core.c revision eeb61e53ea19be0c4015b00b2e8b3b2185436f2b
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	if (rq->skip_clock_update > 0)
123		return;
124
125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126	if (delta < 0)
127		return;
128	rq->clock += delta;
129	update_rq_clock_task(rq, delta);
130}
131
132/*
133 * Debugging: various feature bits
134 */
135
136#define SCHED_FEAT(name, enabled)	\
137	(1UL << __SCHED_FEAT_##name) * enabled |
138
139const_debug unsigned int sysctl_sched_features =
140#include "features.h"
141	0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled)	\
147	#name ,
148
149static const char * const sched_feat_names[] = {
150#include "features.h"
151};
152
153#undef SCHED_FEAT
154
155static int sched_feat_show(struct seq_file *m, void *v)
156{
157	int i;
158
159	for (i = 0; i < __SCHED_FEAT_NR; i++) {
160		if (!(sysctl_sched_features & (1UL << i)))
161			seq_puts(m, "NO_");
162		seq_printf(m, "%s ", sched_feat_names[i]);
163	}
164	seq_puts(m, "\n");
165
166	return 0;
167}
168
169#ifdef HAVE_JUMP_LABEL
170
171#define jump_label_key__true  STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
173
174#define SCHED_FEAT(name, enabled)	\
175	jump_label_key__##enabled ,
176
177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
185	if (static_key_enabled(&sched_feat_keys[i]))
186		static_key_slow_dec(&sched_feat_keys[i]);
187}
188
189static void sched_feat_enable(int i)
190{
191	if (!static_key_enabled(&sched_feat_keys[i]))
192		static_key_slow_inc(&sched_feat_keys[i]);
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
199static int sched_feat_set(char *cmp)
200{
201	int i;
202	int neg = 0;
203
204	if (strncmp(cmp, "NO_", 3) == 0) {
205		neg = 1;
206		cmp += 3;
207	}
208
209	for (i = 0; i < __SCHED_FEAT_NR; i++) {
210		if (strcmp(cmp, sched_feat_names[i]) == 0) {
211			if (neg) {
212				sysctl_sched_features &= ~(1UL << i);
213				sched_feat_disable(i);
214			} else {
215				sysctl_sched_features |= (1UL << i);
216				sched_feat_enable(i);
217			}
218			break;
219		}
220	}
221
222	return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227		size_t cnt, loff_t *ppos)
228{
229	char buf[64];
230	char *cmp;
231	int i;
232	struct inode *inode;
233
234	if (cnt > 63)
235		cnt = 63;
236
237	if (copy_from_user(&buf, ubuf, cnt))
238		return -EFAULT;
239
240	buf[cnt] = 0;
241	cmp = strstrip(buf);
242
243	/* Ensure the static_key remains in a consistent state */
244	inode = file_inode(filp);
245	mutex_lock(&inode->i_mutex);
246	i = sched_feat_set(cmp);
247	mutex_unlock(&inode->i_mutex);
248	if (i == __SCHED_FEAT_NR)
249		return -EINVAL;
250
251	*ppos += cnt;
252
253	return cnt;
254}
255
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258	return single_open(filp, sched_feat_show, NULL);
259}
260
261static const struct file_operations sched_feat_fops = {
262	.open		= sched_feat_open,
263	.write		= sched_feat_write,
264	.read		= seq_read,
265	.llseek		= seq_lseek,
266	.release	= single_release,
267};
268
269static __init int sched_init_debug(void)
270{
271	debugfs_create_file("sched_features", 0644, NULL, NULL,
272			&sched_feat_fops);
273
274	return 0;
275}
276late_initcall(sched_init_debug);
277#endif /* CONFIG_SCHED_DEBUG */
278
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
293/*
294 * period over which we measure -rt task cpu usage in us.
295 * default: 1s
296 */
297unsigned int sysctl_sched_rt_period = 1000000;
298
299__read_mostly int scheduler_running;
300
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
306
307/*
308 * __task_rq_lock - lock the rq @p resides on.
309 */
310static inline struct rq *__task_rq_lock(struct task_struct *p)
311	__acquires(rq->lock)
312{
313	struct rq *rq;
314
315	lockdep_assert_held(&p->pi_lock);
316
317	for (;;) {
318		rq = task_rq(p);
319		raw_spin_lock(&rq->lock);
320		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321			return rq;
322		raw_spin_unlock(&rq->lock);
323
324		while (unlikely(task_on_rq_migrating(p)))
325			cpu_relax();
326	}
327}
328
329/*
330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331 */
332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333	__acquires(p->pi_lock)
334	__acquires(rq->lock)
335{
336	struct rq *rq;
337
338	for (;;) {
339		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340		rq = task_rq(p);
341		raw_spin_lock(&rq->lock);
342		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343			return rq;
344		raw_spin_unlock(&rq->lock);
345		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346
347		while (unlikely(task_on_rq_migrating(p)))
348			cpu_relax();
349	}
350}
351
352static void __task_rq_unlock(struct rq *rq)
353	__releases(rq->lock)
354{
355	raw_spin_unlock(&rq->lock);
356}
357
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360	__releases(rq->lock)
361	__releases(p->pi_lock)
362{
363	raw_spin_unlock(&rq->lock);
364	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365}
366
367/*
368 * this_rq_lock - lock this runqueue and disable interrupts.
369 */
370static struct rq *this_rq_lock(void)
371	__acquires(rq->lock)
372{
373	struct rq *rq;
374
375	local_irq_disable();
376	rq = this_rq();
377	raw_spin_lock(&rq->lock);
378
379	return rq;
380}
381
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
385 */
386
387static void hrtick_clear(struct rq *rq)
388{
389	if (hrtimer_active(&rq->hrtick_timer))
390		hrtimer_cancel(&rq->hrtick_timer);
391}
392
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
403	raw_spin_lock(&rq->lock);
404	update_rq_clock(rq);
405	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406	raw_spin_unlock(&rq->lock);
407
408	return HRTIMER_NORESTART;
409}
410
411#ifdef CONFIG_SMP
412
413static int __hrtick_restart(struct rq *rq)
414{
415	struct hrtimer *timer = &rq->hrtick_timer;
416	ktime_t time = hrtimer_get_softexpires(timer);
417
418	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
425{
426	struct rq *rq = arg;
427
428	raw_spin_lock(&rq->lock);
429	__hrtick_restart(rq);
430	rq->hrtick_csd_pending = 0;
431	raw_spin_unlock(&rq->lock);
432}
433
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
439void hrtick_start(struct rq *rq, u64 delay)
440{
441	struct hrtimer *timer = &rq->hrtick_timer;
442	ktime_t time;
443	s64 delta;
444
445	/*
446	 * Don't schedule slices shorter than 10000ns, that just
447	 * doesn't make sense and can cause timer DoS.
448	 */
449	delta = max_t(s64, delay, 10000LL);
450	time = ktime_add_ns(timer->base->get_time(), delta);
451
452	hrtimer_set_expires(timer, time);
453
454	if (rq == this_rq()) {
455		__hrtick_restart(rq);
456	} else if (!rq->hrtick_csd_pending) {
457		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458		rq->hrtick_csd_pending = 1;
459	}
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465	int cpu = (int)(long)hcpu;
466
467	switch (action) {
468	case CPU_UP_CANCELED:
469	case CPU_UP_CANCELED_FROZEN:
470	case CPU_DOWN_PREPARE:
471	case CPU_DOWN_PREPARE_FROZEN:
472	case CPU_DEAD:
473	case CPU_DEAD_FROZEN:
474		hrtick_clear(cpu_rq(cpu));
475		return NOTIFY_OK;
476	}
477
478	return NOTIFY_DONE;
479}
480
481static __init void init_hrtick(void)
482{
483	hotcpu_notifier(hotplug_hrtick, 0);
484}
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
491void hrtick_start(struct rq *rq, u64 delay)
492{
493	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494			HRTIMER_MODE_REL_PINNED, 0);
495}
496
497static inline void init_hrtick(void)
498{
499}
500#endif /* CONFIG_SMP */
501
502static void init_rq_hrtick(struct rq *rq)
503{
504#ifdef CONFIG_SMP
505	rq->hrtick_csd_pending = 0;
506
507	rq->hrtick_csd.flags = 0;
508	rq->hrtick_csd.func = __hrtick_start;
509	rq->hrtick_csd.info = rq;
510#endif
511
512	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513	rq->hrtick_timer.function = hrtick;
514}
515#else	/* CONFIG_SCHED_HRTICK */
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
524static inline void init_hrtick(void)
525{
526}
527#endif	/* CONFIG_SCHED_HRTICK */
528
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val)						\
533({	typeof(*(ptr)) __old, __val = *(ptr);				\
534 	for (;;) {							\
535 		__old = cmpxchg((ptr), __val, __val | (val));		\
536 		if (__old == __val)					\
537 			break;						\
538 		__val = __old;						\
539 	}								\
540 	__old;								\
541})
542
543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551	struct thread_info *ti = task_thread_info(p);
552	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563	struct thread_info *ti = task_thread_info(p);
564	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566	for (;;) {
567		if (!(val & _TIF_POLLING_NRFLAG))
568			return false;
569		if (val & _TIF_NEED_RESCHED)
570			return true;
571		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572		if (old == val)
573			break;
574		val = old;
575	}
576	return true;
577}
578
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582	set_tsk_need_resched(p);
583	return true;
584}
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589	return false;
590}
591#endif
592#endif
593
594/*
595 * resched_curr - mark rq's current task 'to be rescheduled now'.
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
601void resched_curr(struct rq *rq)
602{
603	struct task_struct *curr = rq->curr;
604	int cpu;
605
606	lockdep_assert_held(&rq->lock);
607
608	if (test_tsk_need_resched(curr))
609		return;
610
611	cpu = cpu_of(rq);
612
613	if (cpu == smp_processor_id()) {
614		set_tsk_need_resched(curr);
615		set_preempt_need_resched();
616		return;
617	}
618
619	if (set_nr_and_not_polling(curr))
620		smp_send_reschedule(cpu);
621	else
622		trace_sched_wake_idle_without_ipi(cpu);
623}
624
625void resched_cpu(int cpu)
626{
627	struct rq *rq = cpu_rq(cpu);
628	unsigned long flags;
629
630	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631		return;
632	resched_curr(rq);
633	raw_spin_unlock_irqrestore(&rq->lock, flags);
634}
635
636#ifdef CONFIG_SMP
637#ifdef CONFIG_NO_HZ_COMMON
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu.  This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
646int get_nohz_timer_target(int pinned)
647{
648	int cpu = smp_processor_id();
649	int i;
650	struct sched_domain *sd;
651
652	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653		return cpu;
654
655	rcu_read_lock();
656	for_each_domain(cpu, sd) {
657		for_each_cpu(i, sched_domain_span(sd)) {
658			if (!idle_cpu(i)) {
659				cpu = i;
660				goto unlock;
661			}
662		}
663	}
664unlock:
665	rcu_read_unlock();
666	return cpu;
667}
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
678static void wake_up_idle_cpu(int cpu)
679{
680	struct rq *rq = cpu_rq(cpu);
681
682	if (cpu == smp_processor_id())
683		return;
684
685	if (set_nr_and_not_polling(rq->idle))
686		smp_send_reschedule(cpu);
687	else
688		trace_sched_wake_idle_without_ipi(cpu);
689}
690
691static bool wake_up_full_nohz_cpu(int cpu)
692{
693	/*
694	 * We just need the target to call irq_exit() and re-evaluate
695	 * the next tick. The nohz full kick at least implies that.
696	 * If needed we can still optimize that later with an
697	 * empty IRQ.
698	 */
699	if (tick_nohz_full_cpu(cpu)) {
700		if (cpu != smp_processor_id() ||
701		    tick_nohz_tick_stopped())
702			tick_nohz_full_kick_cpu(cpu);
703		return true;
704	}
705
706	return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
711	if (!wake_up_full_nohz_cpu(cpu))
712		wake_up_idle_cpu(cpu);
713}
714
715static inline bool got_nohz_idle_kick(void)
716{
717	int cpu = smp_processor_id();
718
719	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720		return false;
721
722	if (idle_cpu(cpu) && !need_resched())
723		return true;
724
725	/*
726	 * We can't run Idle Load Balance on this CPU for this time so we
727	 * cancel it and clear NOHZ_BALANCE_KICK
728	 */
729	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730	return false;
731}
732
733#else /* CONFIG_NO_HZ_COMMON */
734
735static inline bool got_nohz_idle_kick(void)
736{
737	return false;
738}
739
740#endif /* CONFIG_NO_HZ_COMMON */
741
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
745	/*
746	 * More than one running task need preemption.
747	 * nr_running update is assumed to be visible
748	 * after IPI is sent from wakers.
749	 */
750	if (this_rq()->nr_running > 1)
751		return false;
752
753	return true;
754}
755#endif /* CONFIG_NO_HZ_FULL */
756
757void sched_avg_update(struct rq *rq)
758{
759	s64 period = sched_avg_period();
760
761	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762		/*
763		 * Inline assembly required to prevent the compiler
764		 * optimising this loop into a divmod call.
765		 * See __iter_div_u64_rem() for another example of this.
766		 */
767		asm("" : "+rm" (rq->age_stamp));
768		rq->age_stamp += period;
769		rq->rt_avg /= 2;
770	}
771}
772
773#endif /* CONFIG_SMP */
774
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777/*
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
782 */
783int walk_tg_tree_from(struct task_group *from,
784			     tg_visitor down, tg_visitor up, void *data)
785{
786	struct task_group *parent, *child;
787	int ret;
788
789	parent = from;
790
791down:
792	ret = (*down)(parent, data);
793	if (ret)
794		goto out;
795	list_for_each_entry_rcu(child, &parent->children, siblings) {
796		parent = child;
797		goto down;
798
799up:
800		continue;
801	}
802	ret = (*up)(parent, data);
803	if (ret || parent == from)
804		goto out;
805
806	child = parent;
807	parent = parent->parent;
808	if (parent)
809		goto up;
810out:
811	return ret;
812}
813
814int tg_nop(struct task_group *tg, void *data)
815{
816	return 0;
817}
818#endif
819
820static void set_load_weight(struct task_struct *p)
821{
822	int prio = p->static_prio - MAX_RT_PRIO;
823	struct load_weight *load = &p->se.load;
824
825	/*
826	 * SCHED_IDLE tasks get minimal weight:
827	 */
828	if (p->policy == SCHED_IDLE) {
829		load->weight = scale_load(WEIGHT_IDLEPRIO);
830		load->inv_weight = WMULT_IDLEPRIO;
831		return;
832	}
833
834	load->weight = scale_load(prio_to_weight[prio]);
835	load->inv_weight = prio_to_wmult[prio];
836}
837
838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839{
840	update_rq_clock(rq);
841	sched_info_queued(rq, p);
842	p->sched_class->enqueue_task(rq, p, flags);
843}
844
845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846{
847	update_rq_clock(rq);
848	sched_info_dequeued(rq, p);
849	p->sched_class->dequeue_task(rq, p, flags);
850}
851
852void activate_task(struct rq *rq, struct task_struct *p, int flags)
853{
854	if (task_contributes_to_load(p))
855		rq->nr_uninterruptible--;
856
857	enqueue_task(rq, p, flags);
858}
859
860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861{
862	if (task_contributes_to_load(p))
863		rq->nr_uninterruptible++;
864
865	dequeue_task(rq, p, flags);
866}
867
868static void update_rq_clock_task(struct rq *rq, s64 delta)
869{
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875	s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879
880	/*
881	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882	 * this case when a previous update_rq_clock() happened inside a
883	 * {soft,}irq region.
884	 *
885	 * When this happens, we stop ->clock_task and only update the
886	 * prev_irq_time stamp to account for the part that fit, so that a next
887	 * update will consume the rest. This ensures ->clock_task is
888	 * monotonic.
889	 *
890	 * It does however cause some slight miss-attribution of {soft,}irq
891	 * time, a more accurate solution would be to update the irq_time using
892	 * the current rq->clock timestamp, except that would require using
893	 * atomic ops.
894	 */
895	if (irq_delta > delta)
896		irq_delta = delta;
897
898	rq->prev_irq_time += irq_delta;
899	delta -= irq_delta;
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902	if (static_key_false((&paravirt_steal_rq_enabled))) {
903		steal = paravirt_steal_clock(cpu_of(rq));
904		steal -= rq->prev_steal_time_rq;
905
906		if (unlikely(steal > delta))
907			steal = delta;
908
909		rq->prev_steal_time_rq += steal;
910		delta -= steal;
911	}
912#endif
913
914	rq->clock_task += delta;
915
916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918		sched_rt_avg_update(rq, irq_delta + steal);
919#endif
920}
921
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925	struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927	if (stop) {
928		/*
929		 * Make it appear like a SCHED_FIFO task, its something
930		 * userspace knows about and won't get confused about.
931		 *
932		 * Also, it will make PI more or less work without too
933		 * much confusion -- but then, stop work should not
934		 * rely on PI working anyway.
935		 */
936		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938		stop->sched_class = &stop_sched_class;
939	}
940
941	cpu_rq(cpu)->stop = stop;
942
943	if (old_stop) {
944		/*
945		 * Reset it back to a normal scheduling class so that
946		 * it can die in pieces.
947		 */
948		old_stop->sched_class = &rt_sched_class;
949	}
950}
951
952/*
953 * __normal_prio - return the priority that is based on the static prio
954 */
955static inline int __normal_prio(struct task_struct *p)
956{
957	return p->static_prio;
958}
959
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
967static inline int normal_prio(struct task_struct *p)
968{
969	int prio;
970
971	if (task_has_dl_policy(p))
972		prio = MAX_DL_PRIO-1;
973	else if (task_has_rt_policy(p))
974		prio = MAX_RT_PRIO-1 - p->rt_priority;
975	else
976		prio = __normal_prio(p);
977	return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
987static int effective_prio(struct task_struct *p)
988{
989	p->normal_prio = normal_prio(p);
990	/*
991	 * If we are RT tasks or we were boosted to RT priority,
992	 * keep the priority unchanged. Otherwise, update priority
993	 * to the normal priority:
994	 */
995	if (!rt_prio(p->prio))
996		return p->normal_prio;
997	return p->prio;
998}
999
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1005 */
1006inline int task_curr(const struct task_struct *p)
1007{
1008	return cpu_curr(task_cpu(p)) == p;
1009}
1010
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012				       const struct sched_class *prev_class,
1013				       int oldprio)
1014{
1015	if (prev_class != p->sched_class) {
1016		if (prev_class->switched_from)
1017			prev_class->switched_from(rq, p);
1018		p->sched_class->switched_to(rq, p);
1019	} else if (oldprio != p->prio || dl_task(p))
1020		p->sched_class->prio_changed(rq, p, oldprio);
1021}
1022
1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024{
1025	const struct sched_class *class;
1026
1027	if (p->sched_class == rq->curr->sched_class) {
1028		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029	} else {
1030		for_each_class(class) {
1031			if (class == rq->curr->sched_class)
1032				break;
1033			if (class == p->sched_class) {
1034				resched_curr(rq);
1035				break;
1036			}
1037		}
1038	}
1039
1040	/*
1041	 * A queue event has occurred, and we're going to schedule.  In
1042	 * this case, we can save a useless back to back clock update.
1043	 */
1044	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045		rq->skip_clock_update = 1;
1046}
1047
1048#ifdef CONFIG_SMP
1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050{
1051#ifdef CONFIG_SCHED_DEBUG
1052	/*
1053	 * We should never call set_task_cpu() on a blocked task,
1054	 * ttwu() will sort out the placement.
1055	 */
1056	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1058
1059#ifdef CONFIG_LOCKDEP
1060	/*
1061	 * The caller should hold either p->pi_lock or rq->lock, when changing
1062	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063	 *
1064	 * sched_move_task() holds both and thus holding either pins the cgroup,
1065	 * see task_group().
1066	 *
1067	 * Furthermore, all task_rq users should acquire both locks, see
1068	 * task_rq_lock().
1069	 */
1070	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071				      lockdep_is_held(&task_rq(p)->lock)));
1072#endif
1073#endif
1074
1075	trace_sched_migrate_task(p, new_cpu);
1076
1077	if (task_cpu(p) != new_cpu) {
1078		if (p->sched_class->migrate_task_rq)
1079			p->sched_class->migrate_task_rq(p, new_cpu);
1080		p->se.nr_migrations++;
1081		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1082	}
1083
1084	__set_task_cpu(p, new_cpu);
1085}
1086
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
1089	if (task_on_rq_queued(p)) {
1090		struct rq *src_rq, *dst_rq;
1091
1092		src_rq = task_rq(p);
1093		dst_rq = cpu_rq(cpu);
1094
1095		deactivate_task(src_rq, p, 0);
1096		set_task_cpu(p, cpu);
1097		activate_task(dst_rq, p, 0);
1098		check_preempt_curr(dst_rq, p, 0);
1099	} else {
1100		/*
1101		 * Task isn't running anymore; make it appear like we migrated
1102		 * it before it went to sleep. This means on wakeup we make the
1103		 * previous cpu our targer instead of where it really is.
1104		 */
1105		p->wake_cpu = cpu;
1106	}
1107}
1108
1109struct migration_swap_arg {
1110	struct task_struct *src_task, *dst_task;
1111	int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116	struct migration_swap_arg *arg = data;
1117	struct rq *src_rq, *dst_rq;
1118	int ret = -EAGAIN;
1119
1120	src_rq = cpu_rq(arg->src_cpu);
1121	dst_rq = cpu_rq(arg->dst_cpu);
1122
1123	double_raw_lock(&arg->src_task->pi_lock,
1124			&arg->dst_task->pi_lock);
1125	double_rq_lock(src_rq, dst_rq);
1126	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127		goto unlock;
1128
1129	if (task_cpu(arg->src_task) != arg->src_cpu)
1130		goto unlock;
1131
1132	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133		goto unlock;
1134
1135	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136		goto unlock;
1137
1138	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1139	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141	ret = 0;
1142
1143unlock:
1144	double_rq_unlock(src_rq, dst_rq);
1145	raw_spin_unlock(&arg->dst_task->pi_lock);
1146	raw_spin_unlock(&arg->src_task->pi_lock);
1147
1148	return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156	struct migration_swap_arg arg;
1157	int ret = -EINVAL;
1158
1159	arg = (struct migration_swap_arg){
1160		.src_task = cur,
1161		.src_cpu = task_cpu(cur),
1162		.dst_task = p,
1163		.dst_cpu = task_cpu(p),
1164	};
1165
1166	if (arg.src_cpu == arg.dst_cpu)
1167		goto out;
1168
1169	/*
1170	 * These three tests are all lockless; this is OK since all of them
1171	 * will be re-checked with proper locks held further down the line.
1172	 */
1173	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174		goto out;
1175
1176	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177		goto out;
1178
1179	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180		goto out;
1181
1182	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
1186	return ret;
1187}
1188
1189struct migration_arg {
1190	struct task_struct *task;
1191	int dest_cpu;
1192};
1193
1194static int migration_cpu_stop(void *data);
1195
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change.  If it changes, i.e. @p might have woken up,
1201 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count).  If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213{
1214	unsigned long flags;
1215	int running, queued;
1216	unsigned long ncsw;
1217	struct rq *rq;
1218
1219	for (;;) {
1220		/*
1221		 * We do the initial early heuristics without holding
1222		 * any task-queue locks at all. We'll only try to get
1223		 * the runqueue lock when things look like they will
1224		 * work out!
1225		 */
1226		rq = task_rq(p);
1227
1228		/*
1229		 * If the task is actively running on another CPU
1230		 * still, just relax and busy-wait without holding
1231		 * any locks.
1232		 *
1233		 * NOTE! Since we don't hold any locks, it's not
1234		 * even sure that "rq" stays as the right runqueue!
1235		 * But we don't care, since "task_running()" will
1236		 * return false if the runqueue has changed and p
1237		 * is actually now running somewhere else!
1238		 */
1239		while (task_running(rq, p)) {
1240			if (match_state && unlikely(p->state != match_state))
1241				return 0;
1242			cpu_relax();
1243		}
1244
1245		/*
1246		 * Ok, time to look more closely! We need the rq
1247		 * lock now, to be *sure*. If we're wrong, we'll
1248		 * just go back and repeat.
1249		 */
1250		rq = task_rq_lock(p, &flags);
1251		trace_sched_wait_task(p);
1252		running = task_running(rq, p);
1253		queued = task_on_rq_queued(p);
1254		ncsw = 0;
1255		if (!match_state || p->state == match_state)
1256			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257		task_rq_unlock(rq, p, &flags);
1258
1259		/*
1260		 * If it changed from the expected state, bail out now.
1261		 */
1262		if (unlikely(!ncsw))
1263			break;
1264
1265		/*
1266		 * Was it really running after all now that we
1267		 * checked with the proper locks actually held?
1268		 *
1269		 * Oops. Go back and try again..
1270		 */
1271		if (unlikely(running)) {
1272			cpu_relax();
1273			continue;
1274		}
1275
1276		/*
1277		 * It's not enough that it's not actively running,
1278		 * it must be off the runqueue _entirely_, and not
1279		 * preempted!
1280		 *
1281		 * So if it was still runnable (but just not actively
1282		 * running right now), it's preempted, and we should
1283		 * yield - it could be a while.
1284		 */
1285		if (unlikely(queued)) {
1286			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288			set_current_state(TASK_UNINTERRUPTIBLE);
1289			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290			continue;
1291		}
1292
1293		/*
1294		 * Ahh, all good. It wasn't running, and it wasn't
1295		 * runnable, which means that it will never become
1296		 * running in the future either. We're all done!
1297		 */
1298		break;
1299	}
1300
1301	return ncsw;
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
1311 * NOTE: this function doesn't have to take the runqueue lock,
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
1317void kick_process(struct task_struct *p)
1318{
1319	int cpu;
1320
1321	preempt_disable();
1322	cpu = task_cpu(p);
1323	if ((cpu != smp_processor_id()) && task_curr(p))
1324		smp_send_reschedule(cpu);
1325	preempt_enable();
1326}
1327EXPORT_SYMBOL_GPL(kick_process);
1328#endif /* CONFIG_SMP */
1329
1330#ifdef CONFIG_SMP
1331/*
1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333 */
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
1336	int nid = cpu_to_node(cpu);
1337	const struct cpumask *nodemask = NULL;
1338	enum { cpuset, possible, fail } state = cpuset;
1339	int dest_cpu;
1340
1341	/*
1342	 * If the node that the cpu is on has been offlined, cpu_to_node()
1343	 * will return -1. There is no cpu on the node, and we should
1344	 * select the cpu on the other node.
1345	 */
1346	if (nid != -1) {
1347		nodemask = cpumask_of_node(nid);
1348
1349		/* Look for allowed, online CPU in same node. */
1350		for_each_cpu(dest_cpu, nodemask) {
1351			if (!cpu_online(dest_cpu))
1352				continue;
1353			if (!cpu_active(dest_cpu))
1354				continue;
1355			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356				return dest_cpu;
1357		}
1358	}
1359
1360	for (;;) {
1361		/* Any allowed, online CPU? */
1362		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363			if (!cpu_online(dest_cpu))
1364				continue;
1365			if (!cpu_active(dest_cpu))
1366				continue;
1367			goto out;
1368		}
1369
1370		switch (state) {
1371		case cpuset:
1372			/* No more Mr. Nice Guy. */
1373			cpuset_cpus_allowed_fallback(p);
1374			state = possible;
1375			break;
1376
1377		case possible:
1378			do_set_cpus_allowed(p, cpu_possible_mask);
1379			state = fail;
1380			break;
1381
1382		case fail:
1383			BUG();
1384			break;
1385		}
1386	}
1387
1388out:
1389	if (state != cpuset) {
1390		/*
1391		 * Don't tell them about moving exiting tasks or
1392		 * kernel threads (both mm NULL), since they never
1393		 * leave kernel.
