ the spinlocks! */
4180	task_thread_info(idle)->preempt_count = 0;
4181
4182	/*
4183	 * The idle tasks have their own, simple scheduling class:
4184	 */
4185	idle->sched_class = &idle_sched_class;
4186	ftrace_graph_init_idle_task(idle, cpu);
4187	vtime_init_idle(idle, cpu);
4188#if defined(CONFIG_SMP)
4189	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4190#endif
4191}
4192
4193#ifdef CONFIG_SMP
4194void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4195{
4196	if (p->sched_class && p->sched_class->set_cpus_allowed)
4197		p->sched_class->set_cpus_allowed(p, new_mask);
4198
4199	cpumask_copy(&p->cpus_allowed, new_mask);
4200	p->nr_cpus_allowed = cpumask_weight(new_mask);
4201}
4202
4203/*
4204 * This is how migration works:
4205 *
4206 * 1) we invoke migration_cpu_stop() on the target CPU using
4207 *    stop_one_cpu().
4208 * 2) stopper starts to run (implicitly forcing the migrated thread
4209 *    off the CPU)
4210 * 3) it checks whether the migrated task is still in the wrong runqueue.
4211 * 4) if it's in the wrong runqueue then the migration thread removes
4212 *    it and puts it into the right queue.
4213 * 5) stopper completes and stop_one_cpu() returns and the migration
4214 *    is done.
4215 */
4216
4217/*
4218 * Change a given task's CPU affinity. Migrate the thread to a
4219 * proper CPU and schedule it away if the CPU it's executing on
4220 * is removed from the allowed bitmask.
4221 *
4222 * NOTE: the caller must have a valid reference to the task, the
4223 * task must not exit() & deallocate itself prematurely. The
4224 * call is not atomic; no spinlocks may be held.
4225 */
4226int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4227{
4228	unsigned long flags;
4229	struct rq *rq;
4230	unsigned int dest_cpu;
4231	int ret = 0;
4232
4233	rq = task_rq_lock(p, &flags);
4234
4235	if (cpumask_equal(&p->cpus_allowed, new_mask))
4236		goto out;
4237
4238	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4239		ret = -EINVAL;
4240		goto out;
4241	}
4242
4243	do_set_cpus_allowed(p, new_mask);
4244
4245	/* Can the task run on the task's current CPU? If so, we're done */
4246	if (cpumask_test_cpu(task_cpu(p), new_mask))
4247		goto out;
4248
4249	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4250	if (p->on_rq) {
4251		struct migration_arg arg = { p, dest_cpu };
4252		/* Need help from migration thread: drop lock and wait. */
4253		task_rq_unlock(rq, p, &flags);
4254		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4255		tlb_migrate_finish(p->mm);
4256		return 0;
4257	}
4258out:
4259	task_rq_unlock(rq, p, &flags);
4260
4261	return ret;
4262}
4263EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4264
4265/*
4266 * Move (not current) task off this cpu, onto dest cpu. We're doing
4267 * this because either it can't run here any more (set_cpus_allowed()
4268 * away from this CPU, or CPU going down), or because we're
4269 * attempting to rebalance this task on exec (sched_exec).
4270 *
4271 * So we race with normal scheduler movements, but that's OK, as long
4272 * as the task is no longer on this CPU.
4273 *
4274 * Returns non-zero if task was successfully migrated.
4275 */
4276static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4277{
4278	struct rq *rq_dest, *rq_src;
4279	int ret = 0;
4280
4281	if (unlikely(!cpu_active(dest_cpu)))
4282		return ret;
4283
4284	rq_src = cpu_rq(src_cpu);
4285	rq_dest = cpu_rq(dest_cpu);
4286
4287	raw_spin_lock(&p->pi_lock);
4288	double_rq_lock(rq_src, rq_dest);
4289	/* Already moved. */
4290	if (task_cpu(p) != src_cpu)
4291		goto done;
4292	/* Affinity changed (again). */
4293	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4294		goto fail;
4295
4296	/*
4297	 * If we're not on a rq, the next wake-up will ensure we're
4298	 * placed properly.
4299	 */
4300	if (p->on_rq) {
4301		dequeue_task(rq_src, p, 0);
4302		set_task_cpu(p, dest_cpu);
4303		enqueue_task(rq_dest, p, 0);
4304		check_preempt_curr(rq_dest, p, 0);
4305	}
4306done:
4307	ret = 1;
4308fail:
4309	double_rq_unlock(rq_src, rq_dest);
4310	raw_spin_unlock(&p->pi_lock);
4311	return ret;
4312}
4313
4314/*
4315 * migration_cpu_stop - this will be executed by a highprio stopper thread
4316 * and performs thread migration by bumping thread off CPU then
4317 * 'pushing' onto another runqueue.
4318 */
4319static int migration_cpu_stop(void *data)
4320{
4321	struct migration_arg *arg = data;
4322
4323	/*
4324	 * The original target cpu might have gone down and we might
4325	 * be on another cpu but it doesn't matter.
4326	 */
4327	local_irq_disable();
4328	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4329	local_irq_enable();
4330	return 0;
4331}
4332
4333#ifdef CONFIG_HOTPLUG_CPU
4334
4335/*
4336 * Ensures that the idle task is using init_mm right before its cpu goes
4337 * offline.
4338 */
4339void idle_task_exit(void)
4340{
4341	struct mm_struct *mm = current->active_mm;
4342
4343	BUG_ON(cpu_online(smp_processor_id()));
4344
4345	if (mm != &init_mm)
4346		switch_mm(mm, &init_mm, current);
4347	mmdrop(mm);
4348}
4349
4350/*
4351 * Since this CPU is going 'away' for a while, fold any nr_active delta
4352 * we might have. Assumes we're called after migrate_tasks() so that the
4353 * nr_active count is stable.
4354 *
4355 * Also see the comment "Global load-average calculations".
4356 */
4357static void calc_load_migrate(struct rq *rq)
4358{
4359	long delta = calc_load_fold_active(rq);
4360	if (delta)
4361		atomic_long_add(delta, &calc_load_tasks);
4362}
4363
4364/*
4365 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4366 * try_to_wake_up()->select_task_rq().
4367 *
4368 * Called with rq->lock held even though we'er in stop_machine() and
4369 * there's no concurrency possible, we hold the required locks anyway
4370 * because of lock validation efforts.
4371 */
4372static void migrate_tasks(unsigned int dead_cpu)
4373{
4374	struct rq *rq = cpu_rq(dead_cpu);
4375	struct task_struct *next, *stop = rq->stop;
4376	int dest_cpu;
4377
4378	/*
4379	 * Fudge the rq selection such that the below task selection loop
4380	 * doesn't get stuck on the currently eligible stop task.
4381	 *
4382	 * We're currently inside stop_machine() and the rq is either stuck
4383	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4384	 * either way we should never end up calling schedule() until we're
4385	 * done here.
4386	 */
4387	rq->stop = NULL;
4388
4389	/*
4390	 * put_prev_task() and pick_next_task() sched
4391	 * class method both need to have an up-to-date
4392	 * value of rq->clock[_task]
4393	 */
4394	update_rq_clock(rq);
4395
4396	for ( ; ; ) {
4397		/*
4398		 * There's this thread running, bail when that's the only
4399		 * remaining thread.
4400		 */
4401		if (rq->nr_running == 1)
4402			break;
4403
4404		next = pick_next_task(rq);
4405		BUG_ON(!next);
4406		next->sched_class->put_prev_task(rq, next);
4407
4408		/* Find suitable destination for @next, with force if needed. */
4409		dest_cpu = select_fallback_rq(dead_cpu, next);
4410		raw_spin_unlock(&rq->lock);
4411
4412		__migrate_task(next, dead_cpu, dest_cpu);
4413
4414		raw_spin_lock(&rq->lock);
4415	}
4416
4417	rq->stop = stop;
4418}
4419
4420#endif /* CONFIG_HOTPLUG_CPU */
4421
4422#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4423
4424static struct ctl_table sd_ctl_dir[] = {
4425	{
4426		.procname	= "sched_domain",
4427		.mode		= 0555,
4428	},
4429	{}
4430};
4431
4432static struct ctl_table sd_ctl_root[] = {
4433	{
4434		.procname	= "kernel",
4435		.mode		= 0555,
4436		.child		= sd_ctl_dir,
4437	},
4438	{}
4439};
4440
4441static struct ctl_table *sd_alloc_ctl_entry(int n)
4442{
4443	struct ctl_table *entry =
4444		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4445
4446	return entry;
4447}
4448
4449static void sd_free_ctl_entry(struct ctl_table **tablep)
4450{
4451	struct ctl_table *entry;
4452
4453	/*
4454	 * In the intermediate directories, both the child directory and
4455	 * procname are dynamically allocated and could fail but the mode
4456	 * will always be set. In the lowest directory the names are
4457	 * static strings and all have proc handlers.
4458	 */
4459	for (entry = *tablep; entry->mode; entry++) {
4460		if (entry->child)
4461			sd_free_ctl_entry(&entry->child);
4462		if (entry->proc_handler == NULL)
4463			kfree(entry->procname);
4464	}
4465
4466	kfree(*tablep);
4467	*tablep = NULL;
4468}
4469
4470static int min_load_idx = 0;
4471static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4472
4473static void
4474set_table_entry(struct ctl_table *entry,
4475		const char *procname, void *data, int maxlen,
4476		umode_t mode, proc_handler *proc_handler,
4477		bool load_idx)
4478{
4479	entry->procname = procname;
4480	entry->data = data;
4481	entry->maxlen = maxlen;
4482	entry->mode = mode;
4483	entry->proc_handler = proc_handler;
4484
4485	if (load_idx) {
4486		entry->extra1 = &min_load_idx;
4487		entry->extra2 = &max_load_idx;
4488	}
4489}
4490
4491static struct ctl_table *
4492sd_alloc_ctl_domain_table(struct sched_domain *sd)
4493{
4494	struct ctl_table *table = sd_alloc_ctl_entry(13);
4495
4496	if (table == NULL)
4497		return NULL;
4498
4499	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4500		sizeof(long), 0644, proc_doulongvec_minmax, false);
4501	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4502		sizeof(long), 0644, proc_doulongvec_minmax, false);
4503	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4504		sizeof(int), 0644, proc_dointvec_minmax, true);
4505	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4506		sizeof(int), 0644, proc_dointvec_minmax, true);
4507	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4508		sizeof(int), 0644, proc_dointvec_minmax, true);
4509	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4510		sizeof(int), 0644, proc_dointvec_minmax, true);
4511	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4512		sizeof(int), 0644, proc_dointvec_minmax, true);
4513	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4514		sizeof(int), 0644, proc_dointvec_minmax, false);
4515	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4516		sizeof(int), 0644, proc_dointvec_minmax, false);
4517	set_table_entry(&table[9], "cache_nice_tries",
4518		&sd->cache_nice_tries,
4519		sizeof(int), 0644, proc_dointvec_minmax, false);
4520	set_table_entry(&table[10], "flags", &sd->flags,
4521		sizeof(int), 0644, proc_dointvec_minmax, false);
4522	set_table_entry(&table[11], "name", sd->name,
4523		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4524	/* &table[12] is terminator */
4525
4526	return table;
4527}
4528
4529static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4530{
4531	struct ctl_table *entry, *table;
4532	struct sched_domain *sd;
4533	int domain_num = 0, i;
4534	char buf[32];
4535
4536	for_each_domain(cpu, sd)
4537		domain_num++;
4538	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4539	if (table == NULL)
4540		return NULL;
4541
4542	i = 0;
4543	for_each_domain(cpu, sd) {
4544		snprintf(buf, 32, "domain%d", i);
4545		entry->procname = kstrdup(buf, GFP_KERNEL);
4546		entry->mode = 0555;
4547		entry->child = sd_alloc_ctl_domain_table(sd);
4548		entry++;
4549		i++;
4550	}
4551	return table;
4552}
4553
4554static struct ctl_table_header *sd_sysctl_header;
4555static void register_sched_domain_sysctl(void)
4556{
4557	int i, cpu_num = num_possible_cpus();
4558	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4559	char buf[32];
4560
4561	WARN_ON(sd_ctl_dir[0].child);
4562	sd_ctl_dir[0].child = entry;
4563
4564	if (entry == NULL)
4565		return;
4566
4567	for_each_possible_cpu(i) {
4568		snprintf(buf, 32, "cpu%d", i);
4569		entry->procname = kstrdup(buf, GFP_KERNEL);
4570		entry->mode = 0555;
4571		entry->child = sd_alloc_ctl_cpu_table(i);
4572		entry++;
4573	}
4574
4575	WARN_ON(sd_sysctl_header);
4576	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4577}
4578
4579/* may be called multiple times per register */
4580static void unregister_sched_domain_sysctl(void)
4581{
4582	if (sd_sysctl_header)
4583		unregister_sysctl_table(sd_sysctl_header);
4584	sd_sysctl_header = NULL;
4585	if (sd_ctl_dir[0].child)
4586		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4587}
4588#else
4589static void register_sched_domain_sysctl(void)
4590{
4591}
4592static void unregister_sched_domain_sysctl(void)
4593{
4594}
4595#endif
4596
4597static void set_rq_online(struct rq *rq)
4598{
4599	if (!rq->online) {
4600		const struct sched_class *class;
4601
4602		cpumask_set_cpu(rq->cpu, rq->rd->online);
4603		rq->online = 1;
4604
4605		for_each_class(class) {
4606			if (class->rq_online)
4607				class->rq_online(rq);
4608		}
4609	}
4610}
4611
4612static void set_rq_offline(struct rq *rq)
4613{
4614	if (rq->online) {
4615		const struct sched_class *class;
4616
4617		for_each_class(class) {
4618			if (class->rq_offline)
4619				class->rq_offline(rq);
4620		}
4621
4622		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4623		rq->online = 0;
4624	}
4625}
4626
4627/*
4628 * migration_call - callback that gets triggered when a CPU is added.
