core.c revision f3e947867478af9a12b9956bcd000ac7613a8a95
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93	unsigned long delta;
94	ktime_t soft, hard, now;
95
96	for (;;) {
97		if (hrtimer_active(period_timer))
98			break;
99
100		now = hrtimer_cb_get_time(period_timer);
101		hrtimer_forward(period_timer, now, period);
102
103		soft = hrtimer_get_softexpires(period_timer);
104		hard = hrtimer_get_expires(period_timer);
105		delta = ktime_to_ns(ktime_sub(hard, soft));
106		__hrtimer_start_range_ns(period_timer, soft, delta,
107					 HRTIMER_MODE_ABS_PINNED, 0);
108	}
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118	s64 delta;
119
120	if (rq->skip_clock_update > 0)
121		return;
122
123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124	rq->clock += delta;
125	update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled)	\
133	(1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137	0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled)	\
143	#name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197		size_t cnt, loff_t *ppos)
198{
199	char buf[64];
200	char *cmp;
201	int neg = 0;
202	int i;
203
204	if (cnt > 63)
205		cnt = 63;
206
207	if (copy_from_user(&buf, ubuf, cnt))
208		return -EFAULT;
209
210	buf[cnt] = 0;
211	cmp = strstrip(buf);
212
213	if (strncmp(cmp, "NO_", 3) == 0) {
214		neg = 1;
215		cmp += 3;
216	}
217
218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220			if (neg) {
221				sysctl_sched_features &= ~(1UL << i);
222				sched_feat_disable(i);
223			} else {
224				sysctl_sched_features |= (1UL << i);
225				sched_feat_enable(i);
226			}
227			break;
228		}
229	}
230
231	if (i == __SCHED_FEAT_NR)
232		return -EINVAL;
233
234	*ppos += cnt;
235
236	return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241	return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245	.open		= sched_feat_open,
246	.write		= sched_feat_write,
247	.read		= seq_read,
248	.llseek		= seq_lseek,
249	.release	= single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254	debugfs_create_file("sched_features", 0644, NULL, NULL,
255			&sched_feat_fops);
256
257	return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296	__acquires(rq->lock)
297{
298	struct rq *rq;
299
300	lockdep_assert_held(&p->pi_lock);
301
302	for (;;) {
303		rq = task_rq(p);
304		raw_spin_lock(&rq->lock);
305		if (likely(rq == task_rq(p)))
306			return rq;
307		raw_spin_unlock(&rq->lock);
308	}
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315	__acquires(p->pi_lock)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	for (;;) {
321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322		rq = task_rq(p);
323		raw_spin_lock(&rq->lock);
324		if (likely(rq == task_rq(p)))
325			return rq;
326		raw_spin_unlock(&rq->lock);
327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328	}
329}
330
331static void __task_rq_unlock(struct rq *rq)
332	__releases(rq->lock)
333{
334	raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339	__releases(rq->lock)
340	__releases(p->pi_lock)
341{
342	raw_spin_unlock(&rq->lock);
343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	local_irq_disable();
355	rq = this_rq();
356	raw_spin_lock(&rq->lock);
357
358	return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403	struct rq *rq = arg;
404
405	raw_spin_lock(&rq->lock);
406	hrtimer_restart(&rq->hrtick_timer);
407	rq->hrtick_csd_pending = 0;
408	raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421	hrtimer_set_expires(timer, time);
422
423	if (rq == this_rq()) {
424		hrtimer_restart(timer);
425	} else if (!rq->hrtick_csd_pending) {
426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427		rq->hrtick_csd_pending = 1;
428	}
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434	int cpu = (int)(long)hcpu;
435
436	switch (action) {
437	case CPU_UP_CANCELED:
438	case CPU_UP_CANCELED_FROZEN:
439	case CPU_DOWN_PREPARE:
440	case CPU_DOWN_PREPARE_FROZEN:
441	case CPU_DEAD:
442	case CPU_DEAD_FROZEN:
443		hrtick_clear(cpu_rq(cpu));
444		return NOTIFY_OK;
445	}
446
447	return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452	hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463			HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474	rq->hrtick_csd_pending = 0;
475
476	rq->hrtick_csd.flags = 0;
477	rq->hrtick_csd.func = __hrtick_start;
478	rq->hrtick_csd.info = rq;
479#endif
480
481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482	rq->hrtick_timer.function = hrtick;
483}
484#else	/* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif	/* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
511void resched_task(struct task_struct *p)
512{
513	int cpu;
514
515	assert_raw_spin_locked(&task_rq(p)->lock);
516
517	if (test_tsk_need_resched(p))
518		return;
519
520	set_tsk_need_resched(p);
521
522	cpu = task_cpu(p);
523	if (cpu == smp_processor_id())
524		return;
525
526	/* NEED_RESCHED must be visible before we test polling */
527	smp_mb();
528	if (!tsk_is_polling(p))
529		smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534	struct rq *rq = cpu_rq(cpu);
535	unsigned long flags;
536
537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538		return;
539	resched_task(cpu_curr(cpu));
540	raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu.  This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554	int cpu = smp_processor_id();
555	int i;
556	struct sched_domain *sd;
557
558	rcu_read_lock();
559	for_each_domain(cpu, sd) {
560		for_each_cpu(i, sched_domain_span(sd)) {
561			if (!idle_cpu(i)) {
562				cpu = i;
563				goto unlock;
564			}
565		}
566	}
567unlock:
568	rcu_read_unlock();
569	return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583	struct rq *rq = cpu_rq(cpu);
584
585	if (cpu == smp_processor_id())
586		return;
587
588	/*
589	 * This is safe, as this function is called with the timer
590	 * wheel base lock of (cpu) held. When the CPU is on the way
591	 * to idle and has not yet set rq->curr to idle then it will
592	 * be serialized on the timer wheel base lock and take the new
593	 * timer into account automatically.
594	 */
595	if (rq->curr != rq->idle)
596		return;
597
598	/*
599	 * We can set TIF_RESCHED on the idle task of the other CPU
600	 * lockless. The worst case is that the other CPU runs the
601	 * idle task through an additional NOOP schedule()
602	 */
603	set_tsk_need_resched(rq->idle);
604
605	/* NEED_RESCHED must be visible before we test polling */
606	smp_mb();
607	if (!tsk_is_polling(rq->idle))
608		smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613	int cpu = smp_processor_id();
614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621	return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628	s64 period = sched_avg_period();
629
630	while ((s64)(rq->clock - rq->age_stamp) > period) {
631		/*
632		 * Inline assembly required to prevent the compiler
633		 * optimising this loop into a divmod call.
634		 * See __iter_div_u64_rem() for another example of this.
635		 */
636		asm("" : "+rm" (rq->age_stamp));
637		rq->age_stamp += period;
638		rq->rt_avg /= 2;
639	}
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645	assert_raw_spin_locked(&task_rq(p)->lock);
646	set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659			     tg_visitor down, tg_visitor up, void *data)
660{
661	struct task_group *parent, *child;
662	int ret;
663
664	parent = from;
665
666down:
667	ret = (*down)(parent, data);
668	if (ret)
669		goto out;
670	list_for_each_entry_rcu(child, &parent->children, siblings) {
671		parent = child;
672		goto down;
673
674up:
675		continue;
676	}
677	ret = (*up)(parent, data);
678	if (ret || parent == from)
679		goto out;
680
681	child = parent;
682	parent = parent->parent;
683	if (parent)
684		goto up;
685out:
686	return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691	return 0;
692}
693#endif
694
695static void set_load_weight(struct task_struct *p)
696{
697	int prio = p->static_prio - MAX_RT_PRIO;
698	struct load_weight *load = &p->se.load;
699
700	/*
701	 * SCHED_IDLE tasks get minimal weight:
702	 */
703	if (p->policy == SCHED_IDLE) {
704		load->weight = scale_load(WEIGHT_IDLEPRIO);
705		load->inv_weight = WMULT_IDLEPRIO;
706		return;
707	}
708
709	load->weight = scale_load(prio_to_weight[prio]);
710	load->inv_weight = prio_to_wmult[prio];
711}
712
713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714{
715	update_rq_clock(rq);
716	sched_info_queued(p);
717	p->sched_class->enqueue_task(rq, p, flags);
718}
719
720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721{
722	update_rq_clock(rq);
723	sched_info_dequeued(p);
724	p->sched_class->dequeue_task(rq, p, flags);
725}
726
727void activate_task(struct rq *rq, struct task_struct *p, int flags)
728{
729	if (task_contributes_to_load(p))
730		rq->nr_uninterruptible--;
731
732	enqueue_task(rq, p, flags);
733}
734
735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737	if (task_contributes_to_load(p))
738		rq->nr_uninterruptible++;
739
740	dequeue_task(rq, p, flags);
741}
742
743static void update_rq_clock_task(struct rq *rq, s64 delta)
744{
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750	s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754
755	/*
756	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757	 * this case when a previous update_rq_clock() happened inside a
758	 * {soft,}irq region.
759	 *
760	 * When this happens, we stop ->clock_task and only update the
761	 * prev_irq_time stamp to account for the part that fit, so that a next
762	 * update will consume the rest. This ensures ->clock_task is
763	 * monotonic.
764	 *
765	 * It does however cause some slight miss-attribution of {soft,}irq
766	 * time, a more accurate solution would be to update the irq_time using
767	 * the current rq->clock timestamp, except that would require using
768	 * atomic ops.
769	 */
770	if (irq_delta > delta)
771		irq_delta = delta;
772
773	rq->prev_irq_time += irq_delta;
774	delta -= irq_delta;
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777	if (static_key_false((&paravirt_steal_rq_enabled))) {
778		u64 st;
779
780		steal = paravirt_steal_clock(cpu_of(rq));
781		steal -= rq->prev_steal_time_rq;
782
783		if (unlikely(steal > delta))
784			steal = delta;
785
786		st = steal_ticks(steal);
787		steal = st * TICK_NSEC;
788
789		rq->prev_steal_time_rq += steal;
790
791		delta -= steal;
792	}
793#endif
794
795	rq->clock_task += delta;
796
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799		sched_rt_avg_update(rq, irq_delta + steal);
800#endif
801}
802
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806	struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808	if (stop) {
809		/*
810		 * Make it appear like a SCHED_FIFO task, its something
811		 * userspace knows about and won't get confused about.
812		 *
813		 * Also, it will make PI more or less work without too
814		 * much confusion -- but then, stop work should not
815		 * rely on PI working anyway.
816		 */
817		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819		stop->sched_class = &stop_sched_class;
820	}
821
822	cpu_rq(cpu)->stop = stop;
823
824	if (old_stop) {
825		/*
826		 * Reset it back to a normal scheduling class so that
827		 * it can die in pieces.
828		 */
829		old_stop->sched_class = &rt_sched_class;
830	}
831}
832
833/*
834 * __normal_prio - return the priority that is based on the static prio
835 */
836static inline int __normal_prio(struct task_struct *p)
837{
838	return p->static_prio;
839}
840
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
848static inline int normal_prio(struct task_struct *p)
849{
850	int prio;
851
852	if (task_has_rt_policy(p))
853		prio = MAX_RT_PRIO-1 - p->rt_priority;
854	else
855		prio = __normal_prio(p);
856	return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
866static int effective_prio(struct task_struct *p)
867{
868	p->normal_prio = normal_prio(p);
869	/*
870	 * If we are RT tasks or we were boosted to RT priority,
871	 * keep the priority unchanged. Otherwise, update priority
872	 * to the normal priority:
873	 */
874	if (!rt_prio(p->prio))
875		return p->normal_prio;
876	return p->prio;
877}
878
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
883inline int task_curr(const struct task_struct *p)
884{
885	return cpu_curr(task_cpu(p)) == p;
886}
887
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889				       const struct sched_class *prev_class,
890				       int oldprio)
891{
892	if (prev_class != p->sched_class) {
893		if (prev_class->switched_from)
894			prev_class->switched_from(rq, p);
895		p->sched_class->switched_to(rq, p);
896	} else if (oldprio != p->prio)
897		p->sched_class->prio_changed(rq, p, oldprio);
898}
899
900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901{
902	const struct sched_class *class;
903
904	if (p->sched_class == rq->curr->sched_class) {
905		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906	} else {
907		for_each_class(class) {
908			if (class == rq->curr->sched_class)
909				break;
910			if (class == p->sched_class) {
911				resched_task(rq->curr);
912				break;
913			}
914		}
915	}
916
917	/*
918	 * A queue event has occurred, and we're going to schedule.  In
919	 * this case, we can save a useless back to back clock update.
920	 */
921	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922		rq->skip_clock_update = 1;
923}
924
925#ifdef CONFIG_SMP
926void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
927{
928#ifdef CONFIG_SCHED_DEBUG
929	/*
930	 * We should never call set_task_cpu() on a blocked task,
931	 * ttwu() will sort out the placement.
932	 */
933	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935
936#ifdef CONFIG_LOCKDEP
937	/*
938	 * The caller should hold either p->pi_lock or rq->lock, when changing
939	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940	 *
941	 * sched_move_task() holds both and thus holding either pins the cgroup,
942	 * see task_group().
943	 *
944	 * Furthermore, all task_rq users should acquire both locks, see
945	 * task_rq_lock().
946	 */
947	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948				      lockdep_is_held(&task_rq(p)->lock)));
949#endif
950#endif
951
952	trace_sched_migrate_task(p, new_cpu);
953
954	if (task_cpu(p) != new_cpu) {
955		p->se.nr_migrations++;
956		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957	}
958
959	__set_task_cpu(p, new_cpu);
960}
961
962struct migration_arg {
963	struct task_struct *task;
964	int dest_cpu;
965};
966
967static int migration_cpu_stop(void *data);
968
969/*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change.  If it changes, i.e. @p might have woken up,
974 * then return zero.  When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count).  If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
985unsigned long wait_task_inactive(struct task_struct *p, long match_state)
986{
987	unsigned long flags;
988	int running, on_rq;
989	unsigned long ncsw;
990	struct rq *rq;
991
992	for (;;) {
993		/*
994		 * We do the initial early heuristics without holding
995		 * any task-queue locks at all. We'll only try to get
996		 * the runqueue lock when things look like they will
997		 * work out!
998		 */
999		rq = task_rq(p);
1000
1001		/*
1002		 * If the task is actively running on another CPU
1003		 * still, just relax and busy-wait without holding
1004		 * any locks.
1005		 *
1006		 * NOTE! Since we don't hold any locks, it's not
1007		 * even sure that "rq" stays as the right runqueue!
1008		 * But we don't care, since "task_running()" will
1009		 * return false if the runqueue has changed and p
1010		 * is actually now running somewhere else!
1011		 */
1012		while (task_running(rq, p)) {
1013			if (match_state && unlikely(p->state != match_state))
1014				return 0;
1015			cpu_relax();
1016		}
1017
1018		/*
1019		 * Ok, time to look more closely! We need the rq
1020		 * lock now, to be *sure*. If we're wrong, we'll
1021		 * just go back and repeat.
1022		 */
1023		rq = task_rq_lock(p, &flags);
1024		trace_sched_wait_task(p);
1025		running = task_running(rq, p);
1026		on_rq = p->on_rq;
1027		ncsw = 0;
1028		if (!match_state || p->state == match_state)
1029			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030		task_rq_unlock(rq, p, &flags);
1031
1032		/*
1033		 * If it changed from the expected state, bail out now.
1034		 */
1035		if (unlikely(!ncsw))
1036			break;
1037
1038		/*
1039		 * Was it really running after all now that we
1040		 * checked with the proper locks actually held?
1041		 *
1042		 * Oops. Go back and try again..
1043		 */
1044		if (unlikely(running)) {
1045			cpu_relax();
1046			continue;
1047		}
1048
1049		/*
1050		 * It's not enough that it's not actively running,
1051		 * it must be off the runqueue _entirely_, and not
1052		 * preempted!
1053		 *
1054		 * So if it was still runnable (but just not actively
1055		 * running right now), it's preempted, and we should
1056		 * yield - it could be a while.
1057		 */
1058		if (unlikely(on_rq)) {
1059			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061			set_current_state(TASK_UNINTERRUPTIBLE);
1062			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063			continue;
1064		}
1065
1066		/*
1067		 * Ahh, all good. It wasn't running, and it wasn't
1068		 * runnable, which means that it will never become
1069		 * running in the future either. We're all done!
1070		 */
1071		break;
1072	}
1073
1074	return ncsw;
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
1084 * NOTE: this function doesn't have to take the runqueue lock,
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
1090void kick_process(struct task_struct *p)
1091{
1092	int cpu;
1093
1094	preempt_disable();
1095	cpu = task_cpu(p);
1096	if ((cpu != smp_processor_id()) && task_curr(p))
1097		smp_send_reschedule(cpu);
1098	preempt_enable();
1099}
1100EXPORT_SYMBOL_GPL(kick_process);
1101#endif /* CONFIG_SMP */
1102
1103#ifdef CONFIG_SMP
1104/*
1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106 */
1107static int select_fallback_rq(int cpu, struct task_struct *p)
1108{
1109	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110	enum { cpuset, possible, fail } state = cpuset;
1111	int dest_cpu;
1112
1113	/* Look for allowed, online CPU in same node. */
1114	for_each_cpu(dest_cpu, nodemask) {
1115		if (!cpu_online(dest_cpu))
1116			continue;
1117		if (!cpu_active(dest_cpu))
1118			continue;
1119		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120			return dest_cpu;
1121	}
1122
1123	for (;;) {
1124		/* Any allowed, online CPU? */
1125		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126			if (!cpu_online(dest_cpu))
1127				continue;
1128			if (!cpu_active(dest_cpu))
1129				continue;
1130			goto out;
1131		}
1132
1133		switch (state) {
1134		case cpuset:
1135			/* No more Mr. Nice Guy. */
1136			cpuset_cpus_allowed_fallback(p);
1137			state = possible;
1138			break;
1139
1140		case possible:
1141			do_set_cpus_allowed(p, cpu_possible_mask);
1142			state = fail;
1143			break;
1144
1145		case fail:
1146			BUG();
1147			break;
1148		}
1149	}
1150
1151out:
1152	if (state != cpuset) {
1153		/*
1154		 * Don't tell them about moving exiting tasks or
1155		 * kernel threads (both mm NULL), since they never
1156		 * leave kernel.
1157		 */
1158		if (p->mm && printk_ratelimit()) {
1159			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160					task_pid_nr(p), p->comm, cpu);
1161		}
1162	}
1163
1164	return dest_cpu;
1165}
1166
1167/*
1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169 */
1170static inline
1171int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172{
1173	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174
1175	/*
1176	 * In order not to call set_task_cpu() on a blocking task we need
1177	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178	 * cpu.
1179	 *
1180	 * Since this is common to all placement strategies, this lives here.
1181	 *
1182	 * [ this allows ->select_task() to simply return task_cpu(p) and
1183	 *   not worry about this generic constraint ]
1184	 */
1185	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1186		     !cpu_online(cpu)))
1187		cpu = select_fallback_rq(task_cpu(p), p);
1188
1189	return cpu;
1190}
1191
1192static void update_avg(u64 *avg, u64 sample)
1193{
1194	s64 diff = sample - *avg;
1195	*avg += diff >> 3;
1196}
1197#endif
1198
1199static void
1200ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1201{
1202#ifdef CONFIG_SCHEDSTATS
1203	struct rq *rq = this_rq();
1204
1205#ifdef CONFIG_SMP
1206	int this_cpu = smp_processor_id();
1207
1208	if (cpu == this_cpu) {
1209		schedstat_inc(rq, ttwu_local);
1210		schedstat_inc(p, se.statistics.nr_wakeups_local);
1211	} else {
1212		struct sched_domain *sd;
1213
1214		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215		rcu_read_lock();
1216		for_each_domain(this_cpu, sd) {
1217			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218				schedstat_inc(sd, ttwu_wake_remote);
1219				break;
1220			}
1221		}
1222		rcu_read_unlock();
1223	}
1224
1225	if (wake_flags & WF_MIGRATED)
1226		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
1228#endif /* CONFIG_SMP */
1229
1230	schedstat_inc(rq, ttwu_count);
1231	schedstat_inc(p, se.statistics.nr_wakeups);
1232
1233	if (wake_flags & WF_SYNC)
1234		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1235
1236#endif /* CONFIG_SCHEDSTATS */
1237}
1238
1239static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240{
1241	activate_task(rq, p, en_flags);
1242	p->on_rq = 1;
1243
1244	/* if a worker is waking up, notify workqueue */
1245	if (p->flags & PF_WQ_WORKER)
1246		wq_worker_waking_up(p, cpu_of(rq));
1247}
1248
1249/*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
1252static void
1253ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1254{
1255	trace_sched_wakeup(p, true);
1256	check_preempt_curr(rq, p, wake_flags);
1257
1258	p->state = TASK_RUNNING;
1259#ifdef CONFIG_SMP
1260	if (p->sched_class->task_woken)
1261		p->sched_class->task_woken(rq, p);
1262
1263	if (rq->idle_stamp) {
1264		u64 delta = rq->clock - rq->idle_stamp;
1265		u64 max = 2*sysctl_sched_migration_cost;
1266
1267		if (delta > max)
1268			rq->avg_idle = max;
1269		else
1270			update_avg(&rq->avg_idle, delta);
1271		rq->idle_stamp = 0;
1272	}
1273#endif
1274}
1275
1276static void
1277ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278{
1279#ifdef CONFIG_SMP
1280	if (p->sched_contributes_to_load)
1281		rq->nr_uninterruptible--;
1282#endif
1283
1284	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285	ttwu_do_wakeup(rq, p, wake_flags);
1286}
1287
1288/*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294static int ttwu_remote(struct task_struct *p, int wake_flags)
1295{
1296	struct rq *rq;
1297	int ret = 0;
1298
1299	rq = __task_rq_lock(p);
1300	if (p->on_rq) {
1301		ttwu_do_wakeup(rq, p, wake_flags);
1302		ret = 1;
1303	}
1304	__task_rq_unlock(rq);
1305
1306	return ret;
1307}
1308
1309#ifdef CONFIG_SMP
1310static void sched_ttwu_pending(void)
1311{
1312	struct rq *rq = this_rq();
1313	struct llist_node *llist = llist_del_all(&rq->wake_list);
1314	struct task_struct *p;
1315
1316	raw_spin_lock(&rq->lock);
1317
1318	while (llist) {
1319		p = llist_entry(llist, struct task_struct, wake_entry);
1320		llist = llist_next(llist);
1321		ttwu_do_activate(rq, p, 0);
1322	}
1323
1324	raw_spin_unlock(&rq->lock);
1325}
1326
1327void scheduler_ipi(void)
1328{
1329	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330		return;
1331
1332	/*
1333	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334	 * traditionally all their work was done from the interrupt return
1335	 * path. Now that we actually do some work, we need to make sure
1336	 * we do call them.
1337	 *
1338	 * Some archs already do call them, luckily irq_enter/exit nest
1339	 * properly.
1340	 *
1341	 * Arguably we should visit all archs and update all handlers,
1342	 * however a fair share of IPIs are still resched only so this would
1343	 * somewhat pessimize the simple resched case.
1344	 */
1345	irq_enter();
1346	sched_ttwu_pending();
1347
1348	/*
1349	 * Check if someone kicked us for doing the nohz idle load balance.
1350	 */
1351	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352		this_rq()->idle_balance = 1;
1353		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354	}
1355	irq_exit();
1356}
1357
1358static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359{
1360	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361		smp_send_reschedule(cpu);
1362}
1363
1364bool cpus_share_cache(int this_cpu, int that_cpu)
1365{
1366	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1367}
1368#endif /* CONFIG_SMP */
1369
1370static void ttwu_queue(struct task_struct *p, int cpu)
1371{
1372	struct rq *rq = cpu_rq(cpu);
1373
1374#if defined(CONFIG_SMP)
1375	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377		ttwu_queue_remote(p, cpu);
1378		return;
1379	}
1380#endif
1381
1382	raw_spin_lock(&rq->lock);
1383	ttwu_do_activate(rq, p, 0);
1384	raw_spin_unlock(&rq->lock);
1385}
1386
1387/**
1388 * try_to_wake_up - wake up a thread
1389 * @p: the thread to be awakened
1390 * @state: the mask of task states that can be woken
1391 * @wake_flags: wake modifier flags (WF_*)
1392 *
1393 * Put it on the run-queue if it's not already there. The "current"
1394 * thread is always on the run-queue (except when the actual
1395 * re-schedule is in progress), and as such you're allowed to do
1396 * the simpler "current->state = TASK_RUNNING" to mark yourself
1397 * runnable without the overhead of this.
1398 *
1399 * Returns %true if @p was woken up, %false if it was already running
1400 * or @state didn't match @p's state.
1401 */
1402static int
1403try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1404{
1405	unsigned long flags;
1406	int cpu, success = 0;
1407
1408	smp_wmb();
1409	raw_spin_lock_irqsave(&p->pi_lock, flags);
1410	if (!(p->state & state))
1411		goto out;
1412
1413	success = 1; /* we're going to change ->state */
1414	cpu = task_cpu(p);
1415
1416	if (p->on_rq && ttwu_remote(p, wake_flags))
1417		goto stat;
1418
1419#ifdef CONFIG_SMP
1420	/*
1421	 * If the owning (remote) cpu is still in the middle of schedule() with
1422	 * this task as prev, wait until its done referencing the task.
1423	 */
1424	while (p->on_cpu)
1425		cpu_relax();
1426	/*
1427	 * Pairs with the smp_wmb() in finish_lock_switch().
1428	 */
1429	smp_rmb();
1430
1431	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1432	p->state = TASK_WAKING;
1433
1434	if (p->sched_class->task_waking)
1435		p->sched_class->task_waking(p);
1436
1437	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438	if (task_cpu(p) != cpu) {
1439		wake_flags |= WF_MIGRATED;
1440		set_task_cpu(p, cpu);
1441	}
1442#endif /* CONFIG_SMP */
1443
1444	ttwu_queue(p, cpu);
1445stat:
1446	ttwu_stat(p, cpu, wake_flags);
1447out:
1448	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1449
1450	return success;
1451}
1452
1453/**
1454 * try_to_wake_up_local - try to wake up a local task with rq lock held
1455 * @p: the thread to be awakened
1456 *
1457 * Put @p on the run-queue if it's not already there. The caller must
1458 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459 * the current task.
1460 */
1461static void try_to_wake_up_local(struct task_struct *p)
1462{
1463	struct rq *rq = task_rq(p);
1464
1465	BUG_ON(rq != this_rq());
1466	BUG_ON(p == current);
1467	lockdep_assert_held(&rq->lock);
1468
1469	if (!raw_spin_trylock(&p->pi_lock)) {
1470		raw_spin_unlock(&rq->lock);
1471		raw_spin_lock(&p->pi_lock);
1472		raw_spin_lock(&rq->lock);
1473	}
1474
1475	if (!(p->state & TASK_NORMAL))
1476		goto out;
1477
1478	if (!p->on_rq)
1479		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1480
1481	ttwu_do_wakeup(rq, p, 0);
1482	ttwu_stat(p, smp_processor_id(), 0);
1483out:
1484	raw_spin_unlock(&p->pi_lock);
1485}
1486
1487/**
1488 * wake_up_process - Wake up a specific process
1489 * @p: The process to be woken up.
