core.c revision f10e00f4bf360c36edbe6bf18a6c75b171cbe012
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96	smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104	smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110{
111	unsigned long delta;
112	ktime_t soft, hard, now;
113
114	for (;;) {
115		if (hrtimer_active(period_timer))
116			break;
117
118		now = hrtimer_cb_get_time(period_timer);
119		hrtimer_forward(period_timer, now, period);
120
121		soft = hrtimer_get_softexpires(period_timer);
122		hard = hrtimer_get_expires(period_timer);
123		delta = ktime_to_ns(ktime_sub(hard, soft));
124		__hrtimer_start_range_ns(period_timer, soft, delta,
125					 HRTIMER_MODE_ABS_PINNED, 0);
126	}
127}
128
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134void update_rq_clock(struct rq *rq)
135{
136	s64 delta;
137
138	if (rq->skip_clock_update > 0)
139		return;
140
141	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142	if (delta < 0)
143		return;
144	rq->clock += delta;
145	update_rq_clock_task(rq, delta);
146}
147
148/*
149 * Debugging: various feature bits
150 */
151
152#define SCHED_FEAT(name, enabled)	\
153	(1UL << __SCHED_FEAT_##name) * enabled |
154
155const_debug unsigned int sysctl_sched_features =
156#include "features.h"
157	0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled)	\
163	#name ,
164
165static const char * const sched_feat_names[] = {
166#include "features.h"
167};
168
169#undef SCHED_FEAT
170
171static int sched_feat_show(struct seq_file *m, void *v)
172{
173	int i;
174
175	for (i = 0; i < __SCHED_FEAT_NR; i++) {
176		if (!(sysctl_sched_features & (1UL << i)))
177			seq_puts(m, "NO_");
178		seq_printf(m, "%s ", sched_feat_names[i]);
179	}
180	seq_puts(m, "\n");
181
182	return 0;
183}
184
185#ifdef HAVE_JUMP_LABEL
186
187#define jump_label_key__true  STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
189
190#define SCHED_FEAT(name, enabled)	\
191	jump_label_key__##enabled ,
192
193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
201	if (static_key_enabled(&sched_feat_keys[i]))
202		static_key_slow_dec(&sched_feat_keys[i]);
203}
204
205static void sched_feat_enable(int i)
206{
207	if (!static_key_enabled(&sched_feat_keys[i]))
208		static_key_slow_inc(&sched_feat_keys[i]);
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
215static int sched_feat_set(char *cmp)
216{
217	int i;
218	int neg = 0;
219
220	if (strncmp(cmp, "NO_", 3) == 0) {
221		neg = 1;
222		cmp += 3;
223	}
224
225	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227			if (neg) {
228				sysctl_sched_features &= ~(1UL << i);
229				sched_feat_disable(i);
230			} else {
231				sysctl_sched_features |= (1UL << i);
232				sched_feat_enable(i);
233			}
234			break;
235		}
236	}
237
238	return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243		size_t cnt, loff_t *ppos)
244{
245	char buf[64];
246	char *cmp;
247	int i;
248	struct inode *inode;
249
250	if (cnt > 63)
251		cnt = 63;
252
253	if (copy_from_user(&buf, ubuf, cnt))
254		return -EFAULT;
255
256	buf[cnt] = 0;
257	cmp = strstrip(buf);
258
259	/* Ensure the static_key remains in a consistent state */
260	inode = file_inode(filp);
261	mutex_lock(&inode->i_mutex);
262	i = sched_feat_set(cmp);
263	mutex_unlock(&inode->i_mutex);
264	if (i == __SCHED_FEAT_NR)
265		return -EINVAL;
266
267	*ppos += cnt;
268
269	return cnt;
270}
271
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274	return single_open(filp, sched_feat_show, NULL);
275}
276
277static const struct file_operations sched_feat_fops = {
278	.open		= sched_feat_open,
279	.write		= sched_feat_write,
280	.read		= seq_read,
281	.llseek		= seq_lseek,
282	.release	= single_release,
283};
284
285static __init int sched_init_debug(void)
286{
287	debugfs_create_file("sched_features", 0644, NULL, NULL,
288			&sched_feat_fops);
289
290	return 0;
291}
292late_initcall(sched_init_debug);
293#endif /* CONFIG_SCHED_DEBUG */
294
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
309/*
310 * period over which we measure -rt task cpu usage in us.
311 * default: 1s
312 */
313unsigned int sysctl_sched_rt_period = 1000000;
314
315__read_mostly int scheduler_running;
316
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
322
323/*
324 * __task_rq_lock - lock the rq @p resides on.
325 */
326static inline struct rq *__task_rq_lock(struct task_struct *p)
327	__acquires(rq->lock)
328{
329	struct rq *rq;
330
331	lockdep_assert_held(&p->pi_lock);
332
333	for (;;) {
334		rq = task_rq(p);
335		raw_spin_lock(&rq->lock);
336		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
337			return rq;
338		raw_spin_unlock(&rq->lock);
339
340		while (unlikely(task_on_rq_migrating(p)))
341			cpu_relax();
342	}
343}
344
345/*
346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
347 */
348static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
349	__acquires(p->pi_lock)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	for (;;) {
355		raw_spin_lock_irqsave(&p->pi_lock, *flags);
356		rq = task_rq(p);
357		raw_spin_lock(&rq->lock);
358		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
359			return rq;
360		raw_spin_unlock(&rq->lock);
361		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
362
363		while (unlikely(task_on_rq_migrating(p)))
364			cpu_relax();
365	}
366}
367
368static void __task_rq_unlock(struct rq *rq)
369	__releases(rq->lock)
370{
371	raw_spin_unlock(&rq->lock);
372}
373
374static inline void
375task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
376	__releases(rq->lock)
377	__releases(p->pi_lock)
378{
379	raw_spin_unlock(&rq->lock);
380	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
381}
382
383/*
384 * this_rq_lock - lock this runqueue and disable interrupts.
385 */
386static struct rq *this_rq_lock(void)
387	__acquires(rq->lock)
388{
389	struct rq *rq;
390
391	local_irq_disable();
392	rq = this_rq();
393	raw_spin_lock(&rq->lock);
394
395	return rq;
396}
397
398#ifdef CONFIG_SCHED_HRTICK
399/*
400 * Use HR-timers to deliver accurate preemption points.
401 */
402
403static void hrtick_clear(struct rq *rq)
404{
405	if (hrtimer_active(&rq->hrtick_timer))
406		hrtimer_cancel(&rq->hrtick_timer);
407}
408
409/*
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
412 */
413static enum hrtimer_restart hrtick(struct hrtimer *timer)
414{
415	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
416
417	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
418
419	raw_spin_lock(&rq->lock);
420	update_rq_clock(rq);
421	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
422	raw_spin_unlock(&rq->lock);
423
424	return HRTIMER_NORESTART;
425}
426
427#ifdef CONFIG_SMP
428
429static int __hrtick_restart(struct rq *rq)
430{
431	struct hrtimer *timer = &rq->hrtick_timer;
432	ktime_t time = hrtimer_get_softexpires(timer);
433
434	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
435}
436
437/*
438 * called from hardirq (IPI) context
439 */
440static void __hrtick_start(void *arg)
441{
442	struct rq *rq = arg;
443
444	raw_spin_lock(&rq->lock);
445	__hrtick_restart(rq);
446	rq->hrtick_csd_pending = 0;
447	raw_spin_unlock(&rq->lock);
448}
449
450/*
451 * Called to set the hrtick timer state.
452 *
453 * called with rq->lock held and irqs disabled
454 */
455void hrtick_start(struct rq *rq, u64 delay)
456{
457	struct hrtimer *timer = &rq->hrtick_timer;
458	ktime_t time;
459	s64 delta;
460
461	/*
462	 * Don't schedule slices shorter than 10000ns, that just
463	 * doesn't make sense and can cause timer DoS.
464	 */
465	delta = max_t(s64, delay, 10000LL);
466	time = ktime_add_ns(timer->base->get_time(), delta);
467
468	hrtimer_set_expires(timer, time);
469
470	if (rq == this_rq()) {
471		__hrtick_restart(rq);
472	} else if (!rq->hrtick_csd_pending) {
473		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
474		rq->hrtick_csd_pending = 1;
475	}
476}
477
478static int
479hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
480{
481	int cpu = (int)(long)hcpu;
482
483	switch (action) {
484	case CPU_UP_CANCELED:
485	case CPU_UP_CANCELED_FROZEN:
486	case CPU_DOWN_PREPARE:
487	case CPU_DOWN_PREPARE_FROZEN:
488	case CPU_DEAD:
489	case CPU_DEAD_FROZEN:
490		hrtick_clear(cpu_rq(cpu));
491		return NOTIFY_OK;
492	}
493
494	return NOTIFY_DONE;
495}
496
497static __init void init_hrtick(void)
498{
499	hotcpu_notifier(hotplug_hrtick, 0);
500}
501#else
502/*
503 * Called to set the hrtick timer state.
504 *
505 * called with rq->lock held and irqs disabled
506 */
507void hrtick_start(struct rq *rq, u64 delay)
508{
509	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
510			HRTIMER_MODE_REL_PINNED, 0);
511}
512
513static inline void init_hrtick(void)
514{
515}
516#endif /* CONFIG_SMP */
517
518static void init_rq_hrtick(struct rq *rq)
519{
520#ifdef CONFIG_SMP
521	rq->hrtick_csd_pending = 0;
522
523	rq->hrtick_csd.flags = 0;
524	rq->hrtick_csd.func = __hrtick_start;
525	rq->hrtick_csd.info = rq;
526#endif
527
528	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
529	rq->hrtick_timer.function = hrtick;
530}
531#else	/* CONFIG_SCHED_HRTICK */
532static inline void hrtick_clear(struct rq *rq)
533{
534}
535
536static inline void init_rq_hrtick(struct rq *rq)
537{
538}
539
540static inline void init_hrtick(void)
541{
542}
543#endif	/* CONFIG_SCHED_HRTICK */
544
545/*
546 * cmpxchg based fetch_or, macro so it works for different integer types
547 */
548#define fetch_or(ptr, val)						\
549({	typeof(*(ptr)) __old, __val = *(ptr);				\
550 	for (;;) {							\
551 		__old = cmpxchg((ptr), __val, __val | (val));		\
552 		if (__old == __val)					\
553 			break;						\
554 		__val = __old;						\
555 	}								\
556 	__old;								\
557})
558
559#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
560/*
561 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
562 * this avoids any races wrt polling state changes and thereby avoids
563 * spurious IPIs.
564 */
565static bool set_nr_and_not_polling(struct task_struct *p)
566{
567	struct thread_info *ti = task_thread_info(p);
568	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
569}
570
571/*
572 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
573 *
574 * If this returns true, then the idle task promises to call
575 * sched_ttwu_pending() and reschedule soon.
576 */
577static bool set_nr_if_polling(struct task_struct *p)
578{
579	struct thread_info *ti = task_thread_info(p);
580	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
581
582	for (;;) {
583		if (!(val & _TIF_POLLING_NRFLAG))
584			return false;
585		if (val & _TIF_NEED_RESCHED)
586			return true;
587		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
588		if (old == val)
589			break;
590		val = old;
591	}
592	return true;
593}
594
595#else
596static bool set_nr_and_not_polling(struct task_struct *p)
597{
598	set_tsk_need_resched(p);
599	return true;
600}
601
602#ifdef CONFIG_SMP
603static bool set_nr_if_polling(struct task_struct *p)
604{
605	return false;
606}
607#endif
608#endif
609
610/*
611 * resched_curr - mark rq's current task 'to be rescheduled now'.
612 *
613 * On UP this means the setting of the need_resched flag, on SMP it
614 * might also involve a cross-CPU call to trigger the scheduler on
615 * the target CPU.
616 */
617void resched_curr(struct rq *rq)
618{
619	struct task_struct *curr = rq->curr;
620	int cpu;
621
622	lockdep_assert_held(&rq->lock);
623
624	if (test_tsk_need_resched(curr))
625		return;
626
627	cpu = cpu_of(rq);
628
629	if (cpu == smp_processor_id()) {
630		set_tsk_need_resched(curr);
631		set_preempt_need_resched();
632		return;
633	}
634
635	if (set_nr_and_not_polling(curr))
636		smp_send_reschedule(cpu);
637	else
638		trace_sched_wake_idle_without_ipi(cpu);
639}
640
641void resched_cpu(int cpu)
642{
643	struct rq *rq = cpu_rq(cpu);
644	unsigned long flags;
645
646	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
647		return;
648	resched_curr(rq);
649	raw_spin_unlock_irqrestore(&rq->lock, flags);
650}
651
652#ifdef CONFIG_SMP
653#ifdef CONFIG_NO_HZ_COMMON
654/*
655 * In the semi idle case, use the nearest busy cpu for migrating timers
656 * from an idle cpu.  This is good for power-savings.
657 *
658 * We don't do similar optimization for completely idle system, as
659 * selecting an idle cpu will add more delays to the timers than intended
660 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
661 */
662int get_nohz_timer_target(int pinned)
663{
664	int cpu = smp_processor_id();
665	int i;
666	struct sched_domain *sd;
667
668	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
669		return cpu;
670
671	rcu_read_lock();
672	for_each_domain(cpu, sd) {
673		for_each_cpu(i, sched_domain_span(sd)) {
674			if (!idle_cpu(i)) {
675				cpu = i;
676				goto unlock;
677			}
678		}
679	}
680unlock:
681	rcu_read_unlock();
682	return cpu;
683}
684/*
685 * When add_timer_on() enqueues a timer into the timer wheel of an
686 * idle CPU then this timer might expire before the next timer event
687 * which is scheduled to wake up that CPU. In case of a completely
688 * idle system the next event might even be infinite time into the
689 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
690 * leaves the inner idle loop so the newly added timer is taken into
691 * account when the CPU goes back to idle and evaluates the timer
692 * wheel for the next timer event.
693 */
694static void wake_up_idle_cpu(int cpu)
695{
696	struct rq *rq = cpu_rq(cpu);
697
698	if (cpu == smp_processor_id())
699		return;
700
701	if (set_nr_and_not_polling(rq->idle))
702		smp_send_reschedule(cpu);
703	else
704		trace_sched_wake_idle_without_ipi(cpu);
705}
706
707static bool wake_up_full_nohz_cpu(int cpu)
708{
709	/*
710	 * We just need the target to call irq_exit() and re-evaluate
711	 * the next tick. The nohz full kick at least implies that.
712	 * If needed we can still optimize that later with an
713	 * empty IRQ.
714	 */
715	if (tick_nohz_full_cpu(cpu)) {
716		if (cpu != smp_processor_id() ||
717		    tick_nohz_tick_stopped())
718			tick_nohz_full_kick_cpu(cpu);
719		return true;
720	}
721
722	return false;
723}
724
725void wake_up_nohz_cpu(int cpu)
726{
727	if (!wake_up_full_nohz_cpu(cpu))
728		wake_up_idle_cpu(cpu);
729}
730
731static inline bool got_nohz_idle_kick(void)
732{
733	int cpu = smp_processor_id();
734
735	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
736		return false;
737
738	if (idle_cpu(cpu) && !need_resched())
739		return true;
740
741	/*
742	 * We can't run Idle Load Balance on this CPU for this time so we
743	 * cancel it and clear NOHZ_BALANCE_KICK
744	 */
745	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
746	return false;
747}
748
749#else /* CONFIG_NO_HZ_COMMON */
750
751static inline bool got_nohz_idle_kick(void)
752{
753	return false;
754}
755
756#endif /* CONFIG_NO_HZ_COMMON */
757
758#ifdef CONFIG_NO_HZ_FULL
759bool sched_can_stop_tick(void)
760{
761	/*
762	 * More than one running task need preemption.
763	 * nr_running update is assumed to be visible
764	 * after IPI is sent from wakers.
765	 */
766	if (this_rq()->nr_running > 1)
767		return false;
768
769	return true;
770}
771#endif /* CONFIG_NO_HZ_FULL */
772
773void sched_avg_update(struct rq *rq)
774{
775	s64 period = sched_avg_period();
776
777	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
778		/*
779		 * Inline assembly required to prevent the compiler
780		 * optimising this loop into a divmod call.
781		 * See __iter_div_u64_rem() for another example of this.
782		 */
783		asm("" : "+rm" (rq->age_stamp));
784		rq->age_stamp += period;
785		rq->rt_avg /= 2;
786	}
787}
788
789#endif /* CONFIG_SMP */
790
791#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
792			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
793/*
794 * Iterate task_group tree rooted at *from, calling @down when first entering a
795 * node and @up when leaving it for the final time.
796 *
797 * Caller must hold rcu_lock or sufficient equivalent.
798 */
799int walk_tg_tree_from(struct task_group *from,
800			     tg_visitor down, tg_visitor up, void *data)
801{
802	struct task_group *parent, *child;
803	int ret;
804
805	parent = from;
806
807down:
808	ret = (*down)(parent, data);
809	if (ret)
810		goto out;
811	list_for_each_entry_rcu(child, &parent->children, siblings) {
812		parent = child;
813		goto down;
814
815up:
816		continue;
817	}
818	ret = (*up)(parent, data);
819	if (ret || parent == from)
820		goto out;
821
822	child = parent;
823	parent = parent->parent;
824	if (parent)
825		goto up;
826out:
827	return ret;
828}
829
830int tg_nop(struct task_group *tg, void *data)
831{
832	return 0;
833}
834#endif
835
836static void set_load_weight(struct task_struct *p)
837{
838	int prio = p->static_prio - MAX_RT_PRIO;
839	struct load_weight *load = &p->se.load;
840
841	/*
842	 * SCHED_IDLE tasks get minimal weight:
843	 */
844	if (p->policy == SCHED_IDLE) {
845		load->weight = scale_load(WEIGHT_IDLEPRIO);
846		load->inv_weight = WMULT_IDLEPRIO;
847		return;
848	}
849
850	load->weight = scale_load(prio_to_weight[prio]);
851	load->inv_weight = prio_to_wmult[prio];
852}
853
854static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
855{
856	update_rq_clock(rq);
857	sched_info_queued(rq, p);
858	p->sched_class->enqueue_task(rq, p, flags);
859}
860
861static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
862{
863	update_rq_clock(rq);
864	sched_info_dequeued(rq, p);
865	p->sched_class->dequeue_task(rq, p, flags);
866}
867
868void activate_task(struct rq *rq, struct task_struct *p, int flags)
869{
870	if (task_contributes_to_load(p))
871		rq->nr_uninterruptible--;
872
873	enqueue_task(rq, p, flags);
874}
875
876void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
877{
878	if (task_contributes_to_load(p))
879		rq->nr_uninterruptible++;
880
881	dequeue_task(rq, p, flags);
882}
883
884static void update_rq_clock_task(struct rq *rq, s64 delta)
885{
886/*
887 * In theory, the compile should just see 0 here, and optimize out the call
888 * to sched_rt_avg_update. But I don't trust it...
889 */
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891	s64 steal = 0, irq_delta = 0;
892#endif
893#ifdef CONFIG_IRQ_TIME_ACCOUNTING
894	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
895
896	/*
897	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
898	 * this case when a previous update_rq_clock() happened inside a
899	 * {soft,}irq region.
900	 *
901	 * When this happens, we stop ->clock_task and only update the
902	 * prev_irq_time stamp to account for the part that fit, so that a next
903	 * update will consume the rest. This ensures ->clock_task is
904	 * monotonic.
905	 *
906	 * It does however cause some slight miss-attribution of {soft,}irq
907	 * time, a more accurate solution would be to update the irq_time using
908	 * the current rq->clock timestamp, except that would require using
909	 * atomic ops.
910	 */
911	if (irq_delta > delta)
912		irq_delta = delta;
913
914	rq->prev_irq_time += irq_delta;
915	delta -= irq_delta;
916#endif
917#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
918	if (static_key_false((&paravirt_steal_rq_enabled))) {
919		steal = paravirt_steal_clock(cpu_of(rq));
920		steal -= rq->prev_steal_time_rq;
921
922		if (unlikely(steal > delta))
923			steal = delta;
924
925		rq->prev_steal_time_rq += steal;
926		delta -= steal;
927	}
928#endif
929
930	rq->clock_task += delta;
931
932#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
933	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
934		sched_rt_avg_update(rq, irq_delta + steal);
935#endif
936}
937
938void sched_set_stop_task(int cpu, struct task_struct *stop)
939{
940	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
941	struct task_struct *old_stop = cpu_rq(cpu)->stop;
942
943	if (stop) {
944		/*
945		 * Make it appear like a SCHED_FIFO task, its something
946		 * userspace knows about and won't get confused about.
947		 *
948		 * Also, it will make PI more or less work without too
949		 * much confusion -- but then, stop work should not
950		 * rely on PI working anyway.
951		 */
952		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
953
954		stop->sched_class = &stop_sched_class;
955	}
956
957	cpu_rq(cpu)->stop = stop;
958
959	if (old_stop) {
960		/*
961		 * Reset it back to a normal scheduling class so that
962		 * it can die in pieces.
963		 */
964		old_stop->sched_class = &rt_sched_class;
965	}
966}
967
968/*
969 * __normal_prio - return the priority that is based on the static prio
970 */
971static inline int __normal_prio(struct task_struct *p)
972{
973	return p->static_prio;
974}
975
976/*
977 * Calculate the expected normal priority: i.e. priority
978 * without taking RT-inheritance into account. Might be
979 * boosted by interactivity modifiers. Changes upon fork,
980 * setprio syscalls, and whenever the interactivity
981 * estimator recalculates.
982 */
983static inline int normal_prio(struct task_struct *p)
984{
985	int prio;
986
987	if (task_has_dl_policy(p))
988		prio = MAX_DL_PRIO-1;
989	else if (task_has_rt_policy(p))
990		prio = MAX_RT_PRIO-1 - p->rt_priority;
991	else
992		prio = __normal_prio(p);
993	return prio;
994}
995
996/*
997 * Calculate the current priority, i.e. the priority
998 * taken into account by the scheduler. This value might
999 * be boosted by RT tasks, or might be boosted by
1000 * interactivity modifiers. Will be RT if the task got
1001 * RT-boosted. If not then it returns p->normal_prio.
1002 */
1003static int effective_prio(struct task_struct *p)
1004{
1005	p->normal_prio = normal_prio(p);
1006	/*
1007	 * If we are RT tasks or we were boosted to RT priority,
1008	 * keep the priority unchanged. Otherwise, update priority
1009	 * to the normal priority:
1010	 */
1011	if (!rt_prio(p->prio))
1012		return p->normal_prio;
1013	return p->prio;
1014}
1015
1016/**
1017 * task_curr - is this task currently executing on a CPU?
1018 * @p: the task in question.
1019 *
1020 * Return: 1 if the task is currently executing. 0 otherwise.
1021 */
1022inline int task_curr(const struct task_struct *p)
1023{
1024	return cpu_curr(task_cpu(p)) == p;
1025}
1026
1027static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1028				       const struct sched_class *prev_class,
1029				       int oldprio)
1030{
1031	if (prev_class != p->sched_class) {
1032		if (prev_class->switched_from)
1033			prev_class->switched_from(rq, p);
1034		p->sched_class->switched_to(rq, p);
1035	} else if (oldprio != p->prio || dl_task(p))
1036		p->sched_class->prio_changed(rq, p, oldprio);
1037}
1038
1039void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1040{
1041	const struct sched_class *class;
1042
1043	if (p->sched_class == rq->curr->sched_class) {
1044		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1045	} else {
1046		for_each_class(class) {
1047			if (class == rq->curr->sched_class)
1048				break;
1049			if (class == p->sched_class) {
1050				resched_curr(rq);
1051				break;
1052			}
1053		}
1054	}
1055
1056	/*
1057	 * A queue event has occurred, and we're going to schedule.  In
1058	 * this case, we can save a useless back to back clock update.
1059	 */
1060	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1061		rq->skip_clock_update = 1;
1062}
1063
1064#ifdef CONFIG_SMP
1065void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1066{
1067#ifdef CONFIG_SCHED_DEBUG
1068	/*
1069	 * We should never call set_task_cpu() on a blocked task,
1070	 * ttwu() will sort out the placement.
1071	 */
1072	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1073			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1074
1075#ifdef CONFIG_LOCKDEP
1076	/*
1077	 * The caller should hold either p->pi_lock or rq->lock, when changing
1078	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1079	 *
1080	 * sched_move_task() holds both and thus holding either pins the cgroup,
1081	 * see task_group().
1082	 *
1083	 * Furthermore, all task_rq users should acquire both locks, see
1084	 * task_rq_lock().
1085	 */
1086	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1087				      lockdep_is_held(&task_rq(p)->lock)));
1088#endif
1089#endif
1090
1091	trace_sched_migrate_task(p, new_cpu);
1092
1093	if (task_cpu(p) != new_cpu) {
1094		if (p->sched_class->migrate_task_rq)
1095			p->sched_class->migrate_task_rq(p, new_cpu);
1096		p->se.nr_migrations++;
1097		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1098	}
1099
1100	__set_task_cpu(p, new_cpu);
1101}
1102
1103static void __migrate_swap_task(struct task_struct *p, int cpu)
1104{
1105	if (task_on_rq_queued(p)) {
1106		struct rq *src_rq, *dst_rq;
1107
1108		src_rq = task_rq(p);
1109		dst_rq = cpu_rq(cpu);
1110
1111		deactivate_task(src_rq, p, 0);
1112		set_task_cpu(p, cpu);
1113		activate_task(dst_rq, p, 0);
1114		check_preempt_curr(dst_rq, p, 0);
1115	} else {
1116		/*
1117		 * Task isn't running anymore; make it appear like we migrated
1118		 * it before it went to sleep. This means on wakeup we make the
1119		 * previous cpu our targer instead of where it really is.
1120		 */
1121		p->wake_cpu = cpu;
1122	}
1123}
1124
1125struct migration_swap_arg {
1126	struct task_struct *src_task, *dst_task;
1127	int src_cpu, dst_cpu;
1128};
1129
1130static int migrate_swap_stop(void *data)
1131{
1132	struct migration_swap_arg *arg = data;
1133	struct rq *src_rq, *dst_rq;
1134	int ret = -EAGAIN;
1135
1136	src_rq = cpu_rq(arg->src_cpu);
1137	dst_rq = cpu_rq(arg->dst_cpu);
1138
1139	double_raw_lock(&arg->src_task->pi_lock,
1140			&arg->dst_task->pi_lock);
1141	double_rq_lock(src_rq, dst_rq);
1142	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1143		goto unlock;
1144
1145	if (task_cpu(arg->src_task) != arg->src_cpu)
1146		goto unlock;
1147
1148	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1149		goto unlock;
1150
1151	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1152		goto unlock;
1153
1154	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1155	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1156
1157	ret = 0;
1158
1159unlock:
1160	double_rq_unlock(src_rq, dst_rq);
1161	raw_spin_unlock(&arg->dst_task->pi_lock);
1162	raw_spin_unlock(&arg->src_task->pi_lock);
1163
1164	return ret;
1165}
1166
1167/*
1168 * Cross migrate two tasks
1169 */
1170int migrate_swap(struct task_struct *cur, struct task_struct *p)
1171{
1172	struct migration_swap_arg arg;
1173	int ret = -EINVAL;
1174
1175	arg = (struct migration_swap_arg){
1176		.src_task = cur,
1177		.src_cpu = task_cpu(cur),
1178		.dst_task = p,
1179		.dst_cpu = task_cpu(p),
1180	};
1181
1182	if (arg.src_cpu == arg.dst_cpu)
1183		goto out;
1184
1185	/*
1186	 * These three tests are all lockless; this is OK since all of them
1187	 * will be re-checked with proper locks held further down the line.
1188	 */
1189	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1190		goto out;
1191
1192	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1193		goto out;
1194
1195	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1196		goto out;
1197
1198	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1199	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1200
1201out:
1202	return ret;
1203}
1204
1205struct migration_arg {
1206	struct task_struct *task;
1207	int dest_cpu;
1208};
1209
1210static int migration_cpu_stop(void *data);
1211
1212/*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
1215 * If @match_state is nonzero, it's the @p->state value just checked and
1216 * not expected to change.  If it changes, i.e. @p might have woken up,
1217 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1218 * we return a positive number (its total switch count).  If a second call
1219 * a short while later returns the same number, the caller can be sure that
1220 * @p has remained unscheduled the whole time.
1221 *
1222 * The caller must ensure that the task *will* unschedule sometime soon,
1223 * else this function might spin for a *long* time. This function can't
1224 * be called with interrupts off, or it may introduce deadlock with
1225 * smp_call_function() if an IPI is sent by the same process we are
1226 * waiting to become inactive.
1227 */
1228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1229{
1230	unsigned long flags;
1231	int running, queued;
1232	unsigned long ncsw;
1233	struct rq *rq;
1234
1235	for (;;) {
1236		/*
1237		 * We do the initial early heuristics without holding
1238		 * any task-queue locks at all. We'll only try to get
1239		 * the runqueue lock when things look like they will
1240		 * work out!
1241		 */
1242		rq = task_rq(p);
1243
1244		/*
1245		 * If the task is actively running on another CPU
1246		 * still, just relax and busy-wait without holding
1247		 * any locks.
1248		 *
1249		 * NOTE! Since we don't hold any locks, it's not
1250		 * even sure that "rq" stays as the right runqueue!
