core.c revision f7b8a47da17c9ee4998f2ca2018fcc424e953c0e
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	if (rq->skip_clock_update > 0)
123		return;
124
125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126	if (delta < 0)
127		return;
128	rq->clock += delta;
129	update_rq_clock_task(rq, delta);
130}
131
132/*
133 * Debugging: various feature bits
134 */
135
136#define SCHED_FEAT(name, enabled)	\
137	(1UL << __SCHED_FEAT_##name) * enabled |
138
139const_debug unsigned int sysctl_sched_features =
140#include "features.h"
141	0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled)	\
147	#name ,
148
149static const char * const sched_feat_names[] = {
150#include "features.h"
151};
152
153#undef SCHED_FEAT
154
155static int sched_feat_show(struct seq_file *m, void *v)
156{
157	int i;
158
159	for (i = 0; i < __SCHED_FEAT_NR; i++) {
160		if (!(sysctl_sched_features & (1UL << i)))
161			seq_puts(m, "NO_");
162		seq_printf(m, "%s ", sched_feat_names[i]);
163	}
164	seq_puts(m, "\n");
165
166	return 0;
167}
168
169#ifdef HAVE_JUMP_LABEL
170
171#define jump_label_key__true  STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
173
174#define SCHED_FEAT(name, enabled)	\
175	jump_label_key__##enabled ,
176
177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
185	if (static_key_enabled(&sched_feat_keys[i]))
186		static_key_slow_dec(&sched_feat_keys[i]);
187}
188
189static void sched_feat_enable(int i)
190{
191	if (!static_key_enabled(&sched_feat_keys[i]))
192		static_key_slow_inc(&sched_feat_keys[i]);
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
199static int sched_feat_set(char *cmp)
200{
201	int i;
202	int neg = 0;
203
204	if (strncmp(cmp, "NO_", 3) == 0) {
205		neg = 1;
206		cmp += 3;
207	}
208
209	for (i = 0; i < __SCHED_FEAT_NR; i++) {
210		if (strcmp(cmp, sched_feat_names[i]) == 0) {
211			if (neg) {
212				sysctl_sched_features &= ~(1UL << i);
213				sched_feat_disable(i);
214			} else {
215				sysctl_sched_features |= (1UL << i);
216				sched_feat_enable(i);
217			}
218			break;
219		}
220	}
221
222	return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227		size_t cnt, loff_t *ppos)
228{
229	char buf[64];
230	char *cmp;
231	int i;
232	struct inode *inode;
233
234	if (cnt > 63)
235		cnt = 63;
236
237	if (copy_from_user(&buf, ubuf, cnt))
238		return -EFAULT;
239
240	buf[cnt] = 0;
241	cmp = strstrip(buf);
242
243	/* Ensure the static_key remains in a consistent state */
244	inode = file_inode(filp);
245	mutex_lock(&inode->i_mutex);
246	i = sched_feat_set(cmp);
247	mutex_unlock(&inode->i_mutex);
248	if (i == __SCHED_FEAT_NR)
249		return -EINVAL;
250
251	*ppos += cnt;
252
253	return cnt;
254}
255
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258	return single_open(filp, sched_feat_show, NULL);
259}
260
261static const struct file_operations sched_feat_fops = {
262	.open		= sched_feat_open,
263	.write		= sched_feat_write,
264	.read		= seq_read,
265	.llseek		= seq_lseek,
266	.release	= single_release,
267};
268
269static __init int sched_init_debug(void)
270{
271	debugfs_create_file("sched_features", 0644, NULL, NULL,
272			&sched_feat_fops);
273
274	return 0;
275}
276late_initcall(sched_init_debug);
277#endif /* CONFIG_SCHED_DEBUG */
278
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
293/*
294 * period over which we measure -rt task cpu usage in us.
295 * default: 1s
296 */
297unsigned int sysctl_sched_rt_period = 1000000;
298
299__read_mostly int scheduler_running;
300
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
306
307/*
308 * __task_rq_lock - lock the rq @p resides on.
309 */
310static inline struct rq *__task_rq_lock(struct task_struct *p)
311	__acquires(rq->lock)
312{
313	struct rq *rq;
314
315	lockdep_assert_held(&p->pi_lock);
316
317	for (;;) {
318		rq = task_rq(p);
319		raw_spin_lock(&rq->lock);
320		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321			return rq;
322		raw_spin_unlock(&rq->lock);
323
324		while (unlikely(task_on_rq_migrating(p)))
325			cpu_relax();
326	}
327}
328
329/*
330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331 */
332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333	__acquires(p->pi_lock)
334	__acquires(rq->lock)
335{
336	struct rq *rq;
337
338	for (;;) {
339		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340		rq = task_rq(p);
341		raw_spin_lock(&rq->lock);
342		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343			return rq;
344		raw_spin_unlock(&rq->lock);
345		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346
347		while (unlikely(task_on_rq_migrating(p)))
348			cpu_relax();
349	}
350}
351
352static void __task_rq_unlock(struct rq *rq)
353	__releases(rq->lock)
354{
355	raw_spin_unlock(&rq->lock);
356}
357
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360	__releases(rq->lock)
361	__releases(p->pi_lock)
362{
363	raw_spin_unlock(&rq->lock);
364	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365}
366
367/*
368 * this_rq_lock - lock this runqueue and disable interrupts.
369 */
370static struct rq *this_rq_lock(void)
371	__acquires(rq->lock)
372{
373	struct rq *rq;
374
375	local_irq_disable();
376	rq = this_rq();
377	raw_spin_lock(&rq->lock);
378
379	return rq;
380}
381
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
385 */
386
387static void hrtick_clear(struct rq *rq)
388{
389	if (hrtimer_active(&rq->hrtick_timer))
390		hrtimer_cancel(&rq->hrtick_timer);
391}
392
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
403	raw_spin_lock(&rq->lock);
404	update_rq_clock(rq);
405	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406	raw_spin_unlock(&rq->lock);
407
408	return HRTIMER_NORESTART;
409}
410
411#ifdef CONFIG_SMP
412
413static int __hrtick_restart(struct rq *rq)
414{
415	struct hrtimer *timer = &rq->hrtick_timer;
416	ktime_t time = hrtimer_get_softexpires(timer);
417
418	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
425{
426	struct rq *rq = arg;
427
428	raw_spin_lock(&rq->lock);
429	__hrtick_restart(rq);
430	rq->hrtick_csd_pending = 0;
431	raw_spin_unlock(&rq->lock);
432}
433
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
439void hrtick_start(struct rq *rq, u64 delay)
440{
441	struct hrtimer *timer = &rq->hrtick_timer;
442	ktime_t time;
443	s64 delta;
444
445	/*
446	 * Don't schedule slices shorter than 10000ns, that just
447	 * doesn't make sense and can cause timer DoS.
448	 */
449	delta = max_t(s64, delay, 10000LL);
450	time = ktime_add_ns(timer->base->get_time(), delta);
451
452	hrtimer_set_expires(timer, time);
453
454	if (rq == this_rq()) {
455		__hrtick_restart(rq);
456	} else if (!rq->hrtick_csd_pending) {
457		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458		rq->hrtick_csd_pending = 1;
459	}
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465	int cpu = (int)(long)hcpu;
466
467	switch (action) {
468	case CPU_UP_CANCELED:
469	case CPU_UP_CANCELED_FROZEN:
470	case CPU_DOWN_PREPARE:
471	case CPU_DOWN_PREPARE_FROZEN:
472	case CPU_DEAD:
473	case CPU_DEAD_FROZEN:
474		hrtick_clear(cpu_rq(cpu));
475		return NOTIFY_OK;
476	}
477
478	return NOTIFY_DONE;
479}
480
481static __init void init_hrtick(void)
482{
483	hotcpu_notifier(hotplug_hrtick, 0);
484}
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
491void hrtick_start(struct rq *rq, u64 delay)
492{
493	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494			HRTIMER_MODE_REL_PINNED, 0);
495}
496
497static inline void init_hrtick(void)
498{
499}
500#endif /* CONFIG_SMP */
501
502static void init_rq_hrtick(struct rq *rq)
503{
504#ifdef CONFIG_SMP
505	rq->hrtick_csd_pending = 0;
506
507	rq->hrtick_csd.flags = 0;
508	rq->hrtick_csd.func = __hrtick_start;
509	rq->hrtick_csd.info = rq;
510#endif
511
512	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513	rq->hrtick_timer.function = hrtick;
514}
515#else	/* CONFIG_SCHED_HRTICK */
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
524static inline void init_hrtick(void)
525{
526}
527#endif	/* CONFIG_SCHED_HRTICK */
528
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val)						\
533({	typeof(*(ptr)) __old, __val = *(ptr);				\
534 	for (;;) {							\
535 		__old = cmpxchg((ptr), __val, __val | (val));		\
536 		if (__old == __val)					\
537 			break;						\
538 		__val = __old;						\
539 	}								\
540 	__old;								\
541})
542
543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551	struct thread_info *ti = task_thread_info(p);
552	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563	struct thread_info *ti = task_thread_info(p);
564	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566	for (;;) {
567		if (!(val & _TIF_POLLING_NRFLAG))
568			return false;
569		if (val & _TIF_NEED_RESCHED)
570			return true;
571		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572		if (old == val)
573			break;
574		val = old;
575	}
576	return true;
577}
578
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582	set_tsk_need_resched(p);
583	return true;
584}
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589	return false;
590}
591#endif
592#endif
593
594/*
595 * resched_curr - mark rq's current task 'to be rescheduled now'.
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
601void resched_curr(struct rq *rq)
602{
603	struct task_struct *curr = rq->curr;
604	int cpu;
605
606	lockdep_assert_held(&rq->lock);
607
608	if (test_tsk_need_resched(curr))
609		return;
610
611	cpu = cpu_of(rq);
612
613	if (cpu == smp_processor_id()) {
614		set_tsk_need_resched(curr);
615		set_preempt_need_resched();
616		return;
617	}
618
619	if (set_nr_and_not_polling(curr))
620		smp_send_reschedule(cpu);
621	else
622		trace_sched_wake_idle_without_ipi(cpu);
623}
624
625void resched_cpu(int cpu)
626{
627	struct rq *rq = cpu_rq(cpu);
628	unsigned long flags;
629
630	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631		return;
632	resched_curr(rq);
633	raw_spin_unlock_irqrestore(&rq->lock, flags);
634}
635
636#ifdef CONFIG_SMP
637#ifdef CONFIG_NO_HZ_COMMON
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu.  This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
646int get_nohz_timer_target(int pinned)
647{
648	int cpu = smp_processor_id();
649	int i;
650	struct sched_domain *sd;
651
652	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653		return cpu;
654
655	rcu_read_lock();
656	for_each_domain(cpu, sd) {
657		for_each_cpu(i, sched_domain_span(sd)) {
658			if (!idle_cpu(i)) {
659				cpu = i;
660				goto unlock;
661			}
662		}
663	}
664unlock:
665	rcu_read_unlock();
666	return cpu;
667}
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
678static void wake_up_idle_cpu(int cpu)
679{
680	struct rq *rq = cpu_rq(cpu);
681
682	if (cpu == smp_processor_id())
683		return;
684
685	if (set_nr_and_not_polling(rq->idle))
686		smp_send_reschedule(cpu);
687	else
688		trace_sched_wake_idle_without_ipi(cpu);
689}
690
691static bool wake_up_full_nohz_cpu(int cpu)
692{
693	/*
694	 * We just need the target to call irq_exit() and re-evaluate
695	 * the next tick. The nohz full kick at least implies that.
696	 * If needed we can still optimize that later with an
697	 * empty IRQ.
698	 */
699	if (tick_nohz_full_cpu(cpu)) {
700		if (cpu != smp_processor_id() ||
701		    tick_nohz_tick_stopped())
702			tick_nohz_full_kick_cpu(cpu);
703		return true;
704	}
705
706	return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
711	if (!wake_up_full_nohz_cpu(cpu))
712		wake_up_idle_cpu(cpu);
713}
714
715static inline bool got_nohz_idle_kick(void)
716{
717	int cpu = smp_processor_id();
718
719	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720		return false;
721
722	if (idle_cpu(cpu) && !need_resched())
723		return true;
724
725	/*
726	 * We can't run Idle Load Balance on this CPU for this time so we
727	 * cancel it and clear NOHZ_BALANCE_KICK
728	 */
729	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730	return false;
731}
732
733#else /* CONFIG_NO_HZ_COMMON */
734
735static inline bool got_nohz_idle_kick(void)
736{
737	return false;
738}
739
740#endif /* CONFIG_NO_HZ_COMMON */
741
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
745	/*
746	 * More than one running task need preemption.
747	 * nr_running update is assumed to be visible
748	 * after IPI is sent from wakers.
749	 */
750	if (this_rq()->nr_running > 1)
751		return false;
752
753	return true;
754}
755#endif /* CONFIG_NO_HZ_FULL */
756
757void sched_avg_update(struct rq *rq)
758{
759	s64 period = sched_avg_period();
760
761	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762		/*
763		 * Inline assembly required to prevent the compiler
764		 * optimising this loop into a divmod call.
765		 * See __iter_div_u64_rem() for another example of this.
766		 */
767		asm("" : "+rm" (rq->age_stamp));
768		rq->age_stamp += period;
769		rq->rt_avg /= 2;
770	}
771}
772
773#endif /* CONFIG_SMP */
774
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777/*
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
782 */
783int walk_tg_tree_from(struct task_group *from,
784			     tg_visitor down, tg_visitor up, void *data)
785{
786	struct task_group *parent, *child;
787	int ret;
788
789	parent = from;
790
791down:
792	ret = (*down)(parent, data);
793	if (ret)
794		goto out;
795	list_for_each_entry_rcu(child, &parent->children, siblings) {
796		parent = child;
797		goto down;
798
799up:
800		continue;
801	}
802	ret = (*up)(parent, data);
803	if (ret || parent == from)
804		goto out;
805
806	child = parent;
807	parent = parent->parent;
808	if (parent)
809		goto up;
810out:
811	return ret;
812}
813
814int tg_nop(struct task_group *tg, void *data)
815{
816	return 0;
817}
818#endif
819
820static void set_load_weight(struct task_struct *p)
821{
822	int prio = p->static_prio - MAX_RT_PRIO;
823	struct load_weight *load = &p->se.load;
824
825	/*
826	 * SCHED_IDLE tasks get minimal weight:
827	 */
828	if (p->policy == SCHED_IDLE) {
829		load->weight = scale_load(WEIGHT_IDLEPRIO);
830		load->inv_weight = WMULT_IDLEPRIO;
831		return;
832	}
833
834	load->weight = scale_load(prio_to_weight[prio]);
835	load->inv_weight = prio_to_wmult[prio];
836}
837
838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839{
840	update_rq_clock(rq);
841	sched_info_queued(rq, p);
842	p->sched_class->enqueue_task(rq, p, flags);
843}
844
845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846{
847	update_rq_clock(rq);
848	sched_info_dequeued(rq, p);
849	p->sched_class->dequeue_task(rq, p, flags);
850}
851
852void activate_task(struct rq *rq, struct task_struct *p, int flags)
853{
854	if (task_contributes_to_load(p))
855		rq->nr_uninterruptible--;
856
857	enqueue_task(rq, p, flags);
858}
859
860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861{
862	if (task_contributes_to_load(p))
863		rq->nr_uninterruptible++;
864
865	dequeue_task(rq, p, flags);
866}
867
868static void update_rq_clock_task(struct rq *rq, s64 delta)
869{
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875	s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879
880	/*
881	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882	 * this case when a previous update_rq_clock() happened inside a
883	 * {soft,}irq region.
884	 *
885	 * When this happens, we stop ->clock_task and only update the
886	 * prev_irq_time stamp to account for the part that fit, so that a next
887	 * update will consume the rest. This ensures ->clock_task is
888	 * monotonic.
889	 *
890	 * It does however cause some slight miss-attribution of {soft,}irq
891	 * time, a more accurate solution would be to update the irq_time using
892	 * the current rq->clock timestamp, except that would require using
893	 * atomic ops.
894	 */
895	if (irq_delta > delta)
896		irq_delta = delta;
897
898	rq->prev_irq_time += irq_delta;
899	delta -= irq_delta;
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902	if (static_key_false((&paravirt_steal_rq_enabled))) {
903		steal = paravirt_steal_clock(cpu_of(rq));
904		steal -= rq->prev_steal_time_rq;
905
906		if (unlikely(steal > delta))
907			steal = delta;
908
909		rq->prev_steal_time_rq += steal;
910		delta -= steal;
911	}
912#endif
913
914	rq->clock_task += delta;
915
916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918		sched_rt_avg_update(rq, irq_delta + steal);
919#endif
920}
921
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925	struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927	if (stop) {
928		/*
929		 * Make it appear like a SCHED_FIFO task, its something
930		 * userspace knows about and won't get confused about.
931		 *
932		 * Also, it will make PI more or less work without too
933		 * much confusion -- but then, stop work should not
934		 * rely on PI working anyway.
935		 */
936		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938		stop->sched_class = &stop_sched_class;
939	}
940
941	cpu_rq(cpu)->stop = stop;
942
943	if (old_stop) {
944		/*
945		 * Reset it back to a normal scheduling class so that
946		 * it can die in pieces.
947		 */
948		old_stop->sched_class = &rt_sched_class;
949	}
950}
951
952/*
953 * __normal_prio - return the priority that is based on the static prio
954 */
955static inline int __normal_prio(struct task_struct *p)
956{
957	return p->static_prio;
958}
959
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
967static inline int normal_prio(struct task_struct *p)
968{
969	int prio;
970
971	if (task_has_dl_policy(p))
972		prio = MAX_DL_PRIO-1;
973	else if (task_has_rt_policy(p))
974		prio = MAX_RT_PRIO-1 - p->rt_priority;
975	else
976		prio = __normal_prio(p);
977	return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
987static int effective_prio(struct task_struct *p)
988{
989	p->normal_prio = normal_prio(p);
990	/*
991	 * If we are RT tasks or we were boosted to RT priority,
992	 * keep the priority unchanged. Otherwise, update priority
993	 * to the normal priority:
994	 */
995	if (!rt_prio(p->prio))
996		return p->normal_prio;
997	return p->prio;
998}
999
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1005 */
1006inline int task_curr(const struct task_struct *p)
1007{
1008	return cpu_curr(task_cpu(p)) == p;
1009}
1010
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012				       const struct sched_class *prev_class,
1013				       int oldprio)
1014{
1015	if (prev_class != p->sched_class) {
1016		if (prev_class->switched_from)
1017			prev_class->switched_from(rq, p);
1018		p->sched_class->switched_to(rq, p);
1019	} else if (oldprio != p->prio || dl_task(p))
1020		p->sched_class->prio_changed(rq, p, oldprio);
1021}
1022
1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024{
1025	const struct sched_class *class;
1026
1027	if (p->sched_class == rq->curr->sched_class) {
1028		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029	} else {
1030		for_each_class(class) {
1031			if (class == rq->curr->sched_class)
1032				break;
1033			if (class == p->sched_class) {
1034				resched_curr(rq);
1035				break;
1036			}
1037		}
1038	}
1039
1040	/*
1041	 * A queue event has occurred, and we're going to schedule.  In
1042	 * this case, we can save a useless back to back clock update.
1043	 */
1044	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045		rq->skip_clock_update = 1;
1046}
1047
1048#ifdef CONFIG_SMP
1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050{
1051#ifdef CONFIG_SCHED_DEBUG
1052	/*
1053	 * We should never call set_task_cpu() on a blocked task,
1054	 * ttwu() will sort out the placement.
1055	 */
1056	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1058
1059#ifdef CONFIG_LOCKDEP
1060	/*
1061	 * The caller should hold either p->pi_lock or rq->lock, when changing
1062	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063	 *
1064	 * sched_move_task() holds both and thus holding either pins the cgroup,
1065	 * see task_group().
1066	 *
1067	 * Furthermore, all task_rq users should acquire both locks, see
1068	 * task_rq_lock().
1069	 */
1070	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071				      lockdep_is_held(&task_rq(p)->lock)));
1072#endif
1073#endif
1074
1075	trace_sched_migrate_task(p, new_cpu);
1076
1077	if (task_cpu(p) != new_cpu) {
1078		if (p->sched_class->migrate_task_rq)
1079			p->sched_class->migrate_task_rq(p, new_cpu);
1080		p->se.nr_migrations++;
1081		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1082	}
1083
1084	__set_task_cpu(p, new_cpu);
1085}
1086
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
1089	if (task_on_rq_queued(p)) {
1090		struct rq *src_rq, *dst_rq;
1091
1092		src_rq = task_rq(p);
1093		dst_rq = cpu_rq(cpu);
1094
1095		deactivate_task(src_rq, p, 0);
1096		set_task_cpu(p, cpu);
1097		activate_task(dst_rq, p, 0);
1098		check_preempt_curr(dst_rq, p, 0);
1099	} else {
1100		/*
1101		 * Task isn't running anymore; make it appear like we migrated
1102		 * it before it went to sleep. This means on wakeup we make the
1103		 * previous cpu our targer instead of where it really is.