1394		 */
1395		if (p->mm && printk_ratelimit()) {
1396			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397					task_pid_nr(p), p->comm, cpu);
1398		}
1399	}
1400
1401	return dest_cpu;
1402}
1403
1404/*
1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406 */
1407static inline
1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409{
1410	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1411
1412	/*
1413	 * In order not to call set_task_cpu() on a blocking task we need
1414	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415	 * cpu.
1416	 *
1417	 * Since this is common to all placement strategies, this lives here.
1418	 *
1419	 * [ this allows ->select_task() to simply return task_cpu(p) and
1420	 *   not worry about this generic constraint ]
1421	 */
1422	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1423		     !cpu_online(cpu)))
1424		cpu = select_fallback_rq(task_cpu(p), p);
1425
1426	return cpu;
1427}
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431	s64 diff = sample - *avg;
1432	*avg += diff >> 3;
1433}
1434#endif
1435
1436static void
1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1438{
1439#ifdef CONFIG_SCHEDSTATS
1440	struct rq *rq = this_rq();
1441
1442#ifdef CONFIG_SMP
1443	int this_cpu = smp_processor_id();
1444
1445	if (cpu == this_cpu) {
1446		schedstat_inc(rq, ttwu_local);
1447		schedstat_inc(p, se.statistics.nr_wakeups_local);
1448	} else {
1449		struct sched_domain *sd;
1450
1451		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1452		rcu_read_lock();
1453		for_each_domain(this_cpu, sd) {
1454			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455				schedstat_inc(sd, ttwu_wake_remote);
1456				break;
1457			}
1458		}
1459		rcu_read_unlock();
1460	}
1461
1462	if (wake_flags & WF_MIGRATED)
1463		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
1465#endif /* CONFIG_SMP */
1466
1467	schedstat_inc(rq, ttwu_count);
1468	schedstat_inc(p, se.statistics.nr_wakeups);
1469
1470	if (wake_flags & WF_SYNC)
1471		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1472
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
1478	activate_task(rq, p, en_flags);
1479	p->on_rq = TASK_ON_RQ_QUEUED;
1480
1481	/* if a worker is waking up, notify workqueue */
1482	if (p->flags & PF_WQ_WORKER)
1483		wq_worker_waking_up(p, cpu_of(rq));
1484}
1485
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
1489static void
1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1491{
1492	check_preempt_curr(rq, p, wake_flags);
1493	trace_sched_wakeup(p, true);
1494
1495	p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497	if (p->sched_class->task_woken)
1498		p->sched_class->task_woken(rq, p);
1499
1500	if (rq->idle_stamp) {
1501		u64 delta = rq_clock(rq) - rq->idle_stamp;
1502		u64 max = 2*rq->max_idle_balance_cost;
1503
1504		update_avg(&rq->avg_idle, delta);
1505
1506		if (rq->avg_idle > max)
1507			rq->avg_idle = max;
1508
1509		rq->idle_stamp = 0;
1510	}
1511#endif
1512}
1513
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518	if (p->sched_contributes_to_load)
1519		rq->nr_uninterruptible--;
1520#endif
1521
1522	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523	ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534	struct rq *rq;
1535	int ret = 0;
1536
1537	rq = __task_rq_lock(p);
1538	if (task_on_rq_queued(p)) {
1539		/* check_preempt_curr() may use rq clock */
1540		update_rq_clock(rq);
1541		ttwu_do_wakeup(rq, p, wake_flags);
1542		ret = 1;
1543	}
1544	__task_rq_unlock(rq);
1545
1546	return ret;
1547}
1548
1549#ifdef CONFIG_SMP
1550void sched_ttwu_pending(void)
1551{
1552	struct rq *rq = this_rq();
1553	struct llist_node *llist = llist_del_all(&rq->wake_list);
1554	struct task_struct *p;
1555	unsigned long flags;
1556
1557	if (!llist)
1558		return;
1559
1560	raw_spin_lock_irqsave(&rq->lock, flags);
1561
1562	while (llist) {
1563		p = llist_entry(llist, struct task_struct, wake_entry);
1564		llist = llist_next(llist);
1565		ttwu_do_activate(rq, p, 0);
1566	}
1567
1568	raw_spin_unlock_irqrestore(&rq->lock, flags);
1569}
1570
1571void scheduler_ipi(void)
1572{
1573	/*
1574	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576	 * this IPI.
1577	 */
1578	preempt_fold_need_resched();
1579
1580	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1581		return;
1582
1583	/*
1584	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585	 * traditionally all their work was done from the interrupt return
1586	 * path. Now that we actually do some work, we need to make sure
1587	 * we do call them.
1588	 *
1589	 * Some archs already do call them, luckily irq_enter/exit nest
1590	 * properly.
1591	 *
1592	 * Arguably we should visit all archs and update all handlers,
1593	 * however a fair share of IPIs are still resched only so this would
1594	 * somewhat pessimize the simple resched case.
1595	 */
1596	irq_enter();
1597	sched_ttwu_pending();
1598
1599	/*
1600	 * Check if someone kicked us for doing the nohz idle load balance.
1601	 */
1602	if (unlikely(got_nohz_idle_kick())) {
1603		this_rq()->idle_balance = 1;
1604		raise_softirq_irqoff(SCHED_SOFTIRQ);
1605	}
1606	irq_exit();
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
1611	struct rq *rq = cpu_rq(cpu);
1612
1613	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614		if (!set_nr_if_polling(rq->idle))
1615			smp_send_reschedule(cpu);
1616		else
1617			trace_sched_wake_idle_without_ipi(cpu);
1618	}
1619}
1620
1621void wake_up_if_idle(int cpu)
1622{
1623	struct rq *rq = cpu_rq(cpu);
1624	unsigned long flags;
1625
1626	if (!is_idle_task(rq->curr))
1627		return;
1628
1629	if (set_nr_if_polling(rq->idle)) {
1630		trace_sched_wake_idle_without_ipi(cpu);
1631	} else {
1632		raw_spin_lock_irqsave(&rq->lock, flags);
1633		if (is_idle_task(rq->curr))
1634			smp_send_reschedule(cpu);
1635		/* Else cpu is not in idle, do nothing here */
1636		raw_spin_unlock_irqrestore(&rq->lock, flags);
1637	}
1638}
1639
1640bool cpus_share_cache(int this_cpu, int that_cpu)
1641{
1642	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
1644#endif /* CONFIG_SMP */
1645
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648	struct rq *rq = cpu_rq(cpu);
1649
1650#if defined(CONFIG_SMP)
1651	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1652		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1653		ttwu_queue_remote(p, cpu);
1654		return;
1655	}
1656#endif
1657
1658	raw_spin_lock(&rq->lock);
1659	ttwu_do_activate(rq, p, 0);
1660	raw_spin_unlock(&rq->lock);
1661}
1662
1663/**
1664 * try_to_wake_up - wake up a thread
1665 * @p: the thread to be awakened
1666 * @state: the mask of task states that can be woken
1667 * @wake_flags: wake modifier flags (WF_*)
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
1675 * Return: %true if @p was woken up, %false if it was already running.
1676 * or @state didn't match @p's state.
1677 */
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1680{
1681	unsigned long flags;
1682	int cpu, success = 0;
1683
1684	/*
1685	 * If we are going to wake up a thread waiting for CONDITION we
1686	 * need to ensure that CONDITION=1 done by the caller can not be
1687	 * reordered with p->state check below. This pairs with mb() in
1688	 * set_current_state() the waiting thread does.
1689	 */
1690	smp_mb__before_spinlock();
1691	raw_spin_lock_irqsave(&p->pi_lock, flags);
1692	if (!(p->state & state))
1693		goto out;
1694
1695	success = 1; /* we're going to change ->state */
1696	cpu = task_cpu(p);
1697
1698	if (p->on_rq && ttwu_remote(p, wake_flags))
1699		goto stat;
1700
1701#ifdef CONFIG_SMP
1702	/*
1703	 * If the owning (remote) cpu is still in the middle of schedule() with
1704	 * this task as prev, wait until its done referencing the task.
1705	 */
1706	while (p->on_cpu)
1707		cpu_relax();
1708	/*
1709	 * Pairs with the smp_wmb() in finish_lock_switch().
1710	 */
1711	smp_rmb();
1712
1713	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1714	p->state = TASK_WAKING;
1715
1716	if (p->sched_class->task_waking)
1717		p->sched_class->task_waking(p);
1718
1719	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1720	if (task_cpu(p) != cpu) {
1721		wake_flags |= WF_MIGRATED;
1722		set_task_cpu(p, cpu);
1723	}
1724#endif /* CONFIG_SMP */
1725
1726	ttwu_queue(p, cpu);
1727stat:
1728	ttwu_stat(p, cpu, wake_flags);
1729out:
1730	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1731
1732	return success;
1733}
1734
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
1739 * Put @p on the run-queue if it's not already there. The caller must
1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1741 * the current task.
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745	struct rq *rq = task_rq(p);
1746
1747	if (WARN_ON_ONCE(rq != this_rq()) ||
1748	    WARN_ON_ONCE(p == current))
1749		return;
1750
1751	lockdep_assert_held(&rq->lock);
1752
1753	if (!raw_spin_trylock(&p->pi_lock)) {
1754		raw_spin_unlock(&rq->lock);
1755		raw_spin_lock(&p->pi_lock);
1756		raw_spin_lock(&rq->lock);
1757	}
1758
1759	if (!(p->state & TASK_NORMAL))
1760		goto out;
1761
1762	if (!task_on_rq_queued(p))
1763		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
1765	ttwu_do_wakeup(rq, p, 0);
1766	ttwu_stat(p, smp_processor_id(), 0);
1767out:
1768	raw_spin_unlock(&p->pi_lock);
1769}
1770
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
1783int wake_up_process(struct task_struct *p)
1784{
1785	WARN_ON(task_is_stopped_or_traced(p));
1786	return try_to_wake_up(p, TASK_NORMAL, 0);
1787}
1788EXPORT_SYMBOL(wake_up_process);
1789
1790int wake_up_state(struct task_struct *p, unsigned int state)
1791{
1792	return try_to_wake_up(p, state, 0);
1793}
1794
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800	struct sched_dl_entity *dl_se = &p->dl;
1801
1802	dl_se->dl_runtime = 0;
1803	dl_se->dl_deadline = 0;
1804	dl_se->dl_period = 0;
1805	dl_se->flags = 0;
1806	dl_se->dl_bw = 0;
1807}
1808
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1816{
1817	p->on_rq			= 0;
1818
1819	p->se.on_rq			= 0;
1820	p->se.exec_start		= 0;
1821	p->se.sum_exec_runtime		= 0;
1822	p->se.prev_sum_exec_runtime	= 0;
1823	p->se.nr_migrations		= 0;
1824	p->se.vruntime			= 0;
1825	INIT_LIST_HEAD(&p->se.group_node);
1826
1827#ifdef CONFIG_SCHEDSTATS
1828	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1829#endif
1830
1831	RB_CLEAR_NODE(&p->dl.rb_node);
1832	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1833	__dl_clear_params(p);
1834
1835	INIT_LIST_HEAD(&p->rt.run_list);
1836
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838	INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1843		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844		p->mm->numa_scan_seq = 0;
1845	}
1846
1847	if (clone_flags & CLONE_VM)
1848		p->numa_preferred_nid = current->numa_preferred_nid;
1849	else
1850		p->numa_preferred_nid = -1;
1851
1852	p->node_stamp = 0ULL;
1853	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1854	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1855	p->numa_work.next = &p->numa_work;
1856	p->numa_faults_memory = NULL;
1857	p->numa_faults_buffer_memory = NULL;
1858	p->last_task_numa_placement = 0;
1859	p->last_sum_exec_runtime = 0;
1860
1861	INIT_LIST_HEAD(&p->numa_entry);
1862	p->numa_group = NULL;
1863#endif /* CONFIG_NUMA_BALANCING */
1864}
1865
1866#ifdef CONFIG_NUMA_BALANCING
1867#ifdef CONFIG_SCHED_DEBUG
1868void set_numabalancing_state(bool enabled)
1869{
1870	if (enabled)
1871		sched_feat_set("NUMA");
1872	else
1873		sched_feat_set("NO_NUMA");
1874}
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880	numabalancing_enabled = enabled;
1881}
1882#endif /* CONFIG_SCHED_DEBUG */
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886			 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888	struct ctl_table t;
1889	int err;
1890	int state = numabalancing_enabled;
1891
1892	if (write && !capable(CAP_SYS_ADMIN))
1893		return -EPERM;
1894
1895	t = *table;
1896	t.data = &state;
1897	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898	if (err < 0)
1899		return err;
1900	if (write)
1901		set_numabalancing_state(state);
1902	return err;
1903}
1904#endif
1905#endif
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
1911{
1912	unsigned long flags;
1913	int cpu = get_cpu();
1914
1915	__sched_fork(clone_flags, p);
1916	/*
1917	 * We mark the process as running here. This guarantees that
1918	 * nobody will actually run it, and a signal or other external
1919	 * event cannot wake it up and insert it on the runqueue either.
1920	 */
1921	p->state = TASK_RUNNING;
1922
1923	/*
1924	 * Make sure we do not leak PI boosting priority to the child.
1925	 */
1926	p->prio = current->normal_prio;
1927
1928	/*
1929	 * Revert to default priority/policy on fork if requested.
1930	 */
1931	if (unlikely(p->sched_reset_on_fork)) {
1932		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1933			p->policy = SCHED_NORMAL;
1934			p->static_prio = NICE_TO_PRIO(0);
1935			p->rt_priority = 0;
1936		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1937			p->static_prio = NICE_TO_PRIO(0);
1938
1939		p->prio = p->normal_prio = __normal_prio(p);
1940		set_load_weight(p);
1941
1942		/*
1943		 * We don't need the reset flag anymore after the fork. It has
1944		 * fulfilled its duty:
1945		 */
1946		p->sched_reset_on_fork = 0;
1947	}
1948
1949	if (dl_prio(p->prio)) {
1950		put_cpu();
1951		return -EAGAIN;
1952	} else if (rt_prio(p->prio)) {
1953		p->sched_class = &rt_sched_class;
1954	} else {
1955		p->sched_class = &fair_sched_class;
1956	}
1957
1958	if (p->sched_class->task_fork)
1959		p->sched_class->task_fork(p);
1960
1961	/*
1962	 * The child is not yet in the pid-hash so no cgroup attach races,
1963	 * and the cgroup is pinned to this child due to cgroup_fork()
1964	 * is ran before sched_fork().
1965	 *
1966	 * Silence PROVE_RCU.
1967	 */
1968	raw_spin_lock_irqsave(&p->pi_lock, flags);
1969	set_task_cpu(p, cpu);
1970	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1971
1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973	if (likely(sched_info_on()))
1974		memset(&p->sched_info, 0, sizeof(p->sched_info));
1975#endif
1976#if defined(CONFIG_SMP)
1977	p->on_cpu = 0;
1978#endif
1979	init_task_preempt_count(p);
1980#ifdef CONFIG_SMP
1981	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1982	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1983#endif
1984
1985	put_cpu();
1986	return 0;
1987}
1988
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991	if (runtime == RUNTIME_INF)
1992		return 1ULL << 20;
1993
1994	/*
1995	 * Doing this here saves a lot of checks in all
1996	 * the calling paths, and returning zero seems
1997	 * safe for them anyway.
1998	 */
1999	if (period == 0)
2000		return 0;
2001
2002	return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
2008	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009			   "sched RCU must be held");
2010	return &cpu_rq(i)->rd->dl_bw;
2011}
2012
2013static inline int dl_bw_cpus(int i)
2014{
2015	struct root_domain *rd = cpu_rq(i)->rd;
2016	int cpus = 0;
2017
2018	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019			   "sched RCU must be held");
2020	for_each_cpu_and(i, rd->span, cpu_active_mask)
2021		cpus++;
2022
2023	return cpus;
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028	return &cpu_rq(i)->dl.dl_bw;
2029}
2030
2031static inline int dl_bw_cpus(int i)
2032{
2033	return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040	dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046	dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052	return dl_b->bw != -1 &&
2053	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065		       const struct sched_attr *attr)
2066{
2067
2068	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2069	u64 period = attr->sched_period ?: attr->sched_deadline;
2070	u64 runtime = attr->sched_runtime;
2071	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2072	int cpus, err = -1;
2073
2074	if (new_bw == p->dl.dl_bw)
2075		return 0;
2076
2077	/*
2078	 * Either if a task, enters, leave, or stays -deadline but changes
2079	 * its parameters, we may need to update accordingly the total
2080	 * allocated bandwidth of the container.
2081	 */
2082	raw_spin_lock(&dl_b->lock);
2083	cpus = dl_bw_cpus(task_cpu(p));
2084	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086		__dl_add(dl_b, new_bw);
2087		err = 0;
2088	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090		__dl_clear(dl_b, p->dl.dl_bw);
2091		__dl_add(dl_b, new_bw);
2092		err = 0;
2093	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094		__dl_clear(dl_b, p->dl.dl_bw);
2095		err = 0;
2096	}
2097	raw_spin_unlock(&dl_b->lock);
2098
2099	return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
2111void wake_up_new_task(struct task_struct *p)
2112{
2113	unsigned long flags;
2114	struct rq *rq;
2115
2116	raw_spin_lock_irqsave(&p->pi_lock, flags);
2117#ifdef CONFIG_SMP
2118	/*
2119	 * Fork balancing, do it here and not earlier because:
2120	 *  - cpus_allowed can change in the fork path
2121	 *  - any previously selected cpu might disappear through hotplug
2122	 */
2123	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2124#endif
2125
2126	/* Initialize new task's runnable average */
2127	init_task_runnable_average(p);
2128	rq = __task_rq_lock(p);
2129	activate_task(rq, p, 0);
2130	p->on_rq = TASK_ON_RQ_QUEUED;
2131	trace_sched_wakeup_new(p, true);
2132	check_preempt_curr(rq, p, WF_FORK);
2133#ifdef CONFIG_SMP
2134	if (p->sched_class->task_woken)
2135		p->sched_class->task_woken(rq, p);
2136#endif
2137	task_rq_unlock(rq, p, &flags);
2138}
2139
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144 * @notifier: notifier struct to register
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
2154 * @notifier: notifier struct to unregister
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160	hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166	struct preempt_notifier *notifier;
2167
2168	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2169		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174				 struct task_struct *next)
2175{
2176	struct preempt_notifier *notifier;
2177
2178	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2179		notifier->ops->sched_out(notifier, next);
2180}
2181
2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190				 struct task_struct *next)
2191{
2192}
2193
2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
2195
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
2199 * @prev: the current task that is being switched out
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211		    struct task_struct *next)
2212{
2213	trace_sched_switch(prev, next);
2214	sched_info_switch(rq, prev, next);
2215	perf_event_task_sched_out(prev, next);
2216	fire_sched_out_preempt_notifiers(prev, next);
2217	prepare_lock_switch(rq, next);
2218	prepare_arch_switch(next);
2219}
2220
2221/**
2222 * finish_task_switch - clean up after a task-switch
2223 * @rq: runqueue associated with task-switch
2224 * @prev: the thread we just switched away from.
2225 *
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
2232 * so, we finish that here outside of the runqueue lock. (Doing it
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
2236static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2237	__releases(rq->lock)
2238{
2239	struct mm_struct *mm = rq->prev_mm;
2240	long prev_state;
2241
2242	rq->prev_mm = NULL;
2243
2244	/*
2245	 * A task struct has one reference for the use as "current".
2246	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247	 * schedule one last time. The schedule call will never return, and
2248	 * the scheduled task must drop that reference.
2249	 * The test for TASK_DEAD must occur while the runqueue locks are
2250	 * still held, otherwise prev could be scheduled on another cpu, die
2251	 * there before we look at prev->state, and then the reference would
2252	 * be dropped twice.
2253	 *		Manfred Spraul <manfred@colorfullife.com>
2254	 */
2255	prev_state = prev->state;
2256	vtime_task_switch(prev);
2257	finish_arch_switch(prev);
2258	perf_event_task_sched_in(prev, current);
2259	finish_lock_switch(rq, prev);
2260	finish_arch_post_lock_switch();
2261
2262	fire_sched_in_preempt_notifiers(current);
2263	if (mm)
2264		mmdrop(mm);
2265	if (unlikely(prev_state == TASK_DEAD)) {
2266		if (prev->sched_class->task_dead)
2267			prev->sched_class->task_dead(prev);
2268
2269		/*
2270		 * Remove function-return probe instances associated with this
2271		 * task and put them back on the free list.
2272		 */
2273		kprobe_flush_task(prev);
2274		put_task_struct(prev);
2275	}
2276
2277	tick_nohz_task_switch(current);
2278}
2279
2280#ifdef CONFIG_SMP
2281
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285	if (rq->post_schedule) {
2286		unsigned long flags;
2287
2288		raw_spin_lock_irqsave(&rq->lock, flags);
2289		if (rq->curr->sched_class->post_schedule)
2290			rq->curr->sched_class->post_schedule(rq);
2291		raw_spin_unlock_irqrestore(&rq->lock, flags);
2292
2293		rq->post_schedule = 0;
2294	}
2295}
2296
2297#else
2298
2299static inline void post_schedule(struct rq *rq)
2300{
2301}
2302
2303#endif
2304
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
2310	__releases(rq->lock)
2311{
2312	struct rq *rq = this_rq();
2313
2314	finish_task_switch(rq, prev);
2315
2316	/*
2317	 * FIXME: do we need to worry about rq being invalidated by the
2318	 * task_switch?
2319	 */
2320	post_schedule(rq);
2321
2322	if (current->set_child_tid)
2323		put_user(task_pid_vnr(current), current->set_child_tid);
2324}
2325
2326/*
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2329 */
2330static inline void
2331context_switch(struct rq *rq, struct task_struct *prev,
2332	       struct task_struct *next)
2333{
2334	struct mm_struct *mm, *oldmm;
2335
2336	prepare_task_switch(rq, prev, next);
2337
2338	mm = next->mm;
2339	oldmm = prev->active_mm;
2340	/*
2341	 * For paravirt, this is coupled with an exit in switch_to to
2342	 * combine the page table reload and the switch backend into
2343	 * one hypercall.
2344	 */
2345	arch_start_context_switch(prev);
2346
2347	if (!mm) {
2348		next->active_mm = oldmm;
2349		atomic_inc(&oldmm->mm_count);
2350		enter_lazy_tlb(oldmm, next);
2351	} else
2352		switch_mm(oldmm, mm, next);
2353
2354	if (!prev->mm) {
2355		prev->active_mm = NULL;
2356		rq->prev_mm = oldmm;
2357	}
2358	/*
2359	 * Since the runqueue lock will be released by the next
2360	 * task (which is an invalid locking op but in the case
2361	 * of the scheduler it's an obvious special-case), so we
2362	 * do an early lockdep release here:
2363	 */
2364	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2365
2366	context_tracking_task_switch(prev, next);
2367	/* Here we just switch the register state and the stack. */
2368	switch_to(prev, next, prev);
2369
2370	barrier();
2371	/*
2372	 * this_rq must be evaluated again because prev may have moved
2373	 * CPUs since it called schedule(), thus the 'rq' on its stack
2374	 * frame will be invalid.
2375	 */
2376	finish_task_switch(this_rq(), prev);
2377}
2378
2379/*
2380 * nr_running and nr_context_switches:
2381 *
2382 * externally visible scheduler statistics: current number of runnable
2383 * threads, total number of context switches performed since bootup.
2384 */
2385unsigned long nr_running(void)
2386{
2387	unsigned long i, sum = 0;
2388
2389	for_each_online_cpu(i)
2390		sum += cpu_rq(i)->nr_running;
2391
2392	return sum;
2393}
2394
2395/*
2396 * Check if only the current task is running on the cpu.
2397 */
2398bool single_task_running(void)
2399{
2400	if (cpu_rq(smp_processor_id())->nr_running == 1)
2401		return true;
2402	else
2403		return false;
2404}
2405EXPORT_SYMBOL(single_task_running);
2406
2407unsigned long long nr_context_switches(void)
2408{
2409	int i;
2410	unsigned long long sum = 0;
2411
2412	for_each_possible_cpu(i)
2413		sum += cpu_rq(i)->nr_switches;
2414
2415	return sum;
2416}
2417
2418unsigned long nr_iowait(void)
2419{
2420	unsigned long i, sum = 0;
2421
2422	for_each_possible_cpu(i)
2423		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2424
2425	return sum;
2426}
2427
2428unsigned long nr_iowait_cpu(int cpu)
2429{
2430	struct rq *this = cpu_rq(cpu);
2431	return atomic_read(&this->nr_iowait);
2432}
2433
2434void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435{
2436	struct rq *this = this_rq();
2437	*nr_waiters = atomic_read(&this->nr_iowait);
2438	*load = this->cpu_load[0];
2439}
2440
2441#ifdef CONFIG_SMP
2442
2443/*
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
2446 */
2447void sched_exec(void)
2448{
2449	struct task_struct *p = current;
2450	unsigned long flags;
2451	int dest_cpu;
2452
2453	raw_spin_lock_irqsave(&p->pi_lock, flags);
2454	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2455	if (dest_cpu == smp_processor_id())
2456		goto unlock;
2457
2458	if (likely(cpu_active(dest_cpu))) {
2459		struct migration_arg arg = { p, dest_cpu };
2460
2461		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2463		return;
2464	}
2465unlock:
2466	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2467}
2468
2469#endif
2470
2471DEFINE_PER_CPU(struct kernel_stat, kstat);
2472DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2473
2474EXPORT_PER_CPU_SYMBOL(kstat);
2475EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2476
2477/*
2478 * Return any ns on the sched_clock that have not yet been accounted in
2479 * @p in case that task is currently running.
2480 *
2481 * Called with task_rq_lock() held on @rq.
2482 */
2483static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484{
2485	u64 ns = 0;
2486
2487	/*
2488	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2489	 * project cycles that may never be accounted to this
2490	 * thread, breaking clock_gettime().
2491	 */
2492	if (task_current(rq, p) && task_on_rq_queued(p)) {
2493		update_rq_clock(rq);
2494		ns = rq_clock_task(rq) - p->se.exec_start;
2495		if ((s64)ns < 0)
2496			ns = 0;
2497	}
2498
2499	return ns;
2500}
2501
2502unsigned long long task_delta_exec(struct task_struct *p)
2503{
2504	unsigned long flags;
2505	struct rq *rq;
2506	u64 ns = 0;
2507
2508	rq = task_rq_lock(p, &flags);
2509	ns = do_task_delta_exec(p, rq);
2510	task_rq_unlock(rq, p, &flags);
2511
2512	return ns;
2513}
2514
2515/*
2516 * Return accounted runtime for the task.
2517 * In case the task is currently running, return the runtime plus current's
2518 * pending runtime that have not been accounted yet.
2519 */
2520unsigned long long task_sched_runtime(struct task_struct *p)
2521{
2522	unsigned long flags;
2523	struct rq *rq;
2524	u64 ns = 0;
2525
2526#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2527	/*
2528	 * 64-bit doesn't need locks to atomically read a 64bit value.
2529	 * So we have a optimization chance when the task's delta_exec is 0.
2530	 * Reading ->on_cpu is racy, but this is ok.
2531	 *
2532	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533	 * If we race with it entering cpu, unaccounted time is 0. This is
2534	 * indistinguishable from the read occurring a few cycles earlier.
2535	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536	 * been accounted, so we're correct here as well.
2537	 */
2538	if (!p->on_cpu || !task_on_rq_queued(p))
2539		return p->se.sum_exec_runtime;
2540#endif
2541
2542	rq = task_rq_lock(p, &flags);
2543	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2544	task_rq_unlock(rq, p, &flags);
2545
2546	return ns;
2547}
2548
2549/*
2550 * This function gets called by the timer code, with HZ frequency.