1251		 * But we don't care, since "task_running()" will
1252		 * return false if the runqueue has changed and p
1253		 * is actually now running somewhere else!
1254		 */
1255		while (task_running(rq, p)) {
1256			if (match_state && unlikely(p->state != match_state))
1257				return 0;
1258			cpu_relax();
1259		}
1260
1261		/*
1262		 * Ok, time to look more closely! We need the rq
1263		 * lock now, to be *sure*. If we're wrong, we'll
1264		 * just go back and repeat.
1265		 */
1266		rq = task_rq_lock(p, &flags);
1267		trace_sched_wait_task(p);
1268		running = task_running(rq, p);
1269		queued = task_on_rq_queued(p);
1270		ncsw = 0;
1271		if (!match_state || p->state == match_state)
1272			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1273		task_rq_unlock(rq, p, &flags);
1274
1275		/*
1276		 * If it changed from the expected state, bail out now.
1277		 */
1278		if (unlikely(!ncsw))
1279			break;
1280
1281		/*
1282		 * Was it really running after all now that we
1283		 * checked with the proper locks actually held?
1284		 *
1285		 * Oops. Go back and try again..
1286		 */
1287		if (unlikely(running)) {
1288			cpu_relax();
1289			continue;
1290		}
1291
1292		/*
1293		 * It's not enough that it's not actively running,
1294		 * it must be off the runqueue _entirely_, and not
1295		 * preempted!
1296		 *
1297		 * So if it was still runnable (but just not actively
1298		 * running right now), it's preempted, and we should
1299		 * yield - it could be a while.
1300		 */
1301		if (unlikely(queued)) {
1302			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1303
1304			set_current_state(TASK_UNINTERRUPTIBLE);
1305			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1306			continue;
1307		}
1308
1309		/*
1310		 * Ahh, all good. It wasn't running, and it wasn't
1311		 * runnable, which means that it will never become
1312		 * running in the future either. We're all done!
1313		 */
1314		break;
1315	}
1316
1317	return ncsw;
1318}
1319
1320/***
1321 * kick_process - kick a running thread to enter/exit the kernel
1322 * @p: the to-be-kicked thread
1323 *
1324 * Cause a process which is running on another CPU to enter
1325 * kernel-mode, without any delay. (to get signals handled.)
1326 *
1327 * NOTE: this function doesn't have to take the runqueue lock,
1328 * because all it wants to ensure is that the remote task enters
1329 * the kernel. If the IPI races and the task has been migrated
1330 * to another CPU then no harm is done and the purpose has been
1331 * achieved as well.
1332 */
1333void kick_process(struct task_struct *p)
1334{
1335	int cpu;
1336
1337	preempt_disable();
1338	cpu = task_cpu(p);
1339	if ((cpu != smp_processor_id()) && task_curr(p))
1340		smp_send_reschedule(cpu);
1341	preempt_enable();
1342}
1343EXPORT_SYMBOL_GPL(kick_process);
1344#endif /* CONFIG_SMP */
1345
1346#ifdef CONFIG_SMP
1347/*
1348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1349 */
1350static int select_fallback_rq(int cpu, struct task_struct *p)
1351{
1352	int nid = cpu_to_node(cpu);
1353	const struct cpumask *nodemask = NULL;
1354	enum { cpuset, possible, fail } state = cpuset;
1355	int dest_cpu;
1356
1357	/*
1358	 * If the node that the cpu is on has been offlined, cpu_to_node()
1359	 * will return -1. There is no cpu on the node, and we should
1360	 * select the cpu on the other node.
1361	 */
1362	if (nid != -1) {
1363		nodemask = cpumask_of_node(nid);
1364
1365		/* Look for allowed, online CPU in same node. */
1366		for_each_cpu(dest_cpu, nodemask) {
1367			if (!cpu_online(dest_cpu))
1368				continue;
1369			if (!cpu_active(dest_cpu))
1370				continue;
1371			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1372				return dest_cpu;
1373		}
1374	}
1375
1376	for (;;) {
1377		/* Any allowed, online CPU? */
1378		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1379			if (!cpu_online(dest_cpu))
1380				continue;
1381			if (!cpu_active(dest_cpu))
1382				continue;
1383			goto out;
1384		}
1385
1386		switch (state) {
1387		case cpuset:
1388			/* No more Mr. Nice Guy. */
1389			cpuset_cpus_allowed_fallback(p);
1390			state = possible;
1391			break;
1392
1393		case possible:
1394			do_set_cpus_allowed(p, cpu_possible_mask);
1395			state = fail;
1396			break;
1397
1398		case fail:
1399			BUG();
1400			break;
1401		}
1402	}
1403
1404out:
1405	if (state != cpuset) {
1406		/*
1407		 * Don't tell them about moving exiting tasks or
1408		 * kernel threads (both mm NULL), since they never
1409		 * leave kernel.
1410		 */
1411		if (p->mm && printk_ratelimit()) {
1412			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1413					task_pid_nr(p), p->comm, cpu);
1414		}
1415	}
1416
1417	return dest_cpu;
1418}
1419
1420/*
1421 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1422 */
1423static inline
1424int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1425{
1426	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1427
1428	/*
1429	 * In order not to call set_task_cpu() on a blocking task we need
1430	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1431	 * cpu.
1432	 *
1433	 * Since this is common to all placement strategies, this lives here.
1434	 *
1435	 * [ this allows ->select_task() to simply return task_cpu(p) and
1436	 *   not worry about this generic constraint ]
1437	 */
1438	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1439		     !cpu_online(cpu)))
1440		cpu = select_fallback_rq(task_cpu(p), p);
1441
1442	return cpu;
1443}
1444
1445static void update_avg(u64 *avg, u64 sample)
1446{
1447	s64 diff = sample - *avg;
1448	*avg += diff >> 3;
1449}
1450#endif
1451
1452static void
1453ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1454{
1455#ifdef CONFIG_SCHEDSTATS
1456	struct rq *rq = this_rq();
1457
1458#ifdef CONFIG_SMP
1459	int this_cpu = smp_processor_id();
1460
1461	if (cpu == this_cpu) {
1462		schedstat_inc(rq, ttwu_local);
1463		schedstat_inc(p, se.statistics.nr_wakeups_local);
1464	} else {
1465		struct sched_domain *sd;
1466
1467		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1468		rcu_read_lock();
1469		for_each_domain(this_cpu, sd) {
1470			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1471				schedstat_inc(sd, ttwu_wake_remote);
1472				break;
1473			}
1474		}
1475		rcu_read_unlock();
1476	}
1477
1478	if (wake_flags & WF_MIGRATED)
1479		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1480
1481#endif /* CONFIG_SMP */
1482
1483	schedstat_inc(rq, ttwu_count);
1484	schedstat_inc(p, se.statistics.nr_wakeups);
1485
1486	if (wake_flags & WF_SYNC)
1487		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1488
1489#endif /* CONFIG_SCHEDSTATS */
1490}
1491
1492static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1493{
1494	activate_task(rq, p, en_flags);
1495	p->on_rq = TASK_ON_RQ_QUEUED;
1496
1497	/* if a worker is waking up, notify workqueue */
1498	if (p->flags & PF_WQ_WORKER)
1499		wq_worker_waking_up(p, cpu_of(rq));
1500}
1501
1502/*
1503 * Mark the task runnable and perform wakeup-preemption.
1504 */
1505static void
1506ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1507{
1508	check_preempt_curr(rq, p, wake_flags);
1509	trace_sched_wakeup(p, true);
1510
1511	p->state = TASK_RUNNING;
1512#ifdef CONFIG_SMP
1513	if (p->sched_class->task_woken)
1514		p->sched_class->task_woken(rq, p);
1515
1516	if (rq->idle_stamp) {
1517		u64 delta = rq_clock(rq) - rq->idle_stamp;
1518		u64 max = 2*rq->max_idle_balance_cost;
1519
1520		update_avg(&rq->avg_idle, delta);
1521
1522		if (rq->avg_idle > max)
1523			rq->avg_idle = max;
1524
1525		rq->idle_stamp = 0;
1526	}
1527#endif
1528}
1529
1530static void
1531ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1532{
1533#ifdef CONFIG_SMP
1534	if (p->sched_contributes_to_load)
1535		rq->nr_uninterruptible--;
1536#endif
1537
1538	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1539	ttwu_do_wakeup(rq, p, wake_flags);
1540}
1541
1542/*
1543 * Called in case the task @p isn't fully descheduled from its runqueue,
1544 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1545 * since all we need to do is flip p->state to TASK_RUNNING, since
1546 * the task is still ->on_rq.
1547 */
1548static int ttwu_remote(struct task_struct *p, int wake_flags)
1549{
1550	struct rq *rq;
1551	int ret = 0;
1552
1553	rq = __task_rq_lock(p);
1554	if (task_on_rq_queued(p)) {
1555		/* check_preempt_curr() may use rq clock */
1556		update_rq_clock(rq);
1557		ttwu_do_wakeup(rq, p, wake_flags);
1558		ret = 1;
1559	}
1560	__task_rq_unlock(rq);
1561
1562	return ret;
1563}
1564
1565#ifdef CONFIG_SMP
1566void sched_ttwu_pending(void)
1567{
1568	struct rq *rq = this_rq();
1569	struct llist_node *llist = llist_del_all(&rq->wake_list);
1570	struct task_struct *p;
1571	unsigned long flags;
1572
1573	if (!llist)
1574		return;
1575
1576	raw_spin_lock_irqsave(&rq->lock, flags);
1577
1578	while (llist) {
1579		p = llist_entry(llist, struct task_struct, wake_entry);
1580		llist = llist_next(llist);
1581		ttwu_do_activate(rq, p, 0);
1582	}
1583
1584	raw_spin_unlock_irqrestore(&rq->lock, flags);
1585}
1586
1587void scheduler_ipi(void)
1588{
1589	/*
1590	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1591	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1592	 * this IPI.
1593	 */
1594	preempt_fold_need_resched();
1595
1596	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1597		return;
1598
1599	/*
1600	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1601	 * traditionally all their work was done from the interrupt return
1602	 * path. Now that we actually do some work, we need to make sure
1603	 * we do call them.
1604	 *
1605	 * Some archs already do call them, luckily irq_enter/exit nest
1606	 * properly.
1607	 *
1608	 * Arguably we should visit all archs and update all handlers,
1609	 * however a fair share of IPIs are still resched only so this would
1610	 * somewhat pessimize the simple resched case.
1611	 */
1612	irq_enter();
1613	sched_ttwu_pending();
1614
1615	/*
1616	 * Check if someone kicked us for doing the nohz idle load balance.
1617	 */
1618	if (unlikely(got_nohz_idle_kick())) {
1619		this_rq()->idle_balance = 1;
1620		raise_softirq_irqoff(SCHED_SOFTIRQ);
1621	}
1622	irq_exit();
1623}
1624
1625static void ttwu_queue_remote(struct task_struct *p, int cpu)
1626{
1627	struct rq *rq = cpu_rq(cpu);
1628
1629	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1630		if (!set_nr_if_polling(rq->idle))
1631			smp_send_reschedule(cpu);
1632		else
1633			trace_sched_wake_idle_without_ipi(cpu);
1634	}
1635}
1636
1637void wake_up_if_idle(int cpu)
1638{
1639	struct rq *rq = cpu_rq(cpu);
1640	unsigned long flags;
1641
1642	if (!is_idle_task(rq->curr))
1643		return;
1644
1645	if (set_nr_if_polling(rq->idle)) {
1646		trace_sched_wake_idle_without_ipi(cpu);
1647	} else {
1648		raw_spin_lock_irqsave(&rq->lock, flags);
1649		if (is_idle_task(rq->curr))
1650			smp_send_reschedule(cpu);
1651		/* Else cpu is not in idle, do nothing here */
1652		raw_spin_unlock_irqrestore(&rq->lock, flags);
1653	}
1654}
1655
1656bool cpus_share_cache(int this_cpu, int that_cpu)
1657{
1658	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1659}
1660#endif /* CONFIG_SMP */
1661
1662static void ttwu_queue(struct task_struct *p, int cpu)
1663{
1664	struct rq *rq = cpu_rq(cpu);
1665
1666#if defined(CONFIG_SMP)
1667	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1668		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1669		ttwu_queue_remote(p, cpu);
1670		return;
1671	}
1672#endif
1673
1674	raw_spin_lock(&rq->lock);
1675	ttwu_do_activate(rq, p, 0);
1676	raw_spin_unlock(&rq->lock);
1677}
1678
1679/**
1680 * try_to_wake_up - wake up a thread
1681 * @p: the thread to be awakened
1682 * @state: the mask of task states that can be woken
1683 * @wake_flags: wake modifier flags (WF_*)
1684 *
1685 * Put it on the run-queue if it's not already there. The "current"
1686 * thread is always on the run-queue (except when the actual
1687 * re-schedule is in progress), and as such you're allowed to do
1688 * the simpler "current->state = TASK_RUNNING" to mark yourself
1689 * runnable without the overhead of this.
1690 *
1691 * Return: %true if @p was woken up, %false if it was already running.
1692 * or @state didn't match @p's state.
1693 */
1694static int
1695try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1696{
1697	unsigned long flags;
1698	int cpu, success = 0;
1699
1700	/*
1701	 * If we are going to wake up a thread waiting for CONDITION we
1702	 * need to ensure that CONDITION=1 done by the caller can not be
1703	 * reordered with p->state check below. This pairs with mb() in
1704	 * set_current_state() the waiting thread does.
1705	 */
1706	smp_mb__before_spinlock();
1707	raw_spin_lock_irqsave(&p->pi_lock, flags);
1708	if (!(p->state & state))
1709		goto out;
1710
1711	success = 1; /* we're going to change ->state */
1712	cpu = task_cpu(p);
1713
1714	if (p->on_rq && ttwu_remote(p, wake_flags))
1715		goto stat;
1716
1717#ifdef CONFIG_SMP
1718	/*
1719	 * If the owning (remote) cpu is still in the middle of schedule() with
1720	 * this task as prev, wait until its done referencing the task.
1721	 */
1722	while (p->on_cpu)
1723		cpu_relax();
1724	/*
1725	 * Pairs with the smp_wmb() in finish_lock_switch().
1726	 */
1727	smp_rmb();
1728
1729	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1730	p->state = TASK_WAKING;
1731
1732	if (p->sched_class->task_waking)
1733		p->sched_class->task_waking(p);
1734
1735	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1736	if (task_cpu(p) != cpu) {
1737		wake_flags |= WF_MIGRATED;
1738		set_task_cpu(p, cpu);
1739	}
1740#endif /* CONFIG_SMP */
1741
1742	ttwu_queue(p, cpu);
1743stat:
1744	ttwu_stat(p, cpu, wake_flags);
1745out:
1746	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1747
1748	return success;
1749}
1750
1751/**
1752 * try_to_wake_up_local - try to wake up a local task with rq lock held
1753 * @p: the thread to be awakened
1754 *
1755 * Put @p on the run-queue if it's not already there. The caller must
1756 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1757 * the current task.
1758 */
1759static void try_to_wake_up_local(struct task_struct *p)
1760{
1761	struct rq *rq = task_rq(p);
1762
1763	if (WARN_ON_ONCE(rq != this_rq()) ||
1764	    WARN_ON_ONCE(p == current))
1765		return;
1766
1767	lockdep_assert_held(&rq->lock);
1768
1769	if (!raw_spin_trylock(&p->pi_lock)) {
1770		raw_spin_unlock(&rq->lock);
1771		raw_spin_lock(&p->pi_lock);
1772		raw_spin_lock(&rq->lock);
1773	}
1774
1775	if (!(p->state & TASK_NORMAL))
1776		goto out;
1777
1778	if (!task_on_rq_queued(p))
1779		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1780
1781	ttwu_do_wakeup(rq, p, 0);
1782	ttwu_stat(p, smp_processor_id(), 0);
1783out:
1784	raw_spin_unlock(&p->pi_lock);
1785}
1786
1787/**
1788 * wake_up_process - Wake up a specific process
1789 * @p: The process to be woken up.
1790 *
1791 * Attempt to wake up the nominated process and move it to the set of runnable
1792 * processes.
1793 *
1794 * Return: 1 if the process was woken up, 0 if it was already running.
1795 *
1796 * It may be assumed that this function implies a write memory barrier before
1797 * changing the task state if and only if any tasks are woken up.
1798 */
1799int wake_up_process(struct task_struct *p)
1800{
1801	WARN_ON(task_is_stopped_or_traced(p));
1802	return try_to_wake_up(p, TASK_NORMAL, 0);
1803}
1804EXPORT_SYMBOL(wake_up_process);
1805
1806int wake_up_state(struct task_struct *p, unsigned int state)
1807{
1808	return try_to_wake_up(p, state, 0);
1809}
1810
1811/*
1812 * This function clears the sched_dl_entity static params.
1813 */
1814void __dl_clear_params(struct task_struct *p)
1815{
1816	struct sched_dl_entity *dl_se = &p->dl;
1817
1818	dl_se->dl_runtime = 0;
1819	dl_se->dl_deadline = 0;
1820	dl_se->dl_period = 0;
1821	dl_se->flags = 0;
1822	dl_se->dl_bw = 0;
1823}
1824
1825/*
1826 * Perform scheduler related setup for a newly forked process p.
1827 * p is forked by current.
1828 *
1829 * __sched_fork() is basic setup used by init_idle() too:
1830 */
1831static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1832{
1833	p->on_rq			= 0;
1834
1835	p->se.on_rq			= 0;
1836	p->se.exec_start		= 0;
1837	p->se.sum_exec_runtime		= 0;
1838	p->se.prev_sum_exec_runtime	= 0;
1839	p->se.nr_migrations		= 0;
1840	p->se.vruntime			= 0;
1841	INIT_LIST_HEAD(&p->se.group_node);
1842
1843#ifdef CONFIG_SCHEDSTATS
1844	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1845#endif
1846
1847	RB_CLEAR_NODE(&p->dl.rb_node);
1848	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1849	__dl_clear_params(p);
1850
1851	INIT_LIST_HEAD(&p->rt.run_list);
1852
1853#ifdef CONFIG_PREEMPT_NOTIFIERS
1854	INIT_HLIST_HEAD(&p->preempt_notifiers);
1855#endif
1856
1857#ifdef CONFIG_NUMA_BALANCING
1858	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1859		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1860		p->mm->numa_scan_seq = 0;
1861	}
1862
1863	if (clone_flags & CLONE_VM)
1864		p->numa_preferred_nid = current->numa_preferred_nid;
1865	else
1866		p->numa_preferred_nid = -1;
1867
1868	p->node_stamp = 0ULL;
1869	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1870	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1871	p->numa_work.next = &p->numa_work;
1872	p->numa_faults_memory = NULL;
1873	p->numa_faults_buffer_memory = NULL;
1874	p->last_task_numa_placement = 0;
1875	p->last_sum_exec_runtime = 0;
1876
1877	INIT_LIST_HEAD(&p->numa_entry);
1878	p->numa_group = NULL;
1879#endif /* CONFIG_NUMA_BALANCING */
1880}
1881
1882#ifdef CONFIG_NUMA_BALANCING
1883#ifdef CONFIG_SCHED_DEBUG
1884void set_numabalancing_state(bool enabled)
1885{
1886	if (enabled)
1887		sched_feat_set("NUMA");
1888	else
1889		sched_feat_set("NO_NUMA");
1890}
1891#else
1892__read_mostly bool numabalancing_enabled;
1893
1894void set_numabalancing_state(bool enabled)
1895{
1896	numabalancing_enabled = enabled;
1897}
1898#endif /* CONFIG_SCHED_DEBUG */
1899
1900#ifdef CONFIG_PROC_SYSCTL
1901int sysctl_numa_balancing(struct ctl_table *table, int write,
1902			 void __user *buffer, size_t *lenp, loff_t *ppos)
1903{
1904	struct ctl_table t;
1905	int err;
1906	int state = numabalancing_enabled;
1907
1908	if (write && !capable(CAP_SYS_ADMIN))
1909		return -EPERM;
1910
1911	t = *table;
1912	t.data = &state;
1913	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1914	if (err < 0)
1915		return err;
1916	if (write)
1917		set_numabalancing_state(state);
1918	return err;
1919}
1920#endif
1921#endif
1922
1923/*
1924 * fork()/clone()-time setup:
1925 */
1926int sched_fork(unsigned long clone_flags, struct task_struct *p)
1927{
1928	unsigned long flags;
1929	int cpu = get_cpu();
1930
1931	__sched_fork(clone_flags, p);
1932	/*
1933	 * We mark the process as running here. This guarantees that
1934	 * nobody will actually run it, and a signal or other external
1935	 * event cannot wake it up and insert it on the runqueue either.
1936	 */
1937	p->state = TASK_RUNNING;
1938
1939	/*
1940	 * Make sure we do not leak PI boosting priority to the child.
1941	 */
1942	p->prio = current->normal_prio;
1943
1944	/*
1945	 * Revert to default priority/policy on fork if requested.
1946	 */
1947	if (unlikely(p->sched_reset_on_fork)) {
1948		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1949			p->policy = SCHED_NORMAL;
1950			p->static_prio = NICE_TO_PRIO(0);
1951			p->rt_priority = 0;
1952		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1953			p->static_prio = NICE_TO_PRIO(0);
1954
1955		p->prio = p->normal_prio = __normal_prio(p);
1956		set_load_weight(p);
1957
1958		/*
1959		 * We don't need the reset flag anymore after the fork. It has
1960		 * fulfilled its duty:
1961		 */
1962		p->sched_reset_on_fork = 0;
1963	}
1964
1965	if (dl_prio(p->prio)) {
1966		put_cpu();
1967		return -EAGAIN;
1968	} else if (rt_prio(p->prio)) {
1969		p->sched_class = &rt_sched_class;
1970	} else {
1971		p->sched_class = &fair_sched_class;
1972	}
1973
1974	if (p->sched_class->task_fork)
1975		p->sched_class->task_fork(p);
1976
1977	/*
1978	 * The child is not yet in the pid-hash so no cgroup attach races,
1979	 * and the cgroup is pinned to this child due to cgroup_fork()
1980	 * is ran before sched_fork().
1981	 *
1982	 * Silence PROVE_RCU.
1983	 */
1984	raw_spin_lock_irqsave(&p->pi_lock, flags);
1985	set_task_cpu(p, cpu);
1986	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1987
1988#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1989	if (likely(sched_info_on()))
1990		memset(&p->sched_info, 0, sizeof(p->sched_info));
1991#endif
1992#if defined(CONFIG_SMP)
1993	p->on_cpu = 0;
1994#endif
1995	init_task_preempt_count(p);
1996#ifdef CONFIG_SMP
1997	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1998	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1999#endif
2000
2001	put_cpu();
2002	return 0;
2003}
2004
2005unsigned long to_ratio(u64 period, u64 runtime)
2006{
2007	if (runtime == RUNTIME_INF)
2008		return 1ULL << 20;
2009
2010	/*
2011	 * Doing this here saves a lot of checks in all
2012	 * the calling paths, and returning zero seems
2013	 * safe for them anyway.
2014	 */
2015	if (period == 0)
2016		return 0;
2017
2018	return div64_u64(runtime << 20, period);
2019}
2020
2021#ifdef CONFIG_SMP
2022inline struct dl_bw *dl_bw_of(int i)
2023{
2024	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2025			   "sched RCU must be held");
2026	return &cpu_rq(i)->rd->dl_bw;
2027}
2028
2029static inline int dl_bw_cpus(int i)
2030{
2031	struct root_domain *rd = cpu_rq(i)->rd;
2032	int cpus = 0;
2033
2034	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2035			   "sched RCU must be held");
2036	for_each_cpu_and(i, rd->span, cpu_active_mask)
2037		cpus++;
2038
2039	return cpus;
2040}
2041#else
2042inline struct dl_bw *dl_bw_of(int i)
2043{
2044	return &cpu_rq(i)->dl.dl_bw;
2045}
2046
2047static inline int dl_bw_cpus(int i)
2048{
2049	return 1;
2050}
2051#endif
2052
2053static inline
2054void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2055{
2056	dl_b->total_bw -= tsk_bw;
2057}
2058
2059static inline
2060void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2061{
2062	dl_b->total_bw += tsk_bw;
2063}
2064
2065static inline
2066bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2067{
2068	return dl_b->bw != -1 &&
2069	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2070}
2071
2072/*
2073 * We must be sure that accepting a new task (or allowing changing the
2074 * parameters of an existing one) is consistent with the bandwidth
2075 * constraints. If yes, this function also accordingly updates the currently
2076 * allocated bandwidth to reflect the new situation.
2077 *
2078 * This function is called while holding p's rq->lock.
2079 */
2080static int dl_overflow(struct task_struct *p, int policy,
2081		       const struct sched_attr *attr)
2082{
2083
2084	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2085	u64 period = attr->sched_period ?: attr->sched_deadline;
2086	u64 runtime = attr->sched_runtime;
2087	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2088	int cpus, err = -1;
2089
2090	if (new_bw == p->dl.dl_bw)
2091		return 0;
2092
2093	/*
2094	 * Either if a task, enters, leave, or stays -deadline but changes
2095	 * its parameters, we may need to update accordingly the total
2096	 * allocated bandwidth of the container.
2097	 */
2098	raw_spin_lock(&dl_b->lock);
2099	cpus = dl_bw_cpus(task_cpu(p));
2100	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2101	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2102		__dl_add(dl_b, new_bw);
2103		err = 0;
2104	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2105		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2106		__dl_clear(dl_b, p->dl.dl_bw);
2107		__dl_add(dl_b, new_bw);
2108		err = 0;
2109	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2110		__dl_clear(dl_b, p->dl.dl_bw);
2111		err = 0;
2112	}
2113	raw_spin_unlock(&dl_b->lock);
2114
2115	return err;
2116}
2117
2118extern void init_dl_bw(struct dl_bw *dl_b);
2119
2120/*
2121 * wake_up_new_task - wake up a newly created task for the first time.
2122 *
2123 * This function will do some initial scheduler statistics housekeeping
2124 * that must be done for every newly created context, then puts the task
2125 * on the runqueue and wakes it.
2126 */
2127void wake_up_new_task(struct task_struct *p)
2128{
2129	unsigned long flags;
2130	struct rq *rq;
2131
2132	raw_spin_lock_irqsave(&p->pi_lock, flags);
2133#ifdef CONFIG_SMP
2134	/*
2135	 * Fork balancing, do it here and not earlier because:
2136	 *  - cpus_allowed can change in the fork path
2137	 *  - any previously selected cpu might disappear through hotplug
2138	 */
2139	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2140#endif
2141
2142	/* Initialize new task's runnable average */
2143	init_task_runnable_average(p);
2144	rq = __task_rq_lock(p);
2145	activate_task(rq, p, 0);
2146	p->on_rq = TASK_ON_RQ_QUEUED;
2147	trace_sched_wakeup_new(p, true);
2148	check_preempt_curr(rq, p, WF_FORK);
2149#ifdef CONFIG_SMP
2150	if (p->sched_class->task_woken)
2151		p->sched_class->task_woken(rq, p);
2152#endif
2153	task_rq_unlock(rq, p, &flags);
2154}
2155
2156#ifdef CONFIG_PREEMPT_NOTIFIERS
2157
2158/**
2159 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2160 * @notifier: notifier struct to register
2161 */
2162void preempt_notifier_register(struct preempt_notifier *notifier)
2163{
2164	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2165}
2166EXPORT_SYMBOL_GPL(preempt_notifier_register);
2167
2168/**
2169 * preempt_notifier_unregister - no longer interested in preemption notifications
2170 * @notifier: notifier struct to unregister
2171 *
2172 * This is safe to call from within a preemption notifier.
2173 */
2174void preempt_notifier_unregister(struct preempt_notifier *notifier)
2175{
2176	hlist_del(&notifier->link);
2177}
2178EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2179
2180static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2181{
2182	struct preempt_notifier *notifier;
2183
2184	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2185		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190				 struct task_struct *next)
2191{
2192	struct preempt_notifier *notifier;
2193
2194	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2195		notifier->ops->sched_out(notifier, next);
2196}
2197
2198#else /* !CONFIG_PREEMPT_NOTIFIERS */
2199
2200static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2201{
2202}
2203
2204static void
2205fire_sched_out_preempt_notifiers(struct task_struct *curr,
2206				 struct task_struct *next)
2207{
2208}
2209
2210#endif /* CONFIG_PREEMPT_NOTIFIERS */
2211
2212/**
2213 * prepare_task_switch - prepare to switch tasks
2214 * @rq: the runqueue preparing to switch
2215 * @prev: the current task that is being switched out
2216 * @next: the task we are going to switch to.
2217 *
2218 * This is called with the rq lock held and interrupts off. It must
2219 * be paired with a subsequent finish_task_switch after the context
2220 * switch.
2221 *
2222 * prepare_task_switch sets up locking and calls architecture specific
2223 * hooks.
2224 */
2225static inline void
2226prepare_task_switch(struct rq *rq, struct task_struct *prev,
2227		    struct task_struct *next)
2228{
2229	trace_sched_switch(prev, next);
2230	sched_info_switch(rq, prev, next);
2231	perf_event_task_sched_out(prev, next);
2232	fire_sched_out_preempt_notifiers(prev, next);
2233	prepare_lock_switch(rq, next);
2234	prepare_arch_switch(next);
2235}
2236
2237/**
2238 * finish_task_switch - clean up after a task-switch
2239 * @rq: runqueue associated with task-switch
2240 * @prev: the thread we just switched away from.