1490 *
1491 * Attempt to wake up the nominated process and move it to the set of runnable
1492 * processes.  Returns 1 if the process was woken up, 0 if it was already
1493 * running.
1494 *
1495 * It may be assumed that this function implies a write memory barrier before
1496 * changing the task state if and only if any tasks are woken up.
1497 */
1498int wake_up_process(struct task_struct *p)
1499{
1500	return try_to_wake_up(p, TASK_ALL, 0);
1501}
1502EXPORT_SYMBOL(wake_up_process);
1503
1504int wake_up_state(struct task_struct *p, unsigned int state)
1505{
1506	return try_to_wake_up(p, state, 0);
1507}
1508
1509/*
1510 * Perform scheduler related setup for a newly forked process p.
1511 * p is forked by current.
1512 *
1513 * __sched_fork() is basic setup used by init_idle() too:
1514 */
1515static void __sched_fork(struct task_struct *p)
1516{
1517	p->on_rq			= 0;
1518
1519	p->se.on_rq			= 0;
1520	p->se.exec_start		= 0;
1521	p->se.sum_exec_runtime		= 0;
1522	p->se.prev_sum_exec_runtime	= 0;
1523	p->se.nr_migrations		= 0;
1524	p->se.vruntime			= 0;
1525	INIT_LIST_HEAD(&p->se.group_node);
1526
1527#ifdef CONFIG_SCHEDSTATS
1528	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1529#endif
1530
1531	INIT_LIST_HEAD(&p->rt.run_list);
1532
1533#ifdef CONFIG_PREEMPT_NOTIFIERS
1534	INIT_HLIST_HEAD(&p->preempt_notifiers);
1535#endif
1536}
1537
1538/*
1539 * fork()/clone()-time setup:
1540 */
1541void sched_fork(struct task_struct *p)
1542{
1543	unsigned long flags;
1544	int cpu = get_cpu();
1545
1546	__sched_fork(p);
1547	/*
1548	 * We mark the process as running here. This guarantees that
1549	 * nobody will actually run it, and a signal or other external
1550	 * event cannot wake it up and insert it on the runqueue either.
1551	 */
1552	p->state = TASK_RUNNING;
1553
1554	/*
1555	 * Make sure we do not leak PI boosting priority to the child.
1556	 */
1557	p->prio = current->normal_prio;
1558
1559	/*
1560	 * Revert to default priority/policy on fork if requested.
1561	 */
1562	if (unlikely(p->sched_reset_on_fork)) {
1563		if (task_has_rt_policy(p)) {
1564			p->policy = SCHED_NORMAL;
1565			p->static_prio = NICE_TO_PRIO(0);
1566			p->rt_priority = 0;
1567		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1568			p->static_prio = NICE_TO_PRIO(0);
1569
1570		p->prio = p->normal_prio = __normal_prio(p);
1571		set_load_weight(p);
1572
1573		/*
1574		 * We don't need the reset flag anymore after the fork. It has
1575		 * fulfilled its duty:
1576		 */
1577		p->sched_reset_on_fork = 0;
1578	}
1579
1580	if (!rt_prio(p->prio))
1581		p->sched_class = &fair_sched_class;
1582
1583	if (p->sched_class->task_fork)
1584		p->sched_class->task_fork(p);
1585
1586	/*
1587	 * The child is not yet in the pid-hash so no cgroup attach races,
1588	 * and the cgroup is pinned to this child due to cgroup_fork()
1589	 * is ran before sched_fork().
1590	 *
1591	 * Silence PROVE_RCU.
1592	 */
1593	raw_spin_lock_irqsave(&p->pi_lock, flags);
1594	set_task_cpu(p, cpu);
1595	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1596
1597#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1598	if (likely(sched_info_on()))
1599		memset(&p->sched_info, 0, sizeof(p->sched_info));
1600#endif
1601#if defined(CONFIG_SMP)
1602	p->on_cpu = 0;
1603#endif
1604#ifdef CONFIG_PREEMPT_COUNT
1605	/* Want to start with kernel preemption disabled. */
1606	task_thread_info(p)->preempt_count = 1;
1607#endif
1608#ifdef CONFIG_SMP
1609	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1610#endif
1611
1612	put_cpu();
1613}
1614
1615/*
1616 * wake_up_new_task - wake up a newly created task for the first time.
1617 *
1618 * This function will do some initial scheduler statistics housekeeping
1619 * that must be done for every newly created context, then puts the task
1620 * on the runqueue and wakes it.
1621 */
1622void wake_up_new_task(struct task_struct *p)
1623{
1624	unsigned long flags;
1625	struct rq *rq;
1626
1627	raw_spin_lock_irqsave(&p->pi_lock, flags);
1628#ifdef CONFIG_SMP
1629	/*
1630	 * Fork balancing, do it here and not earlier because:
1631	 *  - cpus_allowed can change in the fork path
1632	 *  - any previously selected cpu might disappear through hotplug
1633	 */
1634	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1635#endif
1636
1637	rq = __task_rq_lock(p);
1638	activate_task(rq, p, 0);
1639	p->on_rq = 1;
1640	trace_sched_wakeup_new(p, true);
1641	check_preempt_curr(rq, p, WF_FORK);
1642#ifdef CONFIG_SMP
1643	if (p->sched_class->task_woken)
1644		p->sched_class->task_woken(rq, p);
1645#endif
1646	task_rq_unlock(rq, p, &flags);
1647}
1648
1649#ifdef CONFIG_PREEMPT_NOTIFIERS
1650
1651/**
1652 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1653 * @notifier: notifier struct to register
1654 */
1655void preempt_notifier_register(struct preempt_notifier *notifier)
1656{
1657	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1658}
1659EXPORT_SYMBOL_GPL(preempt_notifier_register);
1660
1661/**
1662 * preempt_notifier_unregister - no longer interested in preemption notifications
1663 * @notifier: notifier struct to unregister
1664 *
1665 * This is safe to call from within a preemption notifier.
1666 */
1667void preempt_notifier_unregister(struct preempt_notifier *notifier)
1668{
1669	hlist_del(&notifier->link);
1670}
1671EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1672
1673static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1674{
1675	struct preempt_notifier *notifier;
1676	struct hlist_node *node;
1677
1678	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1679		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1680}
1681
1682static void
1683fire_sched_out_preempt_notifiers(struct task_struct *curr,
1684				 struct task_struct *next)
1685{
1686	struct preempt_notifier *notifier;
1687	struct hlist_node *node;
1688
1689	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1690		notifier->ops->sched_out(notifier, next);
1691}
1692
1693#else /* !CONFIG_PREEMPT_NOTIFIERS */
1694
1695static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1696{
1697}
1698
1699static void
1700fire_sched_out_preempt_notifiers(struct task_struct *curr,
1701				 struct task_struct *next)
1702{
1703}
1704
1705#endif /* CONFIG_PREEMPT_NOTIFIERS */
1706
1707/**
1708 * prepare_task_switch - prepare to switch tasks
1709 * @rq: the runqueue preparing to switch
1710 * @prev: the current task that is being switched out
1711 * @next: the task we are going to switch to.
1712 *
1713 * This is called with the rq lock held and interrupts off. It must
1714 * be paired with a subsequent finish_task_switch after the context
1715 * switch.
1716 *
1717 * prepare_task_switch sets up locking and calls architecture specific
1718 * hooks.
1719 */
1720static inline void
1721prepare_task_switch(struct rq *rq, struct task_struct *prev,
1722		    struct task_struct *next)
1723{
1724	trace_sched_switch(prev, next);
1725	sched_info_switch(prev, next);
1726	perf_event_task_sched_out(prev, next);
1727	fire_sched_out_preempt_notifiers(prev, next);
1728	prepare_lock_switch(rq, next);
1729	prepare_arch_switch(next);
1730}
1731
1732/**
1733 * finish_task_switch - clean up after a task-switch
1734 * @rq: runqueue associated with task-switch
1735 * @prev: the thread we just switched away from.
1736 *
1737 * finish_task_switch must be called after the context switch, paired
1738 * with a prepare_task_switch call before the context switch.
1739 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1740 * and do any other architecture-specific cleanup actions.
1741 *
1742 * Note that we may have delayed dropping an mm in context_switch(). If
1743 * so, we finish that here outside of the runqueue lock. (Doing it
1744 * with the lock held can cause deadlocks; see schedule() for
1745 * details.)
1746 */
1747static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1748	__releases(rq->lock)
1749{
1750	struct mm_struct *mm = rq->prev_mm;
1751	long prev_state;
1752
1753	rq->prev_mm = NULL;
1754
1755	/*
1756	 * A task struct has one reference for the use as "current".
1757	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1758	 * schedule one last time. The schedule call will never return, and
1759	 * the scheduled task must drop that reference.
1760	 * The test for TASK_DEAD must occur while the runqueue locks are
1761	 * still held, otherwise prev could be scheduled on another cpu, die
1762	 * there before we look at prev->state, and then the reference would
1763	 * be dropped twice.
1764	 *		Manfred Spraul <manfred@colorfullife.com>
1765	 */
1766	prev_state = prev->state;
1767	account_switch_vtime(prev);
1768	finish_arch_switch(prev);
1769	perf_event_task_sched_in(prev, current);
1770	finish_lock_switch(rq, prev);
1771	finish_arch_post_lock_switch();
1772
1773	fire_sched_in_preempt_notifiers(current);
1774	if (mm)
1775		mmdrop(mm);
1776	if (unlikely(prev_state == TASK_DEAD)) {
1777		/*
1778		 * Remove function-return probe instances associated with this
1779		 * task and put them back on the free list.
1780		 */
1781		kprobe_flush_task(prev);
1782		put_task_struct(prev);
1783	}
1784}
1785
1786#ifdef CONFIG_SMP
1787
1788/* assumes rq->lock is held */
1789static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1790{
1791	if (prev->sched_class->pre_schedule)
1792		prev->sched_class->pre_schedule(rq, prev);
1793}
1794
1795/* rq->lock is NOT held, but preemption is disabled */
1796static inline void post_schedule(struct rq *rq)
1797{
1798	if (rq->post_schedule) {
1799		unsigned long flags;
1800
1801		raw_spin_lock_irqsave(&rq->lock, flags);
1802		if (rq->curr->sched_class->post_schedule)
1803			rq->curr->sched_class->post_schedule(rq);
1804		raw_spin_unlock_irqrestore(&rq->lock, flags);
1805
1806		rq->post_schedule = 0;
1807	}
1808}
1809
1810#else
1811
1812static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1813{
1814}
1815
1816static inline void post_schedule(struct rq *rq)
1817{
1818}
1819
1820#endif
1821
1822/**
1823 * schedule_tail - first thing a freshly forked thread must call.
1824 * @prev: the thread we just switched away from.
1825 */
1826asmlinkage void schedule_tail(struct task_struct *prev)
1827	__releases(rq->lock)
1828{
1829	struct rq *rq = this_rq();
1830
1831	finish_task_switch(rq, prev);
1832
1833	/*
1834	 * FIXME: do we need to worry about rq being invalidated by the
1835	 * task_switch?
1836	 */
1837	post_schedule(rq);
1838
1839#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1840	/* In this case, finish_task_switch does not reenable preemption */
1841	preempt_enable();
1842#endif
1843	if (current->set_child_tid)
1844		put_user(task_pid_vnr(current), current->set_child_tid);
1845}
1846
1847/*
1848 * context_switch - switch to the new MM and the new
1849 * thread's register state.
1850 */
1851static inline void
1852context_switch(struct rq *rq, struct task_struct *prev,
1853	       struct task_struct *next)
1854{
1855	struct mm_struct *mm, *oldmm;
1856
1857	prepare_task_switch(rq, prev, next);
1858
1859	mm = next->mm;
1860	oldmm = prev->active_mm;
1861	/*
1862	 * For paravirt, this is coupled with an exit in switch_to to
1863	 * combine the page table reload and the switch backend into
1864	 * one hypercall.
1865	 */
1866	arch_start_context_switch(prev);
1867
1868	if (!mm) {
1869		next->active_mm = oldmm;
1870		atomic_inc(&oldmm->mm_count);
1871		enter_lazy_tlb(oldmm, next);
1872	} else
1873		switch_mm(oldmm, mm, next);
1874
1875	if (!prev->mm) {
1876		prev->active_mm = NULL;
1877		rq->prev_mm = oldmm;
1878	}
1879	/*
1880	 * Since the runqueue lock will be released by the next
1881	 * task (which is an invalid locking op but in the case
1882	 * of the scheduler it's an obvious special-case), so we
1883	 * do an early lockdep release here:
1884	 */
1885#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1886	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1887#endif
1888
1889	/* Here we just switch the register state and the stack. */
1890	switch_to(prev, next, prev);
1891
1892	barrier();
1893	/*
1894	 * this_rq must be evaluated again because prev may have moved
1895	 * CPUs since it called schedule(), thus the 'rq' on its stack
1896	 * frame will be invalid.
1897	 */
1898	finish_task_switch(this_rq(), prev);
1899}
1900
1901/*
1902 * nr_running, nr_uninterruptible and nr_context_switches:
1903 *
1904 * externally visible scheduler statistics: current number of runnable
1905 * threads, current number of uninterruptible-sleeping threads, total
1906 * number of context switches performed since bootup.
1907 */
1908unsigned long nr_running(void)
1909{
1910	unsigned long i, sum = 0;
1911
1912	for_each_online_cpu(i)
1913		sum += cpu_rq(i)->nr_running;
1914
1915	return sum;
1916}
1917
1918unsigned long nr_uninterruptible(void)
1919{
1920	unsigned long i, sum = 0;
1921
1922	for_each_possible_cpu(i)
1923		sum += cpu_rq(i)->nr_uninterruptible;
1924
1925	/*
1926	 * Since we read the counters lockless, it might be slightly
1927	 * inaccurate. Do not allow it to go below zero though:
1928	 */
1929	if (unlikely((long)sum < 0))
1930		sum = 0;
1931
1932	return sum;
1933}
1934
1935unsigned long long nr_context_switches(void)
1936{
1937	int i;
1938	unsigned long long sum = 0;
1939
1940	for_each_possible_cpu(i)
1941		sum += cpu_rq(i)->nr_switches;
1942
1943	return sum;
1944}
1945
1946unsigned long nr_iowait(void)
1947{
1948	unsigned long i, sum = 0;
1949
1950	for_each_possible_cpu(i)
1951		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1952
1953	return sum;
1954}
1955
1956unsigned long nr_iowait_cpu(int cpu)
1957{
1958	struct rq *this = cpu_rq(cpu);
1959	return atomic_read(&this->nr_iowait);
1960}
1961
1962unsigned long this_cpu_load(void)
1963{
1964	struct rq *this = this_rq();
1965	return this->cpu_load[0];
1966}
1967
1968
1969/*
1970 * Global load-average calculations
1971 *
1972 * We take a distributed and async approach to calculating the global load-avg
1973 * in order to minimize overhead.
1974 *
1975 * The global load average is an exponentially decaying average of nr_running +
1976 * nr_uninterruptible.
1977 *
1978 * Once every LOAD_FREQ:
1979 *
1980 *   nr_active = 0;
1981 *   for_each_possible_cpu(cpu)
1982 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1983 *
1984 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
1985 *
1986 * Due to a number of reasons the above turns in the mess below:
1987 *
1988 *  - for_each_possible_cpu() is prohibitively expensive on machines with
1989 *    serious number of cpus, therefore we need to take a distributed approach
1990 *    to calculating nr_active.
1991 *
1992 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
1993 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
1994 *
1995 *    So assuming nr_active := 0 when we start out -- true per definition, we
1996 *    can simply take per-cpu deltas and fold those into a global accumulate
1997 *    to obtain the same result. See calc_load_fold_active().
1998 *
1999 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2000 *    across the machine, we assume 10 ticks is sufficient time for every
2001 *    cpu to have completed this task.
2002 *
2003 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2004 *    again, being late doesn't loose the delta, just wrecks the sample.
2005 *
2006 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2007 *    this would add another cross-cpu cacheline miss and atomic operation
2008 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2009 *    when it went into uninterruptible state and decrement on whatever cpu
2010 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2011 *    all cpus yields the correct result.
2012 *
2013 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2014 */
2015
2016/* Variables and functions for calc_load */
2017static atomic_long_t calc_load_tasks;
2018static unsigned long calc_load_update;
2019unsigned long avenrun[3];
2020EXPORT_SYMBOL(avenrun); /* should be removed */
2021
2022/**
2023 * get_avenrun - get the load average array
2024 * @loads:	pointer to dest load array
2025 * @offset:	offset to add
2026 * @shift:	shift count to shift the result left
2027 *
2028 * These values are estimates at best, so no need for locking.
2029 */
2030void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2031{
2032	loads[0] = (avenrun[0] + offset) << shift;
2033	loads[1] = (avenrun[1] + offset) << shift;
2034	loads[2] = (avenrun[2] + offset) << shift;
2035}
2036
2037static long calc_load_fold_active(struct rq *this_rq)
2038{
2039	long nr_active, delta = 0;
2040
2041	nr_active = this_rq->nr_running;
2042	nr_active += (long) this_rq->nr_uninterruptible;
2043
2044	if (nr_active != this_rq->calc_load_active) {
2045		delta = nr_active - this_rq->calc_load_active;
2046		this_rq->calc_load_active = nr_active;
2047	}
2048
2049	return delta;
2050}
2051
2052/*
2053 * a1 = a0 * e + a * (1 - e)
2054 */
2055static unsigned long
2056calc_load(unsigned long load, unsigned long exp, unsigned long active)
2057{
2058	load *= exp;
2059	load += active * (FIXED_1 - exp);
2060	load += 1UL << (FSHIFT - 1);
2061	return load >> FSHIFT;
2062}
2063
2064#ifdef CONFIG_NO_HZ
2065/*
2066 * Handle NO_HZ for the global load-average.
2067 *
2068 * Since the above described distributed algorithm to compute the global
2069 * load-average relies on per-cpu sampling from the tick, it is affected by
2070 * NO_HZ.
2071 *
2072 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2073 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2074 * when we read the global state.
2075 *
2076 * Obviously reality has to ruin such a delightfully simple scheme:
2077 *
2078 *  - When we go NO_HZ idle during the window, we can negate our sample
2079 *    contribution, causing under-accounting.
2080 *
2081 *    We avoid this by keeping two idle-delta counters and flipping them
2082 *    when the window starts, thus separating old and new NO_HZ load.
2083 *
2084 *    The only trick is the slight shift in index flip for read vs write.
2085 *
2086 *        0s            5s            10s           15s
2087 *          +10           +10           +10           +10
2088 *        |-|-----------|-|-----------|-|-----------|-|
2089 *    r:0 0 1           1 0           0 1           1 0
2090 *    w:0 1 1           0 0           1 1           0 0
2091 *
2092 *    This ensures we'll fold the old idle contribution in this window while
2093 *    accumlating the new one.
2094 *
2095 *  - When we wake up from NO_HZ idle during the window, we push up our
2096 *    contribution, since we effectively move our sample point to a known
2097 *    busy state.
2098 *
2099 *    This is solved by pushing the window forward, and thus skipping the
2100 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2101 *    was in effect at the time the window opened). This also solves the issue
2102 *    of having to deal with a cpu having been in NOHZ idle for multiple
2103 *    LOAD_FREQ intervals.
2104 *
2105 * When making the ILB scale, we should try to pull this in as well.
2106 */
2107static atomic_long_t calc_load_idle[2];
2108static int calc_load_idx;
2109
2110static inline int calc_load_write_idx(void)
2111{
2112	int idx = calc_load_idx;
2113
2114	/*
2115	 * See calc_global_nohz(), if we observe the new index, we also
2116	 * need to observe the new update time.
2117	 */
2118	smp_rmb();
2119
2120	/*
2121	 * If the folding window started, make sure we start writing in the
2122	 * next idle-delta.
2123	 */
2124	if (!time_before(jiffies, calc_load_update))
2125		idx++;
2126
2127	return idx & 1;
2128}
2129
2130static inline int calc_load_read_idx(void)
2131{
2132	return calc_load_idx & 1;
2133}
2134
2135void calc_load_enter_idle(void)
2136{
2137	struct rq *this_rq = this_rq();
2138	long delta;
2139
2140	/*
2141	 * We're going into NOHZ mode, if there's any pending delta, fold it
2142	 * into the pending idle delta.
2143	 */
2144	delta = calc_load_fold_active(this_rq);
2145	if (delta) {
2146		int idx = calc_load_write_idx();
2147		atomic_long_add(delta, &calc_load_idle[idx]);
2148	}
2149}
2150
2151void calc_load_exit_idle(void)
2152{
2153	struct rq *this_rq = this_rq();
2154
2155	/*
2156	 * If we're still before the sample window, we're done.
2157	 */
2158	if (time_before(jiffies, this_rq->calc_load_update))
2159		return;
2160
2161	/*
2162	 * We woke inside or after the sample window, this means we're already
2163	 * accounted through the nohz accounting, so skip the entire deal and
2164	 * sync up for the next window.
2165	 */
2166	this_rq->calc_load_update = calc_load_update;
2167	if (time_before(jiffies, this_rq->calc_load_update + 10))
2168		this_rq->calc_load_update += LOAD_FREQ;
2169}
2170
2171static long calc_load_fold_idle(void)
2172{
2173	int idx = calc_load_read_idx();
2174	long delta = 0;
2175
2176	if (atomic_long_read(&calc_load_idle[idx]))
2177		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2178
2179	return delta;
2180}
2181
2182/**
2183 * fixed_power_int - compute: x^n, in O(log n) time
2184 *
2185 * @x:         base of the power
2186 * @frac_bits: fractional bits of @x
2187 * @n:         power to raise @x to.
2188 *
2189 * By exploiting the relation between the definition of the natural power
2190 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2191 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2192 * (where: n_i \elem {0, 1}, the binary vector representing n),
2193 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2194 * of course trivially computable in O(log_2 n), the length of our binary
2195 * vector.
2196 */
2197static unsigned long
2198fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2199{
2200	unsigned long result = 1UL << frac_bits;
2201
2202	if (n) for (;;) {
2203		if (n & 1) {
2204			result *= x;
2205			result += 1UL << (frac_bits - 1);
2206			result >>= frac_bits;
2207		}
2208		n >>= 1;
2209		if (!n)
2210			break;
2211		x *= x;
2212		x += 1UL << (frac_bits - 1);
2213		x >>= frac_bits;
2214	}
2215
2216	return result;
2217}
2218
2219/*
2220 * a1 = a0 * e + a * (1 - e)
2221 *
2222 * a2 = a1 * e + a * (1 - e)
2223 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2224 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2225 *
2226 * a3 = a2 * e + a * (1 - e)
2227 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2228 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2229 *
2230 *  ...
2231 *
2232 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2233 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2234 *    = a0 * e^n + a * (1 - e^n)
2235 *
2236 * [1] application of the geometric series:
2237 *
2238 *              n         1 - x^(n+1)
2239 *     S_n := \Sum x^i = -------------
2240 *             i=0          1 - x
2241 */
2242static unsigned long
2243calc_load_n(unsigned long load, unsigned long exp,
2244	    unsigned long active, unsigned int n)
2245{
2246
2247	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2248}
2249
2250/*
2251 * NO_HZ can leave us missing all per-cpu ticks calling
2252 * calc_load_account_active(), but since an idle CPU folds its delta into
2253 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2254 * in the pending idle delta if our idle period crossed a load cycle boundary.
2255 *
2256 * Once we've updated the global active value, we need to apply the exponential
2257 * weights adjusted to the number of cycles missed.
2258 */
2259static void calc_global_nohz(void)
2260{
2261	long delta, active, n;
2262
2263	if (!time_before(jiffies, calc_load_update + 10)) {
2264		/*
2265		 * Catch-up, fold however many we are behind still
2266		 */
2267		delta = jiffies - calc_load_update - 10;
2268		n = 1 + (delta / LOAD_FREQ);
2269
2270		active = atomic_long_read(&calc_load_tasks);
2271		active = active > 0 ? active * FIXED_1 : 0;
2272
2273		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2274		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2275		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2276
2277		calc_load_update += n * LOAD_FREQ;
2278	}
2279
2280	/*
2281	 * Flip the idle index...
2282	 *
2283	 * Make sure we first write the new time then flip the index, so that
2284	 * calc_load_write_idx() will see the new time when it reads the new
2285	 * index, this avoids a double flip messing things up.
2286	 */
2287	smp_wmb();
2288	calc_load_idx++;
2289}
2290#else /* !CONFIG_NO_HZ */
2291
2292static inline long calc_load_fold_idle(void) { return 0; }
2293static inline void calc_global_nohz(void) { }
2294
2295#endif /* CONFIG_NO_HZ */
2296
2297/*
2298 * calc_load - update the avenrun load estimates 10 ticks after the
2299 * CPUs have updated calc_load_tasks.
2300 */
2301void calc_global_load(unsigned long ticks)
2302{
2303	long active, delta;
2304
2305	if (time_before(jiffies, calc_load_update + 10))
2306		return;
2307
2308	/*
2309	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2310	 */
2311	delta = calc_load_fold_idle();
2312	if (delta)
2313		atomic_long_add(delta, &calc_load_tasks);
2314
2315	active = atomic_long_read(&calc_load_tasks);
2316	active = active > 0 ? active * FIXED_1 : 0;
2317
2318	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2319	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2320	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2321
2322	calc_load_update += LOAD_FREQ;
2323
2324	/*
2325	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2326	 */
2327	calc_global_nohz();
2328}
2329
2330/*
2331 * Called from update_cpu_load() to periodically update this CPU's
2332 * active count.
2333 */
2334static void calc_load_account_active(struct rq *this_rq)
2335{
2336	long delta;
2337
2338	if (time_before(jiffies, this_rq->calc_load_update))
2339		return;
2340
2341	delta  = calc_load_fold_active(this_rq);
2342	if (delta)
2343		atomic_long_add(delta, &calc_load_tasks);
2344
2345	this_rq->calc_load_update += LOAD_FREQ;
2346}
2347
2348/*
2349 * End of global load-average stuff
2350 */
2351
2352/*
2353 * The exact cpuload at various idx values, calculated at every tick would be
2354 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2355 *
2356 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2357 * on nth tick when cpu may be busy, then we have:
2358 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2359 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2360 *
2361 * decay_load_missed() below does efficient calculation of
2362 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2363 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2364 *
2365 * The calculation is approximated on a 128 point scale.
2366 * degrade_zero_ticks is the number of ticks after which load at any
2367 * particular idx is approximated to be zero.
2368 * degrade_factor is a precomputed table, a row for each load idx.
2369 * Each column corresponds to degradation factor for a power of two ticks,
2370 * based on 128 point scale.
2371 * Example:
2372 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2373 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2374 *
2375 * With this power of 2 load factors, we can degrade the load n times
2376 * by looking at 1 bits in n and doing as many mult/shift instead of
2377 * n mult/shifts needed by the exact degradation.