4629 * Here we can start up the necessary migration thread for the new CPU.
4630 */
4631static int __cpuinit
4632migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4633{
4634	int cpu = (long)hcpu;
4635	unsigned long flags;
4636	struct rq *rq = cpu_rq(cpu);
4637
4638	switch (action & ~CPU_TASKS_FROZEN) {
4639
4640	case CPU_UP_PREPARE:
4641		rq->calc_load_update = calc_load_update;
4642		break;
4643
4644	case CPU_ONLINE:
4645		/* Update our root-domain */
4646		raw_spin_lock_irqsave(&rq->lock, flags);
4647		if (rq->rd) {
4648			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4649
4650			set_rq_online(rq);
4651		}
4652		raw_spin_unlock_irqrestore(&rq->lock, flags);
4653		break;
4654
4655#ifdef CONFIG_HOTPLUG_CPU
4656	case CPU_DYING:
4657		sched_ttwu_pending();
4658		/* Update our root-domain */
4659		raw_spin_lock_irqsave(&rq->lock, flags);
4660		if (rq->rd) {
4661			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4662			set_rq_offline(rq);
4663		}
4664		migrate_tasks(cpu);
4665		BUG_ON(rq->nr_running != 1); /* the migration thread */
4666		raw_spin_unlock_irqrestore(&rq->lock, flags);
4667		break;
4668
4669	case CPU_DEAD:
4670		calc_load_migrate(rq);
4671		break;
4672#endif
4673	}
4674
4675	update_max_interval();
4676
4677	return NOTIFY_OK;
4678}
4679
4680/*
4681 * Register at high priority so that task migration (migrate_all_tasks)
4682 * happens before everything else.  This has to be lower priority than
4683 * the notifier in the perf_event subsystem, though.
4684 */
4685static struct notifier_block __cpuinitdata migration_notifier = {
4686	.notifier_call = migration_call,
4687	.priority = CPU_PRI_MIGRATION,
4688};
4689
4690static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4691				      unsigned long action, void *hcpu)
4692{
4693	switch (action & ~CPU_TASKS_FROZEN) {
4694	case CPU_STARTING:
4695	case CPU_DOWN_FAILED:
4696		set_cpu_active((long)hcpu, true);
4697		return NOTIFY_OK;
4698	default:
4699		return NOTIFY_DONE;
4700	}
4701}
4702
4703static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4704					unsigned long action, void *hcpu)
4705{
4706	switch (action & ~CPU_TASKS_FROZEN) {
4707	case CPU_DOWN_PREPARE:
4708		set_cpu_active((long)hcpu, false);
4709		return NOTIFY_OK;
4710	default:
4711		return NOTIFY_DONE;
4712	}
4713}
4714
4715static int __init migration_init(void)
4716{
4717	void *cpu = (void *)(long)smp_processor_id();
4718	int err;
4719
4720	/* Initialize migration for the boot CPU */
4721	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4722	BUG_ON(err == NOTIFY_BAD);
4723	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4724	register_cpu_notifier(&migration_notifier);
4725
4726	/* Register cpu active notifiers */
4727	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4728	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4729
4730	return 0;
4731}
4732early_initcall(migration_init);
4733#endif
4734
4735#ifdef CONFIG_SMP
4736
4737static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4738
4739#ifdef CONFIG_SCHED_DEBUG
4740
4741static __read_mostly int sched_debug_enabled;
4742
4743static int __init sched_debug_setup(char *str)
4744{
4745	sched_debug_enabled = 1;
4746
4747	return 0;
4748}
4749early_param("sched_debug", sched_debug_setup);
4750
4751static inline bool sched_debug(void)
4752{
4753	return sched_debug_enabled;
4754}
4755
4756static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4757				  struct cpumask *groupmask)
4758{
4759	struct sched_group *group = sd->groups;
4760	char str[256];
4761
4762	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4763	cpumask_clear(groupmask);
4764
4765	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4766
4767	if (!(sd->flags & SD_LOAD_BALANCE)) {
4768		printk("does not load-balance\n");
4769		if (sd->parent)
4770			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4771					" has parent");
4772		return -1;
4773	}
4774
4775	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4776
4777	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4778		printk(KERN_ERR "ERROR: domain->span does not contain "
4779				"CPU%d\n", cpu);
4780	}
4781	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4782		printk(KERN_ERR "ERROR: domain->groups does not contain"
4783				" CPU%d\n", cpu);
4784	}
4785
4786	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4787	do {
4788		if (!group) {
4789			printk("\n");
4790			printk(KERN_ERR "ERROR: group is NULL\n");
4791			break;
4792		}
4793
4794		/*
4795		 * Even though we initialize ->power to something semi-sane,
4796		 * we leave power_orig unset. This allows us to detect if
4797		 * domain iteration is still funny without causing /0 traps.
4798		 */
4799		if (!group->sgp->power_orig) {
4800			printk(KERN_CONT "\n");
4801			printk(KERN_ERR "ERROR: domain->cpu_power not "
4802					"set\n");
4803			break;
4804		}
4805
4806		if (!cpumask_weight(sched_group_cpus(group))) {
4807			printk(KERN_CONT "\n");
4808			printk(KERN_ERR "ERROR: empty group\n");
4809			break;
4810		}
4811
4812		if (!(sd->flags & SD_OVERLAP) &&
4813		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4814			printk(KERN_CONT "\n");
4815			printk(KERN_ERR "ERROR: repeated CPUs\n");
4816			break;
4817		}
4818
4819		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4820
4821		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4822
4823		printk(KERN_CONT " %s", str);
4824		if (group->sgp->power != SCHED_POWER_SCALE) {
4825			printk(KERN_CONT " (cpu_power = %d)",
4826				group->sgp->power);
4827		}
4828
4829		group = group->next;
4830	} while (group != sd->groups);
4831	printk(KERN_CONT "\n");
4832
4833	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4834		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4835
4836	if (sd->parent &&
4837	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4838		printk(KERN_ERR "ERROR: parent span is not a superset "
4839			"of domain->span\n");
4840	return 0;
4841}
4842
4843static void sched_domain_debug(struct sched_domain *sd, int cpu)
4844{
4845	int level = 0;
4846
4847	if (!sched_debug_enabled)
4848		return;
4849
4850	if (!sd) {
4851		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4852		return;
4853	}
4854
4855	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4856
4857	for (;;) {
4858		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4859			break;
4860		level++;
4861		sd = sd->parent;
4862		if (!sd)
4863			break;
4864	}
4865}
4866#else /* !CONFIG_SCHED_DEBUG */
4867# define sched_domain_debug(sd, cpu) do { } while (0)
4868static inline bool sched_debug(void)
4869{
4870	return false;
4871}
4872#endif /* CONFIG_SCHED_DEBUG */
4873
4874static int sd_degenerate(struct sched_domain *sd)
4875{
4876	if (cpumask_weight(sched_domain_span(sd)) == 1)
4877		return 1;
4878
4879	/* Following flags need at least 2 groups */
4880	if (sd->flags & (SD_LOAD_BALANCE |
4881			 SD_BALANCE_NEWIDLE |
4882			 SD_BALANCE_FORK |
4883			 SD_BALANCE_EXEC |
4884			 SD_SHARE_CPUPOWER |
4885			 SD_SHARE_PKG_RESOURCES)) {
4886		if (sd->groups != sd->groups->next)
4887			return 0;
4888	}
4889
4890	/* Following flags don't use groups */
4891	if (sd->flags & (SD_WAKE_AFFINE))
4892		return 0;
4893
4894	return 1;
4895}
4896
4897static int
4898sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4899{
4900	unsigned long cflags = sd->flags, pflags = parent->flags;
4901
4902	if (sd_degenerate(parent))
4903		return 1;
4904
4905	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4906		return 0;
4907
4908	/* Flags needing groups don't count if only 1 group in parent */
4909	if (parent->groups == parent->groups->next) {
4910		pflags &= ~(SD_LOAD_BALANCE |
4911				SD_BALANCE_NEWIDLE |
4912				SD_BALANCE_FORK |
4913				SD_BALANCE_EXEC |
4914				SD_SHARE_CPUPOWER |
4915				SD_SHARE_PKG_RESOURCES);
4916		if (nr_node_ids == 1)
4917			pflags &= ~SD_SERIALIZE;
4918	}
4919	if (~cflags & pflags)
4920		return 0;
4921
4922	return 1;
4923}
4924
4925static void free_rootdomain(struct rcu_head *rcu)
4926{
4927	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4928
4929	cpupri_cleanup(&rd->cpupri);
4930	free_cpumask_var(rd->rto_mask);
4931	free_cpumask_var(rd->online);
4932	free_cpumask_var(rd->span);
4933	kfree(rd);
4934}
4935
4936static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4937{
4938	struct root_domain *old_rd = NULL;
4939	unsigned long flags;
4940
4941	raw_spin_lock_irqsave(&rq->lock, flags);
4942
4943	if (rq->rd) {
4944		old_rd = rq->rd;
4945
4946		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4947			set_rq_offline(rq);
4948
4949		cpumask_clear_cpu(rq->cpu, old_rd->span);
4950
4951		/*
4952		 * If we dont want to free the old_rt yet then
4953		 * set old_rd to NULL to skip the freeing later
4954		 * in this function:
4955		 */
4956		if (!atomic_dec_and_test(&old_rd->refcount))
4957			old_rd = NULL;
4958	}
4959
4960	atomic_inc(&rd->refcount);
4961	rq->rd = rd;
4962
4963	cpumask_set_cpu(rq->cpu, rd->span);
4964	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4965		set_rq_online(rq);
4966
4967	raw_spin_unlock_irqrestore(&rq->lock, flags);
4968
4969	if (old_rd)
4970		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4971}
4972
4973static int init_rootdomain(struct root_domain *rd)
4974{
4975	memset(rd, 0, sizeof(*rd));
4976
4977	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4978		goto out;
4979	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4980		goto free_span;
4981	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4982		goto free_online;
4983
4984	if (cpupri_init(&rd->cpupri) != 0)
4985		goto free_rto_mask;
4986	return 0;
4987
4988free_rto_mask:
4989	free_cpumask_var(rd->rto_mask);
4990free_online:
4991	free_cpumask_var(rd->online);
4992free_span:
4993	free_cpumask_var(rd->span);
4994out:
4995	return -ENOMEM;
4996}
4997
4998/*
4999 * By default the system creates a single root-domain with all cpus as
5000 * members (mimicking the global state we have today).