2241 *
2242 * finish_task_switch must be called after the context switch, paired
2243 * with a prepare_task_switch call before the context switch.
2244 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2245 * and do any other architecture-specific cleanup actions.
2246 *
2247 * Note that we may have delayed dropping an mm in context_switch(). If
2248 * so, we finish that here outside of the runqueue lock. (Doing it
2249 * with the lock held can cause deadlocks; see schedule() for
2250 * details.)
2251 */
2252static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2253	__releases(rq->lock)
2254{
2255	struct mm_struct *mm = rq->prev_mm;
2256	long prev_state;
2257
2258	rq->prev_mm = NULL;
2259
2260	/*
2261	 * A task struct has one reference for the use as "current".
2262	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2263	 * schedule one last time. The schedule call will never return, and
2264	 * the scheduled task must drop that reference.
2265	 * The test for TASK_DEAD must occur while the runqueue locks are
2266	 * still held, otherwise prev could be scheduled on another cpu, die
2267	 * there before we look at prev->state, and then the reference would
2268	 * be dropped twice.
2269	 *		Manfred Spraul <manfred@colorfullife.com>
2270	 */
2271	prev_state = prev->state;
2272	vtime_task_switch(prev);
2273	finish_arch_switch(prev);
2274	perf_event_task_sched_in(prev, current);
2275	finish_lock_switch(rq, prev);
2276	finish_arch_post_lock_switch();
2277
2278	fire_sched_in_preempt_notifiers(current);
2279	if (mm)
2280		mmdrop(mm);
2281	if (unlikely(prev_state == TASK_DEAD)) {
2282		if (prev->sched_class->task_dead)
2283			prev->sched_class->task_dead(prev);
2284
2285		/*
2286		 * Remove function-return probe instances associated with this
2287		 * task and put them back on the free list.
2288		 */
2289		kprobe_flush_task(prev);
2290		put_task_struct(prev);
2291	}
2292
2293	tick_nohz_task_switch(current);
2294}
2295
2296#ifdef CONFIG_SMP
2297
2298/* rq->lock is NOT held, but preemption is disabled */
2299static inline void post_schedule(struct rq *rq)
2300{
2301	if (rq->post_schedule) {
2302		unsigned long flags;
2303
2304		raw_spin_lock_irqsave(&rq->lock, flags);
2305		if (rq->curr->sched_class->post_schedule)
2306			rq->curr->sched_class->post_schedule(rq);
2307		raw_spin_unlock_irqrestore(&rq->lock, flags);
2308
2309		rq->post_schedule = 0;
2310	}
2311}
2312
2313#else
2314
2315static inline void post_schedule(struct rq *rq)
2316{
2317}
2318
2319#endif
2320
2321/**
2322 * schedule_tail - first thing a freshly forked thread must call.
2323 * @prev: the thread we just switched away from.
2324 */
2325asmlinkage __visible void schedule_tail(struct task_struct *prev)
2326	__releases(rq->lock)
2327{
2328	struct rq *rq = this_rq();
2329
2330	finish_task_switch(rq, prev);
2331
2332	/*
2333	 * FIXME: do we need to worry about rq being invalidated by the
2334	 * task_switch?
2335	 */
2336	post_schedule(rq);
2337
2338	if (current->set_child_tid)
2339		put_user(task_pid_vnr(current), current->set_child_tid);
2340}
2341
2342/*
2343 * context_switch - switch to the new MM and the new
2344 * thread's register state.
2345 */
2346static inline void
2347context_switch(struct rq *rq, struct task_struct *prev,
2348	       struct task_struct *next)
2349{
2350	struct mm_struct *mm, *oldmm;
2351
2352	prepare_task_switch(rq, prev, next);
2353
2354	mm = next->mm;
2355	oldmm = prev->active_mm;
2356	/*
2357	 * For paravirt, this is coupled with an exit in switch_to to
2358	 * combine the page table reload and the switch backend into
2359	 * one hypercall.
2360	 */
2361	arch_start_context_switch(prev);
2362
2363	if (!mm) {
2364		next->active_mm = oldmm;
2365		atomic_inc(&oldmm->mm_count);
2366		enter_lazy_tlb(oldmm, next);
2367	} else
2368		switch_mm(oldmm, mm, next);
2369
2370	if (!prev->mm) {
2371		prev->active_mm = NULL;
2372		rq->prev_mm = oldmm;
2373	}
2374	/*
2375	 * Since the runqueue lock will be released by the next
2376	 * task (which is an invalid locking op but in the case
2377	 * of the scheduler it's an obvious special-case), so we
2378	 * do an early lockdep release here:
2379	 */
2380	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2381
2382	context_tracking_task_switch(prev, next);
2383	/* Here we just switch the register state and the stack. */
2384	switch_to(prev, next, prev);
2385
2386	barrier();
2387	/*
2388	 * this_rq must be evaluated again because prev may have moved
2389	 * CPUs since it called schedule(), thus the 'rq' on its stack
2390	 * frame will be invalid.
2391	 */
2392	finish_task_switch(this_rq(), prev);
2393}
2394
2395/*
2396 * nr_running and nr_context_switches:
2397 *
2398 * externally visible scheduler statistics: current number of runnable
2399 * threads, total number of context switches performed since bootup.
2400 */
2401unsigned long nr_running(void)
2402{
2403	unsigned long i, sum = 0;
2404
2405	for_each_online_cpu(i)
2406		sum += cpu_rq(i)->nr_running;
2407
2408	return sum;
2409}
2410
2411unsigned long long nr_context_switches(void)
2412{
2413	int i;
2414	unsigned long long sum = 0;
2415
2416	for_each_possible_cpu(i)
2417		sum += cpu_rq(i)->nr_switches;
2418
2419	return sum;
2420}
2421
2422unsigned long nr_iowait(void)
2423{
2424	unsigned long i, sum = 0;
2425
2426	for_each_possible_cpu(i)
2427		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2428
2429	return sum;
2430}
2431
2432unsigned long nr_iowait_cpu(int cpu)
2433{
2434	struct rq *this = cpu_rq(cpu);
2435	return atomic_read(&this->nr_iowait);
2436}
2437
2438void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2439{
2440	struct rq *this = this_rq();
2441	*nr_waiters = atomic_read(&this->nr_iowait);
2442	*load = this->cpu_load[0];
2443}
2444
2445#ifdef CONFIG_SMP
2446
2447/*
2448 * sched_exec - execve() is a valuable balancing opportunity, because at
2449 * this point the task has the smallest effective memory and cache footprint.
2450 */
2451void sched_exec(void)
2452{
2453	struct task_struct *p = current;
2454	unsigned long flags;
2455	int dest_cpu;
2456
2457	raw_spin_lock_irqsave(&p->pi_lock, flags);
2458	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2459	if (dest_cpu == smp_processor_id())
2460		goto unlock;
2461
2462	if (likely(cpu_active(dest_cpu))) {
2463		struct migration_arg arg = { p, dest_cpu };
2464
2465		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2466		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2467		return;
2468	}
2469unlock:
2470	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2471}
2472
2473#endif
2474
2475DEFINE_PER_CPU(struct kernel_stat, kstat);
2476DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2477
2478EXPORT_PER_CPU_SYMBOL(kstat);
2479EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2480
2481/*
2482 * Return any ns on the sched_clock that have not yet been accounted in
2483 * @p in case that task is currently running.
2484 *
2485 * Called with task_rq_lock() held on @rq.
2486 */
2487static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2488{
2489	u64 ns = 0;
2490
2491	/*
2492	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2493	 * project cycles that may never be accounted to this
2494	 * thread, breaking clock_gettime().
2495	 */
2496	if (task_current(rq, p) && task_on_rq_queued(p)) {
2497		update_rq_clock(rq);
2498		ns = rq_clock_task(rq) - p->se.exec_start;
2499		if ((s64)ns < 0)
2500			ns = 0;
2501	}
2502
2503	return ns;
2504}
2505
2506unsigned long long task_delta_exec(struct task_struct *p)
2507{
2508	unsigned long flags;
2509	struct rq *rq;
2510	u64 ns = 0;
2511
2512	rq = task_rq_lock(p, &flags);
2513	ns = do_task_delta_exec(p, rq);
2514	task_rq_unlock(rq, p, &flags);
2515
2516	return ns;
2517}
2518
2519/*
2520 * Return accounted runtime for the task.
2521 * In case the task is currently running, return the runtime plus current's
2522 * pending runtime that have not been accounted yet.
2523 */
2524unsigned long long task_sched_runtime(struct task_struct *p)
2525{
2526	unsigned long flags;
2527	struct rq *rq;
2528	u64 ns = 0;
2529
2530#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2531	/*
2532	 * 64-bit doesn't need locks to atomically read a 64bit value.
2533	 * So we have a optimization chance when the task's delta_exec is 0.
2534	 * Reading ->on_cpu is racy, but this is ok.
2535	 *
2536	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2537	 * If we race with it entering cpu, unaccounted time is 0. This is
2538	 * indistinguishable from the read occurring a few cycles earlier.
2539	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2540	 * been accounted, so we're correct here as well.
2541	 */
2542	if (!p->on_cpu || !task_on_rq_queued(p))
2543		return p->se.sum_exec_runtime;
2544#endif
2545
2546	rq = task_rq_lock(p, &flags);
2547	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2548	task_rq_unlock(rq, p, &flags);
2549
2550	return ns;
2551}
2552
2553/*
2554 * This function gets called by the timer code, with HZ frequency.
2555 * We call it with interrupts disabled.
2556 */
2557void scheduler_tick(void)
2558{
2559	int cpu = smp_processor_id();
2560	struct rq *rq = cpu_rq(cpu);
2561	struct task_struct *curr = rq->curr;
2562
2563	sched_clock_tick();
2564
2565	raw_spin_lock(&rq->lock);
2566	update_rq_clock(rq);
2567	curr->sched_class->task_tick(rq, curr, 0);
2568	update_cpu_load_active(rq);
2569	raw_spin_unlock(&rq->lock);
2570
2571	perf_event_task_tick();
2572
2573#ifdef CONFIG_SMP
2574	rq->idle_balance = idle_cpu(cpu);
2575	trigger_load_balance(rq);
2576#endif
2577	rq_last_tick_reset(rq);
2578}
2579
2580#ifdef CONFIG_NO_HZ_FULL
2581/**
2582 * scheduler_tick_max_deferment
2583 *
2584 * Keep at least one tick per second when a single
2585 * active task is running because the scheduler doesn't
2586 * yet completely support full dynticks environment.
2587 *
2588 * This makes sure that uptime, CFS vruntime, load
2589 * balancing, etc... continue to move forward, even
2590 * with a very low granularity.
2591 *
2592 * Return: Maximum deferment in nanoseconds.
2593 */
2594u64 scheduler_tick_max_deferment(void)
2595{
2596	struct rq *rq = this_rq();
2597	unsigned long next, now = ACCESS_ONCE(jiffies);
2598
2599	next = rq->last_sched_tick + HZ;
2600
2601	if (time_before_eq(next, now))
2602		return 0;
2603
2604	return jiffies_to_nsecs(next - now);
2605}
2606#endif
2607
2608notrace unsigned long get_parent_ip(unsigned long addr)
2609{
2610	if (in_lock_functions(addr)) {
2611		addr = CALLER_ADDR2;
2612		if (in_lock_functions(addr))
2613			addr = CALLER_ADDR3;
2614	}
2615	return addr;
2616}
2617
2618#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2619				defined(CONFIG_PREEMPT_TRACER))
2620
2621void preempt_count_add(int val)
2622{
2623#ifdef CONFIG_DEBUG_PREEMPT
2624	/*
2625	 * Underflow?
2626	 */
2627	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2628		return;
2629#endif
2630	__preempt_count_add(val);
2631#ifdef CONFIG_DEBUG_PREEMPT
2632	/*
2633	 * Spinlock count overflowing soon?
2634	 */
2635	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2636				PREEMPT_MASK - 10);
2637#endif
2638	if (preempt_count() == val) {
2639		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2640#ifdef CONFIG_DEBUG_PREEMPT
2641		current->preempt_disable_ip = ip;
2642#endif
2643		trace_preempt_off(CALLER_ADDR0, ip);
2644	}
2645}
2646EXPORT_SYMBOL(preempt_count_add);
2647NOKPROBE_SYMBOL(preempt_count_add);
2648
2649void preempt_count_sub(int val)
2650{
2651#ifdef CONFIG_DEBUG_PREEMPT
2652	/*
2653	 * Underflow?
2654	 */
2655	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2656		return;
2657	/*
2658	 * Is the spinlock portion underflowing?
2659	 */
2660	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2661			!(preempt_count() & PREEMPT_MASK)))
2662		return;
2663#endif
2664
2665	if (preempt_count() == val)
2666		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2667	__preempt_count_sub(val);
2668}
2669EXPORT_SYMBOL(preempt_count_sub);
2670NOKPROBE_SYMBOL(preempt_count_sub);
2671
2672#endif
2673
2674/*
2675 * Print scheduling while atomic bug:
2676 */
2677static noinline void __schedule_bug(struct task_struct *prev)
2678{
2679	if (oops_in_progress)
2680		return;
2681
2682	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2683		prev->comm, prev->pid, preempt_count());
2684
2685	debug_show_held_locks(prev);
2686	print_modules();
2687	if (irqs_disabled())
2688		print_irqtrace_events(prev);
2689#ifdef CONFIG_DEBUG_PREEMPT
2690	if (in_atomic_preempt_off()) {
2691		pr_err("Preemption disabled at:");
2692		print_ip_sym(current->preempt_disable_ip);
2693		pr_cont("\n");
2694	}
2695#endif
2696	dump_stack();
2697	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2698}
2699
2700/*
2701 * Various schedule()-time debugging checks and statistics:
2702 */
2703static inline void schedule_debug(struct task_struct *prev)
2704{
2705#ifdef CONFIG_SCHED_STACK_END_CHECK
2706	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2707#endif
2708	/*
2709	 * Test if we are atomic. Since do_exit() needs to call into
2710	 * schedule() atomically, we ignore that path. Otherwise whine
2711	 * if we are scheduling when we should not.
2712	 */
2713	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2714		__schedule_bug(prev);
2715	rcu_sleep_check();
2716
2717	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2718
2719	schedstat_inc(this_rq(), sched_count);
2720}
2721
2722/*
2723 * Pick up the highest-prio task:
2724 */
2725static inline struct task_struct *
2726pick_next_task(struct rq *rq, struct task_struct *prev)
2727{
2728	const struct sched_class *class = &fair_sched_class;
2729	struct task_struct *p;
2730
2731	/*
2732	 * Optimization: we know that if all tasks are in
2733	 * the fair class we can call that function directly:
2734	 */
2735	if (likely(prev->sched_class == class &&
2736		   rq->nr_running == rq->cfs.h_nr_running)) {
2737		p = fair_sched_class.pick_next_task(rq, prev);
2738		if (unlikely(p == RETRY_TASK))
2739			goto again;
2740
2741		/* assumes fair_sched_class->next == idle_sched_class */
2742		if (unlikely(!p))
2743			p = idle_sched_class.pick_next_task(rq, prev);
2744
2745		return p;
2746	}
2747
2748again:
2749	for_each_class(class) {
2750		p = class->pick_next_task(rq, prev);
2751		if (p) {
2752			if (unlikely(p == RETRY_TASK))
2753				goto again;
2754			return p;
2755		}
2756	}
2757
2758	BUG(); /* the idle class will always have a runnable task */
2759}
2760
2761/*
2762 * __schedule() is the main scheduler function.
2763 *
2764 * The main means of driving the scheduler and thus entering this function are:
2765 *
2766 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2767 *
2768 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2769 *      paths. For example, see arch/x86/entry_64.S.
2770 *
2771 *      To drive preemption between tasks, the scheduler sets the flag in timer
2772 *      interrupt handler scheduler_tick().
2773 *
2774 *   3. Wakeups don't really cause entry into schedule(). They add a
2775 *      task to the run-queue and that's it.
2776 *
2777 *      Now, if the new task added to the run-queue preempts the current
2778 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2779 *      called on the nearest possible occasion:
2780 *
2781 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2782 *
2783 *         - in syscall or exception context, at the next outmost
2784 *           preempt_enable(). (this might be as soon as the wake_up()'s
2785 *           spin_unlock()!)
2786 *
2787 *         - in IRQ context, return from interrupt-handler to
2788 *           preemptible context
2789 *
2790 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2791 *         then at the next:
2792 *
2793 *          - cond_resched() call
2794 *          - explicit schedule() call
2795 *          - return from syscall or exception to user-space
2796 *          - return from interrupt-handler to user-space
2797 */
2798static void __sched __schedule(void)
2799{
2800	struct task_struct *prev, *next;
2801	unsigned long *switch_count;
2802	struct rq *rq;
2803	int cpu;
2804
2805need_resched:
2806	preempt_disable();
2807	cpu = smp_processor_id();
2808	rq = cpu_rq(cpu);
2809	rcu_note_context_switch(cpu);
2810	prev = rq->curr;
2811
2812	schedule_debug(prev);
2813
2814	if (sched_feat(HRTICK))
2815		hrtick_clear(rq);
2816
2817	/*
2818	 * Make sure that signal_pending_state()->signal_pending() below
2819	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2820	 * done by the caller to avoid the race with signal_wake_up().
2821	 */
2822	smp_mb__before_spinlock();
2823	raw_spin_lock_irq(&rq->lock);
2824
2825	switch_count = &prev->nivcsw;
2826	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2827		if (unlikely(signal_pending_state(prev->state, prev))) {
2828			prev->state = TASK_RUNNING;
2829		} else {
2830			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2831			prev->on_rq = 0;
2832
2833			/*
2834			 * If a worker went to sleep, notify and ask workqueue
2835			 * whether it wants to wake up a task to maintain
2836			 * concurrency.
2837			 */
2838			if (prev->flags & PF_WQ_WORKER) {
2839				struct task_struct *to_wakeup;
2840
2841				to_wakeup = wq_worker_sleeping(prev, cpu);
2842				if (to_wakeup)
2843					try_to_wake_up_local(to_wakeup);
2844			}
2845		}
2846		switch_count = &prev->nvcsw;
2847	}
2848
2849	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2850		update_rq_clock(rq);
2851
2852	next = pick_next_task(rq, prev);
2853	clear_tsk_need_resched(prev);
2854	clear_preempt_need_resched();
2855	rq->skip_clock_update = 0;
2856
2857	if (likely(prev != next)) {
2858		rq->nr_switches++;
2859		rq->curr = next;
2860		++*switch_count;
2861
2862		context_switch(rq, prev, next); /* unlocks the rq */
2863		/*
2864		 * The context switch have flipped the stack from under us
2865		 * and restored the local variables which were saved when
2866		 * this task called schedule() in the past. prev == current
2867		 * is still correct, but it can be moved to another cpu/rq.
2868		 */
2869		cpu = smp_processor_id();
2870		rq = cpu_rq(cpu);
2871	} else
2872		raw_spin_unlock_irq(&rq->lock);
2873
2874	post_schedule(rq);
2875
2876	sched_preempt_enable_no_resched();
2877	if (need_resched())
2878		goto need_resched;
2879}
2880
2881static inline void sched_submit_work(struct task_struct *tsk)
2882{
2883	if (!tsk->state || tsk_is_pi_blocked(tsk))
2884		return;
2885	/*
2886	 * If we are going to sleep and we have plugged IO queued,
2887	 * make sure to submit it to avoid deadlocks.
2888	 */
2889	if (blk_needs_flush_plug(tsk))
2890		blk_schedule_flush_plug(tsk);
2891}
2892
2893asmlinkage __visible void __sched schedule(void)
2894{
2895	struct task_struct *tsk = current;
2896
2897	sched_submit_work(tsk);
2898	__schedule();
2899}
2900EXPORT_SYMBOL(schedule);
2901
2902#ifdef CONFIG_CONTEXT_TRACKING
2903asmlinkage __visible void __sched schedule_user(void)
2904{
2905	/*
2906	 * If we come here after a random call to set_need_resched(),
2907	 * or we have been woken up remotely but the IPI has not yet arrived,
2908	 * we haven't yet exited the RCU idle mode. Do it here manually until
2909	 * we find a better solution.
2910	 */
2911	user_exit();
2912	schedule();
2913	user_enter();
2914}
2915#endif
2916
2917/**
2918 * schedule_preempt_disabled - called with preemption disabled
2919 *
2920 * Returns with preemption disabled. Note: preempt_count must be 1
2921 */
2922void __sched schedule_preempt_disabled(void)
2923{
2924	sched_preempt_enable_no_resched();
2925	schedule();
2926	preempt_disable();
2927}
2928
2929#ifdef CONFIG_PREEMPT
2930/*
2931 * this is the entry point to schedule() from in-kernel preemption
2932 * off of preempt_enable. Kernel preemptions off return from interrupt
2933 * occur there and call schedule directly.
2934 */
2935asmlinkage __visible void __sched notrace preempt_schedule(void)
2936{
2937	/*
2938	 * If there is a non-zero preempt_count or interrupts are disabled,
2939	 * we do not want to preempt the current task. Just return..
2940	 */
2941	if (likely(!preemptible()))
2942		return;
2943
2944	do {
2945		__preempt_count_add(PREEMPT_ACTIVE);
2946		__schedule();
2947		__preempt_count_sub(PREEMPT_ACTIVE);
2948
2949		/*
2950		 * Check again in case we missed a preemption opportunity
2951		 * between schedule and now.
2952		 */
2953		barrier();
2954	} while (need_resched());
2955}
2956NOKPROBE_SYMBOL(preempt_schedule);
2957EXPORT_SYMBOL(preempt_schedule);
2958#endif /* CONFIG_PREEMPT */
2959
2960/*
2961 * this is the entry point to schedule() from kernel preemption
2962 * off of irq context.
2963 * Note, that this is called and return with irqs disabled. This will
2964 * protect us against recursive calling from irq.
2965 */
2966asmlinkage __visible void __sched preempt_schedule_irq(void)
2967{
2968	enum ctx_state prev_state;
2969
2970	/* Catch callers which need to be fixed */
2971	BUG_ON(preempt_count() || !irqs_disabled());
2972
2973	prev_state = exception_enter();
2974
2975	do {
2976		__preempt_count_add(PREEMPT_ACTIVE);
2977		local_irq_enable();
2978		__schedule();
2979		local_irq_disable();
2980		__preempt_count_sub(PREEMPT_ACTIVE);
2981
2982		/*
2983		 * Check again in case we missed a preemption opportunity
2984		 * between schedule and now.
2985		 */
2986		barrier();
2987	} while (need_resched());
2988
2989	exception_exit(prev_state);
2990}
2991
2992int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2993			  void *key)
2994{
2995	return try_to_wake_up(curr->private, mode, wake_flags);
2996}
2997EXPORT_SYMBOL(default_wake_function);
2998
2999#ifdef CONFIG_RT_MUTEXES
3000
3001/*
3002 * rt_mutex_setprio - set the current priority of a task
3003 * @p: task
3004 * @prio: prio value (kernel-internal form)
3005 *
3006 * This function changes the 'effective' priority of a task. It does
3007 * not touch ->normal_prio like __setscheduler().
3008 *
3009 * Used by the rt_mutex code to implement priority inheritance
3010 * logic. Call site only calls if the priority of the task changed.
3011 */
3012void rt_mutex_setprio(struct task_struct *p, int prio)
3013{
3014	int oldprio, queued, running, enqueue_flag = 0;
3015	struct rq *rq;
3016	const struct sched_class *prev_class;
3017
3018	BUG_ON(prio > MAX_PRIO);
3019
3020	rq = __task_rq_lock(p);
3021
3022	/*
3023	 * Idle task boosting is a nono in general. There is one
3024	 * exception, when PREEMPT_RT and NOHZ is active:
3025	 *
3026	 * The idle task calls get_next_timer_interrupt() and holds
3027	 * the timer wheel base->lock on the CPU and another CPU wants
3028	 * to access the timer (probably to cancel it). We can safely
3029	 * ignore the boosting request, as the idle CPU runs this code
3030	 * with interrupts disabled and will complete the lock
3031	 * protected section without being interrupted. So there is no
3032	 * real need to boost.
3033	 */
3034	if (unlikely(p == rq->idle)) {
3035		WARN_ON(p != rq->curr);
3036		WARN_ON(p->pi_blocked_on);
3037		goto out_unlock;
3038	}
3039
3040	trace_sched_pi_setprio(p, prio);
3041	oldprio = p->prio;
3042	prev_class = p->sched_class;
3043	queued = task_on_rq_queued(p);
3044	running = task_current(rq, p);
3045	if (queued)
3046		dequeue_task(rq, p, 0);
3047	if (running)
3048		put_prev_task(rq, p);
3049
3050	/*
3051	 * Boosting condition are:
3052	 * 1. -rt task is running and holds mutex A
3053	 *      --> -dl task blocks on mutex A
3054	 *
3055	 * 2. -dl task is running and holds mutex A
3056	 *      --> -dl task blocks on mutex A and could preempt the
3057	 *          running task
3058	 */
3059	if (dl_prio(prio)) {
3060		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3061		if (!dl_prio(p->normal_prio) ||
3062		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3063			p->dl.dl_boosted = 1;
3064			p->dl.dl_throttled = 0;
3065			enqueue_flag = ENQUEUE_REPLENISH;
3066		} else
3067			p->dl.dl_boosted = 0;
3068		p->sched_class = &dl_sched_class;
3069	} else if (rt_prio(prio)) {
3070		if (dl_prio(oldprio))
3071			p->dl.dl_boosted = 0;
3072		if (oldprio < prio)
3073			enqueue_flag = ENQUEUE_HEAD;
3074		p->sched_class = &rt_sched_class;
3075	} else {
3076		if (dl_prio(oldprio))
3077			p->dl.dl_boosted = 0;
3078		p->sched_class = &fair_sched_class;
3079	}
3080
3081	p->prio = prio;
3082
3083	if (running)
3084		p->sched_class->set_curr_task(rq);
3085	if (queued)
3086		enqueue_task(rq, p, enqueue_flag);
3087
3088	check_class_changed(rq, p, prev_class, oldprio);
3089out_unlock:
3090	__task_rq_unlock(rq);
3091}
3092#endif
3093
3094void set_user_nice(struct task_struct *p, long nice)
3095{
3096	int old_prio, delta, queued;
3097	unsigned long flags;
3098	struct rq *rq;
3099
3100	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3101		return;
3102	/*
3103	 * We have to be careful, if called from sys_setpriority(),
3104	 * the task might be in the middle of scheduling on another CPU.
3105	 */
3106	rq = task_rq_lock(p, &flags);
3107	/*
3108	 * The RT priorities are set via sched_setscheduler(), but we still
3109	 * allow the 'normal' nice value to be set - but as expected
3110	 * it wont have any effect on scheduling until the task is
3111	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3112	 */
3113	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3114		p->static_prio = NICE_TO_PRIO(nice);
3115		goto out_unlock;
3116	}
3117	queued = task_on_rq_queued(p);
3118	if (queued)
3119		dequeue_task(rq, p, 0);
3120
3121	p->static_prio = NICE_TO_PRIO(nice);
3122	set_load_weight(p);
3123	old_prio = p->prio;
3124	p->prio = effective_prio(p);
3125	delta = p->prio - old_prio;
3126
3127	if (queued) {
3128		enqueue_task(rq, p, 0);
3129		/*
3130		 * If the task increased its priority or is running and
3131		 * lowered its priority, then reschedule its CPU:
3132		 */
3133		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3134			resched_curr(rq);
3135	}
3136out_unlock:
3137	task_rq_unlock(rq, p, &flags);
3138}
3139EXPORT_SYMBOL(set_user_nice);
3140
3141/*
3142 * can_nice - check if a task can reduce its nice value
3143 * @p: task
3144 * @nice: nice value
3145 */
3146int can_nice(const struct task_struct *p, const int nice)
3147{
3148	/* convert nice value [19,-20] to rlimit style value [1,40] */
3149	int nice_rlim = nice_to_rlimit(nice);
3150
3151	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3152		capable(CAP_SYS_NICE));
3153}
3154
3155#ifdef __ARCH_WANT_SYS_NICE
3156
3157/*
3158 * sys_nice - change the priority of the current process.
3159 * @increment: priority increment
3160 *
3161 * sys_setpriority is a more generic, but much slower function that
3162 * does similar things.
3163 */
3164SYSCALL_DEFINE1(nice, int, increment)
3165{
3166	long nice, retval;
3167
3168	/*
3169	 * Setpriority might change our priority at the same moment.
3170	 * We don't have to worry. Conceptually one call occurs first
3171	 * and we have a single winner.
3172	 */
3173	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3174	nice = task_nice(current) + increment;
3175
3176	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3177	if (increment < 0 && !can_nice(current, nice))
3178		return -EPERM;
3179
3180	retval = security_task_setnice(current, nice);
3181	if (retval)
3182		return retval;
3183
3184	set_user_nice(current, nice);
3185	return 0;
3186}
3187
3188#endif
3189
3190/**
3191 * task_prio - return the priority value of a given task.
3192 * @p: the task in question.