2378 */
2379#define DEGRADE_SHIFT		7
2380static const unsigned char
2381		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2382static const unsigned char
2383		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2384					{0, 0, 0, 0, 0, 0, 0, 0},
2385					{64, 32, 8, 0, 0, 0, 0, 0},
2386					{96, 72, 40, 12, 1, 0, 0},
2387					{112, 98, 75, 43, 15, 1, 0},
2388					{120, 112, 98, 76, 45, 16, 2} };
2389
2390/*
2391 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2392 * would be when CPU is idle and so we just decay the old load without
2393 * adding any new load.
2394 */
2395static unsigned long
2396decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2397{
2398	int j = 0;
2399
2400	if (!missed_updates)
2401		return load;
2402
2403	if (missed_updates >= degrade_zero_ticks[idx])
2404		return 0;
2405
2406	if (idx == 1)
2407		return load >> missed_updates;
2408
2409	while (missed_updates) {
2410		if (missed_updates % 2)
2411			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2412
2413		missed_updates >>= 1;
2414		j++;
2415	}
2416	return load;
2417}
2418
2419/*
2420 * Update rq->cpu_load[] statistics. This function is usually called every
2421 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2422 * every tick. We fix it up based on jiffies.
2423 */
2424static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2425			      unsigned long pending_updates)
2426{
2427	int i, scale;
2428
2429	this_rq->nr_load_updates++;
2430
2431	/* Update our load: */
2432	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2433	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2434		unsigned long old_load, new_load;
2435
2436		/* scale is effectively 1 << i now, and >> i divides by scale */
2437
2438		old_load = this_rq->cpu_load[i];
2439		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2440		new_load = this_load;
2441		/*
2442		 * Round up the averaging division if load is increasing. This
2443		 * prevents us from getting stuck on 9 if the load is 10, for
2444		 * example.
2445		 */
2446		if (new_load > old_load)
2447			new_load += scale - 1;
2448
2449		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2450	}
2451
2452	sched_avg_update(this_rq);
2453}
2454
2455#ifdef CONFIG_NO_HZ
2456/*
2457 * There is no sane way to deal with nohz on smp when using jiffies because the
2458 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2459 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2460 *
2461 * Therefore we cannot use the delta approach from the regular tick since that
2462 * would seriously skew the load calculation. However we'll make do for those
2463 * updates happening while idle (nohz_idle_balance) or coming out of idle
2464 * (tick_nohz_idle_exit).
2465 *
2466 * This means we might still be one tick off for nohz periods.
2467 */
2468
2469/*
2470 * Called from nohz_idle_balance() to update the load ratings before doing the
2471 * idle balance.
2472 */
2473void update_idle_cpu_load(struct rq *this_rq)
2474{
2475	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2476	unsigned long load = this_rq->load.weight;
2477	unsigned long pending_updates;
2478
2479	/*
2480	 * bail if there's load or we're actually up-to-date.
2481	 */
2482	if (load || curr_jiffies == this_rq->last_load_update_tick)
2483		return;
2484
2485	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2486	this_rq->last_load_update_tick = curr_jiffies;
2487
2488	__update_cpu_load(this_rq, load, pending_updates);
2489}
2490
2491/*
2492 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2493 */
2494void update_cpu_load_nohz(void)
2495{
2496	struct rq *this_rq = this_rq();
2497	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2498	unsigned long pending_updates;
2499
2500	if (curr_jiffies == this_rq->last_load_update_tick)
2501		return;
2502
2503	raw_spin_lock(&this_rq->lock);
2504	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2505	if (pending_updates) {
2506		this_rq->last_load_update_tick = curr_jiffies;
2507		/*
2508		 * We were idle, this means load 0, the current load might be
2509		 * !0 due to remote wakeups and the sort.
2510		 */
2511		__update_cpu_load(this_rq, 0, pending_updates);
2512	}
2513	raw_spin_unlock(&this_rq->lock);
2514}
2515#endif /* CONFIG_NO_HZ */
2516
2517/*
2518 * Called from scheduler_tick()
2519 */
2520static void update_cpu_load_active(struct rq *this_rq)
2521{
2522	/*
2523	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2524	 */
2525	this_rq->last_load_update_tick = jiffies;
2526	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2527
2528	calc_load_account_active(this_rq);
2529}
2530
2531#ifdef CONFIG_SMP
2532
2533/*
2534 * sched_exec - execve() is a valuable balancing opportunity, because at
2535 * this point the task has the smallest effective memory and cache footprint.
2536 */
2537void sched_exec(void)
2538{
2539	struct task_struct *p = current;
2540	unsigned long flags;
2541	int dest_cpu;
2542
2543	raw_spin_lock_irqsave(&p->pi_lock, flags);
2544	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2545	if (dest_cpu == smp_processor_id())
2546		goto unlock;
2547
2548	if (likely(cpu_active(dest_cpu))) {
2549		struct migration_arg arg = { p, dest_cpu };
2550
2551		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2552		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2553		return;
2554	}
2555unlock:
2556	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2557}
2558
2559#endif
2560
2561DEFINE_PER_CPU(struct kernel_stat, kstat);
2562DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2563
2564EXPORT_PER_CPU_SYMBOL(kstat);
2565EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2566
2567/*
2568 * Return any ns on the sched_clock that have not yet been accounted in
2569 * @p in case that task is currently running.
2570 *
2571 * Called with task_rq_lock() held on @rq.
2572 */
2573static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2574{
2575	u64 ns = 0;
2576
2577	if (task_current(rq, p)) {
2578		update_rq_clock(rq);
2579		ns = rq->clock_task - p->se.exec_start;
2580		if ((s64)ns < 0)
2581			ns = 0;
2582	}
2583
2584	return ns;
2585}
2586
2587unsigned long long task_delta_exec(struct task_struct *p)
2588{
2589	unsigned long flags;
2590	struct rq *rq;
2591	u64 ns = 0;
2592
2593	rq = task_rq_lock(p, &flags);
2594	ns = do_task_delta_exec(p, rq);
2595	task_rq_unlock(rq, p, &flags);
2596
2597	return ns;
2598}
2599
2600/*
2601 * Return accounted runtime for the task.
2602 * In case the task is currently running, return the runtime plus current's
2603 * pending runtime that have not been accounted yet.
2604 */
2605unsigned long long task_sched_runtime(struct task_struct *p)
2606{
2607	unsigned long flags;
2608	struct rq *rq;
2609	u64 ns = 0;
2610
2611	rq = task_rq_lock(p, &flags);
2612	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2613	task_rq_unlock(rq, p, &flags);
2614
2615	return ns;
2616}
2617
2618/*
2619 * This function gets called by the timer code, with HZ frequency.
2620 * We call it with interrupts disabled.
2621 */
2622void scheduler_tick(void)
2623{
2624	int cpu = smp_processor_id();
2625	struct rq *rq = cpu_rq(cpu);
2626	struct task_struct *curr = rq->curr;
2627
2628	sched_clock_tick();
2629
2630	raw_spin_lock(&rq->lock);
2631	update_rq_clock(rq);
2632	update_cpu_load_active(rq);
2633	curr->sched_class->task_tick(rq, curr, 0);
2634	raw_spin_unlock(&rq->lock);
2635
2636	perf_event_task_tick();
2637
2638#ifdef CONFIG_SMP
2639	rq->idle_balance = idle_cpu(cpu);
2640	trigger_load_balance(rq, cpu);
2641#endif
2642}
2643
2644notrace unsigned long get_parent_ip(unsigned long addr)
2645{
2646	if (in_lock_functions(addr)) {
2647		addr = CALLER_ADDR2;
2648		if (in_lock_functions(addr))
2649			addr = CALLER_ADDR3;
2650	}
2651	return addr;
2652}
2653
2654#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2655				defined(CONFIG_PREEMPT_TRACER))
2656
2657void __kprobes add_preempt_count(int val)
2658{
2659#ifdef CONFIG_DEBUG_PREEMPT
2660	/*
2661	 * Underflow?
2662	 */
2663	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2664		return;
2665#endif
2666	preempt_count() += val;
2667#ifdef CONFIG_DEBUG_PREEMPT
2668	/*
2669	 * Spinlock count overflowing soon?
2670	 */
2671	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2672				PREEMPT_MASK - 10);
2673#endif
2674	if (preempt_count() == val)
2675		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2676}
2677EXPORT_SYMBOL(add_preempt_count);
2678
2679void __kprobes sub_preempt_count(int val)
2680{
2681#ifdef CONFIG_DEBUG_PREEMPT
2682	/*
2683	 * Underflow?
2684	 */
2685	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2686		return;
2687	/*
2688	 * Is the spinlock portion underflowing?
2689	 */
2690	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2691			!(preempt_count() & PREEMPT_MASK)))
2692		return;
2693#endif
2694
2695	if (preempt_count() == val)
2696		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2697	preempt_count() -= val;
2698}
2699EXPORT_SYMBOL(sub_preempt_count);
2700
2701#endif
2702
2703/*
2704 * Print scheduling while atomic bug:
2705 */
2706static noinline void __schedule_bug(struct task_struct *prev)
2707{
2708	if (oops_in_progress)
2709		return;
2710
2711	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2712		prev->comm, prev->pid, preempt_count());
2713
2714	debug_show_held_locks(prev);
2715	print_modules();
2716	if (irqs_disabled())
2717		print_irqtrace_events(prev);
2718	dump_stack();
2719	add_taint(TAINT_WARN);
2720}
2721
2722/*
2723 * Various schedule()-time debugging checks and statistics:
2724 */
2725static inline void schedule_debug(struct task_struct *prev)
2726{
2727	/*
2728	 * Test if we are atomic. Since do_exit() needs to call into
2729	 * schedule() atomically, we ignore that path for now.
2730	 * Otherwise, whine if we are scheduling when we should not be.
2731	 */
2732	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2733		__schedule_bug(prev);
2734	rcu_sleep_check();
2735
2736	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2737
2738	schedstat_inc(this_rq(), sched_count);
2739}
2740
2741static void put_prev_task(struct rq *rq, struct task_struct *prev)
2742{
2743	if (prev->on_rq || rq->skip_clock_update < 0)
2744		update_rq_clock(rq);
2745	prev->sched_class->put_prev_task(rq, prev);
2746}
2747
2748/*
2749 * Pick up the highest-prio task:
2750 */
2751static inline struct task_struct *
2752pick_next_task(struct rq *rq)
2753{
2754	const struct sched_class *class;
2755	struct task_struct *p;
2756
2757	/*
2758	 * Optimization: we know that if all tasks are in
2759	 * the fair class we can call that function directly:
2760	 */
2761	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2762		p = fair_sched_class.pick_next_task(rq);
2763		if (likely(p))
2764			return p;
2765	}
2766
2767	for_each_class(class) {
2768		p = class->pick_next_task(rq);
2769		if (p)
2770			return p;
2771	}
2772
2773	BUG(); /* the idle class will always have a runnable task */
2774}
2775
2776/*
2777 * __schedule() is the main scheduler function.
2778 *
2779 * The main means of driving the scheduler and thus entering this function are:
2780 *
2781 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2782 *
2783 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2784 *      paths. For example, see arch/x86/entry_64.S.
2785 *
2786 *      To drive preemption between tasks, the scheduler sets the flag in timer
2787 *      interrupt handler scheduler_tick().
2788 *
2789 *   3. Wakeups don't really cause entry into schedule(). They add a
2790 *      task to the run-queue and that's it.
2791 *
2792 *      Now, if the new task added to the run-queue preempts the current
2793 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2794 *      called on the nearest possible occasion:
2795 *
2796 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2797 *
2798 *         - in syscall or exception context, at the next outmost
2799 *           preempt_enable(). (this might be as soon as the wake_up()'s
2800 *           spin_unlock()!)
2801 *
2802 *         - in IRQ context, return from interrupt-handler to
2803 *           preemptible context
2804 *
2805 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2806 *         then at the next:
2807 *
2808 *          - cond_resched() call
2809 *          - explicit schedule() call
2810 *          - return from syscall or exception to user-space
2811 *          - return from interrupt-handler to user-space
2812 */
2813static void __sched __schedule(void)
2814{
2815	struct task_struct *prev, *next;
2816	unsigned long *switch_count;
2817	struct rq *rq;
2818	int cpu;
2819
2820need_resched:
2821	preempt_disable();
2822	cpu = smp_processor_id();
2823	rq = cpu_rq(cpu);
2824	rcu_note_context_switch(cpu);
2825	prev = rq->curr;
2826
2827	schedule_debug(prev);
2828
2829	if (sched_feat(HRTICK))
2830		hrtick_clear(rq);
2831
2832	raw_spin_lock_irq(&rq->lock);
2833
2834	switch_count = &prev->nivcsw;
2835	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2836		if (unlikely(signal_pending_state(prev->state, prev))) {
2837			prev->state = TASK_RUNNING;
2838		} else {
2839			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2840			prev->on_rq = 0;
2841
2842			/*
2843			 * If a worker went to sleep, notify and ask workqueue
2844			 * whether it wants to wake up a task to maintain
2845			 * concurrency.
2846			 */
2847			if (prev->flags & PF_WQ_WORKER) {
2848				struct task_struct *to_wakeup;
2849
2850				to_wakeup = wq_worker_sleeping(prev, cpu);
2851				if (to_wakeup)
2852					try_to_wake_up_local(to_wakeup);
2853			}
2854		}
2855		switch_count = &prev->nvcsw;
2856	}
2857
2858	pre_schedule(rq, prev);
2859
2860	if (unlikely(!rq->nr_running))
2861		idle_balance(cpu, rq);
2862
2863	put_prev_task(rq, prev);
2864	next = pick_next_task(rq);
2865	clear_tsk_need_resched(prev);
2866	rq->skip_clock_update = 0;
2867
2868	if (likely(prev != next)) {
2869		rq->nr_switches++;
2870		rq->curr = next;
2871		++*switch_count;
2872
2873		context_switch(rq, prev, next); /* unlocks the rq */
2874		/*
2875		 * The context switch have flipped the stack from under us
2876		 * and restored the local variables which were saved when
2877		 * this task called schedule() in the past. prev == current
2878		 * is still correct, but it can be moved to another cpu/rq.
2879		 */
2880		cpu = smp_processor_id();
2881		rq = cpu_rq(cpu);
2882	} else
2883		raw_spin_unlock_irq(&rq->lock);
2884
2885	post_schedule(rq);
2886
2887	sched_preempt_enable_no_resched();
2888	if (need_resched())
2889		goto need_resched;
2890}
2891
2892static inline void sched_submit_work(struct task_struct *tsk)
2893{
2894	if (!tsk->state || tsk_is_pi_blocked(tsk))
2895		return;
2896	/*
2897	 * If we are going to sleep and we have plugged IO queued,
2898	 * make sure to submit it to avoid deadlocks.
2899	 */
2900	if (blk_needs_flush_plug(tsk))
2901		blk_schedule_flush_plug(tsk);
2902}
2903
2904asmlinkage void __sched schedule(void)
2905{
2906	struct task_struct *tsk = current;
2907
2908	sched_submit_work(tsk);
2909	__schedule();
2910}
2911EXPORT_SYMBOL(schedule);
2912
2913/**
2914 * schedule_preempt_disabled - called with preemption disabled
2915 *
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2917 */
2918void __sched schedule_preempt_disabled(void)
2919{
2920	sched_preempt_enable_no_resched();
2921	schedule();
2922	preempt_disable();
2923}
2924
2925#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2926
2927static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2928{
2929	if (lock->owner != owner)
2930		return false;
2931
2932	/*
2933	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2934	 * lock->owner still matches owner, if that fails, owner might
2935	 * point to free()d memory, if it still matches, the rcu_read_lock()
2936	 * ensures the memory stays valid.
2937	 */
2938	barrier();
2939
2940	return owner->on_cpu;
2941}
2942
2943/*
2944 * Look out! "owner" is an entirely speculative pointer
2945 * access and not reliable.
2946 */
2947int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2948{
2949	if (!sched_feat(OWNER_SPIN))
2950		return 0;
2951
2952	rcu_read_lock();
2953	while (owner_running(lock, owner)) {
2954		if (need_resched())
2955			break;
2956
2957		arch_mutex_cpu_relax();
2958	}
2959	rcu_read_unlock();
2960
2961	/*
2962	 * We break out the loop above on need_resched() and when the
2963	 * owner changed, which is a sign for heavy contention. Return
2964	 * success only when lock->owner is NULL.
2965	 */
2966	return lock->owner == NULL;
2967}
2968#endif
2969
2970#ifdef CONFIG_PREEMPT
2971/*
2972 * this is the entry point to schedule() from in-kernel preemption
2973 * off of preempt_enable. Kernel preemptions off return from interrupt
2974 * occur there and call schedule directly.
2975 */
2976asmlinkage void __sched notrace preempt_schedule(void)
2977{
2978	struct thread_info *ti = current_thread_info();
2979
2980	/*
2981	 * If there is a non-zero preempt_count or interrupts are disabled,
2982	 * we do not want to preempt the current task. Just return..
2983	 */
2984	if (likely(ti->preempt_count || irqs_disabled()))
2985		return;
2986
2987	do {
2988		add_preempt_count_notrace(PREEMPT_ACTIVE);
2989		__schedule();
2990		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2991
2992		/*
2993		 * Check again in case we missed a preemption opportunity
2994		 * between schedule and now.
2995		 */
2996		barrier();
2997	} while (need_resched());
2998}
2999EXPORT_SYMBOL(preempt_schedule);
3000
3001/*
3002 * this is the entry point to schedule() from kernel preemption
3003 * off of irq context.
3004 * Note, that this is called and return with irqs disabled. This will
3005 * protect us against recursive calling from irq.
3006 */
3007asmlinkage void __sched preempt_schedule_irq(void)
3008{
3009	struct thread_info *ti = current_thread_info();
3010
3011	/* Catch callers which need to be fixed */
3012	BUG_ON(ti->preempt_count || !irqs_disabled());
3013
3014	do {
3015		add_preempt_count(PREEMPT_ACTIVE);
3016		local_irq_enable();
3017		__schedule();
3018		local_irq_disable();
3019		sub_preempt_count(PREEMPT_ACTIVE);
3020
3021		/*
3022		 * Check again in case we missed a preemption opportunity
3023		 * between schedule and now.
3024		 */
3025		barrier();
3026	} while (need_resched());
3027}
3028
3029#endif /* CONFIG_PREEMPT */
3030
3031int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3032			  void *key)
3033{
3034	return try_to_wake_up(curr->private, mode, wake_flags);
3035}
3036EXPORT_SYMBOL(default_wake_function);
3037
3038/*
3039 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3040 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3041 * number) then we wake all the non-exclusive tasks and one exclusive task.
3042 *
3043 * There are circumstances in which we can try to wake a task which has already
3044 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3045 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3046 */
3047static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3048			int nr_exclusive, int wake_flags, void *key)
3049{
3050	wait_queue_t *curr, *next;
3051
3052	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3053		unsigned flags = curr->flags;
3054
3055		if (curr->func(curr, mode, wake_flags, key) &&
3056				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3057			break;
3058	}
3059}
3060
3061/**
3062 * __wake_up - wake up threads blocked on a waitqueue.
3063 * @q: the waitqueue
3064 * @mode: which threads
3065 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3066 * @key: is directly passed to the wakeup function
3067 *
3068 * It may be assumed that this function implies a write memory barrier before
3069 * changing the task state if and only if any tasks are woken up.
3070 */
3071void __wake_up(wait_queue_head_t *q, unsigned int mode,
3072			int nr_exclusive, void *key)
3073{
3074	unsigned long flags;
3075
3076	spin_lock_irqsave(&q->lock, flags);
3077	__wake_up_common(q, mode, nr_exclusive, 0, key);
3078	spin_unlock_irqrestore(&q->lock, flags);
3079}
3080EXPORT_SYMBOL(__wake_up);
3081
3082/*
3083 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3084 */
3085void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3086{
3087	__wake_up_common(q, mode, nr, 0, NULL);
3088}
3089EXPORT_SYMBOL_GPL(__wake_up_locked);
3090
3091void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3092{
3093	__wake_up_common(q, mode, 1, 0, key);
3094}
3095EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3096
3097/**
3098 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3099 * @q: the waitqueue
3100 * @mode: which threads
3101 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3102 * @key: opaque value to be passed to wakeup targets
3103 *
3104 * The sync wakeup differs that the waker knows that it will schedule
3105 * away soon, so while the target thread will be woken up, it will not
3106 * be migrated to another CPU - ie. the two threads are 'synchronized'
3107 * with each other. This can prevent needless bouncing between CPUs.
3108 *
3109 * On UP it can prevent extra preemption.
3110 *
3111 * It may be assumed that this function implies a write memory barrier before
3112 * changing the task state if and only if any tasks are woken up.
3113 */
3114void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3115			int nr_exclusive, void *key)
3116{
3117	unsigned long flags;
3118	int wake_flags = WF_SYNC;
3119
3120	if (unlikely(!q))
3121		return;
3122
3123	if (unlikely(!nr_exclusive))
3124		wake_flags = 0;
3125
3126	spin_lock_irqsave(&q->lock, flags);
3127	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3128	spin_unlock_irqrestore(&q->lock, flags);
3129}
3130EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3131
3132/*
3133 * __wake_up_sync - see __wake_up_sync_key()
3134 */
3135void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3136{
3137	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3138}
3139EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3140
3141/**
3142 * complete: - signals a single thread waiting on this completion
3143 * @x:  holds the state of this particular completion
3144 *
3145 * This will wake up a single thread waiting on this completion. Threads will be
3146 * awakened in the same order in which they were queued.
3147 *
3148 * See also complete_all(), wait_for_completion() and related routines.
3149 *
3150 * It may be assumed that this function implies a write memory barrier before
3151 * changing the task state if and only if any tasks are woken up.
3152 */
3153void complete(struct completion *x)
3154{
3155	unsigned long flags;
3156
3157	spin_lock_irqsave(&x->wait.lock, flags);
3158	x->done++;
3159	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3160	spin_unlock_irqrestore(&x->wait.lock, flags);
3161}
3162EXPORT_SYMBOL(complete);
3163
3164/**
3165 * complete_all: - signals all threads waiting on this completion
3166 * @x:  holds the state of this particular completion
3167 *
3168 * This will wake up all threads waiting on this particular completion event.
3169 *
3170 * It may be assumed that this function implies a write memory barrier before
3171 * changing the task state if and only if any tasks are woken up.
3172 */
3173void complete_all(struct completion *x)
3174{
3175	unsigned long flags;
3176
3177	spin_lock_irqsave(&x->wait.lock, flags);
3178	x->done += UINT_MAX/2;
3179	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3180	spin_unlock_irqrestore(&x->wait.lock, flags);
3181}
3182EXPORT_SYMBOL(complete_all);
3183
3184static inline long __sched
3185do_wait_for_common(struct completion *x, long timeout, int state)
3186{
3187	if (!x->done) {
3188		DECLARE_WAITQUEUE(wait, current);
3189
3190		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3191		do {
3192			if (signal_pending_state(state, current)) {
3193				timeout = -ERESTARTSYS;
3194				break;
3195			}
3196			__set_current_state(state);
3197			spin_unlock_irq(&x->wait.lock);
3198			timeout = schedule_timeout(timeout);
3199			spin_lock_irq(&x->wait.lock);
3200		} while (!x->done && timeout);
3201		__remove_wait_queue(&x->wait, &wait);
3202		if (!x->done)
3203			return timeout;
3204	}
3205	x->done--;
3206	return timeout ?: 1;
3207}
3208
3209static long __sched
3210wait_for_common(struct completion *x, long timeout, int state)
3211{
3212	might_sleep();
3213
3214	spin_lock_irq(&x->wait.lock);
3215	timeout = do_wait_for_common(x, timeout, state);
3216	spin_unlock_irq(&x->wait.lock);
3217	return timeout;
3218}
3219
3220/**
3221 * wait_for_completion: - waits for completion of a task
3222 * @x:  holds the state of this particular completion
3223 *
3224 * This waits to be signaled for completion of a specific task. It is NOT
3225 * interruptible and there is no timeout.
3226 *
3227 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3228 * and interrupt capability. Also see complete().
3229 */
3230void __sched wait_for_completion(struct completion *x)
3231{
3232	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3233}
3234EXPORT_SYMBOL(wait_for_completion);
3235
3236/**
3237 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3238 * @x:  holds the state of this particular completion
3239 * @timeout:  timeout value in jiffies
3240 *
3241 * This waits for either a completion of a specific task to be signaled or for a
3242 * specified timeout to expire. The timeout is in jiffies. It is not
3243 * interruptible.
3244 *
3245 * The return value is 0 if timed out, and positive (at least 1, or number of
3246 * jiffies left till timeout) if completed.
3247 */
3248unsigned long __sched
3249wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3250{
3251	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3252}
3253EXPORT_SYMBOL(wait_for_completion_timeout);
3254
3255/**
3256 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3257 * @x:  holds the state of this particular completion
3258 *
3259 * This waits for completion of a specific task to be signaled. It is
3260 * interruptible.
3261 *
3262 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3263 */
3264int __sched wait_for_completion_interruptible(struct completion *x)
3265{
3266	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3267	if (t == -ERESTARTSYS)
3268		return t;
3269	return 0;
3270}
3271EXPORT_SYMBOL(wait_for_completion_interruptible);
3272
3273/**
3274 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3275 * @x:  holds the state of this particular completion
3276 * @timeout:  timeout value in jiffies
3277 *
3278 * This waits for either a completion of a specific task to be signaled or for a
3279 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3280 *
3281 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3282 * positive (at least 1, or number of jiffies left till timeout) if completed.
3283 */
3284long __sched
3285wait_for_completion_interruptible_timeout(struct completion *x,
3286					  unsigned long timeout)
3287{
3288	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3289}
3290EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3291
3292/**
3293 * wait_for_completion_killable: - waits for completion of a task (killable)
3294 * @x:  holds the state of this particular completion
3295 *
3296 * This waits to be signaled for completion of a specific task. It can be
3297 * interrupted by a kill signal.
3298 *
3299 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3300 */
3301int __sched wait_for_completion_killable(struct completion *x)
3302{
3303	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3304	if (t == -ERESTARTSYS)
3305		return t;
3306	return 0;
3307}
3308EXPORT_SYMBOL(wait_for_completion_killable);
3309
3310/**
3311 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3312 * @x:  holds the state of this particular completion
3313 * @timeout:  timeout value in jiffies
3314 *
3315 * This waits for either a completion of a specific task to be
3316 * signaled or for a specified timeout to expire. It can be
3317 * interrupted by a kill signal. The timeout is in jiffies.
3318 *
3319 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3320 * positive (at least 1, or number of jiffies left till timeout) if completed.
3321 */
3322long __sched
3323wait_for_completion_killable_timeout(struct completion *x,
3324				     unsigned long timeout)
3325{
3326	return wait_for_common(x, timeout, TASK_KILLABLE);
3327}
3328EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3329
3330/**
3331 *	try_wait_for_completion - try to decrement a completion without blocking
3332 *	@x:	completion structure
3333 *
3334 *	Returns: 0 if a decrement cannot be done without blocking
3335 *		 1 if a decrement succeeded.