5001 */
5002struct root_domain def_root_domain;
5003
5004static void init_defrootdomain(void)
5005{
5006	init_rootdomain(&def_root_domain);
5007
5008	atomic_set(&def_root_domain.refcount, 1);
5009}
5010
5011static struct root_domain *alloc_rootdomain(void)
5012{
5013	struct root_domain *rd;
5014
5015	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5016	if (!rd)
5017		return NULL;
5018
5019	if (init_rootdomain(rd) != 0) {
5020		kfree(rd);
5021		return NULL;
5022	}
5023
5024	return rd;
5025}
5026
5027static void free_sched_groups(struct sched_group *sg, int free_sgp)
5028{
5029	struct sched_group *tmp, *first;
5030
5031	if (!sg)
5032		return;
5033
5034	first = sg;
5035	do {
5036		tmp = sg->next;
5037
5038		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5039			kfree(sg->sgp);
5040
5041		kfree(sg);
5042		sg = tmp;
5043	} while (sg != first);
5044}
5045
5046static void free_sched_domain(struct rcu_head *rcu)
5047{
5048	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5049
5050	/*
5051	 * If its an overlapping domain it has private groups, iterate and
5052	 * nuke them all.
5053	 */
5054	if (sd->flags & SD_OVERLAP) {
5055		free_sched_groups(sd->groups, 1);
5056	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5057		kfree(sd->groups->sgp);
5058		kfree(sd->groups);
5059	}
5060	kfree(sd);
5061}
5062
5063static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5064{
5065	call_rcu(&sd->rcu, free_sched_domain);
5066}
5067
5068static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5069{
5070	for (; sd; sd = sd->parent)
5071		destroy_sched_domain(sd, cpu);
5072}
5073
5074/*
5075 * Keep a special pointer to the highest sched_domain that has
5076 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5077 * allows us to avoid some pointer chasing select_idle_sibling().
5078 *
5079 * Also keep a unique ID per domain (we use the first cpu number in
5080 * the cpumask of the domain), this allows us to quickly tell if
5081 * two cpus are in the same cache domain, see cpus_share_cache().
5082 */
5083DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5084DEFINE_PER_CPU(int, sd_llc_id);
5085
5086static void update_top_cache_domain(int cpu)
5087{
5088	struct sched_domain *sd;
5089	int id = cpu;
5090
5091	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5092	if (sd)
5093		id = cpumask_first(sched_domain_span(sd));
5094
5095	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5096	per_cpu(sd_llc_id, cpu) = id;
5097}
5098
5099/*
5100 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5101 * hold the hotplug lock.
5102 */
5103static void
5104cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5105{
5106	struct rq *rq = cpu_rq(cpu);
5107	struct sched_domain *tmp;
5108
5109	/* Remove the sched domains which do not contribute to scheduling. */
5110	for (tmp = sd; tmp; ) {
5111		struct sched_domain *parent = tmp->parent;
5112		if (!parent)
5113			break;
5114
5115		if (sd_parent_degenerate(tmp, parent)) {
5116			tmp->parent = parent->parent;
5117			if (parent->parent)
5118				parent->parent->child = tmp;
5119			destroy_sched_domain(parent, cpu);
5120		} else
5121			tmp = tmp->parent;
5122	}
5123
5124	if (sd && sd_degenerate(sd)) {
5125		tmp = sd;
5126		sd = sd->parent;
5127		destroy_sched_domain(tmp, cpu);
5128		if (sd)
5129			sd->child = NULL;
5130	}
5131
5132	sched_domain_debug(sd, cpu);
5133
5134	rq_attach_root(rq, rd);
5135	tmp = rq->sd;
5136	rcu_assign_pointer(rq->sd, sd);
5137	destroy_sched_domains(tmp, cpu);
5138
5139	update_top_cache_domain(cpu);
5140}
5141
5142/* cpus with isolated domains */
5143static cpumask_var_t cpu_isolated_map;
5144
5145/* Setup the mask of cpus configured for isolated domains */
5146static int __init isolated_cpu_setup(char *str)
5147{
5148	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5149	cpulist_parse(str, cpu_isolated_map);
5150	return 1;
5151}
5152
5153__setup("isolcpus=", isolated_cpu_setup);
5154
5155static const struct cpumask *cpu_cpu_mask(int cpu)
5156{
5157	return cpumask_of_node(cpu_to_node(cpu));
5158}
5159
5160struct sd_data {
5161	struct sched_domain **__percpu sd;
5162	struct sched_group **__percpu sg;
5163	struct sched_group_power **__percpu sgp;
5164};
5165
5166struct s_data {
5167	struct sched_domain ** __percpu sd;
5168	struct root_domain	*rd;
5169};
5170
5171enum s_alloc {
5172	sa_rootdomain,
5173	sa_sd,
5174	sa_sd_storage,
5175	sa_none,
5176};
5177
5178struct sched_domain_topology_level;
5179
5180typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5181typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5182
5183#define SDTL_OVERLAP	0x01
5184
5185struct sched_domain_topology_level {
5186	sched_domain_init_f init;
5187	sched_domain_mask_f mask;
5188	int		    flags;
5189	int		    numa_level;
5190	struct sd_data      data;
5191};
5192
5193/*
5194 * Build an iteration mask that can exclude certain CPUs from the upwards
5195 * domain traversal.
5196 *
5197 * Asymmetric node setups can result in situations where the domain tree is of
5198 * unequal depth, make sure to skip domains that already cover the entire
5199 * range.
5200 *
5201 * In that case build_sched_domains() will have terminated the iteration early
5202 * and our sibling sd spans will be empty. Domains should always include the
5203 * cpu they're built on, so check that.
5204 *
5205 */
5206static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5207{
5208	const struct cpumask *span = sched_domain_span(sd);
5209	struct sd_data *sdd = sd->private;
5210	struct sched_domain *sibling;
5211	int i;
5212
5213	for_each_cpu(i, span) {
5214		sibling = *per_cpu_ptr(sdd->sd, i);
5215		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5216			continue;
5217
5218		cpumask_set_cpu(i, sched_group_mask(sg));
5219	}
5220}
5221
5222/*
5223 * Return the canonical balance cpu for this group, this is the first cpu
5224 * of this group that's also in the iteration mask.
5225 */
5226int group_balance_cpu(struct sched_group *sg)
5227{
5228	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5229}
5230
5231static int
5232build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5233{
5234	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5235	const struct cpumask *span = sched_domain_span(sd);
5236	struct cpumask *covered = sched_domains_tmpmask;
5237	struct sd_data *sdd = sd->private;
5238	struct sched_domain *child;
5239	int i;
5240
5241	cpumask_clear(covered);
5242
5243	for_each_cpu(i, span) {
5244		struct cpumask *sg_span;
5245
5246		if (cpumask_test_cpu(i, covered))
5247			continue;
5248
5249		child = *per_cpu_ptr(sdd->sd, i);
5250
5251		/* See the comment near build_group_mask(). */
5252		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5253			continue;
5254
5255		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5256				GFP_KERNEL, cpu_to_node(cpu));
5257
5258		if (!sg)
5259			goto fail;
5260
5261		sg_span = sched_group_cpus(sg);
5262		if (child->child) {
5263			child = child->child;
5264			cpumask_copy(sg_span, sched_domain_span(child));
5265		} else
5266			cpumask_set_cpu(i, sg_span);
5267
5268		cpumask_or(covered, covered, sg_span);
5269
5270		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5271		if (atomic_inc_return(&sg->sgp->ref) == 1)
5272			build_group_mask(sd, sg);
5273
5274		/*
5275		 * Initialize sgp->power such that even if we mess up the
5276		 * domains and no possible iteration will get us here, we won't
5277		 * die on a /0 trap.
5278		 */
5279		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5280
5281		/*
5282		 * Make sure the first group of this domain contains the
5283		 * canonical balance cpu. Otherwise the sched_domain iteration
5284		 * breaks. See update_sg_lb_stats().
5285		 */
5286		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5287		    group_balance_cpu(sg) == cpu)
5288			groups = sg;
5289
5290		if (!first)
5291			first = sg;
5292		if (last)
5293			last->next = sg;
5294		last = sg;
5295		last->next = first;
5296	}
5297	sd->groups = groups;
5298
5299	return 0;
5300
5301fail:
5302	free_sched_groups(first, 0);
5303
5304	return -ENOMEM;
5305}
5306
5307static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5308{
5309	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5310	struct sched_domain *child = sd->child;
5311
5312	if (child)
5313		cpu = cpumask_first(sched_domain_span(child));
5314
5315	if (sg) {
5316		*sg = *per_cpu_ptr(sdd->sg, cpu);
5317		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5318		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5319	}
5320
5321	return cpu;
5322}
5323
5324/*
5325 * build_sched_groups will build a circular linked list of the groups
5326 * covered by the given span, and will set each group's ->cpumask correctly,
5327 * and ->cpu_power to 0.
5328 *
5329 * Assumes the sched_domain tree is fully constructed
5330 */
5331static int
5332build_sched_groups(struct sched_domain *sd, int cpu)
5333{
5334	struct sched_group *first = NULL, *last = NULL;
5335	struct sd_data *sdd = sd->private;
5336	const struct cpumask *span = sched_domain_span(sd);
5337	struct cpumask *covered;
5338	int i;
5339
5340	get_group(cpu, sdd, &sd->groups);
5341	atomic_inc(&sd->groups->ref);
5342
5343	if (cpu != cpumask_first(span))
5344		return 0;
5345
5346	lockdep_assert_held(&sched_domains_mutex);
5347	covered = sched_domains_tmpmask;
5348
5349	cpumask_clear(covered);
5350
5351	for_each_cpu(i, span) {
5352		struct sched_group *sg;
5353		int group, j;
5354
5355		if (cpumask_test_cpu(i, covered))
5356			continue;
5357
5358		group = get_group(i, sdd, &sg);
5359		cpumask_clear(sched_group_cpus(sg));
5360		sg->sgp->power = 0;
5361		cpumask_setall(sched_group_mask(sg));
5362
5363		for_each_cpu(j, span) {
5364			if (get_group(j, sdd, NULL) != group)
5365				continue;
5366
5367			cpumask_set_cpu(j, covered);
5368			cpumask_set_cpu(j, sched_group_cpus(sg));
5369		}
5370
5371		if (!first)
5372			first = sg;
5373		if (last)
5374			last->next = sg;
5375		last = sg;
5376	}
5377	last->next = first;
5378
5379	return 0;
5380}
5381
5382/*
5383 * Initialize sched groups cpu_power.
5384 *
5385 * cpu_power indicates the capacity of sched group, which is used while
5386 * distributing the load between different sched groups in a sched domain.
5387 * Typically cpu_power for all the groups in a sched domain will be same unless
5388 * there are asymmetries in the topology. If there are asymmetries, group
5389 * having more cpu_power will pickup more load compared to the group having
5390 * less cpu_power.