1104		 */
1105		p->wake_cpu = cpu;
1106	}
1107}
1108
1109struct migration_swap_arg {
1110	struct task_struct *src_task, *dst_task;
1111	int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116	struct migration_swap_arg *arg = data;
1117	struct rq *src_rq, *dst_rq;
1118	int ret = -EAGAIN;
1119
1120	src_rq = cpu_rq(arg->src_cpu);
1121	dst_rq = cpu_rq(arg->dst_cpu);
1122
1123	double_raw_lock(&arg->src_task->pi_lock,
1124			&arg->dst_task->pi_lock);
1125	double_rq_lock(src_rq, dst_rq);
1126	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127		goto unlock;
1128
1129	if (task_cpu(arg->src_task) != arg->src_cpu)
1130		goto unlock;
1131
1132	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133		goto unlock;
1134
1135	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136		goto unlock;
1137
1138	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1139	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141	ret = 0;
1142
1143unlock:
1144	double_rq_unlock(src_rq, dst_rq);
1145	raw_spin_unlock(&arg->dst_task->pi_lock);
1146	raw_spin_unlock(&arg->src_task->pi_lock);
1147
1148	return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156	struct migration_swap_arg arg;
1157	int ret = -EINVAL;
1158
1159	arg = (struct migration_swap_arg){
1160		.src_task = cur,
1161		.src_cpu = task_cpu(cur),
1162		.dst_task = p,
1163		.dst_cpu = task_cpu(p),
1164	};
1165
1166	if (arg.src_cpu == arg.dst_cpu)
1167		goto out;
1168
1169	/*
1170	 * These three tests are all lockless; this is OK since all of them
1171	 * will be re-checked with proper locks held further down the line.
1172	 */
1173	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174		goto out;
1175
1176	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177		goto out;
1178
1179	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180		goto out;
1181
1182	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
1186	return ret;
1187}
1188
1189struct migration_arg {
1190	struct task_struct *task;
1191	int dest_cpu;
1192};
1193
1194static int migration_cpu_stop(void *data);
1195
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change.  If it changes, i.e. @p might have woken up,
1201 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count).  If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213{
1214	unsigned long flags;
1215	int running, queued;
1216	unsigned long ncsw;
1217	struct rq *rq;
1218
1219	for (;;) {
1220		/*
1221		 * We do the initial early heuristics without holding
1222		 * any task-queue locks at all. We'll only try to get
1223		 * the runqueue lock when things look like they will
1224		 * work out!
1225		 */
1226		rq = task_rq(p);
1227
1228		/*
1229		 * If the task is actively running on another CPU
1230		 * still, just relax and busy-wait without holding
1231		 * any locks.
1232		 *
1233		 * NOTE! Since we don't hold any locks, it's not
1234		 * even sure that "rq" stays as the right runqueue!
1235		 * But we don't care, since "task_running()" will
1236		 * return false if the runqueue has changed and p
1237		 * is actually now running somewhere else!
1238		 */
1239		while (task_running(rq, p)) {
1240			if (match_state && unlikely(p->state != match_state))
1241				return 0;
1242			cpu_relax();
1243		}
1244
1245		/*
1246		 * Ok, time to look more closely! We need the rq
1247		 * lock now, to be *sure*. If we're wrong, we'll
1248		 * just go back and repeat.
1249		 */
1250		rq = task_rq_lock(p, &flags);
1251		trace_sched_wait_task(p);
1252		running = task_running(rq, p);
1253		queued = task_on_rq_queued(p);
1254		ncsw = 0;
1255		if (!match_state || p->state == match_state)
1256			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257		task_rq_unlock(rq, p, &flags);
1258
1259		/*
1260		 * If it changed from the expected state, bail out now.
1261		 */
1262		if (unlikely(!ncsw))
1263			break;
1264
1265		/*
1266		 * Was it really running after all now that we
1267		 * checked with the proper locks actually held?
1268		 *
1269		 * Oops. Go back and try again..
1270		 */
1271		if (unlikely(running)) {
1272			cpu_relax();
1273			continue;
1274		}
1275
1276		/*
1277		 * It's not enough that it's not actively running,
1278		 * it must be off the runqueue _entirely_, and not
1279		 * preempted!
1280		 *
1281		 * So if it was still runnable (but just not actively
1282		 * running right now), it's preempted, and we should
1283		 * yield - it could be a while.
1284		 */
1285		if (unlikely(queued)) {
1286			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288			set_current_state(TASK_UNINTERRUPTIBLE);
1289			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290			continue;
1291		}
1292
1293		/*
1294		 * Ahh, all good. It wasn't running, and it wasn't
1295		 * runnable, which means that it will never become
1296		 * running in the future either. We're all done!
1297		 */
1298		break;
1299	}
1300
1301	return ncsw;
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
1311 * NOTE: this function doesn't have to take the runqueue lock,
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
1317void kick_process(struct task_struct *p)
1318{
1319	int cpu;
1320
1321	preempt_disable();
1322	cpu = task_cpu(p);
1323	if ((cpu != smp_processor_id()) && task_curr(p))
1324		smp_send_reschedule(cpu);
1325	preempt_enable();
1326}
1327EXPORT_SYMBOL_GPL(kick_process);
1328#endif /* CONFIG_SMP */
1329
1330#ifdef CONFIG_SMP
1331/*
1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333 */
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
1336	int nid = cpu_to_node(cpu);
1337	const struct cpumask *nodemask = NULL;
1338	enum { cpuset, possible, fail } state = cpuset;
1339	int dest_cpu;
1340
1341	/*
1342	 * If the node that the cpu is on has been offlined, cpu_to_node()
1343	 * will return -1. There is no cpu on the node, and we should
1344	 * select the cpu on the other node.
1345	 */
1346	if (nid != -1) {
1347		nodemask = cpumask_of_node(nid);
1348
1349		/* Look for allowed, online CPU in same node. */
1350		for_each_cpu(dest_cpu, nodemask) {
1351			if (!cpu_online(dest_cpu))
1352				continue;
1353			if (!cpu_active(dest_cpu))
1354				continue;
1355			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356				return dest_cpu;
1357		}
1358	}
1359
1360	for (;;) {
1361		/* Any allowed, online CPU? */
1362		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363			if (!cpu_online(dest_cpu))
1364				continue;
1365			if (!cpu_active(dest_cpu))
1366				continue;
1367			goto out;
1368		}
1369
1370		switch (state) {
1371		case cpuset:
1372			/* No more Mr. Nice Guy. */
1373			cpuset_cpus_allowed_fallback(p);
1374			state = possible;
1375			break;
1376
1377		case possible:
1378			do_set_cpus_allowed(p, cpu_possible_mask);
1379			state = fail;
1380			break;
1381
1382		case fail:
1383			BUG();
1384			break;
1385		}
1386	}
1387
1388out:
1389	if (state != cpuset) {
1390		/*
1391		 * Don't tell them about moving exiting tasks or
1392		 * kernel threads (both mm NULL), since they never
1393		 * leave kernel.
1394		 */
1395		if (p->mm && printk_ratelimit()) {
1396			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397					task_pid_nr(p), p->comm, cpu);
1398		}
1399	}
1400
1401	return dest_cpu;
1402}
1403
1404/*
1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406 */
1407static inline
1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409{
1410	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1411
1412	/*
1413	 * In order not to call set_task_cpu() on a blocking task we need
1414	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415	 * cpu.
1416	 *
1417	 * Since this is common to all placement strategies, this lives here.
1418	 *
1419	 * [ this allows ->select_task() to simply return task_cpu(p) and
1420	 *   not worry about this generic constraint ]
1421	 */
1422	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1423		     !cpu_online(cpu)))
1424		cpu = select_fallback_rq(task_cpu(p), p);
1425
1426	return cpu;
1427}
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431	s64 diff = sample - *avg;
1432	*avg += diff >> 3;
1433}
1434#endif
1435
1436static void
1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1438{
1439#ifdef CONFIG_SCHEDSTATS
1440	struct rq *rq = this_rq();
1441
1442#ifdef CONFIG_SMP
1443	int this_cpu = smp_processor_id();
1444
1445	if (cpu == this_cpu) {
1446		schedstat_inc(rq, ttwu_local);
1447		schedstat_inc(p, se.statistics.nr_wakeups_local);
1448	} else {
1449		struct sched_domain *sd;
1450
1451		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1452		rcu_read_lock();
1453		for_each_domain(this_cpu, sd) {
1454			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455				schedstat_inc(sd, ttwu_wake_remote);
1456				break;
1457			}
1458		}
1459		rcu_read_unlock();
1460	}
1461
1462	if (wake_flags & WF_MIGRATED)
1463		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
1465#endif /* CONFIG_SMP */
1466
1467	schedstat_inc(rq, ttwu_count);
1468	schedstat_inc(p, se.statistics.nr_wakeups);
1469
1470	if (wake_flags & WF_SYNC)
1471		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1472
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
1478	activate_task(rq, p, en_flags);
1479	p->on_rq = TASK_ON_RQ_QUEUED;
1480
1481	/* if a worker is waking up, notify workqueue */
1482	if (p->flags & PF_WQ_WORKER)
1483		wq_worker_waking_up(p, cpu_of(rq));
1484}
1485
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
1489static void
1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1491{
1492	check_preempt_curr(rq, p, wake_flags);
1493	trace_sched_wakeup(p, true);
1494
1495	p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497	if (p->sched_class->task_woken)
1498		p->sched_class->task_woken(rq, p);
1499
1500	if (rq->idle_stamp) {
1501		u64 delta = rq_clock(rq) - rq->idle_stamp;
1502		u64 max = 2*rq->max_idle_balance_cost;
1503
1504		update_avg(&rq->avg_idle, delta);
1505
1506		if (rq->avg_idle > max)
1507			rq->avg_idle = max;
1508
1509		rq->idle_stamp = 0;
1510	}
1511#endif
1512}
1513
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518	if (p->sched_contributes_to_load)
1519		rq->nr_uninterruptible--;
1520#endif
1521
1522	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523	ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534	struct rq *rq;
1535	int ret = 0;
1536
1537	rq = __task_rq_lock(p);
1538	if (task_on_rq_queued(p)) {
1539		/* check_preempt_curr() may use rq clock */
1540		update_rq_clock(rq);
1541		ttwu_do_wakeup(rq, p, wake_flags);
1542		ret = 1;
1543	}
1544	__task_rq_unlock(rq);
1545
1546	return ret;
1547}
1548
1549#ifdef CONFIG_SMP
1550void sched_ttwu_pending(void)
1551{
1552	struct rq *rq = this_rq();
1553	struct llist_node *llist = llist_del_all(&rq->wake_list);
1554	struct task_struct *p;
1555	unsigned long flags;
1556
1557	if (!llist)
1558		return;
1559
1560	raw_spin_lock_irqsave(&rq->lock, flags);
1561
1562	while (llist) {
1563		p = llist_entry(llist, struct task_struct, wake_entry);
1564		llist = llist_next(llist);
1565		ttwu_do_activate(rq, p, 0);
1566	}
1567
1568	raw_spin_unlock_irqrestore(&rq->lock, flags);
1569}
1570
1571void scheduler_ipi(void)
1572{
1573	/*
1574	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576	 * this IPI.
1577	 */
1578	preempt_fold_need_resched();
1579
1580	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1581		return;
1582
1583	/*
1584	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585	 * traditionally all their work was done from the interrupt return
1586	 * path. Now that we actually do some work, we need to make sure
1587	 * we do call them.
1588	 *
1589	 * Some archs already do call them, luckily irq_enter/exit nest
1590	 * properly.
1591	 *
1592	 * Arguably we should visit all archs and update all handlers,
1593	 * however a fair share of IPIs are still resched only so this would
1594	 * somewhat pessimize the simple resched case.
1595	 */
1596	irq_enter();
1597	sched_ttwu_pending();
1598
1599	/*
1600	 * Check if someone kicked us for doing the nohz idle load balance.
1601	 */
1602	if (unlikely(got_nohz_idle_kick())) {
1603		this_rq()->idle_balance = 1;
1604		raise_softirq_irqoff(SCHED_SOFTIRQ);
1605	}
1606	irq_exit();
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
1611	struct rq *rq = cpu_rq(cpu);
1612
1613	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614		if (!set_nr_if_polling(rq->idle))
1615			smp_send_reschedule(cpu);
1616		else
1617			trace_sched_wake_idle_without_ipi(cpu);
1618	}
1619}
1620
1621void wake_up_if_idle(int cpu)
1622{
1623	struct rq *rq = cpu_rq(cpu);
1624	unsigned long flags;
1625
1626	if (!is_idle_task(rq->curr))
1627		return;
1628
1629	if (set_nr_if_polling(rq->idle)) {
1630		trace_sched_wake_idle_without_ipi(cpu);
1631	} else {
1632		raw_spin_lock_irqsave(&rq->lock, flags);
1633		if (is_idle_task(rq->curr))
1634			smp_send_reschedule(cpu);
1635		/* Else cpu is not in idle, do nothing here */
1636		raw_spin_unlock_irqrestore(&rq->lock, flags);
1637	}
1638}
1639
1640bool cpus_share_cache(int this_cpu, int that_cpu)
1641{
1642	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
1644#endif /* CONFIG_SMP */
1645
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648	struct rq *rq = cpu_rq(cpu);
1649
1650#if defined(CONFIG_SMP)
1651	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1652		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1653		ttwu_queue_remote(p, cpu);
1654		return;
1655	}
1656#endif
1657
1658	raw_spin_lock(&rq->lock);
1659	ttwu_do_activate(rq, p, 0);
1660	raw_spin_unlock(&rq->lock);
1661}
1662
1663/**
1664 * try_to_wake_up - wake up a thread
1665 * @p: the thread to be awakened
1666 * @state: the mask of task states that can be woken
1667 * @wake_flags: wake modifier flags (WF_*)
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
1675 * Return: %true if @p was woken up, %false if it was already running.
1676 * or @state didn't match @p's state.
1677 */
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1680{
1681	unsigned long flags;
1682	int cpu, success = 0;
1683
1684	/*
1685	 * If we are going to wake up a thread waiting for CONDITION we
1686	 * need to ensure that CONDITION=1 done by the caller can not be
1687	 * reordered with p->state check below. This pairs with mb() in
1688	 * set_current_state() the waiting thread does.
1689	 */
1690	smp_mb__before_spinlock();
1691	raw_spin_lock_irqsave(&p->pi_lock, flags);
1692	if (!(p->state & state))
1693		goto out;
1694
1695	success = 1; /* we're going to change ->state */
1696	cpu = task_cpu(p);
1697
1698	if (p->on_rq && ttwu_remote(p, wake_flags))
1699		goto stat;
1700
1701#ifdef CONFIG_SMP
1702	/*
1703	 * If the owning (remote) cpu is still in the middle of schedule() with
1704	 * this task as prev, wait until its done referencing the task.
1705	 */
1706	while (p->on_cpu)
1707		cpu_relax();
1708	/*
1709	 * Pairs with the smp_wmb() in finish_lock_switch().
1710	 */
1711	smp_rmb();
1712
1713	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1714	p->state = TASK_WAKING;
1715
1716	if (p->sched_class->task_waking)
1717		p->sched_class->task_waking(p);
1718
1719	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1720	if (task_cpu(p) != cpu) {
1721		wake_flags |= WF_MIGRATED;
1722		set_task_cpu(p, cpu);
1723	}
1724#endif /* CONFIG_SMP */
1725
1726	ttwu_queue(p, cpu);
1727stat:
1728	ttwu_stat(p, cpu, wake_flags);
1729out:
1730	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1731
1732	return success;
1733}
1734
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
1739 * Put @p on the run-queue if it's not already there. The caller must
1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1741 * the current task.
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745	struct rq *rq = task_rq(p);
1746
1747	if (WARN_ON_ONCE(rq != this_rq()) ||
1748	    WARN_ON_ONCE(p == current))
1749		return;
1750
1751	lockdep_assert_held(&rq->lock);
1752
1753	if (!raw_spin_trylock(&p->pi_lock)) {
1754		raw_spin_unlock(&rq->lock);
1755		raw_spin_lock(&p->pi_lock);
1756		raw_spin_lock(&rq->lock);
1757	}
1758
1759	if (!(p->state & TASK_NORMAL))
1760		goto out;
1761
1762	if (!task_on_rq_queued(p))
1763		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
1765	ttwu_do_wakeup(rq, p, 0);
1766	ttwu_stat(p, smp_processor_id(), 0);
1767out:
1768	raw_spin_unlock(&p->pi_lock);
1769}
1770
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
1783int wake_up_process(struct task_struct *p)
1784{
1785	WARN_ON(task_is_stopped_or_traced(p));
1786	return try_to_wake_up(p, TASK_NORMAL, 0);
1787}
1788EXPORT_SYMBOL(wake_up_process);
1789
1790int wake_up_state(struct task_struct *p, unsigned int state)
1791{
1792	return try_to_wake_up(p, state, 0);
1793}
1794
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800	struct sched_dl_entity *dl_se = &p->dl;
1801
1802	dl_se->dl_runtime = 0;
1803	dl_se->dl_deadline = 0;
1804	dl_se->dl_period = 0;
1805	dl_se->flags = 0;
1806	dl_se->dl_bw = 0;
1807}
1808
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1816{
1817	p->on_rq			= 0;
1818
1819	p->se.on_rq			= 0;
1820	p->se.exec_start		= 0;
1821	p->se.sum_exec_runtime		= 0;
1822	p->se.prev_sum_exec_runtime	= 0;
1823	p->se.nr_migrations		= 0;
1824	p->se.vruntime			= 0;
1825	INIT_LIST_HEAD(&p->se.group_node);
1826
1827#ifdef CONFIG_SCHEDSTATS
1828	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1829#endif
1830
1831	RB_CLEAR_NODE(&p->dl.rb_node);
1832	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1833	__dl_clear_params(p);
1834
1835	INIT_LIST_HEAD(&p->rt.run_list);
1836
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838	INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1843		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844		p->mm->numa_scan_seq = 0;
1845	}
1846
1847	if (clone_flags & CLONE_VM)
1848		p->numa_preferred_nid = current->numa_preferred_nid;
1849	else
1850		p->numa_preferred_nid = -1;
1851
1852	p->node_stamp = 0ULL;
1853	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1854	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1855	p->numa_work.next = &p->numa_work;
1856	p->numa_faults_memory = NULL;
1857	p->numa_faults_buffer_memory = NULL;
1858	p->last_task_numa_placement = 0;
1859	p->last_sum_exec_runtime = 0;
1860
1861	INIT_LIST_HEAD(&p->numa_entry);
1862	p->numa_group = NULL;
1863#endif /* CONFIG_NUMA_BALANCING */
1864}
1865
1866#ifdef CONFIG_NUMA_BALANCING
1867#ifdef CONFIG_SCHED_DEBUG
1868void set_numabalancing_state(bool enabled)
1869{
1870	if (enabled)
1871		sched_feat_set("NUMA");
1872	else
1873		sched_feat_set("NO_NUMA");
1874}
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880	numabalancing_enabled = enabled;
1881}
1882#endif /* CONFIG_SCHED_DEBUG */
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886			 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888	struct ctl_table t;
1889	int err;
1890	int state = numabalancing_enabled;
1891
1892	if (write && !capable(CAP_SYS_ADMIN))
1893		return -EPERM;
1894
1895	t = *table;
1896	t.data = &state;
1897	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898	if (err < 0)
1899		return err;
1900	if (write)
1901		set_numabalancing_state(state);
1902	return err;
1903}
1904#endif
1905#endif
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
1911{
1912	unsigned long flags;
1913	int cpu = get_cpu();
1914
1915	__sched_fork(clone_flags, p);
1916	/*
1917	 * We mark the process as running here. This guarantees that
1918	 * nobody will actually run it, and a signal or other external
1919	 * event cannot wake it up and insert it on the runqueue either.
1920	 */
1921	p->state = TASK_RUNNING;
1922
1923	/*
1924	 * Make sure we do not leak PI boosting priority to the child.
1925	 */
1926	p->prio = current->normal_prio;
1927
1928	/*
1929	 * Revert to default priority/policy on fork if requested.
1930	 */
1931	if (unlikely(p->sched_reset_on_fork)) {
1932		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1933			p->policy = SCHED_NORMAL;
1934			p->static_prio = NICE_TO_PRIO(0);
1935			p->rt_priority = 0;
1936		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1937			p->static_prio = NICE_TO_PRIO(0);
1938
1939		p->prio = p->normal_prio = __normal_prio(p);
1940		set_load_weight(p);
1941
1942		/*
1943		 * We don't need the reset flag anymore after the fork. It has
1944		 * fulfilled its duty:
1945		 */
1946		p->sched_reset_on_fork = 0;
1947	}
1948
1949	if (dl_prio(p->prio)) {
1950		put_cpu();
1951		return -EAGAIN;
1952	} else if (rt_prio(p->prio)) {
1953		p->sched_class = &rt_sched_class;
1954	} else {
1955		p->sched_class = &fair_sched_class;
1956	}
1957
1958	if (p->sched_class->task_fork)
1959		p->sched_class->task_fork(p);
1960
1961	/*
1962	 * The child is not yet in the pid-hash so no cgroup attach races,
1963	 * and the cgroup is pinned to this child due to cgroup_fork()
1964	 * is ran before sched_fork().