3336 *
3337 *	If a completion is being used as a counting completion,
3338 *	attempt to decrement the counter without blocking. This
3339 *	enables us to avoid waiting if the resource the completion
3340 *	is protecting is not available.
3341 */
3342bool try_wait_for_completion(struct completion *x)
3343{
3344	unsigned long flags;
3345	int ret = 1;
3346
3347	spin_lock_irqsave(&x->wait.lock, flags);
3348	if (!x->done)
3349		ret = 0;
3350	else
3351		x->done--;
3352	spin_unlock_irqrestore(&x->wait.lock, flags);
3353	return ret;
3354}
3355EXPORT_SYMBOL(try_wait_for_completion);
3356
3357/**
3358 *	completion_done - Test to see if a completion has any waiters
3359 *	@x:	completion structure
3360 *
3361 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3362 *		 1 if there are no waiters.
3363 *
3364 */
3365bool completion_done(struct completion *x)
3366{
3367	unsigned long flags;
3368	int ret = 1;
3369
3370	spin_lock_irqsave(&x->wait.lock, flags);
3371	if (!x->done)
3372		ret = 0;
3373	spin_unlock_irqrestore(&x->wait.lock, flags);
3374	return ret;
3375}
3376EXPORT_SYMBOL(completion_done);
3377
3378static long __sched
3379sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3380{
3381	unsigned long flags;
3382	wait_queue_t wait;
3383
3384	init_waitqueue_entry(&wait, current);
3385
3386	__set_current_state(state);
3387
3388	spin_lock_irqsave(&q->lock, flags);
3389	__add_wait_queue(q, &wait);
3390	spin_unlock(&q->lock);
3391	timeout = schedule_timeout(timeout);
3392	spin_lock_irq(&q->lock);
3393	__remove_wait_queue(q, &wait);
3394	spin_unlock_irqrestore(&q->lock, flags);
3395
3396	return timeout;
3397}
3398
3399void __sched interruptible_sleep_on(wait_queue_head_t *q)
3400{
3401	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3402}
3403EXPORT_SYMBOL(interruptible_sleep_on);
3404
3405long __sched
3406interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3407{
3408	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3409}
3410EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3411
3412void __sched sleep_on(wait_queue_head_t *q)
3413{
3414	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3415}
3416EXPORT_SYMBOL(sleep_on);
3417
3418long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3419{
3420	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3421}
3422EXPORT_SYMBOL(sleep_on_timeout);
3423
3424#ifdef CONFIG_RT_MUTEXES
3425
3426/*
3427 * rt_mutex_setprio - set the current priority of a task
3428 * @p: task
3429 * @prio: prio value (kernel-internal form)
3430 *
3431 * This function changes the 'effective' priority of a task. It does
3432 * not touch ->normal_prio like __setscheduler().
3433 *
3434 * Used by the rt_mutex code to implement priority inheritance logic.
3435 */
3436void rt_mutex_setprio(struct task_struct *p, int prio)
3437{
3438	int oldprio, on_rq, running;
3439	struct rq *rq;
3440	const struct sched_class *prev_class;
3441
3442	BUG_ON(prio < 0 || prio > MAX_PRIO);
3443
3444	rq = __task_rq_lock(p);
3445
3446	/*
3447	 * Idle task boosting is a nono in general. There is one
3448	 * exception, when PREEMPT_RT and NOHZ is active:
3449	 *
3450	 * The idle task calls get_next_timer_interrupt() and holds
3451	 * the timer wheel base->lock on the CPU and another CPU wants
3452	 * to access the timer (probably to cancel it). We can safely
3453	 * ignore the boosting request, as the idle CPU runs this code
3454	 * with interrupts disabled and will complete the lock
3455	 * protected section without being interrupted. So there is no
3456	 * real need to boost.
3457	 */
3458	if (unlikely(p == rq->idle)) {
3459		WARN_ON(p != rq->curr);
3460		WARN_ON(p->pi_blocked_on);
3461		goto out_unlock;
3462	}
3463
3464	trace_sched_pi_setprio(p, prio);
3465	oldprio = p->prio;
3466	prev_class = p->sched_class;
3467	on_rq = p->on_rq;
3468	running = task_current(rq, p);
3469	if (on_rq)
3470		dequeue_task(rq, p, 0);
3471	if (running)
3472		p->sched_class->put_prev_task(rq, p);
3473
3474	if (rt_prio(prio))
3475		p->sched_class = &rt_sched_class;
3476	else
3477		p->sched_class = &fair_sched_class;
3478
3479	p->prio = prio;
3480
3481	if (running)
3482		p->sched_class->set_curr_task(rq);
3483	if (on_rq)
3484		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3485
3486	check_class_changed(rq, p, prev_class, oldprio);
3487out_unlock:
3488	__task_rq_unlock(rq);
3489}
3490#endif
3491void set_user_nice(struct task_struct *p, long nice)
3492{
3493	int old_prio, delta, on_rq;
3494	unsigned long flags;
3495	struct rq *rq;
3496
3497	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3498		return;
3499	/*
3500	 * We have to be careful, if called from sys_setpriority(),
3501	 * the task might be in the middle of scheduling on another CPU.
3502	 */
3503	rq = task_rq_lock(p, &flags);
3504	/*
3505	 * The RT priorities are set via sched_setscheduler(), but we still
3506	 * allow the 'normal' nice value to be set - but as expected
3507	 * it wont have any effect on scheduling until the task is
3508	 * SCHED_FIFO/SCHED_RR:
3509	 */
3510	if (task_has_rt_policy(p)) {
3511		p->static_prio = NICE_TO_PRIO(nice);
3512		goto out_unlock;
3513	}
3514	on_rq = p->on_rq;
3515	if (on_rq)
3516		dequeue_task(rq, p, 0);
3517
3518	p->static_prio = NICE_TO_PRIO(nice);
3519	set_load_weight(p);
3520	old_prio = p->prio;
3521	p->prio = effective_prio(p);
3522	delta = p->prio - old_prio;
3523
3524	if (on_rq) {
3525		enqueue_task(rq, p, 0);
3526		/*
3527		 * If the task increased its priority or is running and
3528		 * lowered its priority, then reschedule its CPU:
3529		 */
3530		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3531			resched_task(rq->curr);
3532	}
3533out_unlock:
3534	task_rq_unlock(rq, p, &flags);
3535}
3536EXPORT_SYMBOL(set_user_nice);
3537
3538/*
3539 * can_nice - check if a task can reduce its nice value
3540 * @p: task
3541 * @nice: nice value
3542 */
3543int can_nice(const struct task_struct *p, const int nice)
3544{
3545	/* convert nice value [19,-20] to rlimit style value [1,40] */
3546	int nice_rlim = 20 - nice;
3547
3548	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3549		capable(CAP_SYS_NICE));
3550}
3551
3552#ifdef __ARCH_WANT_SYS_NICE
3553
3554/*
3555 * sys_nice - change the priority of the current process.
3556 * @increment: priority increment
3557 *
3558 * sys_setpriority is a more generic, but much slower function that
3559 * does similar things.
3560 */
3561SYSCALL_DEFINE1(nice, int, increment)
3562{
3563	long nice, retval;
3564
3565	/*
3566	 * Setpriority might change our priority at the same moment.
3567	 * We don't have to worry. Conceptually one call occurs first
3568	 * and we have a single winner.
3569	 */
3570	if (increment < -40)
3571		increment = -40;
3572	if (increment > 40)
3573		increment = 40;
3574
3575	nice = TASK_NICE(current) + increment;
3576	if (nice < -20)
3577		nice = -20;
3578	if (nice > 19)
3579		nice = 19;
3580
3581	if (increment < 0 && !can_nice(current, nice))
3582		return -EPERM;
3583
3584	retval = security_task_setnice(current, nice);
3585	if (retval)
3586		return retval;
3587
3588	set_user_nice(current, nice);
3589	return 0;
3590}
3591
3592#endif
3593
3594/**
3595 * task_prio - return the priority value of a given task.
3596 * @p: the task in question.
3597 *
3598 * This is the priority value as seen by users in /proc.
3599 * RT tasks are offset by -200. Normal tasks are centered
3600 * around 0, value goes from -16 to +15.
3601 */
3602int task_prio(const struct task_struct *p)
3603{
3604	return p->prio - MAX_RT_PRIO;
3605}
3606
3607/**
3608 * task_nice - return the nice value of a given task.
3609 * @p: the task in question.
3610 */
3611int task_nice(const struct task_struct *p)
3612{
3613	return TASK_NICE(p);
3614}
3615EXPORT_SYMBOL(task_nice);
3616
3617/**
3618 * idle_cpu - is a given cpu idle currently?
3619 * @cpu: the processor in question.
3620 */
3621int idle_cpu(int cpu)
3622{
3623	struct rq *rq = cpu_rq(cpu);
3624
3625	if (rq->curr != rq->idle)
3626		return 0;
3627
3628	if (rq->nr_running)
3629		return 0;
3630
3631#ifdef CONFIG_SMP
3632	if (!llist_empty(&rq->wake_list))
3633		return 0;
3634#endif
3635
3636	return 1;
3637}
3638
3639/**
3640 * idle_task - return the idle task for a given cpu.
3641 * @cpu: the processor in question.
3642 */
3643struct task_struct *idle_task(int cpu)
3644{
3645	return cpu_rq(cpu)->idle;
3646}
3647
3648/**
3649 * find_process_by_pid - find a process with a matching PID value.
3650 * @pid: the pid in question.
3651 */
3652static struct task_struct *find_process_by_pid(pid_t pid)
3653{
3654	return pid ? find_task_by_vpid(pid) : current;
3655}
3656
3657/* Actually do priority change: must hold rq lock. */
3658static void
3659__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3660{
3661	p->policy = policy;
3662	p->rt_priority = prio;
3663	p->normal_prio = normal_prio(p);
3664	/* we are holding p->pi_lock already */
3665	p->prio = rt_mutex_getprio(p);
3666	if (rt_prio(p->prio))
3667		p->sched_class = &rt_sched_class;
3668	else
3669		p->sched_class = &fair_sched_class;
3670	set_load_weight(p);
3671}
3672
3673/*
3674 * check the target process has a UID that matches the current process's
3675 */
3676static bool check_same_owner(struct task_struct *p)
3677{
3678	const struct cred *cred = current_cred(), *pcred;
3679	bool match;
3680
3681	rcu_read_lock();
3682	pcred = __task_cred(p);
3683	match = (uid_eq(cred->euid, pcred->euid) ||
3684		 uid_eq(cred->euid, pcred->uid));
3685	rcu_read_unlock();
3686	return match;
3687}
3688
3689static int __sched_setscheduler(struct task_struct *p, int policy,
3690				const struct sched_param *param, bool user)
3691{
3692	int retval, oldprio, oldpolicy = -1, on_rq, running;
3693	unsigned long flags;
3694	const struct sched_class *prev_class;
3695	struct rq *rq;
3696	int reset_on_fork;
3697
3698	/* may grab non-irq protected spin_locks */
3699	BUG_ON(in_interrupt());
3700recheck:
3701	/* double check policy once rq lock held */
3702	if (policy < 0) {
3703		reset_on_fork = p->sched_reset_on_fork;
3704		policy = oldpolicy = p->policy;
3705	} else {
3706		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3707		policy &= ~SCHED_RESET_ON_FORK;
3708
3709		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3710				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3711				policy != SCHED_IDLE)
3712			return -EINVAL;
3713	}
3714
3715	/*
3716	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3717	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3718	 * SCHED_BATCH and SCHED_IDLE is 0.
3719	 */
3720	if (param->sched_priority < 0 ||
3721	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3722	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3723		return -EINVAL;
3724	if (rt_policy(policy) != (param->sched_priority != 0))
3725		return -EINVAL;
3726
3727	/*
3728	 * Allow unprivileged RT tasks to decrease priority:
3729	 */
3730	if (user && !capable(CAP_SYS_NICE)) {
3731		if (rt_policy(policy)) {
3732			unsigned long rlim_rtprio =
3733					task_rlimit(p, RLIMIT_RTPRIO);
3734
3735			/* can't set/change the rt policy */
3736			if (policy != p->policy && !rlim_rtprio)
3737				return -EPERM;
3738
3739			/* can't increase priority */
3740			if (param->sched_priority > p->rt_priority &&
3741			    param->sched_priority > rlim_rtprio)
3742				return -EPERM;
3743		}
3744
3745		/*
3746		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3747		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3748		 */
3749		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3750			if (!can_nice(p, TASK_NICE(p)))
3751				return -EPERM;
3752		}
3753
3754		/* can't change other user's priorities */
3755		if (!check_same_owner(p))
3756			return -EPERM;
3757
3758		/* Normal users shall not reset the sched_reset_on_fork flag */
3759		if (p->sched_reset_on_fork && !reset_on_fork)
3760			return -EPERM;
3761	}
3762
3763	if (user) {
3764		retval = security_task_setscheduler(p);
3765		if (retval)
3766			return retval;
3767	}
3768
3769	/*
3770	 * make sure no PI-waiters arrive (or leave) while we are
3771	 * changing the priority of the task:
3772	 *
3773	 * To be able to change p->policy safely, the appropriate
3774	 * runqueue lock must be held.
3775	 */
3776	rq = task_rq_lock(p, &flags);
3777
3778	/*
3779	 * Changing the policy of the stop threads its a very bad idea
3780	 */
3781	if (p == rq->stop) {
3782		task_rq_unlock(rq, p, &flags);
3783		return -EINVAL;
3784	}
3785
3786	/*
3787	 * If not changing anything there's no need to proceed further:
3788	 */
3789	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3790			param->sched_priority == p->rt_priority))) {
3791		task_rq_unlock(rq, p, &flags);
3792		return 0;
3793	}
3794
3795#ifdef CONFIG_RT_GROUP_SCHED
3796	if (user) {
3797		/*
3798		 * Do not allow realtime tasks into groups that have no runtime
3799		 * assigned.
3800		 */
3801		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3802				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3803				!task_group_is_autogroup(task_group(p))) {
3804			task_rq_unlock(rq, p, &flags);
3805			return -EPERM;
3806		}
3807	}
3808#endif
3809
3810	/* recheck policy now with rq lock held */
3811	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3812		policy = oldpolicy = -1;
3813		task_rq_unlock(rq, p, &flags);
3814		goto recheck;
3815	}
3816	on_rq = p->on_rq;
3817	running = task_current(rq, p);
3818	if (on_rq)
3819		dequeue_task(rq, p, 0);
3820	if (running)
3821		p->sched_class->put_prev_task(rq, p);
3822
3823	p->sched_reset_on_fork = reset_on_fork;
3824
3825	oldprio = p->prio;
3826	prev_class = p->sched_class;
3827	__setscheduler(rq, p, policy, param->sched_priority);
3828
3829	if (running)
3830		p->sched_class->set_curr_task(rq);
3831	if (on_rq)
3832		enqueue_task(rq, p, 0);
3833
3834	check_class_changed(rq, p, prev_class, oldprio);
3835	task_rq_unlock(rq, p, &flags);
3836
3837	rt_mutex_adjust_pi(p);
3838
3839	return 0;
3840}
3841
3842/**
3843 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3844 * @p: the task in question.
3845 * @policy: new policy.
3846 * @param: structure containing the new RT priority.
3847 *
3848 * NOTE that the task may be already dead.
3849 */
3850int sched_setscheduler(struct task_struct *p, int policy,
3851		       const struct sched_param *param)
3852{
3853	return __sched_setscheduler(p, policy, param, true);
3854}
3855EXPORT_SYMBOL_GPL(sched_setscheduler);
3856
3857/**
3858 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3859 * @p: the task in question.
3860 * @policy: new policy.
3861 * @param: structure containing the new RT priority.
3862 *
3863 * Just like sched_setscheduler, only don't bother checking if the
3864 * current context has permission.  For example, this is needed in
3865 * stop_machine(): we create temporary high priority worker threads,
3866 * but our caller might not have that capability.
3867 */
3868int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3869			       const struct sched_param *param)
3870{
3871	return __sched_setscheduler(p, policy, param, false);
3872}
3873
3874static int
3875do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3876{
3877	struct sched_param lparam;
3878	struct task_struct *p;
3879	int retval;
3880
3881	if (!param || pid < 0)
3882		return -EINVAL;
3883	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3884		return -EFAULT;
3885
3886	rcu_read_lock();
3887	retval = -ESRCH;
3888	p = find_process_by_pid(pid);
3889	if (p != NULL)
3890		retval = sched_setscheduler(p, policy, &lparam);
3891	rcu_read_unlock();
3892
3893	return retval;
3894}
3895
3896/**
3897 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3898 * @pid: the pid in question.
3899 * @policy: new policy.
3900 * @param: structure containing the new RT priority.
3901 */
3902SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3903		struct sched_param __user *, param)
3904{
3905	/* negative values for policy are not valid */
3906	if (policy < 0)
3907		return -EINVAL;
3908
3909	return do_sched_setscheduler(pid, policy, param);
3910}
3911
3912/**
3913 * sys_sched_setparam - set/change the RT priority of a thread
3914 * @pid: the pid in question.
3915 * @param: structure containing the new RT priority.
3916 */
3917SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3918{
3919	return do_sched_setscheduler(pid, -1, param);
3920}
3921
3922/**
3923 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3924 * @pid: the pid in question.
3925 */
3926SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3927{
3928	struct task_struct *p;
3929	int retval;
3930
3931	if (pid < 0)
3932		return -EINVAL;
3933
3934	retval = -ESRCH;
3935	rcu_read_lock();
3936	p = find_process_by_pid(pid);
3937	if (p) {
3938		retval = security_task_getscheduler(p);
3939		if (!retval)
3940			retval = p->policy
3941				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3942	}
3943	rcu_read_unlock();
3944	return retval;
3945}
3946
3947/**
3948 * sys_sched_getparam - get the RT priority of a thread
3949 * @pid: the pid in question.
3950 * @param: structure containing the RT priority.
3951 */
3952SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3953{
3954	struct sched_param lp;
3955	struct task_struct *p;
3956	int retval;
3957
3958	if (!param || pid < 0)
3959		return -EINVAL;
3960
3961	rcu_read_lock();
3962	p = find_process_by_pid(pid);
3963	retval = -ESRCH;
3964	if (!p)
3965		goto out_unlock;
3966
3967	retval = security_task_getscheduler(p);
3968	if (retval)
3969		goto out_unlock;
3970
3971	lp.sched_priority = p->rt_priority;
3972	rcu_read_unlock();
3973
3974	/*
3975	 * This one might sleep, we cannot do it with a spinlock held ...
3976	 */
3977	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3978
3979	return retval;
3980
3981out_unlock:
3982	rcu_read_unlock();
3983	return retval;
3984}
3985
3986long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3987{
3988	cpumask_var_t cpus_allowed, new_mask;
3989	struct task_struct *p;
3990	int retval;
3991
3992	get_online_cpus();
3993	rcu_read_lock();
3994
3995	p = find_process_by_pid(pid);
3996	if (!p) {
3997		rcu_read_unlock();
3998		put_online_cpus();
3999		return -ESRCH;
4000	}
4001
4002	/* Prevent p going away */
4003	get_task_struct(p);
4004	rcu_read_unlock();
4005
4006	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4007		retval = -ENOMEM;
4008		goto out_put_task;
4009	}
4010	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4011		retval = -ENOMEM;
4012		goto out_free_cpus_allowed;
4013	}
4014	retval = -EPERM;
4015	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4016		goto out_unlock;
4017
4018	retval = security_task_setscheduler(p);
4019	if (retval)
4020		goto out_unlock;
4021
4022	cpuset_cpus_allowed(p, cpus_allowed);
4023	cpumask_and(new_mask, in_mask, cpus_allowed);
4024again:
4025	retval = set_cpus_allowed_ptr(p, new_mask);
4026
4027	if (!retval) {
4028		cpuset_cpus_allowed(p, cpus_allowed);
4029		if (!cpumask_subset(new_mask, cpus_allowed)) {
4030			/*
4031			 * We must have raced with a concurrent cpuset
4032			 * update. Just reset the cpus_allowed to the
4033			 * cpuset's cpus_allowed
4034			 */
4035			cpumask_copy(new_mask, cpus_allowed);
4036			goto again;
4037		}
4038	}
4039out_unlock:
4040	free_cpumask_var(new_mask);
4041out_free_cpus_allowed:
4042	free_cpumask_var(cpus_allowed);
4043out_put_task:
4044	put_task_struct(p);
4045	put_online_cpus();
4046	return retval;
4047}
4048
4049static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4050			     struct cpumask *new_mask)
4051{
4052	if (len < cpumask_size())
4053		cpumask_clear(new_mask);
4054	else if (len > cpumask_size())
4055		len = cpumask_size();
4056
4057	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4058}
4059
4060/**
4061 * sys_sched_setaffinity - set the cpu affinity of a process
4062 * @pid: pid of the process
4063 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4064 * @user_mask_ptr: user-space pointer to the new cpu mask
4065 */
4066SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4067		unsigned long __user *, user_mask_ptr)
4068{
4069	cpumask_var_t new_mask;
4070	int retval;
4071
4072	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4073		return -ENOMEM;
4074
4075	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4076	if (retval == 0)
4077		retval = sched_setaffinity(pid, new_mask);
4078	free_cpumask_var(new_mask);
4079	return retval;
4080}
4081
4082long sched_getaffinity(pid_t pid, struct cpumask *mask)
4083{
4084	struct task_struct *p;
4085	unsigned long flags;
4086	int retval;
4087
4088	get_online_cpus();
4089	rcu_read_lock();
4090
4091	retval = -ESRCH;
4092	p = find_process_by_pid(pid);
4093	if (!p)
4094		goto out_unlock;
4095
4096	retval = security_task_getscheduler(p);
4097	if (retval)
4098		goto out_unlock;
4099
4100	raw_spin_lock_irqsave(&p->pi_lock, flags);
4101	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4102	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4103
4104out_unlock:
4105	rcu_read_unlock();
4106	put_online_cpus();
4107
4108	return retval;
4109}
4110
4111/**
4112 * sys_sched_getaffinity - get the cpu affinity of a process
4113 * @pid: pid of the process
4114 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4115 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4116 */
4117SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4118		unsigned long __user *, user_mask_ptr)
4119{
4120	int ret;
4121	cpumask_var_t mask;
4122
4123	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4124		return -EINVAL;
4125	if (len & (sizeof(unsigned long)-1))
4126		return -EINVAL;
4127
4128	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4129		return -ENOMEM;
4130
4131	ret = sched_getaffinity(pid, mask);
4132	if (ret == 0) {
4133		size_t retlen = min_t(size_t, len, cpumask_size());
4134
4135		if (copy_to_user(user_mask_ptr, mask, retlen))
4136			ret = -EFAULT;
4137		else
4138			ret = retlen;
4139	}
4140	free_cpumask_var(mask);
4141
4142	return ret;
4143}
4144
4145/**
4146 * sys_sched_yield - yield the current processor to other threads.
4147 *
4148 * This function yields the current CPU to other tasks. If there are no
4149 * other threads running on this CPU then this function will return.
4150 */
4151SYSCALL_DEFINE0(sched_yield)
4152{
4153	struct rq *rq = this_rq_lock();
4154
4155	schedstat_inc(rq, yld_count);
4156	current->sched_class->yield_task(rq);
4157
4158	/*
4159	 * Since we are going to call schedule() anyway, there's
4160	 * no need to preempt or enable interrupts:
4161	 */
4162	__release(rq->lock);
4163	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4164	do_raw_spin_unlock(&rq->lock);
4165	sched_preempt_enable_no_resched();
4166
4167	schedule();
4168
4169	return 0;
4170}
4171
4172static inline int should_resched(void)
4173{
4174	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4175}
4176
4177static void __cond_resched(void)
4178{
4179	add_preempt_count(PREEMPT_ACTIVE);
4180	__schedule();
4181	sub_preempt_count(PREEMPT_ACTIVE);
4182}
4183
4184int __sched _cond_resched(void)
4185{
4186	if (should_resched()) {
4187		__cond_resched();
4188		return 1;
4189	}
4190	return 0;
4191}
4192EXPORT_SYMBOL(_cond_resched);
4193
4194/*
4195 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4196 * call schedule, and on return reacquire the lock.
4197 *
4198 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4199 * operations here to prevent schedule() from being called twice (once via
4200 * spin_unlock(), once by hand).
4201 */
4202int __cond_resched_lock(spinlock_t *lock)
4203{
4204	int resched = should_resched();
4205	int ret = 0;
4206
4207	lockdep_assert_held(lock);
4208
4209	if (spin_needbreak(lock) || resched) {
4210		spin_unlock(lock);
4211		if (resched)
4212			__cond_resched();
4213		else
4214			cpu_relax();
4215		ret = 1;
4216		spin_lock(lock);
4217	}
4218	return ret;
4219}
4220EXPORT_SYMBOL(__cond_resched_lock);
4221
4222int __sched __cond_resched_softirq(void)
4223{
4224	BUG_ON(!in_softirq());
4225
4226	if (should_resched()) {
4227		local_bh_enable();
4228		__cond_resched();
4229		local_bh_disable();
4230		return 1;
4231	}
4232	return 0;
4233}
4234EXPORT_SYMBOL(__cond_resched_softirq);
4235
4236/**
4237 * yield - yield the current processor to other threads.
4238 *
4239 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4240 *
4241 * The scheduler is at all times free to pick the calling task as the most
4242 * eligible task to run, if removing the yield() call from your code breaks
4243 * it, its already broken.
4244 *
4245 * Typical broken usage is:
4246 *
4247 * while (!event)
4248 * 	yield();
4249 *
4250 * where one assumes that yield() will let 'the other' process run that will
4251 * make event true. If the current task is a SCHED_FIFO task that will never
4252 * happen. Never use yield() as a progress guarantee!!
4253 *
4254 * If you want to use yield() to wait for something, use wait_event().
4255 * If you want to use yield() to be 'nice' for others, use cond_resched().
4256 * If you still want to use yield(), do not!
4257 */
4258void __sched yield(void)
4259{
4260	set_current_state(TASK_RUNNING);
4261	sys_sched_yield();
4262}
4263EXPORT_SYMBOL(yield);
4264
4265/**
4266 * yield_to - yield the current processor to another thread in
4267 * your thread group, or accelerate that thread toward the
4268 * processor it's on.
4269 * @p: target task
4270 * @preempt: whether task preemption is allowed or not
4271 *
4272 * It's the caller's job to ensure that the target task struct
4273 * can't go away on us before we can do any checks.
4274 *
4275 * Returns true if we indeed boosted the target task.