2551 * We call it with interrupts disabled.
2552 */
2553void scheduler_tick(void)
2554{
2555	int cpu = smp_processor_id();
2556	struct rq *rq = cpu_rq(cpu);
2557	struct task_struct *curr = rq->curr;
2558
2559	sched_clock_tick();
2560
2561	raw_spin_lock(&rq->lock);
2562	update_rq_clock(rq);
2563	curr->sched_class->task_tick(rq, curr, 0);
2564	update_cpu_load_active(rq);
2565	raw_spin_unlock(&rq->lock);
2566
2567	perf_event_task_tick();
2568
2569#ifdef CONFIG_SMP
2570	rq->idle_balance = idle_cpu(cpu);
2571	trigger_load_balance(rq);
2572#endif
2573	rq_last_tick_reset(rq);
2574}
2575
2576#ifdef CONFIG_NO_HZ_FULL
2577/**
2578 * scheduler_tick_max_deferment
2579 *
2580 * Keep at least one tick per second when a single
2581 * active task is running because the scheduler doesn't
2582 * yet completely support full dynticks environment.
2583 *
2584 * This makes sure that uptime, CFS vruntime, load
2585 * balancing, etc... continue to move forward, even
2586 * with a very low granularity.
2587 *
2588 * Return: Maximum deferment in nanoseconds.
2589 */
2590u64 scheduler_tick_max_deferment(void)
2591{
2592	struct rq *rq = this_rq();
2593	unsigned long next, now = ACCESS_ONCE(jiffies);
2594
2595	next = rq->last_sched_tick + HZ;
2596
2597	if (time_before_eq(next, now))
2598		return 0;
2599
2600	return jiffies_to_nsecs(next - now);
2601}
2602#endif
2603
2604notrace unsigned long get_parent_ip(unsigned long addr)
2605{
2606	if (in_lock_functions(addr)) {
2607		addr = CALLER_ADDR2;
2608		if (in_lock_functions(addr))
2609			addr = CALLER_ADDR3;
2610	}
2611	return addr;
2612}
2613
2614#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615				defined(CONFIG_PREEMPT_TRACER))
2616
2617void preempt_count_add(int val)
2618{
2619#ifdef CONFIG_DEBUG_PREEMPT
2620	/*
2621	 * Underflow?
2622	 */
2623	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2624		return;
2625#endif
2626	__preempt_count_add(val);
2627#ifdef CONFIG_DEBUG_PREEMPT
2628	/*
2629	 * Spinlock count overflowing soon?
2630	 */
2631	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2632				PREEMPT_MASK - 10);
2633#endif
2634	if (preempt_count() == val) {
2635		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2636#ifdef CONFIG_DEBUG_PREEMPT
2637		current->preempt_disable_ip = ip;
2638#endif
2639		trace_preempt_off(CALLER_ADDR0, ip);
2640	}
2641}
2642EXPORT_SYMBOL(preempt_count_add);
2643NOKPROBE_SYMBOL(preempt_count_add);
2644
2645void preempt_count_sub(int val)
2646{
2647#ifdef CONFIG_DEBUG_PREEMPT
2648	/*
2649	 * Underflow?
2650	 */
2651	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2652		return;
2653	/*
2654	 * Is the spinlock portion underflowing?
2655	 */
2656	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2657			!(preempt_count() & PREEMPT_MASK)))
2658		return;
2659#endif
2660
2661	if (preempt_count() == val)
2662		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2663	__preempt_count_sub(val);
2664}
2665EXPORT_SYMBOL(preempt_count_sub);
2666NOKPROBE_SYMBOL(preempt_count_sub);
2667
2668#endif
2669
2670/*
2671 * Print scheduling while atomic bug:
2672 */
2673static noinline void __schedule_bug(struct task_struct *prev)
2674{
2675	if (oops_in_progress)
2676		return;
2677
2678	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679		prev->comm, prev->pid, preempt_count());
2680
2681	debug_show_held_locks(prev);
2682	print_modules();
2683	if (irqs_disabled())
2684		print_irqtrace_events(prev);
2685#ifdef CONFIG_DEBUG_PREEMPT
2686	if (in_atomic_preempt_off()) {
2687		pr_err("Preemption disabled at:");
2688		print_ip_sym(current->preempt_disable_ip);
2689		pr_cont("\n");
2690	}
2691#endif
2692	dump_stack();
2693	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2694}
2695
2696/*
2697 * Various schedule()-time debugging checks and statistics:
2698 */
2699static inline void schedule_debug(struct task_struct *prev)
2700{
2701#ifdef CONFIG_SCHED_STACK_END_CHECK
2702	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2703#endif
2704	/*
2705	 * Test if we are atomic. Since do_exit() needs to call into
2706	 * schedule() atomically, we ignore that path. Otherwise whine
2707	 * if we are scheduling when we should not.
2708	 */
2709	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2710		__schedule_bug(prev);
2711	rcu_sleep_check();
2712
2713	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2714
2715	schedstat_inc(this_rq(), sched_count);
2716}
2717
2718/*
2719 * Pick up the highest-prio task:
2720 */
2721static inline struct task_struct *
2722pick_next_task(struct rq *rq, struct task_struct *prev)
2723{
2724	const struct sched_class *class = &fair_sched_class;
2725	struct task_struct *p;
2726
2727	/*
2728	 * Optimization: we know that if all tasks are in
2729	 * the fair class we can call that function directly:
2730	 */
2731	if (likely(prev->sched_class == class &&
2732		   rq->nr_running == rq->cfs.h_nr_running)) {
2733		p = fair_sched_class.pick_next_task(rq, prev);
2734		if (unlikely(p == RETRY_TASK))
2735			goto again;
2736
2737		/* assumes fair_sched_class->next == idle_sched_class */
2738		if (unlikely(!p))
2739			p = idle_sched_class.pick_next_task(rq, prev);
2740
2741		return p;
2742	}
2743
2744again:
2745	for_each_class(class) {
2746		p = class->pick_next_task(rq, prev);
2747		if (p) {
2748			if (unlikely(p == RETRY_TASK))
2749				goto again;
2750			return p;
2751		}
2752	}
2753
2754	BUG(); /* the idle class will always have a runnable task */
2755}
2756
2757/*
2758 * __schedule() is the main scheduler function.
2759 *
2760 * The main means of driving the scheduler and thus entering this function are:
2761 *
2762 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2763 *
2764 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765 *      paths. For example, see arch/x86/entry_64.S.
2766 *
2767 *      To drive preemption between tasks, the scheduler sets the flag in timer
2768 *      interrupt handler scheduler_tick().
2769 *
2770 *   3. Wakeups don't really cause entry into schedule(). They add a
2771 *      task to the run-queue and that's it.
2772 *
2773 *      Now, if the new task added to the run-queue preempts the current
2774 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775 *      called on the nearest possible occasion:
2776 *
2777 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2778 *
2779 *         - in syscall or exception context, at the next outmost
2780 *           preempt_enable(). (this might be as soon as the wake_up()'s
2781 *           spin_unlock()!)
2782 *
2783 *         - in IRQ context, return from interrupt-handler to
2784 *           preemptible context
2785 *
2786 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2787 *         then at the next:
2788 *
2789 *          - cond_resched() call
2790 *          - explicit schedule() call
2791 *          - return from syscall or exception to user-space
2792 *          - return from interrupt-handler to user-space
2793 */
2794static void __sched __schedule(void)
2795{
2796	struct task_struct *prev, *next;
2797	unsigned long *switch_count;
2798	struct rq *rq;
2799	int cpu;
2800
2801need_resched:
2802	preempt_disable();
2803	cpu = smp_processor_id();
2804	rq = cpu_rq(cpu);
2805	rcu_note_context_switch(cpu);
2806	prev = rq->curr;
2807
2808	schedule_debug(prev);
2809
2810	if (sched_feat(HRTICK))
2811		hrtick_clear(rq);
2812
2813	/*
2814	 * Make sure that signal_pending_state()->signal_pending() below
2815	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816	 * done by the caller to avoid the race with signal_wake_up().
2817	 */
2818	smp_mb__before_spinlock();
2819	raw_spin_lock_irq(&rq->lock);
2820
2821	switch_count = &prev->nivcsw;
2822	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2823		if (unlikely(signal_pending_state(prev->state, prev))) {
2824			prev->state = TASK_RUNNING;
2825		} else {
2826			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2827			prev->on_rq = 0;
2828
2829			/*
2830			 * If a worker went to sleep, notify and ask workqueue
2831			 * whether it wants to wake up a task to maintain
2832			 * concurrency.
2833			 */
2834			if (prev->flags & PF_WQ_WORKER) {
2835				struct task_struct *to_wakeup;
2836
2837				to_wakeup = wq_worker_sleeping(prev, cpu);
2838				if (to_wakeup)
2839					try_to_wake_up_local(to_wakeup);
2840			}
2841		}
2842		switch_count = &prev->nvcsw;
2843	}
2844
2845	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2846		update_rq_clock(rq);
2847
2848	next = pick_next_task(rq, prev);
2849	clear_tsk_need_resched(prev);
2850	clear_preempt_need_resched();
2851	rq->skip_clock_update = 0;
2852
2853	if (likely(prev != next)) {
2854		rq->nr_switches++;
2855		rq->curr = next;
2856		++*switch_count;
2857
2858		context_switch(rq, prev, next); /* unlocks the rq */
2859		/*
2860		 * The context switch have flipped the stack from under us
2861		 * and restored the local variables which were saved when
2862		 * this task called schedule() in the past. prev == current
2863		 * is still correct, but it can be moved to another cpu/rq.
2864		 */
2865		cpu = smp_processor_id();
2866		rq = cpu_rq(cpu);
2867	} else
2868		raw_spin_unlock_irq(&rq->lock);
2869
2870	post_schedule(rq);
2871
2872	sched_preempt_enable_no_resched();
2873	if (need_resched())
2874		goto need_resched;
2875}
2876
2877static inline void sched_submit_work(struct task_struct *tsk)
2878{
2879	if (!tsk->state || tsk_is_pi_blocked(tsk))
2880		return;
2881	/*
2882	 * If we are going to sleep and we have plugged IO queued,
2883	 * make sure to submit it to avoid deadlocks.
2884	 */
2885	if (blk_needs_flush_plug(tsk))
2886		blk_schedule_flush_plug(tsk);
2887}
2888
2889asmlinkage __visible void __sched schedule(void)
2890{
2891	struct task_struct *tsk = current;
2892
2893	sched_submit_work(tsk);
2894	__schedule();
2895}
2896EXPORT_SYMBOL(schedule);
2897
2898#ifdef CONFIG_CONTEXT_TRACKING
2899asmlinkage __visible void __sched schedule_user(void)
2900{
2901	/*
2902	 * If we come here after a random call to set_need_resched(),
2903	 * or we have been woken up remotely but the IPI has not yet arrived,
2904	 * we haven't yet exited the RCU idle mode. Do it here manually until
2905	 * we find a better solution.
2906	 */
2907	user_exit();
2908	schedule();
2909	user_enter();
2910}
2911#endif
2912
2913/**
2914 * schedule_preempt_disabled - called with preemption disabled
2915 *
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2917 */
2918void __sched schedule_preempt_disabled(void)
2919{
2920	sched_preempt_enable_no_resched();
2921	schedule();
2922	preempt_disable();
2923}
2924
2925#ifdef CONFIG_PREEMPT
2926/*
2927 * this is the entry point to schedule() from in-kernel preemption
2928 * off of preempt_enable. Kernel preemptions off return from interrupt
2929 * occur there and call schedule directly.
2930 */
2931asmlinkage __visible void __sched notrace preempt_schedule(void)
2932{
2933	/*
2934	 * If there is a non-zero preempt_count or interrupts are disabled,
2935	 * we do not want to preempt the current task. Just return..
2936	 */
2937	if (likely(!preemptible()))
2938		return;
2939
2940	do {
2941		__preempt_count_add(PREEMPT_ACTIVE);
2942		__schedule();
2943		__preempt_count_sub(PREEMPT_ACTIVE);
2944
2945		/*
2946		 * Check again in case we missed a preemption opportunity
2947		 * between schedule and now.
2948		 */
2949		barrier();
2950	} while (need_resched());
2951}
2952NOKPROBE_SYMBOL(preempt_schedule);
2953EXPORT_SYMBOL(preempt_schedule);
2954#endif /* CONFIG_PREEMPT */
2955
2956/*
2957 * this is the entry point to schedule() from kernel preemption
2958 * off of irq context.
2959 * Note, that this is called and return with irqs disabled. This will
2960 * protect us against recursive calling from irq.
2961 */
2962asmlinkage __visible void __sched preempt_schedule_irq(void)
2963{
2964	enum ctx_state prev_state;
2965
2966	/* Catch callers which need to be fixed */
2967	BUG_ON(preempt_count() || !irqs_disabled());
2968
2969	prev_state = exception_enter();
2970
2971	do {
2972		__preempt_count_add(PREEMPT_ACTIVE);
2973		local_irq_enable();
2974		__schedule();
2975		local_irq_disable();
2976		__preempt_count_sub(PREEMPT_ACTIVE);
2977
2978		/*
2979		 * Check again in case we missed a preemption opportunity
2980		 * between schedule and now.
2981		 */
2982		barrier();
2983	} while (need_resched());
2984
2985	exception_exit(prev_state);
2986}
2987
2988int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2989			  void *key)
2990{
2991	return try_to_wake_up(curr->private, mode, wake_flags);
2992}
2993EXPORT_SYMBOL(default_wake_function);
2994
2995#ifdef CONFIG_RT_MUTEXES
2996
2997/*
2998 * rt_mutex_setprio - set the current priority of a task
2999 * @p: task
3000 * @prio: prio value (kernel-internal form)
3001 *
3002 * This function changes the 'effective' priority of a task. It does
3003 * not touch ->normal_prio like __setscheduler().
3004 *
3005 * Used by the rt_mutex code to implement priority inheritance
3006 * logic. Call site only calls if the priority of the task changed.
3007 */
3008void rt_mutex_setprio(struct task_struct *p, int prio)
3009{
3010	int oldprio, queued, running, enqueue_flag = 0;
3011	struct rq *rq;
3012	const struct sched_class *prev_class;
3013
3014	BUG_ON(prio > MAX_PRIO);
3015
3016	rq = __task_rq_lock(p);
3017
3018	/*
3019	 * Idle task boosting is a nono in general. There is one
3020	 * exception, when PREEMPT_RT and NOHZ is active:
3021	 *
3022	 * The idle task calls get_next_timer_interrupt() and holds
3023	 * the timer wheel base->lock on the CPU and another CPU wants
3024	 * to access the timer (probably to cancel it). We can safely
3025	 * ignore the boosting request, as the idle CPU runs this code
3026	 * with interrupts disabled and will complete the lock
3027	 * protected section without being interrupted. So there is no
3028	 * real need to boost.
3029	 */
3030	if (unlikely(p == rq->idle)) {
3031		WARN_ON(p != rq->curr);
3032		WARN_ON(p->pi_blocked_on);
3033		goto out_unlock;
3034	}
3035
3036	trace_sched_pi_setprio(p, prio);
3037	oldprio = p->prio;
3038	prev_class = p->sched_class;
3039	queued = task_on_rq_queued(p);
3040	running = task_current(rq, p);
3041	if (queued)
3042		dequeue_task(rq, p, 0);
3043	if (running)
3044		put_prev_task(rq, p);
3045
3046	/*
3047	 * Boosting condition are:
3048	 * 1. -rt task is running and holds mutex A
3049	 *      --> -dl task blocks on mutex A
3050	 *
3051	 * 2. -dl task is running and holds mutex A
3052	 *      --> -dl task blocks on mutex A and could preempt the
3053	 *          running task
3054	 */
3055	if (dl_prio(prio)) {
3056		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3057		if (!dl_prio(p->normal_prio) ||
3058		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3059			p->dl.dl_boosted = 1;
3060			p->dl.dl_throttled = 0;
3061			enqueue_flag = ENQUEUE_REPLENISH;
3062		} else
3063			p->dl.dl_boosted = 0;
3064		p->sched_class = &dl_sched_class;
3065	} else if (rt_prio(prio)) {
3066		if (dl_prio(oldprio))
3067			p->dl.dl_boosted = 0;
3068		if (oldprio < prio)
3069			enqueue_flag = ENQUEUE_HEAD;
3070		p->sched_class = &rt_sched_class;
3071	} else {
3072		if (dl_prio(oldprio))
3073			p->dl.dl_boosted = 0;
3074		p->sched_class = &fair_sched_class;
3075	}
3076
3077	p->prio = prio;
3078
3079	if (running)
3080		p->sched_class->set_curr_task(rq);
3081	if (queued)
3082		enqueue_task(rq, p, enqueue_flag);
3083
3084	check_class_changed(rq, p, prev_class, oldprio);
3085out_unlock:
3086	__task_rq_unlock(rq);
3087}
3088#endif
3089
3090void set_user_nice(struct task_struct *p, long nice)
3091{
3092	int old_prio, delta, queued;
3093	unsigned long flags;
3094	struct rq *rq;
3095
3096	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3097		return;
3098	/*
3099	 * We have to be careful, if called from sys_setpriority(),
3100	 * the task might be in the middle of scheduling on another CPU.
3101	 */
3102	rq = task_rq_lock(p, &flags);
3103	/*
3104	 * The RT priorities are set via sched_setscheduler(), but we still
3105	 * allow the 'normal' nice value to be set - but as expected
3106	 * it wont have any effect on scheduling until the task is
3107	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3108	 */
3109	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3110		p->static_prio = NICE_TO_PRIO(nice);
3111		goto out_unlock;
3112	}
3113	queued = task_on_rq_queued(p);
3114	if (queued)
3115		dequeue_task(rq, p, 0);
3116
3117	p->static_prio = NICE_TO_PRIO(nice);
3118	set_load_weight(p);
3119	old_prio = p->prio;
3120	p->prio = effective_prio(p);
3121	delta = p->prio - old_prio;
3122
3123	if (queued) {
3124		enqueue_task(rq, p, 0);
3125		/*
3126		 * If the task increased its priority or is running and
3127		 * lowered its priority, then reschedule its CPU:
3128		 */
3129		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3130			resched_curr(rq);
3131	}
3132out_unlock:
3133	task_rq_unlock(rq, p, &flags);
3134}
3135EXPORT_SYMBOL(set_user_nice);
3136
3137/*
3138 * can_nice - check if a task can reduce its nice value
3139 * @p: task
3140 * @nice: nice value
3141 */
3142int can_nice(const struct task_struct *p, const int nice)
3143{
3144	/* convert nice value [19,-20] to rlimit style value [1,40] */
3145	int nice_rlim = nice_to_rlimit(nice);
3146
3147	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3148		capable(CAP_SYS_NICE));
3149}
3150
3151#ifdef __ARCH_WANT_SYS_NICE
3152
3153/*
3154 * sys_nice - change the priority of the current process.
3155 * @increment: priority increment
3156 *
3157 * sys_setpriority is a more generic, but much slower function that
3158 * does similar things.
3159 */
3160SYSCALL_DEFINE1(nice, int, increment)
3161{
3162	long nice, retval;
3163
3164	/*
3165	 * Setpriority might change our priority at the same moment.
3166	 * We don't have to worry. Conceptually one call occurs first
3167	 * and we have a single winner.
3168	 */
3169	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3170	nice = task_nice(current) + increment;
3171
3172	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3173	if (increment < 0 && !can_nice(current, nice))
3174		return -EPERM;
3175
3176	retval = security_task_setnice(current, nice);
3177	if (retval)
3178		return retval;
3179
3180	set_user_nice(current, nice);
3181	return 0;
3182}
3183
3184#endif
3185
3186/**
3187 * task_prio - return the priority value of a given task.
3188 * @p: the task in question.
3189 *
3190 * Return: The priority value as seen by users in /proc.
3191 * RT tasks are offset by -200. Normal tasks are centered
3192 * around 0, value goes from -16 to +15.
3193 */
3194int task_prio(const struct task_struct *p)
3195{
3196	return p->prio - MAX_RT_PRIO;
3197}
3198
3199/**
3200 * idle_cpu - is a given cpu idle currently?
3201 * @cpu: the processor in question.
3202 *
3203 * Return: 1 if the CPU is currently idle. 0 otherwise.
3204 */
3205int idle_cpu(int cpu)
3206{
3207	struct rq *rq = cpu_rq(cpu);
3208
3209	if (rq->curr != rq->idle)
3210		return 0;
3211
3212	if (rq->nr_running)
3213		return 0;
3214
3215#ifdef CONFIG_SMP
3216	if (!llist_empty(&rq->wake_list))
3217		return 0;
3218#endif
3219
3220	return 1;
3221}
3222
3223/**
3224 * idle_task - return the idle task for a given cpu.
3225 * @cpu: the processor in question.
3226 *
3227 * Return: The idle task for the cpu @cpu.
3228 */
3229struct task_struct *idle_task(int cpu)
3230{
3231	return cpu_rq(cpu)->idle;
3232}
3233
3234/**
3235 * find_process_by_pid - find a process with a matching PID value.
3236 * @pid: the pid in question.
3237 *
3238 * The task of @pid, if found. %NULL otherwise.
3239 */
3240static struct task_struct *find_process_by_pid(pid_t pid)
3241{
3242	return pid ? find_task_by_vpid(pid) : current;
3243}
3244
3245/*
3246 * This function initializes the sched_dl_entity of a newly becoming
3247 * SCHED_DEADLINE task.
3248 *
3249 * Only the static values are considered here, the actual runtime and the
3250 * absolute deadline will be properly calculated when the task is enqueued
3251 * for the first time with its new policy.
3252 */
3253static void
3254__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3255{
3256	struct sched_dl_entity *dl_se = &p->dl;
3257
3258	init_dl_task_timer(dl_se);
3259	dl_se->dl_runtime = attr->sched_runtime;
3260	dl_se->dl_deadline = attr->sched_deadline;
3261	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3262	dl_se->flags = attr->sched_flags;
3263	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3264	dl_se->dl_throttled = 0;
3265	dl_se->dl_new = 1;
3266	dl_se->dl_yielded = 0;
3267}
3268
3269/*
3270 * sched_setparam() passes in -1 for its policy, to let the functions
3271 * it calls know not to change it.
3272 */
3273#define SETPARAM_POLICY	-1
3274
3275static void __setscheduler_params(struct task_struct *p,
3276		const struct sched_attr *attr)
3277{
3278	int policy = attr->sched_policy;
3279
3280	if (policy == SETPARAM_POLICY)
3281		policy = p->policy;
3282
3283	p->policy = policy;
3284
3285	if (dl_policy(policy))
3286		__setparam_dl(p, attr);
3287	else if (fair_policy(policy))
3288		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3289
3290	/*
3291	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3292	 * !rt_policy. Always setting this ensures that things like
3293	 * getparam()/getattr() don't report silly values for !rt tasks.
3294	 */
3295	p->rt_priority = attr->sched_priority;
3296	p->normal_prio = normal_prio(p);
3297	set_load_weight(p);
3298}
3299
3300/* Actually do priority change: must hold pi & rq lock. */
3301static void __setscheduler(struct rq *rq, struct task_struct *p,
3302			   const struct sched_attr *attr)
3303{
3304	__setscheduler_params(p, attr);
3305
3306	/*
3307	 * If we get here, there was no pi waiters boosting the
3308	 * task. It is safe to use the normal prio.
3309	 */
3310	p->prio = normal_prio(p);
3311
3312	if (dl_prio(p->prio))
3313		p->sched_class = &dl_sched_class;
3314	else if (rt_prio(p->prio))
3315		p->sched_class = &rt_sched_class;
3316	else
3317		p->sched_class = &fair_sched_class;
3318}
3319
3320static void
3321__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3322{
3323	struct sched_dl_entity *dl_se = &p->dl;
3324
3325	attr->sched_priority = p->rt_priority;
3326	attr->sched_runtime = dl_se->dl_runtime;
3327	attr->sched_deadline = dl_se->dl_deadline;
3328	attr->sched_period = dl_se->dl_period;
3329	attr->sched_flags = dl_se->flags;
3330}
3331
3332/*
3333 * This function validates the new parameters of a -deadline task.
3334 * We ask for the deadline not being zero, and greater or equal
3335 * than the runtime, as well as the period of being zero or
3336 * greater than deadline. Furthermore, we have to be sure that
3337 * user parameters are above the internal resolution of 1us (we
3338 * check sched_runtime only since it is always the smaller one) and
3339 * below 2^63 ns (we have to check both sched_deadline and
3340 * sched_period, as the latter can be zero).
3341 */
3342static bool
3343__checkparam_dl(const struct sched_attr *attr)
3344{
3345	/* deadline != 0 */
3346	if (attr->sched_deadline == 0)
3347		return false;
3348
3349	/*
3350	 * Since we truncate DL_SCALE bits, make sure we're at least
3351	 * that big.
3352	 */
3353	if (attr->sched_runtime < (1ULL << DL_SCALE))
3354		return false;
3355
3356	/*
3357	 * Since we use the MSB for wrap-around and sign issues, make
3358	 * sure it's not set (mind that period can be equal to zero).
3359	 */
3360	if (attr->sched_deadline & (1ULL << 63) ||
3361	    attr->sched_period & (1ULL << 63))
3362		return false;
3363
3364	/* runtime <= deadline <= period (if period != 0) */
3365	if ((attr->sched_period != 0 &&
3366	     attr->sched_period < attr->sched_deadline) ||
3367	    attr->sched_deadline < attr->sched_runtime)
3368		return false;
3369
3370	return true;
3371}
3372
3373/*
3374 * check the target process has a UID that matches the current process's
3375 */
3376static bool check_same_owner(struct task_struct *p)
3377{
3378	const struct cred *cred = current_cred(), *pcred;
3379	bool match;
3380
3381	rcu_read_lock();
3382	pcred = __task_cred(p);
3383	match = (uid_eq(cred->euid, pcred->euid) ||
3384		 uid_eq(cred->euid, pcred->uid));
3385	rcu_read_unlock();
3386	return match;
3387}
3388
3389static int __sched_setscheduler(struct task_struct *p,
3390				const struct sched_attr *attr,
3391				bool user)
3392{
3393	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3394		      MAX_RT_PRIO - 1 - attr->sched_priority;
3395	int retval, oldprio, oldpolicy = -1, queued, running;
3396	int policy = attr->sched_policy;
3397	unsigned long flags;
3398	const struct sched_class *prev_class;
3399	struct rq *rq;
3400	int reset_on_fork;
3401
3402	/* may grab non-irq protected spin_locks */
3403	BUG_ON(in_interrupt());
3404recheck:
3405	/* double check policy once rq lock held */
3406	if (policy < 0) {
3407		reset_on_fork = p->sched_reset_on_fork;
3408		policy = oldpolicy = p->policy;
3409	} else {
3410		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3411
3412		if (policy != SCHED_DEADLINE &&
3413				policy != SCHED_FIFO && policy != SCHED_RR &&
3414				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3415				policy != SCHED_IDLE)
3416			return -EINVAL;
3417	}
3418
3419	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3420		return -EINVAL;
3421
3422	/*
3423	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3424	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3425	 * SCHED_BATCH and SCHED_IDLE is 0.