1965	 *
1966	 * Silence PROVE_RCU.
1967	 */
1968	raw_spin_lock_irqsave(&p->pi_lock, flags);
1969	set_task_cpu(p, cpu);
1970	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1971
1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973	if (likely(sched_info_on()))
1974		memset(&p->sched_info, 0, sizeof(p->sched_info));
1975#endif
1976#if defined(CONFIG_SMP)
1977	p->on_cpu = 0;
1978#endif
1979	init_task_preempt_count(p);
1980#ifdef CONFIG_SMP
1981	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1982	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1983#endif
1984
1985	put_cpu();
1986	return 0;
1987}
1988
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991	if (runtime == RUNTIME_INF)
1992		return 1ULL << 20;
1993
1994	/*
1995	 * Doing this here saves a lot of checks in all
1996	 * the calling paths, and returning zero seems
1997	 * safe for them anyway.
1998	 */
1999	if (period == 0)
2000		return 0;
2001
2002	return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
2008	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009			   "sched RCU must be held");
2010	return &cpu_rq(i)->rd->dl_bw;
2011}
2012
2013static inline int dl_bw_cpus(int i)
2014{
2015	struct root_domain *rd = cpu_rq(i)->rd;
2016	int cpus = 0;
2017
2018	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019			   "sched RCU must be held");
2020	for_each_cpu_and(i, rd->span, cpu_active_mask)
2021		cpus++;
2022
2023	return cpus;
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028	return &cpu_rq(i)->dl.dl_bw;
2029}
2030
2031static inline int dl_bw_cpus(int i)
2032{
2033	return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040	dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046	dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052	return dl_b->bw != -1 &&
2053	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065		       const struct sched_attr *attr)
2066{
2067
2068	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2069	u64 period = attr->sched_period ?: attr->sched_deadline;
2070	u64 runtime = attr->sched_runtime;
2071	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2072	int cpus, err = -1;
2073
2074	if (new_bw == p->dl.dl_bw)
2075		return 0;
2076
2077	/*
2078	 * Either if a task, enters, leave, or stays -deadline but changes
2079	 * its parameters, we may need to update accordingly the total
2080	 * allocated bandwidth of the container.
2081	 */
2082	raw_spin_lock(&dl_b->lock);
2083	cpus = dl_bw_cpus(task_cpu(p));
2084	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086		__dl_add(dl_b, new_bw);
2087		err = 0;
2088	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090		__dl_clear(dl_b, p->dl.dl_bw);
2091		__dl_add(dl_b, new_bw);
2092		err = 0;
2093	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094		__dl_clear(dl_b, p->dl.dl_bw);
2095		err = 0;
2096	}
2097	raw_spin_unlock(&dl_b->lock);
2098
2099	return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
2111void wake_up_new_task(struct task_struct *p)
2112{
2113	unsigned long flags;
2114	struct rq *rq;
2115
2116	raw_spin_lock_irqsave(&p->pi_lock, flags);
2117#ifdef CONFIG_SMP
2118	/*
2119	 * Fork balancing, do it here and not earlier because:
2120	 *  - cpus_allowed can change in the fork path
2121	 *  - any previously selected cpu might disappear through hotplug
2122	 */
2123	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2124#endif
2125
2126	/* Initialize new task's runnable average */
2127	init_task_runnable_average(p);
2128	rq = __task_rq_lock(p);
2129	activate_task(rq, p, 0);
2130	p->on_rq = TASK_ON_RQ_QUEUED;
2131	trace_sched_wakeup_new(p, true);
2132	check_preempt_curr(rq, p, WF_FORK);
2133#ifdef CONFIG_SMP
2134	if (p->sched_class->task_woken)
2135		p->sched_class->task_woken(rq, p);
2136#endif
2137	task_rq_unlock(rq, p, &flags);
2138}
2139
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144 * @notifier: notifier struct to register
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
2154 * @notifier: notifier struct to unregister
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160	hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166	struct preempt_notifier *notifier;
2167
2168	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2169		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174				 struct task_struct *next)
2175{
2176	struct preempt_notifier *notifier;
2177
2178	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2179		notifier->ops->sched_out(notifier, next);
2180}
2181
2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190				 struct task_struct *next)
2191{
2192}
2193
2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
2195
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
2199 * @prev: the current task that is being switched out
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211		    struct task_struct *next)
2212{
2213	trace_sched_switch(prev, next);
2214	sched_info_switch(rq, prev, next);
2215	perf_event_task_sched_out(prev, next);
2216	fire_sched_out_preempt_notifiers(prev, next);
2217	prepare_lock_switch(rq, next);
2218	prepare_arch_switch(next);
2219}
2220
2221/**
2222 * finish_task_switch - clean up after a task-switch
2223 * @rq: runqueue associated with task-switch
2224 * @prev: the thread we just switched away from.
2225 *
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
2232 * so, we finish that here outside of the runqueue lock. (Doing it
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
2236static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2237	__releases(rq->lock)
2238{
2239	struct mm_struct *mm = rq->prev_mm;
2240	long prev_state;
2241
2242	rq->prev_mm = NULL;
2243
2244	/*
2245	 * A task struct has one reference for the use as "current".
2246	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247	 * schedule one last time. The schedule call will never return, and
2248	 * the scheduled task must drop that reference.
2249	 * The test for TASK_DEAD must occur while the runqueue locks are
2250	 * still held, otherwise prev could be scheduled on another cpu, die
2251	 * there before we look at prev->state, and then the reference would
2252	 * be dropped twice.
2253	 *		Manfred Spraul <manfred@colorfullife.com>
2254	 */
2255	prev_state = prev->state;
2256	vtime_task_switch(prev);
2257	finish_arch_switch(prev);
2258	perf_event_task_sched_in(prev, current);
2259	finish_lock_switch(rq, prev);
2260	finish_arch_post_lock_switch();
2261
2262	fire_sched_in_preempt_notifiers(current);
2263	if (mm)
2264		mmdrop(mm);
2265	if (unlikely(prev_state == TASK_DEAD)) {
2266		if (prev->sched_class->task_dead)
2267			prev->sched_class->task_dead(prev);
2268
2269		/*
2270		 * Remove function-return probe instances associated with this
2271		 * task and put them back on the free list.
2272		 */
2273		kprobe_flush_task(prev);
2274		put_task_struct(prev);
2275	}
2276
2277	tick_nohz_task_switch(current);
2278}
2279
2280#ifdef CONFIG_SMP
2281
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285	if (rq->post_schedule) {
2286		unsigned long flags;
2287
2288		raw_spin_lock_irqsave(&rq->lock, flags);
2289		if (rq->curr->sched_class->post_schedule)
2290			rq->curr->sched_class->post_schedule(rq);
2291		raw_spin_unlock_irqrestore(&rq->lock, flags);
2292
2293		rq->post_schedule = 0;
2294	}
2295}
2296
2297#else
2298
2299static inline void post_schedule(struct rq *rq)
2300{
2301}
2302
2303#endif
2304
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
2310	__releases(rq->lock)
2311{
2312	struct rq *rq = this_rq();
2313
2314	finish_task_switch(rq, prev);
2315
2316	/*
2317	 * FIXME: do we need to worry about rq being invalidated by the
2318	 * task_switch?
2319	 */
2320	post_schedule(rq);
2321
2322	if (current->set_child_tid)
2323		put_user(task_pid_vnr(current), current->set_child_tid);
2324}
2325
2326/*
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2329 */
2330static inline void
2331context_switch(struct rq *rq, struct task_struct *prev,
2332	       struct task_struct *next)
2333{
2334	struct mm_struct *mm, *oldmm;
2335
2336	prepare_task_switch(rq, prev, next);
2337
2338	mm = next->mm;
2339	oldmm = prev->active_mm;
2340	/*
2341	 * For paravirt, this is coupled with an exit in switch_to to
2342	 * combine the page table reload and the switch backend into
2343	 * one hypercall.
2344	 */
2345	arch_start_context_switch(prev);
2346
2347	if (!mm) {
2348		next->active_mm = oldmm;
2349		atomic_inc(&oldmm->mm_count);
2350		enter_lazy_tlb(oldmm, next);
2351	} else
2352		switch_mm(oldmm, mm, next);
2353
2354	if (!prev->mm) {
2355		prev->active_mm = NULL;
2356		rq->prev_mm = oldmm;
2357	}
2358	/*
2359	 * Since the runqueue lock will be released by the next
2360	 * task (which is an invalid locking op but in the case
2361	 * of the scheduler it's an obvious special-case), so we
2362	 * do an early lockdep release here:
2363	 */
2364	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2365
2366	context_tracking_task_switch(prev, next);
2367	/* Here we just switch the register state and the stack. */
2368	switch_to(prev, next, prev);
2369
2370	barrier();
2371	/*
2372	 * this_rq must be evaluated again because prev may have moved
2373	 * CPUs since it called schedule(), thus the 'rq' on its stack
2374	 * frame will be invalid.
2375	 */
2376	finish_task_switch(this_rq(), prev);
2377}
2378
2379/*
2380 * nr_running and nr_context_switches:
2381 *
2382 * externally visible scheduler statistics: current number of runnable
2383 * threads, total number of context switches performed since bootup.
2384 */
2385unsigned long nr_running(void)
2386{
2387	unsigned long i, sum = 0;
2388
2389	for_each_online_cpu(i)
2390		sum += cpu_rq(i)->nr_running;
2391
2392	return sum;
2393}
2394
2395/*
2396 * Check if only the current task is running on the cpu.
2397 */
2398bool single_task_running(void)
2399{
2400	if (cpu_rq(smp_processor_id())->nr_running == 1)
2401		return true;
2402	else
2403		return false;
2404}
2405EXPORT_SYMBOL(single_task_running);
2406
2407unsigned long long nr_context_switches(void)
2408{
2409	int i;
2410	unsigned long long sum = 0;
2411
2412	for_each_possible_cpu(i)
2413		sum += cpu_rq(i)->nr_switches;
2414
2415	return sum;
2416}
2417
2418unsigned long nr_iowait(void)
2419{
2420	unsigned long i, sum = 0;
2421
2422	for_each_possible_cpu(i)
2423		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2424
2425	return sum;
2426}
2427
2428unsigned long nr_iowait_cpu(int cpu)
2429{
2430	struct rq *this = cpu_rq(cpu);
2431	return atomic_read(&this->nr_iowait);
2432}
2433
2434void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435{
2436	struct rq *this = this_rq();
2437	*nr_waiters = atomic_read(&this->nr_iowait);
2438	*load = this->cpu_load[0];
2439}
2440
2441#ifdef CONFIG_SMP
2442
2443/*
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
2446 */
2447void sched_exec(void)
2448{
2449	struct task_struct *p = current;
2450	unsigned long flags;
2451	int dest_cpu;
2452
2453	raw_spin_lock_irqsave(&p->pi_lock, flags);
2454	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2455	if (dest_cpu == smp_processor_id())
2456		goto unlock;
2457
2458	if (likely(cpu_active(dest_cpu))) {
2459		struct migration_arg arg = { p, dest_cpu };
2460
2461		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2463		return;
2464	}
2465unlock:
2466	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2467}
2468
2469#endif
2470
2471DEFINE_PER_CPU(struct kernel_stat, kstat);
2472DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2473
2474EXPORT_PER_CPU_SYMBOL(kstat);
2475EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2476
2477/*
2478 * Return any ns on the sched_clock that have not yet been accounted in
2479 * @p in case that task is currently running.
2480 *
2481 * Called with task_rq_lock() held on @rq.
2482 */
2483static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484{
2485	u64 ns = 0;
2486
2487	/*
2488	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2489	 * project cycles that may never be accounted to this
2490	 * thread, breaking clock_gettime().
2491	 */
2492	if (task_current(rq, p) && task_on_rq_queued(p)) {
2493		update_rq_clock(rq);
2494		ns = rq_clock_task(rq) - p->se.exec_start;
2495		if ((s64)ns < 0)
2496			ns = 0;
2497	}
2498
2499	return ns;
2500}
2501
2502unsigned long long task_delta_exec(struct task_struct *p)
2503{
2504	unsigned long flags;
2505	struct rq *rq;
2506	u64 ns = 0;
2507
2508	rq = task_rq_lock(p, &flags);
2509	ns = do_task_delta_exec(p, rq);
2510	task_rq_unlock(rq, p, &flags);
2511
2512	return ns;
2513}
2514
2515/*
2516 * Return accounted runtime for the task.
2517 * In case the task is currently running, return the runtime plus current's
2518 * pending runtime that have not been accounted yet.
2519 */
2520unsigned long long task_sched_runtime(struct task_struct *p)
2521{
2522	unsigned long flags;
2523	struct rq *rq;
2524	u64 ns = 0;
2525
2526#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2527	/*
2528	 * 64-bit doesn't need locks to atomically read a 64bit value.
2529	 * So we have a optimization chance when the task's delta_exec is 0.
2530	 * Reading ->on_cpu is racy, but this is ok.
2531	 *
2532	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533	 * If we race with it entering cpu, unaccounted time is 0. This is
2534	 * indistinguishable from the read occurring a few cycles earlier.
2535	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536	 * been accounted, so we're correct here as well.
2537	 */
2538	if (!p->on_cpu || !task_on_rq_queued(p))
2539		return p->se.sum_exec_runtime;
2540#endif
2541
2542	rq = task_rq_lock(p, &flags);
2543	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2544	task_rq_unlock(rq, p, &flags);
2545
2546	return ns;
2547}
2548
2549/*
2550 * This function gets called by the timer code, with HZ frequency.
2551 * We call it with interrupts disabled.
2552 */
2553void scheduler_tick(void)
2554{
2555	int cpu = smp_processor_id();
2556	struct rq *rq = cpu_rq(cpu);
2557	struct task_struct *curr = rq->curr;
2558
2559	sched_clock_tick();
2560
2561	raw_spin_lock(&rq->lock);
2562	update_rq_clock(rq);
2563	curr->sched_class->task_tick(rq, curr, 0);
2564	update_cpu_load_active(rq);
2565	raw_spin_unlock(&rq->lock);
2566
2567	perf_event_task_tick();
2568
2569#ifdef CONFIG_SMP
2570	rq->idle_balance = idle_cpu(cpu);
2571	trigger_load_balance(rq);
2572#endif
2573	rq_last_tick_reset(rq);
2574}
2575
2576#ifdef CONFIG_NO_HZ_FULL
2577/**
2578 * scheduler_tick_max_deferment
2579 *
2580 * Keep at least one tick per second when a single
2581 * active task is running because the scheduler doesn't
2582 * yet completely support full dynticks environment.
2583 *
2584 * This makes sure that uptime, CFS vruntime, load
2585 * balancing, etc... continue to move forward, even
2586 * with a very low granularity.
2587 *
2588 * Return: Maximum deferment in nanoseconds.
2589 */
2590u64 scheduler_tick_max_deferment(void)
2591{
2592	struct rq *rq = this_rq();
2593	unsigned long next, now = ACCESS_ONCE(jiffies);
2594
2595	next = rq->last_sched_tick + HZ;
2596
2597	if (time_before_eq(next, now))
2598		return 0;
2599
2600	return jiffies_to_nsecs(next - now);
2601}
2602#endif
2603
2604notrace unsigned long get_parent_ip(unsigned long addr)
2605{
2606	if (in_lock_functions(addr)) {
2607		addr = CALLER_ADDR2;
2608		if (in_lock_functions(addr))
2609			addr = CALLER_ADDR3;
2610	}
2611	return addr;
2612}
2613
2614#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615				defined(CONFIG_PREEMPT_TRACER))
2616
2617void preempt_count_add(int val)
2618{
2619#ifdef CONFIG_DEBUG_PREEMPT
2620	/*
2621	 * Underflow?
2622	 */
2623	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2624		return;
2625#endif
2626	__preempt_count_add(val);
2627#ifdef CONFIG_DEBUG_PREEMPT
2628	/*
2629	 * Spinlock count overflowing soon?
2630	 */
2631	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2632				PREEMPT_MASK - 10);
2633#endif
2634	if (preempt_count() == val) {
2635		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2636#ifdef CONFIG_DEBUG_PREEMPT
2637		current->preempt_disable_ip = ip;
2638#endif
2639		trace_preempt_off(CALLER_ADDR0, ip);
2640	}
2641}
2642EXPORT_SYMBOL(preempt_count_add);
2643NOKPROBE_SYMBOL(preempt_count_add);
2644
2645void preempt_count_sub(int val)
2646{
2647#ifdef CONFIG_DEBUG_PREEMPT
2648	/*
2649	 * Underflow?
2650	 */
2651	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2652		return;
2653	/*
2654	 * Is the spinlock portion underflowing?
2655	 */
2656	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2657			!(preempt_count() & PREEMPT_MASK)))
2658		return;
2659#endif
2660
2661	if (preempt_count() == val)
2662		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2663	__preempt_count_sub(val);
2664}
2665EXPORT_SYMBOL(preempt_count_sub);
2666NOKPROBE_SYMBOL(preempt_count_sub);
2667
2668#endif
2669
2670/*
2671 * Print scheduling while atomic bug:
2672 */
2673static noinline void __schedule_bug(struct task_struct *prev)
2674{
2675	if (oops_in_progress)
2676		return;
2677
2678	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679		prev->comm, prev->pid, preempt_count());
2680
2681	debug_show_held_locks(prev);
2682	print_modules();
2683	if (irqs_disabled())
2684		print_irqtrace_events(prev);
2685#ifdef CONFIG_DEBUG_PREEMPT
2686	if (in_atomic_preempt_off()) {
2687		pr_err("Preemption disabled at:");
2688		print_ip_sym(current->preempt_disable_ip);
2689		pr_cont("\n");
2690	}
2691#endif
2692	dump_stack();
2693	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2694}
2695
2696/*
2697 * Various schedule()-time debugging checks and statistics:
2698 */
2699static inline void schedule_debug(struct task_struct *prev)
2700{
2701#ifdef CONFIG_SCHED_STACK_END_CHECK
2702	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2703#endif
2704	/*
2705	 * Test if we are atomic. Since do_exit() needs to call into
2706	 * schedule() atomically, we ignore that path. Otherwise whine
2707	 * if we are scheduling when we should not.
2708	 */
2709	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2710		__schedule_bug(prev);
2711	rcu_sleep_check();
2712
2713	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2714
2715	schedstat_inc(this_rq(), sched_count);
2716}
2717
2718/*
2719 * Pick up the highest-prio task:
2720 */
2721static inline struct task_struct *
2722pick_next_task(struct rq *rq, struct task_struct *prev)
2723{
2724	const struct sched_class *class = &fair_sched_class;
2725	struct task_struct *p;
2726
2727	/*
2728	 * Optimization: we know that if all tasks are in
2729	 * the fair class we can call that function directly:
2730	 */
2731	if (likely(prev->sched_class == class &&
2732		   rq->nr_running == rq->cfs.h_nr_running)) {
2733		p = fair_sched_class.pick_next_task(rq, prev);
2734		if (unlikely(p == RETRY_TASK))
2735			goto again;
2736
2737		/* assumes fair_sched_class->next == idle_sched_class */
2738		if (unlikely(!p))
2739			p = idle_sched_class.pick_next_task(rq, prev);
2740
2741		return p;
2742	}
2743
2744again:
2745	for_each_class(class) {
2746		p = class->pick_next_task(rq, prev);
2747		if (p) {
2748			if (unlikely(p == RETRY_TASK))
2749				goto again;
2750			return p;
2751		}
2752	}
2753
2754	BUG(); /* the idle class will always have a runnable task */
2755}
2756
2757/*
2758 * __schedule() is the main scheduler function.
2759 *
2760 * The main means of driving the scheduler and thus entering this function are:
2761 *
2762 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2763 *
2764 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765 *      paths. For example, see arch/x86/entry_64.S.
2766 *
2767 *      To drive preemption between tasks, the scheduler sets the flag in timer
2768 *      interrupt handler scheduler_tick().
2769 *
2770 *   3. Wakeups don't really cause entry into schedule(). They add a
2771 *      task to the run-queue and that's it.
2772 *
2773 *      Now, if the new task added to the run-queue preempts the current
2774 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775 *      called on the nearest possible occasion:
2776 *
2777 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2778 *
2779 *         - in syscall or exception context, at the next outmost
2780 *           preempt_enable(). (this might be as soon as the wake_up()'s
2781 *           spin_unlock()!)