5391 */
5392static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5393{
5394	struct sched_group *sg = sd->groups;
5395
5396	WARN_ON(!sg);
5397
5398	do {
5399		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5400		sg = sg->next;
5401	} while (sg != sd->groups);
5402
5403	if (cpu != group_balance_cpu(sg))
5404		return;
5405
5406	update_group_power(sd, cpu);
5407	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5408}
5409
5410int __weak arch_sd_sibling_asym_packing(void)
5411{
5412       return 0*SD_ASYM_PACKING;
5413}
5414
5415/*
5416 * Initializers for schedule domains
5417 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5418 */
5419
5420#ifdef CONFIG_SCHED_DEBUG
5421# define SD_INIT_NAME(sd, type)		sd->name = #type
5422#else
5423# define SD_INIT_NAME(sd, type)		do { } while (0)
5424#endif
5425
5426#define SD_INIT_FUNC(type)						\
5427static noinline struct sched_domain *					\
5428sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5429{									\
5430	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5431	*sd = SD_##type##_INIT;						\
5432	SD_INIT_NAME(sd, type);						\
5433	sd->private = &tl->data;					\
5434	return sd;							\
5435}
5436
5437SD_INIT_FUNC(CPU)
5438#ifdef CONFIG_SCHED_SMT
5439 SD_INIT_FUNC(SIBLING)
5440#endif
5441#ifdef CONFIG_SCHED_MC
5442 SD_INIT_FUNC(MC)
5443#endif
5444#ifdef CONFIG_SCHED_BOOK
5445 SD_INIT_FUNC(BOOK)
5446#endif
5447
5448static int default_relax_domain_level = -1;
5449int sched_domain_level_max;
5450
5451static int __init setup_relax_domain_level(char *str)
5452{
5453	if (kstrtoint(str, 0, &default_relax_domain_level))
5454		pr_warn("Unable to set relax_domain_level\n");
5455
5456	return 1;
5457}
5458__setup("relax_domain_level=", setup_relax_domain_level);
5459
5460static void set_domain_attribute(struct sched_domain *sd,
5461				 struct sched_domain_attr *attr)
5462{
5463	int request;
5464
5465	if (!attr || attr->relax_domain_level < 0) {
5466		if (default_relax_domain_level < 0)
5467			return;
5468		else
5469			request = default_relax_domain_level;
5470	} else
5471		request = attr->relax_domain_level;
5472	if (request < sd->level) {
5473		/* turn off idle balance on this domain */
5474		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5475	} else {
5476		/* turn on idle balance on this domain */
5477		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5478	}
5479}
5480
5481static void __sdt_free(const struct cpumask *cpu_map);
5482static int __sdt_alloc(const struct cpumask *cpu_map);
5483
5484static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5485				 const struct cpumask *cpu_map)
5486{
5487	switch (what) {
5488	case sa_rootdomain:
5489		if (!atomic_read(&d->rd->refcount))
5490			free_rootdomain(&d->rd->rcu); /* fall through */
5491	case sa_sd:
5492		free_percpu(d->sd); /* fall through */
5493	case sa_sd_storage:
5494		__sdt_free(cpu_map); /* fall through */
5495	case sa_none:
5496		break;
5497	}
5498}
5499
5500static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5501						   const struct cpumask *cpu_map)
5502{
5503	memset(d, 0, sizeof(*d));
5504
5505	if (__sdt_alloc(cpu_map))
5506		return sa_sd_storage;
5507	d->sd = alloc_percpu(struct sched_domain *);
5508	if (!d->sd)
5509		return sa_sd_storage;
5510	d->rd = alloc_rootdomain();
5511	if (!d->rd)
5512		return sa_sd;
5513	return sa_rootdomain;
5514}
5515
5516/*
5517 * NULL the sd_data elements we've used to build the sched_domain and
5518 * sched_group structure so that the subsequent __free_domain_allocs()
5519 * will not free the data we're using.
5520 */
5521static void claim_allocations(int cpu, struct sched_domain *sd)
5522{
5523	struct sd_data *sdd = sd->private;
5524
5525	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5526	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5527
5528	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5529		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5530
5531	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5532		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5533}
5534
5535#ifdef CONFIG_SCHED_SMT
5536static const struct cpumask *cpu_smt_mask(int cpu)
5537{
5538	return topology_thread_cpumask(cpu);
5539}
5540#endif
5541
5542/*
5543 * Topology list, bottom-up.
5544 */
5545static struct sched_domain_topology_level default_topology[] = {
5546#ifdef CONFIG_SCHED_SMT
5547	{ sd_init_SIBLING, cpu_smt_mask, },
5548#endif
5549#ifdef CONFIG_SCHED_MC
5550	{ sd_init_MC, cpu_coregroup_mask, },
5551#endif
5552#ifdef CONFIG_SCHED_BOOK
5553	{ sd_init_BOOK, cpu_book_mask, },
5554#endif
5555	{ sd_init_CPU, cpu_cpu_mask, },
5556	{ NULL, },
5557};
5558
5559static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5560
5561#define for_each_sd_topology(tl)			\
5562	for (tl = sched_domain_topology; tl->init; tl++)
5563
5564#ifdef CONFIG_NUMA
5565
5566static int sched_domains_numa_levels;
5567static int *sched_domains_numa_distance;
5568static struct cpumask ***sched_domains_numa_masks;
5569static int sched_domains_curr_level;
5570
5571static inline int sd_local_flags(int level)
5572{
5573	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5574		return 0;
5575
5576	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5577}
5578
5579static struct sched_domain *
5580sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5581{
5582	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5583	int level = tl->numa_level;
5584	int sd_weight = cpumask_weight(
5585			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5586
5587	*sd = (struct sched_domain){
5588		.min_interval		= sd_weight,
5589		.max_interval		= 2*sd_weight,
5590		.busy_factor		= 32,
5591		.imbalance_pct		= 125,
5592		.cache_nice_tries	= 2,
5593		.busy_idx		= 3,
5594		.idle_idx		= 2,
5595		.newidle_idx		= 0,
5596		.wake_idx		= 0,
5597		.forkexec_idx		= 0,
5598
5599		.flags			= 1*SD_LOAD_BALANCE
5600					| 1*SD_BALANCE_NEWIDLE
5601					| 0*SD_BALANCE_EXEC
5602					| 0*SD_BALANCE_FORK
5603					| 0*SD_BALANCE_WAKE
5604					| 0*SD_WAKE_AFFINE
5605					| 0*SD_SHARE_CPUPOWER
5606					| 0*SD_SHARE_PKG_RESOURCES
5607					| 1*SD_SERIALIZE
5608					| 0*SD_PREFER_SIBLING
5609					| sd_local_flags(level)
5610					,
5611		.last_balance		= jiffies,
5612		.balance_interval	= sd_weight,
5613	};
5614	SD_INIT_NAME(sd, NUMA);
5615	sd->private = &tl->data;
5616
5617	/*
5618	 * Ugly hack to pass state to sd_numa_mask()...
5619	 */
5620	sched_domains_curr_level = tl->numa_level;
5621
5622	return sd;
5623}
5624
5625static const struct cpumask *sd_numa_mask(int cpu)
5626{
5627	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5628}
5629
5630static void sched_numa_warn(const char *str)
5631{
5632	static int done = false;
5633	int i,j;
5634
5635	if (done)
5636		return;
5637
5638	done = true;
5639
5640	printk(KERN_WARNING "ERROR: %s\n\n", str);
5641
5642	for (i = 0; i < nr_node_ids; i++) {
5643		printk(KERN_WARNING "  ");
5644		for (j = 0; j < nr_node_ids; j++)
5645			printk(KERN_CONT "%02d ", node_distance(i,j));
5646		printk(KERN_CONT "\n");
5647	}
5648	printk(KERN_WARNING "\n");
5649}
5650
5651static bool find_numa_distance(int distance)
5652{
5653	int i;
5654
5655	if (distance == node_distance(0, 0))
5656		return true;
5657
5658	for (i = 0; i < sched_domains_numa_levels; i++) {
5659		if (sched_domains_numa_distance[i] == distance)
5660			return true;
5661	}
5662
5663	return false;
5664}
5665
5666static void sched_init_numa(void)
5667{
5668	int next_distance, curr_distance = node_distance(0, 0);
5669	struct sched_domain_topology_level *tl;
5670	int level = 0;
5671	int i, j, k;
5672
5673	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5674	if (!sched_domains_numa_distance)
5675		return;
5676
5677	/*
5678	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5679	 * unique distances in the node_distance() table.
5680	 *
5681	 * Assumes node_distance(0,j) includes all distances in
5682	 * node_distance(i,j) in order to avoid cubic time.
5683	 */
5684	next_distance = curr_distance;
5685	for (i = 0; i < nr_node_ids; i++) {
5686		for (j = 0; j < nr_node_ids; j++) {
5687			for (k = 0; k < nr_node_ids; k++) {
5688				int distance = node_distance(i, k);
5689
5690				if (distance > curr_distance &&
5691				    (distance < next_distance ||
5692				     next_distance == curr_distance))
5693					next_distance = distance;
5694
5695				/*
5696				 * While not a strong assumption it would be nice to know
5697				 * about cases where if node A is connected to B, B is not
5698				 * equally connected to A.
5699				 */
5700				if (sched_debug() && node_distance(k, i) != distance)
5701					sched_numa_warn("Node-distance not symmetric");
5702
5703				if (sched_debug() && i && !find_numa_distance(distance))
5704					sched_numa_warn("Node-0 not representative");
5705			}
5706			if (next_distance != curr_distance) {
5707				sched_domains_numa_distance[level++] = next_distance;
5708				sched_domains_numa_levels = level;
5709				curr_distance = next_distance;
5710			} else break;
5711		}
5712
5713		/*
5714		 * In case of sched_debug() we verify the above assumption.
5715		 */
5716		if (!sched_debug())
5717			break;
5718	}
5719	/*
5720	 * 'level' contains the number of unique distances, excluding the
5721	 * identity distance node_distance(i,i).
5722	 *
5723	 * The sched_domains_numa_distance[] array includes the actual distance
5724	 * numbers.
5725	 */
5726
5727	/*
5728	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5729	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5730	 * the array will contain less then 'level' members. This could be
5731	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5732	 * in other functions.
5733	 *
5734	 * We reset it to 'level' at the end of this function.
5735	 */
5736	sched_domains_numa_levels = 0;
5737
5738	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5739	if (!sched_domains_numa_masks)
5740		return;
5741
5742	/*
5743	 * Now for each level, construct a mask per node which contains all
5744	 * cpus of nodes that are that many hops away from us.
5745	 */
5746	for (i = 0; i < level; i++) {
5747		sched_domains_numa_masks[i] =
5748			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5749		if (!sched_domains_numa_masks[i])
5750			return;
5751
5752		for (j = 0; j < nr_node_ids; j++) {
5753			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5754			if (!mask)
5755				return;
5756
5757			sched_domains_numa_masks[i][j] = mask;
5758
5759			for (k = 0; k < nr_node_ids; k++) {
5760				if (node_distance(j, k) > sched_domains_numa_distance[i])
5761					continue;
5762
5763				cpumask_or(mask, mask, cpumask_of_node(k));
5764			}
5765		}
5766	}
5767
5768	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5769			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5770	if (!tl)
5771		return;
5772
5773	/*
5774	 * Copy the default topology bits..
5775	 */
5776	for (i = 0; default_topology[i].init; i++)
5777		tl[i] = default_topology[i];
5778
5779	/*
5780	 * .. and append 'j' levels of NUMA goodness.
5781	 */
5782	for (j = 0; j < level; i++, j++) {
5783		tl[i] = (struct sched_domain_topology_level){
5784			.init = sd_numa_init,
5785			.mask = sd_numa_mask,
5786			.flags = SDTL_OVERLAP,
5787			.numa_level = j,
5788		};
5789	}
5790
5791	sched_domain_topology = tl;
5792
5793	sched_domains_numa_levels = level;
5794}
5795
5796static void sched_domains_numa_masks_set(int cpu)
5797{
5798	int i, j;
5799	int node = cpu_to_node(cpu);
5800
5801	for (i = 0; i < sched_domains_numa_levels; i++) {
5802		for (j = 0; j < nr_node_ids; j++) {
5803			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5804				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5805		}
5806	}
5807}
5808
5809static void sched_domains_numa_masks_clear(int cpu)
5810{
5811	int i, j;
5812	for (i = 0; i < sched_domains_numa_levels; i++) {
5813		for (j = 0; j < nr_node_ids; j++)
5814			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5815	}
5816}
5817
5818/*
5819 * Update sched_domains_numa_masks[level][node] array when new cpus
5820 * are onlined.