3426	 */
3427	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3428	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3429		return -EINVAL;
3430	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3431	    (rt_policy(policy) != (attr->sched_priority != 0)))
3432		return -EINVAL;
3433
3434	/*
3435	 * Allow unprivileged RT tasks to decrease priority:
3436	 */
3437	if (user && !capable(CAP_SYS_NICE)) {
3438		if (fair_policy(policy)) {
3439			if (attr->sched_nice < task_nice(p) &&
3440			    !can_nice(p, attr->sched_nice))
3441				return -EPERM;
3442		}
3443
3444		if (rt_policy(policy)) {
3445			unsigned long rlim_rtprio =
3446					task_rlimit(p, RLIMIT_RTPRIO);
3447
3448			/* can't set/change the rt policy */
3449			if (policy != p->policy && !rlim_rtprio)
3450				return -EPERM;
3451
3452			/* can't increase priority */
3453			if (attr->sched_priority > p->rt_priority &&
3454			    attr->sched_priority > rlim_rtprio)
3455				return -EPERM;
3456		}
3457
3458		 /*
3459		  * Can't set/change SCHED_DEADLINE policy at all for now
3460		  * (safest behavior); in the future we would like to allow
3461		  * unprivileged DL tasks to increase their relative deadline
3462		  * or reduce their runtime (both ways reducing utilization)
3463		  */
3464		if (dl_policy(policy))
3465			return -EPERM;
3466
3467		/*
3468		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3469		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3470		 */
3471		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3472			if (!can_nice(p, task_nice(p)))
3473				return -EPERM;
3474		}
3475
3476		/* can't change other user's priorities */
3477		if (!check_same_owner(p))
3478			return -EPERM;
3479
3480		/* Normal users shall not reset the sched_reset_on_fork flag */
3481		if (p->sched_reset_on_fork && !reset_on_fork)
3482			return -EPERM;
3483	}
3484
3485	if (user) {
3486		retval = security_task_setscheduler(p);
3487		if (retval)
3488			return retval;
3489	}
3490
3491	/*
3492	 * make sure no PI-waiters arrive (or leave) while we are
3493	 * changing the priority of the task:
3494	 *
3495	 * To be able to change p->policy safely, the appropriate
3496	 * runqueue lock must be held.
3497	 */
3498	rq = task_rq_lock(p, &flags);
3499
3500	/*
3501	 * Changing the policy of the stop threads its a very bad idea
3502	 */
3503	if (p == rq->stop) {
3504		task_rq_unlock(rq, p, &flags);
3505		return -EINVAL;
3506	}
3507
3508	/*
3509	 * If not changing anything there's no need to proceed further,
3510	 * but store a possible modification of reset_on_fork.
3511	 */
3512	if (unlikely(policy == p->policy)) {
3513		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3514			goto change;
3515		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3516			goto change;
3517		if (dl_policy(policy))
3518			goto change;
3519
3520		p->sched_reset_on_fork = reset_on_fork;
3521		task_rq_unlock(rq, p, &flags);
3522		return 0;
3523	}
3524change:
3525
3526	if (user) {
3527#ifdef CONFIG_RT_GROUP_SCHED
3528		/*
3529		 * Do not allow realtime tasks into groups that have no runtime
3530		 * assigned.
3531		 */
3532		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3533				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3534				!task_group_is_autogroup(task_group(p))) {
3535			task_rq_unlock(rq, p, &flags);
3536			return -EPERM;
3537		}
3538#endif
3539#ifdef CONFIG_SMP
3540		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3541			cpumask_t *span = rq->rd->span;
3542
3543			/*
3544			 * Don't allow tasks with an affinity mask smaller than
3545			 * the entire root_domain to become SCHED_DEADLINE. We
3546			 * will also fail if there's no bandwidth available.
3547			 */
3548			if (!cpumask_subset(span, &p->cpus_allowed) ||
3549			    rq->rd->dl_bw.bw == 0) {
3550				task_rq_unlock(rq, p, &flags);
3551				return -EPERM;
3552			}
3553		}
3554#endif
3555	}
3556
3557	/* recheck policy now with rq lock held */
3558	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3559		policy = oldpolicy = -1;
3560		task_rq_unlock(rq, p, &flags);
3561		goto recheck;
3562	}
3563
3564	/*
3565	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3566	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3567	 * is available.
3568	 */
3569	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3570		task_rq_unlock(rq, p, &flags);
3571		return -EBUSY;
3572	}
3573
3574	p->sched_reset_on_fork = reset_on_fork;
3575	oldprio = p->prio;
3576
3577	/*
3578	 * Special case for priority boosted tasks.
3579	 *
3580	 * If the new priority is lower or equal (user space view)
3581	 * than the current (boosted) priority, we just store the new
3582	 * normal parameters and do not touch the scheduler class and
3583	 * the runqueue. This will be done when the task deboost
3584	 * itself.
3585	 */
3586	if (rt_mutex_check_prio(p, newprio)) {
3587		__setscheduler_params(p, attr);
3588		task_rq_unlock(rq, p, &flags);
3589		return 0;
3590	}
3591
3592	queued = task_on_rq_queued(p);
3593	running = task_current(rq, p);
3594	if (queued)
3595		dequeue_task(rq, p, 0);
3596	if (running)
3597		put_prev_task(rq, p);
3598
3599	prev_class = p->sched_class;
3600	__setscheduler(rq, p, attr);
3601
3602	if (running)
3603		p->sched_class->set_curr_task(rq);
3604	if (queued) {
3605		/*
3606		 * We enqueue to tail when the priority of a task is
3607		 * increased (user space view).
3608		 */
3609		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3610	}
3611
3612	check_class_changed(rq, p, prev_class, oldprio);
3613	task_rq_unlock(rq, p, &flags);
3614
3615	rt_mutex_adjust_pi(p);
3616
3617	return 0;
3618}
3619
3620static int _sched_setscheduler(struct task_struct *p, int policy,
3621			       const struct sched_param *param, bool check)
3622{
3623	struct sched_attr attr = {
3624		.sched_policy   = policy,
3625		.sched_priority = param->sched_priority,
3626		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3627	};
3628
3629	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3630	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3631		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3632		policy &= ~SCHED_RESET_ON_FORK;
3633		attr.sched_policy = policy;
3634	}
3635
3636	return __sched_setscheduler(p, &attr, check);
3637}
3638/**
3639 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3640 * @p: the task in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
3644 * Return: 0 on success. An error code otherwise.
3645 *
3646 * NOTE that the task may be already dead.
3647 */
3648int sched_setscheduler(struct task_struct *p, int policy,
3649		       const struct sched_param *param)
3650{
3651	return _sched_setscheduler(p, policy, param, true);
3652}
3653EXPORT_SYMBOL_GPL(sched_setscheduler);
3654
3655int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3656{
3657	return __sched_setscheduler(p, attr, true);
3658}
3659EXPORT_SYMBOL_GPL(sched_setattr);
3660
3661/**
3662 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3663 * @p: the task in question.
3664 * @policy: new policy.
3665 * @param: structure containing the new RT priority.
3666 *
3667 * Just like sched_setscheduler, only don't bother checking if the
3668 * current context has permission.  For example, this is needed in
3669 * stop_machine(): we create temporary high priority worker threads,
3670 * but our caller might not have that capability.
3671 *
3672 * Return: 0 on success. An error code otherwise.
3673 */
3674int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3675			       const struct sched_param *param)
3676{
3677	return _sched_setscheduler(p, policy, param, false);
3678}
3679
3680static int
3681do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3682{
3683	struct sched_param lparam;
3684	struct task_struct *p;
3685	int retval;
3686
3687	if (!param || pid < 0)
3688		return -EINVAL;
3689	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3690		return -EFAULT;
3691
3692	rcu_read_lock();
3693	retval = -ESRCH;
3694	p = find_process_by_pid(pid);
3695	if (p != NULL)
3696		retval = sched_setscheduler(p, policy, &lparam);
3697	rcu_read_unlock();
3698
3699	return retval;
3700}
3701
3702/*
3703 * Mimics kernel/events/core.c perf_copy_attr().
3704 */
3705static int sched_copy_attr(struct sched_attr __user *uattr,
3706			   struct sched_attr *attr)
3707{
3708	u32 size;
3709	int ret;
3710
3711	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3712		return -EFAULT;
3713
3714	/*
3715	 * zero the full structure, so that a short copy will be nice.
3716	 */
3717	memset(attr, 0, sizeof(*attr));
3718
3719	ret = get_user(size, &uattr->size);
3720	if (ret)
3721		return ret;
3722
3723	if (size > PAGE_SIZE)	/* silly large */
3724		goto err_size;
3725
3726	if (!size)		/* abi compat */
3727		size = SCHED_ATTR_SIZE_VER0;
3728
3729	if (size < SCHED_ATTR_SIZE_VER0)
3730		goto err_size;
3731
3732	/*
3733	 * If we're handed a bigger struct than we know of,
3734	 * ensure all the unknown bits are 0 - i.e. new
3735	 * user-space does not rely on any kernel feature
3736	 * extensions we dont know about yet.
3737	 */
3738	if (size > sizeof(*attr)) {
3739		unsigned char __user *addr;
3740		unsigned char __user *end;
3741		unsigned char val;
3742
3743		addr = (void __user *)uattr + sizeof(*attr);
3744		end  = (void __user *)uattr + size;
3745
3746		for (; addr < end; addr++) {
3747			ret = get_user(val, addr);
3748			if (ret)
3749				return ret;
3750			if (val)
3751				goto err_size;
3752		}
3753		size = sizeof(*attr);
3754	}
3755
3756	ret = copy_from_user(attr, uattr, size);
3757	if (ret)
3758		return -EFAULT;
3759
3760	/*
3761	 * XXX: do we want to be lenient like existing syscalls; or do we want
3762	 * to be strict and return an error on out-of-bounds values?
3763	 */
3764	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3765
3766	return 0;
3767
3768err_size:
3769	put_user(sizeof(*attr), &uattr->size);
3770	return -E2BIG;
3771}
3772
3773/**
3774 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775 * @pid: the pid in question.
3776 * @policy: new policy.
3777 * @param: structure containing the new RT priority.
3778 *
3779 * Return: 0 on success. An error code otherwise.
3780 */
3781SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3782		struct sched_param __user *, param)
3783{
3784	/* negative values for policy are not valid */
3785	if (policy < 0)
3786		return -EINVAL;
3787
3788	return do_sched_setscheduler(pid, policy, param);
3789}
3790
3791/**
3792 * sys_sched_setparam - set/change the RT priority of a thread
3793 * @pid: the pid in question.
3794 * @param: structure containing the new RT priority.
3795 *
3796 * Return: 0 on success. An error code otherwise.
3797 */
3798SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3799{
3800	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3801}
3802
3803/**
3804 * sys_sched_setattr - same as above, but with extended sched_attr
3805 * @pid: the pid in question.
3806 * @uattr: structure containing the extended parameters.
3807 * @flags: for future extension.
3808 */
3809SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3810			       unsigned int, flags)
3811{
3812	struct sched_attr attr;
3813	struct task_struct *p;
3814	int retval;
3815
3816	if (!uattr || pid < 0 || flags)
3817		return -EINVAL;
3818
3819	retval = sched_copy_attr(uattr, &attr);
3820	if (retval)
3821		return retval;
3822
3823	if ((int)attr.sched_policy < 0)
3824		return -EINVAL;
3825
3826	rcu_read_lock();
3827	retval = -ESRCH;
3828	p = find_process_by_pid(pid);
3829	if (p != NULL)
3830		retval = sched_setattr(p, &attr);
3831	rcu_read_unlock();
3832
3833	return retval;
3834}
3835
3836/**
3837 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3838 * @pid: the pid in question.
3839 *
3840 * Return: On success, the policy of the thread. Otherwise, a negative error
3841 * code.
3842 */
3843SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3844{
3845	struct task_struct *p;
3846	int retval;
3847
3848	if (pid < 0)
3849		return -EINVAL;
3850
3851	retval = -ESRCH;
3852	rcu_read_lock();
3853	p = find_process_by_pid(pid);
3854	if (p) {
3855		retval = security_task_getscheduler(p);
3856		if (!retval)
3857			retval = p->policy
3858				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3859	}
3860	rcu_read_unlock();
3861	return retval;
3862}
3863
3864/**
3865 * sys_sched_getparam - get the RT priority of a thread
3866 * @pid: the pid in question.
3867 * @param: structure containing the RT priority.
3868 *
3869 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3870 * code.
3871 */
3872SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3873{
3874	struct sched_param lp = { .sched_priority = 0 };
3875	struct task_struct *p;
3876	int retval;
3877
3878	if (!param || pid < 0)
3879		return -EINVAL;
3880
3881	rcu_read_lock();
3882	p = find_process_by_pid(pid);
3883	retval = -ESRCH;
3884	if (!p)
3885		goto out_unlock;
3886
3887	retval = security_task_getscheduler(p);
3888	if (retval)
3889		goto out_unlock;
3890
3891	if (task_has_rt_policy(p))
3892		lp.sched_priority = p->rt_priority;
3893	rcu_read_unlock();
3894
3895	/*
3896	 * This one might sleep, we cannot do it with a spinlock held ...
3897	 */
3898	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3899
3900	return retval;
3901
3902out_unlock:
3903	rcu_read_unlock();
3904	return retval;
3905}
3906
3907static int sched_read_attr(struct sched_attr __user *uattr,
3908			   struct sched_attr *attr,
3909			   unsigned int usize)
3910{
3911	int ret;
3912
3913	if (!access_ok(VERIFY_WRITE, uattr, usize))
3914		return -EFAULT;
3915
3916	/*
3917	 * If we're handed a smaller struct than we know of,
3918	 * ensure all the unknown bits are 0 - i.e. old
3919	 * user-space does not get uncomplete information.
3920	 */
3921	if (usize < sizeof(*attr)) {
3922		unsigned char *addr;
3923		unsigned char *end;
3924
3925		addr = (void *)attr + usize;
3926		end  = (void *)attr + sizeof(*attr);
3927
3928		for (; addr < end; addr++) {
3929			if (*addr)
3930				return -EFBIG;
3931		}
3932
3933		attr->size = usize;
3934	}
3935
3936	ret = copy_to_user(uattr, attr, attr->size);
3937	if (ret)
3938		return -EFAULT;
3939
3940	return 0;
3941}
3942
3943/**
3944 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3945 * @pid: the pid in question.
3946 * @uattr: structure containing the extended parameters.
3947 * @size: sizeof(attr) for fwd/bwd comp.
3948 * @flags: for future extension.
3949 */
3950SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3951		unsigned int, size, unsigned int, flags)
3952{
3953	struct sched_attr attr = {
3954		.size = sizeof(struct sched_attr),
3955	};
3956	struct task_struct *p;
3957	int retval;
3958
3959	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3960	    size < SCHED_ATTR_SIZE_VER0 || flags)
3961		return -EINVAL;
3962
3963	rcu_read_lock();
3964	p = find_process_by_pid(pid);
3965	retval = -ESRCH;
3966	if (!p)
3967		goto out_unlock;
3968
3969	retval = security_task_getscheduler(p);
3970	if (retval)
3971		goto out_unlock;
3972
3973	attr.sched_policy = p->policy;
3974	if (p->sched_reset_on_fork)
3975		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3976	if (task_has_dl_policy(p))
3977		__getparam_dl(p, &attr);
3978	else if (task_has_rt_policy(p))
3979		attr.sched_priority = p->rt_priority;
3980	else
3981		attr.sched_nice = task_nice(p);
3982
3983	rcu_read_unlock();
3984
3985	retval = sched_read_attr(uattr, &attr, size);
3986	return retval;
3987
3988out_unlock:
3989	rcu_read_unlock();
3990	return retval;
3991}
3992
3993long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3994{
3995	cpumask_var_t cpus_allowed, new_mask;
3996	struct task_struct *p;
3997	int retval;
3998
3999	rcu_read_lock();
4000
4001	p = find_process_by_pid(pid);
4002	if (!p) {
4003		rcu_read_unlock();
4004		return -ESRCH;
4005	}
4006
4007	/* Prevent p going away */
4008	get_task_struct(p);
4009	rcu_read_unlock();
4010
4011	if (p->flags & PF_NO_SETAFFINITY) {
4012		retval = -EINVAL;
4013		goto out_put_task;
4014	}
4015	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4016		retval = -ENOMEM;
4017		goto out_put_task;
4018	}
4019	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4020		retval = -ENOMEM;
4021		goto out_free_cpus_allowed;
4022	}
4023	retval = -EPERM;
4024	if (!check_same_owner(p)) {
4025		rcu_read_lock();
4026		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4027			rcu_read_unlock();
4028			goto out_free_new_mask;
4029		}
4030		rcu_read_unlock();
4031	}
4032
4033	retval = security_task_setscheduler(p);
4034	if (retval)
4035		goto out_free_new_mask;
4036
4037
4038	cpuset_cpus_allowed(p, cpus_allowed);
4039	cpumask_and(new_mask, in_mask, cpus_allowed);
4040
4041	/*
4042	 * Since bandwidth control happens on root_domain basis,
4043	 * if admission test is enabled, we only admit -deadline
4044	 * tasks allowed to run on all the CPUs in the task's
4045	 * root_domain.
4046	 */
4047#ifdef CONFIG_SMP
4048	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4049		rcu_read_lock();
4050		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4051			retval = -EBUSY;
4052			rcu_read_unlock();
4053			goto out_free_new_mask;
4054		}
4055		rcu_read_unlock();
4056	}
4057#endif
4058again:
4059	retval = set_cpus_allowed_ptr(p, new_mask);
4060
4061	if (!retval) {
4062		cpuset_cpus_allowed(p, cpus_allowed);
4063		if (!cpumask_subset(new_mask, cpus_allowed)) {
4064			/*
4065			 * We must have raced with a concurrent cpuset
4066			 * update. Just reset the cpus_allowed to the
4067			 * cpuset's cpus_allowed
4068			 */
4069			cpumask_copy(new_mask, cpus_allowed);
4070			goto again;
4071		}
4072	}
4073out_free_new_mask:
4074	free_cpumask_var(new_mask);
4075out_free_cpus_allowed:
4076	free_cpumask_var(cpus_allowed);
4077out_put_task:
4078	put_task_struct(p);
4079	return retval;
4080}
4081
4082static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4083			     struct cpumask *new_mask)
4084{
4085	if (len < cpumask_size())
4086		cpumask_clear(new_mask);
4087	else if (len > cpumask_size())
4088		len = cpumask_size();
4089
4090	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4091}
4092
4093/**
4094 * sys_sched_setaffinity - set the cpu affinity of a process
4095 * @pid: pid of the process
4096 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4097 * @user_mask_ptr: user-space pointer to the new cpu mask
4098 *
4099 * Return: 0 on success. An error code otherwise.
4100 */
4101SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4102		unsigned long __user *, user_mask_ptr)
4103{
4104	cpumask_var_t new_mask;
4105	int retval;
4106
4107	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4108		return -ENOMEM;
4109
4110	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4111	if (retval == 0)
4112		retval = sched_setaffinity(pid, new_mask);
4113	free_cpumask_var(new_mask);
4114	return retval;
4115}
4116
4117long sched_getaffinity(pid_t pid, struct cpumask *mask)
4118{
4119	struct task_struct *p;
4120	unsigned long flags;
4121	int retval;
4122
4123	rcu_read_lock();
4124
4125	retval = -ESRCH;
4126	p = find_process_by_pid(pid);
4127	if (!p)
4128		goto out_unlock;
4129
4130	retval = security_task_getscheduler(p);
4131	if (retval)
4132		goto out_unlock;
4133
4134	raw_spin_lock_irqsave(&p->pi_lock, flags);
4135	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4136	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4137
4138out_unlock:
4139	rcu_read_unlock();
4140
4141	return retval;
4142}
4143
4144/**
4145 * sys_sched_getaffinity - get the cpu affinity of a process
4146 * @pid: pid of the process
4147 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4148 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4149 *
4150 * Return: 0 on success. An error code otherwise.
4151 */
4152SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4153		unsigned long __user *, user_mask_ptr)
4154{
4155	int ret;
4156	cpumask_var_t mask;
4157
4158	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4159		return -EINVAL;
4160	if (len & (sizeof(unsigned long)-1))
4161		return -EINVAL;
4162
4163	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4164		return -ENOMEM;
4165
4166	ret = sched_getaffinity(pid, mask);
4167	if (ret == 0) {
4168		size_t retlen = min_t(size_t, len, cpumask_size());
4169
4170		if (copy_to_user(user_mask_ptr, mask, retlen))
4171			ret = -EFAULT;
4172		else
4173			ret = retlen;
4174	}
4175	free_cpumask_var(mask);
4176
4177	return ret;
4178}
4179
4180/**
4181 * sys_sched_yield - yield the current processor to other threads.
4182 *
4183 * This function yields the current CPU to other tasks. If there are no
4184 * other threads running on this CPU then this function will return.
4185 *
4186 * Return: 0.
4187 */
4188SYSCALL_DEFINE0(sched_yield)
4189{
4190	struct rq *rq = this_rq_lock();
4191
4192	schedstat_inc(rq, yld_count);
4193	current->sched_class->yield_task(rq);
4194
4195	/*
4196	 * Since we are going to call schedule() anyway, there's
4197	 * no need to preempt or enable interrupts:
4198	 */
4199	__release(rq->lock);
4200	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4201	do_raw_spin_unlock(&rq->lock);
4202	sched_preempt_enable_no_resched();
4203
4204	schedule();
4205
4206	return 0;
4207}
4208
4209static void __cond_resched(void)
4210{
4211	__preempt_count_add(PREEMPT_ACTIVE);
4212	__schedule();
4213	__preempt_count_sub(PREEMPT_ACTIVE);
4214}
4215
4216int __sched _cond_resched(void)
4217{
4218	if (should_resched()) {
4219		__cond_resched();
4220		return 1;
4221	}
4222	return 0;
4223}
4224EXPORT_SYMBOL(_cond_resched);
4225
4226/*
4227 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4228 * call schedule, and on return reacquire the lock.
4229 *
4230 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4231 * operations here to prevent schedule() from being called twice (once via
4232 * spin_unlock(), once by hand).
4233 */
4234int __cond_resched_lock(spinlock_t *lock)
4235{
4236	int resched = should_resched();
4237	int ret = 0;
4238
4239	lockdep_assert_held(lock);
4240
4241	if (spin_needbreak(lock) || resched) {
4242		spin_unlock(lock);
4243		if (resched)
4244			__cond_resched();
4245		else
4246			cpu_relax();
4247		ret = 1;
4248		spin_lock(lock);
4249	}
4250	return ret;
4251}
4252EXPORT_SYMBOL(__cond_resched_lock);
4253
4254int __sched __cond_resched_softirq(void)
4255{
4256	BUG_ON(!in_softirq());
4257
4258	if (should_resched()) {
4259		local_bh_enable();
4260		__cond_resched();
4261		local_bh_disable();
4262		return 1;
4263	}
4264	return 0;
4265}
4266EXPORT_SYMBOL(__cond_resched_softirq);
4267
4268/**
4269 * yield - yield the current processor to other threads.
4270 *
4271 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4272 *
4273 * The scheduler is at all times free to pick the calling task as the most
4274 * eligible task to run, if removing the yield() call from your code breaks
4275 * it, its already broken.
4276 *
4277 * Typical broken usage is:
4278 *
4279 * while (!event)
4280 * 	yield();
4281 *
4282 * where one assumes that yield() will let 'the other' process run that will
4283 * make event true. If the current task is a SCHED_FIFO task that will never
4284 * happen. Never use yield() as a progress guarantee!!
4285 *
4286 * If you want to use yield() to wait for something, use wait_event().
4287 * If you want to use yield() to be 'nice' for others, use cond_resched().
4288 * If you still want to use yield(), do not!
4289 */
4290void __sched yield(void)
4291{
4292	set_current_state(TASK_RUNNING);
4293	sys_sched_yield();
4294}
4295EXPORT_SYMBOL(yield);
4296
4297/**
4298 * yield_to - yield the current processor to another thread in
4299 * your thread group, or accelerate that thread toward the
4300 * processor it's on.
4301 * @p: target task
4302 * @preempt: whether task preemption is allowed or not
4303 *
4304 * It's the caller's job to ensure that the target task struct
4305 * can't go away on us before we can do any checks.
4306 *
4307 * Return:
4308 *	true (>0) if we indeed boosted the target task.
4309 *	false (0) if we failed to boost the target.
4310 *	-ESRCH if there's no task to yield to.
4311 */
4312int __sched yield_to(struct task_struct *p, bool preempt)
4313{
4314	struct task_struct *curr = current;
4315	struct rq *rq, *p_rq;
4316	unsigned long flags;
4317	int yielded = 0;
4318
4319	local_irq_save(flags);
4320	rq = this_rq();
4321
4322again:
4323	p_rq = task_rq(p);
4324	/*
4325	 * If we're the only runnable task on the rq and target rq also
4326	 * has only one task, there's absolutely no point in yielding.
4327	 */
4328	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4329		yielded = -ESRCH;
4330		goto out_irq;
4331	}
4332
4333	double_rq_lock(rq, p_rq);
4334	if (task_rq(p) != p_rq) {
4335		double_rq_unlock(rq, p_rq);
4336		goto again;
4337	}
4338
4339	if (!curr->sched_class->yield_to_task)
4340		goto out_unlock;
4341
4342	if (curr->sched_class != p->sched_class)
4343		goto out_unlock;
4344
4345	if (task_running(p_rq, p) || p->state)
4346		goto out_unlock;
4347
4348	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4349	if (yielded) {
4350		schedstat_inc(rq, yld_count);
4351		/*
4352		 * Make p's CPU reschedule; pick_next_entity takes care of
4353		 * fairness.
4354		 */
4355		if (preempt && rq != p_rq)
4356			resched_curr(p_rq);
4357	}
4358
4359out_unlock:
4360	double_rq_unlock(rq, p_rq);
4361out_irq:
4362	local_irq_restore(flags);
4363
4364	if (yielded > 0)
4365		schedule();
4366
4367	return yielded;
4368}
4369EXPORT_SYMBOL_GPL(yield_to);
4370
4371/*
4372 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4373 * that process accounting knows that this is a task in IO wait state.
4374 */
4375void __sched io_schedule(void)
4376{
4377	struct rq *rq = raw_rq();
4378
4379	delayacct_blkio_start();
4380	atomic_inc(&rq->nr_iowait);
4381	blk_flush_plug(current);
4382	current->in_iowait = 1;
4383	schedule();
4384	current->in_iowait = 0;
4385	atomic_dec(&rq->nr_iowait);
4386	delayacct_blkio_end();
4387}
4388EXPORT_SYMBOL(io_schedule);
4389
4390long __sched io_schedule_timeout(long timeout)
4391{
4392	struct rq *rq = raw_rq();
4393	long ret;
4394
4395	delayacct_blkio_start();
4396	atomic_inc(&rq->nr_iowait);
4397	blk_flush_plug(current);
4398	current->in_iowait = 1;
4399	ret = schedule_timeout(timeout);
4400	current->in_iowait = 0;
4401	atomic_dec(&rq->nr_iowait);
4402	delayacct_blkio_end();
4403	return ret;
4404}
4405
4406/**
4407 * sys_sched_get_priority_max - return maximum RT priority.
4408 * @policy: scheduling class.
4409 *
4410 * Return: On success, this syscall returns the maximum
4411 * rt_priority that can be used by a given scheduling class.
4412 * On failure, a negative error code is returned.
4413 */
4414SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4415{
4416	int ret = -EINVAL;
4417
4418	switch (policy) {
4419	case SCHED_FIFO:
4420	case SCHED_RR:
4421		ret = MAX_USER_RT_PRIO-1;
4422		break;
4423	case SCHED_DEADLINE:
4424	case SCHED_NORMAL:
4425	case SCHED_BATCH:
4426	case SCHED_IDLE:
4427		ret = 0;
4428		break;
4429	}
4430	return ret;
4431}
4432
4433/**
4434 * sys_sched_get_priority_min - return minimum RT priority.
4435 * @policy: scheduling class.
4436 *
4437 * Return: On success, this syscall returns the minimum
4438 * rt_priority that can be used by a given scheduling class.