2782 *
2783 *         - in IRQ context, return from interrupt-handler to
2784 *           preemptible context
2785 *
2786 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2787 *         then at the next:
2788 *
2789 *          - cond_resched() call
2790 *          - explicit schedule() call
2791 *          - return from syscall or exception to user-space
2792 *          - return from interrupt-handler to user-space
2793 */
2794static void __sched __schedule(void)
2795{
2796	struct task_struct *prev, *next;
2797	unsigned long *switch_count;
2798	struct rq *rq;
2799	int cpu;
2800
2801need_resched:
2802	preempt_disable();
2803	cpu = smp_processor_id();
2804	rq = cpu_rq(cpu);
2805	rcu_note_context_switch(cpu);
2806	prev = rq->curr;
2807
2808	schedule_debug(prev);
2809
2810	if (sched_feat(HRTICK))
2811		hrtick_clear(rq);
2812
2813	/*
2814	 * Make sure that signal_pending_state()->signal_pending() below
2815	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816	 * done by the caller to avoid the race with signal_wake_up().
2817	 */
2818	smp_mb__before_spinlock();
2819	raw_spin_lock_irq(&rq->lock);
2820
2821	switch_count = &prev->nivcsw;
2822	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2823		if (unlikely(signal_pending_state(prev->state, prev))) {
2824			prev->state = TASK_RUNNING;
2825		} else {
2826			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2827			prev->on_rq = 0;
2828
2829			/*
2830			 * If a worker went to sleep, notify and ask workqueue
2831			 * whether it wants to wake up a task to maintain
2832			 * concurrency.
2833			 */
2834			if (prev->flags & PF_WQ_WORKER) {
2835				struct task_struct *to_wakeup;
2836
2837				to_wakeup = wq_worker_sleeping(prev, cpu);
2838				if (to_wakeup)
2839					try_to_wake_up_local(to_wakeup);
2840			}
2841		}
2842		switch_count = &prev->nvcsw;
2843	}
2844
2845	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2846		update_rq_clock(rq);
2847
2848	next = pick_next_task(rq, prev);
2849	clear_tsk_need_resched(prev);
2850	clear_preempt_need_resched();
2851	rq->skip_clock_update = 0;
2852
2853	if (likely(prev != next)) {
2854		rq->nr_switches++;
2855		rq->curr = next;
2856		++*switch_count;
2857
2858		context_switch(rq, prev, next); /* unlocks the rq */
2859		/*
2860		 * The context switch have flipped the stack from under us
2861		 * and restored the local variables which were saved when
2862		 * this task called schedule() in the past. prev == current
2863		 * is still correct, but it can be moved to another cpu/rq.
2864		 */
2865		cpu = smp_processor_id();
2866		rq = cpu_rq(cpu);
2867	} else
2868		raw_spin_unlock_irq(&rq->lock);
2869
2870	post_schedule(rq);
2871
2872	sched_preempt_enable_no_resched();
2873	if (need_resched())
2874		goto need_resched;
2875}
2876
2877static inline void sched_submit_work(struct task_struct *tsk)
2878{
2879	if (!tsk->state || tsk_is_pi_blocked(tsk))
2880		return;
2881	/*
2882	 * If we are going to sleep and we have plugged IO queued,
2883	 * make sure to submit it to avoid deadlocks.
2884	 */
2885	if (blk_needs_flush_plug(tsk))
2886		blk_schedule_flush_plug(tsk);
2887}
2888
2889asmlinkage __visible void __sched schedule(void)
2890{
2891	struct task_struct *tsk = current;
2892
2893	sched_submit_work(tsk);
2894	__schedule();
2895}
2896EXPORT_SYMBOL(schedule);
2897
2898#ifdef CONFIG_CONTEXT_TRACKING
2899asmlinkage __visible void __sched schedule_user(void)
2900{
2901	/*
2902	 * If we come here after a random call to set_need_resched(),
2903	 * or we have been woken up remotely but the IPI has not yet arrived,
2904	 * we haven't yet exited the RCU idle mode. Do it here manually until
2905	 * we find a better solution.
2906	 */
2907	user_exit();
2908	schedule();
2909	user_enter();
2910}
2911#endif
2912
2913/**
2914 * schedule_preempt_disabled - called with preemption disabled
2915 *
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2917 */
2918void __sched schedule_preempt_disabled(void)
2919{
2920	sched_preempt_enable_no_resched();
2921	schedule();
2922	preempt_disable();
2923}
2924
2925#ifdef CONFIG_PREEMPT
2926/*
2927 * this is the entry point to schedule() from in-kernel preemption
2928 * off of preempt_enable. Kernel preemptions off return from interrupt
2929 * occur there and call schedule directly.
2930 */
2931asmlinkage __visible void __sched notrace preempt_schedule(void)
2932{
2933	/*
2934	 * If there is a non-zero preempt_count or interrupts are disabled,
2935	 * we do not want to preempt the current task. Just return..
2936	 */
2937	if (likely(!preemptible()))
2938		return;
2939
2940	do {
2941		__preempt_count_add(PREEMPT_ACTIVE);
2942		__schedule();
2943		__preempt_count_sub(PREEMPT_ACTIVE);
2944
2945		/*
2946		 * Check again in case we missed a preemption opportunity
2947		 * between schedule and now.
2948		 */
2949		barrier();
2950	} while (need_resched());
2951}
2952NOKPROBE_SYMBOL(preempt_schedule);
2953EXPORT_SYMBOL(preempt_schedule);
2954
2955#ifdef CONFIG_CONTEXT_TRACKING
2956/**
2957 * preempt_schedule_context - preempt_schedule called by tracing
2958 *
2959 * The tracing infrastructure uses preempt_enable_notrace to prevent
2960 * recursion and tracing preempt enabling caused by the tracing
2961 * infrastructure itself. But as tracing can happen in areas coming
2962 * from userspace or just about to enter userspace, a preempt enable
2963 * can occur before user_exit() is called. This will cause the scheduler
2964 * to be called when the system is still in usermode.
2965 *
2966 * To prevent this, the preempt_enable_notrace will use this function
2967 * instead of preempt_schedule() to exit user context if needed before
2968 * calling the scheduler.
2969 */
2970asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2971{
2972	enum ctx_state prev_ctx;
2973
2974	if (likely(!preemptible()))
2975		return;
2976
2977	do {
2978		__preempt_count_add(PREEMPT_ACTIVE);
2979		/*
2980		 * Needs preempt disabled in case user_exit() is traced
2981		 * and the tracer calls preempt_enable_notrace() causing
2982		 * an infinite recursion.
2983		 */
2984		prev_ctx = exception_enter();
2985		__schedule();
2986		exception_exit(prev_ctx);
2987
2988		__preempt_count_sub(PREEMPT_ACTIVE);
2989		barrier();
2990	} while (need_resched());
2991}
2992EXPORT_SYMBOL_GPL(preempt_schedule_context);
2993#endif /* CONFIG_CONTEXT_TRACKING */
2994
2995#endif /* CONFIG_PREEMPT */
2996
2997/*
2998 * this is the entry point to schedule() from kernel preemption
2999 * off of irq context.
3000 * Note, that this is called and return with irqs disabled. This will
3001 * protect us against recursive calling from irq.
3002 */
3003asmlinkage __visible void __sched preempt_schedule_irq(void)
3004{
3005	enum ctx_state prev_state;
3006
3007	/* Catch callers which need to be fixed */
3008	BUG_ON(preempt_count() || !irqs_disabled());
3009
3010	prev_state = exception_enter();
3011
3012	do {
3013		__preempt_count_add(PREEMPT_ACTIVE);
3014		local_irq_enable();
3015		__schedule();
3016		local_irq_disable();
3017		__preempt_count_sub(PREEMPT_ACTIVE);
3018
3019		/*
3020		 * Check again in case we missed a preemption opportunity
3021		 * between schedule and now.
3022		 */
3023		barrier();
3024	} while (need_resched());
3025
3026	exception_exit(prev_state);
3027}
3028
3029int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3030			  void *key)
3031{
3032	return try_to_wake_up(curr->private, mode, wake_flags);
3033}
3034EXPORT_SYMBOL(default_wake_function);
3035
3036#ifdef CONFIG_RT_MUTEXES
3037
3038/*
3039 * rt_mutex_setprio - set the current priority of a task
3040 * @p: task
3041 * @prio: prio value (kernel-internal form)
3042 *
3043 * This function changes the 'effective' priority of a task. It does
3044 * not touch ->normal_prio like __setscheduler().
3045 *
3046 * Used by the rt_mutex code to implement priority inheritance
3047 * logic. Call site only calls if the priority of the task changed.
3048 */
3049void rt_mutex_setprio(struct task_struct *p, int prio)
3050{
3051	int oldprio, queued, running, enqueue_flag = 0;
3052	struct rq *rq;
3053	const struct sched_class *prev_class;
3054
3055	BUG_ON(prio > MAX_PRIO);
3056
3057	rq = __task_rq_lock(p);
3058
3059	/*
3060	 * Idle task boosting is a nono in general. There is one
3061	 * exception, when PREEMPT_RT and NOHZ is active:
3062	 *
3063	 * The idle task calls get_next_timer_interrupt() and holds
3064	 * the timer wheel base->lock on the CPU and another CPU wants
3065	 * to access the timer (probably to cancel it). We can safely
3066	 * ignore the boosting request, as the idle CPU runs this code
3067	 * with interrupts disabled and will complete the lock
3068	 * protected section without being interrupted. So there is no
3069	 * real need to boost.
3070	 */
3071	if (unlikely(p == rq->idle)) {
3072		WARN_ON(p != rq->curr);
3073		WARN_ON(p->pi_blocked_on);
3074		goto out_unlock;
3075	}
3076
3077	trace_sched_pi_setprio(p, prio);
3078	oldprio = p->prio;
3079	prev_class = p->sched_class;
3080	queued = task_on_rq_queued(p);
3081	running = task_current(rq, p);
3082	if (queued)
3083		dequeue_task(rq, p, 0);
3084	if (running)
3085		put_prev_task(rq, p);
3086
3087	/*
3088	 * Boosting condition are:
3089	 * 1. -rt task is running and holds mutex A
3090	 *      --> -dl task blocks on mutex A
3091	 *
3092	 * 2. -dl task is running and holds mutex A
3093	 *      --> -dl task blocks on mutex A and could preempt the
3094	 *          running task
3095	 */
3096	if (dl_prio(prio)) {
3097		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3098		if (!dl_prio(p->normal_prio) ||
3099		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3100			p->dl.dl_boosted = 1;
3101			p->dl.dl_throttled = 0;
3102			enqueue_flag = ENQUEUE_REPLENISH;
3103		} else
3104			p->dl.dl_boosted = 0;
3105		p->sched_class = &dl_sched_class;
3106	} else if (rt_prio(prio)) {
3107		if (dl_prio(oldprio))
3108			p->dl.dl_boosted = 0;
3109		if (oldprio < prio)
3110			enqueue_flag = ENQUEUE_HEAD;
3111		p->sched_class = &rt_sched_class;
3112	} else {
3113		if (dl_prio(oldprio))
3114			p->dl.dl_boosted = 0;
3115		p->sched_class = &fair_sched_class;
3116	}
3117
3118	p->prio = prio;
3119
3120	if (running)
3121		p->sched_class->set_curr_task(rq);
3122	if (queued)
3123		enqueue_task(rq, p, enqueue_flag);
3124
3125	check_class_changed(rq, p, prev_class, oldprio);
3126out_unlock:
3127	__task_rq_unlock(rq);
3128}
3129#endif
3130
3131void set_user_nice(struct task_struct *p, long nice)
3132{
3133	int old_prio, delta, queued;
3134	unsigned long flags;
3135	struct rq *rq;
3136
3137	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3138		return;
3139	/*
3140	 * We have to be careful, if called from sys_setpriority(),
3141	 * the task might be in the middle of scheduling on another CPU.
3142	 */
3143	rq = task_rq_lock(p, &flags);
3144	/*
3145	 * The RT priorities are set via sched_setscheduler(), but we still
3146	 * allow the 'normal' nice value to be set - but as expected
3147	 * it wont have any effect on scheduling until the task is
3148	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3149	 */
3150	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3151		p->static_prio = NICE_TO_PRIO(nice);
3152		goto out_unlock;
3153	}
3154	queued = task_on_rq_queued(p);
3155	if (queued)
3156		dequeue_task(rq, p, 0);
3157
3158	p->static_prio = NICE_TO_PRIO(nice);
3159	set_load_weight(p);
3160	old_prio = p->prio;
3161	p->prio = effective_prio(p);
3162	delta = p->prio - old_prio;
3163
3164	if (queued) {
3165		enqueue_task(rq, p, 0);
3166		/*
3167		 * If the task increased its priority or is running and
3168		 * lowered its priority, then reschedule its CPU:
3169		 */
3170		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3171			resched_curr(rq);
3172	}
3173out_unlock:
3174	task_rq_unlock(rq, p, &flags);
3175}
3176EXPORT_SYMBOL(set_user_nice);
3177
3178/*
3179 * can_nice - check if a task can reduce its nice value
3180 * @p: task
3181 * @nice: nice value
3182 */
3183int can_nice(const struct task_struct *p, const int nice)
3184{
3185	/* convert nice value [19,-20] to rlimit style value [1,40] */
3186	int nice_rlim = nice_to_rlimit(nice);
3187
3188	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3189		capable(CAP_SYS_NICE));
3190}
3191
3192#ifdef __ARCH_WANT_SYS_NICE
3193
3194/*
3195 * sys_nice - change the priority of the current process.
3196 * @increment: priority increment
3197 *
3198 * sys_setpriority is a more generic, but much slower function that
3199 * does similar things.
3200 */
3201SYSCALL_DEFINE1(nice, int, increment)
3202{
3203	long nice, retval;
3204
3205	/*
3206	 * Setpriority might change our priority at the same moment.
3207	 * We don't have to worry. Conceptually one call occurs first
3208	 * and we have a single winner.
3209	 */
3210	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3211	nice = task_nice(current) + increment;
3212
3213	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3214	if (increment < 0 && !can_nice(current, nice))
3215		return -EPERM;
3216
3217	retval = security_task_setnice(current, nice);
3218	if (retval)
3219		return retval;
3220
3221	set_user_nice(current, nice);
3222	return 0;
3223}
3224
3225#endif
3226
3227/**
3228 * task_prio - return the priority value of a given task.
3229 * @p: the task in question.
3230 *
3231 * Return: The priority value as seen by users in /proc.
3232 * RT tasks are offset by -200. Normal tasks are centered
3233 * around 0, value goes from -16 to +15.
3234 */
3235int task_prio(const struct task_struct *p)
3236{
3237	return p->prio - MAX_RT_PRIO;
3238}
3239
3240/**
3241 * idle_cpu - is a given cpu idle currently?
3242 * @cpu: the processor in question.
3243 *
3244 * Return: 1 if the CPU is currently idle. 0 otherwise.
3245 */
3246int idle_cpu(int cpu)
3247{
3248	struct rq *rq = cpu_rq(cpu);
3249
3250	if (rq->curr != rq->idle)
3251		return 0;
3252
3253	if (rq->nr_running)
3254		return 0;
3255
3256#ifdef CONFIG_SMP
3257	if (!llist_empty(&rq->wake_list))
3258		return 0;
3259#endif
3260
3261	return 1;
3262}
3263
3264/**
3265 * idle_task - return the idle task for a given cpu.
3266 * @cpu: the processor in question.
3267 *
3268 * Return: The idle task for the cpu @cpu.
3269 */
3270struct task_struct *idle_task(int cpu)
3271{
3272	return cpu_rq(cpu)->idle;
3273}
3274
3275/**
3276 * find_process_by_pid - find a process with a matching PID value.
3277 * @pid: the pid in question.
3278 *
3279 * The task of @pid, if found. %NULL otherwise.
3280 */
3281static struct task_struct *find_process_by_pid(pid_t pid)
3282{
3283	return pid ? find_task_by_vpid(pid) : current;
3284}
3285
3286/*
3287 * This function initializes the sched_dl_entity of a newly becoming
3288 * SCHED_DEADLINE task.
3289 *
3290 * Only the static values are considered here, the actual runtime and the
3291 * absolute deadline will be properly calculated when the task is enqueued
3292 * for the first time with its new policy.
3293 */
3294static void
3295__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3296{
3297	struct sched_dl_entity *dl_se = &p->dl;
3298
3299	init_dl_task_timer(dl_se);
3300	dl_se->dl_runtime = attr->sched_runtime;
3301	dl_se->dl_deadline = attr->sched_deadline;
3302	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3303	dl_se->flags = attr->sched_flags;
3304	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3305	dl_se->dl_throttled = 0;
3306	dl_se->dl_new = 1;
3307	dl_se->dl_yielded = 0;
3308}
3309
3310/*
3311 * sched_setparam() passes in -1 for its policy, to let the functions
3312 * it calls know not to change it.
3313 */
3314#define SETPARAM_POLICY	-1
3315
3316static void __setscheduler_params(struct task_struct *p,
3317		const struct sched_attr *attr)
3318{
3319	int policy = attr->sched_policy;
3320
3321	if (policy == SETPARAM_POLICY)
3322		policy = p->policy;
3323
3324	p->policy = policy;
3325
3326	if (dl_policy(policy))
3327		__setparam_dl(p, attr);
3328	else if (fair_policy(policy))
3329		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3330
3331	/*
3332	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3333	 * !rt_policy. Always setting this ensures that things like
3334	 * getparam()/getattr() don't report silly values for !rt tasks.
3335	 */
3336	p->rt_priority = attr->sched_priority;
3337	p->normal_prio = normal_prio(p);
3338	set_load_weight(p);
3339}
3340
3341/* Actually do priority change: must hold pi & rq lock. */
3342static void __setscheduler(struct rq *rq, struct task_struct *p,
3343			   const struct sched_attr *attr)
3344{
3345	__setscheduler_params(p, attr);
3346
3347	/*
3348	 * If we get here, there was no pi waiters boosting the
3349	 * task. It is safe to use the normal prio.
3350	 */
3351	p->prio = normal_prio(p);
3352
3353	if (dl_prio(p->prio))
3354		p->sched_class = &dl_sched_class;
3355	else if (rt_prio(p->prio))
3356		p->sched_class = &rt_sched_class;
3357	else
3358		p->sched_class = &fair_sched_class;
3359}
3360
3361static void
3362__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3363{
3364	struct sched_dl_entity *dl_se = &p->dl;
3365
3366	attr->sched_priority = p->rt_priority;
3367	attr->sched_runtime = dl_se->dl_runtime;
3368	attr->sched_deadline = dl_se->dl_deadline;
3369	attr->sched_period = dl_se->dl_period;
3370	attr->sched_flags = dl_se->flags;
3371}
3372
3373/*
3374 * This function validates the new parameters of a -deadline task.
3375 * We ask for the deadline not being zero, and greater or equal
3376 * than the runtime, as well as the period of being zero or
3377 * greater than deadline. Furthermore, we have to be sure that
3378 * user parameters are above the internal resolution of 1us (we
3379 * check sched_runtime only since it is always the smaller one) and
3380 * below 2^63 ns (we have to check both sched_deadline and
3381 * sched_period, as the latter can be zero).
3382 */
3383static bool
3384__checkparam_dl(const struct sched_attr *attr)
3385{
3386	/* deadline != 0 */
3387	if (attr->sched_deadline == 0)
3388		return false;
3389
3390	/*
3391	 * Since we truncate DL_SCALE bits, make sure we're at least
3392	 * that big.
3393	 */
3394	if (attr->sched_runtime < (1ULL << DL_SCALE))
3395		return false;
3396
3397	/*
3398	 * Since we use the MSB for wrap-around and sign issues, make
3399	 * sure it's not set (mind that period can be equal to zero).
3400	 */
3401	if (attr->sched_deadline & (1ULL << 63) ||
3402	    attr->sched_period & (1ULL << 63))
3403		return false;
3404
3405	/* runtime <= deadline <= period (if period != 0) */
3406	if ((attr->sched_period != 0 &&
3407	     attr->sched_period < attr->sched_deadline) ||
3408	    attr->sched_deadline < attr->sched_runtime)
3409		return false;
3410
3411	return true;
3412}
3413
3414/*
3415 * check the target process has a UID that matches the current process's
3416 */
3417static bool check_same_owner(struct task_struct *p)
3418{
3419	const struct cred *cred = current_cred(), *pcred;
3420	bool match;
3421
3422	rcu_read_lock();
3423	pcred = __task_cred(p);
3424	match = (uid_eq(cred->euid, pcred->euid) ||
3425		 uid_eq(cred->euid, pcred->uid));
3426	rcu_read_unlock();
3427	return match;
3428}
3429
3430static int __sched_setscheduler(struct task_struct *p,
3431				const struct sched_attr *attr,
3432				bool user)
3433{
3434	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3435		      MAX_RT_PRIO - 1 - attr->sched_priority;
3436	int retval, oldprio, oldpolicy = -1, queued, running;
3437	int policy = attr->sched_policy;
3438	unsigned long flags;
3439	const struct sched_class *prev_class;
3440	struct rq *rq;
3441	int reset_on_fork;
3442
3443	/* may grab non-irq protected spin_locks */
3444	BUG_ON(in_interrupt());
3445recheck:
3446	/* double check policy once rq lock held */
3447	if (policy < 0) {
3448		reset_on_fork = p->sched_reset_on_fork;
3449		policy = oldpolicy = p->policy;
3450	} else {
3451		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3452
3453		if (policy != SCHED_DEADLINE &&
3454				policy != SCHED_FIFO && policy != SCHED_RR &&
3455				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3456				policy != SCHED_IDLE)
3457			return -EINVAL;
3458	}
3459
3460	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3461		return -EINVAL;
3462
3463	/*
3464	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3465	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3466	 * SCHED_BATCH and SCHED_IDLE is 0.