5821 */
5822static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5823					   unsigned long action,
5824					   void *hcpu)
5825{
5826	int cpu = (long)hcpu;
5827
5828	switch (action & ~CPU_TASKS_FROZEN) {
5829	case CPU_ONLINE:
5830		sched_domains_numa_masks_set(cpu);
5831		break;
5832
5833	case CPU_DEAD:
5834		sched_domains_numa_masks_clear(cpu);
5835		break;
5836
5837	default:
5838		return NOTIFY_DONE;
5839	}
5840
5841	return NOTIFY_OK;
5842}
5843#else
5844static inline void sched_init_numa(void)
5845{
5846}
5847
5848static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5849					   unsigned long action,
5850					   void *hcpu)
5851{
5852	return 0;
5853}
5854#endif /* CONFIG_NUMA */
5855
5856static int __sdt_alloc(const struct cpumask *cpu_map)
5857{
5858	struct sched_domain_topology_level *tl;
5859	int j;
5860
5861	for_each_sd_topology(tl) {
5862		struct sd_data *sdd = &tl->data;
5863
5864		sdd->sd = alloc_percpu(struct sched_domain *);
5865		if (!sdd->sd)
5866			return -ENOMEM;
5867
5868		sdd->sg = alloc_percpu(struct sched_group *);
5869		if (!sdd->sg)
5870			return -ENOMEM;
5871
5872		sdd->sgp = alloc_percpu(struct sched_group_power *);
5873		if (!sdd->sgp)
5874			return -ENOMEM;
5875
5876		for_each_cpu(j, cpu_map) {
5877			struct sched_domain *sd;
5878			struct sched_group *sg;
5879			struct sched_group_power *sgp;
5880
5881		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5882					GFP_KERNEL, cpu_to_node(j));
5883			if (!sd)
5884				return -ENOMEM;
5885
5886			*per_cpu_ptr(sdd->sd, j) = sd;
5887
5888			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5889					GFP_KERNEL, cpu_to_node(j));
5890			if (!sg)
5891				return -ENOMEM;
5892
5893			sg->next = sg;
5894
5895			*per_cpu_ptr(sdd->sg, j) = sg;
5896
5897			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5898					GFP_KERNEL, cpu_to_node(j));
5899			if (!sgp)
5900				return -ENOMEM;
5901
5902			*per_cpu_ptr(sdd->sgp, j) = sgp;
5903		}
5904	}
5905
5906	return 0;
5907}
5908
5909static void __sdt_free(const struct cpumask *cpu_map)
5910{
5911	struct sched_domain_topology_level *tl;
5912	int j;
5913
5914	for_each_sd_topology(tl) {
5915		struct sd_data *sdd = &tl->data;
5916
5917		for_each_cpu(j, cpu_map) {
5918			struct sched_domain *sd;
5919
5920			if (sdd->sd) {
5921				sd = *per_cpu_ptr(sdd->sd, j);
5922				if (sd && (sd->flags & SD_OVERLAP))
5923					free_sched_groups(sd->groups, 0);
5924				kfree(*per_cpu_ptr(sdd->sd, j));
5925			}
5926
5927			if (sdd->sg)
5928				kfree(*per_cpu_ptr(sdd->sg, j));
5929			if (sdd->sgp)
5930				kfree(*per_cpu_ptr(sdd->sgp, j));
5931		}
5932		free_percpu(sdd->sd);
5933		sdd->sd = NULL;
5934		free_percpu(sdd->sg);
5935		sdd->sg = NULL;
5936		free_percpu(sdd->sgp);
5937		sdd->sgp = NULL;
5938	}
5939}
5940
5941struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5942		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5943		struct sched_domain *child, int cpu)
5944{
5945	struct sched_domain *sd = tl->init(tl, cpu);
5946	if (!sd)
5947		return child;
5948
5949	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5950	if (child) {
5951		sd->level = child->level + 1;
5952		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5953		child->parent = sd;
5954		sd->child = child;
5955	}
5956	set_domain_attribute(sd, attr);
5957
5958	return sd;
5959}
5960
5961/*
5962 * Build sched domains for a given set of cpus and attach the sched domains
5963 * to the individual cpus
5964 */
5965static int build_sched_domains(const struct cpumask *cpu_map,
5966			       struct sched_domain_attr *attr)
5967{
5968	enum s_alloc alloc_state;
5969	struct sched_domain *sd;
5970	struct s_data d;
5971	int i, ret = -ENOMEM;
5972
5973	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5974	if (alloc_state != sa_rootdomain)
5975		goto error;
5976
5977	/* Set up domains for cpus specified by the cpu_map. */
5978	for_each_cpu(i, cpu_map) {
5979		struct sched_domain_topology_level *tl;
5980
5981		sd = NULL;
5982		for_each_sd_topology(tl) {
5983			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5984			if (tl == sched_domain_topology)
5985				*per_cpu_ptr(d.sd, i) = sd;
5986			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5987				sd->flags |= SD_OVERLAP;
5988			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5989				break;
5990		}
5991	}
5992
5993	/* Build the groups for the domains */
5994	for_each_cpu(i, cpu_map) {
5995		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5996			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5997			if (sd->flags & SD_OVERLAP) {
5998				if (build_overlap_sched_groups(sd, i))
5999					goto error;
6000			} else {
6001				if (build_sched_groups(sd, i))
6002					goto error;
6003			}
6004		}
6005	}
6006
6007	/* Calculate CPU power for physical packages and nodes */
6008	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6009		if (!cpumask_test_cpu(i, cpu_map))
6010			continue;
6011
6012		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6013			claim_allocations(i, sd);
6014			init_sched_groups_power(i, sd);
6015		}
6016	}
6017
6018	/* Attach the domains */
6019	rcu_read_lock();
6020	for_each_cpu(i, cpu_map) {
6021		sd = *per_cpu_ptr(d.sd, i);
6022		cpu_attach_domain(sd, d.rd, i);
6023	}
6024	rcu_read_unlock();
6025
6026	ret = 0;
6027error:
6028	__free_domain_allocs(&d, alloc_state, cpu_map);
6029	return ret;
6030}
6031
6032static cpumask_var_t *doms_cur;	/* current sched domains */
6033static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6034static struct sched_domain_attr *dattr_cur;
6035				/* attribues of custom domains in 'doms_cur' */
6036
6037/*
6038 * Special case: If a kmalloc of a doms_cur partition (array of
6039 * cpumask) fails, then fallback to a single sched domain,
6040 * as determined by the single cpumask fallback_doms.
6041 */
6042static cpumask_var_t fallback_doms;
6043
6044/*
6045 * arch_update_cpu_topology lets virtualized architectures update the
6046 * cpu core maps. It is supposed to return 1 if the topology changed
6047 * or 0 if it stayed the same.
6048 */
6049int __attribute__((weak)) arch_update_cpu_topology(void)
6050{
6051	return 0;
6052}
6053
6054cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6055{
6056	int i;
6057	cpumask_var_t *doms;
6058
6059	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6060	if (!doms)
6061		return NULL;
6062	for (i = 0; i < ndoms; i++) {
6063		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6064			free_sched_domains(doms, i);
6065			return NULL;
6066		}
6067	}
6068	return doms;
6069}
6070
6071void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6072{
6073	unsigned int i;
6074	for (i = 0; i < ndoms; i++)
6075		free_cpumask_var(doms[i]);
6076	kfree(doms);
6077}
6078
6079/*
6080 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6081 * For now this just excludes isolated cpus, but could be used to
6082 * exclude other special cases in the future.
6083 */
6084static int init_sched_domains(const struct cpumask *cpu_map)
6085{
6086	int err;
6087
6088	arch_update_cpu_topology();
6089	ndoms_cur = 1;
6090	doms_cur = alloc_sched_domains(ndoms_cur);
6091	if (!doms_cur)
6092		doms_cur = &fallback_doms;
6093	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6094	err = build_sched_domains(doms_cur[0], NULL);
6095	register_sched_domain_sysctl();
6096
6097	return err;
6098}
6099
6100/*
6101 * Detach sched domains from a group of cpus specified in cpu_map
6102 * These cpus will now be attached to the NULL domain
6103 */
6104static void detach_destroy_domains(const struct cpumask *cpu_map)
6105{
6106	int i;
6107
6108	rcu_read_lock();
6109	for_each_cpu(i, cpu_map)
6110		cpu_attach_domain(NULL, &def_root_domain, i);
6111	rcu_read_unlock();
6112}
6113
6114/* handle null as "default" */
6115static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6116			struct sched_domain_attr *new, int idx_new)
6117{
6118	struct sched_domain_attr tmp;
6119
6120	/* fast path */
6121	if (!new && !cur)
6122		return 1;
6123
6124	tmp = SD_ATTR_INIT;
6125	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6126			new ? (new + idx_new) : &tmp,
6127			sizeof(struct sched_domain_attr));
6128}
6129
6130/*
6131 * Partition sched domains as specified by the 'ndoms_new'
6132 * cpumasks in the array doms_new[] of cpumasks. This compares
6133 * doms_new[] to the current sched domain partitioning, doms_cur[].
6134 * It destroys each deleted domain and builds each new domain.
6135 *
6136 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6137 * The masks don't intersect (don't overlap.) We should setup one
6138 * sched domain for each mask. CPUs not in any of the cpumasks will
6139 * not be load balanced. If the same cpumask appears both in the
6140 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6141 * it as it is.
6142 *
6143 * The passed in 'doms_new' should be allocated using
6144 * alloc_sched_domains.  This routine takes ownership of it and will
6145 * free_sched_domains it when done with it. If the caller failed the
6146 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6147 * and partition_sched_domains() will fallback to the single partition
6148 * 'fallback_doms', it also forces the domains to be rebuilt.
6149 *
6150 * If doms_new == NULL it will be replaced with cpu_online_mask.
6151 * ndoms_new == 0 is a special case for destroying existing domains,
6152 * and it will not create the default domain.
6153 *
6154 * Call with hotplug lock held
6155 */
6156void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6157			     struct sched_domain_attr *dattr_new)
6158{
6159	int i, j, n;
6160	int new_topology;
6161
6162	mutex_lock(&sched_domains_mutex);
6163
6164	/* always unregister in case we don't destroy any domains */
6165	unregister_sched_domain_sysctl();
6166
6167	/* Let architecture update cpu core mappings. */
6168	new_topology = arch_update_cpu_topology();
6169
6170	n = doms_new ? ndoms_new : 0;
6171
6172	/* Destroy deleted domains */
6173	for (i = 0; i < ndoms_cur; i++) {
6174		for (j = 0; j < n && !new_topology; j++) {
6175			if (cpumask_equal(doms_cur[i], doms_new[j])
6176			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6177				goto match1;
6178		}
6179		/* no match - a current sched domain not in new doms_new[] */
6180		detach_destroy_domains(doms_cur[i]);
6181match1:
6182		;
6183	}
6184
6185	if (doms_new == NULL) {
6186		ndoms_cur = 0;
6187		doms_new = &fallback_doms;
6188		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6189		WARN_ON_ONCE(dattr_new);
6190	}
6191
6192	/* Build new domains */
6193	for (i = 0; i < ndoms_new; i++) {
6194		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6195			if (cpumask_equal(doms_new[i], doms_cur[j])
6196			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6197				goto match2;
6198		}
6199		/* no match - add a new doms_new */
6200		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6201match2:
6202		;
6203	}
6204
6205	/* Remember the new sched domains */
6206	if (doms_cur != &fallback_doms)
6207		free_sched_domains(doms_cur, ndoms_cur);
6208	kfree(dattr_cur);	/* kfree(NULL) is safe */
6209	doms_cur = doms_new;
6210	dattr_cur = dattr_new;
6211	ndoms_cur = ndoms_new;
6212
6213	register_sched_domain_sysctl();
6214
6215	mutex_unlock(&sched_domains_mutex);
6216}
6217
6218static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6219
6220/*
6221 * Update cpusets according to cpu_active mask.  If cpusets are
6222 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6223 * around partition_sched_domains().
6224 *
6225 * If we come here as part of a suspend/resume, don't touch cpusets because we
6226 * want to restore it back to its original state upon resume anyway.
6227 */
6228static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6229			     void *hcpu)
6230{
6231	switch (action) {
6232	case CPU_ONLINE_FROZEN:
6233	case CPU_DOWN_FAILED_FROZEN:
6234
6235		/*
6236		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6237		 * resume sequence. As long as this is not the last online
6238		 * operation in the resume sequence, just build a single sched
6239		 * domain, ignoring cpusets.
6240		 */
6241		num_cpus_frozen--;
6242		if (likely(num_cpus_frozen)) {
6243			partition_sched_domains(1, NULL, NULL);
6244			break;
6245		}
6246
6247		/*
6248		 * This is the last CPU online operation. So fall through and
6249		 * restore the original sched domains by considering the
6250		 * cpuset configurations.