4439 * On failure, a negative error code is returned.
4440 */
4441SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4442{
4443	int ret = -EINVAL;
4444
4445	switch (policy) {
4446	case SCHED_FIFO:
4447	case SCHED_RR:
4448		ret = 1;
4449		break;
4450	case SCHED_DEADLINE:
4451	case SCHED_NORMAL:
4452	case SCHED_BATCH:
4453	case SCHED_IDLE:
4454		ret = 0;
4455	}
4456	return ret;
4457}
4458
4459/**
4460 * sys_sched_rr_get_interval - return the default timeslice of a process.
4461 * @pid: pid of the process.
4462 * @interval: userspace pointer to the timeslice value.
4463 *
4464 * this syscall writes the default timeslice value of a given process
4465 * into the user-space timespec buffer. A value of '0' means infinity.
4466 *
4467 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4468 * an error code.
4469 */
4470SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4471		struct timespec __user *, interval)
4472{
4473	struct task_struct *p;
4474	unsigned int time_slice;
4475	unsigned long flags;
4476	struct rq *rq;
4477	int retval;
4478	struct timespec t;
4479
4480	if (pid < 0)
4481		return -EINVAL;
4482
4483	retval = -ESRCH;
4484	rcu_read_lock();
4485	p = find_process_by_pid(pid);
4486	if (!p)
4487		goto out_unlock;
4488
4489	retval = security_task_getscheduler(p);
4490	if (retval)
4491		goto out_unlock;
4492
4493	rq = task_rq_lock(p, &flags);
4494	time_slice = 0;
4495	if (p->sched_class->get_rr_interval)
4496		time_slice = p->sched_class->get_rr_interval(rq, p);
4497	task_rq_unlock(rq, p, &flags);
4498
4499	rcu_read_unlock();
4500	jiffies_to_timespec(time_slice, &t);
4501	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4502	return retval;
4503
4504out_unlock:
4505	rcu_read_unlock();
4506	return retval;
4507}
4508
4509static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4510
4511void sched_show_task(struct task_struct *p)
4512{
4513	unsigned long free = 0;
4514	int ppid;
4515	unsigned state;
4516
4517	state = p->state ? __ffs(p->state) + 1 : 0;
4518	printk(KERN_INFO "%-15.15s %c", p->comm,
4519		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4520#if BITS_PER_LONG == 32
4521	if (state == TASK_RUNNING)
4522		printk(KERN_CONT " running  ");
4523	else
4524		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4525#else
4526	if (state == TASK_RUNNING)
4527		printk(KERN_CONT "  running task    ");
4528	else
4529		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4530#endif
4531#ifdef CONFIG_DEBUG_STACK_USAGE
4532	free = stack_not_used(p);
4533#endif
4534	rcu_read_lock();
4535	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4536	rcu_read_unlock();
4537	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4538		task_pid_nr(p), ppid,
4539		(unsigned long)task_thread_info(p)->flags);
4540
4541	print_worker_info(KERN_INFO, p);
4542	show_stack(p, NULL);
4543}
4544
4545void show_state_filter(unsigned long state_filter)
4546{
4547	struct task_struct *g, *p;
4548
4549#if BITS_PER_LONG == 32
4550	printk(KERN_INFO
4551		"  task                PC stack   pid father\n");
4552#else
4553	printk(KERN_INFO
4554		"  task                        PC stack   pid father\n");
4555#endif
4556	rcu_read_lock();
4557	for_each_process_thread(g, p) {
4558		/*
4559		 * reset the NMI-timeout, listing all files on a slow
4560		 * console might take a lot of time:
4561		 */
4562		touch_nmi_watchdog();
4563		if (!state_filter || (p->state & state_filter))
4564			sched_show_task(p);
4565	}
4566
4567	touch_all_softlockup_watchdogs();
4568
4569#ifdef CONFIG_SCHED_DEBUG
4570	sysrq_sched_debug_show();
4571#endif
4572	rcu_read_unlock();
4573	/*
4574	 * Only show locks if all tasks are dumped:
4575	 */
4576	if (!state_filter)
4577		debug_show_all_locks();
4578}
4579
4580void init_idle_bootup_task(struct task_struct *idle)
4581{
4582	idle->sched_class = &idle_sched_class;
4583}
4584
4585/**
4586 * init_idle - set up an idle thread for a given CPU
4587 * @idle: task in question
4588 * @cpu: cpu the idle task belongs to
4589 *
4590 * NOTE: this function does not set the idle thread's NEED_RESCHED
4591 * flag, to make booting more robust.
4592 */
4593void init_idle(struct task_struct *idle, int cpu)
4594{
4595	struct rq *rq = cpu_rq(cpu);
4596	unsigned long flags;
4597
4598	raw_spin_lock_irqsave(&rq->lock, flags);
4599
4600	__sched_fork(0, idle);
4601	idle->state = TASK_RUNNING;
4602	idle->se.exec_start = sched_clock();
4603
4604	do_set_cpus_allowed(idle, cpumask_of(cpu));
4605	/*
4606	 * We're having a chicken and egg problem, even though we are
4607	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4608	 * lockdep check in task_group() will fail.
4609	 *
4610	 * Similar case to sched_fork(). / Alternatively we could
4611	 * use task_rq_lock() here and obtain the other rq->lock.
4612	 *
4613	 * Silence PROVE_RCU
4614	 */
4615	rcu_read_lock();
4616	__set_task_cpu(idle, cpu);
4617	rcu_read_unlock();
4618
4619	rq->curr = rq->idle = idle;
4620	idle->on_rq = TASK_ON_RQ_QUEUED;
4621#if defined(CONFIG_SMP)
4622	idle->on_cpu = 1;
4623#endif
4624	raw_spin_unlock_irqrestore(&rq->lock, flags);
4625
4626	/* Set the preempt count _outside_ the spinlocks! */
4627	init_idle_preempt_count(idle, cpu);
4628
4629	/*
4630	 * The idle tasks have their own, simple scheduling class:
4631	 */
4632	idle->sched_class = &idle_sched_class;
4633	ftrace_graph_init_idle_task(idle, cpu);
4634	vtime_init_idle(idle, cpu);
4635#if defined(CONFIG_SMP)
4636	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4637#endif
4638}
4639
4640#ifdef CONFIG_SMP
4641/*
4642 * move_queued_task - move a queued task to new rq.
4643 *
4644 * Returns (locked) new rq. Old rq's lock is released.
4645 */
4646static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4647{
4648	struct rq *rq = task_rq(p);
4649
4650	lockdep_assert_held(&rq->lock);
4651
4652	dequeue_task(rq, p, 0);
4653	p->on_rq = TASK_ON_RQ_MIGRATING;
4654	set_task_cpu(p, new_cpu);
4655	raw_spin_unlock(&rq->lock);
4656
4657	rq = cpu_rq(new_cpu);
4658
4659	raw_spin_lock(&rq->lock);
4660	BUG_ON(task_cpu(p) != new_cpu);
4661	p->on_rq = TASK_ON_RQ_QUEUED;
4662	enqueue_task(rq, p, 0);
4663	check_preempt_curr(rq, p, 0);
4664
4665	return rq;
4666}
4667
4668void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4669{
4670	if (p->sched_class && p->sched_class->set_cpus_allowed)
4671		p->sched_class->set_cpus_allowed(p, new_mask);
4672
4673	cpumask_copy(&p->cpus_allowed, new_mask);
4674	p->nr_cpus_allowed = cpumask_weight(new_mask);
4675}
4676
4677/*
4678 * This is how migration works:
4679 *
4680 * 1) we invoke migration_cpu_stop() on the target CPU using
4681 *    stop_one_cpu().
4682 * 2) stopper starts to run (implicitly forcing the migrated thread
4683 *    off the CPU)
4684 * 3) it checks whether the migrated task is still in the wrong runqueue.
4685 * 4) if it's in the wrong runqueue then the migration thread removes
4686 *    it and puts it into the right queue.
4687 * 5) stopper completes and stop_one_cpu() returns and the migration
4688 *    is done.
4689 */
4690
4691/*
4692 * Change a given task's CPU affinity. Migrate the thread to a
4693 * proper CPU and schedule it away if the CPU it's executing on
4694 * is removed from the allowed bitmask.
4695 *
4696 * NOTE: the caller must have a valid reference to the task, the
4697 * task must not exit() & deallocate itself prematurely. The
4698 * call is not atomic; no spinlocks may be held.
4699 */
4700int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4701{
4702	unsigned long flags;
4703	struct rq *rq;
4704	unsigned int dest_cpu;
4705	int ret = 0;
4706
4707	rq = task_rq_lock(p, &flags);
4708
4709	if (cpumask_equal(&p->cpus_allowed, new_mask))
4710		goto out;
4711
4712	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4713		ret = -EINVAL;
4714		goto out;
4715	}
4716
4717	do_set_cpus_allowed(p, new_mask);
4718
4719	/* Can the task run on the task's current CPU? If so, we're done */
4720	if (cpumask_test_cpu(task_cpu(p), new_mask))
4721		goto out;
4722
4723	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4724	if (task_running(rq, p) || p->state == TASK_WAKING) {
4725		struct migration_arg arg = { p, dest_cpu };
4726		/* Need help from migration thread: drop lock and wait. */
4727		task_rq_unlock(rq, p, &flags);
4728		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4729		tlb_migrate_finish(p->mm);
4730		return 0;
4731	} else if (task_on_rq_queued(p))
4732		rq = move_queued_task(p, dest_cpu);
4733out:
4734	task_rq_unlock(rq, p, &flags);
4735
4736	return ret;
4737}
4738EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4739
4740/*
4741 * Move (not current) task off this cpu, onto dest cpu. We're doing
4742 * this because either it can't run here any more (set_cpus_allowed()
4743 * away from this CPU, or CPU going down), or because we're
4744 * attempting to rebalance this task on exec (sched_exec).
4745 *
4746 * So we race with normal scheduler movements, but that's OK, as long
4747 * as the task is no longer on this CPU.
4748 *
4749 * Returns non-zero if task was successfully migrated.
4750 */
4751static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4752{
4753	struct rq *rq;
4754	int ret = 0;
4755
4756	if (unlikely(!cpu_active(dest_cpu)))
4757		return ret;
4758
4759	rq = cpu_rq(src_cpu);
4760
4761	raw_spin_lock(&p->pi_lock);
4762	raw_spin_lock(&rq->lock);
4763	/* Already moved. */
4764	if (task_cpu(p) != src_cpu)
4765		goto done;
4766
4767	/* Affinity changed (again). */
4768	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4769		goto fail;
4770
4771	/*
4772	 * If we're not on a rq, the next wake-up will ensure we're
4773	 * placed properly.
4774	 */
4775	if (task_on_rq_queued(p))
4776		rq = move_queued_task(p, dest_cpu);
4777done:
4778	ret = 1;
4779fail:
4780	raw_spin_unlock(&rq->lock);
4781	raw_spin_unlock(&p->pi_lock);
4782	return ret;
4783}
4784
4785#ifdef CONFIG_NUMA_BALANCING
4786/* Migrate current task p to target_cpu */
4787int migrate_task_to(struct task_struct *p, int target_cpu)
4788{
4789	struct migration_arg arg = { p, target_cpu };
4790	int curr_cpu = task_cpu(p);
4791
4792	if (curr_cpu == target_cpu)
4793		return 0;
4794
4795	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4796		return -EINVAL;
4797
4798	/* TODO: This is not properly updating schedstats */
4799
4800	trace_sched_move_numa(p, curr_cpu, target_cpu);
4801	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4802}
4803
4804/*
4805 * Requeue a task on a given node and accurately track the number of NUMA
4806 * tasks on the runqueues
4807 */
4808void sched_setnuma(struct task_struct *p, int nid)
4809{
4810	struct rq *rq;
4811	unsigned long flags;
4812	bool queued, running;
4813
4814	rq = task_rq_lock(p, &flags);
4815	queued = task_on_rq_queued(p);
4816	running = task_current(rq, p);
4817
4818	if (queued)
4819		dequeue_task(rq, p, 0);
4820	if (running)
4821		put_prev_task(rq, p);
4822
4823	p->numa_preferred_nid = nid;
4824
4825	if (running)
4826		p->sched_class->set_curr_task(rq);
4827	if (queued)
4828		enqueue_task(rq, p, 0);
4829	task_rq_unlock(rq, p, &flags);
4830}
4831#endif
4832
4833/*
4834 * migration_cpu_stop - this will be executed by a highprio stopper thread
4835 * and performs thread migration by bumping thread off CPU then
4836 * 'pushing' onto another runqueue.
4837 */
4838static int migration_cpu_stop(void *data)
4839{
4840	struct migration_arg *arg = data;
4841
4842	/*
4843	 * The original target cpu might have gone down and we might
4844	 * be on another cpu but it doesn't matter.
4845	 */
4846	local_irq_disable();
4847	/*
4848	 * We need to explicitly wake pending tasks before running
4849	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4850	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4851	 */
4852	sched_ttwu_pending();
4853	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4854	local_irq_enable();
4855	return 0;
4856}
4857
4858#ifdef CONFIG_HOTPLUG_CPU
4859
4860/*
4861 * Ensures that the idle task is using init_mm right before its cpu goes
4862 * offline.
4863 */
4864void idle_task_exit(void)
4865{
4866	struct mm_struct *mm = current->active_mm;
4867
4868	BUG_ON(cpu_online(smp_processor_id()));
4869
4870	if (mm != &init_mm) {
4871		switch_mm(mm, &init_mm, current);
4872		finish_arch_post_lock_switch();
4873	}
4874	mmdrop(mm);
4875}
4876
4877/*
4878 * Since this CPU is going 'away' for a while, fold any nr_active delta
4879 * we might have. Assumes we're called after migrate_tasks() so that the
4880 * nr_active count is stable.
4881 *
4882 * Also see the comment "Global load-average calculations".
4883 */
4884static void calc_load_migrate(struct rq *rq)
4885{
4886	long delta = calc_load_fold_active(rq);
4887	if (delta)
4888		atomic_long_add(delta, &calc_load_tasks);
4889}
4890
4891static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4892{
4893}
4894
4895static const struct sched_class fake_sched_class = {
4896	.put_prev_task = put_prev_task_fake,
4897};
4898
4899static struct task_struct fake_task = {
4900	/*
4901	 * Avoid pull_{rt,dl}_task()
4902	 */
4903	.prio = MAX_PRIO + 1,
4904	.sched_class = &fake_sched_class,
4905};
4906
4907/*
4908 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4909 * try_to_wake_up()->select_task_rq().
4910 *
4911 * Called with rq->lock held even though we'er in stop_machine() and
4912 * there's no concurrency possible, we hold the required locks anyway
4913 * because of lock validation efforts.
4914 */
4915static void migrate_tasks(unsigned int dead_cpu)
4916{
4917	struct rq *rq = cpu_rq(dead_cpu);
4918	struct task_struct *next, *stop = rq->stop;
4919	int dest_cpu;
4920
4921	/*
4922	 * Fudge the rq selection such that the below task selection loop
4923	 * doesn't get stuck on the currently eligible stop task.
4924	 *
4925	 * We're currently inside stop_machine() and the rq is either stuck
4926	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4927	 * either way we should never end up calling schedule() until we're
4928	 * done here.
4929	 */
4930	rq->stop = NULL;
4931
4932	/*
4933	 * put_prev_task() and pick_next_task() sched
4934	 * class method both need to have an up-to-date
4935	 * value of rq->clock[_task]
4936	 */
4937	update_rq_clock(rq);
4938
4939	for ( ; ; ) {
4940		/*
4941		 * There's this thread running, bail when that's the only
4942		 * remaining thread.
4943		 */
4944		if (rq->nr_running == 1)
4945			break;
4946
4947		next = pick_next_task(rq, &fake_task);
4948		BUG_ON(!next);
4949		next->sched_class->put_prev_task(rq, next);
4950
4951		/* Find suitable destination for @next, with force if needed. */
4952		dest_cpu = select_fallback_rq(dead_cpu, next);
4953		raw_spin_unlock(&rq->lock);
4954
4955		__migrate_task(next, dead_cpu, dest_cpu);
4956
4957		raw_spin_lock(&rq->lock);
4958	}
4959
4960	rq->stop = stop;
4961}
4962
4963#endif /* CONFIG_HOTPLUG_CPU */
4964
4965#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4966
4967static struct ctl_table sd_ctl_dir[] = {
4968	{
4969		.procname	= "sched_domain",
4970		.mode		= 0555,
4971	},
4972	{}
4973};
4974
4975static struct ctl_table sd_ctl_root[] = {
4976	{
4977		.procname	= "kernel",
4978		.mode		= 0555,
4979		.child		= sd_ctl_dir,
4980	},
4981	{}
4982};
4983
4984static struct ctl_table *sd_alloc_ctl_entry(int n)
4985{
4986	struct ctl_table *entry =
4987		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4988
4989	return entry;
4990}
4991
4992static void sd_free_ctl_entry(struct ctl_table **tablep)
4993{
4994	struct ctl_table *entry;
4995
4996	/*
4997	 * In the intermediate directories, both the child directory and
4998	 * procname are dynamically allocated and could fail but the mode
4999	 * will always be set. In the lowest directory the names are
5000	 * static strings and all have proc handlers.
5001	 */
5002	for (entry = *tablep; entry->mode; entry++) {
5003		if (entry->child)
5004			sd_free_ctl_entry(&entry->child);
5005		if (entry->proc_handler == NULL)
5006			kfree(entry->procname);
5007	}
5008
5009	kfree(*tablep);
5010	*tablep = NULL;
5011}
5012
5013static int min_load_idx = 0;
5014static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5015
5016static void
5017set_table_entry(struct ctl_table *entry,
5018		const char *procname, void *data, int maxlen,
5019		umode_t mode, proc_handler *proc_handler,
5020		bool load_idx)
5021{
5022	entry->procname = procname;
5023	entry->data = data;
5024	entry->maxlen = maxlen;
5025	entry->mode = mode;
5026	entry->proc_handler = proc_handler;
5027
5028	if (load_idx) {
5029		entry->extra1 = &min_load_idx;
5030		entry->extra2 = &max_load_idx;
5031	}
5032}
5033
5034static struct ctl_table *
5035sd_alloc_ctl_domain_table(struct sched_domain *sd)
5036{
5037	struct ctl_table *table = sd_alloc_ctl_entry(14);
5038
5039	if (table == NULL)
5040		return NULL;
5041
5042	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5043		sizeof(long), 0644, proc_doulongvec_minmax, false);
5044	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5045		sizeof(long), 0644, proc_doulongvec_minmax, false);
5046	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5047		sizeof(int), 0644, proc_dointvec_minmax, true);
5048	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5049		sizeof(int), 0644, proc_dointvec_minmax, true);
5050	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5051		sizeof(int), 0644, proc_dointvec_minmax, true);
5052	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5053		sizeof(int), 0644, proc_dointvec_minmax, true);
5054	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5055		sizeof(int), 0644, proc_dointvec_minmax, true);
5056	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5057		sizeof(int), 0644, proc_dointvec_minmax, false);
5058	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5059		sizeof(int), 0644, proc_dointvec_minmax, false);
5060	set_table_entry(&table[9], "cache_nice_tries",
5061		&sd->cache_nice_tries,
5062		sizeof(int), 0644, proc_dointvec_minmax, false);
5063	set_table_entry(&table[10], "flags", &sd->flags,
5064		sizeof(int), 0644, proc_dointvec_minmax, false);
5065	set_table_entry(&table[11], "max_newidle_lb_cost",
5066		&sd->max_newidle_lb_cost,
5067		sizeof(long), 0644, proc_doulongvec_minmax, false);
5068	set_table_entry(&table[12], "name", sd->name,
5069		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5070	/* &table[13] is terminator */
5071
5072	return table;
5073}
5074
5075static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5076{
5077	struct ctl_table *entry, *table;
5078	struct sched_domain *sd;
5079	int domain_num = 0, i;
5080	char buf[32];
5081
5082	for_each_domain(cpu, sd)
5083		domain_num++;
5084	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5085	if (table == NULL)
5086		return NULL;
5087
5088	i = 0;
5089	for_each_domain(cpu, sd) {
5090		snprintf(buf, 32, "domain%d", i);
5091		entry->procname = kstrdup(buf, GFP_KERNEL);
5092		entry->mode = 0555;
5093		entry->child = sd_alloc_ctl_domain_table(sd);
5094		entry++;
5095		i++;
5096	}
5097	return table;
5098}
5099
5100static struct ctl_table_header *sd_sysctl_header;
5101static void register_sched_domain_sysctl(void)
5102{
5103	int i, cpu_num = num_possible_cpus();
5104	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5105	char buf[32];
5106
5107	WARN_ON(sd_ctl_dir[0].child);
5108	sd_ctl_dir[0].child = entry;
5109
5110	if (entry == NULL)
5111		return;
5112
5113	for_each_possible_cpu(i) {
5114		snprintf(buf, 32, "cpu%d", i);
5115		entry->procname = kstrdup(buf, GFP_KERNEL);
5116		entry->mode = 0555;
5117		entry->child = sd_alloc_ctl_cpu_table(i);
5118		entry++;
5119	}
5120
5121	WARN_ON(sd_sysctl_header);
5122	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5123}
5124
5125/* may be called multiple times per register */
5126static void unregister_sched_domain_sysctl(void)
5127{
5128	if (sd_sysctl_header)
5129		unregister_sysctl_table(sd_sysctl_header);
5130	sd_sysctl_header = NULL;
5131	if (sd_ctl_dir[0].child)
5132		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5133}
5134#else
5135static void register_sched_domain_sysctl(void)
5136{
5137}
5138static void unregister_sched_domain_sysctl(void)
5139{
5140}
5141#endif
5142
5143static void set_rq_online(struct rq *rq)
5144{
5145	if (!rq->online) {
5146		const struct sched_class *class;
5147
5148		cpumask_set_cpu(rq->cpu, rq->rd->online);
5149		rq->online = 1;
5150
5151		for_each_class(class) {
5152			if (class->rq_online)
5153				class->rq_online(rq);
5154		}
5155	}
5156}
5157
5158static void set_rq_offline(struct rq *rq)
5159{
5160	if (rq->online) {
5161		const struct sched_class *class;
5162
5163		for_each_class(class) {
5164			if (class->rq_offline)
5165				class->rq_offline(rq);
5166		}
5167
5168		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5169		rq->online = 0;
5170	}
5171}
5172
5173/*
5174 * migration_call - callback that gets triggered when a CPU is added.
5175 * Here we can start up the necessary migration thread for the new CPU.
5176 */
5177static int
5178migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5179{
5180	int cpu = (long)hcpu;
5181	unsigned long flags;
5182	struct rq *rq = cpu_rq(cpu);
5183
5184	switch (action & ~CPU_TASKS_FROZEN) {
5185
5186	case CPU_UP_PREPARE:
5187		rq->calc_load_update = calc_load_update;
5188		break;
5189
5190	case CPU_ONLINE:
5191		/* Update our root-domain */
5192		raw_spin_lock_irqsave(&rq->lock, flags);
5193		if (rq->rd) {
5194			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5195
5196			set_rq_online(rq);
5197		}
5198		raw_spin_unlock_irqrestore(&rq->lock, flags);
5199		break;
5200
5201#ifdef CONFIG_HOTPLUG_CPU
5202	case CPU_DYING:
5203		sched_ttwu_pending();
5204		/* Update our root-domain */
5205		raw_spin_lock_irqsave(&rq->lock, flags);
5206		if (rq->rd) {
5207			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5208			set_rq_offline(rq);
5209		}
5210		migrate_tasks(cpu);
5211		BUG_ON(rq->nr_running != 1); /* the migration thread */
5212		raw_spin_unlock_irqrestore(&rq->lock, flags);
5213		break;
5214
5215	case CPU_DEAD:
5216		calc_load_migrate(rq);
5217		break;
5218#endif
5219	}
5220
5221	update_max_interval();
5222
5223	return NOTIFY_OK;
5224}
5225
5226/*
5227 * Register at high priority so that task migration (migrate_all_tasks)
5228 * happens before everything else.  This has to be lower priority than
5229 * the notifier in the perf_event subsystem, though.
5230 */
5231static struct notifier_block migration_notifier = {
5232	.notifier_call = migration_call,
5233	.priority = CPU_PRI_MIGRATION,
5234};
5235
5236static void __cpuinit set_cpu_rq_start_time(void)
5237{
5238	int cpu = smp_processor_id();
5239	struct rq *rq = cpu_rq(cpu);
5240	rq->age_stamp = sched_clock_cpu(cpu);
5241}
5242
5243static int sched_cpu_active(struct notifier_block *nfb,
5244				      unsigned long action, void *hcpu)
5245{
5246	switch (action & ~CPU_TASKS_FROZEN) {
5247	case CPU_STARTING:
5248		set_cpu_rq_start_time();
5249		return NOTIFY_OK;
5250	case CPU_DOWN_FAILED:
5251		set_cpu_active((long)hcpu, true);
5252		return NOTIFY_OK;
5253	default:
5254		return NOTIFY_DONE;
5255	}
5256}
5257
5258static int sched_cpu_inactive(struct notifier_block *nfb,
5259					unsigned long action, void *hcpu)
5260{
5261	unsigned long flags;
5262	long cpu = (long)hcpu;
5263	struct dl_bw *dl_b;
5264
5265	switch (action & ~CPU_TASKS_FROZEN) {
5266	case CPU_DOWN_PREPARE:
5267		set_cpu_active(cpu, false);
5268
5269		/* explicitly allow suspend */
5270		if (!(action & CPU_TASKS_FROZEN)) {
5271			bool overflow;
5272			int cpus;
5273
5274			rcu_read_lock_sched();
5275			dl_b = dl_bw_of(cpu);
5276
5277			raw_spin_lock_irqsave(&dl_b->lock, flags);
5278			cpus = dl_bw_cpus(cpu);
5279			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5280			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5281
5282			rcu_read_unlock_sched();
5283
5284			if (overflow)
5285				return notifier_from_errno(-EBUSY);
5286		}
5287		return NOTIFY_OK;
5288	}
5289
5290	return NOTIFY_DONE;
5291}
5292
5293static int __init migration_init(void)
5294{
5295	void *cpu = (void *)(long)smp_processor_id();
5296	int err;
5297
5298	/* Initialize migration for the boot CPU */
5299	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5300	BUG_ON(err == NOTIFY_BAD);
5301	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5302	register_cpu_notifier(&migration_notifier);
5303
5304	/* Register cpu active notifiers */
5305	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5306	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5307
5308	return 0;
5309}
5310early_initcall(migration_init);
5311#endif
5312
5313#ifdef CONFIG_SMP
5314
5315static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5316
5317#ifdef CONFIG_SCHED_DEBUG
5318
5319static __read_mostly int sched_debug_enabled;
5320
5321static int __init sched_debug_setup(char *str)
5322{
5323	sched_debug_enabled = 1;
5324
5325	return 0;
5326}
5327early_param("sched_debug", sched_debug_setup);
5328
5329static inline bool sched_debug(void)
5330{
5331	return sched_debug_enabled;
5332}
5333
5334static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5335				  struct cpumask *groupmask)
5336{
5337	struct sched_group *group = sd->groups;
5338	char str[256];
5339
5340	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5341	cpumask_clear(groupmask);
5342
5343	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5344
5345	if (!(sd->flags & SD_LOAD_BALANCE)) {
5346		printk("does not load-balance\n");
5347		if (sd->parent)
5348			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5349					" has parent");
5350		return -1;
5351	}
5352
5353	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5354
5355	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5356		printk(KERN_ERR "ERROR: domain->span does not contain "
5357				"CPU%d\n", cpu);
5358	}
5359	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5360		printk(KERN_ERR "ERROR: domain->groups does not contain"
5361				" CPU%d\n", cpu);
5362	}
5363
5364	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5365	do {
5366		if (!group) {
5367			printk("\n");
5368			printk(KERN_ERR "ERROR: group is NULL\n");
5369			break;
5370		}
5371
5372		/*
5373		 * Even though we initialize ->capacity to something semi-sane,
5374		 * we leave capacity_orig unset. This allows us to detect if
5375		 * domain iteration is still funny without causing /0 traps.