3193 *
3194 * Return: The priority value as seen by users in /proc.
3195 * RT tasks are offset by -200. Normal tasks are centered
3196 * around 0, value goes from -16 to +15.
3197 */
3198int task_prio(const struct task_struct *p)
3199{
3200	return p->prio - MAX_RT_PRIO;
3201}
3202
3203/**
3204 * idle_cpu - is a given cpu idle currently?
3205 * @cpu: the processor in question.
3206 *
3207 * Return: 1 if the CPU is currently idle. 0 otherwise.
3208 */
3209int idle_cpu(int cpu)
3210{
3211	struct rq *rq = cpu_rq(cpu);
3212
3213	if (rq->curr != rq->idle)
3214		return 0;
3215
3216	if (rq->nr_running)
3217		return 0;
3218
3219#ifdef CONFIG_SMP
3220	if (!llist_empty(&rq->wake_list))
3221		return 0;
3222#endif
3223
3224	return 1;
3225}
3226
3227/**
3228 * idle_task - return the idle task for a given cpu.
3229 * @cpu: the processor in question.
3230 *
3231 * Return: The idle task for the cpu @cpu.
3232 */
3233struct task_struct *idle_task(int cpu)
3234{
3235	return cpu_rq(cpu)->idle;
3236}
3237
3238/**
3239 * find_process_by_pid - find a process with a matching PID value.
3240 * @pid: the pid in question.
3241 *
3242 * The task of @pid, if found. %NULL otherwise.
3243 */
3244static struct task_struct *find_process_by_pid(pid_t pid)
3245{
3246	return pid ? find_task_by_vpid(pid) : current;
3247}
3248
3249/*
3250 * This function initializes the sched_dl_entity of a newly becoming
3251 * SCHED_DEADLINE task.
3252 *
3253 * Only the static values are considered here, the actual runtime and the
3254 * absolute deadline will be properly calculated when the task is enqueued
3255 * for the first time with its new policy.
3256 */
3257static void
3258__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3259{
3260	struct sched_dl_entity *dl_se = &p->dl;
3261
3262	init_dl_task_timer(dl_se);
3263	dl_se->dl_runtime = attr->sched_runtime;
3264	dl_se->dl_deadline = attr->sched_deadline;
3265	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3266	dl_se->flags = attr->sched_flags;
3267	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3268	dl_se->dl_throttled = 0;
3269	dl_se->dl_new = 1;
3270	dl_se->dl_yielded = 0;
3271}
3272
3273/*
3274 * sched_setparam() passes in -1 for its policy, to let the functions
3275 * it calls know not to change it.
3276 */
3277#define SETPARAM_POLICY	-1
3278
3279static void __setscheduler_params(struct task_struct *p,
3280		const struct sched_attr *attr)
3281{
3282	int policy = attr->sched_policy;
3283
3284	if (policy == SETPARAM_POLICY)
3285		policy = p->policy;
3286
3287	p->policy = policy;
3288
3289	if (dl_policy(policy))
3290		__setparam_dl(p, attr);
3291	else if (fair_policy(policy))
3292		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3293
3294	/*
3295	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3296	 * !rt_policy. Always setting this ensures that things like
3297	 * getparam()/getattr() don't report silly values for !rt tasks.
3298	 */
3299	p->rt_priority = attr->sched_priority;
3300	p->normal_prio = normal_prio(p);
3301	set_load_weight(p);
3302}
3303
3304/* Actually do priority change: must hold pi & rq lock. */
3305static void __setscheduler(struct rq *rq, struct task_struct *p,
3306			   const struct sched_attr *attr)
3307{
3308	__setscheduler_params(p, attr);
3309
3310	/*
3311	 * If we get here, there was no pi waiters boosting the
3312	 * task. It is safe to use the normal prio.
3313	 */
3314	p->prio = normal_prio(p);
3315
3316	if (dl_prio(p->prio))
3317		p->sched_class = &dl_sched_class;
3318	else if (rt_prio(p->prio))
3319		p->sched_class = &rt_sched_class;
3320	else
3321		p->sched_class = &fair_sched_class;
3322}
3323
3324static void
3325__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3326{
3327	struct sched_dl_entity *dl_se = &p->dl;
3328
3329	attr->sched_priority = p->rt_priority;
3330	attr->sched_runtime = dl_se->dl_runtime;
3331	attr->sched_deadline = dl_se->dl_deadline;
3332	attr->sched_period = dl_se->dl_period;
3333	attr->sched_flags = dl_se->flags;
3334}
3335
3336/*
3337 * This function validates the new parameters of a -deadline task.
3338 * We ask for the deadline not being zero, and greater or equal
3339 * than the runtime, as well as the period of being zero or
3340 * greater than deadline. Furthermore, we have to be sure that
3341 * user parameters are above the internal resolution of 1us (we
3342 * check sched_runtime only since it is always the smaller one) and
3343 * below 2^63 ns (we have to check both sched_deadline and
3344 * sched_period, as the latter can be zero).
3345 */
3346static bool
3347__checkparam_dl(const struct sched_attr *attr)
3348{
3349	/* deadline != 0 */
3350	if (attr->sched_deadline == 0)
3351		return false;
3352
3353	/*
3354	 * Since we truncate DL_SCALE bits, make sure we're at least
3355	 * that big.
3356	 */
3357	if (attr->sched_runtime < (1ULL << DL_SCALE))
3358		return false;
3359
3360	/*
3361	 * Since we use the MSB for wrap-around and sign issues, make
3362	 * sure it's not set (mind that period can be equal to zero).
3363	 */
3364	if (attr->sched_deadline & (1ULL << 63) ||
3365	    attr->sched_period & (1ULL << 63))
3366		return false;
3367
3368	/* runtime <= deadline <= period (if period != 0) */
3369	if ((attr->sched_period != 0 &&
3370	     attr->sched_period < attr->sched_deadline) ||
3371	    attr->sched_deadline < attr->sched_runtime)
3372		return false;
3373
3374	return true;
3375}
3376
3377/*
3378 * check the target process has a UID that matches the current process's
3379 */
3380static bool check_same_owner(struct task_struct *p)
3381{
3382	const struct cred *cred = current_cred(), *pcred;
3383	bool match;
3384
3385	rcu_read_lock();
3386	pcred = __task_cred(p);
3387	match = (uid_eq(cred->euid, pcred->euid) ||
3388		 uid_eq(cred->euid, pcred->uid));
3389	rcu_read_unlock();
3390	return match;
3391}
3392
3393static int __sched_setscheduler(struct task_struct *p,
3394				const struct sched_attr *attr,
3395				bool user)
3396{
3397	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3398		      MAX_RT_PRIO - 1 - attr->sched_priority;
3399	int retval, oldprio, oldpolicy = -1, queued, running;
3400	int policy = attr->sched_policy;
3401	unsigned long flags;
3402	const struct sched_class *prev_class;
3403	struct rq *rq;
3404	int reset_on_fork;
3405
3406	/* may grab non-irq protected spin_locks */
3407	BUG_ON(in_interrupt());
3408recheck:
3409	/* double check policy once rq lock held */
3410	if (policy < 0) {
3411		reset_on_fork = p->sched_reset_on_fork;
3412		policy = oldpolicy = p->policy;
3413	} else {
3414		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3415
3416		if (policy != SCHED_DEADLINE &&
3417				policy != SCHED_FIFO && policy != SCHED_RR &&
3418				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3419				policy != SCHED_IDLE)
3420			return -EINVAL;
3421	}
3422
3423	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3424		return -EINVAL;
3425
3426	/*
3427	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3428	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3429	 * SCHED_BATCH and SCHED_IDLE is 0.
3430	 */
3431	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3432	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3433		return -EINVAL;
3434	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3435	    (rt_policy(policy) != (attr->sched_priority != 0)))
3436		return -EINVAL;
3437
3438	/*
3439	 * Allow unprivileged RT tasks to decrease priority:
3440	 */
3441	if (user && !capable(CAP_SYS_NICE)) {
3442		if (fair_policy(policy)) {
3443			if (attr->sched_nice < task_nice(p) &&
3444			    !can_nice(p, attr->sched_nice))
3445				return -EPERM;
3446		}
3447
3448		if (rt_policy(policy)) {
3449			unsigned long rlim_rtprio =
3450					task_rlimit(p, RLIMIT_RTPRIO);
3451
3452			/* can't set/change the rt policy */
3453			if (policy != p->policy && !rlim_rtprio)
3454				return -EPERM;
3455
3456			/* can't increase priority */
3457			if (attr->sched_priority > p->rt_priority &&
3458			    attr->sched_priority > rlim_rtprio)
3459				return -EPERM;
3460		}
3461
3462		 /*
3463		  * Can't set/change SCHED_DEADLINE policy at all for now
3464		  * (safest behavior); in the future we would like to allow
3465		  * unprivileged DL tasks to increase their relative deadline
3466		  * or reduce their runtime (both ways reducing utilization)
3467		  */
3468		if (dl_policy(policy))
3469			return -EPERM;
3470
3471		/*
3472		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3473		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3474		 */
3475		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3476			if (!can_nice(p, task_nice(p)))
3477				return -EPERM;
3478		}
3479
3480		/* can't change other user's priorities */
3481		if (!check_same_owner(p))
3482			return -EPERM;
3483
3484		/* Normal users shall not reset the sched_reset_on_fork flag */
3485		if (p->sched_reset_on_fork && !reset_on_fork)
3486			return -EPERM;
3487	}
3488
3489	if (user) {
3490		retval = security_task_setscheduler(p);
3491		if (retval)
3492			return retval;
3493	}
3494
3495	/*
3496	 * make sure no PI-waiters arrive (or leave) while we are
3497	 * changing the priority of the task:
3498	 *
3499	 * To be able to change p->policy safely, the appropriate
3500	 * runqueue lock must be held.
3501	 */
3502	rq = task_rq_lock(p, &flags);
3503
3504	/*
3505	 * Changing the policy of the stop threads its a very bad idea
3506	 */
3507	if (p == rq->stop) {
3508		task_rq_unlock(rq, p, &flags);
3509		return -EINVAL;
3510	}
3511
3512	/*
3513	 * If not changing anything there's no need to proceed further,
3514	 * but store a possible modification of reset_on_fork.
3515	 */
3516	if (unlikely(policy == p->policy)) {
3517		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3518			goto change;
3519		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3520			goto change;
3521		if (dl_policy(policy))
3522			goto change;
3523
3524		p->sched_reset_on_fork = reset_on_fork;
3525		task_rq_unlock(rq, p, &flags);
3526		return 0;
3527	}
3528change:
3529
3530	if (user) {
3531#ifdef CONFIG_RT_GROUP_SCHED
3532		/*
3533		 * Do not allow realtime tasks into groups that have no runtime
3534		 * assigned.
3535		 */
3536		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3537				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3538				!task_group_is_autogroup(task_group(p))) {
3539			task_rq_unlock(rq, p, &flags);
3540			return -EPERM;
3541		}
3542#endif
3543#ifdef CONFIG_SMP
3544		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3545			cpumask_t *span = rq->rd->span;
3546
3547			/*
3548			 * Don't allow tasks with an affinity mask smaller than
3549			 * the entire root_domain to become SCHED_DEADLINE. We
3550			 * will also fail if there's no bandwidth available.
3551			 */
3552			if (!cpumask_subset(span, &p->cpus_allowed) ||
3553			    rq->rd->dl_bw.bw == 0) {
3554				task_rq_unlock(rq, p, &flags);
3555				return -EPERM;
3556			}
3557		}
3558#endif
3559	}
3560
3561	/* recheck policy now with rq lock held */
3562	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3563		policy = oldpolicy = -1;
3564		task_rq_unlock(rq, p, &flags);
3565		goto recheck;
3566	}
3567
3568	/*
3569	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3570	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3571	 * is available.
3572	 */
3573	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3574		task_rq_unlock(rq, p, &flags);
3575		return -EBUSY;
3576	}
3577
3578	p->sched_reset_on_fork = reset_on_fork;
3579	oldprio = p->prio;
3580
3581	/*
3582	 * Special case for priority boosted tasks.
3583	 *
3584	 * If the new priority is lower or equal (user space view)
3585	 * than the current (boosted) priority, we just store the new
3586	 * normal parameters and do not touch the scheduler class and
3587	 * the runqueue. This will be done when the task deboost
3588	 * itself.
3589	 */
3590	if (rt_mutex_check_prio(p, newprio)) {
3591		__setscheduler_params(p, attr);
3592		task_rq_unlock(rq, p, &flags);
3593		return 0;
3594	}
3595
3596	queued = task_on_rq_queued(p);
3597	running = task_current(rq, p);
3598	if (queued)
3599		dequeue_task(rq, p, 0);
3600	if (running)
3601		put_prev_task(rq, p);
3602
3603	prev_class = p->sched_class;
3604	__setscheduler(rq, p, attr);
3605
3606	if (running)
3607		p->sched_class->set_curr_task(rq);
3608	if (queued) {
3609		/*
3610		 * We enqueue to tail when the priority of a task is
3611		 * increased (user space view).
3612		 */
3613		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3614	}
3615
3616	check_class_changed(rq, p, prev_class, oldprio);
3617	task_rq_unlock(rq, p, &flags);
3618
3619	rt_mutex_adjust_pi(p);
3620
3621	return 0;
3622}
3623
3624static int _sched_setscheduler(struct task_struct *p, int policy,
3625			       const struct sched_param *param, bool check)
3626{
3627	struct sched_attr attr = {
3628		.sched_policy   = policy,
3629		.sched_priority = param->sched_priority,
3630		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3631	};
3632
3633	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3634	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3635		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3636		policy &= ~SCHED_RESET_ON_FORK;
3637		attr.sched_policy = policy;
3638	}
3639
3640	return __sched_setscheduler(p, &attr, check);
3641}
3642/**
3643 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3644 * @p: the task in question.
3645 * @policy: new policy.
3646 * @param: structure containing the new RT priority.
3647 *
3648 * Return: 0 on success. An error code otherwise.
3649 *
3650 * NOTE that the task may be already dead.
3651 */
3652int sched_setscheduler(struct task_struct *p, int policy,
3653		       const struct sched_param *param)
3654{
3655	return _sched_setscheduler(p, policy, param, true);
3656}
3657EXPORT_SYMBOL_GPL(sched_setscheduler);
3658
3659int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3660{
3661	return __sched_setscheduler(p, attr, true);
3662}
3663EXPORT_SYMBOL_GPL(sched_setattr);
3664
3665/**
3666 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3667 * @p: the task in question.
3668 * @policy: new policy.
3669 * @param: structure containing the new RT priority.
3670 *
3671 * Just like sched_setscheduler, only don't bother checking if the
3672 * current context has permission.  For example, this is needed in
3673 * stop_machine(): we create temporary high priority worker threads,
3674 * but our caller might not have that capability.
3675 *
3676 * Return: 0 on success. An error code otherwise.
3677 */
3678int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3679			       const struct sched_param *param)
3680{
3681	return _sched_setscheduler(p, policy, param, false);
3682}
3683
3684static int
3685do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3686{
3687	struct sched_param lparam;
3688	struct task_struct *p;
3689	int retval;
3690
3691	if (!param || pid < 0)
3692		return -EINVAL;
3693	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3694		return -EFAULT;
3695
3696	rcu_read_lock();
3697	retval = -ESRCH;
3698	p = find_process_by_pid(pid);
3699	if (p != NULL)
3700		retval = sched_setscheduler(p, policy, &lparam);
3701	rcu_read_unlock();
3702
3703	return retval;
3704}
3705
3706/*
3707 * Mimics kernel/events/core.c perf_copy_attr().
3708 */
3709static int sched_copy_attr(struct sched_attr __user *uattr,
3710			   struct sched_attr *attr)
3711{
3712	u32 size;
3713	int ret;
3714
3715	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3716		return -EFAULT;
3717
3718	/*
3719	 * zero the full structure, so that a short copy will be nice.
3720	 */
3721	memset(attr, 0, sizeof(*attr));
3722
3723	ret = get_user(size, &uattr->size);
3724	if (ret)
3725		return ret;
3726
3727	if (size > PAGE_SIZE)	/* silly large */
3728		goto err_size;
3729
3730	if (!size)		/* abi compat */
3731		size = SCHED_ATTR_SIZE_VER0;
3732
3733	if (size < SCHED_ATTR_SIZE_VER0)
3734		goto err_size;
3735
3736	/*
3737	 * If we're handed a bigger struct than we know of,
3738	 * ensure all the unknown bits are 0 - i.e. new
3739	 * user-space does not rely on any kernel feature
3740	 * extensions we dont know about yet.
3741	 */
3742	if (size > sizeof(*attr)) {
3743		unsigned char __user *addr;
3744		unsigned char __user *end;
3745		unsigned char val;
3746
3747		addr = (void __user *)uattr + sizeof(*attr);
3748		end  = (void __user *)uattr + size;
3749
3750		for (; addr < end; addr++) {
3751			ret = get_user(val, addr);
3752			if (ret)
3753				return ret;
3754			if (val)
3755				goto err_size;
3756		}
3757		size = sizeof(*attr);
3758	}
3759
3760	ret = copy_from_user(attr, uattr, size);
3761	if (ret)
3762		return -EFAULT;
3763
3764	/*
3765	 * XXX: do we want to be lenient like existing syscalls; or do we want
3766	 * to be strict and return an error on out-of-bounds values?
3767	 */
3768	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3769
3770	return 0;
3771
3772err_size:
3773	put_user(sizeof(*attr), &uattr->size);
3774	return -E2BIG;
3775}
3776
3777/**
3778 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3779 * @pid: the pid in question.
3780 * @policy: new policy.
3781 * @param: structure containing the new RT priority.
3782 *
3783 * Return: 0 on success. An error code otherwise.
3784 */
3785SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3786		struct sched_param __user *, param)
3787{
3788	/* negative values for policy are not valid */
3789	if (policy < 0)
3790		return -EINVAL;
3791
3792	return do_sched_setscheduler(pid, policy, param);
3793}
3794
3795/**
3796 * sys_sched_setparam - set/change the RT priority of a thread
3797 * @pid: the pid in question.
3798 * @param: structure containing the new RT priority.
3799 *
3800 * Return: 0 on success. An error code otherwise.
3801 */
3802SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3803{
3804	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3805}
3806
3807/**
3808 * sys_sched_setattr - same as above, but with extended sched_attr
3809 * @pid: the pid in question.
3810 * @uattr: structure containing the extended parameters.
3811 * @flags: for future extension.
3812 */
3813SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3814			       unsigned int, flags)
3815{
3816	struct sched_attr attr;
3817	struct task_struct *p;
3818	int retval;
3819
3820	if (!uattr || pid < 0 || flags)
3821		return -EINVAL;
3822
3823	retval = sched_copy_attr(uattr, &attr);
3824	if (retval)
3825		return retval;
3826
3827	if ((int)attr.sched_policy < 0)
3828		return -EINVAL;
3829
3830	rcu_read_lock();
3831	retval = -ESRCH;
3832	p = find_process_by_pid(pid);
3833	if (p != NULL)
3834		retval = sched_setattr(p, &attr);
3835	rcu_read_unlock();
3836
3837	return retval;
3838}
3839
3840/**
3841 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3842 * @pid: the pid in question.
3843 *
3844 * Return: On success, the policy of the thread. Otherwise, a negative error
3845 * code.
3846 */
3847SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3848{
3849	struct task_struct *p;
3850	int retval;
3851
3852	if (pid < 0)
3853		return -EINVAL;
3854
3855	retval = -ESRCH;
3856	rcu_read_lock();
3857	p = find_process_by_pid(pid);
3858	if (p) {
3859		retval = security_task_getscheduler(p);
3860		if (!retval)
3861			retval = p->policy
3862				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3863	}
3864	rcu_read_unlock();
3865	return retval;
3866}
3867
3868/**
3869 * sys_sched_getparam - get the RT priority of a thread
3870 * @pid: the pid in question.
3871 * @param: structure containing the RT priority.
3872 *
3873 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3874 * code.
3875 */
3876SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3877{
3878	struct sched_param lp = { .sched_priority = 0 };
3879	struct task_struct *p;
3880	int retval;
3881
3882	if (!param || pid < 0)
3883		return -EINVAL;
3884
3885	rcu_read_lock();
3886	p = find_process_by_pid(pid);
3887	retval = -ESRCH;
3888	if (!p)
3889		goto out_unlock;
3890
3891	retval = security_task_getscheduler(p);
3892	if (retval)
3893		goto out_unlock;
3894
3895	if (task_has_rt_policy(p))
3896		lp.sched_priority = p->rt_priority;
3897	rcu_read_unlock();
3898
3899	/*
3900	 * This one might sleep, we cannot do it with a spinlock held ...
3901	 */
3902	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3903
3904	return retval;
3905
3906out_unlock:
3907	rcu_read_unlock();
3908	return retval;
3909}
3910
3911static int sched_read_attr(struct sched_attr __user *uattr,
3912			   struct sched_attr *attr,
3913			   unsigned int usize)
3914{
3915	int ret;
3916
3917	if (!access_ok(VERIFY_WRITE, uattr, usize))
3918		return -EFAULT;
3919
3920	/*
3921	 * If we're handed a smaller struct than we know of,
3922	 * ensure all the unknown bits are 0 - i.e. old
3923	 * user-space does not get uncomplete information.
3924	 */
3925	if (usize < sizeof(*attr)) {
3926		unsigned char *addr;
3927		unsigned char *end;
3928
3929		addr = (void *)attr + usize;
3930		end  = (void *)attr + sizeof(*attr);
3931
3932		for (; addr < end; addr++) {
3933			if (*addr)
3934				return -EFBIG;
3935		}
3936
3937		attr->size = usize;
3938	}
3939
3940	ret = copy_to_user(uattr, attr, attr->size);
3941	if (ret)
3942		return -EFAULT;
3943
3944	return 0;
3945}
3946
3947/**
3948 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3949 * @pid: the pid in question.
3950 * @uattr: structure containing the extended parameters.
3951 * @size: sizeof(attr) for fwd/bwd comp.
3952 * @flags: for future extension.
3953 */
3954SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3955		unsigned int, size, unsigned int, flags)
3956{
3957	struct sched_attr attr = {
3958		.size = sizeof(struct sched_attr),
3959	};
3960	struct task_struct *p;
3961	int retval;
3962
3963	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3964	    size < SCHED_ATTR_SIZE_VER0 || flags)
3965		return -EINVAL;
3966
3967	rcu_read_lock();
3968	p = find_process_by_pid(pid);
3969	retval = -ESRCH;
3970	if (!p)
3971		goto out_unlock;
3972
3973	retval = security_task_getscheduler(p);
3974	if (retval)
3975		goto out_unlock;
3976
3977	attr.sched_policy = p->policy;
3978	if (p->sched_reset_on_fork)
3979		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3980	if (task_has_dl_policy(p))
3981		__getparam_dl(p, &attr);
3982	else if (task_has_rt_policy(p))
3983		attr.sched_priority = p->rt_priority;
3984	else
3985		attr.sched_nice = task_nice(p);
3986
3987	rcu_read_unlock();
3988
3989	retval = sched_read_attr(uattr, &attr, size);
3990	return retval;
3991
3992out_unlock:
3993	rcu_read_unlock();
3994	return retval;
3995}
3996
3997long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3998{
3999	cpumask_var_t cpus_allowed, new_mask;
4000	struct task_struct *p;
4001	int retval;
4002
4003	rcu_read_lock();
4004
4005	p = find_process_by_pid(pid);
4006	if (!p) {
4007		rcu_read_unlock();
4008		return -ESRCH;
4009	}
4010
4011	/* Prevent p going away */
4012	get_task_struct(p);
4013	rcu_read_unlock();
4014
4015	if (p->flags & PF_NO_SETAFFINITY) {
4016		retval = -EINVAL;
4017		goto out_put_task;
4018	}
4019	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4020		retval = -ENOMEM;
4021		goto out_put_task;
4022	}
4023	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4024		retval = -ENOMEM;
4025		goto out_free_cpus_allowed;
4026	}
4027	retval = -EPERM;
4028	if (!check_same_owner(p)) {
4029		rcu_read_lock();
4030		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4031			rcu_read_unlock();
4032			goto out_free_new_mask;
4033		}
4034		rcu_read_unlock();
4035	}
4036
4037	retval = security_task_setscheduler(p);
4038	if (retval)
4039		goto out_free_new_mask;
4040
4041
4042	cpuset_cpus_allowed(p, cpus_allowed);
4043	cpumask_and(new_mask, in_mask, cpus_allowed);
4044
4045	/*
4046	 * Since bandwidth control happens on root_domain basis,
4047	 * if admission test is enabled, we only admit -deadline
4048	 * tasks allowed to run on all the CPUs in the task's
4049	 * root_domain.
4050	 */
4051#ifdef CONFIG_SMP
4052	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4053		rcu_read_lock();
4054		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4055			retval = -EBUSY;
4056			rcu_read_unlock();
4057			goto out_free_new_mask;
4058		}
4059		rcu_read_unlock();
4060	}
4061#endif
4062again:
4063	retval = set_cpus_allowed_ptr(p, new_mask);
4064
4065	if (!retval) {
4066		cpuset_cpus_allowed(p, cpus_allowed);
4067		if (!cpumask_subset(new_mask, cpus_allowed)) {
4068			/*
4069			 * We must have raced with a concurrent cpuset
4070			 * update. Just reset the cpus_allowed to the
4071			 * cpuset's cpus_allowed
4072			 */
4073			cpumask_copy(new_mask, cpus_allowed);
4074			goto again;
4075		}
4076	}
4077out_free_new_mask:
4078	free_cpumask_var(new_mask);
4079out_free_cpus_allowed:
4080	free_cpumask_var(cpus_allowed);
4081out_put_task:
4082	put_task_struct(p);
4083	return retval;
4084}
4085
4086static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4087			     struct cpumask *new_mask)
4088{
4089	if (len < cpumask_size())
4090		cpumask_clear(new_mask);
4091	else if (len > cpumask_size())
4092		len = cpumask_size();
4093
4094	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4095}
4096
4097/**
4098 * sys_sched_setaffinity - set the cpu affinity of a process
4099 * @pid: pid of the process
4100 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4101 * @user_mask_ptr: user-space pointer to the new cpu mask
4102 *
4103 * Return: 0 on success. An error code otherwise.
4104 */
4105SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4106		unsigned long __user *, user_mask_ptr)
4107{
4108	cpumask_var_t new_mask;
4109	int retval;
4110
4111	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4112		return -ENOMEM;
4113
4114	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4115	if (retval == 0)
4116		retval = sched_setaffinity(pid, new_mask);
4117	free_cpumask_var(new_mask);
4118	return retval;
4119}
4120
4121long sched_getaffinity(pid_t pid, struct cpumask *mask)
4122{
4123	struct task_struct *p;
4124	unsigned long flags;
4125	int retval;
4126
4127	rcu_read_lock();
4128
4129	retval = -ESRCH;
4130	p = find_process_by_pid(pid);
4131	if (!p)
4132		goto out_unlock;
4133
4134	retval = security_task_getscheduler(p);
4135	if (retval)
4136		goto out_unlock;
4137
4138	raw_spin_lock_irqsave(&p->pi_lock, flags);
4139	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4140	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4141
4142out_unlock:
4143	rcu_read_unlock();
4144
4145	return retval;
4146}
4147
4148/**
4149 * sys_sched_getaffinity - get the cpu affinity of a process
4150 * @pid: pid of the process
4151 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4152 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4153 *
4154 * Return: 0 on success. An error code otherwise.
4155 */
4156SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4157		unsigned long __user *, user_mask_ptr)
4158{
4159	int ret;
4160	cpumask_var_t mask;
4161
4162	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4163		return -EINVAL;
4164	if (len & (sizeof(unsigned long)-1))
4165		return -EINVAL;
4166
4167	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4168		return -ENOMEM;
4169
4170	ret = sched_getaffinity(pid, mask);
4171	if (ret == 0) {
4172		size_t retlen = min_t(size_t, len, cpumask_size());
4173
4174		if (copy_to_user(user_mask_ptr, mask, retlen))
4175			ret = -EFAULT;
4176		else
4177			ret = retlen;
4178	}
4179	free_cpumask_var(mask);
4180
4181	return ret;
4182}
4183
4184/**
4185 * sys_sched_yield - yield the current processor to other threads.
4186 *
4187 * This function yields the current CPU to other tasks. If there are no
4188 * other threads running on this CPU then this function will return.
4189 *
4190 * Return: 0.
4191 */
4192SYSCALL_DEFINE0(sched_yield)
4193{
4194	struct rq *rq = this_rq_lock();
4195
4196	schedstat_inc(rq, yld_count);
4197	current->sched_class->yield_task(rq);
4198
4199	/*
4200	 * Since we are going to call schedule() anyway, there's
4201	 * no need to preempt or enable interrupts:
4202	 */
4203	__release(rq->lock);
4204	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4205	do_raw_spin_unlock(&rq->lock);
4206	sched_preempt_enable_no_resched();
4207
4208	schedule();
4209
4210	return 0;
4211}
4212
4213static void __cond_resched(void)
4214{
4215	__preempt_count_add(PREEMPT_ACTIVE);
4216	__schedule();
4217	__preempt_count_sub(PREEMPT_ACTIVE);
4218}
4219
4220int __sched _cond_resched(void)
4221{
4222	if (should_resched()) {
4223		__cond_resched();
4224		return 1;
4225	}
4226	return 0;
4227}
4228EXPORT_SYMBOL(_cond_resched);
4229
4230/*
4231 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4232 * call schedule, and on return reacquire the lock.