6251		 */
6252
6253	case CPU_ONLINE:
6254	case CPU_DOWN_FAILED:
6255		cpuset_update_active_cpus(true);
6256		break;
6257	default:
6258		return NOTIFY_DONE;
6259	}
6260	return NOTIFY_OK;
6261}
6262
6263static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6264			       void *hcpu)
6265{
6266	switch (action) {
6267	case CPU_DOWN_PREPARE:
6268		cpuset_update_active_cpus(false);
6269		break;
6270	case CPU_DOWN_PREPARE_FROZEN:
6271		num_cpus_frozen++;
6272		partition_sched_domains(1, NULL, NULL);
6273		break;
6274	default:
6275		return NOTIFY_DONE;
6276	}
6277	return NOTIFY_OK;
6278}
6279
6280void __init sched_init_smp(void)
6281{
6282	cpumask_var_t non_isolated_cpus;
6283
6284	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6285	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6286
6287	sched_init_numa();
6288
6289	get_online_cpus();
6290	mutex_lock(&sched_domains_mutex);
6291	init_sched_domains(cpu_active_mask);
6292	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6293	if (cpumask_empty(non_isolated_cpus))
6294		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6295	mutex_unlock(&sched_domains_mutex);
6296	put_online_cpus();
6297
6298	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6299	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6300	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6301
6302	init_hrtick();
6303
6304	/* Move init over to a non-isolated CPU */
6305	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6306		BUG();
6307	sched_init_granularity();
6308	free_cpumask_var(non_isolated_cpus);
6309
6310	init_sched_rt_class();
6311}
6312#else
6313void __init sched_init_smp(void)
6314{
6315	sched_init_granularity();
6316}
6317#endif /* CONFIG_SMP */
6318
6319const_debug unsigned int sysctl_timer_migration = 1;
6320
6321int in_sched_functions(unsigned long addr)
6322{
6323	return in_lock_functions(addr) ||
6324		(addr >= (unsigned long)__sched_text_start
6325		&& addr < (unsigned long)__sched_text_end);
6326}
6327
6328#ifdef CONFIG_CGROUP_SCHED
6329/*
6330 * Default task group.
6331 * Every task in system belongs to this group at bootup.
6332 */
6333struct task_group root_task_group;
6334LIST_HEAD(task_groups);
6335#endif
6336
6337DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6338
6339void __init sched_init(void)
6340{
6341	int i, j;
6342	unsigned long alloc_size = 0, ptr;
6343
6344#ifdef CONFIG_FAIR_GROUP_SCHED
6345	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6346#endif
6347#ifdef CONFIG_RT_GROUP_SCHED
6348	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6349#endif
6350#ifdef CONFIG_CPUMASK_OFFSTACK
6351	alloc_size += num_possible_cpus() * cpumask_size();
6352#endif
6353	if (alloc_size) {
6354		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6355
6356#ifdef CONFIG_FAIR_GROUP_SCHED
6357		root_task_group.se = (struct sched_entity **)ptr;
6358		ptr += nr_cpu_ids * sizeof(void **);
6359
6360		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6361		ptr += nr_cpu_ids * sizeof(void **);
6362
6363#endif /* CONFIG_FAIR_GROUP_SCHED */
6364#ifdef CONFIG_RT_GROUP_SCHED
6365		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6366		ptr += nr_cpu_ids * sizeof(void **);
6367
6368		root_task_group.rt_rq = (struct rt_rq **)ptr;
6369		ptr += nr_cpu_ids * sizeof(void **);
6370
6371#endif /* CONFIG_RT_GROUP_SCHED */
6372#ifdef CONFIG_CPUMASK_OFFSTACK
6373		for_each_possible_cpu(i) {
6374			per_cpu(load_balance_mask, i) = (void *)ptr;
6375			ptr += cpumask_size();
6376		}
6377#endif /* CONFIG_CPUMASK_OFFSTACK */
6378	}
6379
6380#ifdef CONFIG_SMP
6381	init_defrootdomain();
6382#endif
6383
6384	init_rt_bandwidth(&def_rt_bandwidth,
6385			global_rt_period(), global_rt_runtime());
6386
6387#ifdef CONFIG_RT_GROUP_SCHED
6388	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6389			global_rt_period(), global_rt_runtime());
6390#endif /* CONFIG_RT_GROUP_SCHED */
6391
6392#ifdef CONFIG_CGROUP_SCHED
6393	list_add(&root_task_group.list, &task_groups);
6394	INIT_LIST_HEAD(&root_task_group.children);
6395	INIT_LIST_HEAD(&root_task_group.siblings);
6396	autogroup_init(&init_task);
6397
6398#endif /* CONFIG_CGROUP_SCHED */
6399
6400	for_each_possible_cpu(i) {
6401		struct rq *rq;
6402
6403		rq = cpu_rq(i);
6404		raw_spin_lock_init(&rq->lock);
6405		rq->nr_running = 0;
6406		rq->calc_load_active = 0;
6407		rq->calc_load_update = jiffies + LOAD_FREQ;
6408		init_cfs_rq(&rq->cfs);
6409		init_rt_rq(&rq->rt, rq);
6410#ifdef CONFIG_FAIR_GROUP_SCHED
6411		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6412		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6413		/*
6414		 * How much cpu bandwidth does root_task_group get?
6415		 *
6416		 * In case of task-groups formed thr' the cgroup filesystem, it
6417		 * gets 100% of the cpu resources in the system. This overall
6418		 * system cpu resource is divided among the tasks of
6419		 * root_task_group and its child task-groups in a fair manner,
6420		 * based on each entity's (task or task-group's) weight
6421		 * (se->load.weight).
6422		 *
6423		 * In other words, if root_task_group has 10 tasks of weight
6424		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6425		 * then A0's share of the cpu resource is:
6426		 *
6427		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6428		 *
6429		 * We achieve this by letting root_task_group's tasks sit
6430		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6431		 */
6432		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6433		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6434#endif /* CONFIG_FAIR_GROUP_SCHED */
6435
6436		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6437#ifdef CONFIG_RT_GROUP_SCHED
6438		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6439		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6440#endif
6441
6442		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6443			rq->cpu_load[j] = 0;
6444
6445		rq->last_load_update_tick = jiffies;
6446
6447#ifdef CONFIG_SMP
6448		rq->sd = NULL;
6449		rq->rd = NULL;
6450		rq->cpu_power = SCHED_POWER_SCALE;
6451		rq->post_schedule = 0;
6452		rq->active_balance = 0;
6453		rq->next_balance = jiffies;
6454		rq->push_cpu = 0;
6455		rq->cpu = i;
6456		rq->online = 0;
6457		rq->idle_stamp = 0;
6458		rq->avg_idle = 2*sysctl_sched_migration_cost;
6459
6460		INIT_LIST_HEAD(&rq->cfs_tasks);
6461
6462		rq_attach_root(rq, &def_root_domain);
6463#ifdef CONFIG_NO_HZ_COMMON
6464		rq->nohz_flags = 0;
6465#endif
6466#ifdef CONFIG_NO_HZ_FULL
6467		rq->last_sched_tick = 0;
6468#endif
6469#endif
6470		init_rq_hrtick(rq);
6471		atomic_set(&rq->nr_iowait, 0);
6472	}
6473
6474	set_load_weight(&init_task);
6475
6476#ifdef CONFIG_PREEMPT_NOTIFIERS
6477	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6478#endif
6479
6480#ifdef CONFIG_RT_MUTEXES
6481	plist_head_init(&init_task.pi_waiters);
6482#endif
6483
6484	/*
6485	 * The boot idle thread does lazy MMU switching as well:
6486	 */
6487	atomic_inc(&init_mm.mm_count);
6488	enter_lazy_tlb(&init_mm, current);
6489
6490	/*
6491	 * Make us the idle thread. Technically, schedule() should not be
6492	 * called from this thread, however somewhere below it might be,
6493	 * but because we are the idle thread, we just pick up running again
6494	 * when this runqueue becomes "idle".
6495	 */
6496	init_idle(current, smp_processor_id());
6497
6498	calc_load_update = jiffies + LOAD_FREQ;
6499
6500	/*
6501	 * During early bootup we pretend to be a normal task:
6502	 */
6503	current->sched_class = &fair_sched_class;
6504
6505#ifdef CONFIG_SMP
6506	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6507	/* May be allocated at isolcpus cmdline parse time */
6508	if (cpu_isolated_map == NULL)
6509		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6510	idle_thread_set_boot_cpu();
6511#endif
6512	init_sched_fair_class();
6513
6514	scheduler_running = 1;
6515}
6516
6517#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6518static inline int preempt_count_equals(int preempt_offset)
6519{
6520	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6521
6522	return (nested == preempt_offset);
6523}
6524
6525void __might_sleep(const char *file, int line, int preempt_offset)
6526{
6527	static unsigned long prev_jiffy;	/* ratelimiting */
6528
6529	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6530	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6531	    system_state != SYSTEM_RUNNING || oops_in_progress)
6532		return;
6533	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6534		return;
6535	prev_jiffy = jiffies;
6536
6537	printk(KERN_ERR
6538		"BUG: sleeping function called from invalid context at %s:%d\n",
6539			file, line);
6540	printk(KERN_ERR
6541		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6542			in_atomic(), irqs_disabled(),
6543			current->pid, current->comm);
6544
6545	debug_show_held_locks(current);
6546	if (irqs_disabled())
6547		print_irqtrace_events(current);
6548	dump_stack();
6549}
6550EXPORT_SYMBOL(__might_sleep);
6551#endif
6552
6553#ifdef CONFIG_MAGIC_SYSRQ
6554static void normalize_task(struct rq *rq, struct task_struct *p)
6555{
6556	const struct sched_class *prev_class = p->sched_class;
6557	int old_prio = p->prio;
6558	int on_rq;
6559
6560	on_rq = p->on_rq;
6561	if (on_rq)
6562		dequeue_task(rq, p, 0);
6563	__setscheduler(rq, p, SCHED_NORMAL, 0);
6564	if (on_rq) {
6565		enqueue_task(rq, p, 0);
6566		resched_task(rq->curr);
6567	}
6568
6569	check_class_changed(rq, p, prev_class, old_prio);
6570}
6571
6572void normalize_rt_tasks(void)
6573{
6574	struct task_struct *g, *p;
6575	unsigned long flags;
6576	struct rq *rq;
6577
6578	read_lock_irqsave(&tasklist_lock, flags);
6579	do_each_thread(g, p) {
6580		/*
6581		 * Only normalize user tasks:
6582		 */
6583		if (!p->mm)
6584			continue;
6585
6586		p->se.exec_start		= 0;
6587#ifdef CONFIG_SCHEDSTATS
6588		p->se.statistics.wait_start	= 0;
6589		p->se.statistics.sleep_start	= 0;
6590		p->se.statistics.block_start	= 0;
6591#endif
6592
6593		if (!rt_task(p)) {
6594			/*
6595			 * Renice negative nice level userspace
6596			 * tasks back to 0:
6597			 */
6598			if (TASK_NICE(p) < 0 && p->mm)
6599				set_user_nice(p, 0);
6600			continue;
6601		}
6602
6603		raw_spin_lock(&p->pi_lock);
6604		rq = __task_rq_lock(p);
6605
6606		normalize_task(rq, p);
6607
6608		__task_rq_unlock(rq);
6609		raw_spin_unlock(&p->pi_lock);
6610	} while_each_thread(g, p);
6611
6612	read_unlock_irqrestore(&tasklist_lock, flags);
6613}
6614
6615#endif /* CONFIG_MAGIC_SYSRQ */
6616
6617#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6618/*
6619 * These functions are only useful for the IA64 MCA handling, or kdb.
6620 *
6621 * They can only be called when the whole system has been
6622 * stopped - every CPU needs to be quiescent, and no scheduling
6623 * activity can take place. Using them for anything else would
6624 * be a serious bug, and as a result, they aren't even visible
6625 * under any other configuration.
6626 */
6627
6628/**
6629 * curr_task - return the current task for a given cpu.
6630 * @cpu: the processor in question.
6631 *
6632 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6633 */
6634struct task_struct *curr_task(int cpu)
6635{
6636	return cpu_curr(cpu);
6637}
6638
6639#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6640
6641#ifdef CONFIG_IA64
6642/**
6643 * set_curr_task - set the current task for a given cpu.
6644 * @cpu: the processor in question.
6645 * @p: the task pointer to set.