4276 */
4277bool __sched yield_to(struct task_struct *p, bool preempt)
4278{
4279	struct task_struct *curr = current;
4280	struct rq *rq, *p_rq;
4281	unsigned long flags;
4282	bool yielded = 0;
4283
4284	local_irq_save(flags);
4285	rq = this_rq();
4286
4287again:
4288	p_rq = task_rq(p);
4289	double_rq_lock(rq, p_rq);
4290	while (task_rq(p) != p_rq) {
4291		double_rq_unlock(rq, p_rq);
4292		goto again;
4293	}
4294
4295	if (!curr->sched_class->yield_to_task)
4296		goto out;
4297
4298	if (curr->sched_class != p->sched_class)
4299		goto out;
4300
4301	if (task_running(p_rq, p) || p->state)
4302		goto out;
4303
4304	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4305	if (yielded) {
4306		schedstat_inc(rq, yld_count);
4307		/*
4308		 * Make p's CPU reschedule; pick_next_entity takes care of
4309		 * fairness.
4310		 */
4311		if (preempt && rq != p_rq)
4312			resched_task(p_rq->curr);
4313	}
4314
4315out:
4316	double_rq_unlock(rq, p_rq);
4317	local_irq_restore(flags);
4318
4319	if (yielded)
4320		schedule();
4321
4322	return yielded;
4323}
4324EXPORT_SYMBOL_GPL(yield_to);
4325
4326/*
4327 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4328 * that process accounting knows that this is a task in IO wait state.
4329 */
4330void __sched io_schedule(void)
4331{
4332	struct rq *rq = raw_rq();
4333
4334	delayacct_blkio_start();
4335	atomic_inc(&rq->nr_iowait);
4336	blk_flush_plug(current);
4337	current->in_iowait = 1;
4338	schedule();
4339	current->in_iowait = 0;
4340	atomic_dec(&rq->nr_iowait);
4341	delayacct_blkio_end();
4342}
4343EXPORT_SYMBOL(io_schedule);
4344
4345long __sched io_schedule_timeout(long timeout)
4346{
4347	struct rq *rq = raw_rq();
4348	long ret;
4349
4350	delayacct_blkio_start();
4351	atomic_inc(&rq->nr_iowait);
4352	blk_flush_plug(current);
4353	current->in_iowait = 1;
4354	ret = schedule_timeout(timeout);
4355	current->in_iowait = 0;
4356	atomic_dec(&rq->nr_iowait);
4357	delayacct_blkio_end();
4358	return ret;
4359}
4360
4361/**
4362 * sys_sched_get_priority_max - return maximum RT priority.
4363 * @policy: scheduling class.
4364 *
4365 * this syscall returns the maximum rt_priority that can be used
4366 * by a given scheduling class.
4367 */
4368SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4369{
4370	int ret = -EINVAL;
4371
4372	switch (policy) {
4373	case SCHED_FIFO:
4374	case SCHED_RR:
4375		ret = MAX_USER_RT_PRIO-1;
4376		break;
4377	case SCHED_NORMAL:
4378	case SCHED_BATCH:
4379	case SCHED_IDLE:
4380		ret = 0;
4381		break;
4382	}
4383	return ret;
4384}
4385
4386/**
4387 * sys_sched_get_priority_min - return minimum RT priority.
4388 * @policy: scheduling class.
4389 *
4390 * this syscall returns the minimum rt_priority that can be used
4391 * by a given scheduling class.
4392 */
4393SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4394{
4395	int ret = -EINVAL;
4396
4397	switch (policy) {
4398	case SCHED_FIFO:
4399	case SCHED_RR:
4400		ret = 1;
4401		break;
4402	case SCHED_NORMAL:
4403	case SCHED_BATCH:
4404	case SCHED_IDLE:
4405		ret = 0;
4406	}
4407	return ret;
4408}
4409
4410/**
4411 * sys_sched_rr_get_interval - return the default timeslice of a process.
4412 * @pid: pid of the process.
4413 * @interval: userspace pointer to the timeslice value.
4414 *
4415 * this syscall writes the default timeslice value of a given process
4416 * into the user-space timespec buffer. A value of '0' means infinity.
4417 */
4418SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4419		struct timespec __user *, interval)
4420{
4421	struct task_struct *p;
4422	unsigned int time_slice;
4423	unsigned long flags;
4424	struct rq *rq;
4425	int retval;
4426	struct timespec t;
4427
4428	if (pid < 0)
4429		return -EINVAL;
4430
4431	retval = -ESRCH;
4432	rcu_read_lock();
4433	p = find_process_by_pid(pid);
4434	if (!p)
4435		goto out_unlock;
4436
4437	retval = security_task_getscheduler(p);
4438	if (retval)
4439		goto out_unlock;
4440
4441	rq = task_rq_lock(p, &flags);
4442	time_slice = p->sched_class->get_rr_interval(rq, p);
4443	task_rq_unlock(rq, p, &flags);
4444
4445	rcu_read_unlock();
4446	jiffies_to_timespec(time_slice, &t);
4447	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4448	return retval;
4449
4450out_unlock:
4451	rcu_read_unlock();
4452	return retval;
4453}
4454
4455static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4456
4457void sched_show_task(struct task_struct *p)
4458{
4459	unsigned long free = 0;
4460	unsigned state;
4461
4462	state = p->state ? __ffs(p->state) + 1 : 0;
4463	printk(KERN_INFO "%-15.15s %c", p->comm,
4464		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4465#if BITS_PER_LONG == 32
4466	if (state == TASK_RUNNING)
4467		printk(KERN_CONT " running  ");
4468	else
4469		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4470#else
4471	if (state == TASK_RUNNING)
4472		printk(KERN_CONT "  running task    ");
4473	else
4474		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4475#endif
4476#ifdef CONFIG_DEBUG_STACK_USAGE
4477	free = stack_not_used(p);
4478#endif
4479	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4480		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4481		(unsigned long)task_thread_info(p)->flags);
4482
4483	show_stack(p, NULL);
4484}
4485
4486void show_state_filter(unsigned long state_filter)
4487{
4488	struct task_struct *g, *p;
4489
4490#if BITS_PER_LONG == 32
4491	printk(KERN_INFO
4492		"  task                PC stack   pid father\n");
4493#else
4494	printk(KERN_INFO
4495		"  task                        PC stack   pid father\n");
4496#endif
4497	rcu_read_lock();
4498	do_each_thread(g, p) {
4499		/*
4500		 * reset the NMI-timeout, listing all files on a slow
4501		 * console might take a lot of time:
4502		 */
4503		touch_nmi_watchdog();
4504		if (!state_filter || (p->state & state_filter))
4505			sched_show_task(p);
4506	} while_each_thread(g, p);
4507
4508	touch_all_softlockup_watchdogs();
4509
4510#ifdef CONFIG_SCHED_DEBUG
4511	sysrq_sched_debug_show();
4512#endif
4513	rcu_read_unlock();
4514	/*
4515	 * Only show locks if all tasks are dumped:
4516	 */
4517	if (!state_filter)
4518		debug_show_all_locks();
4519}
4520
4521void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4522{
4523	idle->sched_class = &idle_sched_class;
4524}
4525
4526/**
4527 * init_idle - set up an idle thread for a given CPU
4528 * @idle: task in question
4529 * @cpu: cpu the idle task belongs to
4530 *
4531 * NOTE: this function does not set the idle thread's NEED_RESCHED
4532 * flag, to make booting more robust.
4533 */
4534void __cpuinit init_idle(struct task_struct *idle, int cpu)
4535{
4536	struct rq *rq = cpu_rq(cpu);
4537	unsigned long flags;
4538
4539	raw_spin_lock_irqsave(&rq->lock, flags);
4540
4541	__sched_fork(idle);
4542	idle->state = TASK_RUNNING;
4543	idle->se.exec_start = sched_clock();
4544
4545	do_set_cpus_allowed(idle, cpumask_of(cpu));
4546	/*
4547	 * We're having a chicken and egg problem, even though we are
4548	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4549	 * lockdep check in task_group() will fail.
4550	 *
4551	 * Similar case to sched_fork(). / Alternatively we could
4552	 * use task_rq_lock() here and obtain the other rq->lock.
4553	 *
4554	 * Silence PROVE_RCU
4555	 */
4556	rcu_read_lock();
4557	__set_task_cpu(idle, cpu);
4558	rcu_read_unlock();
4559
4560	rq->curr = rq->idle = idle;
4561#if defined(CONFIG_SMP)
4562	idle->on_cpu = 1;
4563#endif
4564	raw_spin_unlock_irqrestore(&rq->lock, flags);
4565
4566	/* Set the preempt count _outside_ the spinlocks! */
4567	task_thread_info(idle)->preempt_count = 0;
4568
4569	/*
4570	 * The idle tasks have their own, simple scheduling class:
4571	 */
4572	idle->sched_class = &idle_sched_class;
4573	ftrace_graph_init_idle_task(idle, cpu);
4574#if defined(CONFIG_SMP)
4575	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4576#endif
4577}
4578
4579#ifdef CONFIG_SMP
4580void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4581{
4582	if (p->sched_class && p->sched_class->set_cpus_allowed)
4583		p->sched_class->set_cpus_allowed(p, new_mask);
4584
4585	cpumask_copy(&p->cpus_allowed, new_mask);
4586	p->nr_cpus_allowed = cpumask_weight(new_mask);
4587}
4588
4589/*
4590 * This is how migration works:
4591 *
4592 * 1) we invoke migration_cpu_stop() on the target CPU using
4593 *    stop_one_cpu().
4594 * 2) stopper starts to run (implicitly forcing the migrated thread
4595 *    off the CPU)
4596 * 3) it checks whether the migrated task is still in the wrong runqueue.
4597 * 4) if it's in the wrong runqueue then the migration thread removes
4598 *    it and puts it into the right queue.
4599 * 5) stopper completes and stop_one_cpu() returns and the migration
4600 *    is done.
4601 */
4602
4603/*
4604 * Change a given task's CPU affinity. Migrate the thread to a
4605 * proper CPU and schedule it away if the CPU it's executing on
4606 * is removed from the allowed bitmask.
4607 *
4608 * NOTE: the caller must have a valid reference to the task, the
4609 * task must not exit() & deallocate itself prematurely. The
4610 * call is not atomic; no spinlocks may be held.
4611 */
4612int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4613{
4614	unsigned long flags;
4615	struct rq *rq;
4616	unsigned int dest_cpu;
4617	int ret = 0;
4618
4619	rq = task_rq_lock(p, &flags);
4620
4621	if (cpumask_equal(&p->cpus_allowed, new_mask))
4622		goto out;
4623
4624	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4625		ret = -EINVAL;
4626		goto out;
4627	}
4628
4629	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4630		ret = -EINVAL;
4631		goto out;
4632	}
4633
4634	do_set_cpus_allowed(p, new_mask);
4635
4636	/* Can the task run on the task's current CPU? If so, we're done */
4637	if (cpumask_test_cpu(task_cpu(p), new_mask))
4638		goto out;
4639
4640	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4641	if (p->on_rq) {
4642		struct migration_arg arg = { p, dest_cpu };
4643		/* Need help from migration thread: drop lock and wait. */
4644		task_rq_unlock(rq, p, &flags);
4645		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4646		tlb_migrate_finish(p->mm);
4647		return 0;
4648	}
4649out:
4650	task_rq_unlock(rq, p, &flags);
4651
4652	return ret;
4653}
4654EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4655
4656/*
4657 * Move (not current) task off this cpu, onto dest cpu. We're doing
4658 * this because either it can't run here any more (set_cpus_allowed()
4659 * away from this CPU, or CPU going down), or because we're
4660 * attempting to rebalance this task on exec (sched_exec).
4661 *
4662 * So we race with normal scheduler movements, but that's OK, as long
4663 * as the task is no longer on this CPU.
4664 *
4665 * Returns non-zero if task was successfully migrated.
4666 */
4667static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4668{
4669	struct rq *rq_dest, *rq_src;
4670	int ret = 0;
4671
4672	if (unlikely(!cpu_active(dest_cpu)))
4673		return ret;
4674
4675	rq_src = cpu_rq(src_cpu);
4676	rq_dest = cpu_rq(dest_cpu);
4677
4678	raw_spin_lock(&p->pi_lock);
4679	double_rq_lock(rq_src, rq_dest);
4680	/* Already moved. */
4681	if (task_cpu(p) != src_cpu)
4682		goto done;
4683	/* Affinity changed (again). */
4684	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4685		goto fail;
4686
4687	/*
4688	 * If we're not on a rq, the next wake-up will ensure we're
4689	 * placed properly.
4690	 */
4691	if (p->on_rq) {
4692		dequeue_task(rq_src, p, 0);
4693		set_task_cpu(p, dest_cpu);
4694		enqueue_task(rq_dest, p, 0);
4695		check_preempt_curr(rq_dest, p, 0);
4696	}
4697done:
4698	ret = 1;
4699fail:
4700	double_rq_unlock(rq_src, rq_dest);
4701	raw_spin_unlock(&p->pi_lock);
4702	return ret;
4703}
4704
4705/*
4706 * migration_cpu_stop - this will be executed by a highprio stopper thread
4707 * and performs thread migration by bumping thread off CPU then
4708 * 'pushing' onto another runqueue.
4709 */
4710static int migration_cpu_stop(void *data)
4711{
4712	struct migration_arg *arg = data;
4713
4714	/*
4715	 * The original target cpu might have gone down and we might
4716	 * be on another cpu but it doesn't matter.
4717	 */
4718	local_irq_disable();
4719	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4720	local_irq_enable();
4721	return 0;
4722}
4723
4724#ifdef CONFIG_HOTPLUG_CPU
4725
4726/*
4727 * Ensures that the idle task is using init_mm right before its cpu goes
4728 * offline.
4729 */
4730void idle_task_exit(void)
4731{
4732	struct mm_struct *mm = current->active_mm;
4733
4734	BUG_ON(cpu_online(smp_processor_id()));
4735
4736	if (mm != &init_mm)
4737		switch_mm(mm, &init_mm, current);
4738	mmdrop(mm);
4739}
4740
4741/*
4742 * Since this CPU is going 'away' for a while, fold any nr_active delta
4743 * we might have. Assumes we're called after migrate_tasks() so that the
4744 * nr_active count is stable.
4745 *
4746 * Also see the comment "Global load-average calculations".
4747 */
4748static void calc_load_migrate(struct rq *rq)
4749{
4750	long delta = calc_load_fold_active(rq);
4751	if (delta)
4752		atomic_long_add(delta, &calc_load_tasks);
4753}
4754
4755/*
4756 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4757 * try_to_wake_up()->select_task_rq().
4758 *
4759 * Called with rq->lock held even though we'er in stop_machine() and
4760 * there's no concurrency possible, we hold the required locks anyway
4761 * because of lock validation efforts.
4762 */
4763static void migrate_tasks(unsigned int dead_cpu)
4764{
4765	struct rq *rq = cpu_rq(dead_cpu);
4766	struct task_struct *next, *stop = rq->stop;
4767	int dest_cpu;
4768
4769	/*
4770	 * Fudge the rq selection such that the below task selection loop
4771	 * doesn't get stuck on the currently eligible stop task.
4772	 *
4773	 * We're currently inside stop_machine() and the rq is either stuck
4774	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4775	 * either way we should never end up calling schedule() until we're
4776	 * done here.
4777	 */
4778	rq->stop = NULL;
4779
4780	for ( ; ; ) {
4781		/*
4782		 * There's this thread running, bail when that's the only
4783		 * remaining thread.
4784		 */
4785		if (rq->nr_running == 1)
4786			break;
4787
4788		next = pick_next_task(rq);
4789		BUG_ON(!next);
4790		next->sched_class->put_prev_task(rq, next);
4791
4792		/* Find suitable destination for @next, with force if needed. */
4793		dest_cpu = select_fallback_rq(dead_cpu, next);
4794		raw_spin_unlock(&rq->lock);
4795
4796		__migrate_task(next, dead_cpu, dest_cpu);
4797
4798		raw_spin_lock(&rq->lock);
4799	}
4800
4801	rq->stop = stop;
4802}
4803
4804#endif /* CONFIG_HOTPLUG_CPU */
4805
4806#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4807
4808static struct ctl_table sd_ctl_dir[] = {
4809	{
4810		.procname	= "sched_domain",
4811		.mode		= 0555,
4812	},
4813	{}
4814};
4815
4816static struct ctl_table sd_ctl_root[] = {
4817	{
4818		.procname	= "kernel",
4819		.mode		= 0555,
4820		.child		= sd_ctl_dir,
4821	},
4822	{}
4823};
4824
4825static struct ctl_table *sd_alloc_ctl_entry(int n)
4826{
4827	struct ctl_table *entry =
4828		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4829
4830	return entry;
4831}
4832
4833static void sd_free_ctl_entry(struct ctl_table **tablep)
4834{
4835	struct ctl_table *entry;
4836
4837	/*
4838	 * In the intermediate directories, both the child directory and
4839	 * procname are dynamically allocated and could fail but the mode
4840	 * will always be set. In the lowest directory the names are
4841	 * static strings and all have proc handlers.
4842	 */
4843	for (entry = *tablep; entry->mode; entry++) {
4844		if (entry->child)
4845			sd_free_ctl_entry(&entry->child);
4846		if (entry->proc_handler == NULL)
4847			kfree(entry->procname);
4848	}
4849
4850	kfree(*tablep);
4851	*tablep = NULL;
4852}
4853
4854static int min_load_idx = 0;
4855static int max_load_idx = CPU_LOAD_IDX_MAX;
4856
4857static void
4858set_table_entry(struct ctl_table *entry,
4859		const char *procname, void *data, int maxlen,
4860		umode_t mode, proc_handler *proc_handler,
4861		bool load_idx)
4862{
4863	entry->procname = procname;
4864	entry->data = data;
4865	entry->maxlen = maxlen;
4866	entry->mode = mode;
4867	entry->proc_handler = proc_handler;
4868
4869	if (load_idx) {
4870		entry->extra1 = &min_load_idx;
4871		entry->extra2 = &max_load_idx;
4872	}
4873}
4874
4875static struct ctl_table *
4876sd_alloc_ctl_domain_table(struct sched_domain *sd)
4877{
4878	struct ctl_table *table = sd_alloc_ctl_entry(13);
4879
4880	if (table == NULL)
4881		return NULL;
4882
4883	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4884		sizeof(long), 0644, proc_doulongvec_minmax, false);
4885	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4886		sizeof(long), 0644, proc_doulongvec_minmax, false);
4887	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4888		sizeof(int), 0644, proc_dointvec_minmax, true);
4889	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4890		sizeof(int), 0644, proc_dointvec_minmax, true);
4891	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4892		sizeof(int), 0644, proc_dointvec_minmax, true);
4893	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4894		sizeof(int), 0644, proc_dointvec_minmax, true);
4895	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4896		sizeof(int), 0644, proc_dointvec_minmax, true);
4897	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4898		sizeof(int), 0644, proc_dointvec_minmax, false);
4899	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4900		sizeof(int), 0644, proc_dointvec_minmax, false);
4901	set_table_entry(&table[9], "cache_nice_tries",
4902		&sd->cache_nice_tries,
4903		sizeof(int), 0644, proc_dointvec_minmax, false);
4904	set_table_entry(&table[10], "flags", &sd->flags,
4905		sizeof(int), 0644, proc_dointvec_minmax, false);
4906	set_table_entry(&table[11], "name", sd->name,
4907		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4908	/* &table[12] is terminator */
4909
4910	return table;
4911}
4912
4913static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4914{
4915	struct ctl_table *entry, *table;
4916	struct sched_domain *sd;
4917	int domain_num = 0, i;
4918	char buf[32];
4919
4920	for_each_domain(cpu, sd)
4921		domain_num++;
4922	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4923	if (table == NULL)
4924		return NULL;
4925
4926	i = 0;
4927	for_each_domain(cpu, sd) {
4928		snprintf(buf, 32, "domain%d", i);
4929		entry->procname = kstrdup(buf, GFP_KERNEL);
4930		entry->mode = 0555;
4931		entry->child = sd_alloc_ctl_domain_table(sd);
4932		entry++;
4933		i++;
4934	}
4935	return table;
4936}
4937
4938static struct ctl_table_header *sd_sysctl_header;
4939static void register_sched_domain_sysctl(void)
4940{
4941	int i, cpu_num = num_possible_cpus();
4942	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4943	char buf[32];
4944
4945	WARN_ON(sd_ctl_dir[0].child);
4946	sd_ctl_dir[0].child = entry;
4947
4948	if (entry == NULL)
4949		return;
4950
4951	for_each_possible_cpu(i) {
4952		snprintf(buf, 32, "cpu%d", i);
4953		entry->procname = kstrdup(buf, GFP_KERNEL);
4954		entry->mode = 0555;
4955		entry->child = sd_alloc_ctl_cpu_table(i);
4956		entry++;
4957	}
4958
4959	WARN_ON(sd_sysctl_header);
4960	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4961}
4962
4963/* may be called multiple times per register */
4964static void unregister_sched_domain_sysctl(void)
4965{
4966	if (sd_sysctl_header)
4967		unregister_sysctl_table(sd_sysctl_header);
4968	sd_sysctl_header = NULL;
4969	if (sd_ctl_dir[0].child)
4970		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4971}
4972#else
4973static void register_sched_domain_sysctl(void)
4974{
4975}
4976static void unregister_sched_domain_sysctl(void)
4977{
4978}
4979#endif
4980
4981static void set_rq_online(struct rq *rq)
4982{
4983	if (!rq->online) {
4984		const struct sched_class *class;
4985
4986		cpumask_set_cpu(rq->cpu, rq->rd->online);
4987		rq->online = 1;
4988
4989		for_each_class(class) {
4990			if (class->rq_online)
4991				class->rq_online(rq);
4992		}
4993	}
4994}
4995
4996static void set_rq_offline(struct rq *rq)
4997{
4998	if (rq->online) {
4999		const struct sched_class *class;
5000
5001		for_each_class(class) {
5002			if (class->rq_offline)
5003				class->rq_offline(rq);
5004		}
5005
5006		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5007		rq->online = 0;
5008	}
5009}
5010
5011/*
5012 * migration_call - callback that gets triggered when a CPU is added.
5013 * Here we can start up the necessary migration thread for the new CPU.
5014 */
5015static int __cpuinit
5016migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5017{
5018	int cpu = (long)hcpu;
5019	unsigned long flags;
5020	struct rq *rq = cpu_rq(cpu);
5021
5022	switch (action & ~CPU_TASKS_FROZEN) {
5023
5024	case CPU_UP_PREPARE:
5025		rq->calc_load_update = calc_load_update;
5026		break;
5027
5028	case CPU_ONLINE:
5029		/* Update our root-domain */
5030		raw_spin_lock_irqsave(&rq->lock, flags);
5031		if (rq->rd) {
5032			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5033
5034			set_rq_online(rq);
5035		}
5036		raw_spin_unlock_irqrestore(&rq->lock, flags);
5037		break;
5038
5039#ifdef CONFIG_HOTPLUG_CPU
5040	case CPU_DYING:
5041		sched_ttwu_pending();
5042		/* Update our root-domain */
5043		raw_spin_lock_irqsave(&rq->lock, flags);
5044		if (rq->rd) {
5045			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5046			set_rq_offline(rq);
5047		}
5048		migrate_tasks(cpu);
5049		BUG_ON(rq->nr_running != 1); /* the migration thread */
5050		raw_spin_unlock_irqrestore(&rq->lock, flags);
5051
5052		calc_load_migrate(rq);
5053		break;
5054#endif
5055	}
5056
5057	update_max_interval();
5058
5059	return NOTIFY_OK;
5060}
5061
5062/*
5063 * Register at high priority so that task migration (migrate_all_tasks)
5064 * happens before everything else.  This has to be lower priority than
5065 * the notifier in the perf_event subsystem, though.
5066 */
5067static struct notifier_block __cpuinitdata migration_notifier = {
5068	.notifier_call = migration_call,
5069	.priority = CPU_PRI_MIGRATION,
5070};
5071
5072static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5073				      unsigned long action, void *hcpu)
5074{
5075	switch (action & ~CPU_TASKS_FROZEN) {
5076	case CPU_STARTING:
5077	case CPU_DOWN_FAILED:
5078		set_cpu_active((long)hcpu, true);
5079		return NOTIFY_OK;
5080	default:
5081		return NOTIFY_DONE;
5082	}
5083}
5084
5085static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5086					unsigned long action, void *hcpu)
5087{
5088	switch (action & ~CPU_TASKS_FROZEN) {
5089	case CPU_DOWN_PREPARE:
5090		set_cpu_active((long)hcpu, false);
5091		return NOTIFY_OK;
5092	default:
5093		return NOTIFY_DONE;
5094	}
5095}
5096
5097static int __init migration_init(void)
5098{
5099	void *cpu = (void *)(long)smp_processor_id();
5100	int err;
5101
5102	/* Initialize migration for the boot CPU */
5103	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5104	BUG_ON(err == NOTIFY_BAD);
5105	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5106	register_cpu_notifier(&migration_notifier);
5107
5108	/* Register cpu active notifiers */
5109	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5110	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5111
5112	return 0;
5113}
5114early_initcall(migration_init);
5115#endif
5116
5117#ifdef CONFIG_SMP
5118
5119static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5120
5121#ifdef CONFIG_SCHED_DEBUG
5122
5123static __read_mostly int sched_debug_enabled;
5124
5125static int __init sched_debug_setup(char *str)
5126{
5127	sched_debug_enabled = 1;
5128
5129	return 0;
5130}
5131early_param("sched_debug", sched_debug_setup);
5132
5133static inline bool sched_debug(void)
5134{
5135	return sched_debug_enabled;
5136}
5137
5138static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5139				  struct cpumask *groupmask)
5140{
5141	struct sched_group *group = sd->groups;
5142	char str[256];
5143
5144	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5145	cpumask_clear(groupmask);
5146
5147	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5148
5149	if (!(sd->flags & SD_LOAD_BALANCE)) {
5150		printk("does not load-balance\n");
5151		if (sd->parent)
5152			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5153					" has parent");
5154		return -1;
5155	}
5156
5157	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5158
5159	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5160		printk(KERN_ERR "ERROR: domain->span does not contain "
5161				"CPU%d\n", cpu);
5162	}
5163	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5164		printk(KERN_ERR "ERROR: domain->groups does not contain"
5165				" CPU%d\n", cpu);
5166	}
5167
5168	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5169	do {
5170		if (!group) {
5171			printk("\n");
5172			printk(KERN_ERR "ERROR: group is NULL\n");
5173			break;
5174		}
5175
5176		/*
5177		 * Even though we initialize ->power to something semi-sane,
5178		 * we leave power_orig unset. This allows us to detect if
5179		 * domain iteration is still funny without causing /0 traps.