5376		 */
5377		if (!group->sgc->capacity_orig) {
5378			printk(KERN_CONT "\n");
5379			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5380			break;
5381		}
5382
5383		if (!cpumask_weight(sched_group_cpus(group))) {
5384			printk(KERN_CONT "\n");
5385			printk(KERN_ERR "ERROR: empty group\n");
5386			break;
5387		}
5388
5389		if (!(sd->flags & SD_OVERLAP) &&
5390		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5391			printk(KERN_CONT "\n");
5392			printk(KERN_ERR "ERROR: repeated CPUs\n");
5393			break;
5394		}
5395
5396		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5397
5398		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5399
5400		printk(KERN_CONT " %s", str);
5401		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5402			printk(KERN_CONT " (cpu_capacity = %d)",
5403				group->sgc->capacity);
5404		}
5405
5406		group = group->next;
5407	} while (group != sd->groups);
5408	printk(KERN_CONT "\n");
5409
5410	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5411		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5412
5413	if (sd->parent &&
5414	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5415		printk(KERN_ERR "ERROR: parent span is not a superset "
5416			"of domain->span\n");
5417	return 0;
5418}
5419
5420static void sched_domain_debug(struct sched_domain *sd, int cpu)
5421{
5422	int level = 0;
5423
5424	if (!sched_debug_enabled)
5425		return;
5426
5427	if (!sd) {
5428		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5429		return;
5430	}
5431
5432	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5433
5434	for (;;) {
5435		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5436			break;
5437		level++;
5438		sd = sd->parent;
5439		if (!sd)
5440			break;
5441	}
5442}
5443#else /* !CONFIG_SCHED_DEBUG */
5444# define sched_domain_debug(sd, cpu) do { } while (0)
5445static inline bool sched_debug(void)
5446{
5447	return false;
5448}
5449#endif /* CONFIG_SCHED_DEBUG */
5450
5451static int sd_degenerate(struct sched_domain *sd)
5452{
5453	if (cpumask_weight(sched_domain_span(sd)) == 1)
5454		return 1;
5455
5456	/* Following flags need at least 2 groups */
5457	if (sd->flags & (SD_LOAD_BALANCE |
5458			 SD_BALANCE_NEWIDLE |
5459			 SD_BALANCE_FORK |
5460			 SD_BALANCE_EXEC |
5461			 SD_SHARE_CPUCAPACITY |
5462			 SD_SHARE_PKG_RESOURCES |
5463			 SD_SHARE_POWERDOMAIN)) {
5464		if (sd->groups != sd->groups->next)
5465			return 0;
5466	}
5467
5468	/* Following flags don't use groups */
5469	if (sd->flags & (SD_WAKE_AFFINE))
5470		return 0;
5471
5472	return 1;
5473}
5474
5475static int
5476sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5477{
5478	unsigned long cflags = sd->flags, pflags = parent->flags;
5479
5480	if (sd_degenerate(parent))
5481		return 1;
5482
5483	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5484		return 0;
5485
5486	/* Flags needing groups don't count if only 1 group in parent */
5487	if (parent->groups == parent->groups->next) {
5488		pflags &= ~(SD_LOAD_BALANCE |
5489				SD_BALANCE_NEWIDLE |
5490				SD_BALANCE_FORK |
5491				SD_BALANCE_EXEC |
5492				SD_SHARE_CPUCAPACITY |
5493				SD_SHARE_PKG_RESOURCES |
5494				SD_PREFER_SIBLING |
5495				SD_SHARE_POWERDOMAIN);
5496		if (nr_node_ids == 1)
5497			pflags &= ~SD_SERIALIZE;
5498	}
5499	if (~cflags & pflags)
5500		return 0;
5501
5502	return 1;
5503}
5504
5505static void free_rootdomain(struct rcu_head *rcu)
5506{
5507	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5508
5509	cpupri_cleanup(&rd->cpupri);
5510	cpudl_cleanup(&rd->cpudl);
5511	free_cpumask_var(rd->dlo_mask);
5512	free_cpumask_var(rd->rto_mask);
5513	free_cpumask_var(rd->online);
5514	free_cpumask_var(rd->span);
5515	kfree(rd);
5516}
5517
5518static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5519{
5520	struct root_domain *old_rd = NULL;
5521	unsigned long flags;
5522
5523	raw_spin_lock_irqsave(&rq->lock, flags);
5524
5525	if (rq->rd) {
5526		old_rd = rq->rd;
5527
5528		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5529			set_rq_offline(rq);
5530
5531		cpumask_clear_cpu(rq->cpu, old_rd->span);
5532
5533		/*
5534		 * If we dont want to free the old_rd yet then
5535		 * set old_rd to NULL to skip the freeing later
5536		 * in this function:
5537		 */
5538		if (!atomic_dec_and_test(&old_rd->refcount))
5539			old_rd = NULL;
5540	}
5541
5542	atomic_inc(&rd->refcount);
5543	rq->rd = rd;
5544
5545	cpumask_set_cpu(rq->cpu, rd->span);
5546	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5547		set_rq_online(rq);
5548
5549	raw_spin_unlock_irqrestore(&rq->lock, flags);
5550
5551	if (old_rd)
5552		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5553}
5554
5555static int init_rootdomain(struct root_domain *rd)
5556{
5557	memset(rd, 0, sizeof(*rd));
5558
5559	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5560		goto out;
5561	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5562		goto free_span;
5563	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5564		goto free_online;
5565	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5566		goto free_dlo_mask;
5567
5568	init_dl_bw(&rd->dl_bw);
5569	if (cpudl_init(&rd->cpudl) != 0)
5570		goto free_dlo_mask;
5571
5572	if (cpupri_init(&rd->cpupri) != 0)
5573		goto free_rto_mask;
5574	return 0;
5575
5576free_rto_mask:
5577	free_cpumask_var(rd->rto_mask);
5578free_dlo_mask:
5579	free_cpumask_var(rd->dlo_mask);
5580free_online:
5581	free_cpumask_var(rd->online);
5582free_span:
5583	free_cpumask_var(rd->span);
5584out:
5585	return -ENOMEM;
5586}
5587
5588/*
5589 * By default the system creates a single root-domain with all cpus as
5590 * members (mimicking the global state we have today).
5591 */
5592struct root_domain def_root_domain;
5593
5594static void init_defrootdomain(void)
5595{
5596	init_rootdomain(&def_root_domain);
5597
5598	atomic_set(&def_root_domain.refcount, 1);
5599}
5600
5601static struct root_domain *alloc_rootdomain(void)
5602{
5603	struct root_domain *rd;
5604
5605	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5606	if (!rd)
5607		return NULL;
5608
5609	if (init_rootdomain(rd) != 0) {
5610		kfree(rd);
5611		return NULL;
5612	}
5613
5614	return rd;
5615}
5616
5617static void free_sched_groups(struct sched_group *sg, int free_sgc)
5618{
5619	struct sched_group *tmp, *first;
5620
5621	if (!sg)
5622		return;
5623
5624	first = sg;
5625	do {
5626		tmp = sg->next;
5627
5628		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5629			kfree(sg->sgc);
5630
5631		kfree(sg);
5632		sg = tmp;
5633	} while (sg != first);
5634}
5635
5636static void free_sched_domain(struct rcu_head *rcu)
5637{
5638	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5639
5640	/*
5641	 * If its an overlapping domain it has private groups, iterate and
5642	 * nuke them all.
5643	 */
5644	if (sd->flags & SD_OVERLAP) {
5645		free_sched_groups(sd->groups, 1);
5646	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5647		kfree(sd->groups->sgc);
5648		kfree(sd->groups);
5649	}
5650	kfree(sd);
5651}
5652
5653static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5654{
5655	call_rcu(&sd->rcu, free_sched_domain);
5656}
5657
5658static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5659{
5660	for (; sd; sd = sd->parent)
5661		destroy_sched_domain(sd, cpu);
5662}
5663
5664/*
5665 * Keep a special pointer to the highest sched_domain that has
5666 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5667 * allows us to avoid some pointer chasing select_idle_sibling().
5668 *
5669 * Also keep a unique ID per domain (we use the first cpu number in
5670 * the cpumask of the domain), this allows us to quickly tell if
5671 * two cpus are in the same cache domain, see cpus_share_cache().
5672 */
5673DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5674DEFINE_PER_CPU(int, sd_llc_size);
5675DEFINE_PER_CPU(int, sd_llc_id);
5676DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5677DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5678DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5679
5680static void update_top_cache_domain(int cpu)
5681{
5682	struct sched_domain *sd;
5683	struct sched_domain *busy_sd = NULL;
5684	int id = cpu;
5685	int size = 1;
5686
5687	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5688	if (sd) {
5689		id = cpumask_first(sched_domain_span(sd));
5690		size = cpumask_weight(sched_domain_span(sd));
5691		busy_sd = sd->parent; /* sd_busy */
5692	}
5693	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5694
5695	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5696	per_cpu(sd_llc_size, cpu) = size;
5697	per_cpu(sd_llc_id, cpu) = id;
5698
5699	sd = lowest_flag_domain(cpu, SD_NUMA);
5700	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5701
5702	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5703	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5704}
5705
5706/*
5707 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5708 * hold the hotplug lock.
5709 */
5710static void
5711cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5712{
5713	struct rq *rq = cpu_rq(cpu);
5714	struct sched_domain *tmp;
5715
5716	/* Remove the sched domains which do not contribute to scheduling. */
5717	for (tmp = sd; tmp; ) {
5718		struct sched_domain *parent = tmp->parent;
5719		if (!parent)
5720			break;
5721
5722		if (sd_parent_degenerate(tmp, parent)) {
5723			tmp->parent = parent->parent;
5724			if (parent->parent)
5725				parent->parent->child = tmp;
5726			/*
5727			 * Transfer SD_PREFER_SIBLING down in case of a
5728			 * degenerate parent; the spans match for this
5729			 * so the property transfers.
5730			 */
5731			if (parent->flags & SD_PREFER_SIBLING)
5732				tmp->flags |= SD_PREFER_SIBLING;
5733			destroy_sched_domain(parent, cpu);
5734		} else
5735			tmp = tmp->parent;
5736	}
5737
5738	if (sd && sd_degenerate(sd)) {
5739		tmp = sd;
5740		sd = sd->parent;
5741		destroy_sched_domain(tmp, cpu);
5742		if (sd)
5743			sd->child = NULL;
5744	}
5745
5746	sched_domain_debug(sd, cpu);
5747
5748	rq_attach_root(rq, rd);
5749	tmp = rq->sd;
5750	rcu_assign_pointer(rq->sd, sd);
5751	destroy_sched_domains(tmp, cpu);
5752
5753	update_top_cache_domain(cpu);
5754}
5755
5756/* cpus with isolated domains */
5757static cpumask_var_t cpu_isolated_map;
5758
5759/* Setup the mask of cpus configured for isolated domains */
5760static int __init isolated_cpu_setup(char *str)
5761{
5762	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5763	cpulist_parse(str, cpu_isolated_map);
5764	return 1;
5765}
5766
5767__setup("isolcpus=", isolated_cpu_setup);
5768
5769struct s_data {
5770	struct sched_domain ** __percpu sd;
5771	struct root_domain	*rd;
5772};
5773
5774enum s_alloc {
5775	sa_rootdomain,
5776	sa_sd,
5777	sa_sd_storage,
5778	sa_none,
5779};
5780
5781/*
5782 * Build an iteration mask that can exclude certain CPUs from the upwards
5783 * domain traversal.
5784 *
5785 * Asymmetric node setups can result in situations where the domain tree is of
5786 * unequal depth, make sure to skip domains that already cover the entire
5787 * range.
5788 *
5789 * In that case build_sched_domains() will have terminated the iteration early
5790 * and our sibling sd spans will be empty. Domains should always include the
5791 * cpu they're built on, so check that.
5792 *
5793 */
5794static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5795{
5796	const struct cpumask *span = sched_domain_span(sd);
5797	struct sd_data *sdd = sd->private;
5798	struct sched_domain *sibling;
5799	int i;
5800
5801	for_each_cpu(i, span) {
5802		sibling = *per_cpu_ptr(sdd->sd, i);
5803		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5804			continue;
5805
5806		cpumask_set_cpu(i, sched_group_mask(sg));
5807	}
5808}
5809
5810/*
5811 * Return the canonical balance cpu for this group, this is the first cpu
5812 * of this group that's also in the iteration mask.
5813 */
5814int group_balance_cpu(struct sched_group *sg)
5815{
5816	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5817}
5818
5819static int
5820build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5821{
5822	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5823	const struct cpumask *span = sched_domain_span(sd);
5824	struct cpumask *covered = sched_domains_tmpmask;
5825	struct sd_data *sdd = sd->private;
5826	struct sched_domain *sibling;
5827	int i;
5828
5829	cpumask_clear(covered);
5830
5831	for_each_cpu(i, span) {
5832		struct cpumask *sg_span;
5833
5834		if (cpumask_test_cpu(i, covered))
5835			continue;
5836
5837		sibling = *per_cpu_ptr(sdd->sd, i);
5838
5839		/* See the comment near build_group_mask(). */
5840		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5841			continue;
5842
5843		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5844				GFP_KERNEL, cpu_to_node(cpu));
5845
5846		if (!sg)
5847			goto fail;
5848
5849		sg_span = sched_group_cpus(sg);
5850		if (sibling->child)
5851			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5852		else
5853			cpumask_set_cpu(i, sg_span);
5854
5855		cpumask_or(covered, covered, sg_span);
5856
5857		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5858		if (atomic_inc_return(&sg->sgc->ref) == 1)
5859			build_group_mask(sd, sg);
5860
5861		/*
5862		 * Initialize sgc->capacity such that even if we mess up the
5863		 * domains and no possible iteration will get us here, we won't
5864		 * die on a /0 trap.
5865		 */
5866		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5867		sg->sgc->capacity_orig = sg->sgc->capacity;
5868
5869		/*
5870		 * Make sure the first group of this domain contains the
5871		 * canonical balance cpu. Otherwise the sched_domain iteration
5872		 * breaks. See update_sg_lb_stats().
5873		 */
5874		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5875		    group_balance_cpu(sg) == cpu)
5876			groups = sg;
5877
5878		if (!first)
5879			first = sg;
5880		if (last)
5881			last->next = sg;
5882		last = sg;
5883		last->next = first;
5884	}
5885	sd->groups = groups;
5886
5887	return 0;
5888
5889fail:
5890	free_sched_groups(first, 0);
5891
5892	return -ENOMEM;
5893}
5894
5895static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5896{
5897	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5898	struct sched_domain *child = sd->child;
5899
5900	if (child)
5901		cpu = cpumask_first(sched_domain_span(child));
5902
5903	if (sg) {
5904		*sg = *per_cpu_ptr(sdd->sg, cpu);
5905		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5906		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5907	}
5908
5909	return cpu;
5910}
5911
5912/*
5913 * build_sched_groups will build a circular linked list of the groups
5914 * covered by the given span, and will set each group's ->cpumask correctly,
5915 * and ->cpu_capacity to 0.
5916 *
5917 * Assumes the sched_domain tree is fully constructed
5918 */
5919static int
5920build_sched_groups(struct sched_domain *sd, int cpu)
5921{
5922	struct sched_group *first = NULL, *last = NULL;
5923	struct sd_data *sdd = sd->private;
5924	const struct cpumask *span = sched_domain_span(sd);
5925	struct cpumask *covered;
5926	int i;
5927
5928	get_group(cpu, sdd, &sd->groups);
5929	atomic_inc(&sd->groups->ref);
5930
5931	if (cpu != cpumask_first(span))
5932		return 0;
5933
5934	lockdep_assert_held(&sched_domains_mutex);
5935	covered = sched_domains_tmpmask;
5936
5937	cpumask_clear(covered);
5938
5939	for_each_cpu(i, span) {
5940		struct sched_group *sg;
5941		int group, j;
5942
5943		if (cpumask_test_cpu(i, covered))
5944			continue;
5945
5946		group = get_group(i, sdd, &sg);
5947		cpumask_setall(sched_group_mask(sg));
5948
5949		for_each_cpu(j, span) {
5950			if (get_group(j, sdd, NULL) != group)
5951				continue;
5952
5953			cpumask_set_cpu(j, covered);
5954			cpumask_set_cpu(j, sched_group_cpus(sg));
5955		}
5956
5957		if (!first)
5958			first = sg;
5959		if (last)
5960			last->next = sg;
5961		last = sg;
5962	}
5963	last->next = first;
5964
5965	return 0;
5966}
5967
5968/*
5969 * Initialize sched groups cpu_capacity.
5970 *
5971 * cpu_capacity indicates the capacity of sched group, which is used while
5972 * distributing the load between different sched groups in a sched domain.
5973 * Typically cpu_capacity for all the groups in a sched domain will be same
5974 * unless there are asymmetries in the topology. If there are asymmetries,
5975 * group having more cpu_capacity will pickup more load compared to the
5976 * group having less cpu_capacity.
5977 */
5978static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5979{
5980	struct sched_group *sg = sd->groups;
5981
5982	WARN_ON(!sg);
5983
5984	do {
5985		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5986		sg = sg->next;
5987	} while (sg != sd->groups);
5988
5989	if (cpu != group_balance_cpu(sg))
5990		return;
5991
5992	update_group_capacity(sd, cpu);
5993	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5994}
5995
5996/*
5997 * Initializers for schedule domains
5998 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5999 */
6000
6001static int default_relax_domain_level = -1;
6002int sched_domain_level_max;
6003
6004static int __init setup_relax_domain_level(char *str)
6005{
6006	if (kstrtoint(str, 0, &default_relax_domain_level))
6007		pr_warn("Unable to set relax_domain_level\n");
6008
6009	return 1;
6010}
6011__setup("relax_domain_level=", setup_relax_domain_level);
6012
6013static void set_domain_attribute(struct sched_domain *sd,
6014				 struct sched_domain_attr *attr)
6015{
6016	int request;
6017
6018	if (!attr || attr->relax_domain_level < 0) {
6019		if (default_relax_domain_level < 0)
6020			return;
6021		else
6022			request = default_relax_domain_level;
6023	} else
6024		request = attr->relax_domain_level;
6025	if (request < sd->level) {
6026		/* turn off idle balance on this domain */
6027		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6028	} else {
6029		/* turn on idle balance on this domain */
6030		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6031	}
6032}
6033
6034static void __sdt_free(const struct cpumask *cpu_map);
6035static int __sdt_alloc(const struct cpumask *cpu_map);
6036
6037static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6038				 const struct cpumask *cpu_map)
6039{
6040	switch (what) {
6041	case sa_rootdomain:
6042		if (!atomic_read(&d->rd->refcount))
6043			free_rootdomain(&d->rd->rcu); /* fall through */
6044	case sa_sd:
6045		free_percpu(d->sd); /* fall through */
6046	case sa_sd_storage:
6047		__sdt_free(cpu_map); /* fall through */
6048	case sa_none:
6049		break;
6050	}
6051}
6052
6053static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6054						   const struct cpumask *cpu_map)
6055{
6056	memset(d, 0, sizeof(*d));
6057
6058	if (__sdt_alloc(cpu_map))
6059		return sa_sd_storage;
6060	d->sd = alloc_percpu(struct sched_domain *);
6061	if (!d->sd)
6062		return sa_sd_storage;
6063	d->rd = alloc_rootdomain();
6064	if (!d->rd)
6065		return sa_sd;
6066	return sa_rootdomain;
6067}
6068
6069/*
6070 * NULL the sd_data elements we've used to build the sched_domain and
6071 * sched_group structure so that the subsequent __free_domain_allocs()
6072 * will not free the data we're using.
6073 */
6074static void claim_allocations(int cpu, struct sched_domain *sd)
6075{
6076	struct sd_data *sdd = sd->private;
6077
6078	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6079	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6080
6081	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6082		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6083
6084	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6085		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6086}
6087
6088#ifdef CONFIG_NUMA
6089static int sched_domains_numa_levels;
6090static int *sched_domains_numa_distance;
6091static struct cpumask ***sched_domains_numa_masks;
6092static int sched_domains_curr_level;
6093#endif
6094
6095/*
6096 * SD_flags allowed in topology descriptions.
6097 *
6098 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6099 * SD_SHARE_PKG_RESOURCES - describes shared caches
6100 * SD_NUMA                - describes NUMA topologies
6101 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6102 *
6103 * Odd one out:
6104 * SD_ASYM_PACKING        - describes SMT quirks
6105 */
6106#define TOPOLOGY_SD_FLAGS		\
6107	(SD_SHARE_CPUCAPACITY |		\
6108	 SD_SHARE_PKG_RESOURCES |	\
6109	 SD_NUMA |			\
6110	 SD_ASYM_PACKING |		\
6111	 SD_SHARE_POWERDOMAIN)
6112
6113static struct sched_domain *
6114sd_init(struct sched_domain_topology_level *tl, int cpu)
6115{
6116	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6117	int sd_weight, sd_flags = 0;
6118
6119#ifdef CONFIG_NUMA
6120	/*
6121	 * Ugly hack to pass state to sd_numa_mask()...
6122	 */
6123	sched_domains_curr_level = tl->numa_level;
6124#endif
6125
6126	sd_weight = cpumask_weight(tl->mask(cpu));
6127
6128	if (tl->sd_flags)
6129		sd_flags = (*tl->sd_flags)();
6130	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6131			"wrong sd_flags in topology description\n"))
6132		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6133
6134	*sd = (struct sched_domain){
6135		.min_interval		= sd_weight,
6136		.max_interval		= 2*sd_weight,
6137		.busy_factor		= 32,
6138		.imbalance_pct		= 125,
6139
6140		.cache_nice_tries	= 0,
6141		.busy_idx		= 0,
6142		.idle_idx		= 0,
6143		.newidle_idx		= 0,
6144		.wake_idx		= 0,
6145		.forkexec_idx		= 0,
6146
6147		.flags			= 1*SD_LOAD_BALANCE
6148					| 1*SD_BALANCE_NEWIDLE
6149					| 1*SD_BALANCE_EXEC
6150					| 1*SD_BALANCE_FORK
6151					| 0*SD_BALANCE_WAKE
6152					| 1*SD_WAKE_AFFINE
6153					| 0*SD_SHARE_CPUCAPACITY
6154					| 0*SD_SHARE_PKG_RESOURCES
6155					| 0*SD_SERIALIZE
6156					| 0*SD_PREFER_SIBLING
6157					| 0*SD_NUMA
6158					| sd_flags
6159					,
6160
6161		.last_balance		= jiffies,
6162		.balance_interval	= sd_weight,
6163		.smt_gain		= 0,
6164		.max_newidle_lb_cost	= 0,
6165		.next_decay_max_lb_cost	= jiffies,
6166#ifdef CONFIG_SCHED_DEBUG
6167		.name			= tl->name,
6168#endif
6169	};
6170
6171	/*
6172	 * Convert topological properties into behaviour.
6173	 */
6174
6175	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6176		sd->imbalance_pct = 110;
6177		sd->smt_gain = 1178; /* ~15% */
6178
6179	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6180		sd->imbalance_pct = 117;
6181		sd->cache_nice_tries = 1;
6182		sd->busy_idx = 2;
6183
6184#ifdef CONFIG_NUMA
6185	} else if (sd->flags & SD_NUMA) {
6186		sd->cache_nice_tries = 2;
6187		sd->busy_idx = 3;
6188		sd->idle_idx = 2;
6189
6190		sd->flags |= SD_SERIALIZE;
6191		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6192			sd->flags &= ~(SD_BALANCE_EXEC |
6193				       SD_BALANCE_FORK |
6194				       SD_WAKE_AFFINE);
6195		}
6196
6197#endif
6198	} else {
6199		sd->flags |= SD_PREFER_SIBLING;
6200		sd->cache_nice_tries = 1;
6201		sd->busy_idx = 2;
6202		sd->idle_idx = 1;
6203	}
6204
6205	sd->private = &tl->data;
6206
6207	return sd;
6208}
6209
6210/*
6211 * Topology list, bottom-up.
6212 */
6213static struct sched_domain_topology_level default_topology[] = {
6214#ifdef CONFIG_SCHED_SMT
6215	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6216#endif
6217#ifdef CONFIG_SCHED_MC
6218	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6219#endif
6220	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6221	{ NULL, },
6222};
6223
6224struct sched_domain_topology_level *sched_domain_topology = default_topology;
6225
6226#define for_each_sd_topology(tl)			\
6227	for (tl = sched_domain_topology; tl->mask; tl++)
6228
6229void set_sched_topology(struct sched_domain_topology_level *tl)
6230{
6231	sched_domain_topology = tl;
6232}
6233
6234#ifdef CONFIG_NUMA
6235
6236static const struct cpumask *sd_numa_mask(int cpu)
6237{
6238	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6239}
6240
6241static void sched_numa_warn(const char *str)
6242{
6243	static int done = false;
6244	int i,j;
6245
6246	if (done)
6247		return;
6248
6249	done = true;
6250
6251	printk(KERN_WARNING "ERROR: %s\n\n", str);
6252
6253	for (i = 0; i < nr_node_ids; i++) {
6254		printk(KERN_WARNING "  ");
6255		for (j = 0; j < nr_node_ids; j++)
6256			printk(KERN_CONT "%02d ", node_distance(i,j));
6257		printk(KERN_CONT "\n");
6258	}
6259	printk(KERN_WARNING "\n");
6260}
6261
6262static bool find_numa_distance(int distance)
6263{
6264	int i;
6265
6266	if (distance == node_distance(0, 0))
6267		return true;
6268
6269	for (i = 0; i < sched_domains_numa_levels; i++) {
6270		if (sched_domains_numa_distance[i] == distance)
6271			return true;
6272	}
6273
6274	return false;
6275}
6276
6277static void sched_init_numa(void)
6278{
6279	int next_distance, curr_distance = node_distance(0, 0);
6280	struct sched_domain_topology_level *tl;
6281	int level = 0;
6282	int i, j, k;
6283
6284	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6285	if (!sched_domains_numa_distance)
6286		return;
6287
6288	/*
6289	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6290	 * unique distances in the node_distance() table.
6291	 *
6292	 * Assumes node_distance(0,j) includes all distances in
6293	 * node_distance(i,j) in order to avoid cubic time.
6294	 */
6295	next_distance = curr_distance;
6296	for (i = 0; i < nr_node_ids; i++) {
6297		for (j = 0; j < nr_node_ids; j++) {
6298			for (k = 0; k < nr_node_ids; k++) {
6299				int distance = node_distance(i, k);
6300
6301				if (distance > curr_distance &&
6302				    (distance < next_distance ||
6303				     next_distance == curr_distance))
6304					next_distance = distance;
6305
6306				/*
6307				 * While not a strong assumption it would be nice to know
6308				 * about cases where if node A is connected to B, B is not
6309				 * equally connected to A.
6310				 */
6311				if (sched_debug() && node_distance(k, i) != distance)
6312					sched_numa_warn("Node-distance not symmetric");
6313
6314				if (sched_debug() && i && !find_numa_distance(distance))
6315					sched_numa_warn("Node-0 not representative");
6316			}
6317			if (next_distance != curr_distance) {
6318				sched_domains_numa_distance[level++] = next_distance;
6319				sched_domains_numa_levels = level;
6320				curr_distance = next_distance;
6321			} else break;
6322		}
6323
6324		/*
6325		 * In case of sched_debug() we verify the above assumption.