3467	 */
3468	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3469	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3470		return -EINVAL;
3471	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3472	    (rt_policy(policy) != (attr->sched_priority != 0)))
3473		return -EINVAL;
3474
3475	/*
3476	 * Allow unprivileged RT tasks to decrease priority:
3477	 */
3478	if (user && !capable(CAP_SYS_NICE)) {
3479		if (fair_policy(policy)) {
3480			if (attr->sched_nice < task_nice(p) &&
3481			    !can_nice(p, attr->sched_nice))
3482				return -EPERM;
3483		}
3484
3485		if (rt_policy(policy)) {
3486			unsigned long rlim_rtprio =
3487					task_rlimit(p, RLIMIT_RTPRIO);
3488
3489			/* can't set/change the rt policy */
3490			if (policy != p->policy && !rlim_rtprio)
3491				return -EPERM;
3492
3493			/* can't increase priority */
3494			if (attr->sched_priority > p->rt_priority &&
3495			    attr->sched_priority > rlim_rtprio)
3496				return -EPERM;
3497		}
3498
3499		 /*
3500		  * Can't set/change SCHED_DEADLINE policy at all for now
3501		  * (safest behavior); in the future we would like to allow
3502		  * unprivileged DL tasks to increase their relative deadline
3503		  * or reduce their runtime (both ways reducing utilization)
3504		  */
3505		if (dl_policy(policy))
3506			return -EPERM;
3507
3508		/*
3509		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3510		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3511		 */
3512		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3513			if (!can_nice(p, task_nice(p)))
3514				return -EPERM;
3515		}
3516
3517		/* can't change other user's priorities */
3518		if (!check_same_owner(p))
3519			return -EPERM;
3520
3521		/* Normal users shall not reset the sched_reset_on_fork flag */
3522		if (p->sched_reset_on_fork && !reset_on_fork)
3523			return -EPERM;
3524	}
3525
3526	if (user) {
3527		retval = security_task_setscheduler(p);
3528		if (retval)
3529			return retval;
3530	}
3531
3532	/*
3533	 * make sure no PI-waiters arrive (or leave) while we are
3534	 * changing the priority of the task:
3535	 *
3536	 * To be able to change p->policy safely, the appropriate
3537	 * runqueue lock must be held.
3538	 */
3539	rq = task_rq_lock(p, &flags);
3540
3541	/*
3542	 * Changing the policy of the stop threads its a very bad idea
3543	 */
3544	if (p == rq->stop) {
3545		task_rq_unlock(rq, p, &flags);
3546		return -EINVAL;
3547	}
3548
3549	/*
3550	 * If not changing anything there's no need to proceed further,
3551	 * but store a possible modification of reset_on_fork.
3552	 */
3553	if (unlikely(policy == p->policy)) {
3554		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3555			goto change;
3556		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3557			goto change;
3558		if (dl_policy(policy))
3559			goto change;
3560
3561		p->sched_reset_on_fork = reset_on_fork;
3562		task_rq_unlock(rq, p, &flags);
3563		return 0;
3564	}
3565change:
3566
3567	if (user) {
3568#ifdef CONFIG_RT_GROUP_SCHED
3569		/*
3570		 * Do not allow realtime tasks into groups that have no runtime
3571		 * assigned.
3572		 */
3573		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3574				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3575				!task_group_is_autogroup(task_group(p))) {
3576			task_rq_unlock(rq, p, &flags);
3577			return -EPERM;
3578		}
3579#endif
3580#ifdef CONFIG_SMP
3581		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3582			cpumask_t *span = rq->rd->span;
3583
3584			/*
3585			 * Don't allow tasks with an affinity mask smaller than
3586			 * the entire root_domain to become SCHED_DEADLINE. We
3587			 * will also fail if there's no bandwidth available.
3588			 */
3589			if (!cpumask_subset(span, &p->cpus_allowed) ||
3590			    rq->rd->dl_bw.bw == 0) {
3591				task_rq_unlock(rq, p, &flags);
3592				return -EPERM;
3593			}
3594		}
3595#endif
3596	}
3597
3598	/* recheck policy now with rq lock held */
3599	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3600		policy = oldpolicy = -1;
3601		task_rq_unlock(rq, p, &flags);
3602		goto recheck;
3603	}
3604
3605	/*
3606	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3607	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3608	 * is available.
3609	 */
3610	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3611		task_rq_unlock(rq, p, &flags);
3612		return -EBUSY;
3613	}
3614
3615	p->sched_reset_on_fork = reset_on_fork;
3616	oldprio = p->prio;
3617
3618	/*
3619	 * Special case for priority boosted tasks.
3620	 *
3621	 * If the new priority is lower or equal (user space view)
3622	 * than the current (boosted) priority, we just store the new
3623	 * normal parameters and do not touch the scheduler class and
3624	 * the runqueue. This will be done when the task deboost
3625	 * itself.
3626	 */
3627	if (rt_mutex_check_prio(p, newprio)) {
3628		__setscheduler_params(p, attr);
3629		task_rq_unlock(rq, p, &flags);
3630		return 0;
3631	}
3632
3633	queued = task_on_rq_queued(p);
3634	running = task_current(rq, p);
3635	if (queued)
3636		dequeue_task(rq, p, 0);
3637	if (running)
3638		put_prev_task(rq, p);
3639
3640	prev_class = p->sched_class;
3641	__setscheduler(rq, p, attr);
3642
3643	if (running)
3644		p->sched_class->set_curr_task(rq);
3645	if (queued) {
3646		/*
3647		 * We enqueue to tail when the priority of a task is
3648		 * increased (user space view).
3649		 */
3650		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3651	}
3652
3653	check_class_changed(rq, p, prev_class, oldprio);
3654	task_rq_unlock(rq, p, &flags);
3655
3656	rt_mutex_adjust_pi(p);
3657
3658	return 0;
3659}
3660
3661static int _sched_setscheduler(struct task_struct *p, int policy,
3662			       const struct sched_param *param, bool check)
3663{
3664	struct sched_attr attr = {
3665		.sched_policy   = policy,
3666		.sched_priority = param->sched_priority,
3667		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3668	};
3669
3670	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3671	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3672		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3673		policy &= ~SCHED_RESET_ON_FORK;
3674		attr.sched_policy = policy;
3675	}
3676
3677	return __sched_setscheduler(p, &attr, check);
3678}
3679/**
3680 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3681 * @p: the task in question.
3682 * @policy: new policy.
3683 * @param: structure containing the new RT priority.
3684 *
3685 * Return: 0 on success. An error code otherwise.
3686 *
3687 * NOTE that the task may be already dead.
3688 */
3689int sched_setscheduler(struct task_struct *p, int policy,
3690		       const struct sched_param *param)
3691{
3692	return _sched_setscheduler(p, policy, param, true);
3693}
3694EXPORT_SYMBOL_GPL(sched_setscheduler);
3695
3696int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3697{
3698	return __sched_setscheduler(p, attr, true);
3699}
3700EXPORT_SYMBOL_GPL(sched_setattr);
3701
3702/**
3703 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3704 * @p: the task in question.
3705 * @policy: new policy.
3706 * @param: structure containing the new RT priority.
3707 *
3708 * Just like sched_setscheduler, only don't bother checking if the
3709 * current context has permission.  For example, this is needed in
3710 * stop_machine(): we create temporary high priority worker threads,
3711 * but our caller might not have that capability.
3712 *
3713 * Return: 0 on success. An error code otherwise.
3714 */
3715int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3716			       const struct sched_param *param)
3717{
3718	return _sched_setscheduler(p, policy, param, false);
3719}
3720
3721static int
3722do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3723{
3724	struct sched_param lparam;
3725	struct task_struct *p;
3726	int retval;
3727
3728	if (!param || pid < 0)
3729		return -EINVAL;
3730	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3731		return -EFAULT;
3732
3733	rcu_read_lock();
3734	retval = -ESRCH;
3735	p = find_process_by_pid(pid);
3736	if (p != NULL)
3737		retval = sched_setscheduler(p, policy, &lparam);
3738	rcu_read_unlock();
3739
3740	return retval;
3741}
3742
3743/*
3744 * Mimics kernel/events/core.c perf_copy_attr().
3745 */
3746static int sched_copy_attr(struct sched_attr __user *uattr,
3747			   struct sched_attr *attr)
3748{
3749	u32 size;
3750	int ret;
3751
3752	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3753		return -EFAULT;
3754
3755	/*
3756	 * zero the full structure, so that a short copy will be nice.
3757	 */
3758	memset(attr, 0, sizeof(*attr));
3759
3760	ret = get_user(size, &uattr->size);
3761	if (ret)
3762		return ret;
3763
3764	if (size > PAGE_SIZE)	/* silly large */
3765		goto err_size;
3766
3767	if (!size)		/* abi compat */
3768		size = SCHED_ATTR_SIZE_VER0;
3769
3770	if (size < SCHED_ATTR_SIZE_VER0)
3771		goto err_size;
3772
3773	/*
3774	 * If we're handed a bigger struct than we know of,
3775	 * ensure all the unknown bits are 0 - i.e. new
3776	 * user-space does not rely on any kernel feature
3777	 * extensions we dont know about yet.
3778	 */
3779	if (size > sizeof(*attr)) {
3780		unsigned char __user *addr;
3781		unsigned char __user *end;
3782		unsigned char val;
3783
3784		addr = (void __user *)uattr + sizeof(*attr);
3785		end  = (void __user *)uattr + size;
3786
3787		for (; addr < end; addr++) {
3788			ret = get_user(val, addr);
3789			if (ret)
3790				return ret;
3791			if (val)
3792				goto err_size;
3793		}
3794		size = sizeof(*attr);
3795	}
3796
3797	ret = copy_from_user(attr, uattr, size);
3798	if (ret)
3799		return -EFAULT;
3800
3801	/*
3802	 * XXX: do we want to be lenient like existing syscalls; or do we want
3803	 * to be strict and return an error on out-of-bounds values?
3804	 */
3805	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3806
3807	return 0;
3808
3809err_size:
3810	put_user(sizeof(*attr), &uattr->size);
3811	return -E2BIG;
3812}
3813
3814/**
3815 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3816 * @pid: the pid in question.
3817 * @policy: new policy.
3818 * @param: structure containing the new RT priority.
3819 *
3820 * Return: 0 on success. An error code otherwise.
3821 */
3822SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3823		struct sched_param __user *, param)
3824{
3825	/* negative values for policy are not valid */
3826	if (policy < 0)
3827		return -EINVAL;
3828
3829	return do_sched_setscheduler(pid, policy, param);
3830}
3831
3832/**
3833 * sys_sched_setparam - set/change the RT priority of a thread
3834 * @pid: the pid in question.
3835 * @param: structure containing the new RT priority.
3836 *
3837 * Return: 0 on success. An error code otherwise.
3838 */
3839SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3840{
3841	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3842}
3843
3844/**
3845 * sys_sched_setattr - same as above, but with extended sched_attr
3846 * @pid: the pid in question.
3847 * @uattr: structure containing the extended parameters.
3848 * @flags: for future extension.
3849 */
3850SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3851			       unsigned int, flags)
3852{
3853	struct sched_attr attr;
3854	struct task_struct *p;
3855	int retval;
3856
3857	if (!uattr || pid < 0 || flags)
3858		return -EINVAL;
3859
3860	retval = sched_copy_attr(uattr, &attr);
3861	if (retval)
3862		return retval;
3863
3864	if ((int)attr.sched_policy < 0)
3865		return -EINVAL;
3866
3867	rcu_read_lock();
3868	retval = -ESRCH;
3869	p = find_process_by_pid(pid);
3870	if (p != NULL)
3871		retval = sched_setattr(p, &attr);
3872	rcu_read_unlock();
3873
3874	return retval;
3875}
3876
3877/**
3878 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3879 * @pid: the pid in question.
3880 *
3881 * Return: On success, the policy of the thread. Otherwise, a negative error
3882 * code.
3883 */
3884SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3885{
3886	struct task_struct *p;
3887	int retval;
3888
3889	if (pid < 0)
3890		return -EINVAL;
3891
3892	retval = -ESRCH;
3893	rcu_read_lock();
3894	p = find_process_by_pid(pid);
3895	if (p) {
3896		retval = security_task_getscheduler(p);
3897		if (!retval)
3898			retval = p->policy
3899				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3900	}
3901	rcu_read_unlock();
3902	return retval;
3903}
3904
3905/**
3906 * sys_sched_getparam - get the RT priority of a thread
3907 * @pid: the pid in question.
3908 * @param: structure containing the RT priority.
3909 *
3910 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3911 * code.
3912 */
3913SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3914{
3915	struct sched_param lp = { .sched_priority = 0 };
3916	struct task_struct *p;
3917	int retval;
3918
3919	if (!param || pid < 0)
3920		return -EINVAL;
3921
3922	rcu_read_lock();
3923	p = find_process_by_pid(pid);
3924	retval = -ESRCH;
3925	if (!p)
3926		goto out_unlock;
3927
3928	retval = security_task_getscheduler(p);
3929	if (retval)
3930		goto out_unlock;
3931
3932	if (task_has_rt_policy(p))
3933		lp.sched_priority = p->rt_priority;
3934	rcu_read_unlock();
3935
3936	/*
3937	 * This one might sleep, we cannot do it with a spinlock held ...
3938	 */
3939	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3940
3941	return retval;
3942
3943out_unlock:
3944	rcu_read_unlock();
3945	return retval;
3946}
3947
3948static int sched_read_attr(struct sched_attr __user *uattr,
3949			   struct sched_attr *attr,
3950			   unsigned int usize)
3951{
3952	int ret;
3953
3954	if (!access_ok(VERIFY_WRITE, uattr, usize))
3955		return -EFAULT;
3956
3957	/*
3958	 * If we're handed a smaller struct than we know of,
3959	 * ensure all the unknown bits are 0 - i.e. old
3960	 * user-space does not get uncomplete information.
3961	 */
3962	if (usize < sizeof(*attr)) {
3963		unsigned char *addr;
3964		unsigned char *end;
3965
3966		addr = (void *)attr + usize;
3967		end  = (void *)attr + sizeof(*attr);
3968
3969		for (; addr < end; addr++) {
3970			if (*addr)
3971				return -EFBIG;
3972		}
3973
3974		attr->size = usize;
3975	}
3976
3977	ret = copy_to_user(uattr, attr, attr->size);
3978	if (ret)
3979		return -EFAULT;
3980
3981	return 0;
3982}
3983
3984/**
3985 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3986 * @pid: the pid in question.
3987 * @uattr: structure containing the extended parameters.
3988 * @size: sizeof(attr) for fwd/bwd comp.
3989 * @flags: for future extension.
3990 */
3991SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3992		unsigned int, size, unsigned int, flags)
3993{
3994	struct sched_attr attr = {
3995		.size = sizeof(struct sched_attr),
3996	};
3997	struct task_struct *p;
3998	int retval;
3999
4000	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4001	    size < SCHED_ATTR_SIZE_VER0 || flags)
4002		return -EINVAL;
4003
4004	rcu_read_lock();
4005	p = find_process_by_pid(pid);
4006	retval = -ESRCH;
4007	if (!p)
4008		goto out_unlock;
4009
4010	retval = security_task_getscheduler(p);
4011	if (retval)
4012		goto out_unlock;
4013
4014	attr.sched_policy = p->policy;
4015	if (p->sched_reset_on_fork)
4016		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4017	if (task_has_dl_policy(p))
4018		__getparam_dl(p, &attr);
4019	else if (task_has_rt_policy(p))
4020		attr.sched_priority = p->rt_priority;
4021	else
4022		attr.sched_nice = task_nice(p);
4023
4024	rcu_read_unlock();
4025
4026	retval = sched_read_attr(uattr, &attr, size);
4027	return retval;
4028
4029out_unlock:
4030	rcu_read_unlock();
4031	return retval;
4032}
4033
4034long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4035{
4036	cpumask_var_t cpus_allowed, new_mask;
4037	struct task_struct *p;
4038	int retval;
4039
4040	rcu_read_lock();
4041
4042	p = find_process_by_pid(pid);
4043	if (!p) {
4044		rcu_read_unlock();
4045		return -ESRCH;
4046	}
4047
4048	/* Prevent p going away */
4049	get_task_struct(p);
4050	rcu_read_unlock();
4051
4052	if (p->flags & PF_NO_SETAFFINITY) {
4053		retval = -EINVAL;
4054		goto out_put_task;
4055	}
4056	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4057		retval = -ENOMEM;
4058		goto out_put_task;
4059	}
4060	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4061		retval = -ENOMEM;
4062		goto out_free_cpus_allowed;
4063	}
4064	retval = -EPERM;
4065	if (!check_same_owner(p)) {
4066		rcu_read_lock();
4067		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4068			rcu_read_unlock();
4069			goto out_free_new_mask;
4070		}
4071		rcu_read_unlock();
4072	}
4073
4074	retval = security_task_setscheduler(p);
4075	if (retval)
4076		goto out_free_new_mask;
4077
4078
4079	cpuset_cpus_allowed(p, cpus_allowed);
4080	cpumask_and(new_mask, in_mask, cpus_allowed);
4081
4082	/*
4083	 * Since bandwidth control happens on root_domain basis,
4084	 * if admission test is enabled, we only admit -deadline
4085	 * tasks allowed to run on all the CPUs in the task's
4086	 * root_domain.
4087	 */
4088#ifdef CONFIG_SMP
4089	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4090		rcu_read_lock();
4091		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4092			retval = -EBUSY;
4093			rcu_read_unlock();
4094			goto out_free_new_mask;
4095		}
4096		rcu_read_unlock();
4097	}
4098#endif
4099again:
4100	retval = set_cpus_allowed_ptr(p, new_mask);
4101
4102	if (!retval) {
4103		cpuset_cpus_allowed(p, cpus_allowed);
4104		if (!cpumask_subset(new_mask, cpus_allowed)) {
4105			/*
4106			 * We must have raced with a concurrent cpuset
4107			 * update. Just reset the cpus_allowed to the
4108			 * cpuset's cpus_allowed
4109			 */
4110			cpumask_copy(new_mask, cpus_allowed);
4111			goto again;
4112		}
4113	}
4114out_free_new_mask:
4115	free_cpumask_var(new_mask);
4116out_free_cpus_allowed:
4117	free_cpumask_var(cpus_allowed);
4118out_put_task:
4119	put_task_struct(p);
4120	return retval;
4121}
4122
4123static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4124			     struct cpumask *new_mask)
4125{
4126	if (len < cpumask_size())
4127		cpumask_clear(new_mask);
4128	else if (len > cpumask_size())
4129		len = cpumask_size();
4130
4131	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4132}
4133
4134/**
4135 * sys_sched_setaffinity - set the cpu affinity of a process
4136 * @pid: pid of the process
4137 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4138 * @user_mask_ptr: user-space pointer to the new cpu mask
4139 *
4140 * Return: 0 on success. An error code otherwise.
4141 */
4142SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4143		unsigned long __user *, user_mask_ptr)
4144{
4145	cpumask_var_t new_mask;
4146	int retval;
4147
4148	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4149		return -ENOMEM;
4150
4151	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4152	if (retval == 0)
4153		retval = sched_setaffinity(pid, new_mask);
4154	free_cpumask_var(new_mask);
4155	return retval;
4156}
4157
4158long sched_getaffinity(pid_t pid, struct cpumask *mask)
4159{
4160	struct task_struct *p;
4161	unsigned long flags;
4162	int retval;
4163
4164	rcu_read_lock();
4165
4166	retval = -ESRCH;
4167	p = find_process_by_pid(pid);
4168	if (!p)
4169		goto out_unlock;
4170
4171	retval = security_task_getscheduler(p);
4172	if (retval)
4173		goto out_unlock;
4174
4175	raw_spin_lock_irqsave(&p->pi_lock, flags);
4176	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4177	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4178
4179out_unlock:
4180	rcu_read_unlock();
4181
4182	return retval;
4183}
4184
4185/**
4186 * sys_sched_getaffinity - get the cpu affinity of a process
4187 * @pid: pid of the process
4188 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4189 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4190 *
4191 * Return: 0 on success. An error code otherwise.
4192 */
4193SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4194		unsigned long __user *, user_mask_ptr)
4195{
4196	int ret;
4197	cpumask_var_t mask;
4198
4199	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4200		return -EINVAL;
4201	if (len & (sizeof(unsigned long)-1))
4202		return -EINVAL;
4203
4204	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4205		return -ENOMEM;
4206
4207	ret = sched_getaffinity(pid, mask);
4208	if (ret == 0) {
4209		size_t retlen = min_t(size_t, len, cpumask_size());
4210
4211		if (copy_to_user(user_mask_ptr, mask, retlen))
4212			ret = -EFAULT;
4213		else
4214			ret = retlen;
4215	}
4216	free_cpumask_var(mask);
4217
4218	return ret;
4219}
4220
4221/**
4222 * sys_sched_yield - yield the current processor to other threads.