5180		 */
5181		if (!group->sgp->power_orig) {
5182			printk(KERN_CONT "\n");
5183			printk(KERN_ERR "ERROR: domain->cpu_power not "
5184					"set\n");
5185			break;
5186		}
5187
5188		if (!cpumask_weight(sched_group_cpus(group))) {
5189			printk(KERN_CONT "\n");
5190			printk(KERN_ERR "ERROR: empty group\n");
5191			break;
5192		}
5193
5194		if (!(sd->flags & SD_OVERLAP) &&
5195		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5196			printk(KERN_CONT "\n");
5197			printk(KERN_ERR "ERROR: repeated CPUs\n");
5198			break;
5199		}
5200
5201		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5202
5203		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5204
5205		printk(KERN_CONT " %s", str);
5206		if (group->sgp->power != SCHED_POWER_SCALE) {
5207			printk(KERN_CONT " (cpu_power = %d)",
5208				group->sgp->power);
5209		}
5210
5211		group = group->next;
5212	} while (group != sd->groups);
5213	printk(KERN_CONT "\n");
5214
5215	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5216		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5217
5218	if (sd->parent &&
5219	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5220		printk(KERN_ERR "ERROR: parent span is not a superset "
5221			"of domain->span\n");
5222	return 0;
5223}
5224
5225static void sched_domain_debug(struct sched_domain *sd, int cpu)
5226{
5227	int level = 0;
5228
5229	if (!sched_debug_enabled)
5230		return;
5231
5232	if (!sd) {
5233		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5234		return;
5235	}
5236
5237	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5238
5239	for (;;) {
5240		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5241			break;
5242		level++;
5243		sd = sd->parent;
5244		if (!sd)
5245			break;
5246	}
5247}
5248#else /* !CONFIG_SCHED_DEBUG */
5249# define sched_domain_debug(sd, cpu) do { } while (0)
5250static inline bool sched_debug(void)
5251{
5252	return false;
5253}
5254#endif /* CONFIG_SCHED_DEBUG */
5255
5256static int sd_degenerate(struct sched_domain *sd)
5257{
5258	if (cpumask_weight(sched_domain_span(sd)) == 1)
5259		return 1;
5260
5261	/* Following flags need at least 2 groups */
5262	if (sd->flags & (SD_LOAD_BALANCE |
5263			 SD_BALANCE_NEWIDLE |
5264			 SD_BALANCE_FORK |
5265			 SD_BALANCE_EXEC |
5266			 SD_SHARE_CPUPOWER |
5267			 SD_SHARE_PKG_RESOURCES)) {
5268		if (sd->groups != sd->groups->next)
5269			return 0;
5270	}
5271
5272	/* Following flags don't use groups */
5273	if (sd->flags & (SD_WAKE_AFFINE))
5274		return 0;
5275
5276	return 1;
5277}
5278
5279static int
5280sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5281{
5282	unsigned long cflags = sd->flags, pflags = parent->flags;
5283
5284	if (sd_degenerate(parent))
5285		return 1;
5286
5287	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5288		return 0;
5289
5290	/* Flags needing groups don't count if only 1 group in parent */
5291	if (parent->groups == parent->groups->next) {
5292		pflags &= ~(SD_LOAD_BALANCE |
5293				SD_BALANCE_NEWIDLE |
5294				SD_BALANCE_FORK |
5295				SD_BALANCE_EXEC |
5296				SD_SHARE_CPUPOWER |
5297				SD_SHARE_PKG_RESOURCES);
5298		if (nr_node_ids == 1)
5299			pflags &= ~SD_SERIALIZE;
5300	}
5301	if (~cflags & pflags)
5302		return 0;
5303
5304	return 1;
5305}
5306
5307static void free_rootdomain(struct rcu_head *rcu)
5308{
5309	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5310
5311	cpupri_cleanup(&rd->cpupri);
5312	free_cpumask_var(rd->rto_mask);
5313	free_cpumask_var(rd->online);
5314	free_cpumask_var(rd->span);
5315	kfree(rd);
5316}
5317
5318static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5319{
5320	struct root_domain *old_rd = NULL;
5321	unsigned long flags;
5322
5323	raw_spin_lock_irqsave(&rq->lock, flags);
5324
5325	if (rq->rd) {
5326		old_rd = rq->rd;
5327
5328		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5329			set_rq_offline(rq);
5330
5331		cpumask_clear_cpu(rq->cpu, old_rd->span);
5332
5333		/*
5334		 * If we dont want to free the old_rt yet then
5335		 * set old_rd to NULL to skip the freeing later
5336		 * in this function:
5337		 */
5338		if (!atomic_dec_and_test(&old_rd->refcount))
5339			old_rd = NULL;
5340	}
5341
5342	atomic_inc(&rd->refcount);
5343	rq->rd = rd;
5344
5345	cpumask_set_cpu(rq->cpu, rd->span);
5346	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5347		set_rq_online(rq);
5348
5349	raw_spin_unlock_irqrestore(&rq->lock, flags);
5350
5351	if (old_rd)
5352		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5353}
5354
5355static int init_rootdomain(struct root_domain *rd)
5356{
5357	memset(rd, 0, sizeof(*rd));
5358
5359	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5360		goto out;
5361	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5362		goto free_span;
5363	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5364		goto free_online;
5365
5366	if (cpupri_init(&rd->cpupri) != 0)
5367		goto free_rto_mask;
5368	return 0;
5369
5370free_rto_mask:
5371	free_cpumask_var(rd->rto_mask);
5372free_online:
5373	free_cpumask_var(rd->online);
5374free_span:
5375	free_cpumask_var(rd->span);
5376out:
5377	return -ENOMEM;
5378}
5379
5380/*
5381 * By default the system creates a single root-domain with all cpus as
5382 * members (mimicking the global state we have today).
5383 */
5384struct root_domain def_root_domain;
5385
5386static void init_defrootdomain(void)
5387{
5388	init_rootdomain(&def_root_domain);
5389
5390	atomic_set(&def_root_domain.refcount, 1);
5391}
5392
5393static struct root_domain *alloc_rootdomain(void)
5394{
5395	struct root_domain *rd;
5396
5397	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5398	if (!rd)
5399		return NULL;
5400
5401	if (init_rootdomain(rd) != 0) {
5402		kfree(rd);
5403		return NULL;
5404	}
5405
5406	return rd;
5407}
5408
5409static void free_sched_groups(struct sched_group *sg, int free_sgp)
5410{
5411	struct sched_group *tmp, *first;
5412
5413	if (!sg)
5414		return;
5415
5416	first = sg;
5417	do {
5418		tmp = sg->next;
5419
5420		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5421			kfree(sg->sgp);
5422
5423		kfree(sg);
5424		sg = tmp;
5425	} while (sg != first);
5426}
5427
5428static void free_sched_domain(struct rcu_head *rcu)
5429{
5430	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5431
5432	/*
5433	 * If its an overlapping domain it has private groups, iterate and
5434	 * nuke them all.
5435	 */
5436	if (sd->flags & SD_OVERLAP) {
5437		free_sched_groups(sd->groups, 1);
5438	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5439		kfree(sd->groups->sgp);
5440		kfree(sd->groups);
5441	}
5442	kfree(sd);
5443}
5444
5445static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5446{
5447	call_rcu(&sd->rcu, free_sched_domain);
5448}
5449
5450static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5451{
5452	for (; sd; sd = sd->parent)
5453		destroy_sched_domain(sd, cpu);
5454}
5455
5456/*
5457 * Keep a special pointer to the highest sched_domain that has
5458 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5459 * allows us to avoid some pointer chasing select_idle_sibling().
5460 *
5461 * Iterate domains and sched_groups downward, assigning CPUs to be
5462 * select_idle_sibling() hw buddy.  Cross-wiring hw makes bouncing
5463 * due to random perturbation self canceling, ie sw buddies pull
5464 * their counterpart to their CPU's hw counterpart.
5465 *
5466 * Also keep a unique ID per domain (we use the first cpu number in
5467 * the cpumask of the domain), this allows us to quickly tell if
5468 * two cpus are in the same cache domain, see cpus_share_cache().
5469 */
5470DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5471DEFINE_PER_CPU(int, sd_llc_id);
5472
5473static void update_top_cache_domain(int cpu)
5474{
5475	struct sched_domain *sd;
5476	int id = cpu;
5477
5478	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5479	if (sd) {
5480		struct sched_domain *tmp = sd;
5481		struct sched_group *sg, *prev;
5482		bool right;
5483
5484		/*
5485		 * Traverse to first CPU in group, and count hops
5486		 * to cpu from there, switching direction on each
5487		 * hop, never ever pointing the last CPU rightward.
5488		 */
5489		do {
5490			id = cpumask_first(sched_domain_span(tmp));
5491			prev = sg = tmp->groups;
5492			right = 1;
5493
5494			while (cpumask_first(sched_group_cpus(sg)) != id)
5495				sg = sg->next;
5496
5497			while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
5498				prev = sg;
5499				sg = sg->next;
5500				right = !right;
5501			}
5502
5503			/* A CPU went down, never point back to domain start. */
5504			if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
5505				right = false;
5506
5507			sg = right ? sg->next : prev;
5508			tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
5509		} while ((tmp = tmp->child));
5510
5511		id = cpumask_first(sched_domain_span(sd));
5512	}
5513
5514	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5515	per_cpu(sd_llc_id, cpu) = id;
5516}
5517
5518/*
5519 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5520 * hold the hotplug lock.
5521 */
5522static void
5523cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5524{
5525	struct rq *rq = cpu_rq(cpu);
5526	struct sched_domain *tmp;
5527
5528	/* Remove the sched domains which do not contribute to scheduling. */
5529	for (tmp = sd; tmp; ) {
5530		struct sched_domain *parent = tmp->parent;
5531		if (!parent)
5532			break;
5533
5534		if (sd_parent_degenerate(tmp, parent)) {
5535			tmp->parent = parent->parent;
5536			if (parent->parent)
5537				parent->parent->child = tmp;
5538			destroy_sched_domain(parent, cpu);
5539		} else
5540			tmp = tmp->parent;
5541	}
5542
5543	if (sd && sd_degenerate(sd)) {
5544		tmp = sd;
5545		sd = sd->parent;
5546		destroy_sched_domain(tmp, cpu);
5547		if (sd)
5548			sd->child = NULL;
5549	}
5550
5551	sched_domain_debug(sd, cpu);
5552
5553	rq_attach_root(rq, rd);
5554	tmp = rq->sd;
5555	rcu_assign_pointer(rq->sd, sd);
5556	destroy_sched_domains(tmp, cpu);
5557
5558	update_top_cache_domain(cpu);
5559}
5560
5561/* cpus with isolated domains */
5562static cpumask_var_t cpu_isolated_map;
5563
5564/* Setup the mask of cpus configured for isolated domains */
5565static int __init isolated_cpu_setup(char *str)
5566{
5567	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5568	cpulist_parse(str, cpu_isolated_map);
5569	return 1;
5570}
5571
5572__setup("isolcpus=", isolated_cpu_setup);
5573
5574static const struct cpumask *cpu_cpu_mask(int cpu)
5575{
5576	return cpumask_of_node(cpu_to_node(cpu));
5577}
5578
5579struct sd_data {
5580	struct sched_domain **__percpu sd;
5581	struct sched_group **__percpu sg;
5582	struct sched_group_power **__percpu sgp;
5583};
5584
5585struct s_data {
5586	struct sched_domain ** __percpu sd;
5587	struct root_domain	*rd;
5588};
5589
5590enum s_alloc {
5591	sa_rootdomain,
5592	sa_sd,
5593	sa_sd_storage,
5594	sa_none,
5595};
5596
5597struct sched_domain_topology_level;
5598
5599typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5600typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5601
5602#define SDTL_OVERLAP	0x01
5603
5604struct sched_domain_topology_level {
5605	sched_domain_init_f init;
5606	sched_domain_mask_f mask;
5607	int		    flags;
5608	int		    numa_level;
5609	struct sd_data      data;
5610};
5611
5612/*
5613 * Build an iteration mask that can exclude certain CPUs from the upwards
5614 * domain traversal.
5615 *
5616 * Asymmetric node setups can result in situations where the domain tree is of
5617 * unequal depth, make sure to skip domains that already cover the entire
5618 * range.
5619 *
5620 * In that case build_sched_domains() will have terminated the iteration early
5621 * and our sibling sd spans will be empty. Domains should always include the
5622 * cpu they're built on, so check that.
5623 *
5624 */
5625static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5626{
5627	const struct cpumask *span = sched_domain_span(sd);
5628	struct sd_data *sdd = sd->private;
5629	struct sched_domain *sibling;
5630	int i;
5631
5632	for_each_cpu(i, span) {
5633		sibling = *per_cpu_ptr(sdd->sd, i);
5634		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5635			continue;
5636
5637		cpumask_set_cpu(i, sched_group_mask(sg));
5638	}
5639}
5640
5641/*
5642 * Return the canonical balance cpu for this group, this is the first cpu
5643 * of this group that's also in the iteration mask.
5644 */
5645int group_balance_cpu(struct sched_group *sg)
5646{
5647	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5648}
5649
5650static int
5651build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5652{
5653	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5654	const struct cpumask *span = sched_domain_span(sd);
5655	struct cpumask *covered = sched_domains_tmpmask;
5656	struct sd_data *sdd = sd->private;
5657	struct sched_domain *child;
5658	int i;
5659
5660	cpumask_clear(covered);
5661
5662	for_each_cpu(i, span) {
5663		struct cpumask *sg_span;
5664
5665		if (cpumask_test_cpu(i, covered))
5666			continue;
5667
5668		child = *per_cpu_ptr(sdd->sd, i);
5669
5670		/* See the comment near build_group_mask(). */
5671		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5672			continue;
5673
5674		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5675				GFP_KERNEL, cpu_to_node(cpu));
5676
5677		if (!sg)
5678			goto fail;
5679
5680		sg_span = sched_group_cpus(sg);
5681		if (child->child) {
5682			child = child->child;
5683			cpumask_copy(sg_span, sched_domain_span(child));
5684		} else
5685			cpumask_set_cpu(i, sg_span);
5686
5687		cpumask_or(covered, covered, sg_span);
5688
5689		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5690		if (atomic_inc_return(&sg->sgp->ref) == 1)
5691			build_group_mask(sd, sg);
5692
5693		/*
5694		 * Initialize sgp->power such that even if we mess up the
5695		 * domains and no possible iteration will get us here, we won't
5696		 * die on a /0 trap.
5697		 */
5698		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5699
5700		/*
5701		 * Make sure the first group of this domain contains the
5702		 * canonical balance cpu. Otherwise the sched_domain iteration
5703		 * breaks. See update_sg_lb_stats().
5704		 */
5705		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5706		    group_balance_cpu(sg) == cpu)
5707			groups = sg;
5708
5709		if (!first)
5710			first = sg;
5711		if (last)
5712			last->next = sg;
5713		last = sg;
5714		last->next = first;
5715	}
5716	sd->groups = groups;
5717
5718	return 0;
5719
5720fail:
5721	free_sched_groups(first, 0);
5722
5723	return -ENOMEM;
5724}
5725
5726static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5727{
5728	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5729	struct sched_domain *child = sd->child;
5730
5731	if (child)
5732		cpu = cpumask_first(sched_domain_span(child));
5733
5734	if (sg) {
5735		*sg = *per_cpu_ptr(sdd->sg, cpu);
5736		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5737		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5738	}
5739
5740	return cpu;
5741}
5742
5743/*
5744 * build_sched_groups will build a circular linked list of the groups
5745 * covered by the given span, and will set each group's ->cpumask correctly,
5746 * and ->cpu_power to 0.
5747 *
5748 * Assumes the sched_domain tree is fully constructed
5749 */
5750static int
5751build_sched_groups(struct sched_domain *sd, int cpu)
5752{
5753	struct sched_group *first = NULL, *last = NULL;
5754	struct sd_data *sdd = sd->private;
5755	const struct cpumask *span = sched_domain_span(sd);
5756	struct cpumask *covered;
5757	int i;
5758
5759	get_group(cpu, sdd, &sd->groups);
5760	atomic_inc(&sd->groups->ref);
5761
5762	if (cpu != cpumask_first(sched_domain_span(sd)))
5763		return 0;
5764
5765	lockdep_assert_held(&sched_domains_mutex);
5766	covered = sched_domains_tmpmask;
5767
5768	cpumask_clear(covered);
5769
5770	for_each_cpu(i, span) {
5771		struct sched_group *sg;
5772		int group = get_group(i, sdd, &sg);
5773		int j;
5774
5775		if (cpumask_test_cpu(i, covered))
5776			continue;
5777
5778		cpumask_clear(sched_group_cpus(sg));
5779		sg->sgp->power = 0;
5780		cpumask_setall(sched_group_mask(sg));
5781
5782		for_each_cpu(j, span) {
5783			if (get_group(j, sdd, NULL) != group)
5784				continue;
5785
5786			cpumask_set_cpu(j, covered);
5787			cpumask_set_cpu(j, sched_group_cpus(sg));
5788		}
5789
5790		if (!first)
5791			first = sg;
5792		if (last)
5793			last->next = sg;
5794		last = sg;
5795	}
5796	last->next = first;
5797
5798	return 0;
5799}
5800
5801/*
5802 * Initialize sched groups cpu_power.
5803 *
5804 * cpu_power indicates the capacity of sched group, which is used while
5805 * distributing the load between different sched groups in a sched domain.
5806 * Typically cpu_power for all the groups in a sched domain will be same unless
5807 * there are asymmetries in the topology. If there are asymmetries, group
5808 * having more cpu_power will pickup more load compared to the group having
5809 * less cpu_power.
5810 */
5811static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5812{
5813	struct sched_group *sg = sd->groups;
5814
5815	WARN_ON(!sd || !sg);
5816
5817	do {
5818		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5819		sg = sg->next;
5820	} while (sg != sd->groups);
5821
5822	if (cpu != group_balance_cpu(sg))
5823		return;
5824
5825	update_group_power(sd, cpu);
5826	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5827}
5828
5829int __weak arch_sd_sibling_asym_packing(void)
5830{
5831       return 0*SD_ASYM_PACKING;
5832}
5833
5834/*
5835 * Initializers for schedule domains
5836 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5837 */
5838
5839#ifdef CONFIG_SCHED_DEBUG
5840# define SD_INIT_NAME(sd, type)		sd->name = #type
5841#else
5842# define SD_INIT_NAME(sd, type)		do { } while (0)
5843#endif
5844
5845#define SD_INIT_FUNC(type)						\
5846static noinline struct sched_domain *					\
5847sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5848{									\
5849	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5850	*sd = SD_##type##_INIT;						\
5851	SD_INIT_NAME(sd, type);						\
5852	sd->private = &tl->data;					\
5853	return sd;							\
5854}
5855
5856SD_INIT_FUNC(CPU)
5857#ifdef CONFIG_SCHED_SMT
5858 SD_INIT_FUNC(SIBLING)
5859#endif
5860#ifdef CONFIG_SCHED_MC
5861 SD_INIT_FUNC(MC)
5862#endif
5863#ifdef CONFIG_SCHED_BOOK
5864 SD_INIT_FUNC(BOOK)
5865#endif
5866
5867static int default_relax_domain_level = -1;
5868int sched_domain_level_max;
5869
5870static int __init setup_relax_domain_level(char *str)
5871{
5872	if (kstrtoint(str, 0, &default_relax_domain_level))
5873		pr_warn("Unable to set relax_domain_level\n");
5874
5875	return 1;
5876}
5877__setup("relax_domain_level=", setup_relax_domain_level);
5878
5879static void set_domain_attribute(struct sched_domain *sd,
5880				 struct sched_domain_attr *attr)
5881{
5882	int request;
5883
5884	if (!attr || attr->relax_domain_level < 0) {
5885		if (default_relax_domain_level < 0)
5886			return;
5887		else
5888			request = default_relax_domain_level;
5889	} else
5890		request = attr->relax_domain_level;
5891	if (request < sd->level) {
5892		/* turn off idle balance on this domain */
5893		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5894	} else {
5895		/* turn on idle balance on this domain */
5896		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5897	}
5898}
5899
5900static void __sdt_free(const struct cpumask *cpu_map);
5901static int __sdt_alloc(const struct cpumask *cpu_map);
5902
5903static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5904				 const struct cpumask *cpu_map)
5905{
5906	switch (what) {
5907	case sa_rootdomain:
5908		if (!atomic_read(&d->rd->refcount))
5909			free_rootdomain(&d->rd->rcu); /* fall through */
5910	case sa_sd:
5911		free_percpu(d->sd); /* fall through */
5912	case sa_sd_storage:
5913		__sdt_free(cpu_map); /* fall through */
5914	case sa_none:
5915		break;
5916	}
5917}
5918
5919static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5920						   const struct cpumask *cpu_map)
5921{
5922	memset(d, 0, sizeof(*d));
5923
5924	if (__sdt_alloc(cpu_map))
5925		return sa_sd_storage;
5926	d->sd = alloc_percpu(struct sched_domain *);
5927	if (!d->sd)
5928		return sa_sd_storage;
5929	d->rd = alloc_rootdomain();
5930	if (!d->rd)
5931		return sa_sd;
5932	return sa_rootdomain;
5933}
5934
5935/*
5936 * NULL the sd_data elements we've used to build the sched_domain and
5937 * sched_group structure so that the subsequent __free_domain_allocs()
5938 * will not free the data we're using.
5939 */
5940static void claim_allocations(int cpu, struct sched_domain *sd)
5941{
5942	struct sd_data *sdd = sd->private;
5943
5944	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5945	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5946
5947	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5948		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5949
5950	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5951		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5952}
5953
5954#ifdef CONFIG_SCHED_SMT
5955static const struct cpumask *cpu_smt_mask(int cpu)
5956{
5957	return topology_thread_cpumask(cpu);
5958}
5959#endif
5960
5961/*
5962 * Topology list, bottom-up.
5963 */
5964static struct sched_domain_topology_level default_topology[] = {
5965#ifdef CONFIG_SCHED_SMT
5966	{ sd_init_SIBLING, cpu_smt_mask, },
5967#endif
5968#ifdef CONFIG_SCHED_MC
5969	{ sd_init_MC, cpu_coregroup_mask, },
5970#endif
5971#ifdef CONFIG_SCHED_BOOK
5972	{ sd_init_BOOK, cpu_book_mask, },
5973#endif
5974	{ sd_init_CPU, cpu_cpu_mask, },
5975	{ NULL, },
5976};
5977
5978static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5979
5980#ifdef CONFIG_NUMA
5981
5982static int sched_domains_numa_levels;
5983static int *sched_domains_numa_distance;
5984static struct cpumask ***sched_domains_numa_masks;
5985static int sched_domains_curr_level;
5986
5987static inline int sd_local_flags(int level)
5988{
5989	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5990		return 0;
5991
5992	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5993}
5994
5995static struct sched_domain *
5996sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5997{
5998	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5999	int level = tl->numa_level;
6000	int sd_weight = cpumask_weight(
6001			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6002
6003	*sd = (struct sched_domain){
6004		.min_interval		= sd_weight,
6005		.max_interval		= 2*sd_weight,
6006		.busy_factor		= 32,
6007		.imbalance_pct		= 125,
6008		.cache_nice_tries	= 2,
6009		.busy_idx		= 3,
6010		.idle_idx		= 2,
6011		.newidle_idx		= 0,
6012		.wake_idx		= 0,
6013		.forkexec_idx		= 0,
6014
6015		.flags			= 1*SD_LOAD_BALANCE
6016					| 1*SD_BALANCE_NEWIDLE
6017					| 0*SD_BALANCE_EXEC
6018					| 0*SD_BALANCE_FORK
6019					| 0*SD_BALANCE_WAKE
6020					| 0*SD_WAKE_AFFINE
6021					| 0*SD_SHARE_CPUPOWER
6022					| 0*SD_SHARE_PKG_RESOURCES
6023					| 1*SD_SERIALIZE
6024					| 0*SD_PREFER_SIBLING
6025					| sd_local_flags(level)
6026					,
6027		.last_balance		= jiffies,
6028		.balance_interval	= sd_weight,
6029	};
6030	SD_INIT_NAME(sd, NUMA);
6031	sd->private = &tl->data;
6032
6033	/*
6034	 * Ugly hack to pass state to sd_numa_mask()...
6035	 */
6036	sched_domains_curr_level = tl->numa_level;
6037
6038	return sd;
6039}
6040
6041static const struct cpumask *sd_numa_mask(int cpu)
6042{
6043	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6044}
6045
6046static void sched_numa_warn(const char *str)
6047{
6048	static int done = false;
6049	int i,j;
6050
6051	if (done)
6052		return;
6053
6054	done = true;
6055
6056	printk(KERN_WARNING "ERROR: %s\n\n", str);
6057
6058	for (i = 0; i < nr_node_ids; i++) {
6059		printk(KERN_WARNING "  ");
6060		for (j = 0; j < nr_node_ids; j++)
6061			printk(KERN_CONT "%02d ", node_distance(i,j));
6062		printk(KERN_CONT "\n");
6063	}
6064	printk(KERN_WARNING "\n");
6065}
6066
6067static bool find_numa_distance(int distance)
6068{
6069	int i;
6070
6071	if (distance == node_distance(0, 0))
6072		return true;
6073
6074	for (i = 0; i < sched_domains_numa_levels; i++) {
6075		if (sched_domains_numa_distance[i] == distance)
6076			return true;
6077	}
6078
6079	return false;
6080}
6081
6082static void sched_init_numa(void)
6083{
6084	int next_distance, curr_distance = node_distance(0, 0);
6085	struct sched_domain_topology_level *tl;
6086	int level = 0;
6087	int i, j, k;
6088
6089	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6090	if (!sched_domains_numa_distance)
6091		return;
6092
6093	/*
6094	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6095	 * unique distances in the node_distance() table.
6096	 *
6097	 * Assumes node_distance(0,j) includes all distances in
6098	 * node_distance(i,j) in order to avoid cubic time.
6099	 */
6100	next_distance = curr_distance;
6101	for (i = 0; i < nr_node_ids; i++) {
6102		for (j = 0; j < nr_node_ids; j++) {
6103			for (k = 0; k < nr_node_ids; k++) {
6104				int distance = node_distance(i, k);
6105
6106				if (distance > curr_distance &&
6107				    (distance < next_distance ||
6108				     next_distance == curr_distance))
6109					next_distance = distance;
6110
6111				/*
6112				 * While not a strong assumption it would be nice to know
6113				 * about cases where if node A is connected to B, B is not
6114				 * equally connected to A.
6115				 */
6116				if (sched_debug() && node_distance(k, i) != distance)
6117					sched_numa_warn("Node-distance not symmetric");
6118
6119				if (sched_debug() && i && !find_numa_distance(distance))
6120					sched_numa_warn("Node-0 not representative");
6121			}
6122			if (next_distance != curr_distance) {
6123				sched_domains_numa_distance[level++] = next_distance;
6124				sched_domains_numa_levels = level;
6125				curr_distance = next_distance;
6126			} else break;
6127		}
6128
6129		/*
6130		 * In case of sched_debug() we verify the above assumption.
6131		 */
6132		if (!sched_debug())
6133			break;
6134	}
6135	/*
6136	 * 'level' contains the number of unique distances, excluding the
6137	 * identity distance node_distance(i,i).
6138	 *
6139	 * The sched_domains_nume_distance[] array includes the actual distance
6140	 * numbers.
6141	 */
6142
6143	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6144	if (!sched_domains_numa_masks)
6145		return;
6146
6147	/*
6148	 * Now for each level, construct a mask per node which contains all
6149	 * cpus of nodes that are that many hops away from us.