6326		 */
6327		if (!sched_debug())
6328			break;
6329	}
6330	/*
6331	 * 'level' contains the number of unique distances, excluding the
6332	 * identity distance node_distance(i,i).
6333	 *
6334	 * The sched_domains_numa_distance[] array includes the actual distance
6335	 * numbers.
6336	 */
6337
6338	/*
6339	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6340	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6341	 * the array will contain less then 'level' members. This could be
6342	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6343	 * in other functions.
6344	 *
6345	 * We reset it to 'level' at the end of this function.
6346	 */
6347	sched_domains_numa_levels = 0;
6348
6349	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6350	if (!sched_domains_numa_masks)
6351		return;
6352
6353	/*
6354	 * Now for each level, construct a mask per node which contains all
6355	 * cpus of nodes that are that many hops away from us.
6356	 */
6357	for (i = 0; i < level; i++) {
6358		sched_domains_numa_masks[i] =
6359			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6360		if (!sched_domains_numa_masks[i])
6361			return;
6362
6363		for (j = 0; j < nr_node_ids; j++) {
6364			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6365			if (!mask)
6366				return;
6367
6368			sched_domains_numa_masks[i][j] = mask;
6369
6370			for (k = 0; k < nr_node_ids; k++) {
6371				if (node_distance(j, k) > sched_domains_numa_distance[i])
6372					continue;
6373
6374				cpumask_or(mask, mask, cpumask_of_node(k));
6375			}
6376		}
6377	}
6378
6379	/* Compute default topology size */
6380	for (i = 0; sched_domain_topology[i].mask; i++);
6381
6382	tl = kzalloc((i + level + 1) *
6383			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6384	if (!tl)
6385		return;
6386
6387	/*
6388	 * Copy the default topology bits..
6389	 */
6390	for (i = 0; sched_domain_topology[i].mask; i++)
6391		tl[i] = sched_domain_topology[i];
6392
6393	/*
6394	 * .. and append 'j' levels of NUMA goodness.
6395	 */
6396	for (j = 0; j < level; i++, j++) {
6397		tl[i] = (struct sched_domain_topology_level){
6398			.mask = sd_numa_mask,
6399			.sd_flags = cpu_numa_flags,
6400			.flags = SDTL_OVERLAP,
6401			.numa_level = j,
6402			SD_INIT_NAME(NUMA)
6403		};
6404	}
6405
6406	sched_domain_topology = tl;
6407
6408	sched_domains_numa_levels = level;
6409}
6410
6411static void sched_domains_numa_masks_set(int cpu)
6412{
6413	int i, j;
6414	int node = cpu_to_node(cpu);
6415
6416	for (i = 0; i < sched_domains_numa_levels; i++) {
6417		for (j = 0; j < nr_node_ids; j++) {
6418			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6419				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6420		}
6421	}
6422}
6423
6424static void sched_domains_numa_masks_clear(int cpu)
6425{
6426	int i, j;
6427	for (i = 0; i < sched_domains_numa_levels; i++) {
6428		for (j = 0; j < nr_node_ids; j++)
6429			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6430	}
6431}
6432
6433/*
6434 * Update sched_domains_numa_masks[level][node] array when new cpus
6435 * are onlined.
6436 */
6437static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6438					   unsigned long action,
6439					   void *hcpu)
6440{
6441	int cpu = (long)hcpu;
6442
6443	switch (action & ~CPU_TASKS_FROZEN) {
6444	case CPU_ONLINE:
6445		sched_domains_numa_masks_set(cpu);
6446		break;
6447
6448	case CPU_DEAD:
6449		sched_domains_numa_masks_clear(cpu);
6450		break;
6451
6452	default:
6453		return NOTIFY_DONE;
6454	}
6455
6456	return NOTIFY_OK;
6457}
6458#else
6459static inline void sched_init_numa(void)
6460{
6461}
6462
6463static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6464					   unsigned long action,
6465					   void *hcpu)
6466{
6467	return 0;
6468}
6469#endif /* CONFIG_NUMA */
6470
6471static int __sdt_alloc(const struct cpumask *cpu_map)
6472{
6473	struct sched_domain_topology_level *tl;
6474	int j;
6475
6476	for_each_sd_topology(tl) {
6477		struct sd_data *sdd = &tl->data;
6478
6479		sdd->sd = alloc_percpu(struct sched_domain *);
6480		if (!sdd->sd)
6481			return -ENOMEM;
6482
6483		sdd->sg = alloc_percpu(struct sched_group *);
6484		if (!sdd->sg)
6485			return -ENOMEM;
6486
6487		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6488		if (!sdd->sgc)
6489			return -ENOMEM;
6490
6491		for_each_cpu(j, cpu_map) {
6492			struct sched_domain *sd;
6493			struct sched_group *sg;
6494			struct sched_group_capacity *sgc;
6495
6496		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6497					GFP_KERNEL, cpu_to_node(j));
6498			if (!sd)
6499				return -ENOMEM;
6500
6501			*per_cpu_ptr(sdd->sd, j) = sd;
6502
6503			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6504					GFP_KERNEL, cpu_to_node(j));
6505			if (!sg)
6506				return -ENOMEM;
6507
6508			sg->next = sg;
6509
6510			*per_cpu_ptr(sdd->sg, j) = sg;
6511
6512			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6513					GFP_KERNEL, cpu_to_node(j));
6514			if (!sgc)
6515				return -ENOMEM;
6516
6517			*per_cpu_ptr(sdd->sgc, j) = sgc;
6518		}
6519	}
6520
6521	return 0;
6522}
6523
6524static void __sdt_free(const struct cpumask *cpu_map)
6525{
6526	struct sched_domain_topology_level *tl;
6527	int j;
6528
6529	for_each_sd_topology(tl) {
6530		struct sd_data *sdd = &tl->data;
6531
6532		for_each_cpu(j, cpu_map) {
6533			struct sched_domain *sd;
6534
6535			if (sdd->sd) {
6536				sd = *per_cpu_ptr(sdd->sd, j);
6537				if (sd && (sd->flags & SD_OVERLAP))
6538					free_sched_groups(sd->groups, 0);
6539				kfree(*per_cpu_ptr(sdd->sd, j));
6540			}
6541
6542			if (sdd->sg)
6543				kfree(*per_cpu_ptr(sdd->sg, j));
6544			if (sdd->sgc)
6545				kfree(*per_cpu_ptr(sdd->sgc, j));
6546		}
6547		free_percpu(sdd->sd);
6548		sdd->sd = NULL;
6549		free_percpu(sdd->sg);
6550		sdd->sg = NULL;
6551		free_percpu(sdd->sgc);
6552		sdd->sgc = NULL;
6553	}
6554}
6555
6556struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6557		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6558		struct sched_domain *child, int cpu)
6559{
6560	struct sched_domain *sd = sd_init(tl, cpu);
6561	if (!sd)
6562		return child;
6563
6564	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6565	if (child) {
6566		sd->level = child->level + 1;
6567		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6568		child->parent = sd;
6569		sd->child = child;
6570
6571		if (!cpumask_subset(sched_domain_span(child),
6572				    sched_domain_span(sd))) {
6573			pr_err("BUG: arch topology borken\n");
6574#ifdef CONFIG_SCHED_DEBUG
6575			pr_err("     the %s domain not a subset of the %s domain\n",
6576					child->name, sd->name);
6577#endif
6578			/* Fixup, ensure @sd has at least @child cpus. */
6579			cpumask_or(sched_domain_span(sd),
6580				   sched_domain_span(sd),
6581				   sched_domain_span(child));
6582		}
6583
6584	}
6585	set_domain_attribute(sd, attr);
6586
6587	return sd;
6588}
6589
6590/*
6591 * Build sched domains for a given set of cpus and attach the sched domains
6592 * to the individual cpus
6593 */
6594static int build_sched_domains(const struct cpumask *cpu_map,
6595			       struct sched_domain_attr *attr)
6596{
6597	enum s_alloc alloc_state;
6598	struct sched_domain *sd;
6599	struct s_data d;
6600	int i, ret = -ENOMEM;
6601
6602	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6603	if (alloc_state != sa_rootdomain)
6604		goto error;
6605
6606	/* Set up domains for cpus specified by the cpu_map. */
6607	for_each_cpu(i, cpu_map) {
6608		struct sched_domain_topology_level *tl;
6609
6610		sd = NULL;
6611		for_each_sd_topology(tl) {
6612			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6613			if (tl == sched_domain_topology)
6614				*per_cpu_ptr(d.sd, i) = sd;
6615			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6616				sd->flags |= SD_OVERLAP;
6617			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6618				break;
6619		}
6620	}
6621
6622	/* Build the groups for the domains */
6623	for_each_cpu(i, cpu_map) {
6624		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6625			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6626			if (sd->flags & SD_OVERLAP) {
6627				if (build_overlap_sched_groups(sd, i))
6628					goto error;
6629			} else {
6630				if (build_sched_groups(sd, i))
6631					goto error;
6632			}
6633		}
6634	}
6635
6636	/* Calculate CPU capacity for physical packages and nodes */
6637	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6638		if (!cpumask_test_cpu(i, cpu_map))
6639			continue;
6640
6641		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6642			claim_allocations(i, sd);
6643			init_sched_groups_capacity(i, sd);
6644		}
6645	}
6646
6647	/* Attach the domains */
6648	rcu_read_lock();
6649	for_each_cpu(i, cpu_map) {
6650		sd = *per_cpu_ptr(d.sd, i);
6651		cpu_attach_domain(sd, d.rd, i);
6652	}
6653	rcu_read_unlock();
6654
6655	ret = 0;
6656error:
6657	__free_domain_allocs(&d, alloc_state, cpu_map);
6658	return ret;
6659}
6660
6661static cpumask_var_t *doms_cur;	/* current sched domains */
6662static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6663static struct sched_domain_attr *dattr_cur;
6664				/* attribues of custom domains in 'doms_cur' */
6665
6666/*
6667 * Special case: If a kmalloc of a doms_cur partition (array of
6668 * cpumask) fails, then fallback to a single sched domain,
6669 * as determined by the single cpumask fallback_doms.
6670 */
6671static cpumask_var_t fallback_doms;
6672
6673/*
6674 * arch_update_cpu_topology lets virtualized architectures update the
6675 * cpu core maps. It is supposed to return 1 if the topology changed
6676 * or 0 if it stayed the same.
6677 */
6678int __weak arch_update_cpu_topology(void)
6679{
6680	return 0;
6681}
6682
6683cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6684{
6685	int i;
6686	cpumask_var_t *doms;
6687
6688	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6689	if (!doms)
6690		return NULL;
6691	for (i = 0; i < ndoms; i++) {
6692		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6693			free_sched_domains(doms, i);
6694			return NULL;
6695		}
6696	}
6697	return doms;
6698}
6699
6700void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6701{
6702	unsigned int i;
6703	for (i = 0; i < ndoms; i++)
6704		free_cpumask_var(doms[i]);
6705	kfree(doms);
6706}
6707
6708/*
6709 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6710 * For now this just excludes isolated cpus, but could be used to
6711 * exclude other special cases in the future.
6712 */
6713static int init_sched_domains(const struct cpumask *cpu_map)
6714{
6715	int err;
6716
6717	arch_update_cpu_topology();
6718	ndoms_cur = 1;
6719	doms_cur = alloc_sched_domains(ndoms_cur);
6720	if (!doms_cur)
6721		doms_cur = &fallback_doms;
6722	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6723	err = build_sched_domains(doms_cur[0], NULL);
6724	register_sched_domain_sysctl();
6725
6726	return err;
6727}
6728
6729/*
6730 * Detach sched domains from a group of cpus specified in cpu_map
6731 * These cpus will now be attached to the NULL domain
6732 */
6733static void detach_destroy_domains(const struct cpumask *cpu_map)
6734{
6735	int i;
6736
6737	rcu_read_lock();
6738	for_each_cpu(i, cpu_map)
6739		cpu_attach_domain(NULL, &def_root_domain, i);
6740	rcu_read_unlock();
6741}
6742
6743/* handle null as "default" */
6744static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6745			struct sched_domain_attr *new, int idx_new)
6746{
6747	struct sched_domain_attr tmp;
6748
6749	/* fast path */
6750	if (!new && !cur)
6751		return 1;
6752
6753	tmp = SD_ATTR_INIT;
6754	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6755			new ? (new + idx_new) : &tmp,
6756			sizeof(struct sched_domain_attr));
6757}
6758
6759/*
6760 * Partition sched domains as specified by the 'ndoms_new'
6761 * cpumasks in the array doms_new[] of cpumasks. This compares
6762 * doms_new[] to the current sched domain partitioning, doms_cur[].
6763 * It destroys each deleted domain and builds each new domain.
6764 *
6765 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6766 * The masks don't intersect (don't overlap.) We should setup one
6767 * sched domain for each mask. CPUs not in any of the cpumasks will
6768 * not be load balanced. If the same cpumask appears both in the
6769 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6770 * it as it is.
6771 *
6772 * The passed in 'doms_new' should be allocated using
6773 * alloc_sched_domains.  This routine takes ownership of it and will
6774 * free_sched_domains it when done with it. If the caller failed the
6775 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6776 * and partition_sched_domains() will fallback to the single partition
6777 * 'fallback_doms', it also forces the domains to be rebuilt.
6778 *
6779 * If doms_new == NULL it will be replaced with cpu_online_mask.
6780 * ndoms_new == 0 is a special case for destroying existing domains,
6781 * and it will not create the default domain.
6782 *
6783 * Call with hotplug lock held
6784 */
6785void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6786			     struct sched_domain_attr *dattr_new)
6787{
6788	int i, j, n;
6789	int new_topology;
6790
6791	mutex_lock(&sched_domains_mutex);
6792
6793	/* always unregister in case we don't destroy any domains */
6794	unregister_sched_domain_sysctl();
6795
6796	/* Let architecture update cpu core mappings. */
6797	new_topology = arch_update_cpu_topology();
6798
6799	n = doms_new ? ndoms_new : 0;
6800
6801	/* Destroy deleted domains */
6802	for (i = 0; i < ndoms_cur; i++) {
6803		for (j = 0; j < n && !new_topology; j++) {
6804			if (cpumask_equal(doms_cur[i], doms_new[j])
6805			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6806				goto match1;
6807		}
6808		/* no match - a current sched domain not in new doms_new[] */
6809		detach_destroy_domains(doms_cur[i]);
6810match1:
6811		;
6812	}
6813
6814	n = ndoms_cur;
6815	if (doms_new == NULL) {
6816		n = 0;
6817		doms_new = &fallback_doms;
6818		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6819		WARN_ON_ONCE(dattr_new);
6820	}
6821
6822	/* Build new domains */
6823	for (i = 0; i < ndoms_new; i++) {
6824		for (j = 0; j < n && !new_topology; j++) {
6825			if (cpumask_equal(doms_new[i], doms_cur[j])
6826			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6827				goto match2;
6828		}
6829		/* no match - add a new doms_new */
6830		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6831match2:
6832		;
6833	}
6834
6835	/* Remember the new sched domains */
6836	if (doms_cur != &fallback_doms)
6837		free_sched_domains(doms_cur, ndoms_cur);
6838	kfree(dattr_cur);	/* kfree(NULL) is safe */
6839	doms_cur = doms_new;
6840	dattr_cur = dattr_new;
6841	ndoms_cur = ndoms_new;
6842
6843	register_sched_domain_sysctl();
6844
6845	mutex_unlock(&sched_domains_mutex);
6846}
6847
6848static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6849
6850/*
6851 * Update cpusets according to cpu_active mask.  If cpusets are
6852 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6853 * around partition_sched_domains().
6854 *
6855 * If we come here as part of a suspend/resume, don't touch cpusets because we
6856 * want to restore it back to its original state upon resume anyway.
6857 */
6858static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6859			     void *hcpu)
6860{
6861	switch (action) {
6862	case CPU_ONLINE_FROZEN:
6863	case CPU_DOWN_FAILED_FROZEN:
6864
6865		/*
6866		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6867		 * resume sequence. As long as this is not the last online
6868		 * operation in the resume sequence, just build a single sched
6869		 * domain, ignoring cpusets.
6870		 */
6871		num_cpus_frozen--;
6872		if (likely(num_cpus_frozen)) {
6873			partition_sched_domains(1, NULL, NULL);
6874			break;
6875		}
6876
6877		/*
6878		 * This is the last CPU online operation. So fall through and
6879		 * restore the original sched domains by considering the
6880		 * cpuset configurations.
6881		 */
6882
6883	case CPU_ONLINE:
6884	case CPU_DOWN_FAILED:
6885		cpuset_update_active_cpus(true);
6886		break;
6887	default:
6888		return NOTIFY_DONE;
6889	}
6890	return NOTIFY_OK;
6891}
6892
6893static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6894			       void *hcpu)
6895{
6896	switch (action) {
6897	case CPU_DOWN_PREPARE:
6898		cpuset_update_active_cpus(false);
6899		break;
6900	case CPU_DOWN_PREPARE_FROZEN:
6901		num_cpus_frozen++;
6902		partition_sched_domains(1, NULL, NULL);
6903		break;
6904	default:
6905		return NOTIFY_DONE;
6906	}
6907	return NOTIFY_OK;
6908}
6909
6910void __init sched_init_smp(void)
6911{
6912	cpumask_var_t non_isolated_cpus;
6913
6914	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6915	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6916
6917	sched_init_numa();
6918
6919	/*
6920	 * There's no userspace yet to cause hotplug operations; hence all the
6921	 * cpu masks are stable and all blatant races in the below code cannot
6922	 * happen.
6923	 */
6924	mutex_lock(&sched_domains_mutex);
6925	init_sched_domains(cpu_active_mask);
6926	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6927	if (cpumask_empty(non_isolated_cpus))
6928		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6929	mutex_unlock(&sched_domains_mutex);
6930
6931	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6932	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6933	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6934
6935	init_hrtick();
6936
6937	/* Move init over to a non-isolated CPU */
6938	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6939		BUG();
6940	sched_init_granularity();
6941	free_cpumask_var(non_isolated_cpus);
6942
6943	init_sched_rt_class();
6944	init_sched_dl_class();
6945}
6946#else
6947void __init sched_init_smp(void)
6948{
6949	sched_init_granularity();
6950}
6951#endif /* CONFIG_SMP */
6952
6953const_debug unsigned int sysctl_timer_migration = 1;
6954
6955int in_sched_functions(unsigned long addr)
6956{
6957	return in_lock_functions(addr) ||
6958		(addr >= (unsigned long)__sched_text_start
6959		&& addr < (unsigned long)__sched_text_end);
6960}
6961
6962#ifdef CONFIG_CGROUP_SCHED
6963/*
6964 * Default task group.
6965 * Every task in system belongs to this group at bootup.
6966 */
6967struct task_group root_task_group;
6968LIST_HEAD(task_groups);
6969#endif
6970
6971DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6972
6973void __init sched_init(void)
6974{
6975	int i, j;
6976	unsigned long alloc_size = 0, ptr;
6977
6978#ifdef CONFIG_FAIR_GROUP_SCHED
6979	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6980#endif
6981#ifdef CONFIG_RT_GROUP_SCHED
6982	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6983#endif
6984#ifdef CONFIG_CPUMASK_OFFSTACK
6985	alloc_size += num_possible_cpus() * cpumask_size();
6986#endif
6987	if (alloc_size) {
6988		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6989
6990#ifdef CONFIG_FAIR_GROUP_SCHED
6991		root_task_group.se = (struct sched_entity **)ptr;
6992		ptr += nr_cpu_ids * sizeof(void **);
6993
6994		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6995		ptr += nr_cpu_ids * sizeof(void **);
6996
6997#endif /* CONFIG_FAIR_GROUP_SCHED */
6998#ifdef CONFIG_RT_GROUP_SCHED
6999		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7000		ptr += nr_cpu_ids * sizeof(void **);
7001
7002		root_task_group.rt_rq = (struct rt_rq **)ptr;
7003		ptr += nr_cpu_ids * sizeof(void **);
7004
7005#endif /* CONFIG_RT_GROUP_SCHED */
7006#ifdef CONFIG_CPUMASK_OFFSTACK
7007		for_each_possible_cpu(i) {
7008			per_cpu(load_balance_mask, i) = (void *)ptr;
7009			ptr += cpumask_size();
7010		}
7011#endif /* CONFIG_CPUMASK_OFFSTACK */
7012	}
7013
7014	init_rt_bandwidth(&def_rt_bandwidth,
7015			global_rt_period(), global_rt_runtime());
7016	init_dl_bandwidth(&def_dl_bandwidth,
7017			global_rt_period(), global_rt_runtime());
7018
7019#ifdef CONFIG_SMP
7020	init_defrootdomain();
7021#endif
7022
7023#ifdef CONFIG_RT_GROUP_SCHED
7024	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7025			global_rt_period(), global_rt_runtime());
7026#endif /* CONFIG_RT_GROUP_SCHED */
7027
7028#ifdef CONFIG_CGROUP_SCHED
7029	list_add(&root_task_group.list, &task_groups);
7030	INIT_LIST_HEAD(&root_task_group.children);
7031	INIT_LIST_HEAD(&root_task_group.siblings);
7032	autogroup_init(&init_task);
7033
7034#endif /* CONFIG_CGROUP_SCHED */
7035
7036	for_each_possible_cpu(i) {
7037		struct rq *rq;
7038
7039		rq = cpu_rq(i);
7040		raw_spin_lock_init(&rq->lock);
7041		rq->nr_running = 0;
7042		rq->calc_load_active = 0;
7043		rq->calc_load_update = jiffies + LOAD_FREQ;
7044		init_cfs_rq(&rq->cfs);
7045		init_rt_rq(&rq->rt, rq);
7046		init_dl_rq(&rq->dl, rq);
7047#ifdef CONFIG_FAIR_GROUP_SCHED
7048		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7049		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7050		/*
7051		 * How much cpu bandwidth does root_task_group get?
7052		 *
7053		 * In case of task-groups formed thr' the cgroup filesystem, it
7054		 * gets 100% of the cpu resources in the system. This overall
7055		 * system cpu resource is divided among the tasks of
7056		 * root_task_group and its child task-groups in a fair manner,
7057		 * based on each entity's (task or task-group's) weight
7058		 * (se->load.weight).
7059		 *
7060		 * In other words, if root_task_group has 10 tasks of weight
7061		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7062		 * then A0's share of the cpu resource is:
7063		 *
7064		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7065		 *
7066		 * We achieve this by letting root_task_group's tasks sit
7067		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7068		 */
7069		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7070		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7071#endif /* CONFIG_FAIR_GROUP_SCHED */
7072
7073		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7074#ifdef CONFIG_RT_GROUP_SCHED
7075		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7076#endif
7077
7078		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7079			rq->cpu_load[j] = 0;
7080
7081		rq->last_load_update_tick = jiffies;
7082
7083#ifdef CONFIG_SMP
7084		rq->sd = NULL;
7085		rq->rd = NULL;
7086		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7087		rq->post_schedule = 0;
7088		rq->active_balance = 0;
7089		rq->next_balance = jiffies;
7090		rq->push_cpu = 0;
7091		rq->cpu = i;
7092		rq->online = 0;
7093		rq->idle_stamp = 0;
7094		rq->avg_idle = 2*sysctl_sched_migration_cost;
7095		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7096
7097		INIT_LIST_HEAD(&rq->cfs_tasks);
7098
7099		rq_attach_root(rq, &def_root_domain);
7100#ifdef CONFIG_NO_HZ_COMMON
7101		rq->nohz_flags = 0;
7102#endif
7103#ifdef CONFIG_NO_HZ_FULL
7104		rq->last_sched_tick = 0;
7105#endif
7106#endif
7107		init_rq_hrtick(rq);
7108		atomic_set(&rq->nr_iowait, 0);
7109	}
7110
7111	set_load_weight(&init_task);
7112
7113#ifdef CONFIG_PREEMPT_NOTIFIERS
7114	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7115#endif
7116
7117	/*
7118	 * The boot idle thread does lazy MMU switching as well:
7119	 */
7120	atomic_inc(&init_mm.mm_count);
7121	enter_lazy_tlb(&init_mm, current);
7122
7123	/*
7124	 * Make us the idle thread. Technically, schedule() should not be
7125	 * called from this thread, however somewhere below it might be,
7126	 * but because we are the idle thread, we just pick up running again
7127	 * when this runqueue becomes "idle".
7128	 */
7129	init_idle(current, smp_processor_id());
7130
7131	calc_load_update = jiffies + LOAD_FREQ;
7132
7133	/*
7134	 * During early bootup we pretend to be a normal task:
7135	 */
7136	current->sched_class = &fair_sched_class;
7137
7138#ifdef CONFIG_SMP
7139	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7140	/* May be allocated at isolcpus cmdline parse time */
7141	if (cpu_isolated_map == NULL)
7142		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7143	idle_thread_set_boot_cpu();
7144	set_cpu_rq_start_time();
7145#endif
7146	init_sched_fair_class();
7147
7148	scheduler_running = 1;
7149}
7150
7151#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7152static inline int preempt_count_equals(int preempt_offset)
7153{
7154	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7155
7156	return (nested == preempt_offset);
7157}
7158
7159void __might_sleep(const char *file, int line, int preempt_offset)
7160{
7161	static unsigned long prev_jiffy;	/* ratelimiting */
7162
7163	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7164	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7165	     !is_idle_task(current)) ||
7166	    system_state != SYSTEM_RUNNING || oops_in_progress)
7167		return;
7168	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7169		return;
7170	prev_jiffy = jiffies;
7171
7172	printk(KERN_ERR
7173		"BUG: sleeping function called from invalid context at %s:%d\n",
7174			file, line);
7175	printk(KERN_ERR
7176		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7177			in_atomic(), irqs_disabled(),
7178			current->pid, current->comm);
7179
7180	debug_show_held_locks(current);
7181	if (irqs_disabled())
7182		print_irqtrace_events(current);
7183#ifdef CONFIG_DEBUG_PREEMPT
7184	if (!preempt_count_equals(preempt_offset)) {
7185		pr_err("Preemption disabled at:");
7186		print_ip_sym(current->preempt_disable_ip);
7187		pr_cont("\n");
7188	}
7189#endif
7190	dump_stack();
7191}
7192EXPORT_SYMBOL(__might_sleep);
7193#endif
7194
7195#ifdef CONFIG_MAGIC_SYSRQ
7196static void normalize_task(struct rq *rq, struct task_struct *p)
7197{
7198	const struct sched_class *prev_class = p->sched_class;
7199	struct sched_attr attr = {
7200		.sched_policy = SCHED_NORMAL,
7201	};
7202	int old_prio = p->prio;
7203	int queued;
7204
7205	queued = task_on_rq_queued(p);
7206	if (queued)
7207		dequeue_task(rq, p, 0);
7208	__setscheduler(rq, p, &attr);
7209	if (queued) {
7210		enqueue_task(rq, p, 0);
7211		resched_curr(rq);
7212	}
7213
7214	check_class_changed(rq, p, prev_class, old_prio);
7215}
7216
7217void normalize_rt_tasks(void)
7218{
7219	struct task_struct *g, *p;
7220	unsigned long flags;
7221	struct rq *rq;
7222
7223	read_lock(&tasklist_lock);
7224	for_each_process_thread(g, p) {
7225		/*
7226		 * Only normalize user tasks:
7227		 */
7228		if (p->flags & PF_KTHREAD)
7229			continue;
7230
7231		p->se.exec_start		= 0;
7232#ifdef CONFIG_SCHEDSTATS
7233		p->se.statistics.wait_start	= 0;
7234		p->se.statistics.sleep_start	= 0;
7235		p->se.statistics.block_start	= 0;
7236#endif
7237
7238		if (!dl_task(p) && !rt_task(p)) {
7239			/*
7240			 * Renice negative nice level userspace
7241			 * tasks back to 0:
7242			 */
7243			if (task_nice(p) < 0)
7244				set_user_nice(p, 0);
7245			continue;
7246		}
7247
7248		rq = task_rq_lock(p, &flags);
7249		normalize_task(rq, p);
7250		task_rq_unlock(rq, p, &flags);
7251	}
7252	read_unlock(&tasklist_lock);
7253}
7254
7255#endif /* CONFIG_MAGIC_SYSRQ */
7256
7257#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7258/*
7259 * These functions are only useful for the IA64 MCA handling, or kdb.