4223 *
4224 * This function yields the current CPU to other tasks. If there are no
4225 * other threads running on this CPU then this function will return.
4226 *
4227 * Return: 0.
4228 */
4229SYSCALL_DEFINE0(sched_yield)
4230{
4231	struct rq *rq = this_rq_lock();
4232
4233	schedstat_inc(rq, yld_count);
4234	current->sched_class->yield_task(rq);
4235
4236	/*
4237	 * Since we are going to call schedule() anyway, there's
4238	 * no need to preempt or enable interrupts:
4239	 */
4240	__release(rq->lock);
4241	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4242	do_raw_spin_unlock(&rq->lock);
4243	sched_preempt_enable_no_resched();
4244
4245	schedule();
4246
4247	return 0;
4248}
4249
4250static void __cond_resched(void)
4251{
4252	__preempt_count_add(PREEMPT_ACTIVE);
4253	__schedule();
4254	__preempt_count_sub(PREEMPT_ACTIVE);
4255}
4256
4257int __sched _cond_resched(void)
4258{
4259	if (should_resched()) {
4260		__cond_resched();
4261		return 1;
4262	}
4263	return 0;
4264}
4265EXPORT_SYMBOL(_cond_resched);
4266
4267/*
4268 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4269 * call schedule, and on return reacquire the lock.
4270 *
4271 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4272 * operations here to prevent schedule() from being called twice (once via
4273 * spin_unlock(), once by hand).
4274 */
4275int __cond_resched_lock(spinlock_t *lock)
4276{
4277	int resched = should_resched();
4278	int ret = 0;
4279
4280	lockdep_assert_held(lock);
4281
4282	if (spin_needbreak(lock) || resched) {
4283		spin_unlock(lock);
4284		if (resched)
4285			__cond_resched();
4286		else
4287			cpu_relax();
4288		ret = 1;
4289		spin_lock(lock);
4290	}
4291	return ret;
4292}
4293EXPORT_SYMBOL(__cond_resched_lock);
4294
4295int __sched __cond_resched_softirq(void)
4296{
4297	BUG_ON(!in_softirq());
4298
4299	if (should_resched()) {
4300		local_bh_enable();
4301		__cond_resched();
4302		local_bh_disable();
4303		return 1;
4304	}
4305	return 0;
4306}
4307EXPORT_SYMBOL(__cond_resched_softirq);
4308
4309/**
4310 * yield - yield the current processor to other threads.
4311 *
4312 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4313 *
4314 * The scheduler is at all times free to pick the calling task as the most
4315 * eligible task to run, if removing the yield() call from your code breaks
4316 * it, its already broken.
4317 *
4318 * Typical broken usage is:
4319 *
4320 * while (!event)
4321 * 	yield();
4322 *
4323 * where one assumes that yield() will let 'the other' process run that will
4324 * make event true. If the current task is a SCHED_FIFO task that will never
4325 * happen. Never use yield() as a progress guarantee!!
4326 *
4327 * If you want to use yield() to wait for something, use wait_event().
4328 * If you want to use yield() to be 'nice' for others, use cond_resched().
4329 * If you still want to use yield(), do not!
4330 */
4331void __sched yield(void)
4332{
4333	set_current_state(TASK_RUNNING);
4334	sys_sched_yield();
4335}
4336EXPORT_SYMBOL(yield);
4337
4338/**
4339 * yield_to - yield the current processor to another thread in
4340 * your thread group, or accelerate that thread toward the
4341 * processor it's on.
4342 * @p: target task
4343 * @preempt: whether task preemption is allowed or not
4344 *
4345 * It's the caller's job to ensure that the target task struct
4346 * can't go away on us before we can do any checks.
4347 *
4348 * Return:
4349 *	true (>0) if we indeed boosted the target task.
4350 *	false (0) if we failed to boost the target.
4351 *	-ESRCH if there's no task to yield to.
4352 */
4353int __sched yield_to(struct task_struct *p, bool preempt)
4354{
4355	struct task_struct *curr = current;
4356	struct rq *rq, *p_rq;
4357	unsigned long flags;
4358	int yielded = 0;
4359
4360	local_irq_save(flags);
4361	rq = this_rq();
4362
4363again:
4364	p_rq = task_rq(p);
4365	/*
4366	 * If we're the only runnable task on the rq and target rq also
4367	 * has only one task, there's absolutely no point in yielding.
4368	 */
4369	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4370		yielded = -ESRCH;
4371		goto out_irq;
4372	}
4373
4374	double_rq_lock(rq, p_rq);
4375	if (task_rq(p) != p_rq) {
4376		double_rq_unlock(rq, p_rq);
4377		goto again;
4378	}
4379
4380	if (!curr->sched_class->yield_to_task)
4381		goto out_unlock;
4382
4383	if (curr->sched_class != p->sched_class)
4384		goto out_unlock;
4385
4386	if (task_running(p_rq, p) || p->state)
4387		goto out_unlock;
4388
4389	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4390	if (yielded) {
4391		schedstat_inc(rq, yld_count);
4392		/*
4393		 * Make p's CPU reschedule; pick_next_entity takes care of
4394		 * fairness.
4395		 */
4396		if (preempt && rq != p_rq)
4397			resched_curr(p_rq);
4398	}
4399
4400out_unlock:
4401	double_rq_unlock(rq, p_rq);
4402out_irq:
4403	local_irq_restore(flags);
4404
4405	if (yielded > 0)
4406		schedule();
4407
4408	return yielded;
4409}
4410EXPORT_SYMBOL_GPL(yield_to);
4411
4412/*
4413 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4414 * that process accounting knows that this is a task in IO wait state.
4415 */
4416void __sched io_schedule(void)
4417{
4418	struct rq *rq = raw_rq();
4419
4420	delayacct_blkio_start();
4421	atomic_inc(&rq->nr_iowait);
4422	blk_flush_plug(current);
4423	current->in_iowait = 1;
4424	schedule();
4425	current->in_iowait = 0;
4426	atomic_dec(&rq->nr_iowait);
4427	delayacct_blkio_end();
4428}
4429EXPORT_SYMBOL(io_schedule);
4430
4431long __sched io_schedule_timeout(long timeout)
4432{
4433	struct rq *rq = raw_rq();
4434	long ret;
4435
4436	delayacct_blkio_start();
4437	atomic_inc(&rq->nr_iowait);
4438	blk_flush_plug(current);
4439	current->in_iowait = 1;
4440	ret = schedule_timeout(timeout);
4441	current->in_iowait = 0;
4442	atomic_dec(&rq->nr_iowait);
4443	delayacct_blkio_end();
4444	return ret;
4445}
4446
4447/**
4448 * sys_sched_get_priority_max - return maximum RT priority.
4449 * @policy: scheduling class.
4450 *
4451 * Return: On success, this syscall returns the maximum
4452 * rt_priority that can be used by a given scheduling class.
4453 * On failure, a negative error code is returned.
4454 */
4455SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4456{
4457	int ret = -EINVAL;
4458
4459	switch (policy) {
4460	case SCHED_FIFO:
4461	case SCHED_RR:
4462		ret = MAX_USER_RT_PRIO-1;
4463		break;
4464	case SCHED_DEADLINE:
4465	case SCHED_NORMAL:
4466	case SCHED_BATCH:
4467	case SCHED_IDLE:
4468		ret = 0;
4469		break;
4470	}
4471	return ret;
4472}
4473
4474/**
4475 * sys_sched_get_priority_min - return minimum RT priority.
4476 * @policy: scheduling class.
4477 *
4478 * Return: On success, this syscall returns the minimum
4479 * rt_priority that can be used by a given scheduling class.
4480 * On failure, a negative error code is returned.
4481 */
4482SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4483{
4484	int ret = -EINVAL;
4485
4486	switch (policy) {
4487	case SCHED_FIFO:
4488	case SCHED_RR:
4489		ret = 1;
4490		break;
4491	case SCHED_DEADLINE:
4492	case SCHED_NORMAL:
4493	case SCHED_BATCH:
4494	case SCHED_IDLE:
4495		ret = 0;
4496	}
4497	return ret;
4498}
4499
4500/**
4501 * sys_sched_rr_get_interval - return the default timeslice of a process.
4502 * @pid: pid of the process.
4503 * @interval: userspace pointer to the timeslice value.
4504 *
4505 * this syscall writes the default timeslice value of a given process
4506 * into the user-space timespec buffer. A value of '0' means infinity.
4507 *
4508 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4509 * an error code.
4510 */
4511SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4512		struct timespec __user *, interval)
4513{
4514	struct task_struct *p;
4515	unsigned int time_slice;
4516	unsigned long flags;
4517	struct rq *rq;
4518	int retval;
4519	struct timespec t;
4520
4521	if (pid < 0)
4522		return -EINVAL;
4523
4524	retval = -ESRCH;
4525	rcu_read_lock();
4526	p = find_process_by_pid(pid);
4527	if (!p)
4528		goto out_unlock;
4529
4530	retval = security_task_getscheduler(p);
4531	if (retval)
4532		goto out_unlock;
4533
4534	rq = task_rq_lock(p, &flags);
4535	time_slice = 0;
4536	if (p->sched_class->get_rr_interval)
4537		time_slice = p->sched_class->get_rr_interval(rq, p);
4538	task_rq_unlock(rq, p, &flags);
4539
4540	rcu_read_unlock();
4541	jiffies_to_timespec(time_slice, &t);
4542	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4543	return retval;
4544
4545out_unlock:
4546	rcu_read_unlock();
4547	return retval;
4548}
4549
4550static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4551
4552void sched_show_task(struct task_struct *p)
4553{
4554	unsigned long free = 0;
4555	int ppid;
4556	unsigned state;
4557
4558	state = p->state ? __ffs(p->state) + 1 : 0;
4559	printk(KERN_INFO "%-15.15s %c", p->comm,
4560		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4561#if BITS_PER_LONG == 32
4562	if (state == TASK_RUNNING)
4563		printk(KERN_CONT " running  ");
4564	else
4565		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4566#else
4567	if (state == TASK_RUNNING)
4568		printk(KERN_CONT "  running task    ");
4569	else
4570		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4571#endif
4572#ifdef CONFIG_DEBUG_STACK_USAGE
4573	free = stack_not_used(p);
4574#endif
4575	rcu_read_lock();
4576	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4577	rcu_read_unlock();
4578	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4579		task_pid_nr(p), ppid,
4580		(unsigned long)task_thread_info(p)->flags);
4581
4582	print_worker_info(KERN_INFO, p);
4583	show_stack(p, NULL);
4584}
4585
4586void show_state_filter(unsigned long state_filter)
4587{
4588	struct task_struct *g, *p;
4589
4590#if BITS_PER_LONG == 32
4591	printk(KERN_INFO
4592		"  task                PC stack   pid father\n");
4593#else
4594	printk(KERN_INFO
4595		"  task                        PC stack   pid father\n");
4596#endif
4597	rcu_read_lock();
4598	for_each_process_thread(g, p) {
4599		/*
4600		 * reset the NMI-timeout, listing all files on a slow
4601		 * console might take a lot of time:
4602		 */
4603		touch_nmi_watchdog();
4604		if (!state_filter || (p->state & state_filter))
4605			sched_show_task(p);
4606	}
4607
4608	touch_all_softlockup_watchdogs();
4609
4610#ifdef CONFIG_SCHED_DEBUG
4611	sysrq_sched_debug_show();
4612#endif
4613	rcu_read_unlock();
4614	/*
4615	 * Only show locks if all tasks are dumped:
4616	 */
4617	if (!state_filter)
4618		debug_show_all_locks();
4619}
4620
4621void init_idle_bootup_task(struct task_struct *idle)
4622{
4623	idle->sched_class = &idle_sched_class;
4624}
4625
4626/**
4627 * init_idle - set up an idle thread for a given CPU
4628 * @idle: task in question
4629 * @cpu: cpu the idle task belongs to
4630 *
4631 * NOTE: this function does not set the idle thread's NEED_RESCHED
4632 * flag, to make booting more robust.
4633 */
4634void init_idle(struct task_struct *idle, int cpu)
4635{
4636	struct rq *rq = cpu_rq(cpu);
4637	unsigned long flags;
4638
4639	raw_spin_lock_irqsave(&rq->lock, flags);
4640
4641	__sched_fork(0, idle);
4642	idle->state = TASK_RUNNING;
4643	idle->se.exec_start = sched_clock();
4644
4645	do_set_cpus_allowed(idle, cpumask_of(cpu));
4646	/*
4647	 * We're having a chicken and egg problem, even though we are
4648	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4649	 * lockdep check in task_group() will fail.
4650	 *
4651	 * Similar case to sched_fork(). / Alternatively we could
4652	 * use task_rq_lock() here and obtain the other rq->lock.
4653	 *
4654	 * Silence PROVE_RCU
4655	 */
4656	rcu_read_lock();
4657	__set_task_cpu(idle, cpu);
4658	rcu_read_unlock();
4659
4660	rq->curr = rq->idle = idle;
4661	idle->on_rq = TASK_ON_RQ_QUEUED;
4662#if defined(CONFIG_SMP)
4663	idle->on_cpu = 1;
4664#endif
4665	raw_spin_unlock_irqrestore(&rq->lock, flags);
4666
4667	/* Set the preempt count _outside_ the spinlocks! */
4668	init_idle_preempt_count(idle, cpu);
4669
4670	/*
4671	 * The idle tasks have their own, simple scheduling class:
4672	 */
4673	idle->sched_class = &idle_sched_class;
4674	ftrace_graph_init_idle_task(idle, cpu);
4675	vtime_init_idle(idle, cpu);
4676#if defined(CONFIG_SMP)
4677	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4678#endif
4679}
4680
4681#ifdef CONFIG_SMP
4682/*
4683 * move_queued_task - move a queued task to new rq.
4684 *
4685 * Returns (locked) new rq. Old rq's lock is released.
4686 */
4687static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4688{
4689	struct rq *rq = task_rq(p);
4690
4691	lockdep_assert_held(&rq->lock);
4692
4693	dequeue_task(rq, p, 0);
4694	p->on_rq = TASK_ON_RQ_MIGRATING;
4695	set_task_cpu(p, new_cpu);
4696	raw_spin_unlock(&rq->lock);
4697
4698	rq = cpu_rq(new_cpu);
4699
4700	raw_spin_lock(&rq->lock);
4701	BUG_ON(task_cpu(p) != new_cpu);
4702	p->on_rq = TASK_ON_RQ_QUEUED;
4703	enqueue_task(rq, p, 0);
4704	check_preempt_curr(rq, p, 0);
4705
4706	return rq;
4707}
4708
4709void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4710{
4711	if (p->sched_class && p->sched_class->set_cpus_allowed)
4712		p->sched_class->set_cpus_allowed(p, new_mask);
4713
4714	cpumask_copy(&p->cpus_allowed, new_mask);
4715	p->nr_cpus_allowed = cpumask_weight(new_mask);
4716}
4717
4718/*
4719 * This is how migration works:
4720 *
4721 * 1) we invoke migration_cpu_stop() on the target CPU using
4722 *    stop_one_cpu().
4723 * 2) stopper starts to run (implicitly forcing the migrated thread
4724 *    off the CPU)
4725 * 3) it checks whether the migrated task is still in the wrong runqueue.
4726 * 4) if it's in the wrong runqueue then the migration thread removes
4727 *    it and puts it into the right queue.
4728 * 5) stopper completes and stop_one_cpu() returns and the migration
4729 *    is done.
4730 */
4731
4732/*
4733 * Change a given task's CPU affinity. Migrate the thread to a
4734 * proper CPU and schedule it away if the CPU it's executing on
4735 * is removed from the allowed bitmask.
4736 *
4737 * NOTE: the caller must have a valid reference to the task, the
4738 * task must not exit() & deallocate itself prematurely. The
4739 * call is not atomic; no spinlocks may be held.
4740 */
4741int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4742{
4743	unsigned long flags;
4744	struct rq *rq;
4745	unsigned int dest_cpu;
4746	int ret = 0;
4747
4748	rq = task_rq_lock(p, &flags);
4749
4750	if (cpumask_equal(&p->cpus_allowed, new_mask))
4751		goto out;
4752
4753	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4754		ret = -EINVAL;
4755		goto out;
4756	}
4757
4758	do_set_cpus_allowed(p, new_mask);
4759
4760	/* Can the task run on the task's current CPU? If so, we're done */
4761	if (cpumask_test_cpu(task_cpu(p), new_mask))
4762		goto out;
4763
4764	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4765	if (task_running(rq, p) || p->state == TASK_WAKING) {
4766		struct migration_arg arg = { p, dest_cpu };
4767		/* Need help from migration thread: drop lock and wait. */
4768		task_rq_unlock(rq, p, &flags);
4769		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4770		tlb_migrate_finish(p->mm);
4771		return 0;
4772	} else if (task_on_rq_queued(p))
4773		rq = move_queued_task(p, dest_cpu);
4774out:
4775	task_rq_unlock(rq, p, &flags);
4776
4777	return ret;
4778}
4779EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4780
4781/*
4782 * Move (not current) task off this cpu, onto dest cpu. We're doing
4783 * this because either it can't run here any more (set_cpus_allowed()
4784 * away from this CPU, or CPU going down), or because we're
4785 * attempting to rebalance this task on exec (sched_exec).
4786 *
4787 * So we race with normal scheduler movements, but that's OK, as long
4788 * as the task is no longer on this CPU.
4789 *
4790 * Returns non-zero if task was successfully migrated.
4791 */
4792static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4793{
4794	struct rq *rq;
4795	int ret = 0;
4796
4797	if (unlikely(!cpu_active(dest_cpu)))
4798		return ret;
4799
4800	rq = cpu_rq(src_cpu);
4801
4802	raw_spin_lock(&p->pi_lock);
4803	raw_spin_lock(&rq->lock);
4804	/* Already moved. */
4805	if (task_cpu(p) != src_cpu)
4806		goto done;
4807
4808	/* Affinity changed (again). */
4809	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4810		goto fail;
4811
4812	/*
4813	 * If we're not on a rq, the next wake-up will ensure we're
4814	 * placed properly.
4815	 */
4816	if (task_on_rq_queued(p))
4817		rq = move_queued_task(p, dest_cpu);
4818done:
4819	ret = 1;
4820fail:
4821	raw_spin_unlock(&rq->lock);
4822	raw_spin_unlock(&p->pi_lock);
4823	return ret;
4824}
4825
4826#ifdef CONFIG_NUMA_BALANCING
4827/* Migrate current task p to target_cpu */
4828int migrate_task_to(struct task_struct *p, int target_cpu)
4829{
4830	struct migration_arg arg = { p, target_cpu };
4831	int curr_cpu = task_cpu(p);
4832
4833	if (curr_cpu == target_cpu)
4834		return 0;
4835
4836	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4837		return -EINVAL;
4838
4839	/* TODO: This is not properly updating schedstats */
4840
4841	trace_sched_move_numa(p, curr_cpu, target_cpu);
4842	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4843}
4844
4845/*
4846 * Requeue a task on a given node and accurately track the number of NUMA
4847 * tasks on the runqueues
4848 */
4849void sched_setnuma(struct task_struct *p, int nid)
4850{
4851	struct rq *rq;
4852	unsigned long flags;
4853	bool queued, running;
4854
4855	rq = task_rq_lock(p, &flags);
4856	queued = task_on_rq_queued(p);
4857	running = task_current(rq, p);
4858
4859	if (queued)
4860		dequeue_task(rq, p, 0);
4861	if (running)
4862		put_prev_task(rq, p);
4863
4864	p->numa_preferred_nid = nid;
4865
4866	if (running)
4867		p->sched_class->set_curr_task(rq);
4868	if (queued)
4869		enqueue_task(rq, p, 0);
4870	task_rq_unlock(rq, p, &flags);
4871}
4872#endif
4873
4874/*
4875 * migration_cpu_stop - this will be executed by a highprio stopper thread
4876 * and performs thread migration by bumping thread off CPU then
4877 * 'pushing' onto another runqueue.
4878 */
4879static int migration_cpu_stop(void *data)
4880{
4881	struct migration_arg *arg = data;
4882
4883	/*
4884	 * The original target cpu might have gone down and we might
4885	 * be on another cpu but it doesn't matter.
4886	 */
4887	local_irq_disable();
4888	/*
4889	 * We need to explicitly wake pending tasks before running
4890	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4891	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4892	 */
4893	sched_ttwu_pending();
4894	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4895	local_irq_enable();
4896	return 0;
4897}
4898
4899#ifdef CONFIG_HOTPLUG_CPU
4900
4901/*
4902 * Ensures that the idle task is using init_mm right before its cpu goes
4903 * offline.