6646 *
6647 * Description: This function must only be used when non-maskable interrupts
6648 * are serviced on a separate stack. It allows the architecture to switch the
6649 * notion of the current task on a cpu in a non-blocking manner. This function
6650 * must be called with all CPU's synchronized, and interrupts disabled, the
6651 * and caller must save the original value of the current task (see
6652 * curr_task() above) and restore that value before reenabling interrupts and
6653 * re-starting the system.
6654 *
6655 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6656 */
6657void set_curr_task(int cpu, struct task_struct *p)
6658{
6659	cpu_curr(cpu) = p;
6660}
6661
6662#endif
6663
6664#ifdef CONFIG_CGROUP_SCHED
6665/* task_group_lock serializes the addition/removal of task groups */
6666static DEFINE_SPINLOCK(task_group_lock);
6667
6668static void free_sched_group(struct task_group *tg)
6669{
6670	free_fair_sched_group(tg);
6671	free_rt_sched_group(tg);
6672	autogroup_free(tg);
6673	kfree(tg);
6674}
6675
6676/* allocate runqueue etc for a new task group */
6677struct task_group *sched_create_group(struct task_group *parent)
6678{
6679	struct task_group *tg;
6680
6681	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6682	if (!tg)
6683		return ERR_PTR(-ENOMEM);
6684
6685	if (!alloc_fair_sched_group(tg, parent))
6686		goto err;
6687
6688	if (!alloc_rt_sched_group(tg, parent))
6689		goto err;
6690
6691	return tg;
6692
6693err:
6694	free_sched_group(tg);
6695	return ERR_PTR(-ENOMEM);
6696}
6697
6698void sched_online_group(struct task_group *tg, struct task_group *parent)
6699{
6700	unsigned long flags;
6701
6702	spin_lock_irqsave(&task_group_lock, flags);
6703	list_add_rcu(&tg->list, &task_groups);
6704
6705	WARN_ON(!parent); /* root should already exist */
6706
6707	tg->parent = parent;
6708	INIT_LIST_HEAD(&tg->children);
6709	list_add_rcu(&tg->siblings, &parent->children);
6710	spin_unlock_irqrestore(&task_group_lock, flags);
6711}
6712
6713/* rcu callback to free various structures associated with a task group */
6714static void free_sched_group_rcu(struct rcu_head *rhp)
6715{
6716	/* now it should be safe to free those cfs_rqs */
6717	free_sched_group(container_of(rhp, struct task_group, rcu));
6718}
6719
6720/* Destroy runqueue etc associated with a task group */
6721void sched_destroy_group(struct task_group *tg)
6722{
6723	/* wait for possible concurrent references to cfs_rqs complete */
6724	call_rcu(&tg->rcu, free_sched_group_rcu);
6725}
6726
6727void sched_offline_group(struct task_group *tg)
6728{
6729	unsigned long flags;
6730	int i;
6731
6732	/* end participation in shares distribution */
6733	for_each_possible_cpu(i)
6734		unregister_fair_sched_group(tg, i);
6735
6736	spin_lock_irqsave(&task_group_lock, flags);
6737	list_del_rcu(&tg->list);
6738	list_del_rcu(&tg->siblings);
6739	spin_unlock_irqrestore(&task_group_lock, flags);
6740}
6741
6742/* change task's runqueue when it moves between groups.
6743 *	The caller of this function should have put the task in its new group
6744 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6745 *	reflect its new group.
6746 */
6747void sched_move_task(struct task_struct *tsk)
6748{
6749	struct task_group *tg;
6750	int on_rq, running;
6751	unsigned long flags;
6752	struct rq *rq;
6753
6754	rq = task_rq_lock(tsk, &flags);
6755
6756	running = task_current(rq, tsk);
6757	on_rq = tsk->on_rq;
6758
6759	if (on_rq)
6760		dequeue_task(rq, tsk, 0);
6761	if (unlikely(running))
6762		tsk->sched_class->put_prev_task(rq, tsk);
6763
6764	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6765				lockdep_is_held(&tsk->sighand->siglock)),
6766			  struct task_group, css);
6767	tg = autogroup_task_group(tsk, tg);
6768	tsk->sched_task_group = tg;
6769
6770#ifdef CONFIG_FAIR_GROUP_SCHED
6771	if (tsk->sched_class->task_move_group)
6772		tsk->sched_class->task_move_group(tsk, on_rq);
6773	else
6774#endif
6775		set_task_rq(tsk, task_cpu(tsk));
6776
6777	if (unlikely(running))
6778		tsk->sched_class->set_curr_task(rq);
6779	if (on_rq)
6780		enqueue_task(rq, tsk, 0);
6781
6782	task_rq_unlock(rq, tsk, &flags);
6783}
6784#endif /* CONFIG_CGROUP_SCHED */
6785
6786#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6787static unsigned long to_ratio(u64 period, u64 runtime)
6788{
6789	if (runtime == RUNTIME_INF)
6790		return 1ULL << 20;
6791
6792	return div64_u64(runtime << 20, period);
6793}
6794#endif
6795
6796#ifdef CONFIG_RT_GROUP_SCHED
6797/*
6798 * Ensure that the real time constraints are schedulable.
6799 */
6800static DEFINE_MUTEX(rt_constraints_mutex);
6801
6802/* Must be called with tasklist_lock held */
6803static inline int tg_has_rt_tasks(struct task_group *tg)
6804{
6805	struct task_struct *g, *p;
6806
6807	do_each_thread(g, p) {
6808		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6809			return 1;
6810	} while_each_thread(g, p);
6811
6812	return 0;
6813}
6814
6815struct rt_schedulable_data {
6816	struct task_group *tg;
6817	u64 rt_period;
6818	u64 rt_runtime;
6819};
6820
6821static int tg_rt_schedulable(struct task_group *tg, void *data)
6822{
6823	struct rt_schedulable_data *d = data;
6824	struct task_group *child;
6825	unsigned long total, sum = 0;
6826	u64 period, runtime;
6827
6828	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6829	runtime = tg->rt_bandwidth.rt_runtime;
6830
6831	if (tg == d->tg) {
6832		period = d->rt_period;
6833		runtime = d->rt_runtime;
6834	}
6835
6836	/*
6837	 * Cannot have more runtime than the period.
6838	 */
6839	if (runtime > period && runtime != RUNTIME_INF)
6840		return -EINVAL;
6841
6842	/*
6843	 * Ensure we don't starve existing RT tasks.
6844	 */
6845	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6846		return -EBUSY;
6847
6848	total = to_ratio(period, runtime);
6849
6850	/*
6851	 * Nobody can have more than the global setting allows.
6852	 */
6853	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6854		return -EINVAL;
6855
6856	/*
6857	 * The sum of our children's runtime should not exceed our own.
6858	 */
6859	list_for_each_entry_rcu(child, &tg->children, siblings) {
6860		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6861		runtime = child->rt_bandwidth.rt_runtime;
6862
6863		if (child == d->tg) {
6864			period = d->rt_period;
6865			runtime = d->rt_runtime;
6866		}
6867
6868		sum += to_ratio(period, runtime);
6869	}
6870
6871	if (sum > total)
6872		return -EINVAL;
6873
6874	return 0;
6875}
6876
6877static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6878{
6879	int ret;
6880
6881	struct rt_schedulable_data data = {
6882		.tg = tg,
6883		.rt_period = period,
6884		.rt_runtime = runtime,
6885	};
6886
6887	rcu_read_lock();
6888	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6889	rcu_read_unlock();
6890
6891	return ret;
6892}
6893
6894static int tg_set_rt_bandwidth(struct task_group *tg,
6895		u64 rt_period, u64 rt_runtime)
6896{
6897	int i, err = 0;
6898
6899	mutex_lock(&rt_constraints_mutex);
6900	read_lock(&tasklist_lock);
6901	err = __rt_schedulable(tg, rt_period, rt_runtime);
6902	if (err)
6903		goto unlock;
6904
6905	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6906	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6907	tg->rt_bandwidth.rt_runtime = rt_runtime;
6908
6909	for_each_possible_cpu(i) {
6910		struct rt_rq *rt_rq = tg->rt_rq[i];
6911
6912		raw_spin_lock(&rt_rq->rt_runtime_lock);
6913		rt_rq->rt_runtime = rt_runtime;
6914		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6915	}
6916	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6917unlock:
6918	read_unlock(&tasklist_lock);
6919	mutex_unlock(&rt_constraints_mutex);
6920
6921	return err;
6922}
6923
6924static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6925{
6926	u64 rt_runtime, rt_period;
6927
6928	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6929	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6930	if (rt_runtime_us < 0)
6931		rt_runtime = RUNTIME_INF;
6932
6933	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6934}
6935
6936static long sched_group_rt_runtime(struct task_group *tg)
6937{
6938	u64 rt_runtime_us;
6939
6940	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6941		return -1;
6942
6943	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6944	do_div(rt_runtime_us, NSEC_PER_USEC);
6945	return rt_runtime_us;
6946}
6947
6948static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6949{
6950	u64 rt_runtime, rt_period;
6951
6952	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6953	rt_runtime = tg->rt_bandwidth.rt_runtime;
6954
6955	if (rt_period == 0)
6956		return -EINVAL;
6957
6958	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6959}
6960
6961static long sched_group_rt_period(struct task_group *tg)
6962{
6963	u64 rt_period_us;
6964
6965	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6966	do_div(rt_period_us, NSEC_PER_USEC);
6967	return rt_period_us;
6968}
6969
6970static int sched_rt_global_constraints(void)
6971{
6972	u64 runtime, period;
6973	int ret = 0;
6974
6975	if (sysctl_sched_rt_period <= 0)
6976		return -EINVAL;
6977
6978	runtime = global_rt_runtime();
6979	period = global_rt_period();
6980
6981	/*
6982	 * Sanity check on the sysctl variables.
6983	 */
6984	if (runtime > period && runtime != RUNTIME_INF)
6985		return -EINVAL;
6986
6987	mutex_lock(&rt_constraints_mutex);
6988	read_lock(&tasklist_lock);
6989	ret = __rt_schedulable(NULL, 0, 0);
6990	read_unlock(&tasklist_lock);
6991	mutex_unlock(&rt_constraints_mutex);
6992
6993	return ret;
6994}
6995
6996static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6997{
6998	/* Don't accept realtime tasks when there is no way for them to run */
6999	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7000		return 0;
7001
7002	return 1;
7003}
7004
7005#else /* !CONFIG_RT_GROUP_SCHED */
7006static int sched_rt_global_constraints(void)
7007{
7008	unsigned long flags;
7009	int i;
7010
7011	if (sysctl_sched_rt_period <= 0)
7012		return -EINVAL;
7013
7014	/*
7015	 * There's always some RT tasks in the root group
7016	 * -- migration, kstopmachine etc..