4233 *
4234 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4235 * operations here to prevent schedule() from being called twice (once via
4236 * spin_unlock(), once by hand).
4237 */
4238int __cond_resched_lock(spinlock_t *lock)
4239{
4240	int resched = should_resched();
4241	int ret = 0;
4242
4243	lockdep_assert_held(lock);
4244
4245	if (spin_needbreak(lock) || resched) {
4246		spin_unlock(lock);
4247		if (resched)
4248			__cond_resched();
4249		else
4250			cpu_relax();
4251		ret = 1;
4252		spin_lock(lock);
4253	}
4254	return ret;
4255}
4256EXPORT_SYMBOL(__cond_resched_lock);
4257
4258int __sched __cond_resched_softirq(void)
4259{
4260	BUG_ON(!in_softirq());
4261
4262	if (should_resched()) {
4263		local_bh_enable();
4264		__cond_resched();
4265		local_bh_disable();
4266		return 1;
4267	}
4268	return 0;
4269}
4270EXPORT_SYMBOL(__cond_resched_softirq);
4271
4272/**
4273 * yield - yield the current processor to other threads.
4274 *
4275 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4276 *
4277 * The scheduler is at all times free to pick the calling task as the most
4278 * eligible task to run, if removing the yield() call from your code breaks
4279 * it, its already broken.
4280 *
4281 * Typical broken usage is:
4282 *
4283 * while (!event)
4284 * 	yield();
4285 *
4286 * where one assumes that yield() will let 'the other' process run that will
4287 * make event true. If the current task is a SCHED_FIFO task that will never
4288 * happen. Never use yield() as a progress guarantee!!
4289 *
4290 * If you want to use yield() to wait for something, use wait_event().
4291 * If you want to use yield() to be 'nice' for others, use cond_resched().
4292 * If you still want to use yield(), do not!
4293 */
4294void __sched yield(void)
4295{
4296	set_current_state(TASK_RUNNING);
4297	sys_sched_yield();
4298}
4299EXPORT_SYMBOL(yield);
4300
4301/**
4302 * yield_to - yield the current processor to another thread in
4303 * your thread group, or accelerate that thread toward the
4304 * processor it's on.
4305 * @p: target task
4306 * @preempt: whether task preemption is allowed or not
4307 *
4308 * It's the caller's job to ensure that the target task struct
4309 * can't go away on us before we can do any checks.
4310 *
4311 * Return:
4312 *	true (>0) if we indeed boosted the target task.
4313 *	false (0) if we failed to boost the target.
4314 *	-ESRCH if there's no task to yield to.
4315 */
4316int __sched yield_to(struct task_struct *p, bool preempt)
4317{
4318	struct task_struct *curr = current;
4319	struct rq *rq, *p_rq;
4320	unsigned long flags;
4321	int yielded = 0;
4322
4323	local_irq_save(flags);
4324	rq = this_rq();
4325
4326again:
4327	p_rq = task_rq(p);
4328	/*
4329	 * If we're the only runnable task on the rq and target rq also
4330	 * has only one task, there's absolutely no point in yielding.
4331	 */
4332	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4333		yielded = -ESRCH;
4334		goto out_irq;
4335	}
4336
4337	double_rq_lock(rq, p_rq);
4338	if (task_rq(p) != p_rq) {
4339		double_rq_unlock(rq, p_rq);
4340		goto again;
4341	}
4342
4343	if (!curr->sched_class->yield_to_task)
4344		goto out_unlock;
4345
4346	if (curr->sched_class != p->sched_class)
4347		goto out_unlock;
4348
4349	if (task_running(p_rq, p) || p->state)
4350		goto out_unlock;
4351
4352	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4353	if (yielded) {
4354		schedstat_inc(rq, yld_count);
4355		/*
4356		 * Make p's CPU reschedule; pick_next_entity takes care of
4357		 * fairness.
4358		 */
4359		if (preempt && rq != p_rq)
4360			resched_curr(p_rq);
4361	}
4362
4363out_unlock:
4364	double_rq_unlock(rq, p_rq);
4365out_irq:
4366	local_irq_restore(flags);
4367
4368	if (yielded > 0)
4369		schedule();
4370
4371	return yielded;
4372}
4373EXPORT_SYMBOL_GPL(yield_to);
4374
4375/*
4376 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4377 * that process accounting knows that this is a task in IO wait state.
4378 */
4379void __sched io_schedule(void)
4380{
4381	struct rq *rq = raw_rq();
4382
4383	delayacct_blkio_start();
4384	atomic_inc(&rq->nr_iowait);
4385	blk_flush_plug(current);
4386	current->in_iowait = 1;
4387	schedule();
4388	current->in_iowait = 0;
4389	atomic_dec(&rq->nr_iowait);
4390	delayacct_blkio_end();
4391}
4392EXPORT_SYMBOL(io_schedule);
4393
4394long __sched io_schedule_timeout(long timeout)
4395{
4396	struct rq *rq = raw_rq();
4397	long ret;
4398
4399	delayacct_blkio_start();
4400	atomic_inc(&rq->nr_iowait);
4401	blk_flush_plug(current);
4402	current->in_iowait = 1;
4403	ret = schedule_timeout(timeout);
4404	current->in_iowait = 0;
4405	atomic_dec(&rq->nr_iowait);
4406	delayacct_blkio_end();
4407	return ret;
4408}
4409
4410/**
4411 * sys_sched_get_priority_max - return maximum RT priority.
4412 * @policy: scheduling class.
4413 *
4414 * Return: On success, this syscall returns the maximum
4415 * rt_priority that can be used by a given scheduling class.
4416 * On failure, a negative error code is returned.
4417 */
4418SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4419{
4420	int ret = -EINVAL;
4421
4422	switch (policy) {
4423	case SCHED_FIFO:
4424	case SCHED_RR:
4425		ret = MAX_USER_RT_PRIO-1;
4426		break;
4427	case SCHED_DEADLINE:
4428	case SCHED_NORMAL:
4429	case SCHED_BATCH:
4430	case SCHED_IDLE:
4431		ret = 0;
4432		break;
4433	}
4434	return ret;
4435}
4436
4437/**
4438 * sys_sched_get_priority_min - return minimum RT priority.
4439 * @policy: scheduling class.
4440 *
4441 * Return: On success, this syscall returns the minimum
4442 * rt_priority that can be used by a given scheduling class.
4443 * On failure, a negative error code is returned.
4444 */
4445SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4446{
4447	int ret = -EINVAL;
4448
4449	switch (policy) {
4450	case SCHED_FIFO:
4451	case SCHED_RR:
4452		ret = 1;
4453		break;
4454	case SCHED_DEADLINE:
4455	case SCHED_NORMAL:
4456	case SCHED_BATCH:
4457	case SCHED_IDLE:
4458		ret = 0;
4459	}
4460	return ret;
4461}
4462
4463/**
4464 * sys_sched_rr_get_interval - return the default timeslice of a process.
4465 * @pid: pid of the process.
4466 * @interval: userspace pointer to the timeslice value.
4467 *
4468 * this syscall writes the default timeslice value of a given process
4469 * into the user-space timespec buffer. A value of '0' means infinity.
4470 *
4471 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4472 * an error code.
4473 */
4474SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4475		struct timespec __user *, interval)
4476{
4477	struct task_struct *p;
4478	unsigned int time_slice;
4479	unsigned long flags;
4480	struct rq *rq;
4481	int retval;
4482	struct timespec t;
4483
4484	if (pid < 0)
4485		return -EINVAL;
4486
4487	retval = -ESRCH;
4488	rcu_read_lock();
4489	p = find_process_by_pid(pid);
4490	if (!p)
4491		goto out_unlock;
4492
4493	retval = security_task_getscheduler(p);
4494	if (retval)
4495		goto out_unlock;
4496
4497	rq = task_rq_lock(p, &flags);
4498	time_slice = 0;
4499	if (p->sched_class->get_rr_interval)
4500		time_slice = p->sched_class->get_rr_interval(rq, p);
4501	task_rq_unlock(rq, p, &flags);
4502
4503	rcu_read_unlock();
4504	jiffies_to_timespec(time_slice, &t);
4505	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4506	return retval;
4507
4508out_unlock:
4509	rcu_read_unlock();
4510	return retval;
4511}
4512
4513static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4514
4515void sched_show_task(struct task_struct *p)
4516{
4517	unsigned long free = 0;
4518	int ppid;
4519	unsigned state;
4520
4521	state = p->state ? __ffs(p->state) + 1 : 0;
4522	printk(KERN_INFO "%-15.15s %c", p->comm,
4523		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4524#if BITS_PER_LONG == 32
4525	if (state == TASK_RUNNING)
4526		printk(KERN_CONT " running  ");
4527	else
4528		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4529#else
4530	if (state == TASK_RUNNING)
4531		printk(KERN_CONT "  running task    ");
4532	else
4533		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4534#endif
4535#ifdef CONFIG_DEBUG_STACK_USAGE
4536	free = stack_not_used(p);
4537#endif
4538	rcu_read_lock();
4539	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4540	rcu_read_unlock();
4541	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4542		task_pid_nr(p), ppid,
4543		(unsigned long)task_thread_info(p)->flags);
4544
4545	print_worker_info(KERN_INFO, p);
4546	show_stack(p, NULL);
4547}
4548
4549void show_state_filter(unsigned long state_filter)
4550{
4551	struct task_struct *g, *p;
4552
4553#if BITS_PER_LONG == 32
4554	printk(KERN_INFO
4555		"  task                PC stack   pid father\n");
4556#else
4557	printk(KERN_INFO
4558		"  task                        PC stack   pid father\n");
4559#endif
4560	rcu_read_lock();
4561	for_each_process_thread(g, p) {
4562		/*
4563		 * reset the NMI-timeout, listing all files on a slow
4564		 * console might take a lot of time:
4565		 */
4566		touch_nmi_watchdog();
4567		if (!state_filter || (p->state & state_filter))
4568			sched_show_task(p);
4569	}
4570
4571	touch_all_softlockup_watchdogs();
4572
4573#ifdef CONFIG_SCHED_DEBUG
4574	sysrq_sched_debug_show();
4575#endif
4576	rcu_read_unlock();
4577	/*
4578	 * Only show locks if all tasks are dumped:
4579	 */
4580	if (!state_filter)
4581		debug_show_all_locks();
4582}
4583
4584void init_idle_bootup_task(struct task_struct *idle)
4585{
4586	idle->sched_class = &idle_sched_class;
4587}
4588
4589/**
4590 * init_idle - set up an idle thread for a given CPU
4591 * @idle: task in question
4592 * @cpu: cpu the idle task belongs to
4593 *
4594 * NOTE: this function does not set the idle thread's NEED_RESCHED
4595 * flag, to make booting more robust.
4596 */
4597void init_idle(struct task_struct *idle, int cpu)
4598{
4599	struct rq *rq = cpu_rq(cpu);
4600	unsigned long flags;
4601
4602	raw_spin_lock_irqsave(&rq->lock, flags);
4603
4604	__sched_fork(0, idle);
4605	idle->state = TASK_RUNNING;
4606	idle->se.exec_start = sched_clock();
4607
4608	do_set_cpus_allowed(idle, cpumask_of(cpu));
4609	/*
4610	 * We're having a chicken and egg problem, even though we are
4611	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4612	 * lockdep check in task_group() will fail.
4613	 *
4614	 * Similar case to sched_fork(). / Alternatively we could
4615	 * use task_rq_lock() here and obtain the other rq->lock.
4616	 *
4617	 * Silence PROVE_RCU
4618	 */
4619	rcu_read_lock();
4620	__set_task_cpu(idle, cpu);
4621	rcu_read_unlock();
4622
4623	rq->curr = rq->idle = idle;
4624	idle->on_rq = TASK_ON_RQ_QUEUED;
4625#if defined(CONFIG_SMP)
4626	idle->on_cpu = 1;
4627#endif
4628	raw_spin_unlock_irqrestore(&rq->lock, flags);
4629
4630	/* Set the preempt count _outside_ the spinlocks! */
4631	init_idle_preempt_count(idle, cpu);
4632
4633	/*
4634	 * The idle tasks have their own, simple scheduling class:
4635	 */
4636	idle->sched_class = &idle_sched_class;
4637	ftrace_graph_init_idle_task(idle, cpu);
4638	vtime_init_idle(idle, cpu);
4639#if defined(CONFIG_SMP)
4640	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4641#endif
4642}
4643
4644#ifdef CONFIG_SMP
4645/*
4646 * move_queued_task - move a queued task to new rq.
4647 *
4648 * Returns (locked) new rq. Old rq's lock is released.
4649 */
4650static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4651{
4652	struct rq *rq = task_rq(p);
4653
4654	lockdep_assert_held(&rq->lock);
4655
4656	dequeue_task(rq, p, 0);
4657	p->on_rq = TASK_ON_RQ_MIGRATING;
4658	set_task_cpu(p, new_cpu);
4659	raw_spin_unlock(&rq->lock);
4660
4661	rq = cpu_rq(new_cpu);
4662
4663	raw_spin_lock(&rq->lock);
4664	BUG_ON(task_cpu(p) != new_cpu);
4665	p->on_rq = TASK_ON_RQ_QUEUED;
4666	enqueue_task(rq, p, 0);
4667	check_preempt_curr(rq, p, 0);
4668
4669	return rq;
4670}
4671
4672void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4673{
4674	if (p->sched_class && p->sched_class->set_cpus_allowed)
4675		p->sched_class->set_cpus_allowed(p, new_mask);
4676
4677	cpumask_copy(&p->cpus_allowed, new_mask);
4678	p->nr_cpus_allowed = cpumask_weight(new_mask);
4679}
4680
4681/*
4682 * This is how migration works:
4683 *
4684 * 1) we invoke migration_cpu_stop() on the target CPU using
4685 *    stop_one_cpu().
4686 * 2) stopper starts to run (implicitly forcing the migrated thread
4687 *    off the CPU)
4688 * 3) it checks whether the migrated task is still in the wrong runqueue.
4689 * 4) if it's in the wrong runqueue then the migration thread removes
4690 *    it and puts it into the right queue.
4691 * 5) stopper completes and stop_one_cpu() returns and the migration
4692 *    is done.
4693 */
4694
4695/*
4696 * Change a given task's CPU affinity. Migrate the thread to a
4697 * proper CPU and schedule it away if the CPU it's executing on
4698 * is removed from the allowed bitmask.
4699 *
4700 * NOTE: the caller must have a valid reference to the task, the
4701 * task must not exit() & deallocate itself prematurely. The
4702 * call is not atomic; no spinlocks may be held.
4703 */
4704int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4705{
4706	unsigned long flags;
4707	struct rq *rq;
4708	unsigned int dest_cpu;
4709	int ret = 0;
4710
4711	rq = task_rq_lock(p, &flags);
4712
4713	if (cpumask_equal(&p->cpus_allowed, new_mask))
4714		goto out;
4715
4716	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4717		ret = -EINVAL;
4718		goto out;
4719	}
4720
4721	do_set_cpus_allowed(p, new_mask);
4722
4723	/* Can the task run on the task's current CPU? If so, we're done */
4724	if (cpumask_test_cpu(task_cpu(p), new_mask))
4725		goto out;
4726
4727	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4728	if (task_running(rq, p) || p->state == TASK_WAKING) {
4729		struct migration_arg arg = { p, dest_cpu };
4730		/* Need help from migration thread: drop lock and wait. */
4731		task_rq_unlock(rq, p, &flags);
4732		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4733		tlb_migrate_finish(p->mm);
4734		return 0;
4735	} else if (task_on_rq_queued(p))
4736		rq = move_queued_task(p, dest_cpu);
4737out:
4738	task_rq_unlock(rq, p, &flags);
4739
4740	return ret;
4741}
4742EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4743
4744/*
4745 * Move (not current) task off this cpu, onto dest cpu. We're doing
4746 * this because either it can't run here any more (set_cpus_allowed()
4747 * away from this CPU, or CPU going down), or because we're
4748 * attempting to rebalance this task on exec (sched_exec).
4749 *
4750 * So we race with normal scheduler movements, but that's OK, as long
4751 * as the task is no longer on this CPU.
4752 *
4753 * Returns non-zero if task was successfully migrated.
4754 */
4755static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4756{
4757	struct rq *rq;
4758	int ret = 0;
4759
4760	if (unlikely(!cpu_active(dest_cpu)))
4761		return ret;
4762
4763	rq = cpu_rq(src_cpu);
4764
4765	raw_spin_lock(&p->pi_lock);
4766	raw_spin_lock(&rq->lock);
4767	/* Already moved. */
4768	if (task_cpu(p) != src_cpu)
4769		goto done;
4770
4771	/* Affinity changed (again). */
4772	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4773		goto fail;
4774
4775	/*
4776	 * If we're not on a rq, the next wake-up will ensure we're
4777	 * placed properly.
4778	 */
4779	if (task_on_rq_queued(p))
4780		rq = move_queued_task(p, dest_cpu);
4781done:
4782	ret = 1;
4783fail:
4784	raw_spin_unlock(&rq->lock);
4785	raw_spin_unlock(&p->pi_lock);
4786	return ret;
4787}
4788
4789#ifdef CONFIG_NUMA_BALANCING
4790/* Migrate current task p to target_cpu */
4791int migrate_task_to(struct task_struct *p, int target_cpu)
4792{
4793	struct migration_arg arg = { p, target_cpu };
4794	int curr_cpu = task_cpu(p);
4795
4796	if (curr_cpu == target_cpu)
4797		return 0;
4798
4799	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4800		return -EINVAL;
4801
4802	/* TODO: This is not properly updating schedstats */
4803
4804	trace_sched_move_numa(p, curr_cpu, target_cpu);
4805	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4806}
4807
4808/*
4809 * Requeue a task on a given node and accurately track the number of NUMA
4810 * tasks on the runqueues
4811 */
4812void sched_setnuma(struct task_struct *p, int nid)
4813{
4814	struct rq *rq;
4815	unsigned long flags;
4816	bool queued, running;
4817
4818	rq = task_rq_lock(p, &flags);
4819	queued = task_on_rq_queued(p);
4820	running = task_current(rq, p);
4821
4822	if (queued)
4823		dequeue_task(rq, p, 0);
4824	if (running)
4825		put_prev_task(rq, p);
4826
4827	p->numa_preferred_nid = nid;
4828
4829	if (running)
4830		p->sched_class->set_curr_task(rq);
4831	if (queued)
4832		enqueue_task(rq, p, 0);
4833	task_rq_unlock(rq, p, &flags);
4834}
4835#endif
4836
4837/*
4838 * migration_cpu_stop - this will be executed by a highprio stopper thread
4839 * and performs thread migration by bumping thread off CPU then
4840 * 'pushing' onto another runqueue.
4841 */
4842static int migration_cpu_stop(void *data)
4843{
4844	struct migration_arg *arg = data;
4845
4846	/*
4847	 * The original target cpu might have gone down and we might
4848	 * be on another cpu but it doesn't matter.
4849	 */
4850	local_irq_disable();
4851	/*
4852	 * We need to explicitly wake pending tasks before running
4853	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4854	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4855	 */
4856	sched_ttwu_pending();
4857	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4858	local_irq_enable();
4859	return 0;
4860}
4861
4862#ifdef CONFIG_HOTPLUG_CPU
4863
4864/*
4865 * Ensures that the idle task is using init_mm right before its cpu goes
4866 * offline.
4867 */
4868void idle_task_exit(void)
4869{
4870	struct mm_struct *mm = current->active_mm;
4871
4872	BUG_ON(cpu_online(smp_processor_id()));
4873
4874	if (mm != &init_mm) {
4875		switch_mm(mm, &init_mm, current);
4876		finish_arch_post_lock_switch();
4877	}
4878	mmdrop(mm);
4879}
4880
4881/*
4882 * Since this CPU is going 'away' for a while, fold any nr_active delta
4883 * we might have. Assumes we're called after migrate_tasks() so that the
4884 * nr_active count is stable.
4885 *
4886 * Also see the comment "Global load-average calculations".
4887 */
4888static void calc_load_migrate(struct rq *rq)
4889{
4890	long delta = calc_load_fold_active(rq);
4891	if (delta)
4892		atomic_long_add(delta, &calc_load_tasks);
4893}
4894
4895static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4896{
4897}
4898
4899static const struct sched_class fake_sched_class = {
4900	.put_prev_task = put_prev_task_fake,
4901};
4902
4903static struct task_struct fake_task = {
4904	/*
4905	 * Avoid pull_{rt,dl}_task()
4906	 */
4907	.prio = MAX_PRIO + 1,
4908	.sched_class = &fake_sched_class,
4909};
4910
4911/*
4912 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4913 * try_to_wake_up()->select_task_rq().
4914 *
4915 * Called with rq->lock held even though we'er in stop_machine() and
4916 * there's no concurrency possible, we hold the required locks anyway
4917 * because of lock validation efforts.
4918 */
4919static void migrate_tasks(unsigned int dead_cpu)
4920{
4921	struct rq *rq = cpu_rq(dead_cpu);
4922	struct task_struct *next, *stop = rq->stop;
4923	int dest_cpu;
4924
4925	/*
4926	 * Fudge the rq selection such that the below task selection loop
4927	 * doesn't get stuck on the currently eligible stop task.
4928	 *
4929	 * We're currently inside stop_machine() and the rq is either stuck
4930	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4931	 * either way we should never end up calling schedule() until we're
4932	 * done here.
4933	 */
4934	rq->stop = NULL;
4935
4936	/*
4937	 * put_prev_task() and pick_next_task() sched
4938	 * class method both need to have an up-to-date
4939	 * value of rq->clock[_task]
4940	 */
4941	update_rq_clock(rq);
4942
4943	for ( ; ; ) {
4944		/*
4945		 * There's this thread running, bail when that's the only
4946		 * remaining thread.
4947		 */
4948		if (rq->nr_running == 1)
4949			break;
4950
4951		next = pick_next_task(rq, &fake_task);
4952		BUG_ON(!next);
4953		next->sched_class->put_prev_task(rq, next);
4954
4955		/* Find suitable destination for @next, with force if needed. */
4956		dest_cpu = select_fallback_rq(dead_cpu, next);
4957		raw_spin_unlock(&rq->lock);
4958
4959		__migrate_task(next, dead_cpu, dest_cpu);
4960
4961		raw_spin_lock(&rq->lock);
4962	}
4963
4964	rq->stop = stop;
4965}
4966
4967#endif /* CONFIG_HOTPLUG_CPU */
4968
4969#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4970
4971static struct ctl_table sd_ctl_dir[] = {
4972	{
4973		.procname	= "sched_domain",
4974		.mode		= 0555,
4975	},
4976	{}
4977};
4978
4979static struct ctl_table sd_ctl_root[] = {
4980	{
4981		.procname	= "kernel",
4982		.mode		= 0555,
4983		.child		= sd_ctl_dir,
4984	},
4985	{}
4986};
4987
4988static struct ctl_table *sd_alloc_ctl_entry(int n)
4989{
4990	struct ctl_table *entry =
4991		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4992
4993	return entry;
4994}
4995
4996static void sd_free_ctl_entry(struct ctl_table **tablep)
4997{
4998	struct ctl_table *entry;
4999
5000	/*
5001	 * In the intermediate directories, both the child directory and
5002	 * procname are dynamically allocated and could fail but the mode
5003	 * will always be set. In the lowest directory the names are
5004	 * static strings and all have proc handlers.
5005	 */
5006	for (entry = *tablep; entry->mode; entry++) {
5007		if (entry->child)
5008			sd_free_ctl_entry(&entry->child);
5009		if (entry->proc_handler == NULL)
5010			kfree(entry->procname);
5011	}
5012
5013	kfree(*tablep);
5014	*tablep = NULL;
5015}
5016
5017static int min_load_idx = 0;
5018static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5019
5020static void
5021set_table_entry(struct ctl_table *entry,
5022		const char *procname, void *data, int maxlen,
5023		umode_t mode, proc_handler *proc_handler,
5024		bool load_idx)
5025{
5026	entry->procname = procname;
5027	entry->data = data;
5028	entry->maxlen = maxlen;
5029	entry->mode = mode;
5030	entry->proc_handler = proc_handler;
5031
5032	if (load_idx) {
5033		entry->extra1 = &min_load_idx;
5034		entry->extra2 = &max_load_idx;
5035	}
5036}
5037
5038static struct ctl_table *
5039sd_alloc_ctl_domain_table(struct sched_domain *sd)
5040{
5041	struct ctl_table *table = sd_alloc_ctl_entry(14);
5042
5043	if (table == NULL)
5044		return NULL;
5045
5046	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5047		sizeof(long), 0644, proc_doulongvec_minmax, false);
5048	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5049		sizeof(long), 0644, proc_doulongvec_minmax, false);
5050	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5051		sizeof(int), 0644, proc_dointvec_minmax, true);
5052	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5053		sizeof(int), 0644, proc_dointvec_minmax, true);
5054	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5055		sizeof(int), 0644, proc_dointvec_minmax, true);
5056	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5057		sizeof(int), 0644, proc_dointvec_minmax, true);
5058	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5059		sizeof(int), 0644, proc_dointvec_minmax, true);
5060	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5061		sizeof(int), 0644, proc_dointvec_minmax, false);
5062	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5063		sizeof(int), 0644, proc_dointvec_minmax, false);
5064	set_table_entry(&table[9], "cache_nice_tries",
5065		&sd->cache_nice_tries,
5066		sizeof(int), 0644, proc_dointvec_minmax, false);
5067	set_table_entry(&table[10], "flags", &sd->flags,
5068		sizeof(int), 0644, proc_dointvec_minmax, false);
5069	set_table_entry(&table[11], "max_newidle_lb_cost",
5070		&sd->max_newidle_lb_cost,
5071		sizeof(long), 0644, proc_doulongvec_minmax, false);
5072	set_table_entry(&table[12], "name", sd->name,
5073		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5074	/* &table[13] is terminator */
5075
5076	return table;
5077}
5078
5079static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5080{
5081	struct ctl_table *entry, *table;
5082	struct sched_domain *sd;
5083	int domain_num = 0, i;
5084	char buf[32];
5085
5086	for_each_domain(cpu, sd)
5087		domain_num++;
5088	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5089	if (table == NULL)
5090		return NULL;
5091
5092	i = 0;
5093	for_each_domain(cpu, sd) {
5094		snprintf(buf, 32, "domain%d", i);
5095		entry->procname = kstrdup(buf, GFP_KERNEL);
5096		entry->mode = 0555;
5097		entry->child = sd_alloc_ctl_domain_table(sd);
5098		entry++;
5099		i++;
5100	}
5101	return table;
5102}
5103
5104static struct ctl_table_header *sd_sysctl_header;
5105static void register_sched_domain_sysctl(void)
5106{
5107	int i, cpu_num = num_possible_cpus();
5108	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5109	char buf[32];
5110
5111	WARN_ON(sd_ctl_dir[0].child);
5112	sd_ctl_dir[0].child = entry;
5113
5114	if (entry == NULL)
5115		return;
5116
5117	for_each_possible_cpu(i) {
5118		snprintf(buf, 32, "cpu%d", i);
5119		entry->procname = kstrdup(buf, GFP_KERNEL);
5120		entry->mode = 0555;
5121		entry->child = sd_alloc_ctl_cpu_table(i);
5122		entry++;
5123	}
5124
5125	WARN_ON(sd_sysctl_header);
5126	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5127}
5128
5129/* may be called multiple times per register */
5130static void unregister_sched_domain_sysctl(void)
5131{
5132	if (sd_sysctl_header)
5133		unregister_sysctl_table(sd_sysctl_header);
5134	sd_sysctl_header = NULL;
5135	if (sd_ctl_dir[0].child)
5136		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5137}
5138#else
5139static void register_sched_domain_sysctl(void)
5140{
5141}
5142static void unregister_sched_domain_sysctl(void)
5143{
5144}
5145#endif
5146
5147static void set_rq_online(struct rq *rq)
5148{
5149	if (!rq->online) {
5150		const struct sched_class *class;
5151
5152		cpumask_set_cpu(rq->cpu, rq->rd->online);
5153		rq->online = 1;
5154
5155		for_each_class(class) {
5156			if (class->rq_online)
5157				class->rq_online(rq);
5158		}
5159	}
5160}
5161
5162static void set_rq_offline(struct rq *rq)
5163{
5164	if (rq->online) {
5165		const struct sched_class *class;
5166
5167		for_each_class(class) {
5168			if (class->rq_offline)
5169				class->rq_offline(rq);
5170		}
5171
5172		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5173		rq->online = 0;
5174	}
5175}
5176
5177/*
5178 * migration_call - callback that gets triggered when a CPU is added.
5179 * Here we can start up the necessary migration thread for the new CPU.