7260 *
7261 * They can only be called when the whole system has been
7262 * stopped - every CPU needs to be quiescent, and no scheduling
7263 * activity can take place. Using them for anything else would
7264 * be a serious bug, and as a result, they aren't even visible
7265 * under any other configuration.
7266 */
7267
7268/**
7269 * curr_task - return the current task for a given cpu.
7270 * @cpu: the processor in question.
7271 *
7272 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7273 *
7274 * Return: The current task for @cpu.
7275 */
7276struct task_struct *curr_task(int cpu)
7277{
7278	return cpu_curr(cpu);
7279}
7280
7281#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7282
7283#ifdef CONFIG_IA64
7284/**
7285 * set_curr_task - set the current task for a given cpu.
7286 * @cpu: the processor in question.
7287 * @p: the task pointer to set.
7288 *
7289 * Description: This function must only be used when non-maskable interrupts
7290 * are serviced on a separate stack. It allows the architecture to switch the
7291 * notion of the current task on a cpu in a non-blocking manner. This function
7292 * must be called with all CPU's synchronized, and interrupts disabled, the
7293 * and caller must save the original value of the current task (see
7294 * curr_task() above) and restore that value before reenabling interrupts and
7295 * re-starting the system.
7296 *
7297 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7298 */
7299void set_curr_task(int cpu, struct task_struct *p)
7300{
7301	cpu_curr(cpu) = p;
7302}
7303
7304#endif
7305
7306#ifdef CONFIG_CGROUP_SCHED
7307/* task_group_lock serializes the addition/removal of task groups */
7308static DEFINE_SPINLOCK(task_group_lock);
7309
7310static void free_sched_group(struct task_group *tg)
7311{
7312	free_fair_sched_group(tg);
7313	free_rt_sched_group(tg);
7314	autogroup_free(tg);
7315	kfree(tg);
7316}
7317
7318/* allocate runqueue etc for a new task group */
7319struct task_group *sched_create_group(struct task_group *parent)
7320{
7321	struct task_group *tg;
7322
7323	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7324	if (!tg)
7325		return ERR_PTR(-ENOMEM);
7326
7327	if (!alloc_fair_sched_group(tg, parent))
7328		goto err;
7329
7330	if (!alloc_rt_sched_group(tg, parent))
7331		goto err;
7332
7333	return tg;
7334
7335err:
7336	free_sched_group(tg);
7337	return ERR_PTR(-ENOMEM);
7338}
7339
7340void sched_online_group(struct task_group *tg, struct task_group *parent)
7341{
7342	unsigned long flags;
7343
7344	spin_lock_irqsave(&task_group_lock, flags);
7345	list_add_rcu(&tg->list, &task_groups);
7346
7347	WARN_ON(!parent); /* root should already exist */
7348
7349	tg->parent = parent;
7350	INIT_LIST_HEAD(&tg->children);
7351	list_add_rcu(&tg->siblings, &parent->children);
7352	spin_unlock_irqrestore(&task_group_lock, flags);
7353}
7354
7355/* rcu callback to free various structures associated with a task group */
7356static void free_sched_group_rcu(struct rcu_head *rhp)
7357{
7358	/* now it should be safe to free those cfs_rqs */
7359	free_sched_group(container_of(rhp, struct task_group, rcu));
7360}
7361
7362/* Destroy runqueue etc associated with a task group */
7363void sched_destroy_group(struct task_group *tg)
7364{
7365	/* wait for possible concurrent references to cfs_rqs complete */
7366	call_rcu(&tg->rcu, free_sched_group_rcu);
7367}
7368
7369void sched_offline_group(struct task_group *tg)
7370{
7371	unsigned long flags;
7372	int i;
7373
7374	/* end participation in shares distribution */
7375	for_each_possible_cpu(i)
7376		unregister_fair_sched_group(tg, i);
7377
7378	spin_lock_irqsave(&task_group_lock, flags);
7379	list_del_rcu(&tg->list);
7380	list_del_rcu(&tg->siblings);
7381	spin_unlock_irqrestore(&task_group_lock, flags);
7382}
7383
7384/* change task's runqueue when it moves between groups.
7385 *	The caller of this function should have put the task in its new group
7386 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7387 *	reflect its new group.
7388 */
7389void sched_move_task(struct task_struct *tsk)
7390{
7391	struct task_group *tg;
7392	int queued, running;
7393	unsigned long flags;
7394	struct rq *rq;
7395
7396	rq = task_rq_lock(tsk, &flags);
7397
7398	running = task_current(rq, tsk);
7399	queued = task_on_rq_queued(tsk);
7400
7401	if (queued)
7402		dequeue_task(rq, tsk, 0);
7403	if (unlikely(running))
7404		put_prev_task(rq, tsk);
7405
7406	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7407				lockdep_is_held(&tsk->sighand->siglock)),
7408			  struct task_group, css);
7409	tg = autogroup_task_group(tsk, tg);
7410	tsk->sched_task_group = tg;
7411
7412#ifdef CONFIG_FAIR_GROUP_SCHED
7413	if (tsk->sched_class->task_move_group)
7414		tsk->sched_class->task_move_group(tsk, queued);
7415	else
7416#endif
7417		set_task_rq(tsk, task_cpu(tsk));
7418
7419	if (unlikely(running))
7420		tsk->sched_class->set_curr_task(rq);
7421	if (queued)
7422		enqueue_task(rq, tsk, 0);
7423
7424	task_rq_unlock(rq, tsk, &flags);
7425}
7426#endif /* CONFIG_CGROUP_SCHED */
7427
7428#ifdef CONFIG_RT_GROUP_SCHED
7429/*
7430 * Ensure that the real time constraints are schedulable.
7431 */
7432static DEFINE_MUTEX(rt_constraints_mutex);
7433
7434/* Must be called with tasklist_lock held */
7435static inline int tg_has_rt_tasks(struct task_group *tg)
7436{
7437	struct task_struct *g, *p;
7438
7439	for_each_process_thread(g, p) {
7440		if (rt_task(p) && task_group(p) == tg)
7441			return 1;
7442	}
7443
7444	return 0;
7445}
7446
7447struct rt_schedulable_data {
7448	struct task_group *tg;
7449	u64 rt_period;
7450	u64 rt_runtime;
7451};
7452
7453static int tg_rt_schedulable(struct task_group *tg, void *data)
7454{
7455	struct rt_schedulable_data *d = data;
7456	struct task_group *child;
7457	unsigned long total, sum = 0;
7458	u64 period, runtime;
7459
7460	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7461	runtime = tg->rt_bandwidth.rt_runtime;
7462
7463	if (tg == d->tg) {
7464		period = d->rt_period;
7465		runtime = d->rt_runtime;
7466	}
7467
7468	/*
7469	 * Cannot have more runtime than the period.
7470	 */
7471	if (runtime > period && runtime != RUNTIME_INF)
7472		return -EINVAL;
7473
7474	/*
7475	 * Ensure we don't starve existing RT tasks.
7476	 */
7477	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7478		return -EBUSY;
7479
7480	total = to_ratio(period, runtime);
7481
7482	/*
7483	 * Nobody can have more than the global setting allows.
7484	 */
7485	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7486		return -EINVAL;
7487
7488	/*
7489	 * The sum of our children's runtime should not exceed our own.
7490	 */
7491	list_for_each_entry_rcu(child, &tg->children, siblings) {
7492		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7493		runtime = child->rt_bandwidth.rt_runtime;
7494
7495		if (child == d->tg) {
7496			period = d->rt_period;
7497			runtime = d->rt_runtime;
7498		}
7499
7500		sum += to_ratio(period, runtime);
7501	}
7502
7503	if (sum > total)
7504		return -EINVAL;
7505
7506	return 0;
7507}
7508
7509static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7510{
7511	int ret;
7512
7513	struct rt_schedulable_data data = {
7514		.tg = tg,
7515		.rt_period = period,
7516		.rt_runtime = runtime,
7517	};
7518
7519	rcu_read_lock();
7520	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7521	rcu_read_unlock();
7522
7523	return ret;
7524}
7525
7526static int tg_set_rt_bandwidth(struct task_group *tg,
7527		u64 rt_period, u64 rt_runtime)
7528{
7529	int i, err = 0;
7530
7531	mutex_lock(&rt_constraints_mutex);
7532	read_lock(&tasklist_lock);
7533	err = __rt_schedulable(tg, rt_period, rt_runtime);
7534	if (err)
7535		goto unlock;
7536
7537	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7538	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7539	tg->rt_bandwidth.rt_runtime = rt_runtime;
7540
7541	for_each_possible_cpu(i) {
7542		struct rt_rq *rt_rq = tg->rt_rq[i];
7543
7544		raw_spin_lock(&rt_rq->rt_runtime_lock);
7545		rt_rq->rt_runtime = rt_runtime;
7546		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7547	}
7548	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7549unlock:
7550	read_unlock(&tasklist_lock);
7551	mutex_unlock(&rt_constraints_mutex);
7552
7553	return err;
7554}
7555
7556static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7557{
7558	u64 rt_runtime, rt_period;
7559
7560	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7561	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7562	if (rt_runtime_us < 0)
7563		rt_runtime = RUNTIME_INF;
7564
7565	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7566}
7567
7568static long sched_group_rt_runtime(struct task_group *tg)
7569{
7570	u64 rt_runtime_us;
7571
7572	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7573		return -1;
7574
7575	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7576	do_div(rt_runtime_us, NSEC_PER_USEC);
7577	return rt_runtime_us;
7578}
7579
7580static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7581{
7582	u64 rt_runtime, rt_period;
7583
7584	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7585	rt_runtime = tg->rt_bandwidth.rt_runtime;
7586
7587	if (rt_period == 0)
7588		return -EINVAL;
7589
7590	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7591}
7592
7593static long sched_group_rt_period(struct task_group *tg)
7594{
7595	u64 rt_period_us;
7596
7597	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7598	do_div(rt_period_us, NSEC_PER_USEC);
7599	return rt_period_us;
7600}
7601#endif /* CONFIG_RT_GROUP_SCHED */
7602
7603#ifdef CONFIG_RT_GROUP_SCHED
7604static int sched_rt_global_constraints(void)
7605{
7606	int ret = 0;
7607
7608	mutex_lock(&rt_constraints_mutex);
7609	read_lock(&tasklist_lock);
7610	ret = __rt_schedulable(NULL, 0, 0);
7611	read_unlock(&tasklist_lock);
7612	mutex_unlock(&rt_constraints_mutex);
7613
7614	return ret;
7615}
7616
7617static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7618{
7619	/* Don't accept realtime tasks when there is no way for them to run */
7620	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7621		return 0;
7622
7623	return 1;
7624}
7625
7626#else /* !CONFIG_RT_GROUP_SCHED */
7627static int sched_rt_global_constraints(void)
7628{
7629	unsigned long flags;
7630	int i, ret = 0;
7631
7632	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7633	for_each_possible_cpu(i) {
7634		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7635
7636		raw_spin_lock(&rt_rq->rt_runtime_lock);
7637		rt_rq->rt_runtime = global_rt_runtime();
7638		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7639	}
7640	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7641
7642	return ret;
7643}
7644#endif /* CONFIG_RT_GROUP_SCHED */
7645
7646static int sched_dl_global_constraints(void)
7647{
7648	u64 runtime = global_rt_runtime();
7649	u64 period = global_rt_period();
7650	u64 new_bw = to_ratio(period, runtime);
7651	struct dl_bw *dl_b;
7652	int cpu, ret = 0;
7653	unsigned long flags;
7654
7655	/*
7656	 * Here we want to check the bandwidth not being set to some
7657	 * value smaller than the currently allocated bandwidth in
7658	 * any of the root_domains.
7659	 *
7660	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7661	 * cycling on root_domains... Discussion on different/better
7662	 * solutions is welcome!
7663	 */
7664	for_each_possible_cpu(cpu) {
7665		rcu_read_lock_sched();
7666		dl_b = dl_bw_of(cpu);
7667
7668		raw_spin_lock_irqsave(&dl_b->lock, flags);
7669		if (new_bw < dl_b->total_bw)
7670			ret = -EBUSY;
7671		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7672
7673		rcu_read_unlock_sched();
7674
7675		if (ret)
7676			break;
7677	}
7678
7679	return ret;
7680}
7681
7682static void sched_dl_do_global(void)
7683{
7684	u64 new_bw = -1;
7685	struct dl_bw *dl_b;
7686	int cpu;
7687	unsigned long flags;
7688
7689	def_dl_bandwidth.dl_period = global_rt_period();
7690	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7691
7692	if (global_rt_runtime() != RUNTIME_INF)
7693		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7694
7695	/*
7696	 * FIXME: As above...
7697	 */
7698	for_each_possible_cpu(cpu) {
7699		rcu_read_lock_sched();
7700		dl_b = dl_bw_of(cpu);
7701
7702		raw_spin_lock_irqsave(&dl_b->lock, flags);
7703		dl_b->bw = new_bw;
7704		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7705
7706		rcu_read_unlock_sched();
7707	}
7708}
7709
7710static int sched_rt_global_validate(void)
7711{
7712	if (sysctl_sched_rt_period <= 0)
7713		return -EINVAL;
7714
7715	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7716		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7717		return -EINVAL;
7718
7719	return 0;
7720}
7721
7722static void sched_rt_do_global(void)
7723{
7724	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7725	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7726}
7727
7728int sched_rt_handler(struct ctl_table *table, int write,
7729		void __user *buffer, size_t *lenp,
7730		loff_t *ppos)
7731{
7732	int old_period, old_runtime;
7733	static DEFINE_MUTEX(mutex);
7734	int ret;
7735
7736	mutex_lock(&mutex);
7737	old_period = sysctl_sched_rt_period;
7738	old_runtime = sysctl_sched_rt_runtime;
7739
7740	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7741
7742	if (!ret && write) {
7743		ret = sched_rt_global_validate();
7744		if (ret)
7745			goto undo;
7746
7747		ret = sched_rt_global_constraints();
7748		if (ret)
7749			goto undo;
7750
7751		ret = sched_dl_global_constraints();
7752		if (ret)
7753			goto undo;
7754
7755		sched_rt_do_global();
7756		sched_dl_do_global();
7757	}
7758	if (0) {
7759undo:
7760		sysctl_sched_rt_period = old_period;
7761		sysctl_sched_rt_runtime = old_runtime;
7762	}
7763	mutex_unlock(&mutex);
7764
7765	return ret;
7766}
7767
7768int sched_rr_handler(struct ctl_table *table, int write,
7769		void __user *buffer, size_t *lenp,
7770		loff_t *ppos)
7771{
7772	int ret;
7773	static DEFINE_MUTEX(mutex);
7774
7775	mutex_lock(&mutex);
7776	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7777	/* make sure that internally we keep jiffies */
7778	/* also, writing zero resets timeslice to default */
7779	if (!ret && write) {
7780		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7781			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7782	}
7783	mutex_unlock(&mutex);
7784	return ret;
7785}
7786
7787#ifdef CONFIG_CGROUP_SCHED
7788
7789static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7790{
7791	return css ? container_of(css, struct task_group, css) : NULL;
7792}
7793
7794static struct cgroup_subsys_state *
7795cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7796{
7797	struct task_group *parent = css_tg(parent_css);
7798	struct task_group *tg;
7799
7800	if (!parent) {
7801		/* This is early initialization for the top cgroup */
7802		return &root_task_group.css;
7803	}
7804
7805	tg = sched_create_group(parent);
7806	if (IS_ERR(tg))
7807		return ERR_PTR(-ENOMEM);
7808
7809	return &tg->css;
7810}
7811
7812static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7813{
7814	struct task_group *tg = css_tg(css);
7815	struct task_group *parent = css_tg(css->parent);
7816
7817	if (parent)
7818		sched_online_group(tg, parent);
7819	return 0;
7820}
7821
7822static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7823{
7824	struct task_group *tg = css_tg(css);
7825
7826	sched_destroy_group(tg);
7827}
7828
7829static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7830{
7831	struct task_group *tg = css_tg(css);
7832
7833	sched_offline_group(tg);
7834}
7835
7836static void cpu_cgroup_fork(struct task_struct *task)
7837{
7838	sched_move_task(task);
7839}
7840
7841static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7842				 struct cgroup_taskset *tset)
7843{
7844	struct task_struct *task;
7845
7846	cgroup_taskset_for_each(task, tset) {
7847#ifdef CONFIG_RT_GROUP_SCHED
7848		if (!sched_rt_can_attach(css_tg(css), task))
7849			return -EINVAL;
7850#else
7851		/* We don't support RT-tasks being in separate groups */
7852		if (task->sched_class != &fair_sched_class)
7853			return -EINVAL;
7854#endif
7855	}
7856	return 0;
7857}
7858
7859static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7860			      struct cgroup_taskset *tset)
7861{
7862	struct task_struct *task;
7863
7864	cgroup_taskset_for_each(task, tset)
7865		sched_move_task(task);
7866}
7867
7868static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7869			    struct cgroup_subsys_state *old_css,
7870			    struct task_struct *task)
7871{
7872	/*
7873	 * cgroup_exit() is called in the copy_process() failure path.
7874	 * Ignore this case since the task hasn't ran yet, this avoids
7875	 * trying to poke a half freed task state from generic code.
7876	 */
7877	if (!(task->flags & PF_EXITING))
7878		return;
7879
7880	sched_move_task(task);
7881}
7882
7883#ifdef CONFIG_FAIR_GROUP_SCHED
7884static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7885				struct cftype *cftype, u64 shareval)
7886{
7887	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7888}
7889
7890static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7891			       struct cftype *cft)
7892{
7893	struct task_group *tg = css_tg(css);
7894
7895	return (u64) scale_load_down(tg->shares);
7896}
7897
7898#ifdef CONFIG_CFS_BANDWIDTH
7899static DEFINE_MUTEX(cfs_constraints_mutex);
7900
7901const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7902const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7903
7904static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7905
7906static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7907{
7908	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7909	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7910
7911	if (tg == &root_task_group)
7912		return -EINVAL;
7913
7914	/*
7915	 * Ensure we have at some amount of bandwidth every period.  This is
7916	 * to prevent reaching a state of large arrears when throttled via
7917	 * entity_tick() resulting in prolonged exit starvation.
7918	 */
7919	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7920		return -EINVAL;
7921
7922	/*
7923	 * Likewise, bound things on the otherside by preventing insane quota
7924	 * periods.  This also allows us to normalize in computing quota
7925	 * feasibility.
7926	 */
7927	if (period > max_cfs_quota_period)
7928		return -EINVAL;
7929
7930	/*
7931	 * Prevent race between setting of cfs_rq->runtime_enabled and
7932	 * unthrottle_offline_cfs_rqs().
7933	 */
7934	get_online_cpus();
7935	mutex_lock(&cfs_constraints_mutex);
7936	ret = __cfs_schedulable(tg, period, quota);
7937	if (ret)
7938		goto out_unlock;
7939
7940	runtime_enabled = quota != RUNTIME_INF;
7941	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7942	/*
7943	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7944	 * before making related changes, and on->off must occur afterwards
7945	 */
7946	if (runtime_enabled && !runtime_was_enabled)
7947		cfs_bandwidth_usage_inc();
7948	raw_spin_lock_irq(&cfs_b->lock);
7949	cfs_b->period = ns_to_ktime(period);
7950	cfs_b->quota = quota;
7951
7952	__refill_cfs_bandwidth_runtime(cfs_b);
7953	/* restart the period timer (if active) to handle new period expiry */
7954	if (runtime_enabled && cfs_b->timer_active) {
7955		/* force a reprogram */
7956		__start_cfs_bandwidth(cfs_b, true);
7957	}
7958	raw_spin_unlock_irq(&cfs_b->lock);
7959
7960	for_each_online_cpu(i) {
7961		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7962		struct rq *rq = cfs_rq->rq;
7963
7964		raw_spin_lock_irq(&rq->lock);
7965		cfs_rq->runtime_enabled = runtime_enabled;
7966		cfs_rq->runtime_remaining = 0;
7967
7968		if (cfs_rq->throttled)
7969			unthrottle_cfs_rq(cfs_rq);
7970		raw_spin_unlock_irq(&rq->lock);
7971	}
7972	if (runtime_was_enabled && !runtime_enabled)
7973		cfs_bandwidth_usage_dec();
7974out_unlock:
7975	mutex_unlock(&cfs_constraints_mutex);
7976	put_online_cpus();
7977
7978	return ret;
7979}
7980
7981int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7982{
7983	u64 quota, period;
7984
7985	period = ktime_to_ns(tg->cfs_bandwidth.period);
7986	if (cfs_quota_us < 0)
7987		quota = RUNTIME_INF;
7988	else
7989		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7990
7991	return tg_set_cfs_bandwidth(tg, period, quota);
7992}
7993
7994long tg_get_cfs_quota(struct task_group *tg)
7995{
7996	u64 quota_us;
7997
7998	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7999		return -1;
8000
8001	quota_us = tg->cfs_bandwidth.quota;
8002	do_div(quota_us, NSEC_PER_USEC);
8003
8004	return quota_us;
8005}
8006
8007int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8008{
8009	u64 quota, period;
8010
8011	period = (u64)cfs_period_us * NSEC_PER_USEC;
8012	quota = tg->cfs_bandwidth.quota;
8013
8014	return tg_set_cfs_bandwidth(tg, period, quota);
8015}
8016
8017long tg_get_cfs_period(struct task_group *tg)
8018{
8019	u64 cfs_period_us;
8020
8021	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8022	do_div(cfs_period_us, NSEC_PER_USEC);
8023
8024	return cfs_period_us;
8025}
8026
8027static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8028				  struct cftype *cft)
8029{
8030	return tg_get_cfs_quota(css_tg(css));
8031}
8032
8033static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8034				   struct cftype *cftype, s64 cfs_quota_us)
8035{
8036	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8037}
8038
8039static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8040				   struct cftype *cft)
8041{
8042	return tg_get_cfs_period(css_tg(css));
8043}
8044
8045static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8046				    struct cftype *cftype, u64 cfs_period_us)
8047{
8048	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8049}
8050
8051struct cfs_schedulable_data {
8052	struct task_group *tg;
8053	u64 period, quota;
8054};
8055
8056/*
8057 * normalize group quota/period to be quota/max_period
8058 * note: units are usecs
8059 */
8060static u64 normalize_cfs_quota(struct task_group *tg,
8061			       struct cfs_schedulable_data *d)
8062{
8063	u64 quota, period;
8064
8065	if (tg == d->tg) {
8066		period = d->period;
8067		quota = d->quota;
8068	} else {
8069		period = tg_get_cfs_period(tg);
8070		quota = tg_get_cfs_quota(tg);
8071	}
8072
8073	/* note: these should typically be equivalent */
8074	if (quota == RUNTIME_INF || quota == -1)
8075		return RUNTIME_INF;
8076
8077	return to_ratio(period, quota);
8078}
8079
8080static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8081{
8082	struct cfs_schedulable_data *d = data;
8083	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8084	s64 quota = 0, parent_quota = -1;
8085
8086	if (!tg->parent) {
8087		quota = RUNTIME_INF;
8088	} else {
8089		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8090
8091		quota = normalize_cfs_quota(tg, d);
8092		parent_quota = parent_b->hierarchical_quota;
8093
8094		/*
8095		 * ensure max(child_quota) <= parent_quota, inherit when no
8096		 * limit is set
8097		 */
8098		if (quota == RUNTIME_INF)
8099			quota = parent_quota;
8100		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8101			return -EINVAL;
8102	}
8103	cfs_b->hierarchical_quota = quota;
8104
8105	return 0;
8106}
8107
8108static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8109{
8110	int ret;
8111	struct cfs_schedulable_data data = {
8112		.tg = tg,
8113		.period = period,
8114		.quota = quota,
8115	};
8116
8117	if (quota != RUNTIME_INF) {
8118		do_div(data.period, NSEC_PER_USEC);
8119		do_div(data.quota, NSEC_PER_USEC);
8120	}
8121
8122	rcu_read_lock();
8123	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8124	rcu_read_unlock();
8125
8126	return ret;
8127}
8128
8129static int cpu_stats_show(struct seq_file *sf, void *v)
8130{
8131	struct task_group *tg = css_tg(seq_css(sf));
8132	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8133
8134	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8135	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8136	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8137
8138	return 0;
8139}
8140#endif /* CONFIG_CFS_BANDWIDTH */
8141#endif /* CONFIG_FAIR_GROUP_SCHED */
8142
8143#ifdef CONFIG_RT_GROUP_SCHED
8144static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8145				struct cftype *cft, s64 val)
8146{
8147	return sched_group_set_rt_runtime(css_tg(css), val);
8148}
8149
8150static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8151			       struct cftype *cft)
8152{
8153	return sched_group_rt_runtime(css_tg(css));
8154}
8155
8156static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8157				    struct cftype *cftype, u64 rt_period_us)
8158{
8159	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8160}
8161
8162static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8163				   struct cftype *cft)
8164{
8165	return sched_group_rt_period(css_tg(css));
8166}
8167#endif /* CONFIG_RT_GROUP_SCHED */
8168
8169static struct cftype cpu_files[] = {
8170#ifdef CONFIG_FAIR_GROUP_SCHED
8171	{
8172		.name = "shares",
8173		.read_u64 = cpu_shares_read_u64,
8174		.write_u64 = cpu_shares_write_u64,
8175	},
8176#endif
8177#ifdef CONFIG_CFS_BANDWIDTH
8178	{
8179		.name = "cfs_quota_us",
8180		.read_s64 = cpu_cfs_quota_read_s64,
8181		.write_s64 = cpu_cfs_quota_write_s64,
8182	},
8183	{
8184		.name = "cfs_period_us",
8185		.read_u64 = cpu_cfs_period_read_u64,
8186		.write_u64 = cpu_cfs_period_write_u64,
8187	},
8188	{
8189		.name = "stat",
8190		.seq_show = cpu_stats_show,
8191	},
8192#endif
8193#ifdef CONFIG_RT_GROUP_SCHED
8194	{
8195		.name = "rt_runtime_us",
8196		.read_s64 = cpu_rt_runtime_read,
8197		.write_s64 = cpu_rt_runtime_write,
8198	},
8199	{
8200		.name = "rt_period_us",
8201		.read_u64 = cpu_rt_period_read_uint,
8202		.write_u64 = cpu_rt_period_write_uint,
8203	},
8204#endif
8205	{ }	/* terminate */
8206};
8207
8208struct cgroup_subsys cpu_cgrp_subsys = {
8209	.css_alloc	= cpu_cgroup_css_alloc,
8210	.css_free	= cpu_cgroup_css_free,
8211	.css_online	= cpu_cgroup_css_online,
8212	.css_offline	= cpu_cgroup_css_offline,
8213	.fork		= cpu_cgroup_fork,
8214	.can_attach	= cpu_cgroup_can_attach,
8215	.attach		= cpu_cgroup_attach,
8216	.exit		= cpu_cgroup_exit,
8217	.legacy_cftypes	= cpu_files,
8218	.early_init	= 1,
8219};
8220
8221#endif	/* CONFIG_CGROUP_SCHED */
8222
8223void dump_cpu_task(int cpu)
8224{
8225	pr_info("Task dump for CPU %d:\n", cpu);
8226	sched_show_task(cpu_curr(cpu));
8227}
8228