7017	 */
7018	if (sysctl_sched_rt_runtime == 0)
7019		return -EBUSY;
7020
7021	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7022	for_each_possible_cpu(i) {
7023		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7024
7025		raw_spin_lock(&rt_rq->rt_runtime_lock);
7026		rt_rq->rt_runtime = global_rt_runtime();
7027		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7028	}
7029	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7030
7031	return 0;
7032}
7033#endif /* CONFIG_RT_GROUP_SCHED */
7034
7035int sched_rr_handler(struct ctl_table *table, int write,
7036		void __user *buffer, size_t *lenp,
7037		loff_t *ppos)
7038{
7039	int ret;
7040	static DEFINE_MUTEX(mutex);
7041
7042	mutex_lock(&mutex);
7043	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7044	/* make sure that internally we keep jiffies */
7045	/* also, writing zero resets timeslice to default */
7046	if (!ret && write) {
7047		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7048			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7049	}
7050	mutex_unlock(&mutex);
7051	return ret;
7052}
7053
7054int sched_rt_handler(struct ctl_table *table, int write,
7055		void __user *buffer, size_t *lenp,
7056		loff_t *ppos)
7057{
7058	int ret;
7059	int old_period, old_runtime;
7060	static DEFINE_MUTEX(mutex);
7061
7062	mutex_lock(&mutex);
7063	old_period = sysctl_sched_rt_period;
7064	old_runtime = sysctl_sched_rt_runtime;
7065
7066	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7067
7068	if (!ret && write) {
7069		ret = sched_rt_global_constraints();
7070		if (ret) {
7071			sysctl_sched_rt_period = old_period;
7072			sysctl_sched_rt_runtime = old_runtime;
7073		} else {
7074			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7075			def_rt_bandwidth.rt_period =
7076				ns_to_ktime(global_rt_period());
7077		}
7078	}
7079	mutex_unlock(&mutex);
7080
7081	return ret;
7082}
7083
7084#ifdef CONFIG_CGROUP_SCHED
7085
7086static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7087{
7088	return css ? container_of(css, struct task_group, css) : NULL;
7089}
7090
7091/* return corresponding task_group object of a cgroup */
7092static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7093{
7094	return css_tg(cgroup_css(cgrp, cpu_cgroup_subsys_id));
7095}
7096
7097static struct cgroup_subsys_state *
7098cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7099{
7100	struct task_group *parent = css_tg(parent_css);
7101	struct task_group *tg;
7102
7103	if (!parent) {
7104		/* This is early initialization for the top cgroup */
7105		return &root_task_group.css;
7106	}
7107
7108	tg = sched_create_group(parent);
7109	if (IS_ERR(tg))
7110		return ERR_PTR(-ENOMEM);
7111
7112	return &tg->css;
7113}
7114
7115static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7116{
7117	struct task_group *tg = css_tg(css);
7118	struct task_group *parent = css_tg(css_parent(css));
7119
7120	if (parent)
7121		sched_online_group(tg, parent);
7122	return 0;
7123}
7124
7125static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7126{
7127	struct task_group *tg = css_tg(css);
7128
7129	sched_destroy_group(tg);
7130}
7131
7132static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7133{
7134	struct task_group *tg = css_tg(css);
7135
7136	sched_offline_group(tg);
7137}
7138
7139static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7140				 struct cgroup_taskset *tset)
7141{
7142	struct task_struct *task;
7143
7144	cgroup_taskset_for_each(task, css->cgroup, tset) {
7145#ifdef CONFIG_RT_GROUP_SCHED
7146		if (!sched_rt_can_attach(css_tg(css), task))
7147			return -EINVAL;
7148#else
7149		/* We don't support RT-tasks being in separate groups */
7150		if (task->sched_class != &fair_sched_class)
7151			return -EINVAL;
7152#endif
7153	}
7154	return 0;
7155}
7156
7157static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7158			      struct cgroup_taskset *tset)
7159{
7160	struct task_struct *task;
7161
7162	cgroup_taskset_for_each(task, css->cgroup, tset)
7163		sched_move_task(task);
7164}
7165
7166static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7167			    struct cgroup_subsys_state *old_css,
7168			    struct task_struct *task)
7169{
7170	/*
7171	 * cgroup_exit() is called in the copy_process() failure path.
7172	 * Ignore this case since the task hasn't ran yet, this avoids
7173	 * trying to poke a half freed task state from generic code.
7174	 */
7175	if (!(task->flags & PF_EXITING))
7176		return;
7177
7178	sched_move_task(task);
7179}
7180
7181#ifdef CONFIG_FAIR_GROUP_SCHED
7182static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7183				u64 shareval)
7184{
7185	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7186}
7187
7188static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7189{
7190	struct task_group *tg = cgroup_tg(cgrp);
7191
7192	return (u64) scale_load_down(tg->shares);
7193}
7194
7195#ifdef CONFIG_CFS_BANDWIDTH
7196static DEFINE_MUTEX(cfs_constraints_mutex);
7197
7198const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7199const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7200
7201static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7202
7203static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7204{
7205	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7206	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7207
7208	if (tg == &root_task_group)
7209		return -EINVAL;
7210
7211	/*
7212	 * Ensure we have at some amount of bandwidth every period.  This is
7213	 * to prevent reaching a state of large arrears when throttled via
7214	 * entity_tick() resulting in prolonged exit starvation.
7215	 */
7216	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7217		return -EINVAL;
7218
7219	/*
7220	 * Likewise, bound things on the otherside by preventing insane quota
7221	 * periods.  This also allows us to normalize in computing quota
7222	 * feasibility.
7223	 */
7224	if (period > max_cfs_quota_period)
7225		return -EINVAL;
7226
7227	mutex_lock(&cfs_constraints_mutex);
7228	ret = __cfs_schedulable(tg, period, quota);
7229	if (ret)
7230		goto out_unlock;
7231
7232	runtime_enabled = quota != RUNTIME_INF;
7233	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7234	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7235	raw_spin_lock_irq(&cfs_b->lock);
7236	cfs_b->period = ns_to_ktime(period);
7237	cfs_b->quota = quota;
7238
7239	__refill_cfs_bandwidth_runtime(cfs_b);
7240	/* restart the period timer (if active) to handle new period expiry */
7241	if (runtime_enabled && cfs_b->timer_active) {
7242		/* force a reprogram */
7243		cfs_b->timer_active = 0;
7244		__start_cfs_bandwidth(cfs_b);
7245	}
7246	raw_spin_unlock_irq(&cfs_b->lock);
7247
7248	for_each_possible_cpu(i) {
7249		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7250		struct rq *rq = cfs_rq->rq;
7251
7252		raw_spin_lock_irq(&rq->lock);
7253		cfs_rq->runtime_enabled = runtime_enabled;
7254		cfs_rq->runtime_remaining = 0;
7255
7256		if (cfs_rq->throttled)
7257			unthrottle_cfs_rq(cfs_rq);
7258		raw_spin_unlock_irq(&rq->lock);
7259	}
7260out_unlock:
7261	mutex_unlock(&cfs_constraints_mutex);
7262
7263	return ret;
7264}
7265
7266int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7267{
7268	u64 quota, period;
7269
7270	period = ktime_to_ns(tg->cfs_bandwidth.period);
7271	if (cfs_quota_us < 0)
7272		quota = RUNTIME_INF;
7273	else
7274		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7275
7276	return tg_set_cfs_bandwidth(tg, period, quota);
7277}
7278
7279long tg_get_cfs_quota(struct task_group *tg)
7280{
7281	u64 quota_us;
7282
7283	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7284		return -1;
7285
7286	quota_us = tg->cfs_bandwidth.quota;
7287	do_div(quota_us, NSEC_PER_USEC);
7288
7289	return quota_us;
7290}
7291
7292int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7293{
7294	u64 quota, period;
7295
7296	period = (u64)cfs_period_us * NSEC_PER_USEC;
7297	quota = tg->cfs_bandwidth.quota;
7298
7299	return tg_set_cfs_bandwidth(tg, period, quota);
7300}
7301
7302long tg_get_cfs_period(struct task_group *tg)
7303{
7304	u64 cfs_period_us;
7305
7306	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7307	do_div(cfs_period_us, NSEC_PER_USEC);
7308
7309	return cfs_period_us;
7310}
7311
7312static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7313{
7314	return tg_get_cfs_quota(cgroup_tg(cgrp));
7315}
7316
7317static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7318				s64 cfs_quota_us)
7319{
7320	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7321}
7322
7323static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7324{
7325	return tg_get_cfs_period(cgroup_tg(cgrp));
7326}
7327
7328static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7329				u64 cfs_period_us)
7330{
7331	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7332}
7333
7334struct cfs_schedulable_data {
7335	struct task_group *tg;
7336	u64 period, quota;
7337};
7338
7339/*
7340 * normalize group quota/period to be quota/max_period
7341 * note: units are usecs
7342 */
7343static u64 normalize_cfs_quota(struct task_group *tg,
7344			       struct cfs_schedulable_data *d)
7345{
7346	u64 quota, period;
7347
7348	if (tg == d->tg) {
7349		period = d->period;
7350		quota = d->quota;
7351	} else {
7352		period = tg_get_cfs_period(tg);
7353		quota = tg_get_cfs_quota(tg);
7354	}
7355
7356	/* note: these should typically be equivalent */
7357	if (quota == RUNTIME_INF || quota == -1)
7358		return RUNTIME_INF;
7359
7360	return to_ratio(period, quota);
7361}
7362
7363static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7364{
7365	struct cfs_schedulable_data *d = data;
7366	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7367	s64 quota = 0, parent_quota = -1;
7368
7369	if (!tg->parent) {
7370		quota = RUNTIME_INF;
7371	} else {
7372		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7373
7374		quota = normalize_cfs_quota(tg, d);
7375		parent_quota = parent_b->hierarchal_quota;
7376
7377		/*
7378		 * ensure max(child_quota) <= parent_quota, inherit when no
7379		 * limit is set
7380		 */
7381		if (quota == RUNTIME_INF)
7382			quota = parent_quota;
7383		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7384			return -EINVAL;
7385	}
7386	cfs_b->hierarchal_quota = quota;
7387
7388	return 0;
7389}
7390
7391static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7392{
7393	int ret;
7394	struct cfs_schedulable_data data = {
7395		.tg = tg,
7396		.period = period,
7397		.quota = quota,
7398	};
7399
7400	if (quota != RUNTIME_INF) {
7401		do_div(data.period, NSEC_PER_USEC);
7402		do_div(data.quota, NSEC_PER_USEC);
7403	}
7404
7405	rcu_read_lock();
7406	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7407	rcu_read_unlock();
7408
7409	return ret;
7410}
7411
7412static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7413		struct cgroup_map_cb *cb)
7414{
7415	struct task_group *tg = cgroup_tg(cgrp);
7416	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7417
7418	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7419	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7420	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7421
7422	return 0;
7423}
7424#endif /* CONFIG_CFS_BANDWIDTH */
7425#endif /* CONFIG_FAIR_GROUP_SCHED */
7426
7427#ifdef CONFIG_RT_GROUP_SCHED
7428static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7429				s64 val)
7430{
7431	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7432}
7433
7434static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7435{
7436	return sched_group_rt_runtime(cgroup_tg(cgrp));
7437}
7438
7439static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7440		u64 rt_period_us)
7441{
7442	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7443}
7444
7445static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7446{
7447	return sched_group_rt_period(cgroup_tg(cgrp));
7448}
7449#endif /* CONFIG_RT_GROUP_SCHED */
7450
7451static struct cftype cpu_files[] = {
7452#ifdef CONFIG_FAIR_GROUP_SCHED
7453	{
7454		.name = "shares",
7455		.read_u64 = cpu_shares_read_u64,
7456		.write_u64 = cpu_shares_write_u64,
7457	},
7458#endif
7459#ifdef CONFIG_CFS_BANDWIDTH
7460	{
7461		.name = "cfs_quota_us",
7462		.read_s64 = cpu_cfs_quota_read_s64,
7463		.write_s64 = cpu_cfs_quota_write_s64,
7464	},
7465	{
7466		.name = "cfs_period_us",
7467		.read_u64 = cpu_cfs_period_read_u64,
7468		.write_u64 = cpu_cfs_period_write_u64,
7469	},
7470	{
7471		.name = "stat",
7472		.read_map = cpu_stats_show,
7473	},
7474#endif
7475#ifdef CONFIG_RT_GROUP_SCHED
7476	{
7477		.name = "rt_runtime_us",
7478		.read_s64 = cpu_rt_runtime_read,
7479		.write_s64 = cpu_rt_runtime_write,
7480	},
7481	{
7482		.name = "rt_period_us",
7483		.read_u64 = cpu_rt_period_read_uint,
7484		.write_u64 = cpu_rt_period_write_uint,
7485	},
7486#endif
7487	{ }	/* terminate */
7488};
7489
7490struct cgroup_subsys cpu_cgroup_subsys = {
7491	.name		= "cpu",
7492	.css_alloc	= cpu_cgroup_css_alloc,
7493	.css_free	= cpu_cgroup_css_free,
7494	.css_online	= cpu_cgroup_css_online,
7495	.css_offline	= cpu_cgroup_css_offline,
7496	.can_attach	= cpu_cgroup_can_attach,
7497	.attach		= cpu_cgroup_attach,
7498	.exit		= cpu_cgroup_exit,
7499	.subsys_id	= cpu_cgroup_subsys_id,
7500	.base_cftypes	= cpu_files,
7501	.early_init	= 1,
7502};
7503
7504#endif	/* CONFIG_CGROUP_SCHED */
7505
7506void dump_cpu_task(int cpu)
7507{
7508	pr_info("Task dump for CPU %d:\n", cpu);
7509	sched_show_task(cpu_curr(cpu));
7510}
7511