4904 */
4905void idle_task_exit(void)
4906{
4907	struct mm_struct *mm = current->active_mm;
4908
4909	BUG_ON(cpu_online(smp_processor_id()));
4910
4911	if (mm != &init_mm) {
4912		switch_mm(mm, &init_mm, current);
4913		finish_arch_post_lock_switch();
4914	}
4915	mmdrop(mm);
4916}
4917
4918/*
4919 * Since this CPU is going 'away' for a while, fold any nr_active delta
4920 * we might have. Assumes we're called after migrate_tasks() so that the
4921 * nr_active count is stable.
4922 *
4923 * Also see the comment "Global load-average calculations".
4924 */
4925static void calc_load_migrate(struct rq *rq)
4926{
4927	long delta = calc_load_fold_active(rq);
4928	if (delta)
4929		atomic_long_add(delta, &calc_load_tasks);
4930}
4931
4932static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4933{
4934}
4935
4936static const struct sched_class fake_sched_class = {
4937	.put_prev_task = put_prev_task_fake,
4938};
4939
4940static struct task_struct fake_task = {
4941	/*
4942	 * Avoid pull_{rt,dl}_task()
4943	 */
4944	.prio = MAX_PRIO + 1,
4945	.sched_class = &fake_sched_class,
4946};
4947
4948/*
4949 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4950 * try_to_wake_up()->select_task_rq().
4951 *
4952 * Called with rq->lock held even though we'er in stop_machine() and
4953 * there's no concurrency possible, we hold the required locks anyway
4954 * because of lock validation efforts.
4955 */
4956static void migrate_tasks(unsigned int dead_cpu)
4957{
4958	struct rq *rq = cpu_rq(dead_cpu);
4959	struct task_struct *next, *stop = rq->stop;
4960	int dest_cpu;
4961
4962	/*
4963	 * Fudge the rq selection such that the below task selection loop
4964	 * doesn't get stuck on the currently eligible stop task.
4965	 *
4966	 * We're currently inside stop_machine() and the rq is either stuck
4967	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4968	 * either way we should never end up calling schedule() until we're
4969	 * done here.
4970	 */
4971	rq->stop = NULL;
4972
4973	/*
4974	 * put_prev_task() and pick_next_task() sched
4975	 * class method both need to have an up-to-date
4976	 * value of rq->clock[_task]
4977	 */
4978	update_rq_clock(rq);
4979
4980	for ( ; ; ) {
4981		/*
4982		 * There's this thread running, bail when that's the only
4983		 * remaining thread.
4984		 */
4985		if (rq->nr_running == 1)
4986			break;
4987
4988		next = pick_next_task(rq, &fake_task);
4989		BUG_ON(!next);
4990		next->sched_class->put_prev_task(rq, next);
4991
4992		/* Find suitable destination for @next, with force if needed. */
4993		dest_cpu = select_fallback_rq(dead_cpu, next);
4994		raw_spin_unlock(&rq->lock);
4995
4996		__migrate_task(next, dead_cpu, dest_cpu);
4997
4998		raw_spin_lock(&rq->lock);
4999	}
5000
5001	rq->stop = stop;
5002}
5003
5004#endif /* CONFIG_HOTPLUG_CPU */
5005
5006#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5007
5008static struct ctl_table sd_ctl_dir[] = {
5009	{
5010		.procname	= "sched_domain",
5011		.mode		= 0555,
5012	},
5013	{}
5014};
5015
5016static struct ctl_table sd_ctl_root[] = {
5017	{
5018		.procname	= "kernel",
5019		.mode		= 0555,
5020		.child		= sd_ctl_dir,
5021	},
5022	{}
5023};
5024
5025static struct ctl_table *sd_alloc_ctl_entry(int n)
5026{
5027	struct ctl_table *entry =
5028		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5029
5030	return entry;
5031}
5032
5033static void sd_free_ctl_entry(struct ctl_table **tablep)
5034{
5035	struct ctl_table *entry;
5036
5037	/*
5038	 * In the intermediate directories, both the child directory and
5039	 * procname are dynamically allocated and could fail but the mode
5040	 * will always be set. In the lowest directory the names are
5041	 * static strings and all have proc handlers.
5042	 */
5043	for (entry = *tablep; entry->mode; entry++) {
5044		if (entry->child)
5045			sd_free_ctl_entry(&entry->child);
5046		if (entry->proc_handler == NULL)
5047			kfree(entry->procname);
5048	}
5049
5050	kfree(*tablep);
5051	*tablep = NULL;
5052}
5053
5054static int min_load_idx = 0;
5055static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5056
5057static void
5058set_table_entry(struct ctl_table *entry,
5059		const char *procname, void *data, int maxlen,
5060		umode_t mode, proc_handler *proc_handler,
5061		bool load_idx)
5062{
5063	entry->procname = procname;
5064	entry->data = data;
5065	entry->maxlen = maxlen;
5066	entry->mode = mode;
5067	entry->proc_handler = proc_handler;
5068
5069	if (load_idx) {
5070		entry->extra1 = &min_load_idx;
5071		entry->extra2 = &max_load_idx;
5072	}
5073}
5074
5075static struct ctl_table *
5076sd_alloc_ctl_domain_table(struct sched_domain *sd)
5077{
5078	struct ctl_table *table = sd_alloc_ctl_entry(14);
5079
5080	if (table == NULL)
5081		return NULL;
5082
5083	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5084		sizeof(long), 0644, proc_doulongvec_minmax, false);
5085	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5086		sizeof(long), 0644, proc_doulongvec_minmax, false);
5087	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5088		sizeof(int), 0644, proc_dointvec_minmax, true);
5089	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5090		sizeof(int), 0644, proc_dointvec_minmax, true);
5091	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5092		sizeof(int), 0644, proc_dointvec_minmax, true);
5093	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5094		sizeof(int), 0644, proc_dointvec_minmax, true);
5095	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5096		sizeof(int), 0644, proc_dointvec_minmax, true);
5097	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5098		sizeof(int), 0644, proc_dointvec_minmax, false);
5099	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5100		sizeof(int), 0644, proc_dointvec_minmax, false);
5101	set_table_entry(&table[9], "cache_nice_tries",
5102		&sd->cache_nice_tries,
5103		sizeof(int), 0644, proc_dointvec_minmax, false);
5104	set_table_entry(&table[10], "flags", &sd->flags,
5105		sizeof(int), 0644, proc_dointvec_minmax, false);
5106	set_table_entry(&table[11], "max_newidle_lb_cost",
5107		&sd->max_newidle_lb_cost,
5108		sizeof(long), 0644, proc_doulongvec_minmax, false);
5109	set_table_entry(&table[12], "name", sd->name,
5110		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5111	/* &table[13] is terminator */
5112
5113	return table;
5114}
5115
5116static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5117{
5118	struct ctl_table *entry, *table;
5119	struct sched_domain *sd;
5120	int domain_num = 0, i;
5121	char buf[32];
5122
5123	for_each_domain(cpu, sd)
5124		domain_num++;
5125	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5126	if (table == NULL)
5127		return NULL;
5128
5129	i = 0;
5130	for_each_domain(cpu, sd) {
5131		snprintf(buf, 32, "domain%d", i);
5132		entry->procname = kstrdup(buf, GFP_KERNEL);
5133		entry->mode = 0555;
5134		entry->child = sd_alloc_ctl_domain_table(sd);
5135		entry++;
5136		i++;
5137	}
5138	return table;
5139}
5140
5141static struct ctl_table_header *sd_sysctl_header;
5142static void register_sched_domain_sysctl(void)
5143{
5144	int i, cpu_num = num_possible_cpus();
5145	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5146	char buf[32];
5147
5148	WARN_ON(sd_ctl_dir[0].child);
5149	sd_ctl_dir[0].child = entry;
5150
5151	if (entry == NULL)
5152		return;
5153
5154	for_each_possible_cpu(i) {
5155		snprintf(buf, 32, "cpu%d", i);
5156		entry->procname = kstrdup(buf, GFP_KERNEL);
5157		entry->mode = 0555;
5158		entry->child = sd_alloc_ctl_cpu_table(i);
5159		entry++;
5160	}
5161
5162	WARN_ON(sd_sysctl_header);
5163	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5164}
5165
5166/* may be called multiple times per register */
5167static void unregister_sched_domain_sysctl(void)
5168{
5169	if (sd_sysctl_header)
5170		unregister_sysctl_table(sd_sysctl_header);
5171	sd_sysctl_header = NULL;
5172	if (sd_ctl_dir[0].child)
5173		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5174}
5175#else
5176static void register_sched_domain_sysctl(void)
5177{
5178}
5179static void unregister_sched_domain_sysctl(void)
5180{
5181}
5182#endif
5183
5184static void set_rq_online(struct rq *rq)
5185{
5186	if (!rq->online) {
5187		const struct sched_class *class;
5188
5189		cpumask_set_cpu(rq->cpu, rq->rd->online);
5190		rq->online = 1;
5191
5192		for_each_class(class) {
5193			if (class->rq_online)
5194				class->rq_online(rq);
5195		}
5196	}
5197}
5198
5199static void set_rq_offline(struct rq *rq)
5200{
5201	if (rq->online) {
5202		const struct sched_class *class;
5203
5204		for_each_class(class) {
5205			if (class->rq_offline)
5206				class->rq_offline(rq);
5207		}
5208
5209		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5210		rq->online = 0;
5211	}
5212}
5213
5214/*
5215 * migration_call - callback that gets triggered when a CPU is added.
5216 * Here we can start up the necessary migration thread for the new CPU.
5217 */
5218static int
5219migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5220{
5221	int cpu = (long)hcpu;
5222	unsigned long flags;
5223	struct rq *rq = cpu_rq(cpu);
5224
5225	switch (action & ~CPU_TASKS_FROZEN) {
5226
5227	case CPU_UP_PREPARE:
5228		rq->calc_load_update = calc_load_update;
5229		break;
5230
5231	case CPU_ONLINE:
5232		/* Update our root-domain */
5233		raw_spin_lock_irqsave(&rq->lock, flags);
5234		if (rq->rd) {
5235			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5236
5237			set_rq_online(rq);
5238		}
5239		raw_spin_unlock_irqrestore(&rq->lock, flags);
5240		break;
5241
5242#ifdef CONFIG_HOTPLUG_CPU
5243	case CPU_DYING:
5244		sched_ttwu_pending();
5245		/* Update our root-domain */
5246		raw_spin_lock_irqsave(&rq->lock, flags);
5247		if (rq->rd) {
5248			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5249			set_rq_offline(rq);
5250		}
5251		migrate_tasks(cpu);
5252		BUG_ON(rq->nr_running != 1); /* the migration thread */
5253		raw_spin_unlock_irqrestore(&rq->lock, flags);
5254		break;
5255
5256	case CPU_DEAD:
5257		calc_load_migrate(rq);
5258		break;
5259#endif
5260	}
5261
5262	update_max_interval();
5263
5264	return NOTIFY_OK;
5265}
5266
5267/*
5268 * Register at high priority so that task migration (migrate_all_tasks)
5269 * happens before everything else.  This has to be lower priority than
5270 * the notifier in the perf_event subsystem, though.
5271 */
5272static struct notifier_block migration_notifier = {
5273	.notifier_call = migration_call,
5274	.priority = CPU_PRI_MIGRATION,
5275};
5276
5277static void __cpuinit set_cpu_rq_start_time(void)
5278{
5279	int cpu = smp_processor_id();
5280	struct rq *rq = cpu_rq(cpu);
5281	rq->age_stamp = sched_clock_cpu(cpu);
5282}
5283
5284static int sched_cpu_active(struct notifier_block *nfb,
5285				      unsigned long action, void *hcpu)
5286{
5287	switch (action & ~CPU_TASKS_FROZEN) {
5288	case CPU_STARTING:
5289		set_cpu_rq_start_time();
5290		return NOTIFY_OK;
5291	case CPU_DOWN_FAILED:
5292		set_cpu_active((long)hcpu, true);
5293		return NOTIFY_OK;
5294	default:
5295		return NOTIFY_DONE;
5296	}
5297}
5298
5299static int sched_cpu_inactive(struct notifier_block *nfb,
5300					unsigned long action, void *hcpu)
5301{
5302	unsigned long flags;
5303	long cpu = (long)hcpu;
5304	struct dl_bw *dl_b;
5305
5306	switch (action & ~CPU_TASKS_FROZEN) {
5307	case CPU_DOWN_PREPARE:
5308		set_cpu_active(cpu, false);
5309
5310		/* explicitly allow suspend */
5311		if (!(action & CPU_TASKS_FROZEN)) {
5312			bool overflow;
5313			int cpus;
5314
5315			rcu_read_lock_sched();
5316			dl_b = dl_bw_of(cpu);
5317
5318			raw_spin_lock_irqsave(&dl_b->lock, flags);
5319			cpus = dl_bw_cpus(cpu);
5320			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5321			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5322
5323			rcu_read_unlock_sched();
5324
5325			if (overflow)
5326				return notifier_from_errno(-EBUSY);
5327		}
5328		return NOTIFY_OK;
5329	}
5330
5331	return NOTIFY_DONE;
5332}
5333
5334static int __init migration_init(void)
5335{
5336	void *cpu = (void *)(long)smp_processor_id();
5337	int err;
5338
5339	/* Initialize migration for the boot CPU */
5340	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5341	BUG_ON(err == NOTIFY_BAD);
5342	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5343	register_cpu_notifier(&migration_notifier);
5344
5345	/* Register cpu active notifiers */
5346	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5347	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5348
5349	return 0;
5350}
5351early_initcall(migration_init);
5352#endif
5353
5354#ifdef CONFIG_SMP
5355
5356static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5357
5358#ifdef CONFIG_SCHED_DEBUG
5359
5360static __read_mostly int sched_debug_enabled;
5361
5362static int __init sched_debug_setup(char *str)
5363{
5364	sched_debug_enabled = 1;
5365
5366	return 0;
5367}
5368early_param("sched_debug", sched_debug_setup);
5369
5370static inline bool sched_debug(void)
5371{
5372	return sched_debug_enabled;
5373}
5374
5375static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5376				  struct cpumask *groupmask)
5377{
5378	struct sched_group *group = sd->groups;
5379	char str[256];
5380
5381	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5382	cpumask_clear(groupmask);
5383
5384	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5385
5386	if (!(sd->flags & SD_LOAD_BALANCE)) {
5387		printk("does not load-balance\n");
5388		if (sd->parent)
5389			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5390					" has parent");
5391		return -1;
5392	}
5393
5394	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5395
5396	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5397		printk(KERN_ERR "ERROR: domain->span does not contain "
5398				"CPU%d\n", cpu);
5399	}
5400	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5401		printk(KERN_ERR "ERROR: domain->groups does not contain"
5402				" CPU%d\n", cpu);
5403	}
5404
5405	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5406	do {
5407		if (!group) {
5408			printk("\n");
5409			printk(KERN_ERR "ERROR: group is NULL\n");
5410			break;
5411		}
5412
5413		/*
5414		 * Even though we initialize ->capacity to something semi-sane,
5415		 * we leave capacity_orig unset. This allows us to detect if
5416		 * domain iteration is still funny without causing /0 traps.
5417		 */
5418		if (!group->sgc->capacity_orig) {
5419			printk(KERN_CONT "\n");
5420			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5421			break;
5422		}
5423
5424		if (!cpumask_weight(sched_group_cpus(group))) {
5425			printk(KERN_CONT "\n");
5426			printk(KERN_ERR "ERROR: empty group\n");
5427			break;
5428		}
5429
5430		if (!(sd->flags & SD_OVERLAP) &&
5431		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5432			printk(KERN_CONT "\n");
5433			printk(KERN_ERR "ERROR: repeated CPUs\n");
5434			break;
5435		}
5436
5437		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5438
5439		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5440
5441		printk(KERN_CONT " %s", str);
5442		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5443			printk(KERN_CONT " (cpu_capacity = %d)",
5444				group->sgc->capacity);
5445		}
5446
5447		group = group->next;
5448	} while (group != sd->groups);
5449	printk(KERN_CONT "\n");
5450
5451	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5452		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5453
5454	if (sd->parent &&
5455	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5456		printk(KERN_ERR "ERROR: parent span is not a superset "
5457			"of domain->span\n");
5458	return 0;
5459}
5460
5461static void sched_domain_debug(struct sched_domain *sd, int cpu)
5462{
5463	int level = 0;
5464
5465	if (!sched_debug_enabled)
5466		return;
5467
5468	if (!sd) {
5469		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5470		return;
5471	}
5472
5473	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5474
5475	for (;;) {
5476		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5477			break;
5478		level++;
5479		sd = sd->parent;
5480		if (!sd)
5481			break;
5482	}
5483}
5484#else /* !CONFIG_SCHED_DEBUG */
5485# define sched_domain_debug(sd, cpu) do { } while (0)
5486static inline bool sched_debug(void)
5487{
5488	return false;
5489}
5490#endif /* CONFIG_SCHED_DEBUG */
5491
5492static int sd_degenerate(struct sched_domain *sd)
5493{
5494	if (cpumask_weight(sched_domain_span(sd)) == 1)
5495		return 1;
5496
5497	/* Following flags need at least 2 groups */
5498	if (sd->flags & (SD_LOAD_BALANCE |
5499			 SD_BALANCE_NEWIDLE |
5500			 SD_BALANCE_FORK |
5501			 SD_BALANCE_EXEC |
5502			 SD_SHARE_CPUCAPACITY |
5503			 SD_SHARE_PKG_RESOURCES |
5504			 SD_SHARE_POWERDOMAIN)) {
5505		if (sd->groups != sd->groups->next)
5506			return 0;
5507	}
5508
5509	/* Following flags don't use groups */
5510	if (sd->flags & (SD_WAKE_AFFINE))
5511		return 0;
5512
5513	return 1;
5514}
5515
5516static int
5517sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5518{
5519	unsigned long cflags = sd->flags, pflags = parent->flags;
5520
5521	if (sd_degenerate(parent))
5522		return 1;
5523
5524	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5525		return 0;
5526
5527	/* Flags needing groups don't count if only 1 group in parent */
5528	if (parent->groups == parent->groups->next) {
5529		pflags &= ~(SD_LOAD_BALANCE |
5530				SD_BALANCE_NEWIDLE |
5531				SD_BALANCE_FORK |
5532				SD_BALANCE_EXEC |
5533				SD_SHARE_CPUCAPACITY |
5534				SD_SHARE_PKG_RESOURCES |
5535				SD_PREFER_SIBLING |
5536				SD_SHARE_POWERDOMAIN);
5537		if (nr_node_ids == 1)
5538			pflags &= ~SD_SERIALIZE;
5539	}
5540	if (~cflags & pflags)
5541		return 0;
5542
5543	return 1;
5544}
5545
5546static void free_rootdomain(struct rcu_head *rcu)
5547{
5548	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5549
5550	cpupri_cleanup(&rd->cpupri);
5551	cpudl_cleanup(&rd->cpudl);
5552	free_cpumask_var(rd->dlo_mask);
5553	free_cpumask_var(rd->rto_mask);
5554	free_cpumask_var(rd->online);
5555	free_cpumask_var(rd->span);
5556	kfree(rd);
5557}
5558
5559static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5560{
5561	struct root_domain *old_rd = NULL;
5562	unsigned long flags;
5563
5564	raw_spin_lock_irqsave(&rq->lock, flags);
5565
5566	if (rq->rd) {
5567		old_rd = rq->rd;
5568
5569		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5570			set_rq_offline(rq);
5571
5572		cpumask_clear_cpu(rq->cpu, old_rd->span);
5573
5574		/*
5575		 * If we dont want to free the old_rd yet then
5576		 * set old_rd to NULL to skip the freeing later
5577		 * in this function:
5578		 */
5579		if (!atomic_dec_and_test(&old_rd->refcount))
5580			old_rd = NULL;
5581	}
5582
5583	atomic_inc(&rd->refcount);
5584	rq->rd = rd;
5585
5586	cpumask_set_cpu(rq->cpu, rd->span);
5587	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5588		set_rq_online(rq);
5589
5590	raw_spin_unlock_irqrestore(&rq->lock, flags);
5591
5592	if (old_rd)
5593		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5594}
5595
5596static int init_rootdomain(struct root_domain *rd)
5597{
5598	memset(rd, 0, sizeof(*rd));
5599
5600	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5601		goto out;
5602	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5603		goto free_span;
5604	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5605		goto free_online;
5606	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5607		goto free_dlo_mask;
5608
5609	init_dl_bw(&rd->dl_bw);
5610	if (cpudl_init(&rd->cpudl) != 0)
5611		goto free_dlo_mask;
5612
5613	if (cpupri_init(&rd->cpupri) != 0)
5614		goto free_rto_mask;
5615	return 0;
5616
5617free_rto_mask:
5618	free_cpumask_var(rd->rto_mask);
5619free_dlo_mask:
5620	free_cpumask_var(rd->dlo_mask);
5621free_online:
5622	free_cpumask_var(rd->online);
5623free_span:
5624	free_cpumask_var(rd->span);
5625out:
5626	return -ENOMEM;
5627}
5628
5629/*
5630 * By default the system creates a single root-domain with all cpus as
5631 * members (mimicking the global state we have today).