5180 */
5181static int
5182migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5183{
5184	int cpu = (long)hcpu;
5185	unsigned long flags;
5186	struct rq *rq = cpu_rq(cpu);
5187
5188	switch (action & ~CPU_TASKS_FROZEN) {
5189
5190	case CPU_UP_PREPARE:
5191		rq->calc_load_update = calc_load_update;
5192		break;
5193
5194	case CPU_ONLINE:
5195		/* Update our root-domain */
5196		raw_spin_lock_irqsave(&rq->lock, flags);
5197		if (rq->rd) {
5198			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5199
5200			set_rq_online(rq);
5201		}
5202		raw_spin_unlock_irqrestore(&rq->lock, flags);
5203		break;
5204
5205#ifdef CONFIG_HOTPLUG_CPU
5206	case CPU_DYING:
5207		sched_ttwu_pending();
5208		/* Update our root-domain */
5209		raw_spin_lock_irqsave(&rq->lock, flags);
5210		if (rq->rd) {
5211			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5212			set_rq_offline(rq);
5213		}
5214		migrate_tasks(cpu);
5215		BUG_ON(rq->nr_running != 1); /* the migration thread */
5216		raw_spin_unlock_irqrestore(&rq->lock, flags);
5217		break;
5218
5219	case CPU_DEAD:
5220		calc_load_migrate(rq);
5221		break;
5222#endif
5223	}
5224
5225	update_max_interval();
5226
5227	return NOTIFY_OK;
5228}
5229
5230/*
5231 * Register at high priority so that task migration (migrate_all_tasks)
5232 * happens before everything else.  This has to be lower priority than
5233 * the notifier in the perf_event subsystem, though.
5234 */
5235static struct notifier_block migration_notifier = {
5236	.notifier_call = migration_call,
5237	.priority = CPU_PRI_MIGRATION,
5238};
5239
5240static void __cpuinit set_cpu_rq_start_time(void)
5241{
5242	int cpu = smp_processor_id();
5243	struct rq *rq = cpu_rq(cpu);
5244	rq->age_stamp = sched_clock_cpu(cpu);
5245}
5246
5247static int sched_cpu_active(struct notifier_block *nfb,
5248				      unsigned long action, void *hcpu)
5249{
5250	switch (action & ~CPU_TASKS_FROZEN) {
5251	case CPU_STARTING:
5252		set_cpu_rq_start_time();
5253		return NOTIFY_OK;
5254	case CPU_DOWN_FAILED:
5255		set_cpu_active((long)hcpu, true);
5256		return NOTIFY_OK;
5257	default:
5258		return NOTIFY_DONE;
5259	}
5260}
5261
5262static int sched_cpu_inactive(struct notifier_block *nfb,
5263					unsigned long action, void *hcpu)
5264{
5265	unsigned long flags;
5266	long cpu = (long)hcpu;
5267	struct dl_bw *dl_b;
5268
5269	switch (action & ~CPU_TASKS_FROZEN) {
5270	case CPU_DOWN_PREPARE:
5271		set_cpu_active(cpu, false);
5272
5273		/* explicitly allow suspend */
5274		if (!(action & CPU_TASKS_FROZEN)) {
5275			bool overflow;
5276			int cpus;
5277
5278			rcu_read_lock_sched();
5279			dl_b = dl_bw_of(cpu);
5280
5281			raw_spin_lock_irqsave(&dl_b->lock, flags);
5282			cpus = dl_bw_cpus(cpu);
5283			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5284			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5285
5286			rcu_read_unlock_sched();
5287
5288			if (overflow)
5289				return notifier_from_errno(-EBUSY);
5290		}
5291		return NOTIFY_OK;
5292	}
5293
5294	return NOTIFY_DONE;
5295}
5296
5297static int __init migration_init(void)
5298{
5299	void *cpu = (void *)(long)smp_processor_id();
5300	int err;
5301
5302	/* Initialize migration for the boot CPU */
5303	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5304	BUG_ON(err == NOTIFY_BAD);
5305	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5306	register_cpu_notifier(&migration_notifier);
5307
5308	/* Register cpu active notifiers */
5309	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5310	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5311
5312	return 0;
5313}
5314early_initcall(migration_init);
5315#endif
5316
5317#ifdef CONFIG_SMP
5318
5319static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5320
5321#ifdef CONFIG_SCHED_DEBUG
5322
5323static __read_mostly int sched_debug_enabled;
5324
5325static int __init sched_debug_setup(char *str)
5326{
5327	sched_debug_enabled = 1;
5328
5329	return 0;
5330}
5331early_param("sched_debug", sched_debug_setup);
5332
5333static inline bool sched_debug(void)
5334{
5335	return sched_debug_enabled;
5336}
5337
5338static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5339				  struct cpumask *groupmask)
5340{
5341	struct sched_group *group = sd->groups;
5342	char str[256];
5343
5344	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5345	cpumask_clear(groupmask);
5346
5347	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5348
5349	if (!(sd->flags & SD_LOAD_BALANCE)) {
5350		printk("does not load-balance\n");
5351		if (sd->parent)
5352			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5353					" has parent");
5354		return -1;
5355	}
5356
5357	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5358
5359	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5360		printk(KERN_ERR "ERROR: domain->span does not contain "
5361				"CPU%d\n", cpu);
5362	}
5363	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5364		printk(KERN_ERR "ERROR: domain->groups does not contain"
5365				" CPU%d\n", cpu);
5366	}
5367
5368	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5369	do {
5370		if (!group) {
5371			printk("\n");
5372			printk(KERN_ERR "ERROR: group is NULL\n");
5373			break;
5374		}
5375
5376		/*
5377		 * Even though we initialize ->capacity to something semi-sane,
5378		 * we leave capacity_orig unset. This allows us to detect if
5379		 * domain iteration is still funny without causing /0 traps.
5380		 */
5381		if (!group->sgc->capacity_orig) {
5382			printk(KERN_CONT "\n");
5383			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5384			break;
5385		}
5386
5387		if (!cpumask_weight(sched_group_cpus(group))) {
5388			printk(KERN_CONT "\n");
5389			printk(KERN_ERR "ERROR: empty group\n");
5390			break;
5391		}
5392
5393		if (!(sd->flags & SD_OVERLAP) &&
5394		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5395			printk(KERN_CONT "\n");
5396			printk(KERN_ERR "ERROR: repeated CPUs\n");
5397			break;
5398		}
5399
5400		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5401
5402		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5403
5404		printk(KERN_CONT " %s", str);
5405		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5406			printk(KERN_CONT " (cpu_capacity = %d)",
5407				group->sgc->capacity);
5408		}
5409
5410		group = group->next;
5411	} while (group != sd->groups);
5412	printk(KERN_CONT "\n");
5413
5414	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5415		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5416
5417	if (sd->parent &&
5418	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5419		printk(KERN_ERR "ERROR: parent span is not a superset "
5420			"of domain->span\n");
5421	return 0;
5422}
5423
5424static void sched_domain_debug(struct sched_domain *sd, int cpu)
5425{
5426	int level = 0;
5427
5428	if (!sched_debug_enabled)
5429		return;
5430
5431	if (!sd) {
5432		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5433		return;
5434	}
5435
5436	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5437
5438	for (;;) {
5439		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5440			break;
5441		level++;
5442		sd = sd->parent;
5443		if (!sd)
5444			break;
5445	}
5446}
5447#else /* !CONFIG_SCHED_DEBUG */
5448# define sched_domain_debug(sd, cpu) do { } while (0)
5449static inline bool sched_debug(void)
5450{
5451	return false;
5452}
5453#endif /* CONFIG_SCHED_DEBUG */
5454
5455static int sd_degenerate(struct sched_domain *sd)
5456{
5457	if (cpumask_weight(sched_domain_span(sd)) == 1)
5458		return 1;
5459
5460	/* Following flags need at least 2 groups */
5461	if (sd->flags & (SD_LOAD_BALANCE |
5462			 SD_BALANCE_NEWIDLE |
5463			 SD_BALANCE_FORK |
5464			 SD_BALANCE_EXEC |
5465			 SD_SHARE_CPUCAPACITY |
5466			 SD_SHARE_PKG_RESOURCES |
5467			 SD_SHARE_POWERDOMAIN)) {
5468		if (sd->groups != sd->groups->next)
5469			return 0;
5470	}
5471
5472	/* Following flags don't use groups */
5473	if (sd->flags & (SD_WAKE_AFFINE))
5474		return 0;
5475
5476	return 1;
5477}
5478
5479static int
5480sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5481{
5482	unsigned long cflags = sd->flags, pflags = parent->flags;
5483
5484	if (sd_degenerate(parent))
5485		return 1;
5486
5487	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5488		return 0;
5489
5490	/* Flags needing groups don't count if only 1 group in parent */
5491	if (parent->groups == parent->groups->next) {
5492		pflags &= ~(SD_LOAD_BALANCE |
5493				SD_BALANCE_NEWIDLE |
5494				SD_BALANCE_FORK |
5495				SD_BALANCE_EXEC |
5496				SD_SHARE_CPUCAPACITY |
5497				SD_SHARE_PKG_RESOURCES |
5498				SD_PREFER_SIBLING |
5499				SD_SHARE_POWERDOMAIN);
5500		if (nr_node_ids == 1)
5501			pflags &= ~SD_SERIALIZE;
5502	}
5503	if (~cflags & pflags)
5504		return 0;
5505
5506	return 1;
5507}
5508
5509static void free_rootdomain(struct rcu_head *rcu)
5510{
5511	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5512
5513	cpupri_cleanup(&rd->cpupri);
5514	cpudl_cleanup(&rd->cpudl);
5515	free_cpumask_var(rd->dlo_mask);
5516	free_cpumask_var(rd->rto_mask);
5517	free_cpumask_var(rd->online);
5518	free_cpumask_var(rd->span);
5519	kfree(rd);
5520}
5521
5522static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5523{
5524	struct root_domain *old_rd = NULL;
5525	unsigned long flags;
5526
5527	raw_spin_lock_irqsave(&rq->lock, flags);
5528
5529	if (rq->rd) {
5530		old_rd = rq->rd;
5531
5532		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5533			set_rq_offline(rq);
5534
5535		cpumask_clear_cpu(rq->cpu, old_rd->span);
5536
5537		/*
5538		 * If we dont want to free the old_rd yet then
5539		 * set old_rd to NULL to skip the freeing later
5540		 * in this function:
5541		 */
5542		if (!atomic_dec_and_test(&old_rd->refcount))
5543			old_rd = NULL;
5544	}
5545
5546	atomic_inc(&rd->refcount);
5547	rq->rd = rd;
5548
5549	cpumask_set_cpu(rq->cpu, rd->span);
5550	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5551		set_rq_online(rq);
5552
5553	raw_spin_unlock_irqrestore(&rq->lock, flags);
5554
5555	if (old_rd)
5556		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5557}
5558
5559static int init_rootdomain(struct root_domain *rd)
5560{
5561	memset(rd, 0, sizeof(*rd));
5562
5563	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5564		goto out;
5565	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5566		goto free_span;
5567	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5568		goto free_online;
5569	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5570		goto free_dlo_mask;
5571
5572	init_dl_bw(&rd->dl_bw);
5573	if (cpudl_init(&rd->cpudl) != 0)
5574		goto free_dlo_mask;
5575
5576	if (cpupri_init(&rd->cpupri) != 0)
5577		goto free_rto_mask;
5578	return 0;
5579
5580free_rto_mask:
5581	free_cpumask_var(rd->rto_mask);
5582free_dlo_mask:
5583	free_cpumask_var(rd->dlo_mask);
5584free_online:
5585	free_cpumask_var(rd->online);
5586free_span:
5587	free_cpumask_var(rd->span);
5588out:
5589	return -ENOMEM;
5590}
5591
5592/*
5593 * By default the system creates a single root-domain with all cpus as
5594 * members (mimicking the global state we have today).
5595 */
5596struct root_domain def_root_domain;
5597
5598static void init_defrootdomain(void)
5599{
5600	init_rootdomain(&def_root_domain);
5601
5602	atomic_set(&def_root_domain.refcount, 1);
5603}
5604
5605static struct root_domain *alloc_rootdomain(void)
5606{
5607	struct root_domain *rd;
5608
5609	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5610	if (!rd)
5611		return NULL;
5612
5613	if (init_rootdomain(rd) != 0) {
5614		kfree(rd);
5615		return NULL;
5616	}
5617
5618	return rd;
5619}
5620
5621static void free_sched_groups(struct sched_group *sg, int free_sgc)
5622{
5623	struct sched_group *tmp, *first;
5624
5625	if (!sg)
5626		return;
5627
5628	first = sg;
5629	do {
5630		tmp = sg->next;
5631
5632		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5633			kfree(sg->sgc);
5634
5635		kfree(sg);
5636		sg = tmp;
5637	} while (sg != first);
5638}
5639
5640static void free_sched_domain(struct rcu_head *rcu)
5641{
5642	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5643
5644	/*
5645	 * If its an overlapping domain it has private groups, iterate and
5646	 * nuke them all.
5647	 */
5648	if (sd->flags & SD_OVERLAP) {
5649		free_sched_groups(sd->groups, 1);
5650	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5651		kfree(sd->groups->sgc);
5652		kfree(sd->groups);
5653	}
5654	kfree(sd);
5655}
5656
5657static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5658{
5659	call_rcu(&sd->rcu, free_sched_domain);
5660}
5661
5662static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5663{
5664	for (; sd; sd = sd->parent)
5665		destroy_sched_domain(sd, cpu);
5666}
5667
5668/*
5669 * Keep a special pointer to the highest sched_domain that has
5670 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5671 * allows us to avoid some pointer chasing select_idle_sibling().
5672 *
5673 * Also keep a unique ID per domain (we use the first cpu number in
5674 * the cpumask of the domain), this allows us to quickly tell if
5675 * two cpus are in the same cache domain, see cpus_share_cache().
5676 */
5677DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5678DEFINE_PER_CPU(int, sd_llc_size);
5679DEFINE_PER_CPU(int, sd_llc_id);
5680DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5681DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5682DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5683
5684static void update_top_cache_domain(int cpu)
5685{
5686	struct sched_domain *sd;
5687	struct sched_domain *busy_sd = NULL;
5688	int id = cpu;
5689	int size = 1;
5690
5691	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5692	if (sd) {
5693		id = cpumask_first(sched_domain_span(sd));
5694		size = cpumask_weight(sched_domain_span(sd));
5695		busy_sd = sd->parent; /* sd_busy */
5696	}
5697	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5698
5699	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5700	per_cpu(sd_llc_size, cpu) = size;
5701	per_cpu(sd_llc_id, cpu) = id;
5702
5703	sd = lowest_flag_domain(cpu, SD_NUMA);
5704	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5705
5706	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5707	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5708}
5709
5710/*
5711 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5712 * hold the hotplug lock.
5713 */
5714static void
5715cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5716{
5717	struct rq *rq = cpu_rq(cpu);
5718	struct sched_domain *tmp;
5719
5720	/* Remove the sched domains which do not contribute to scheduling. */
5721	for (tmp = sd; tmp; ) {
5722		struct sched_domain *parent = tmp->parent;
5723		if (!parent)
5724			break;
5725
5726		if (sd_parent_degenerate(tmp, parent)) {
5727			tmp->parent = parent->parent;
5728			if (parent->parent)
5729				parent->parent->child = tmp;
5730			/*
5731			 * Transfer SD_PREFER_SIBLING down in case of a
5732			 * degenerate parent; the spans match for this
5733			 * so the property transfers.
5734			 */
5735			if (parent->flags & SD_PREFER_SIBLING)
5736				tmp->flags |= SD_PREFER_SIBLING;
5737			destroy_sched_domain(parent, cpu);
5738		} else
5739			tmp = tmp->parent;
5740	}
5741
5742	if (sd && sd_degenerate(sd)) {
5743		tmp = sd;
5744		sd = sd->parent;
5745		destroy_sched_domain(tmp, cpu);
5746		if (sd)
5747			sd->child = NULL;
5748	}
5749
5750	sched_domain_debug(sd, cpu);
5751
5752	rq_attach_root(rq, rd);
5753	tmp = rq->sd;
5754	rcu_assign_pointer(rq->sd, sd);
5755	destroy_sched_domains(tmp, cpu);
5756
5757	update_top_cache_domain(cpu);
5758}
5759
5760/* cpus with isolated domains */
5761static cpumask_var_t cpu_isolated_map;
5762
5763/* Setup the mask of cpus configured for isolated domains */
5764static int __init isolated_cpu_setup(char *str)
5765{
5766	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5767	cpulist_parse(str, cpu_isolated_map);
5768	return 1;
5769}
5770
5771__setup("isolcpus=", isolated_cpu_setup);
5772
5773struct s_data {
5774	struct sched_domain ** __percpu sd;
5775	struct root_domain	*rd;
5776};
5777
5778enum s_alloc {
5779	sa_rootdomain,
5780	sa_sd,
5781	sa_sd_storage,
5782	sa_none,
5783};
5784
5785/*
5786 * Build an iteration mask that can exclude certain CPUs from the upwards
5787 * domain traversal.
5788 *
5789 * Asymmetric node setups can result in situations where the domain tree is of
5790 * unequal depth, make sure to skip domains that already cover the entire
5791 * range.
5792 *
5793 * In that case build_sched_domains() will have terminated the iteration early
5794 * and our sibling sd spans will be empty. Domains should always include the
5795 * cpu they're built on, so check that.
5796 *
5797 */
5798static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5799{
5800	const struct cpumask *span = sched_domain_span(sd);
5801	struct sd_data *sdd = sd->private;
5802	struct sched_domain *sibling;
5803	int i;
5804
5805	for_each_cpu(i, span) {
5806		sibling = *per_cpu_ptr(sdd->sd, i);
5807		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5808			continue;
5809
5810		cpumask_set_cpu(i, sched_group_mask(sg));
5811	}
5812}
5813
5814/*
5815 * Return the canonical balance cpu for this group, this is the first cpu
5816 * of this group that's also in the iteration mask.
5817 */
5818int group_balance_cpu(struct sched_group *sg)
5819{
5820	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5821}
5822
5823static int
5824build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5825{
5826	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5827	const struct cpumask *span = sched_domain_span(sd);
5828	struct cpumask *covered = sched_domains_tmpmask;
5829	struct sd_data *sdd = sd->private;
5830	struct sched_domain *sibling;
5831	int i;
5832
5833	cpumask_clear(covered);
5834
5835	for_each_cpu(i, span) {
5836		struct cpumask *sg_span;
5837
5838		if (cpumask_test_cpu(i, covered))
5839			continue;
5840
5841		sibling = *per_cpu_ptr(sdd->sd, i);
5842
5843		/* See the comment near build_group_mask(). */
5844		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5845			continue;
5846
5847		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5848				GFP_KERNEL, cpu_to_node(cpu));
5849
5850		if (!sg)
5851			goto fail;
5852
5853		sg_span = sched_group_cpus(sg);
5854		if (sibling->child)
5855			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5856		else
5857			cpumask_set_cpu(i, sg_span);
5858
5859		cpumask_or(covered, covered, sg_span);
5860
5861		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5862		if (atomic_inc_return(&sg->sgc->ref) == 1)
5863			build_group_mask(sd, sg);
5864
5865		/*
5866		 * Initialize sgc->capacity such that even if we mess up the
5867		 * domains and no possible iteration will get us here, we won't
5868		 * die on a /0 trap.
5869		 */
5870		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5871		sg->sgc->capacity_orig = sg->sgc->capacity;
5872
5873		/*
5874		 * Make sure the first group of this domain contains the
5875		 * canonical balance cpu. Otherwise the sched_domain iteration
5876		 * breaks. See update_sg_lb_stats().
5877		 */
5878		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5879		    group_balance_cpu(sg) == cpu)
5880			groups = sg;
5881
5882		if (!first)
5883			first = sg;
5884		if (last)
5885			last->next = sg;
5886		last = sg;
5887		last->next = first;
5888	}
5889	sd->groups = groups;
5890
5891	return 0;
5892
5893fail:
5894	free_sched_groups(first, 0);
5895
5896	return -ENOMEM;
5897}
5898
5899static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5900{
5901	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5902	struct sched_domain *child = sd->child;
5903
5904	if (child)
5905		cpu = cpumask_first(sched_domain_span(child));
5906
5907	if (sg) {
5908		*sg = *per_cpu_ptr(sdd->sg, cpu);
5909		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5910		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5911	}
5912
5913	return cpu;
5914}
5915
5916/*
5917 * build_sched_groups will build a circular linked list of the groups
5918 * covered by the given span, and will set each group's ->cpumask correctly,
5919 * and ->cpu_capacity to 0.
5920 *
5921 * Assumes the sched_domain tree is fully constructed
5922 */
5923static int
5924build_sched_groups(struct sched_domain *sd, int cpu)
5925{
5926	struct sched_group *first = NULL, *last = NULL;
5927	struct sd_data *sdd = sd->private;
5928	const struct cpumask *span = sched_domain_span(sd);
5929	struct cpumask *covered;
5930	int i;
5931
5932	get_group(cpu, sdd, &sd->groups);
5933	atomic_inc(&sd->groups->ref);
5934
5935	if (cpu != cpumask_first(span))
5936		return 0;
5937
5938	lockdep_assert_held(&sched_domains_mutex);
5939	covered = sched_domains_tmpmask;
5940
5941	cpumask_clear(covered);
5942
5943	for_each_cpu(i, span) {
5944		struct sched_group *sg;
5945		int group, j;
5946
5947		if (cpumask_test_cpu(i, covered))
5948			continue;
5949
5950		group = get_group(i, sdd, &sg);
5951		cpumask_setall(sched_group_mask(sg));
5952
5953		for_each_cpu(j, span) {
5954			if (get_group(j, sdd, NULL) != group)
5955				continue;
5956
5957			cpumask_set_cpu(j, covered);
5958			cpumask_set_cpu(j, sched_group_cpus(sg));
5959		}
5960
5961		if (!first)
5962			first = sg;
5963		if (last)
5964			last->next = sg;
5965		last = sg;
5966	}
5967	last->next = first;
5968
5969	return 0;
5970}
5971
5972/*
5973 * Initialize sched groups cpu_capacity.
5974 *
5975 * cpu_capacity indicates the capacity of sched group, which is used while
5976 * distributing the load between different sched groups in a sched domain.
5977 * Typically cpu_capacity for all the groups in a sched domain will be same
5978 * unless there are asymmetries in the topology. If there are asymmetries,
5979 * group having more cpu_capacity will pickup more load compared to the
5980 * group having less cpu_capacity.
5981 */
5982static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5983{
5984	struct sched_group *sg = sd->groups;
5985
5986	WARN_ON(!sg);
5987
5988	do {
5989		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5990		sg = sg->next;
5991	} while (sg != sd->groups);
5992
5993	if (cpu != group_balance_cpu(sg))
5994		return;
5995
5996	update_group_capacity(sd, cpu);
5997	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5998}
5999
6000/*
6001 * Initializers for schedule domains
6002 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6003 */
6004
6005static int default_relax_domain_level = -1;
6006int sched_domain_level_max;
6007
6008static int __init setup_relax_domain_level(char *str)
6009{
6010	if (kstrtoint(str, 0, &default_relax_domain_level))
6011		pr_warn("Unable to set relax_domain_level\n");
6012
6013	return 1;
6014}
6015__setup("relax_domain_level=", setup_relax_domain_level);
6016
6017static void set_domain_attribute(struct sched_domain *sd,
6018				 struct sched_domain_attr *attr)
6019{
6020	int request;
6021
6022	if (!attr || attr->relax_domain_level < 0) {
6023		if (default_relax_domain_level < 0)
6024			return;
6025		else
6026			request = default_relax_domain_level;
6027	} else
6028		request = attr->relax_domain_level;
6029	if (request < sd->level) {
6030		/* turn off idle balance on this domain */
6031		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6032	} else {
6033		/* turn on idle balance on this domain */
6034		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6035	}
6036}
6037
6038static void __sdt_free(const struct cpumask *cpu_map);
6039static int __sdt_alloc(const struct cpumask *cpu_map);
6040
6041static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6042				 const struct cpumask *cpu_map)
6043{
6044	switch (what) {
6045	case sa_rootdomain:
6046		if (!atomic_read(&d->rd->refcount))
6047			free_rootdomain(&d->rd->rcu); /* fall through */
6048	case sa_sd:
6049		free_percpu(d->sd); /* fall through */
6050	case sa_sd_storage:
6051		__sdt_free(cpu_map); /* fall through */
6052	case sa_none:
6053		break;
6054	}
6055}
6056
6057static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6058						   const struct cpumask *cpu_map)
6059{
6060	memset(d, 0, sizeof(*d));
6061
6062	if (__sdt_alloc(cpu_map))
6063		return sa_sd_storage;
6064	d->sd = alloc_percpu(struct sched_domain *);
6065	if (!d->sd)
6066		return sa_sd_storage;
6067	d->rd = alloc_rootdomain();
6068	if (!d->rd)
6069		return sa_sd;
6070	return sa_rootdomain;
6071}
6072
6073/*
6074 * NULL the sd_data elements we've used to build the sched_domain and
6075 * sched_group structure so that the subsequent __free_domain_allocs()
6076 * will not free the data we're using.
6077 */
6078static void claim_allocations(int cpu, struct sched_domain *sd)
6079{
6080	struct sd_data *sdd = sd->private;
6081
6082	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6083	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6084
6085	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6086		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6087
6088	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6089		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6090}
6091
6092#ifdef CONFIG_NUMA
6093static int sched_domains_numa_levels;
6094static int *sched_domains_numa_distance;
6095static struct cpumask ***sched_domains_numa_masks;
6096static int sched_domains_curr_level;
6097#endif
6098
6099/*
6100 * SD_flags allowed in topology descriptions.
6101 *
6102 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6103 * SD_SHARE_PKG_RESOURCES - describes shared caches
6104 * SD_NUMA                - describes NUMA topologies
6105 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6106 *
6107 * Odd one out:
6108 * SD_ASYM_PACKING        - describes SMT quirks
6109 */
6110#define TOPOLOGY_SD_FLAGS		\
6111	(SD_SHARE_CPUCAPACITY |		\
6112	 SD_SHARE_PKG_RESOURCES |	\
6113	 SD_NUMA |			\
6114	 SD_ASYM_PACKING |		\
6115	 SD_SHARE_POWERDOMAIN)
6116
6117static struct sched_domain *
6118sd_init(struct sched_domain_topology_level *tl, int cpu)
6119{
6120	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6121	int sd_weight, sd_flags = 0;
6122
6123#ifdef CONFIG_NUMA
6124	/*
6125	 * Ugly hack to pass state to sd_numa_mask()...
6126	 */
6127	sched_domains_curr_level = tl->numa_level;
6128#endif
6129
6130	sd_weight = cpumask_weight(tl->mask(cpu));
6131
6132	if (tl->sd_flags)
6133		sd_flags = (*tl->sd_flags)();
6134	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6135			"wrong sd_flags in topology description\n"))
6136		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6137
6138	*sd = (struct sched_domain){
6139		.min_interval		= sd_weight,
6140		.max_interval		= 2*sd_weight,
6141		.busy_factor		= 32,
6142		.imbalance_pct		= 125,
6143
6144		.cache_nice_tries	= 0,
6145		.busy_idx		= 0,
6146		.idle_idx		= 0,
6147		.newidle_idx		= 0,
6148		.wake_idx		= 0,
6149		.forkexec_idx		= 0,
6150
6151		.flags			= 1*SD_LOAD_BALANCE
6152					| 1*SD_BALANCE_NEWIDLE
6153					| 1*SD_BALANCE_EXEC
6154					| 1*SD_BALANCE_FORK
6155					| 0*SD_BALANCE_WAKE
6156					| 1*SD_WAKE_AFFINE
6157					| 0*SD_SHARE_CPUCAPACITY
6158					| 0*SD_SHARE_PKG_RESOURCES
6159					| 0*SD_SERIALIZE
6160					| 0*SD_PREFER_SIBLING
6161					| 0*SD_NUMA
6162					| sd_flags
6163					,
6164
6165		.last_balance		= jiffies,
6166		.balance_interval	= sd_weight,
6167		.smt_gain		= 0,
6168		.max_newidle_lb_cost	= 0,
6169		.next_decay_max_lb_cost	= jiffies,
6170#ifdef CONFIG_SCHED_DEBUG
6171		.name			= tl->name,
6172#endif
6173	};
6174
6175	/*
6176	 * Convert topological properties into behaviour.
6177	 */
6178
6179	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6180		sd->imbalance_pct = 110;
6181		sd->smt_gain = 1178; /* ~15% */
6182
6183	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6184		sd->imbalance_pct = 117;
6185		sd->cache_nice_tries = 1;
6186		sd->busy_idx = 2;
6187
6188#ifdef CONFIG_NUMA
6189	} else if (sd->flags & SD_NUMA) {
6190		sd->cache_nice_tries = 2;
6191		sd->busy_idx = 3;
6192		sd->idle_idx = 2;
6193
6194		sd->flags |= SD_SERIALIZE;
6195		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6196			sd->flags &= ~(SD_BALANCE_EXEC |
6197				       SD_BALANCE_FORK |
6198				       SD_WAKE_AFFINE);
6199		}
6200
6201#endif
6202	} else {
6203		sd->flags |= SD_PREFER_SIBLING;
6204		sd->cache_nice_tries = 1;
6205		sd->busy_idx = 2;
6206		sd->idle_idx = 1;
6207	}
6208
6209	sd->private = &tl->data;
6210
6211	return sd;
6212}
6213
6214/*
6215 * Topology list, bottom-up.