6150	 */
6151	for (i = 0; i < level; i++) {
6152		sched_domains_numa_masks[i] =
6153			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6154		if (!sched_domains_numa_masks[i])
6155			return;
6156
6157		for (j = 0; j < nr_node_ids; j++) {
6158			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6159			if (!mask)
6160				return;
6161
6162			sched_domains_numa_masks[i][j] = mask;
6163
6164			for (k = 0; k < nr_node_ids; k++) {
6165				if (node_distance(j, k) > sched_domains_numa_distance[i])
6166					continue;
6167
6168				cpumask_or(mask, mask, cpumask_of_node(k));
6169			}
6170		}
6171	}
6172
6173	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6174			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6175	if (!tl)
6176		return;
6177
6178	/*
6179	 * Copy the default topology bits..
6180	 */
6181	for (i = 0; default_topology[i].init; i++)
6182		tl[i] = default_topology[i];
6183
6184	/*
6185	 * .. and append 'j' levels of NUMA goodness.
6186	 */
6187	for (j = 0; j < level; i++, j++) {
6188		tl[i] = (struct sched_domain_topology_level){
6189			.init = sd_numa_init,
6190			.mask = sd_numa_mask,
6191			.flags = SDTL_OVERLAP,
6192			.numa_level = j,
6193		};
6194	}
6195
6196	sched_domain_topology = tl;
6197}
6198#else
6199static inline void sched_init_numa(void)
6200{
6201}
6202#endif /* CONFIG_NUMA */
6203
6204static int __sdt_alloc(const struct cpumask *cpu_map)
6205{
6206	struct sched_domain_topology_level *tl;
6207	int j;
6208
6209	for (tl = sched_domain_topology; tl->init; tl++) {
6210		struct sd_data *sdd = &tl->data;
6211
6212		sdd->sd = alloc_percpu(struct sched_domain *);
6213		if (!sdd->sd)
6214			return -ENOMEM;
6215
6216		sdd->sg = alloc_percpu(struct sched_group *);
6217		if (!sdd->sg)
6218			return -ENOMEM;
6219
6220		sdd->sgp = alloc_percpu(struct sched_group_power *);
6221		if (!sdd->sgp)
6222			return -ENOMEM;
6223
6224		for_each_cpu(j, cpu_map) {
6225			struct sched_domain *sd;
6226			struct sched_group *sg;
6227			struct sched_group_power *sgp;
6228
6229		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6230					GFP_KERNEL, cpu_to_node(j));
6231			if (!sd)
6232				return -ENOMEM;
6233
6234			*per_cpu_ptr(sdd->sd, j) = sd;
6235
6236			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6237					GFP_KERNEL, cpu_to_node(j));
6238			if (!sg)
6239				return -ENOMEM;
6240
6241			sg->next = sg;
6242
6243			*per_cpu_ptr(sdd->sg, j) = sg;
6244
6245			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6246					GFP_KERNEL, cpu_to_node(j));
6247			if (!sgp)
6248				return -ENOMEM;
6249
6250			*per_cpu_ptr(sdd->sgp, j) = sgp;
6251		}
6252	}
6253
6254	return 0;
6255}
6256
6257static void __sdt_free(const struct cpumask *cpu_map)
6258{
6259	struct sched_domain_topology_level *tl;
6260	int j;
6261
6262	for (tl = sched_domain_topology; tl->init; tl++) {
6263		struct sd_data *sdd = &tl->data;
6264
6265		for_each_cpu(j, cpu_map) {
6266			struct sched_domain *sd;
6267
6268			if (sdd->sd) {
6269				sd = *per_cpu_ptr(sdd->sd, j);
6270				if (sd && (sd->flags & SD_OVERLAP))
6271					free_sched_groups(sd->groups, 0);
6272				kfree(*per_cpu_ptr(sdd->sd, j));
6273			}
6274
6275			if (sdd->sg)
6276				kfree(*per_cpu_ptr(sdd->sg, j));
6277			if (sdd->sgp)
6278				kfree(*per_cpu_ptr(sdd->sgp, j));
6279		}
6280		free_percpu(sdd->sd);
6281		sdd->sd = NULL;
6282		free_percpu(sdd->sg);
6283		sdd->sg = NULL;
6284		free_percpu(sdd->sgp);
6285		sdd->sgp = NULL;
6286	}
6287}
6288
6289struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6290		struct s_data *d, const struct cpumask *cpu_map,
6291		struct sched_domain_attr *attr, struct sched_domain *child,
6292		int cpu)
6293{
6294	struct sched_domain *sd = tl->init(tl, cpu);
6295	if (!sd)
6296		return child;
6297
6298	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6299	if (child) {
6300		sd->level = child->level + 1;
6301		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6302		child->parent = sd;
6303	}
6304	sd->child = child;
6305	set_domain_attribute(sd, attr);
6306
6307	return sd;
6308}
6309
6310/*
6311 * Build sched domains for a given set of cpus and attach the sched domains
6312 * to the individual cpus
6313 */
6314static int build_sched_domains(const struct cpumask *cpu_map,
6315			       struct sched_domain_attr *attr)
6316{
6317	enum s_alloc alloc_state = sa_none;
6318	struct sched_domain *sd;
6319	struct s_data d;
6320	int i, ret = -ENOMEM;
6321
6322	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6323	if (alloc_state != sa_rootdomain)
6324		goto error;
6325
6326	/* Set up domains for cpus specified by the cpu_map. */
6327	for_each_cpu(i, cpu_map) {
6328		struct sched_domain_topology_level *tl;
6329
6330		sd = NULL;
6331		for (tl = sched_domain_topology; tl->init; tl++) {
6332			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6333			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6334				sd->flags |= SD_OVERLAP;
6335			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6336				break;
6337		}
6338
6339		while (sd->child)
6340			sd = sd->child;
6341
6342		*per_cpu_ptr(d.sd, i) = sd;
6343	}
6344
6345	/* Build the groups for the domains */
6346	for_each_cpu(i, cpu_map) {
6347		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6348			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6349			if (sd->flags & SD_OVERLAP) {
6350				if (build_overlap_sched_groups(sd, i))
6351					goto error;
6352			} else {
6353				if (build_sched_groups(sd, i))
6354					goto error;
6355			}
6356		}
6357	}
6358
6359	/* Calculate CPU power for physical packages and nodes */
6360	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6361		if (!cpumask_test_cpu(i, cpu_map))
6362			continue;
6363
6364		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6365			claim_allocations(i, sd);
6366			init_sched_groups_power(i, sd);
6367		}
6368	}
6369
6370	/* Attach the domains */
6371	rcu_read_lock();
6372	for_each_cpu(i, cpu_map) {
6373		sd = *per_cpu_ptr(d.sd, i);
6374		cpu_attach_domain(sd, d.rd, i);
6375	}
6376	rcu_read_unlock();
6377
6378	ret = 0;
6379error:
6380	__free_domain_allocs(&d, alloc_state, cpu_map);
6381	return ret;
6382}
6383
6384static cpumask_var_t *doms_cur;	/* current sched domains */
6385static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6386static struct sched_domain_attr *dattr_cur;
6387				/* attribues of custom domains in 'doms_cur' */
6388
6389/*
6390 * Special case: If a kmalloc of a doms_cur partition (array of
6391 * cpumask) fails, then fallback to a single sched domain,
6392 * as determined by the single cpumask fallback_doms.
6393 */
6394static cpumask_var_t fallback_doms;
6395
6396/*
6397 * arch_update_cpu_topology lets virtualized architectures update the
6398 * cpu core maps. It is supposed to return 1 if the topology changed
6399 * or 0 if it stayed the same.
6400 */
6401int __attribute__((weak)) arch_update_cpu_topology(void)
6402{
6403	return 0;
6404}
6405
6406cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6407{
6408	int i;
6409	cpumask_var_t *doms;
6410
6411	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6412	if (!doms)
6413		return NULL;
6414	for (i = 0; i < ndoms; i++) {
6415		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6416			free_sched_domains(doms, i);
6417			return NULL;
6418		}
6419	}
6420	return doms;
6421}
6422
6423void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6424{
6425	unsigned int i;
6426	for (i = 0; i < ndoms; i++)
6427		free_cpumask_var(doms[i]);
6428	kfree(doms);
6429}
6430
6431/*
6432 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6433 * For now this just excludes isolated cpus, but could be used to
6434 * exclude other special cases in the future.
6435 */
6436static int init_sched_domains(const struct cpumask *cpu_map)
6437{
6438	int err;
6439
6440	arch_update_cpu_topology();
6441	ndoms_cur = 1;
6442	doms_cur = alloc_sched_domains(ndoms_cur);
6443	if (!doms_cur)
6444		doms_cur = &fallback_doms;
6445	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6446	err = build_sched_domains(doms_cur[0], NULL);
6447	register_sched_domain_sysctl();
6448
6449	return err;
6450}
6451
6452/*
6453 * Detach sched domains from a group of cpus specified in cpu_map
6454 * These cpus will now be attached to the NULL domain
6455 */
6456static void detach_destroy_domains(const struct cpumask *cpu_map)
6457{
6458	int i;
6459
6460	rcu_read_lock();
6461	for_each_cpu(i, cpu_map)
6462		cpu_attach_domain(NULL, &def_root_domain, i);
6463	rcu_read_unlock();
6464}
6465
6466/* handle null as "default" */
6467static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6468			struct sched_domain_attr *new, int idx_new)
6469{
6470	struct sched_domain_attr tmp;
6471
6472	/* fast path */
6473	if (!new && !cur)
6474		return 1;
6475
6476	tmp = SD_ATTR_INIT;
6477	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6478			new ? (new + idx_new) : &tmp,
6479			sizeof(struct sched_domain_attr));
6480}
6481
6482/*
6483 * Partition sched domains as specified by the 'ndoms_new'
6484 * cpumasks in the array doms_new[] of cpumasks. This compares
6485 * doms_new[] to the current sched domain partitioning, doms_cur[].
6486 * It destroys each deleted domain and builds each new domain.
6487 *
6488 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6489 * The masks don't intersect (don't overlap.) We should setup one
6490 * sched domain for each mask. CPUs not in any of the cpumasks will
6491 * not be load balanced. If the same cpumask appears both in the
6492 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6493 * it as it is.
6494 *
6495 * The passed in 'doms_new' should be allocated using
6496 * alloc_sched_domains.  This routine takes ownership of it and will
6497 * free_sched_domains it when done with it. If the caller failed the
6498 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6499 * and partition_sched_domains() will fallback to the single partition
6500 * 'fallback_doms', it also forces the domains to be rebuilt.
6501 *
6502 * If doms_new == NULL it will be replaced with cpu_online_mask.
6503 * ndoms_new == 0 is a special case for destroying existing domains,
6504 * and it will not create the default domain.
6505 *
6506 * Call with hotplug lock held
6507 */
6508void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6509			     struct sched_domain_attr *dattr_new)
6510{
6511	int i, j, n;
6512	int new_topology;
6513
6514	mutex_lock(&sched_domains_mutex);
6515
6516	/* always unregister in case we don't destroy any domains */
6517	unregister_sched_domain_sysctl();
6518
6519	/* Let architecture update cpu core mappings. */
6520	new_topology = arch_update_cpu_topology();
6521
6522	n = doms_new ? ndoms_new : 0;
6523
6524	/* Destroy deleted domains */
6525	for (i = 0; i < ndoms_cur; i++) {
6526		for (j = 0; j < n && !new_topology; j++) {
6527			if (cpumask_equal(doms_cur[i], doms_new[j])
6528			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6529				goto match1;
6530		}
6531		/* no match - a current sched domain not in new doms_new[] */
6532		detach_destroy_domains(doms_cur[i]);
6533match1:
6534		;
6535	}
6536
6537	if (doms_new == NULL) {
6538		ndoms_cur = 0;
6539		doms_new = &fallback_doms;
6540		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6541		WARN_ON_ONCE(dattr_new);
6542	}
6543
6544	/* Build new domains */
6545	for (i = 0; i < ndoms_new; i++) {
6546		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6547			if (cpumask_equal(doms_new[i], doms_cur[j])
6548			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6549				goto match2;
6550		}
6551		/* no match - add a new doms_new */
6552		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6553match2:
6554		;
6555	}
6556
6557	/* Remember the new sched domains */
6558	if (doms_cur != &fallback_doms)
6559		free_sched_domains(doms_cur, ndoms_cur);
6560	kfree(dattr_cur);	/* kfree(NULL) is safe */
6561	doms_cur = doms_new;
6562	dattr_cur = dattr_new;
6563	ndoms_cur = ndoms_new;
6564
6565	register_sched_domain_sysctl();
6566
6567	mutex_unlock(&sched_domains_mutex);
6568}
6569
6570static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6571
6572/*
6573 * Update cpusets according to cpu_active mask.  If cpusets are
6574 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6575 * around partition_sched_domains().
6576 *
6577 * If we come here as part of a suspend/resume, don't touch cpusets because we
6578 * want to restore it back to its original state upon resume anyway.
6579 */
6580static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6581			     void *hcpu)
6582{
6583	switch (action) {
6584	case CPU_ONLINE_FROZEN:
6585	case CPU_DOWN_FAILED_FROZEN:
6586
6587		/*
6588		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6589		 * resume sequence. As long as this is not the last online
6590		 * operation in the resume sequence, just build a single sched
6591		 * domain, ignoring cpusets.
6592		 */
6593		num_cpus_frozen--;
6594		if (likely(num_cpus_frozen)) {
6595			partition_sched_domains(1, NULL, NULL);
6596			break;
6597		}
6598
6599		/*
6600		 * This is the last CPU online operation. So fall through and
6601		 * restore the original sched domains by considering the
6602		 * cpuset configurations.
6603		 */
6604
6605	case CPU_ONLINE:
6606	case CPU_DOWN_FAILED:
6607		cpuset_update_active_cpus(true);
6608		break;
6609	default:
6610		return NOTIFY_DONE;
6611	}
6612	return NOTIFY_OK;
6613}
6614
6615static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6616			       void *hcpu)
6617{
6618	switch (action) {
6619	case CPU_DOWN_PREPARE:
6620		cpuset_update_active_cpus(false);
6621		break;
6622	case CPU_DOWN_PREPARE_FROZEN:
6623		num_cpus_frozen++;
6624		partition_sched_domains(1, NULL, NULL);
6625		break;
6626	default:
6627		return NOTIFY_DONE;
6628	}
6629	return NOTIFY_OK;
6630}
6631
6632void __init sched_init_smp(void)
6633{
6634	cpumask_var_t non_isolated_cpus;
6635
6636	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6637	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6638
6639	sched_init_numa();
6640
6641	get_online_cpus();
6642	mutex_lock(&sched_domains_mutex);
6643	init_sched_domains(cpu_active_mask);
6644	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6645	if (cpumask_empty(non_isolated_cpus))
6646		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6647	mutex_unlock(&sched_domains_mutex);
6648	put_online_cpus();
6649
6650	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6651	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6652
6653	/* RT runtime code needs to handle some hotplug events */
6654	hotcpu_notifier(update_runtime, 0);
6655
6656	init_hrtick();
6657
6658	/* Move init over to a non-isolated CPU */
6659	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6660		BUG();
6661	sched_init_granularity();
6662	free_cpumask_var(non_isolated_cpus);
6663
6664	init_sched_rt_class();
6665}
6666#else
6667void __init sched_init_smp(void)
6668{
6669	sched_init_granularity();
6670}
6671#endif /* CONFIG_SMP */
6672
6673const_debug unsigned int sysctl_timer_migration = 1;
6674
6675int in_sched_functions(unsigned long addr)
6676{
6677	return in_lock_functions(addr) ||
6678		(addr >= (unsigned long)__sched_text_start
6679		&& addr < (unsigned long)__sched_text_end);
6680}
6681
6682#ifdef CONFIG_CGROUP_SCHED
6683struct task_group root_task_group;
6684LIST_HEAD(task_groups);
6685#endif
6686
6687DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6688
6689void __init sched_init(void)
6690{
6691	int i, j;
6692	unsigned long alloc_size = 0, ptr;
6693
6694#ifdef CONFIG_FAIR_GROUP_SCHED
6695	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6696#endif
6697#ifdef CONFIG_RT_GROUP_SCHED
6698	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6699#endif
6700#ifdef CONFIG_CPUMASK_OFFSTACK
6701	alloc_size += num_possible_cpus() * cpumask_size();
6702#endif
6703	if (alloc_size) {
6704		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6705
6706#ifdef CONFIG_FAIR_GROUP_SCHED
6707		root_task_group.se = (struct sched_entity **)ptr;
6708		ptr += nr_cpu_ids * sizeof(void **);
6709
6710		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6711		ptr += nr_cpu_ids * sizeof(void **);
6712
6713#endif /* CONFIG_FAIR_GROUP_SCHED */
6714#ifdef CONFIG_RT_GROUP_SCHED
6715		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6716		ptr += nr_cpu_ids * sizeof(void **);
6717
6718		root_task_group.rt_rq = (struct rt_rq **)ptr;
6719		ptr += nr_cpu_ids * sizeof(void **);
6720
6721#endif /* CONFIG_RT_GROUP_SCHED */
6722#ifdef CONFIG_CPUMASK_OFFSTACK
6723		for_each_possible_cpu(i) {
6724			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6725			ptr += cpumask_size();
6726		}
6727#endif /* CONFIG_CPUMASK_OFFSTACK */
6728	}
6729
6730#ifdef CONFIG_SMP
6731	init_defrootdomain();
6732#endif
6733
6734	init_rt_bandwidth(&def_rt_bandwidth,
6735			global_rt_period(), global_rt_runtime());
6736
6737#ifdef CONFIG_RT_GROUP_SCHED
6738	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6739			global_rt_period(), global_rt_runtime());
6740#endif /* CONFIG_RT_GROUP_SCHED */
6741
6742#ifdef CONFIG_CGROUP_SCHED
6743	list_add(&root_task_group.list, &task_groups);
6744	INIT_LIST_HEAD(&root_task_group.children);
6745	INIT_LIST_HEAD(&root_task_group.siblings);
6746	autogroup_init(&init_task);
6747
6748#endif /* CONFIG_CGROUP_SCHED */
6749
6750#ifdef CONFIG_CGROUP_CPUACCT
6751	root_cpuacct.cpustat = &kernel_cpustat;
6752	root_cpuacct.cpuusage = alloc_percpu(u64);
6753	/* Too early, not expected to fail */
6754	BUG_ON(!root_cpuacct.cpuusage);
6755#endif
6756	for_each_possible_cpu(i) {
6757		struct rq *rq;
6758
6759		rq = cpu_rq(i);
6760		raw_spin_lock_init(&rq->lock);
6761		rq->nr_running = 0;
6762		rq->calc_load_active = 0;
6763		rq->calc_load_update = jiffies + LOAD_FREQ;
6764		init_cfs_rq(&rq->cfs);
6765		init_rt_rq(&rq->rt, rq);
6766#ifdef CONFIG_FAIR_GROUP_SCHED
6767		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6768		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6769		/*
6770		 * How much cpu bandwidth does root_task_group get?
6771		 *
6772		 * In case of task-groups formed thr' the cgroup filesystem, it
6773		 * gets 100% of the cpu resources in the system. This overall
6774		 * system cpu resource is divided among the tasks of
6775		 * root_task_group and its child task-groups in a fair manner,
6776		 * based on each entity's (task or task-group's) weight
6777		 * (se->load.weight).
6778		 *
6779		 * In other words, if root_task_group has 10 tasks of weight
6780		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6781		 * then A0's share of the cpu resource is:
6782		 *
6783		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6784		 *
6785		 * We achieve this by letting root_task_group's tasks sit
6786		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6787		 */
6788		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6789		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6790#endif /* CONFIG_FAIR_GROUP_SCHED */
6791
6792		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6793#ifdef CONFIG_RT_GROUP_SCHED
6794		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6795		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6796#endif
6797
6798		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6799			rq->cpu_load[j] = 0;
6800
6801		rq->last_load_update_tick = jiffies;
6802
6803#ifdef CONFIG_SMP
6804		rq->sd = NULL;
6805		rq->rd = NULL;
6806		rq->cpu_power = SCHED_POWER_SCALE;
6807		rq->post_schedule = 0;
6808		rq->active_balance = 0;
6809		rq->next_balance = jiffies;
6810		rq->push_cpu = 0;
6811		rq->cpu = i;
6812		rq->online = 0;
6813		rq->idle_stamp = 0;
6814		rq->avg_idle = 2*sysctl_sched_migration_cost;
6815
6816		INIT_LIST_HEAD(&rq->cfs_tasks);
6817
6818		rq_attach_root(rq, &def_root_domain);
6819#ifdef CONFIG_NO_HZ
6820		rq->nohz_flags = 0;
6821#endif
6822#endif
6823		init_rq_hrtick(rq);
6824		atomic_set(&rq->nr_iowait, 0);
6825	}
6826
6827	set_load_weight(&init_task);
6828
6829#ifdef CONFIG_PREEMPT_NOTIFIERS
6830	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6831#endif
6832
6833#ifdef CONFIG_RT_MUTEXES
6834	plist_head_init(&init_task.pi_waiters);
6835#endif
6836
6837	/*
6838	 * The boot idle thread does lazy MMU switching as well:
6839	 */
6840	atomic_inc(&init_mm.mm_count);
6841	enter_lazy_tlb(&init_mm, current);
6842
6843	/*
6844	 * Make us the idle thread. Technically, schedule() should not be
6845	 * called from this thread, however somewhere below it might be,
6846	 * but because we are the idle thread, we just pick up running again
6847	 * when this runqueue becomes "idle".
6848	 */
6849	init_idle(current, smp_processor_id());
6850
6851	calc_load_update = jiffies + LOAD_FREQ;
6852
6853	/*
6854	 * During early bootup we pretend to be a normal task:
6855	 */
6856	current->sched_class = &fair_sched_class;
6857
6858#ifdef CONFIG_SMP
6859	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6860	/* May be allocated at isolcpus cmdline parse time */
6861	if (cpu_isolated_map == NULL)
6862		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6863	idle_thread_set_boot_cpu();
6864#endif
6865	init_sched_fair_class();
6866
6867	scheduler_running = 1;
6868}
6869
6870#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6871static inline int preempt_count_equals(int preempt_offset)
6872{
6873	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6874
6875	return (nested == preempt_offset);
6876}
6877
6878void __might_sleep(const char *file, int line, int preempt_offset)
6879{
6880	static unsigned long prev_jiffy;	/* ratelimiting */
6881
6882	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6883	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6884	    system_state != SYSTEM_RUNNING || oops_in_progress)
6885		return;
6886	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6887		return;
6888	prev_jiffy = jiffies;
6889
6890	printk(KERN_ERR
6891		"BUG: sleeping function called from invalid context at %s:%d\n",
6892			file, line);
6893	printk(KERN_ERR
6894		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6895			in_atomic(), irqs_disabled(),
6896			current->pid, current->comm);
6897
6898	debug_show_held_locks(current);
6899	if (irqs_disabled())
6900		print_irqtrace_events(current);
6901	dump_stack();
6902}
6903EXPORT_SYMBOL(__might_sleep);
6904#endif
6905
6906#ifdef CONFIG_MAGIC_SYSRQ
6907static void normalize_task(struct rq *rq, struct task_struct *p)
6908{
6909	const struct sched_class *prev_class = p->sched_class;
6910	int old_prio = p->prio;
6911	int on_rq;
6912
6913	on_rq = p->on_rq;
6914	if (on_rq)
6915		dequeue_task(rq, p, 0);
6916	__setscheduler(rq, p, SCHED_NORMAL, 0);
6917	if (on_rq) {
6918		enqueue_task(rq, p, 0);
6919		resched_task(rq->curr);
6920	}
6921
6922	check_class_changed(rq, p, prev_class, old_prio);
6923}
6924
6925void normalize_rt_tasks(void)
6926{
6927	struct task_struct *g, *p;
6928	unsigned long flags;
6929	struct rq *rq;
6930
6931	read_lock_irqsave(&tasklist_lock, flags);
6932	do_each_thread(g, p) {
6933		/*
6934		 * Only normalize user tasks:
6935		 */
6936		if (!p->mm)
6937			continue;
6938
6939		p->se.exec_start		= 0;
6940#ifdef CONFIG_SCHEDSTATS
6941		p->se.statistics.wait_start	= 0;
6942		p->se.statistics.sleep_start	= 0;
6943		p->se.statistics.block_start	= 0;
6944#endif
6945
6946		if (!rt_task(p)) {
6947			/*
6948			 * Renice negative nice level userspace
6949			 * tasks back to 0:
6950			 */
6951			if (TASK_NICE(p) < 0 && p->mm)
6952				set_user_nice(p, 0);
6953			continue;
6954		}
6955
6956		raw_spin_lock(&p->pi_lock);
6957		rq = __task_rq_lock(p);
6958
6959		normalize_task(rq, p);
6960
6961		__task_rq_unlock(rq);
6962		raw_spin_unlock(&p->pi_lock);
6963	} while_each_thread(g, p);
6964
6965	read_unlock_irqrestore(&tasklist_lock, flags);
6966}
6967
6968#endif /* CONFIG_MAGIC_SYSRQ */
6969
6970#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6971/*
6972 * These functions are only useful for the IA64 MCA handling, or kdb.
6973 *
6974 * They can only be called when the whole system has been
6975 * stopped - every CPU needs to be quiescent, and no scheduling
6976 * activity can take place. Using them for anything else would
6977 * be a serious bug, and as a result, they aren't even visible
6978 * under any other configuration.
6979 */
6980
6981/**
6982 * curr_task - return the current task for a given cpu.
6983 * @cpu: the processor in question.
6984 *
6985 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6986 */
6987struct task_struct *curr_task(int cpu)
6988{
6989	return cpu_curr(cpu);
6990}
6991
6992#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6993
6994#ifdef CONFIG_IA64
6995/**
6996 * set_curr_task - set the current task for a given cpu.
6997 * @cpu: the processor in question.
6998 * @p: the task pointer to set.
6999 *
7000 * Description: This function must only be used when non-maskable interrupts
7001 * are serviced on a separate stack. It allows the architecture to switch the
7002 * notion of the current task on a cpu in a non-blocking manner. This function
7003 * must be called with all CPU's synchronized, and interrupts disabled, the
7004 * and caller must save the original value of the current task (see
7005 * curr_task() above) and restore that value before reenabling interrupts and
7006 * re-starting the system.