6216 */
6217static struct sched_domain_topology_level default_topology[] = {
6218#ifdef CONFIG_SCHED_SMT
6219	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6220#endif
6221#ifdef CONFIG_SCHED_MC
6222	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6223#endif
6224	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6225	{ NULL, },
6226};
6227
6228struct sched_domain_topology_level *sched_domain_topology = default_topology;
6229
6230#define for_each_sd_topology(tl)			\
6231	for (tl = sched_domain_topology; tl->mask; tl++)
6232
6233void set_sched_topology(struct sched_domain_topology_level *tl)
6234{
6235	sched_domain_topology = tl;
6236}
6237
6238#ifdef CONFIG_NUMA
6239
6240static const struct cpumask *sd_numa_mask(int cpu)
6241{
6242	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6243}
6244
6245static void sched_numa_warn(const char *str)
6246{
6247	static int done = false;
6248	int i,j;
6249
6250	if (done)
6251		return;
6252
6253	done = true;
6254
6255	printk(KERN_WARNING "ERROR: %s\n\n", str);
6256
6257	for (i = 0; i < nr_node_ids; i++) {
6258		printk(KERN_WARNING "  ");
6259		for (j = 0; j < nr_node_ids; j++)
6260			printk(KERN_CONT "%02d ", node_distance(i,j));
6261		printk(KERN_CONT "\n");
6262	}
6263	printk(KERN_WARNING "\n");
6264}
6265
6266static bool find_numa_distance(int distance)
6267{
6268	int i;
6269
6270	if (distance == node_distance(0, 0))
6271		return true;
6272
6273	for (i = 0; i < sched_domains_numa_levels; i++) {
6274		if (sched_domains_numa_distance[i] == distance)
6275			return true;
6276	}
6277
6278	return false;
6279}
6280
6281static void sched_init_numa(void)
6282{
6283	int next_distance, curr_distance = node_distance(0, 0);
6284	struct sched_domain_topology_level *tl;
6285	int level = 0;
6286	int i, j, k;
6287
6288	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6289	if (!sched_domains_numa_distance)
6290		return;
6291
6292	/*
6293	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6294	 * unique distances in the node_distance() table.
6295	 *
6296	 * Assumes node_distance(0,j) includes all distances in
6297	 * node_distance(i,j) in order to avoid cubic time.
6298	 */
6299	next_distance = curr_distance;
6300	for (i = 0; i < nr_node_ids; i++) {
6301		for (j = 0; j < nr_node_ids; j++) {
6302			for (k = 0; k < nr_node_ids; k++) {
6303				int distance = node_distance(i, k);
6304
6305				if (distance > curr_distance &&
6306				    (distance < next_distance ||
6307				     next_distance == curr_distance))
6308					next_distance = distance;
6309
6310				/*
6311				 * While not a strong assumption it would be nice to know
6312				 * about cases where if node A is connected to B, B is not
6313				 * equally connected to A.
6314				 */
6315				if (sched_debug() && node_distance(k, i) != distance)
6316					sched_numa_warn("Node-distance not symmetric");
6317
6318				if (sched_debug() && i && !find_numa_distance(distance))
6319					sched_numa_warn("Node-0 not representative");
6320			}
6321			if (next_distance != curr_distance) {
6322				sched_domains_numa_distance[level++] = next_distance;
6323				sched_domains_numa_levels = level;
6324				curr_distance = next_distance;
6325			} else break;
6326		}
6327
6328		/*
6329		 * In case of sched_debug() we verify the above assumption.
6330		 */
6331		if (!sched_debug())
6332			break;
6333	}
6334	/*
6335	 * 'level' contains the number of unique distances, excluding the
6336	 * identity distance node_distance(i,i).
6337	 *
6338	 * The sched_domains_numa_distance[] array includes the actual distance
6339	 * numbers.
6340	 */
6341
6342	/*
6343	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6344	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6345	 * the array will contain less then 'level' members. This could be
6346	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6347	 * in other functions.
6348	 *
6349	 * We reset it to 'level' at the end of this function.
6350	 */
6351	sched_domains_numa_levels = 0;
6352
6353	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6354	if (!sched_domains_numa_masks)
6355		return;
6356
6357	/*
6358	 * Now for each level, construct a mask per node which contains all
6359	 * cpus of nodes that are that many hops away from us.
6360	 */
6361	for (i = 0; i < level; i++) {
6362		sched_domains_numa_masks[i] =
6363			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6364		if (!sched_domains_numa_masks[i])
6365			return;
6366
6367		for (j = 0; j < nr_node_ids; j++) {
6368			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6369			if (!mask)
6370				return;
6371
6372			sched_domains_numa_masks[i][j] = mask;
6373
6374			for (k = 0; k < nr_node_ids; k++) {
6375				if (node_distance(j, k) > sched_domains_numa_distance[i])
6376					continue;
6377
6378				cpumask_or(mask, mask, cpumask_of_node(k));
6379			}
6380		}
6381	}
6382
6383	/* Compute default topology size */
6384	for (i = 0; sched_domain_topology[i].mask; i++);
6385
6386	tl = kzalloc((i + level + 1) *
6387			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6388	if (!tl)
6389		return;
6390
6391	/*
6392	 * Copy the default topology bits..
6393	 */
6394	for (i = 0; sched_domain_topology[i].mask; i++)
6395		tl[i] = sched_domain_topology[i];
6396
6397	/*
6398	 * .. and append 'j' levels of NUMA goodness.
6399	 */
6400	for (j = 0; j < level; i++, j++) {
6401		tl[i] = (struct sched_domain_topology_level){
6402			.mask = sd_numa_mask,
6403			.sd_flags = cpu_numa_flags,
6404			.flags = SDTL_OVERLAP,
6405			.numa_level = j,
6406			SD_INIT_NAME(NUMA)
6407		};
6408	}
6409
6410	sched_domain_topology = tl;
6411
6412	sched_domains_numa_levels = level;
6413}
6414
6415static void sched_domains_numa_masks_set(int cpu)
6416{
6417	int i, j;
6418	int node = cpu_to_node(cpu);
6419
6420	for (i = 0; i < sched_domains_numa_levels; i++) {
6421		for (j = 0; j < nr_node_ids; j++) {
6422			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6423				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6424		}
6425	}
6426}
6427
6428static void sched_domains_numa_masks_clear(int cpu)
6429{
6430	int i, j;
6431	for (i = 0; i < sched_domains_numa_levels; i++) {
6432		for (j = 0; j < nr_node_ids; j++)
6433			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6434	}
6435}
6436
6437/*
6438 * Update sched_domains_numa_masks[level][node] array when new cpus
6439 * are onlined.
6440 */
6441static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6442					   unsigned long action,
6443					   void *hcpu)
6444{
6445	int cpu = (long)hcpu;
6446
6447	switch (action & ~CPU_TASKS_FROZEN) {
6448	case CPU_ONLINE:
6449		sched_domains_numa_masks_set(cpu);
6450		break;
6451
6452	case CPU_DEAD:
6453		sched_domains_numa_masks_clear(cpu);
6454		break;
6455
6456	default:
6457		return NOTIFY_DONE;
6458	}
6459
6460	return NOTIFY_OK;
6461}
6462#else
6463static inline void sched_init_numa(void)
6464{
6465}
6466
6467static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6468					   unsigned long action,
6469					   void *hcpu)
6470{
6471	return 0;
6472}
6473#endif /* CONFIG_NUMA */
6474
6475static int __sdt_alloc(const struct cpumask *cpu_map)
6476{
6477	struct sched_domain_topology_level *tl;
6478	int j;
6479
6480	for_each_sd_topology(tl) {
6481		struct sd_data *sdd = &tl->data;
6482
6483		sdd->sd = alloc_percpu(struct sched_domain *);
6484		if (!sdd->sd)
6485			return -ENOMEM;
6486
6487		sdd->sg = alloc_percpu(struct sched_group *);
6488		if (!sdd->sg)
6489			return -ENOMEM;
6490
6491		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6492		if (!sdd->sgc)
6493			return -ENOMEM;
6494
6495		for_each_cpu(j, cpu_map) {
6496			struct sched_domain *sd;
6497			struct sched_group *sg;
6498			struct sched_group_capacity *sgc;
6499
6500		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6501					GFP_KERNEL, cpu_to_node(j));
6502			if (!sd)
6503				return -ENOMEM;
6504
6505			*per_cpu_ptr(sdd->sd, j) = sd;
6506
6507			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6508					GFP_KERNEL, cpu_to_node(j));
6509			if (!sg)
6510				return -ENOMEM;
6511
6512			sg->next = sg;
6513
6514			*per_cpu_ptr(sdd->sg, j) = sg;
6515
6516			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6517					GFP_KERNEL, cpu_to_node(j));
6518			if (!sgc)
6519				return -ENOMEM;
6520
6521			*per_cpu_ptr(sdd->sgc, j) = sgc;
6522		}
6523	}
6524
6525	return 0;
6526}
6527
6528static void __sdt_free(const struct cpumask *cpu_map)
6529{
6530	struct sched_domain_topology_level *tl;
6531	int j;
6532
6533	for_each_sd_topology(tl) {
6534		struct sd_data *sdd = &tl->data;
6535
6536		for_each_cpu(j, cpu_map) {
6537			struct sched_domain *sd;
6538
6539			if (sdd->sd) {
6540				sd = *per_cpu_ptr(sdd->sd, j);
6541				if (sd && (sd->flags & SD_OVERLAP))
6542					free_sched_groups(sd->groups, 0);
6543				kfree(*per_cpu_ptr(sdd->sd, j));
6544			}
6545
6546			if (sdd->sg)
6547				kfree(*per_cpu_ptr(sdd->sg, j));
6548			if (sdd->sgc)
6549				kfree(*per_cpu_ptr(sdd->sgc, j));
6550		}
6551		free_percpu(sdd->sd);
6552		sdd->sd = NULL;
6553		free_percpu(sdd->sg);
6554		sdd->sg = NULL;
6555		free_percpu(sdd->sgc);
6556		sdd->sgc = NULL;
6557	}
6558}
6559
6560struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6561		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6562		struct sched_domain *child, int cpu)
6563{
6564	struct sched_domain *sd = sd_init(tl, cpu);
6565	if (!sd)
6566		return child;
6567
6568	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6569	if (child) {
6570		sd->level = child->level + 1;
6571		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6572		child->parent = sd;
6573		sd->child = child;
6574
6575		if (!cpumask_subset(sched_domain_span(child),
6576				    sched_domain_span(sd))) {
6577			pr_err("BUG: arch topology borken\n");
6578#ifdef CONFIG_SCHED_DEBUG
6579			pr_err("     the %s domain not a subset of the %s domain\n",
6580					child->name, sd->name);
6581#endif
6582			/* Fixup, ensure @sd has at least @child cpus. */
6583			cpumask_or(sched_domain_span(sd),
6584				   sched_domain_span(sd),
6585				   sched_domain_span(child));
6586		}
6587
6588	}
6589	set_domain_attribute(sd, attr);
6590
6591	return sd;
6592}
6593
6594/*
6595 * Build sched domains for a given set of cpus and attach the sched domains
6596 * to the individual cpus
6597 */
6598static int build_sched_domains(const struct cpumask *cpu_map,
6599			       struct sched_domain_attr *attr)
6600{
6601	enum s_alloc alloc_state;
6602	struct sched_domain *sd;
6603	struct s_data d;
6604	int i, ret = -ENOMEM;
6605
6606	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6607	if (alloc_state != sa_rootdomain)
6608		goto error;
6609
6610	/* Set up domains for cpus specified by the cpu_map. */
6611	for_each_cpu(i, cpu_map) {
6612		struct sched_domain_topology_level *tl;
6613
6614		sd = NULL;
6615		for_each_sd_topology(tl) {
6616			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6617			if (tl == sched_domain_topology)
6618				*per_cpu_ptr(d.sd, i) = sd;
6619			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6620				sd->flags |= SD_OVERLAP;
6621			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6622				break;
6623		}
6624	}
6625
6626	/* Build the groups for the domains */
6627	for_each_cpu(i, cpu_map) {
6628		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6629			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6630			if (sd->flags & SD_OVERLAP) {
6631				if (build_overlap_sched_groups(sd, i))
6632					goto error;
6633			} else {
6634				if (build_sched_groups(sd, i))
6635					goto error;
6636			}
6637		}
6638	}
6639
6640	/* Calculate CPU capacity for physical packages and nodes */
6641	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6642		if (!cpumask_test_cpu(i, cpu_map))
6643			continue;
6644
6645		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6646			claim_allocations(i, sd);
6647			init_sched_groups_capacity(i, sd);
6648		}
6649	}
6650
6651	/* Attach the domains */
6652	rcu_read_lock();
6653	for_each_cpu(i, cpu_map) {
6654		sd = *per_cpu_ptr(d.sd, i);
6655		cpu_attach_domain(sd, d.rd, i);
6656	}
6657	rcu_read_unlock();
6658
6659	ret = 0;
6660error:
6661	__free_domain_allocs(&d, alloc_state, cpu_map);
6662	return ret;
6663}
6664
6665static cpumask_var_t *doms_cur;	/* current sched domains */
6666static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6667static struct sched_domain_attr *dattr_cur;
6668				/* attribues of custom domains in 'doms_cur' */
6669
6670/*
6671 * Special case: If a kmalloc of a doms_cur partition (array of
6672 * cpumask) fails, then fallback to a single sched domain,
6673 * as determined by the single cpumask fallback_doms.
6674 */
6675static cpumask_var_t fallback_doms;
6676
6677/*
6678 * arch_update_cpu_topology lets virtualized architectures update the
6679 * cpu core maps. It is supposed to return 1 if the topology changed
6680 * or 0 if it stayed the same.
6681 */
6682int __weak arch_update_cpu_topology(void)
6683{
6684	return 0;
6685}
6686
6687cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6688{
6689	int i;
6690	cpumask_var_t *doms;
6691
6692	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6693	if (!doms)
6694		return NULL;
6695	for (i = 0; i < ndoms; i++) {
6696		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6697			free_sched_domains(doms, i);
6698			return NULL;
6699		}
6700	}
6701	return doms;
6702}
6703
6704void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6705{
6706	unsigned int i;
6707	for (i = 0; i < ndoms; i++)
6708		free_cpumask_var(doms[i]);
6709	kfree(doms);
6710}
6711
6712/*
6713 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6714 * For now this just excludes isolated cpus, but could be used to
6715 * exclude other special cases in the future.
6716 */
6717static int init_sched_domains(const struct cpumask *cpu_map)
6718{
6719	int err;
6720
6721	arch_update_cpu_topology();
6722	ndoms_cur = 1;
6723	doms_cur = alloc_sched_domains(ndoms_cur);
6724	if (!doms_cur)
6725		doms_cur = &fallback_doms;
6726	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6727	err = build_sched_domains(doms_cur[0], NULL);
6728	register_sched_domain_sysctl();
6729
6730	return err;
6731}
6732
6733/*
6734 * Detach sched domains from a group of cpus specified in cpu_map
6735 * These cpus will now be attached to the NULL domain
6736 */
6737static void detach_destroy_domains(const struct cpumask *cpu_map)
6738{
6739	int i;
6740
6741	rcu_read_lock();
6742	for_each_cpu(i, cpu_map)
6743		cpu_attach_domain(NULL, &def_root_domain, i);
6744	rcu_read_unlock();
6745}
6746
6747/* handle null as "default" */
6748static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6749			struct sched_domain_attr *new, int idx_new)
6750{
6751	struct sched_domain_attr tmp;
6752
6753	/* fast path */
6754	if (!new && !cur)
6755		return 1;
6756
6757	tmp = SD_ATTR_INIT;
6758	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6759			new ? (new + idx_new) : &tmp,
6760			sizeof(struct sched_domain_attr));
6761}
6762
6763/*
6764 * Partition sched domains as specified by the 'ndoms_new'
6765 * cpumasks in the array doms_new[] of cpumasks. This compares
6766 * doms_new[] to the current sched domain partitioning, doms_cur[].
6767 * It destroys each deleted domain and builds each new domain.
6768 *
6769 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6770 * The masks don't intersect (don't overlap.) We should setup one
6771 * sched domain for each mask. CPUs not in any of the cpumasks will
6772 * not be load balanced. If the same cpumask appears both in the
6773 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6774 * it as it is.
6775 *
6776 * The passed in 'doms_new' should be allocated using
6777 * alloc_sched_domains.  This routine takes ownership of it and will
6778 * free_sched_domains it when done with it. If the caller failed the
6779 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6780 * and partition_sched_domains() will fallback to the single partition
6781 * 'fallback_doms', it also forces the domains to be rebuilt.
6782 *
6783 * If doms_new == NULL it will be replaced with cpu_online_mask.
6784 * ndoms_new == 0 is a special case for destroying existing domains,
6785 * and it will not create the default domain.
6786 *
6787 * Call with hotplug lock held
6788 */
6789void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6790			     struct sched_domain_attr *dattr_new)
6791{
6792	int i, j, n;
6793	int new_topology;
6794
6795	mutex_lock(&sched_domains_mutex);
6796
6797	/* always unregister in case we don't destroy any domains */
6798	unregister_sched_domain_sysctl();
6799
6800	/* Let architecture update cpu core mappings. */
6801	new_topology = arch_update_cpu_topology();
6802
6803	n = doms_new ? ndoms_new : 0;
6804
6805	/* Destroy deleted domains */
6806	for (i = 0; i < ndoms_cur; i++) {
6807		for (j = 0; j < n && !new_topology; j++) {
6808			if (cpumask_equal(doms_cur[i], doms_new[j])
6809			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6810				goto match1;
6811		}
6812		/* no match - a current sched domain not in new doms_new[] */
6813		detach_destroy_domains(doms_cur[i]);
6814match1:
6815		;
6816	}
6817
6818	n = ndoms_cur;
6819	if (doms_new == NULL) {
6820		n = 0;
6821		doms_new = &fallback_doms;
6822		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6823		WARN_ON_ONCE(dattr_new);
6824	}
6825
6826	/* Build new domains */
6827	for (i = 0; i < ndoms_new; i++) {
6828		for (j = 0; j < n && !new_topology; j++) {
6829			if (cpumask_equal(doms_new[i], doms_cur[j])
6830			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6831				goto match2;
6832		}
6833		/* no match - add a new doms_new */
6834		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6835match2:
6836		;
6837	}
6838
6839	/* Remember the new sched domains */
6840	if (doms_cur != &fallback_doms)
6841		free_sched_domains(doms_cur, ndoms_cur);
6842	kfree(dattr_cur);	/* kfree(NULL) is safe */
6843	doms_cur = doms_new;
6844	dattr_cur = dattr_new;
6845	ndoms_cur = ndoms_new;
6846
6847	register_sched_domain_sysctl();
6848
6849	mutex_unlock(&sched_domains_mutex);
6850}
6851
6852static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6853
6854/*
6855 * Update cpusets according to cpu_active mask.  If cpusets are
6856 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6857 * around partition_sched_domains().
6858 *
6859 * If we come here as part of a suspend/resume, don't touch cpusets because we
6860 * want to restore it back to its original state upon resume anyway.
6861 */
6862static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6863			     void *hcpu)
6864{
6865	switch (action) {
6866	case CPU_ONLINE_FROZEN:
6867	case CPU_DOWN_FAILED_FROZEN:
6868
6869		/*
6870		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6871		 * resume sequence. As long as this is not the last online
6872		 * operation in the resume sequence, just build a single sched
6873		 * domain, ignoring cpusets.
6874		 */
6875		num_cpus_frozen--;
6876		if (likely(num_cpus_frozen)) {
6877			partition_sched_domains(1, NULL, NULL);
6878			break;
6879		}
6880
6881		/*
6882		 * This is the last CPU online operation. So fall through and
6883		 * restore the original sched domains by considering the
6884		 * cpuset configurations.
6885		 */
6886
6887	case CPU_ONLINE:
6888	case CPU_DOWN_FAILED:
6889		cpuset_update_active_cpus(true);
6890		break;
6891	default:
6892		return NOTIFY_DONE;
6893	}
6894	return NOTIFY_OK;
6895}
6896
6897static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6898			       void *hcpu)
6899{
6900	switch (action) {
6901	case CPU_DOWN_PREPARE:
6902		cpuset_update_active_cpus(false);
6903		break;
6904	case CPU_DOWN_PREPARE_FROZEN:
6905		num_cpus_frozen++;
6906		partition_sched_domains(1, NULL, NULL);
6907		break;
6908	default:
6909		return NOTIFY_DONE;
6910	}
6911	return NOTIFY_OK;
6912}
6913
6914void __init sched_init_smp(void)
6915{
6916	cpumask_var_t non_isolated_cpus;
6917
6918	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6919	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6920
6921	sched_init_numa();
6922
6923	/*
6924	 * There's no userspace yet to cause hotplug operations; hence all the
6925	 * cpu masks are stable and all blatant races in the below code cannot
6926	 * happen.
6927	 */
6928	mutex_lock(&sched_domains_mutex);
6929	init_sched_domains(cpu_active_mask);
6930	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6931	if (cpumask_empty(non_isolated_cpus))
6932		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6933	mutex_unlock(&sched_domains_mutex);
6934
6935	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6936	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6937	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6938
6939	init_hrtick();
6940
6941	/* Move init over to a non-isolated CPU */
6942	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6943		BUG();
6944	sched_init_granularity();
6945	free_cpumask_var(non_isolated_cpus);
6946
6947	init_sched_rt_class();
6948	init_sched_dl_class();
6949}
6950#else
6951void __init sched_init_smp(void)
6952{
6953	sched_init_granularity();
6954}
6955#endif /* CONFIG_SMP */
6956
6957const_debug unsigned int sysctl_timer_migration = 1;
6958
6959int in_sched_functions(unsigned long addr)
6960{
6961	return in_lock_functions(addr) ||
6962		(addr >= (unsigned long)__sched_text_start
6963		&& addr < (unsigned long)__sched_text_end);
6964}
6965
6966#ifdef CONFIG_CGROUP_SCHED
6967/*
6968 * Default task group.
6969 * Every task in system belongs to this group at bootup.
6970 */
6971struct task_group root_task_group;
6972LIST_HEAD(task_groups);
6973#endif
6974
6975DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6976
6977void __init sched_init(void)
6978{
6979	int i, j;
6980	unsigned long alloc_size = 0, ptr;
6981
6982#ifdef CONFIG_FAIR_GROUP_SCHED
6983	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6984#endif
6985#ifdef CONFIG_RT_GROUP_SCHED
6986	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6987#endif
6988#ifdef CONFIG_CPUMASK_OFFSTACK
6989	alloc_size += num_possible_cpus() * cpumask_size();
6990#endif
6991	if (alloc_size) {
6992		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6993
6994#ifdef CONFIG_FAIR_GROUP_SCHED
6995		root_task_group.se = (struct sched_entity **)ptr;
6996		ptr += nr_cpu_ids * sizeof(void **);
6997
6998		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6999		ptr += nr_cpu_ids * sizeof(void **);
7000
7001#endif /* CONFIG_FAIR_GROUP_SCHED */
7002#ifdef CONFIG_RT_GROUP_SCHED
7003		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7004		ptr += nr_cpu_ids * sizeof(void **);
7005
7006		root_task_group.rt_rq = (struct rt_rq **)ptr;
7007		ptr += nr_cpu_ids * sizeof(void **);
7008
7009#endif /* CONFIG_RT_GROUP_SCHED */
7010#ifdef CONFIG_CPUMASK_OFFSTACK
7011		for_each_possible_cpu(i) {
7012			per_cpu(load_balance_mask, i) = (void *)ptr;
7013			ptr += cpumask_size();
7014		}
7015#endif /* CONFIG_CPUMASK_OFFSTACK */
7016	}
7017
7018	init_rt_bandwidth(&def_rt_bandwidth,
7019			global_rt_period(), global_rt_runtime());
7020	init_dl_bandwidth(&def_dl_bandwidth,
7021			global_rt_period(), global_rt_runtime());
7022
7023#ifdef CONFIG_SMP
7024	init_defrootdomain();
7025#endif
7026
7027#ifdef CONFIG_RT_GROUP_SCHED
7028	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7029			global_rt_period(), global_rt_runtime());
7030#endif /* CONFIG_RT_GROUP_SCHED */
7031
7032#ifdef CONFIG_CGROUP_SCHED
7033	list_add(&root_task_group.list, &task_groups);
7034	INIT_LIST_HEAD(&root_task_group.children);
7035	INIT_LIST_HEAD(&root_task_group.siblings);
7036	autogroup_init(&init_task);
7037
7038#endif /* CONFIG_CGROUP_SCHED */
7039
7040	for_each_possible_cpu(i) {
7041		struct rq *rq;
7042
7043		rq = cpu_rq(i);
7044		raw_spin_lock_init(&rq->lock);
7045		rq->nr_running = 0;
7046		rq->calc_load_active = 0;
7047		rq->calc_load_update = jiffies + LOAD_FREQ;
7048		init_cfs_rq(&rq->cfs);
7049		init_rt_rq(&rq->rt, rq);
7050		init_dl_rq(&rq->dl, rq);
7051#ifdef CONFIG_FAIR_GROUP_SCHED
7052		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7053		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7054		/*
7055		 * How much cpu bandwidth does root_task_group get?
7056		 *
7057		 * In case of task-groups formed thr' the cgroup filesystem, it
7058		 * gets 100% of the cpu resources in the system. This overall
7059		 * system cpu resource is divided among the tasks of
7060		 * root_task_group and its child task-groups in a fair manner,
7061		 * based on each entity's (task or task-group's) weight
7062		 * (se->load.weight).
7063		 *
7064		 * In other words, if root_task_group has 10 tasks of weight
7065		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7066		 * then A0's share of the cpu resource is:
7067		 *
7068		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7069		 *
7070		 * We achieve this by letting root_task_group's tasks sit
7071		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7072		 */
7073		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7074		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7075#endif /* CONFIG_FAIR_GROUP_SCHED */
7076
7077		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7078#ifdef CONFIG_RT_GROUP_SCHED
7079		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7080#endif
7081
7082		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7083			rq->cpu_load[j] = 0;
7084
7085		rq->last_load_update_tick = jiffies;
7086
7087#ifdef CONFIG_SMP
7088		rq->sd = NULL;
7089		rq->rd = NULL;
7090		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7091		rq->post_schedule = 0;
7092		rq->active_balance = 0;
7093		rq->next_balance = jiffies;
7094		rq->push_cpu = 0;
7095		rq->cpu = i;
7096		rq->online = 0;
7097		rq->idle_stamp = 0;
7098		rq->avg_idle = 2*sysctl_sched_migration_cost;
7099		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7100
7101		INIT_LIST_HEAD(&rq->cfs_tasks);
7102
7103		rq_attach_root(rq, &def_root_domain);
7104#ifdef CONFIG_NO_HZ_COMMON
7105		rq->nohz_flags = 0;
7106#endif
7107#ifdef CONFIG_NO_HZ_FULL
7108		rq->last_sched_tick = 0;
7109#endif
7110#endif
7111		init_rq_hrtick(rq);
7112		atomic_set(&rq->nr_iowait, 0);
7113	}
7114
7115	set_load_weight(&init_task);
7116
7117#ifdef CONFIG_PREEMPT_NOTIFIERS
7118	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7119#endif
7120
7121	/*
7122	 * The boot idle thread does lazy MMU switching as well:
7123	 */
7124	atomic_inc(&init_mm.mm_count);
7125	enter_lazy_tlb(&init_mm, current);
7126
7127	/*
7128	 * Make us the idle thread. Technically, schedule() should not be
7129	 * called from this thread, however somewhere below it might be,
7130	 * but because we are the idle thread, we just pick up running again
7131	 * when this runqueue becomes "idle".
7132	 */
7133	init_idle(current, smp_processor_id());
7134
7135	calc_load_update = jiffies + LOAD_FREQ;
7136
7137	/*
7138	 * During early bootup we pretend to be a normal task:
7139	 */
7140	current->sched_class = &fair_sched_class;
7141
7142#ifdef CONFIG_SMP
7143	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7144	/* May be allocated at isolcpus cmdline parse time */
7145	if (cpu_isolated_map == NULL)
7146		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7147	idle_thread_set_boot_cpu();
7148	set_cpu_rq_start_time();
7149#endif
7150	init_sched_fair_class();
7151
7152	scheduler_running = 1;
7153}
7154
7155#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7156static inline int preempt_count_equals(int preempt_offset)
7157{
7158	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7159
7160	return (nested == preempt_offset);
7161}
7162
7163void __might_sleep(const char *file, int line, int preempt_offset)
7164{
7165	static unsigned long prev_jiffy;	/* ratelimiting */
7166
7167	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7168	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7169	     !is_idle_task(current)) ||
7170	    system_state != SYSTEM_RUNNING || oops_in_progress)
7171		return;
7172	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7173		return;
7174	prev_jiffy = jiffies;
7175
7176	printk(KERN_ERR
7177		"BUG: sleeping function called from invalid context at %s:%d\n",
7178			file, line);
7179	printk(KERN_ERR
7180		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7181			in_atomic(), irqs_disabled(),
7182			current->pid, current->comm);
7183
7184	debug_show_held_locks(current);
7185	if (irqs_disabled())
7186		print_irqtrace_events(current);
7187#ifdef CONFIG_DEBUG_PREEMPT
7188	if (!preempt_count_equals(preempt_offset)) {
7189		pr_err("Preemption disabled at:");
7190		print_ip_sym(current->preempt_disable_ip);
7191		pr_cont("\n");
7192	}
7193#endif
7194	dump_stack();
7195}
7196EXPORT_SYMBOL(__might_sleep);
7197#endif
7198
7199#ifdef CONFIG_MAGIC_SYSRQ
7200static void normalize_task(struct rq *rq, struct task_struct *p)
7201{
7202	const struct sched_class *prev_class = p->sched_class;
7203	struct sched_attr attr = {
7204		.sched_policy = SCHED_NORMAL,
7205	};
7206	int old_prio = p->prio;
7207	int queued;
7208
7209	queued = task_on_rq_queued(p);
7210	if (queued)
7211		dequeue_task(rq, p, 0);
7212	__setscheduler(rq, p, &attr);
7213	if (queued) {
7214		enqueue_task(rq, p, 0);
7215		resched_curr(rq);
7216	}
7217
7218	check_class_changed(rq, p, prev_class, old_prio);
7219}
7220
7221void normalize_rt_tasks(void)
7222{
7223	struct task_struct *g, *p;
7224	unsigned long flags;
7225	struct rq *rq;
7226
7227	read_lock(&tasklist_lock);
7228	for_each_process_thread(g, p) {
7229		/*
7230		 * Only normalize user tasks:
7231		 */
7232		if (p->flags & PF_KTHREAD)
7233			continue;
7234
7235		p->se.exec_start		= 0;
7236#ifdef CONFIG_SCHEDSTATS
7237		p->se.statistics.wait_start	= 0;
7238		p->se.statistics.sleep_start	= 0;
7239		p->se.statistics.block_start	= 0;
7240#endif
7241
7242		if (!dl_task(p) && !rt_task(p)) {
7243			/*
7244			 * Renice negative nice level userspace
7245			 * tasks back to 0:
7246			 */
7247			if (task_nice(p) < 0)
7248				set_user_nice(p, 0);
7249			continue;
7250		}
7251
7252		rq = task_rq_lock(p, &flags);
7253		normalize_task(rq, p);
7254		task_rq_unlock(rq, p, &flags);
7255	}
7256	read_unlock(&tasklist_lock);
7257}
7258
7259#endif /* CONFIG_MAGIC_SYSRQ */
7260
7261#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7262/*
7263 * These functions are only useful for the IA64 MCA handling, or kdb.
7264 *
7265 * They can only be called when the whole system has been
7266 * stopped - every CPU needs to be quiescent, and no scheduling
7267 * activity can take place. Using them for anything else would
7268 * be a serious bug, and as a result, they aren't even visible
7269 * under any other configuration.
7270 */
7271
7272/**
7273 * curr_task - return the current task for a given cpu.
7274 * @cpu: the processor in question.
7275 *
7276 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7277 *
7278 * Return: The current task for @cpu.
7279 */
7280struct task_struct *curr_task(int cpu)
7281{
7282	return cpu_curr(cpu);
7283}
7284
7285#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7286
7287#ifdef CONFIG_IA64
7288/**
7289 * set_curr_task - set the current task for a given cpu.
7290 * @cpu: the processor in question.
7291 * @p: the task pointer to set.
7292 *
7293 * Description: This function must only be used when non-maskable interrupts
7294 * are serviced on a separate stack. It allows the architecture to switch the
7295 * notion of the current task on a cpu in a non-blocking manner. This function
7296 * must be called with all CPU's synchronized, and interrupts disabled, the
7297 * and caller must save the original value of the current task (see
7298 * curr_task() above) and restore that value before reenabling interrupts and
7299 * re-starting the system.
7300 *
7301 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7302 */
7303void set_curr_task(int cpu, struct task_struct *p)
7304{
7305	cpu_curr(cpu) = p;
7306}
7307
7308#endif
7309
7310#ifdef CONFIG_CGROUP_SCHED
7311/* task_group_lock serializes the addition/removal of task groups */
7312static DEFINE_SPINLOCK(task_group_lock);
7313
7314static void free_sched_group(struct task_group *tg)
7315{
7316	free_fair_sched_group(tg);
7317	free_rt_sched_group(tg);
7318	autogroup_free(tg);
7319	kfree(tg);
7320}
7321
7322/* allocate runqueue etc for a new task group */
7323struct task_group *sched_create_group(struct task_group *parent)
7324{
7325	struct task_group *tg;
7326
7327	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7328	if (!tg)
7329		return ERR_PTR(-ENOMEM);
7330
7331	if (!alloc_fair_sched_group(tg, parent))
7332		goto err;
7333
7334	if (!alloc_rt_sched_group(tg, parent))
7335		goto err;
7336
7337	return tg;
7338
7339err:
7340	free_sched_group(tg);
7341	return ERR_PTR(-ENOMEM);
7342}
7343
7344void sched_online_group(struct task_group *tg, struct task_group *parent)
7345{
7346	unsigned long flags;
7347
7348	spin_lock_irqsave(&task_group_lock, flags);
7349	list_add_rcu(&tg->list, &task_groups);
7350
7351	WARN_ON(!parent); /* root should already exist */
7352
7353	tg->parent = parent;
7354	INIT_LIST_HEAD(&tg->children);
7355	list_add_rcu(&tg->siblings, &parent->children);
7356	spin_unlock_irqrestore(&task_group_lock, flags);
7357}
7358
7359/* rcu callback to free various structures associated with a task group */
7360static void free_sched_group_rcu(struct rcu_head *rhp)
7361{
7362	/* now it should be safe to free those cfs_rqs */
7363	free_sched_group(container_of(rhp, struct task_group, rcu));
7364}
7365
7366/* Destroy runqueue etc associated with a task group */
7367void sched_destroy_group(struct task_group *tg)
7368{
7369	/* wait for possible concurrent references to cfs_rqs complete */
7370	call_rcu(&tg->rcu, free_sched_group_rcu);
7371}
7372
7373void sched_offline_group(struct task_group *tg)
7374{
7375	unsigned long flags;
7376	int i;
7377
7378	/* end participation in shares distribution */
7379	for_each_possible_cpu(i)
7380		unregister_fair_sched_group(tg, i);
7381
7382	spin_lock_irqsave(&task_group_lock, flags);
7383	list_del_rcu(&tg->list);
7384	list_del_rcu(&tg->siblings);
7385	spin_unlock_irqrestore(&task_group_lock, flags);
7386}
7387
7388/* change task's runqueue when it moves between groups.
7389 *	The caller of this function should have put the task in its new group
7390 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7391 *	reflect its new group.
7392 */
7393void sched_move_task(struct task_struct *tsk)
7394{
7395	struct task_group *tg;
7396	int queued, running;
7397	unsigned long flags;
7398	struct rq *rq;
7399
7400	rq = task_rq_lock(tsk, &flags);
7401
7402	running = task_current(rq, tsk);
7403	queued = task_on_rq_queued(tsk);
7404
7405	if (queued)
7406		dequeue_task(rq, tsk, 0);
7407	if (unlikely(running))
7408		put_prev_task(rq, tsk);
7409
7410	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7411				lockdep_is_held(&tsk->sighand->siglock)),
7412			  struct task_group, css);
7413	tg = autogroup_task_group(tsk, tg);
7414	tsk->sched_task_group = tg;
7415
7416#ifdef CONFIG_FAIR_GROUP_SCHED
7417	if (tsk->sched_class->task_move_group)
7418		tsk->sched_class->task_move_group(tsk, queued);
7419	else
7420#endif
7421		set_task_rq(tsk, task_cpu(tsk));
7422
7423	if (unlikely(running))
7424		tsk->sched_class->set_curr_task(rq);
7425	if (queued)
7426		enqueue_task(rq, tsk, 0);
7427
7428	task_rq_unlock(rq, tsk, &flags);
7429}
7430#endif /* CONFIG_CGROUP_SCHED */
7431
7432#ifdef CONFIG_RT_GROUP_SCHED
7433/*
7434 * Ensure that the real time constraints are schedulable.
7435 */
7436static DEFINE_MUTEX(rt_constraints_mutex);
7437
7438/* Must be called with tasklist_lock held */
7439static inline int tg_has_rt_tasks(struct task_group *tg)
7440{
7441	struct task_struct *g, *p;
7442
7443	for_each_process_thread(g, p) {
7444		if (rt_task(p) && task_group(p) == tg)
7445			return 1;
7446	}
7447
7448	return 0;
7449}
7450
7451struct rt_schedulable_data {
7452	struct task_group *tg;
7453	u64 rt_period;
7454	u64 rt_runtime;
7455};
7456
7457static int tg_rt_schedulable(struct task_group *tg, void *data)
7458{
7459	struct rt_schedulable_data *d = data;
7460	struct task_group *child;
7461	unsigned long total, sum = 0;
7462	u64 period, runtime;
7463
7464	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7465	runtime = tg->rt_bandwidth.rt_runtime;
7466
7467	if (tg == d->tg) {
7468		period = d->rt_period;
7469		runtime = d->rt_runtime;
7470	}
7471
7472	/*
7473	 * Cannot have more runtime than the period.
7474	 */
7475	if (runtime > period && runtime != RUNTIME_INF)
7476		return -EINVAL;
7477
7478	/*
7479	 * Ensure we don't starve existing RT tasks.
7480	 */
7481	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7482		return -EBUSY;
7483
7484	total = to_ratio(period, runtime);
7485
7486	/*
7487	 * Nobody can have more than the global setting allows.
7488	 */
7489	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7490		return -EINVAL;
7491
7492	/*
7493	 * The sum of our children's runtime should not exceed our own.
7494	 */
7495	list_for_each_entry_rcu(child, &tg->children, siblings) {
7496		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7497		runtime = child->rt_bandwidth.rt_runtime;
7498
7499		if (child == d->tg) {
7500			period = d->rt_period;
7501			runtime = d->rt_runtime;
7502		}
7503
7504		sum += to_ratio(period, runtime);
7505	}
7506
7507	if (sum > total)
7508		return -EINVAL;
7509
7510	return 0;
7511}
7512
7513static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7514{
7515	int ret;
7516
7517	struct rt_schedulable_data data = {
7518		.tg = tg,
7519		.rt_period = period,
7520		.rt_runtime = runtime,
7521	};
7522
7523	rcu_read_lock();
7524	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7525	rcu_read_unlock();
7526
7527	return ret;
7528}
7529
7530static int tg_set_rt_bandwidth(struct task_group *tg,
7531		u64 rt_period, u64 rt_runtime)
7532{
7533	int i, err = 0;
7534
7535	mutex_lock(&rt_constraints_mutex);
7536	read_lock(&tasklist_lock);
7537	err = __rt_schedulable(tg, rt_period, rt_runtime);
7538	if (err)
7539		goto unlock;
7540
7541	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7542	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7543	tg->rt_bandwidth.rt_runtime = rt_runtime;
7544
7545	for_each_possible_cpu(i) {
7546		struct rt_rq *rt_rq = tg->rt_rq[i];
7547
7548		raw_spin_lock(&rt_rq->rt_runtime_lock);
7549		rt_rq->rt_runtime = rt_runtime;
7550		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7551	}
7552	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7553unlock:
7554	read_unlock(&tasklist_lock);
7555	mutex_unlock(&rt_constraints_mutex);
7556
7557	return err;
7558}
7559
7560static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7561{
7562	u64 rt_runtime, rt_period;
7563
7564	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7565	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7566	if (rt_runtime_us < 0)
7567		rt_runtime = RUNTIME_INF;
7568
7569	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7570}
7571
7572static long sched_group_rt_runtime(struct task_group *tg)
7573{
7574	u64 rt_runtime_us;
7575
7576	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7577		return -1;
7578
7579	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7580	do_div(rt_runtime_us, NSEC_PER_USEC);
7581	return rt_runtime_us;
7582}
7583
7584static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7585{
7586	u64 rt_runtime, rt_period;
7587
7588	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7589	rt_runtime = tg->rt_bandwidth.rt_runtime;
7590
7591	if (rt_period == 0)
7592		return -EINVAL;
7593
7594	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7595}
7596
7597static long sched_group_rt_period(struct task_group *tg)
7598{
7599	u64 rt_period_us;
7600
7601	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7602	do_div(rt_period_us, NSEC_PER_USEC);
7603	return rt_period_us;
7604}
7605#endif /* CONFIG_RT_GROUP_SCHED */
7606
7607#ifdef CONFIG_RT_GROUP_SCHED
7608static int sched_rt_global_constraints(void)
7609{
7610	int ret = 0;
7611
7612	mutex_lock(&rt_constraints_mutex);
7613	read_lock(&tasklist_lock);
7614	ret = __rt_schedulable(NULL, 0, 0);
7615	read_unlock(&tasklist_lock);
7616	mutex_unlock(&rt_constraints_mutex);
7617
7618	return ret;
7619}
7620
7621static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7622{
7623	/* Don't accept realtime tasks when there is no way for them to run */
7624	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7625		return 0;
7626
7627	return 1;
7628}
7629
7630#else /* !CONFIG_RT_GROUP_SCHED */
7631static int sched_rt_global_constraints(void)
7632{
7633	unsigned long flags;
7634	int i, ret = 0;
7635
7636	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7637	for_each_possible_cpu(i) {
7638		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7639
7640		raw_spin_lock(&rt_rq->rt_runtime_lock);
7641		rt_rq->rt_runtime = global_rt_runtime();
7642		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7643	}
7644	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7645
7646	return ret;
7647}
7648#endif /* CONFIG_RT_GROUP_SCHED */
7649
7650static int sched_dl_global_constraints(void)
7651{
7652	u64 runtime = global_rt_runtime();
7653	u64 period = global_rt_period();
7654	u64 new_bw = to_ratio(period, runtime);
7655	struct dl_bw *dl_b;
7656	int cpu, ret = 0;
7657	unsigned long flags;
7658
7659	/*
7660	 * Here we want to check the bandwidth not being set to some
7661	 * value smaller than the currently allocated bandwidth in
7662	 * any of the root_domains.
7663	 *
7664	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7665	 * cycling on root_domains... Discussion on different/better
7666	 * solutions is welcome!
7667	 */
7668	for_each_possible_cpu(cpu) {
7669		rcu_read_lock_sched();
7670		dl_b = dl_bw_of(cpu);
7671
7672		raw_spin_lock_irqsave(&dl_b->lock, flags);
7673		if (new_bw < dl_b->total_bw)
7674			ret = -EBUSY;
7675		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7676
7677		rcu_read_unlock_sched();
7678
7679		if (ret)
7680			break;
7681	}
7682
7683	return ret;
7684}
7685
7686static void sched_dl_do_global(void)
7687{
7688	u64 new_bw = -1;
7689	struct dl_bw *dl_b;
7690	int cpu;
7691	unsigned long flags;
7692
7693	def_dl_bandwidth.dl_period = global_rt_period();
7694	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7695
7696	if (global_rt_runtime() != RUNTIME_INF)
7697		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7698
7699	/*
7700	 * FIXME: As above...
7701	 */
7702	for_each_possible_cpu(cpu) {
7703		rcu_read_lock_sched();
7704		dl_b = dl_bw_of(cpu);
7705
7706		raw_spin_lock_irqsave(&dl_b->lock, flags);
7707		dl_b->bw = new_bw;
7708		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7709
7710		rcu_read_unlock_sched();
7711	}
7712}
7713
7714static int sched_rt_global_validate(void)
7715{
7716	if (sysctl_sched_rt_period <= 0)
7717		return -EINVAL;
7718
7719	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7720		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7721		return -EINVAL;
7722
7723	return 0;
7724}
7725
7726static void sched_rt_do_global(void)
7727{
7728	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7729	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7730}
7731
7732int sched_rt_handler(struct ctl_table *table, int write,
7733		void __user *buffer, size_t *lenp,
7734		loff_t *ppos)
7735{
7736	int old_period, old_runtime;
7737	static DEFINE_MUTEX(mutex);
7738	int ret;
7739
7740	mutex_lock(&mutex);
7741	old_period = sysctl_sched_rt_period;
7742	old_runtime = sysctl_sched_rt_runtime;
7743
7744	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7745
7746	if (!ret && write) {
7747		ret = sched_rt_global_validate();
7748		if (ret)
7749			goto undo;
7750
7751		ret = sched_rt_global_constraints();
7752		if (ret)
7753			goto undo;
7754
7755		ret = sched_dl_global_constraints();
7756		if (ret)
7757			goto undo;
7758
7759		sched_rt_do_global();
7760		sched_dl_do_global();
7761	}
7762	if (0) {
7763undo:
7764		sysctl_sched_rt_period = old_period;
7765		sysctl_sched_rt_runtime = old_runtime;
7766	}
7767	mutex_unlock(&mutex);
7768
7769	return ret;
7770}
7771
7772int sched_rr_handler(struct ctl_table *table, int write,
7773		void __user *buffer, size_t *lenp,
7774		loff_t *ppos)
7775{
7776	int ret;
7777	static DEFINE_MUTEX(mutex);
7778
7779	mutex_lock(&mutex);
7780	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7781	/* make sure that internally we keep jiffies */
7782	/* also, writing zero resets timeslice to default */
7783	if (!ret && write) {
7784		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7785			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7786	}
7787	mutex_unlock(&mutex);
7788	return ret;
7789}
7790
7791#ifdef CONFIG_CGROUP_SCHED
7792
7793static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7794{
7795	return css ? container_of(css, struct task_group, css) : NULL;
7796}
7797
7798static struct cgroup_subsys_state *
7799cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7800{
7801	struct task_group *parent = css_tg(parent_css);
7802	struct task_group *tg;
7803
7804	if (!parent) {
7805		/* This is early initialization for the top cgroup */
7806		return &root_task_group.css;
7807	}
7808
7809	tg = sched_create_group(parent);
7810	if (IS_ERR(tg))
7811		return ERR_PTR(-ENOMEM);
7812
7813	return &tg->css;
7814}
7815
7816static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7817{
7818	struct task_group *tg = css_tg(css);
7819	struct task_group *parent = css_tg(css->parent);
7820
7821	if (parent)
7822		sched_online_group(tg, parent);
7823	return 0;
7824}
7825
7826static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7827{
7828	struct task_group *tg = css_tg(css);
7829
7830	sched_destroy_group(tg);
7831}
7832
7833static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7834{
7835	struct task_group *tg = css_tg(css);
7836
7837	sched_offline_group(tg);
7838}
7839
7840static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7841				 struct cgroup_taskset *tset)
7842{
7843	struct task_struct *task;
7844
7845	cgroup_taskset_for_each(task, tset) {
7846#ifdef CONFIG_RT_GROUP_SCHED
7847		if (!sched_rt_can_attach(css_tg(css), task))
7848			return -EINVAL;
7849#else
7850		/* We don't support RT-tasks being in separate groups */
7851		if (task->sched_class != &fair_sched_class)
7852			return -EINVAL;
7853#endif
7854	}
7855	return 0;
7856}
7857
7858static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7859			      struct cgroup_taskset *tset)
7860{
7861	struct task_struct *task;
7862
7863	cgroup_taskset_for_each(task, tset)
7864		sched_move_task(task);
7865}
7866
7867static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7868			    struct cgroup_subsys_state *old_css,
7869			    struct task_struct *task)
7870{
7871	/*
7872	 * cgroup_exit() is called in the copy_process() failure path.
7873	 * Ignore this case since the task hasn't ran yet, this avoids
7874	 * trying to poke a half freed task state from generic code.
7875	 */
7876	if (!(task->flags & PF_EXITING))
7877		return;
7878
7879	sched_move_task(task);
7880}
7881
7882#ifdef CONFIG_FAIR_GROUP_SCHED
7883static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7884				struct cftype *cftype, u64 shareval)
7885{
7886	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7887}
7888
7889static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7890			       struct cftype *cft)
7891{
7892	struct task_group *tg = css_tg(css);
7893
7894	return (u64) scale_load_down(tg->shares);
7895}
7896
7897#ifdef CONFIG_CFS_BANDWIDTH
7898static DEFINE_MUTEX(cfs_constraints_mutex);
7899
7900const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7901const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7902
7903static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7904
7905static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7906{
7907	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7908	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7909
7910	if (tg == &root_task_group)
7911		return -EINVAL;
7912
7913	/*
7914	 * Ensure we have at some amount of bandwidth every period.  This is
7915	 * to prevent reaching a state of large arrears when throttled via
7916	 * entity_tick() resulting in prolonged exit starvation.
7917	 */
7918	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7919		return -EINVAL;
7920
7921	/*
7922	 * Likewise, bound things on the otherside by preventing insane quota
7923	 * periods.  This also allows us to normalize in computing quota
7924	 * feasibility.
7925	 */
7926	if (period > max_cfs_quota_period)
7927		return -EINVAL;
7928
7929	/*
7930	 * Prevent race between setting of cfs_rq->runtime_enabled and
7931	 * unthrottle_offline_cfs_rqs().
7932	 */
7933	get_online_cpus();
7934	mutex_lock(&cfs_constraints_mutex);
7935	ret = __cfs_schedulable(tg, period, quota);
7936	if (ret)
7937		goto out_unlock;
7938
7939	runtime_enabled = quota != RUNTIME_INF;
7940	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7941	/*
7942	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7943	 * before making related changes, and on->off must occur afterwards
7944	 */
7945	if (runtime_enabled && !runtime_was_enabled)
7946		cfs_bandwidth_usage_inc();
7947	raw_spin_lock_irq(&cfs_b->lock);
7948	cfs_b->period = ns_to_ktime(period);
7949	cfs_b->quota = quota;
7950
7951	__refill_cfs_bandwidth_runtime(cfs_b);
7952	/* restart the period timer (if active) to handle new period expiry */
7953	if (runtime_enabled && cfs_b->timer_active) {
7954		/* force a reprogram */
7955		__start_cfs_bandwidth(cfs_b, true);
7956	}
7957	raw_spin_unlock_irq(&cfs_b->lock);
7958
7959	for_each_online_cpu(i) {
7960		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7961		struct rq *rq = cfs_rq->rq;
7962
7963		raw_spin_lock_irq(&rq->lock);
7964		cfs_rq->runtime_enabled = runtime_enabled;
7965		cfs_rq->runtime_remaining = 0;
7966
7967		if (cfs_rq->throttled)
7968			unthrottle_cfs_rq(cfs_rq);
7969		raw_spin_unlock_irq(&rq->lock);
7970	}
7971	if (runtime_was_enabled && !runtime_enabled)
7972		cfs_bandwidth_usage_dec();
7973out_unlock:
7974	mutex_unlock(&cfs_constraints_mutex);
7975	put_online_cpus();
7976
7977	return ret;
7978}
7979
7980int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7981{
7982	u64 quota, period;
7983
7984	period = ktime_to_ns(tg->cfs_bandwidth.period);
7985	if (cfs_quota_us < 0)
7986		quota = RUNTIME_INF;
7987	else
7988		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7989
7990	return tg_set_cfs_bandwidth(tg, period, quota);
7991}
7992
7993long tg_get_cfs_quota(struct task_group *tg)
7994{
7995	u64 quota_us;
7996
7997	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7998		return -1;
7999
8000	quota_us = tg->cfs_bandwidth.quota;
8001	do_div(quota_us, NSEC_PER_USEC);
8002
8003	return quota_us;
8004}
8005
8006int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8007{
8008	u64 quota, period;
8009
8010	period = (u64)cfs_period_us * NSEC_PER_USEC;
8011	quota = tg->cfs_bandwidth.quota;
8012
8013	return tg_set_cfs_bandwidth(tg, period, quota);
8014}
8015
8016long tg_get_cfs_period(struct task_group *tg)
8017{
8018	u64 cfs_period_us;
8019
8020	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021	do_div(cfs_period_us, NSEC_PER_USEC);
8022
8023	return cfs_period_us;
8024}
8025
8026static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027				  struct cftype *cft)
8028{
8029	return tg_get_cfs_quota(css_tg(css));
8030}
8031
8032static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033				   struct cftype *cftype, s64 cfs_quota_us)
8034{
8035	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036}
8037
8038static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039				   struct cftype *cft)
8040{
8041	return tg_get_cfs_period(css_tg(css));
8042}
8043
8044static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045				    struct cftype *cftype, u64 cfs_period_us)
8046{
8047	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048}
8049
8050struct cfs_schedulable_data {
8051	struct task_group *tg;
8052	u64 period, quota;
8053};
8054
8055/*
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8058 */
8059static u64 normalize_cfs_quota(struct task_group *tg,
8060			       struct cfs_schedulable_data *d)
8061{
8062	u64 quota, period;
8063
8064	if (tg == d->tg) {
8065		period = d->period;
8066		quota = d->quota;
8067	} else {
8068		period = tg_get_cfs_period(tg);
8069		quota = tg_get_cfs_quota(tg);
8070	}
8071
8072	/* note: these should typically be equivalent */
8073	if (quota == RUNTIME_INF || quota == -1)
8074		return RUNTIME_INF;
8075
8076	return to_ratio(period, quota);
8077}
8078
8079static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080{
8081	struct cfs_schedulable_data *d = data;
8082	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083	s64 quota = 0, parent_quota = -1;
8084
8085	if (!tg->parent) {
8086		quota = RUNTIME_INF;
8087	} else {
8088		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089
8090		quota = normalize_cfs_quota(tg, d);
8091		parent_quota = parent_b->hierarchical_quota;
8092
8093		/*
8094		 * ensure max(child_quota) <= parent_quota, inherit when no
8095		 * limit is set
8096		 */
8097		if (quota == RUNTIME_INF)
8098			quota = parent_quota;
8099		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8100			return -EINVAL;
8101	}
8102	cfs_b->hierarchical_quota = quota;
8103
8104	return 0;
8105}
8106
8107static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8108{
8109	int ret;
8110	struct cfs_schedulable_data data = {
8111		.tg = tg,
8112		.period = period,
8113		.quota = quota,
8114	};
8115
8116	if (quota != RUNTIME_INF) {
8117		do_div(data.period, NSEC_PER_USEC);
8118		do_div(data.quota, NSEC_PER_USEC);
8119	}
8120
8121	rcu_read_lock();
8122	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8123	rcu_read_unlock();
8124
8125	return ret;
8126}
8127
8128static int cpu_stats_show(struct seq_file *sf, void *v)
8129{
8130	struct task_group *tg = css_tg(seq_css(sf));
8131	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8132
8133	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8134	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8135	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8136
8137	return 0;
8138}
8139#endif /* CONFIG_CFS_BANDWIDTH */
8140#endif /* CONFIG_FAIR_GROUP_SCHED */
8141
8142#ifdef CONFIG_RT_GROUP_SCHED
8143static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8144				struct cftype *cft, s64 val)
8145{
8146	return sched_group_set_rt_runtime(css_tg(css), val);
8147}
8148
8149static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8150			       struct cftype *cft)
8151{
8152	return sched_group_rt_runtime(css_tg(css));
8153}
8154
8155static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8156				    struct cftype *cftype, u64 rt_period_us)
8157{
8158	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8159}
8160
8161static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8162				   struct cftype *cft)
8163{
8164	return sched_group_rt_period(css_tg(css));
8165}
8166#endif /* CONFIG_RT_GROUP_SCHED */
8167
8168static struct cftype cpu_files[] = {
8169#ifdef CONFIG_FAIR_GROUP_SCHED
8170	{
8171		.name = "shares",
8172		.read_u64 = cpu_shares_read_u64,
8173		.write_u64 = cpu_shares_write_u64,
8174	},
8175#endif
8176#ifdef CONFIG_CFS_BANDWIDTH
8177	{
8178		.name = "cfs_quota_us",
8179		.read_s64 = cpu_cfs_quota_read_s64,
8180		.write_s64 = cpu_cfs_quota_write_s64,
8181	},
8182	{
8183		.name = "cfs_period_us",
8184		.read_u64 = cpu_cfs_period_read_u64,
8185		.write_u64 = cpu_cfs_period_write_u64,
8186	},
8187	{
8188		.name = "stat",
8189		.seq_show = cpu_stats_show,
8190	},
8191#endif
8192#ifdef CONFIG_RT_GROUP_SCHED
8193	{
8194		.name = "rt_runtime_us",
8195		.read_s64 = cpu_rt_runtime_read,
8196		.write_s64 = cpu_rt_runtime_write,
8197	},
8198	{
8199		.name = "rt_period_us",
8200		.read_u64 = cpu_rt_period_read_uint,
8201		.write_u64 = cpu_rt_period_write_uint,
8202	},
8203#endif
8204	{ }	/* terminate */
8205};
8206
8207struct cgroup_subsys cpu_cgrp_subsys = {
8208	.css_alloc	= cpu_cgroup_css_alloc,
8209	.css_free	= cpu_cgroup_css_free,
8210	.css_online	= cpu_cgroup_css_online,
8211	.css_offline	= cpu_cgroup_css_offline,
8212	.can_attach	= cpu_cgroup_can_attach,
8213	.attach		= cpu_cgroup_attach,
8214	.exit		= cpu_cgroup_exit,
8215	.legacy_cftypes	= cpu_files,
8216	.early_init	= 1,
8217};
8218
8219#endif	/* CONFIG_CGROUP_SCHED */
8220
8221void dump_cpu_task(int cpu)
8222{
8223	pr_info("Task dump for CPU %d:\n", cpu);
8224	sched_show_task(cpu_curr(cpu));
8225}
8226