7007 *
7008 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7009 */
7010void set_curr_task(int cpu, struct task_struct *p)
7011{
7012	cpu_curr(cpu) = p;
7013}
7014
7015#endif
7016
7017#ifdef CONFIG_CGROUP_SCHED
7018/* task_group_lock serializes the addition/removal of task groups */
7019static DEFINE_SPINLOCK(task_group_lock);
7020
7021static void free_sched_group(struct task_group *tg)
7022{
7023	free_fair_sched_group(tg);
7024	free_rt_sched_group(tg);
7025	autogroup_free(tg);
7026	kfree(tg);
7027}
7028
7029/* allocate runqueue etc for a new task group */
7030struct task_group *sched_create_group(struct task_group *parent)
7031{
7032	struct task_group *tg;
7033	unsigned long flags;
7034
7035	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7036	if (!tg)
7037		return ERR_PTR(-ENOMEM);
7038
7039	if (!alloc_fair_sched_group(tg, parent))
7040		goto err;
7041
7042	if (!alloc_rt_sched_group(tg, parent))
7043		goto err;
7044
7045	spin_lock_irqsave(&task_group_lock, flags);
7046	list_add_rcu(&tg->list, &task_groups);
7047
7048	WARN_ON(!parent); /* root should already exist */
7049
7050	tg->parent = parent;
7051	INIT_LIST_HEAD(&tg->children);
7052	list_add_rcu(&tg->siblings, &parent->children);
7053	spin_unlock_irqrestore(&task_group_lock, flags);
7054
7055	return tg;
7056
7057err:
7058	free_sched_group(tg);
7059	return ERR_PTR(-ENOMEM);
7060}
7061
7062/* rcu callback to free various structures associated with a task group */
7063static void free_sched_group_rcu(struct rcu_head *rhp)
7064{
7065	/* now it should be safe to free those cfs_rqs */
7066	free_sched_group(container_of(rhp, struct task_group, rcu));
7067}
7068
7069/* Destroy runqueue etc associated with a task group */
7070void sched_destroy_group(struct task_group *tg)
7071{
7072	unsigned long flags;
7073	int i;
7074
7075	/* end participation in shares distribution */
7076	for_each_possible_cpu(i)
7077		unregister_fair_sched_group(tg, i);
7078
7079	spin_lock_irqsave(&task_group_lock, flags);
7080	list_del_rcu(&tg->list);
7081	list_del_rcu(&tg->siblings);
7082	spin_unlock_irqrestore(&task_group_lock, flags);
7083
7084	/* wait for possible concurrent references to cfs_rqs complete */
7085	call_rcu(&tg->rcu, free_sched_group_rcu);
7086}
7087
7088/* change task's runqueue when it moves between groups.
7089 *	The caller of this function should have put the task in its new group
7090 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7091 *	reflect its new group.
7092 */
7093void sched_move_task(struct task_struct *tsk)
7094{
7095	struct task_group *tg;
7096	int on_rq, running;
7097	unsigned long flags;
7098	struct rq *rq;
7099
7100	rq = task_rq_lock(tsk, &flags);
7101
7102	running = task_current(rq, tsk);
7103	on_rq = tsk->on_rq;
7104
7105	if (on_rq)
7106		dequeue_task(rq, tsk, 0);
7107	if (unlikely(running))
7108		tsk->sched_class->put_prev_task(rq, tsk);
7109
7110	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7111				lockdep_is_held(&tsk->sighand->siglock)),
7112			  struct task_group, css);
7113	tg = autogroup_task_group(tsk, tg);
7114	tsk->sched_task_group = tg;
7115
7116#ifdef CONFIG_FAIR_GROUP_SCHED
7117	if (tsk->sched_class->task_move_group)
7118		tsk->sched_class->task_move_group(tsk, on_rq);
7119	else
7120#endif
7121		set_task_rq(tsk, task_cpu(tsk));
7122
7123	if (unlikely(running))
7124		tsk->sched_class->set_curr_task(rq);
7125	if (on_rq)
7126		enqueue_task(rq, tsk, 0);
7127
7128	task_rq_unlock(rq, tsk, &flags);
7129}
7130#endif /* CONFIG_CGROUP_SCHED */
7131
7132#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7133static unsigned long to_ratio(u64 period, u64 runtime)
7134{
7135	if (runtime == RUNTIME_INF)
7136		return 1ULL << 20;
7137
7138	return div64_u64(runtime << 20, period);
7139}
7140#endif
7141
7142#ifdef CONFIG_RT_GROUP_SCHED
7143/*
7144 * Ensure that the real time constraints are schedulable.
7145 */
7146static DEFINE_MUTEX(rt_constraints_mutex);
7147
7148/* Must be called with tasklist_lock held */
7149static inline int tg_has_rt_tasks(struct task_group *tg)
7150{
7151	struct task_struct *g, *p;
7152
7153	do_each_thread(g, p) {
7154		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7155			return 1;
7156	} while_each_thread(g, p);
7157
7158	return 0;
7159}
7160
7161struct rt_schedulable_data {
7162	struct task_group *tg;
7163	u64 rt_period;
7164	u64 rt_runtime;
7165};
7166
7167static int tg_rt_schedulable(struct task_group *tg, void *data)
7168{
7169	struct rt_schedulable_data *d = data;
7170	struct task_group *child;
7171	unsigned long total, sum = 0;
7172	u64 period, runtime;
7173
7174	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7175	runtime = tg->rt_bandwidth.rt_runtime;
7176
7177	if (tg == d->tg) {
7178		period = d->rt_period;
7179		runtime = d->rt_runtime;
7180	}
7181
7182	/*
7183	 * Cannot have more runtime than the period.
7184	 */
7185	if (runtime > period && runtime != RUNTIME_INF)
7186		return -EINVAL;
7187
7188	/*
7189	 * Ensure we don't starve existing RT tasks.
7190	 */
7191	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7192		return -EBUSY;
7193
7194	total = to_ratio(period, runtime);
7195
7196	/*
7197	 * Nobody can have more than the global setting allows.
7198	 */
7199	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7200		return -EINVAL;
7201
7202	/*
7203	 * The sum of our children's runtime should not exceed our own.
7204	 */
7205	list_for_each_entry_rcu(child, &tg->children, siblings) {
7206		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7207		runtime = child->rt_bandwidth.rt_runtime;
7208
7209		if (child == d->tg) {
7210			period = d->rt_period;
7211			runtime = d->rt_runtime;
7212		}
7213
7214		sum += to_ratio(period, runtime);
7215	}
7216
7217	if (sum > total)
7218		return -EINVAL;
7219
7220	return 0;
7221}
7222
7223static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7224{
7225	int ret;
7226
7227	struct rt_schedulable_data data = {
7228		.tg = tg,
7229		.rt_period = period,
7230		.rt_runtime = runtime,
7231	};
7232
7233	rcu_read_lock();
7234	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7235	rcu_read_unlock();
7236
7237	return ret;
7238}
7239
7240static int tg_set_rt_bandwidth(struct task_group *tg,
7241		u64 rt_period, u64 rt_runtime)
7242{
7243	int i, err = 0;
7244
7245	mutex_lock(&rt_constraints_mutex);
7246	read_lock(&tasklist_lock);
7247	err = __rt_schedulable(tg, rt_period, rt_runtime);
7248	if (err)
7249		goto unlock;
7250
7251	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7252	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7253	tg->rt_bandwidth.rt_runtime = rt_runtime;
7254
7255	for_each_possible_cpu(i) {
7256		struct rt_rq *rt_rq = tg->rt_rq[i];
7257
7258		raw_spin_lock(&rt_rq->rt_runtime_lock);
7259		rt_rq->rt_runtime = rt_runtime;
7260		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7261	}
7262	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7263unlock:
7264	read_unlock(&tasklist_lock);
7265	mutex_unlock(&rt_constraints_mutex);
7266
7267	return err;
7268}
7269
7270int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7271{
7272	u64 rt_runtime, rt_period;
7273
7274	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7275	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7276	if (rt_runtime_us < 0)
7277		rt_runtime = RUNTIME_INF;
7278
7279	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7280}
7281
7282long sched_group_rt_runtime(struct task_group *tg)
7283{
7284	u64 rt_runtime_us;
7285
7286	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7287		return -1;
7288
7289	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7290	do_div(rt_runtime_us, NSEC_PER_USEC);
7291	return rt_runtime_us;
7292}
7293
7294int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7295{
7296	u64 rt_runtime, rt_period;
7297
7298	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7299	rt_runtime = tg->rt_bandwidth.rt_runtime;
7300
7301	if (rt_period == 0)
7302		return -EINVAL;
7303
7304	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7305}
7306
7307long sched_group_rt_period(struct task_group *tg)
7308{
7309	u64 rt_period_us;
7310
7311	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7312	do_div(rt_period_us, NSEC_PER_USEC);
7313	return rt_period_us;
7314}
7315
7316static int sched_rt_global_constraints(void)
7317{
7318	u64 runtime, period;
7319	int ret = 0;
7320
7321	if (sysctl_sched_rt_period <= 0)
7322		return -EINVAL;
7323
7324	runtime = global_rt_runtime();
7325	period = global_rt_period();
7326
7327	/*
7328	 * Sanity check on the sysctl variables.
7329	 */
7330	if (runtime > period && runtime != RUNTIME_INF)
7331		return -EINVAL;
7332
7333	mutex_lock(&rt_constraints_mutex);
7334	read_lock(&tasklist_lock);
7335	ret = __rt_schedulable(NULL, 0, 0);
7336	read_unlock(&tasklist_lock);
7337	mutex_unlock(&rt_constraints_mutex);
7338
7339	return ret;
7340}
7341
7342int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7343{
7344	/* Don't accept realtime tasks when there is no way for them to run */
7345	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7346		return 0;
7347
7348	return 1;
7349}
7350
7351#else /* !CONFIG_RT_GROUP_SCHED */
7352static int sched_rt_global_constraints(void)
7353{
7354	unsigned long flags;
7355	int i;
7356
7357	if (sysctl_sched_rt_period <= 0)
7358		return -EINVAL;
7359
7360	/*
7361	 * There's always some RT tasks in the root group
7362	 * -- migration, kstopmachine etc..
7363	 */
7364	if (sysctl_sched_rt_runtime == 0)
7365		return -EBUSY;
7366
7367	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7368	for_each_possible_cpu(i) {
7369		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7370
7371		raw_spin_lock(&rt_rq->rt_runtime_lock);
7372		rt_rq->rt_runtime = global_rt_runtime();
7373		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7374	}
7375	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7376
7377	return 0;
7378}
7379#endif /* CONFIG_RT_GROUP_SCHED */
7380
7381int sched_rt_handler(struct ctl_table *table, int write,
7382		void __user *buffer, size_t *lenp,
7383		loff_t *ppos)
7384{
7385	int ret;
7386	int old_period, old_runtime;
7387	static DEFINE_MUTEX(mutex);
7388
7389	mutex_lock(&mutex);
7390	old_period = sysctl_sched_rt_period;
7391	old_runtime = sysctl_sched_rt_runtime;
7392
7393	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7394
7395	if (!ret && write) {
7396		ret = sched_rt_global_constraints();
7397		if (ret) {
7398			sysctl_sched_rt_period = old_period;
7399			sysctl_sched_rt_runtime = old_runtime;
7400		} else {
7401			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7402			def_rt_bandwidth.rt_period =
7403				ns_to_ktime(global_rt_period());
7404		}
7405	}
7406	mutex_unlock(&mutex);
7407
7408	return ret;
7409}
7410
7411#ifdef CONFIG_CGROUP_SCHED
7412
7413/* return corresponding task_group object of a cgroup */
7414static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7415{
7416	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7417			    struct task_group, css);
7418}
7419
7420static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7421{
7422	struct task_group *tg, *parent;
7423
7424	if (!cgrp->parent) {
7425		/* This is early initialization for the top cgroup */
7426		return &root_task_group.css;
7427	}
7428
7429	parent = cgroup_tg(cgrp->parent);
7430	tg = sched_create_group(parent);
7431	if (IS_ERR(tg))
7432		return ERR_PTR(-ENOMEM);
7433
7434	return &tg->css;
7435}
7436
7437static void cpu_cgroup_destroy(struct cgroup *cgrp)
7438{
7439	struct task_group *tg = cgroup_tg(cgrp);
7440
7441	sched_destroy_group(tg);
7442}
7443
7444static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7445				 struct cgroup_taskset *tset)
7446{
7447	struct task_struct *task;
7448
7449	cgroup_taskset_for_each(task, cgrp, tset) {
7450#ifdef CONFIG_RT_GROUP_SCHED
7451		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7452			return -EINVAL;
7453#else
7454		/* We don't support RT-tasks being in separate groups */
7455		if (task->sched_class != &fair_sched_class)
7456			return -EINVAL;
7457#endif
7458	}
7459	return 0;
7460}
7461
7462static void cpu_cgroup_attach(struct cgroup *cgrp,
7463			      struct cgroup_taskset *tset)
7464{
7465	struct task_struct *task;
7466
7467	cgroup_taskset_for_each(task, cgrp, tset)
7468		sched_move_task(task);
7469}
7470
7471static void
7472cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7473		struct task_struct *task)
7474{
7475	/*
7476	 * cgroup_exit() is called in the copy_process() failure path.
7477	 * Ignore this case since the task hasn't ran yet, this avoids
7478	 * trying to poke a half freed task state from generic code.
7479	 */
7480	if (!(task->flags & PF_EXITING))
7481		return;
7482
7483	sched_move_task(task);
7484}
7485
7486#ifdef CONFIG_FAIR_GROUP_SCHED
7487static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7488				u64 shareval)
7489{
7490	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7491}
7492
7493static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7494{
7495	struct task_group *tg = cgroup_tg(cgrp);
7496
7497	return (u64) scale_load_down(tg->shares);
7498}
7499
7500#ifdef CONFIG_CFS_BANDWIDTH
7501static DEFINE_MUTEX(cfs_constraints_mutex);
7502
7503const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7504const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7505
7506static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7507
7508static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7509{
7510	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7511	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7512
7513	if (tg == &root_task_group)
7514		return -EINVAL;
7515
7516	/*
7517	 * Ensure we have at some amount of bandwidth every period.  This is
7518	 * to prevent reaching a state of large arrears when throttled via
7519	 * entity_tick() resulting in prolonged exit starvation.
7520	 */
7521	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7522		return -EINVAL;
7523
7524	/*
7525	 * Likewise, bound things on the otherside by preventing insane quota
7526	 * periods.  This also allows us to normalize in computing quota
7527	 * feasibility.
7528	 */
7529	if (period > max_cfs_quota_period)
7530		return -EINVAL;
7531
7532	mutex_lock(&cfs_constraints_mutex);
7533	ret = __cfs_schedulable(tg, period, quota);
7534	if (ret)
7535		goto out_unlock;
7536
7537	runtime_enabled = quota != RUNTIME_INF;
7538	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7539	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7540	raw_spin_lock_irq(&cfs_b->lock);
7541	cfs_b->period = ns_to_ktime(period);
7542	cfs_b->quota = quota;
7543
7544	__refill_cfs_bandwidth_runtime(cfs_b);
7545	/* restart the period timer (if active) to handle new period expiry */
7546	if (runtime_enabled && cfs_b->timer_active) {
7547		/* force a reprogram */
7548		cfs_b->timer_active = 0;
7549		__start_cfs_bandwidth(cfs_b);
7550	}
7551	raw_spin_unlock_irq(&cfs_b->lock);
7552
7553	for_each_possible_cpu(i) {
7554		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7555		struct rq *rq = cfs_rq->rq;
7556
7557		raw_spin_lock_irq(&rq->lock);
7558		cfs_rq->runtime_enabled = runtime_enabled;
7559		cfs_rq->runtime_remaining = 0;
7560
7561		if (cfs_rq->throttled)
7562			unthrottle_cfs_rq(cfs_rq);
7563		raw_spin_unlock_irq(&rq->lock);
7564	}
7565out_unlock:
7566	mutex_unlock(&cfs_constraints_mutex);
7567
7568	return ret;
7569}
7570
7571int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7572{
7573	u64 quota, period;
7574
7575	period = ktime_to_ns(tg->cfs_bandwidth.period);
7576	if (cfs_quota_us < 0)
7577		quota = RUNTIME_INF;
7578	else
7579		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7580
7581	return tg_set_cfs_bandwidth(tg, period, quota);
7582}
7583
7584long tg_get_cfs_quota(struct task_group *tg)
7585{
7586	u64 quota_us;
7587
7588	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7589		return -1;
7590
7591	quota_us = tg->cfs_bandwidth.quota;
7592	do_div(quota_us, NSEC_PER_USEC);
7593
7594	return quota_us;
7595}
7596
7597int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7598{
7599	u64 quota, period;
7600
7601	period = (u64)cfs_period_us * NSEC_PER_USEC;
7602	quota = tg->cfs_bandwidth.quota;
7603
7604	return tg_set_cfs_bandwidth(tg, period, quota);
7605}
7606
7607long tg_get_cfs_period(struct task_group *tg)
7608{
7609	u64 cfs_period_us;
7610
7611	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7612	do_div(cfs_period_us, NSEC_PER_USEC);
7613
7614	return cfs_period_us;
7615}
7616
7617static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7618{
7619	return tg_get_cfs_quota(cgroup_tg(cgrp));
7620}
7621
7622static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7623				s64 cfs_quota_us)
7624{
7625	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7626}
7627
7628static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7629{
7630	return tg_get_cfs_period(cgroup_tg(cgrp));
7631}
7632
7633static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7634				u64 cfs_period_us)
7635{
7636	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7637}
7638
7639struct cfs_schedulable_data {
7640	struct task_group *tg;
7641	u64 period, quota;
7642};
7643
7644/*
7645 * normalize group quota/period to be quota/max_period
7646 * note: units are usecs
7647 */
7648static u64 normalize_cfs_quota(struct task_group *tg,
7649			       struct cfs_schedulable_data *d)
7650{
7651	u64 quota, period;
7652
7653	if (tg == d->tg) {
7654		period = d->period;
7655		quota = d->quota;
7656	} else {
7657		period = tg_get_cfs_period(tg);
7658		quota = tg_get_cfs_quota(tg);
7659	}
7660
7661	/* note: these should typically be equivalent */
7662	if (quota == RUNTIME_INF || quota == -1)
7663		return RUNTIME_INF;
7664
7665	return to_ratio(period, quota);
7666}
7667
7668static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7669{
7670	struct cfs_schedulable_data *d = data;
7671	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7672	s64 quota = 0, parent_quota = -1;
7673
7674	if (!tg->parent) {
7675		quota = RUNTIME_INF;
7676	} else {
7677		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7678
7679		quota = normalize_cfs_quota(tg, d);
7680		parent_quota = parent_b->hierarchal_quota;
7681
7682		/*
7683		 * ensure max(child_quota) <= parent_quota, inherit when no
7684		 * limit is set
7685		 */
7686		if (quota == RUNTIME_INF)
7687			quota = parent_quota;
7688		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7689			return -EINVAL;
7690	}
7691	cfs_b->hierarchal_quota = quota;
7692
7693	return 0;
7694}
7695
7696static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7697{
7698	int ret;
7699	struct cfs_schedulable_data data = {
7700		.tg = tg,
7701		.period = period,
7702		.quota = quota,
7703	};
7704
7705	if (quota != RUNTIME_INF) {
7706		do_div(data.period, NSEC_PER_USEC);
7707		do_div(data.quota, NSEC_PER_USEC);
7708	}
7709
7710	rcu_read_lock();
7711	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7712	rcu_read_unlock();
7713
7714	return ret;
7715}
7716
7717static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7718		struct cgroup_map_cb *cb)
7719{
7720	struct task_group *tg = cgroup_tg(cgrp);
7721	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7722
7723	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7724	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7725	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7726
7727	return 0;
7728}
7729#endif /* CONFIG_CFS_BANDWIDTH */
7730#endif /* CONFIG_FAIR_GROUP_SCHED */
7731
7732#ifdef CONFIG_RT_GROUP_SCHED
7733static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7734				s64 val)
7735{
7736	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7737}
7738
7739static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7740{
7741	return sched_group_rt_runtime(cgroup_tg(cgrp));
7742}
7743
7744static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7745		u64 rt_period_us)
7746{
7747	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7748}
7749
7750static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7751{
7752	return sched_group_rt_period(cgroup_tg(cgrp));
7753}
7754#endif /* CONFIG_RT_GROUP_SCHED */
7755
7756static struct cftype cpu_files[] = {
7757#ifdef CONFIG_FAIR_GROUP_SCHED
7758	{
7759		.name = "shares",
7760		.read_u64 = cpu_shares_read_u64,
7761		.write_u64 = cpu_shares_write_u64,
7762	},
7763#endif
7764#ifdef CONFIG_CFS_BANDWIDTH
7765	{
7766		.name = "cfs_quota_us",
7767		.read_s64 = cpu_cfs_quota_read_s64,
7768		.write_s64 = cpu_cfs_quota_write_s64,
7769	},
7770	{
7771		.name = "cfs_period_us",
7772		.read_u64 = cpu_cfs_period_read_u64,
7773		.write_u64 = cpu_cfs_period_write_u64,
7774	},
7775	{
7776		.name = "stat",
7777		.read_map = cpu_stats_show,
7778	},
7779#endif
7780#ifdef CONFIG_RT_GROUP_SCHED
7781	{
7782		.name = "rt_runtime_us",
7783		.read_s64 = cpu_rt_runtime_read,
7784		.write_s64 = cpu_rt_runtime_write,
7785	},
7786	{
7787		.name = "rt_period_us",
7788		.read_u64 = cpu_rt_period_read_uint,
7789		.write_u64 = cpu_rt_period_write_uint,
7790	},
7791#endif
7792	{ }	/* terminate */
7793};
7794
7795struct cgroup_subsys cpu_cgroup_subsys = {
7796	.name		= "cpu",
7797	.create		= cpu_cgroup_create,
7798	.destroy	= cpu_cgroup_destroy,
7799	.can_attach	= cpu_cgroup_can_attach,
7800	.attach		= cpu_cgroup_attach,
7801	.exit		= cpu_cgroup_exit,
7802	.subsys_id	= cpu_cgroup_subsys_id,
7803	.base_cftypes	= cpu_files,
7804	.early_init	= 1,
7805};
7806
7807#endif	/* CONFIG_CGROUP_SCHED */
7808
7809#ifdef CONFIG_CGROUP_CPUACCT
7810
7811/*
7812 * CPU accounting code for task groups.
7813 *
7814 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7815 * (balbir@in.ibm.com).
7816 */
7817
7818struct cpuacct root_cpuacct;
7819
7820/* create a new cpu accounting group */
7821static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7822{
7823	struct cpuacct *ca;
7824
7825	if (!cgrp->parent)
7826		return &root_cpuacct.css;
7827
7828	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7829	if (!ca)
7830		goto out;
7831
7832	ca->cpuusage = alloc_percpu(u64);
7833	if (!ca->cpuusage)
7834		goto out_free_ca;
7835
7836	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7837	if (!ca->cpustat)
7838		goto out_free_cpuusage;
7839
7840	return &ca->css;
7841
7842out_free_cpuusage:
7843	free_percpu(ca->cpuusage);
7844out_free_ca:
7845	kfree(ca);
7846out:
7847	return ERR_PTR(-ENOMEM);
7848}
7849
7850/* destroy an existing cpu accounting group */
7851static void cpuacct_destroy(struct cgroup *cgrp)
7852{
7853	struct cpuacct *ca = cgroup_ca(cgrp);
7854
7855	free_percpu(ca->cpustat);
7856	free_percpu(ca->cpuusage);
7857	kfree(ca);
7858}
7859
7860static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7861{
7862	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7863	u64 data;
7864
7865#ifndef CONFIG_64BIT
7866	/*
7867	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7868	 */
7869	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7870	data = *cpuusage;
7871	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7872#else
7873	data = *cpuusage;
7874#endif
7875
7876	return data;
7877}
7878
7879static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7880{
7881	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7882
7883#ifndef CONFIG_64BIT
7884	/*
7885	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7886	 */
7887	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7888	*cpuusage = val;
7889	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7890#else
7891	*cpuusage = val;
7892#endif
7893}
7894
7895/* return total cpu usage (in nanoseconds) of a group */
7896static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7897{
7898	struct cpuacct *ca = cgroup_ca(cgrp);
7899	u64 totalcpuusage = 0;
7900	int i;
7901
7902	for_each_present_cpu(i)
7903		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7904
7905	return totalcpuusage;
7906}
7907
7908static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7909								u64 reset)
7910{
7911	struct cpuacct *ca = cgroup_ca(cgrp);
7912	int err = 0;
7913	int i;
7914
7915	if (reset) {
7916		err = -EINVAL;
7917		goto out;
7918	}
7919
7920	for_each_present_cpu(i)
7921		cpuacct_cpuusage_write(ca, i, 0);
7922
7923out:
7924	return err;
7925}
7926
7927static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7928				   struct seq_file *m)
7929{
7930	struct cpuacct *ca = cgroup_ca(cgroup);
7931	u64 percpu;
7932	int i;
7933
7934	for_each_present_cpu(i) {
7935		percpu = cpuacct_cpuusage_read(ca, i);
7936		seq_printf(m, "%llu ", (unsigned long long) percpu);
7937	}
7938	seq_printf(m, "\n");
7939	return 0;
7940}
7941
7942static const char *cpuacct_stat_desc[] = {
7943	[CPUACCT_STAT_USER] = "user",
7944	[CPUACCT_STAT_SYSTEM] = "system",
7945};
7946
7947static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7948			      struct cgroup_map_cb *cb)
7949{
7950	struct cpuacct *ca = cgroup_ca(cgrp);
7951	int cpu;
7952	s64 val = 0;
7953
7954	for_each_online_cpu(cpu) {
7955		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7956		val += kcpustat->cpustat[CPUTIME_USER];
7957		val += kcpustat->cpustat[CPUTIME_NICE];
7958	}
7959	val = cputime64_to_clock_t(val);
7960	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
7961
7962	val = 0;
7963	for_each_online_cpu(cpu) {
7964		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7965		val += kcpustat->cpustat[CPUTIME_SYSTEM];
7966		val += kcpustat->cpustat[CPUTIME_IRQ];
7967		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
7968	}
7969
7970	val = cputime64_to_clock_t(val);
7971	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
7972
7973	return 0;
7974}
7975
7976static struct cftype files[] = {
7977	{
7978		.name = "usage",
7979		.read_u64 = cpuusage_read,
7980		.write_u64 = cpuusage_write,
7981	},
7982	{
7983		.name = "usage_percpu",
7984		.read_seq_string = cpuacct_percpu_seq_read,
7985	},
7986	{
7987		.name = "stat",
7988		.read_map = cpuacct_stats_show,
7989	},
7990	{ }	/* terminate */
7991};
7992
7993/*
7994 * charge this task's execution time to its accounting group.
7995 *
7996 * called with rq->lock held.
7997 */
7998void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7999{
8000	struct cpuacct *ca;
8001	int cpu;
8002
8003	if (unlikely(!cpuacct_subsys.active))
8004		return;
8005
8006	cpu = task_cpu(tsk);
8007
8008	rcu_read_lock();
8009
8010	ca = task_ca(tsk);
8011
8012	for (; ca; ca = parent_ca(ca)) {
8013		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8014		*cpuusage += cputime;
8015	}
8016
8017	rcu_read_unlock();
8018}
8019
8020struct cgroup_subsys cpuacct_subsys = {
8021	.name = "cpuacct",
8022	.create = cpuacct_create,
8023	.destroy = cpuacct_destroy,
8024	.subsys_id = cpuacct_subsys_id,
8025	.base_cftypes = files,
8026};
8027#endif	/* CONFIG_CGROUP_CPUACCT */
8028