5632 */
5633struct root_domain def_root_domain;
5634
5635static void init_defrootdomain(void)
5636{
5637	init_rootdomain(&def_root_domain);
5638
5639	atomic_set(&def_root_domain.refcount, 1);
5640}
5641
5642static struct root_domain *alloc_rootdomain(void)
5643{
5644	struct root_domain *rd;
5645
5646	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5647	if (!rd)
5648		return NULL;
5649
5650	if (init_rootdomain(rd) != 0) {
5651		kfree(rd);
5652		return NULL;
5653	}
5654
5655	return rd;
5656}
5657
5658static void free_sched_groups(struct sched_group *sg, int free_sgc)
5659{
5660	struct sched_group *tmp, *first;
5661
5662	if (!sg)
5663		return;
5664
5665	first = sg;
5666	do {
5667		tmp = sg->next;
5668
5669		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5670			kfree(sg->sgc);
5671
5672		kfree(sg);
5673		sg = tmp;
5674	} while (sg != first);
5675}
5676
5677static void free_sched_domain(struct rcu_head *rcu)
5678{
5679	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5680
5681	/*
5682	 * If its an overlapping domain it has private groups, iterate and
5683	 * nuke them all.
5684	 */
5685	if (sd->flags & SD_OVERLAP) {
5686		free_sched_groups(sd->groups, 1);
5687	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5688		kfree(sd->groups->sgc);
5689		kfree(sd->groups);
5690	}
5691	kfree(sd);
5692}
5693
5694static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5695{
5696	call_rcu(&sd->rcu, free_sched_domain);
5697}
5698
5699static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5700{
5701	for (; sd; sd = sd->parent)
5702		destroy_sched_domain(sd, cpu);
5703}
5704
5705/*
5706 * Keep a special pointer to the highest sched_domain that has
5707 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5708 * allows us to avoid some pointer chasing select_idle_sibling().
5709 *
5710 * Also keep a unique ID per domain (we use the first cpu number in
5711 * the cpumask of the domain), this allows us to quickly tell if
5712 * two cpus are in the same cache domain, see cpus_share_cache().
5713 */
5714DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5715DEFINE_PER_CPU(int, sd_llc_size);
5716DEFINE_PER_CPU(int, sd_llc_id);
5717DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5718DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5719DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5720
5721static void update_top_cache_domain(int cpu)
5722{
5723	struct sched_domain *sd;
5724	struct sched_domain *busy_sd = NULL;
5725	int id = cpu;
5726	int size = 1;
5727
5728	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5729	if (sd) {
5730		id = cpumask_first(sched_domain_span(sd));
5731		size = cpumask_weight(sched_domain_span(sd));
5732		busy_sd = sd->parent; /* sd_busy */
5733	}
5734	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5735
5736	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5737	per_cpu(sd_llc_size, cpu) = size;
5738	per_cpu(sd_llc_id, cpu) = id;
5739
5740	sd = lowest_flag_domain(cpu, SD_NUMA);
5741	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5742
5743	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5744	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5745}
5746
5747/*
5748 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5749 * hold the hotplug lock.
5750 */
5751static void
5752cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5753{
5754	struct rq *rq = cpu_rq(cpu);
5755	struct sched_domain *tmp;
5756
5757	/* Remove the sched domains which do not contribute to scheduling. */
5758	for (tmp = sd; tmp; ) {
5759		struct sched_domain *parent = tmp->parent;
5760		if (!parent)
5761			break;
5762
5763		if (sd_parent_degenerate(tmp, parent)) {
5764			tmp->parent = parent->parent;
5765			if (parent->parent)
5766				parent->parent->child = tmp;
5767			/*
5768			 * Transfer SD_PREFER_SIBLING down in case of a
5769			 * degenerate parent; the spans match for this
5770			 * so the property transfers.
5771			 */
5772			if (parent->flags & SD_PREFER_SIBLING)
5773				tmp->flags |= SD_PREFER_SIBLING;
5774			destroy_sched_domain(parent, cpu);
5775		} else
5776			tmp = tmp->parent;
5777	}
5778
5779	if (sd && sd_degenerate(sd)) {
5780		tmp = sd;
5781		sd = sd->parent;
5782		destroy_sched_domain(tmp, cpu);
5783		if (sd)
5784			sd->child = NULL;
5785	}
5786
5787	sched_domain_debug(sd, cpu);
5788
5789	rq_attach_root(rq, rd);
5790	tmp = rq->sd;
5791	rcu_assign_pointer(rq->sd, sd);
5792	destroy_sched_domains(tmp, cpu);
5793
5794	update_top_cache_domain(cpu);
5795}
5796
5797/* cpus with isolated domains */
5798static cpumask_var_t cpu_isolated_map;
5799
5800/* Setup the mask of cpus configured for isolated domains */
5801static int __init isolated_cpu_setup(char *str)
5802{
5803	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5804	cpulist_parse(str, cpu_isolated_map);
5805	return 1;
5806}
5807
5808__setup("isolcpus=", isolated_cpu_setup);
5809
5810struct s_data {
5811	struct sched_domain ** __percpu sd;
5812	struct root_domain	*rd;
5813};
5814
5815enum s_alloc {
5816	sa_rootdomain,
5817	sa_sd,
5818	sa_sd_storage,
5819	sa_none,
5820};
5821
5822/*
5823 * Build an iteration mask that can exclude certain CPUs from the upwards
5824 * domain traversal.
5825 *
5826 * Asymmetric node setups can result in situations where the domain tree is of
5827 * unequal depth, make sure to skip domains that already cover the entire
5828 * range.
5829 *
5830 * In that case build_sched_domains() will have terminated the iteration early
5831 * and our sibling sd spans will be empty. Domains should always include the
5832 * cpu they're built on, so check that.
5833 *
5834 */
5835static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5836{
5837	const struct cpumask *span = sched_domain_span(sd);
5838	struct sd_data *sdd = sd->private;
5839	struct sched_domain *sibling;
5840	int i;
5841
5842	for_each_cpu(i, span) {
5843		sibling = *per_cpu_ptr(sdd->sd, i);
5844		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5845			continue;
5846
5847		cpumask_set_cpu(i, sched_group_mask(sg));
5848	}
5849}
5850
5851/*
5852 * Return the canonical balance cpu for this group, this is the first cpu
5853 * of this group that's also in the iteration mask.
5854 */
5855int group_balance_cpu(struct sched_group *sg)
5856{
5857	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5858}
5859
5860static int
5861build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5862{
5863	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5864	const struct cpumask *span = sched_domain_span(sd);
5865	struct cpumask *covered = sched_domains_tmpmask;
5866	struct sd_data *sdd = sd->private;
5867	struct sched_domain *sibling;
5868	int i;
5869
5870	cpumask_clear(covered);
5871
5872	for_each_cpu(i, span) {
5873		struct cpumask *sg_span;
5874
5875		if (cpumask_test_cpu(i, covered))
5876			continue;
5877
5878		sibling = *per_cpu_ptr(sdd->sd, i);
5879
5880		/* See the comment near build_group_mask(). */
5881		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5882			continue;
5883
5884		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5885				GFP_KERNEL, cpu_to_node(cpu));
5886
5887		if (!sg)
5888			goto fail;
5889
5890		sg_span = sched_group_cpus(sg);
5891		if (sibling->child)
5892			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5893		else
5894			cpumask_set_cpu(i, sg_span);
5895
5896		cpumask_or(covered, covered, sg_span);
5897
5898		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5899		if (atomic_inc_return(&sg->sgc->ref) == 1)
5900			build_group_mask(sd, sg);
5901
5902		/*
5903		 * Initialize sgc->capacity such that even if we mess up the
5904		 * domains and no possible iteration will get us here, we won't
5905		 * die on a /0 trap.
5906		 */
5907		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5908		sg->sgc->capacity_orig = sg->sgc->capacity;
5909
5910		/*
5911		 * Make sure the first group of this domain contains the
5912		 * canonical balance cpu. Otherwise the sched_domain iteration
5913		 * breaks. See update_sg_lb_stats().
5914		 */
5915		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5916		    group_balance_cpu(sg) == cpu)
5917			groups = sg;
5918
5919		if (!first)
5920			first = sg;
5921		if (last)
5922			last->next = sg;
5923		last = sg;
5924		last->next = first;
5925	}
5926	sd->groups = groups;
5927
5928	return 0;
5929
5930fail:
5931	free_sched_groups(first, 0);
5932
5933	return -ENOMEM;
5934}
5935
5936static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5937{
5938	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5939	struct sched_domain *child = sd->child;
5940
5941	if (child)
5942		cpu = cpumask_first(sched_domain_span(child));
5943
5944	if (sg) {
5945		*sg = *per_cpu_ptr(sdd->sg, cpu);
5946		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5947		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5948	}
5949
5950	return cpu;
5951}
5952
5953/*
5954 * build_sched_groups will build a circular linked list of the groups
5955 * covered by the given span, and will set each group's ->cpumask correctly,
5956 * and ->cpu_capacity to 0.
5957 *
5958 * Assumes the sched_domain tree is fully constructed
5959 */
5960static int
5961build_sched_groups(struct sched_domain *sd, int cpu)
5962{
5963	struct sched_group *first = NULL, *last = NULL;
5964	struct sd_data *sdd = sd->private;
5965	const struct cpumask *span = sched_domain_span(sd);
5966	struct cpumask *covered;
5967	int i;
5968
5969	get_group(cpu, sdd, &sd->groups);
5970	atomic_inc(&sd->groups->ref);
5971
5972	if (cpu != cpumask_first(span))
5973		return 0;
5974
5975	lockdep_assert_held(&sched_domains_mutex);
5976	covered = sched_domains_tmpmask;
5977
5978	cpumask_clear(covered);
5979
5980	for_each_cpu(i, span) {
5981		struct sched_group *sg;
5982		int group, j;
5983
5984		if (cpumask_test_cpu(i, covered))
5985			continue;
5986
5987		group = get_group(i, sdd, &sg);
5988		cpumask_setall(sched_group_mask(sg));
5989
5990		for_each_cpu(j, span) {
5991			if (get_group(j, sdd, NULL) != group)
5992				continue;
5993
5994			cpumask_set_cpu(j, covered);
5995			cpumask_set_cpu(j, sched_group_cpus(sg));
5996		}
5997
5998		if (!first)
5999			first = sg;
6000		if (last)
6001			last->next = sg;
6002		last = sg;
6003	}
6004	last->next = first;
6005
6006	return 0;
6007}
6008
6009/*
6010 * Initialize sched groups cpu_capacity.
6011 *
6012 * cpu_capacity indicates the capacity of sched group, which is used while
6013 * distributing the load between different sched groups in a sched domain.
6014 * Typically cpu_capacity for all the groups in a sched domain will be same
6015 * unless there are asymmetries in the topology. If there are asymmetries,
6016 * group having more cpu_capacity will pickup more load compared to the
6017 * group having less cpu_capacity.
6018 */
6019static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6020{
6021	struct sched_group *sg = sd->groups;
6022
6023	WARN_ON(!sg);
6024
6025	do {
6026		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6027		sg = sg->next;
6028	} while (sg != sd->groups);
6029
6030	if (cpu != group_balance_cpu(sg))
6031		return;
6032
6033	update_group_capacity(sd, cpu);
6034	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6035}
6036
6037/*
6038 * Initializers for schedule domains
6039 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6040 */
6041
6042static int default_relax_domain_level = -1;
6043int sched_domain_level_max;
6044
6045static int __init setup_relax_domain_level(char *str)
6046{
6047	if (kstrtoint(str, 0, &default_relax_domain_level))
6048		pr_warn("Unable to set relax_domain_level\n");
6049
6050	return 1;
6051}
6052__setup("relax_domain_level=", setup_relax_domain_level);
6053
6054static void set_domain_attribute(struct sched_domain *sd,
6055				 struct sched_domain_attr *attr)
6056{
6057	int request;
6058
6059	if (!attr || attr->relax_domain_level < 0) {
6060		if (default_relax_domain_level < 0)
6061			return;
6062		else
6063			request = default_relax_domain_level;
6064	} else
6065		request = attr->relax_domain_level;
6066	if (request < sd->level) {
6067		/* turn off idle balance on this domain */
6068		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6069	} else {
6070		/* turn on idle balance on this domain */
6071		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6072	}
6073}
6074
6075static void __sdt_free(const struct cpumask *cpu_map);
6076static int __sdt_alloc(const struct cpumask *cpu_map);
6077
6078static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6079				 const struct cpumask *cpu_map)
6080{
6081	switch (what) {
6082	case sa_rootdomain:
6083		if (!atomic_read(&d->rd->refcount))
6084			free_rootdomain(&d->rd->rcu); /* fall through */
6085	case sa_sd:
6086		free_percpu(d->sd); /* fall through */
6087	case sa_sd_storage:
6088		__sdt_free(cpu_map); /* fall through */
6089	case sa_none:
6090		break;
6091	}
6092}
6093
6094static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6095						   const struct cpumask *cpu_map)
6096{
6097	memset(d, 0, sizeof(*d));
6098
6099	if (__sdt_alloc(cpu_map))
6100		return sa_sd_storage;
6101	d->sd = alloc_percpu(struct sched_domain *);
6102	if (!d->sd)
6103		return sa_sd_storage;
6104	d->rd = alloc_rootdomain();
6105	if (!d->rd)
6106		return sa_sd;
6107	return sa_rootdomain;
6108}
6109
6110/*
6111 * NULL the sd_data elements we've used to build the sched_domain and
6112 * sched_group structure so that the subsequent __free_domain_allocs()
6113 * will not free the data we're using.
6114 */
6115static void claim_allocations(int cpu, struct sched_domain *sd)
6116{
6117	struct sd_data *sdd = sd->private;
6118
6119	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6120	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6121
6122	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6123		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6124
6125	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6126		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6127}
6128
6129#ifdef CONFIG_NUMA
6130static int sched_domains_numa_levels;
6131static int *sched_domains_numa_distance;
6132static struct cpumask ***sched_domains_numa_masks;
6133static int sched_domains_curr_level;
6134#endif
6135
6136/*
6137 * SD_flags allowed in topology descriptions.
6138 *
6139 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6140 * SD_SHARE_PKG_RESOURCES - describes shared caches
6141 * SD_NUMA                - describes NUMA topologies
6142 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6143 *
6144 * Odd one out:
6145 * SD_ASYM_PACKING        - describes SMT quirks
6146 */
6147#define TOPOLOGY_SD_FLAGS		\
6148	(SD_SHARE_CPUCAPACITY |		\
6149	 SD_SHARE_PKG_RESOURCES |	\
6150	 SD_NUMA |			\
6151	 SD_ASYM_PACKING |		\
6152	 SD_SHARE_POWERDOMAIN)
6153
6154static struct sched_domain *
6155sd_init(struct sched_domain_topology_level *tl, int cpu)
6156{
6157	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6158	int sd_weight, sd_flags = 0;
6159
6160#ifdef CONFIG_NUMA
6161	/*
6162	 * Ugly hack to pass state to sd_numa_mask()...
6163	 */
6164	sched_domains_curr_level = tl->numa_level;
6165#endif
6166
6167	sd_weight = cpumask_weight(tl->mask(cpu));
6168
6169	if (tl->sd_flags)
6170		sd_flags = (*tl->sd_flags)();
6171	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6172			"wrong sd_flags in topology description\n"))
6173		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6174
6175	*sd = (struct sched_domain){
6176		.min_interval		= sd_weight,
6177		.max_interval		= 2*sd_weight,
6178		.busy_factor		= 32,
6179		.imbalance_pct		= 125,
6180
6181		.cache_nice_tries	= 0,
6182		.busy_idx		= 0,
6183		.idle_idx		= 0,
6184		.newidle_idx		= 0,
6185		.wake_idx		= 0,
6186		.forkexec_idx		= 0,
6187
6188		.flags			= 1*SD_LOAD_BALANCE
6189					| 1*SD_BALANCE_NEWIDLE
6190					| 1*SD_BALANCE_EXEC
6191					| 1*SD_BALANCE_FORK
6192					| 0*SD_BALANCE_WAKE
6193					| 1*SD_WAKE_AFFINE
6194					| 0*SD_SHARE_CPUCAPACITY
6195					| 0*SD_SHARE_PKG_RESOURCES
6196					| 0*SD_SERIALIZE
6197					| 0*SD_PREFER_SIBLING
6198					| 0*SD_NUMA
6199					| sd_flags
6200					,
6201
6202		.last_balance		= jiffies,
6203		.balance_interval	= sd_weight,
6204		.smt_gain		= 0,
6205		.max_newidle_lb_cost	= 0,
6206		.next_decay_max_lb_cost	= jiffies,
6207#ifdef CONFIG_SCHED_DEBUG
6208		.name			= tl->name,
6209#endif
6210	};
6211
6212	/*
6213	 * Convert topological properties into behaviour.
6214	 */
6215
6216	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6217		sd->imbalance_pct = 110;
6218		sd->smt_gain = 1178; /* ~15% */
6219
6220	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6221		sd->imbalance_pct = 117;
6222		sd->cache_nice_tries = 1;
6223		sd->busy_idx = 2;
6224
6225#ifdef CONFIG_NUMA
6226	} else if (sd->flags & SD_NUMA) {
6227		sd->cache_nice_tries = 2;
6228		sd->busy_idx = 3;
6229		sd->idle_idx = 2;
6230
6231		sd->flags |= SD_SERIALIZE;
6232		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6233			sd->flags &= ~(SD_BALANCE_EXEC |
6234				       SD_BALANCE_FORK |
6235				       SD_WAKE_AFFINE);
6236		}
6237
6238#endif
6239	} else {
6240		sd->flags |= SD_PREFER_SIBLING;
6241		sd->cache_nice_tries = 1;
6242		sd->busy_idx = 2;
6243		sd->idle_idx = 1;
6244	}
6245
6246	sd->private = &tl->data;
6247
6248	return sd;
6249}
6250
6251/*
6252 * Topology list, bottom-up.
6253 */
6254static struct sched_domain_topology_level default_topology[] = {
6255#ifdef CONFIG_SCHED_SMT
6256	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6257#endif
6258#ifdef CONFIG_SCHED_MC
6259	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6260#endif
6261	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6262	{ NULL, },
6263};
6264
6265struct sched_domain_topology_level *sched_domain_topology = default_topology;
6266
6267#define for_each_sd_topology(tl)			\
6268	for (tl = sched_domain_topology; tl->mask; tl++)
6269
6270void set_sched_topology(struct sched_domain_topology_level *tl)
6271{
6272	sched_domain_topology = tl;
6273}
6274
6275#ifdef CONFIG_NUMA
6276
6277static const struct cpumask *sd_numa_mask(int cpu)
6278{
6279	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6280}
6281
6282static void sched_numa_warn(const char *str)
6283{
6284	static int done = false;
6285	int i,j;
6286
6287	if (done)
6288		return;
6289
6290	done = true;
6291
6292	printk(KERN_WARNING "ERROR: %s\n\n", str);
6293
6294	for (i = 0; i < nr_node_ids; i++) {
6295		printk(KERN_WARNING "  ");
6296		for (j = 0; j < nr_node_ids; j++)
6297			printk(KERN_CONT "%02d ", node_distance(i,j));
6298		printk(KERN_CONT "\n");
6299	}
6300	printk(KERN_WARNING "\n");
6301}
6302
6303static bool find_numa_distance(int distance)
6304{
6305	int i;
6306
6307	if (distance == node_distance(0, 0))
6308		return true;
6309
6310	for (i = 0; i < sched_domains_numa_levels; i++) {
6311		if (sched_domains_numa_distance[i] == distance)
6312			return true;
6313	}
6314
6315	return false;
6316}
6317
6318static void sched_init_numa(void)
6319{
6320	int next_distance, curr_distance = node_distance(0, 0);
6321	struct sched_domain_topology_level *tl;
6322	int level = 0;
6323	int i, j, k;
6324
6325	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6326	if (!sched_domains_numa_distance)
6327		return;
6328
6329	/*
6330	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6331	 * unique distances in the node_distance() table.
6332	 *
6333	 * Assumes node_distance(0,j) includes all distances in
6334	 * node_distance(i,j) in order to avoid cubic time.
6335	 */
6336	next_distance = curr_distance;
6337	for (i = 0; i < nr_node_ids; i++) {
6338		for (j = 0; j < nr_node_ids; j++) {
6339			for (k = 0; k < nr_node_ids; k++) {
6340				int distance = node_distance(i, k);
6341
6342				if (distance > curr_distance &&
6343				    (distance < next_distance ||
6344				     next_distance == curr_distance))
6345					next_distance = distance;
6346
6347				/*
6348				 * While not a strong assumption it would be nice to know
6349				 * about cases where if node A is connected to B, B is not
6350				 * equally connected to A.
6351				 */
6352				if (sched_debug() && node_distance(k, i) != distance)
6353					sched_numa_warn("Node-distance not symmetric");
6354
6355				if (sched_debug() && i && !find_numa_distance(distance))
6356					sched_numa_warn("Node-0 not representative");
6357			}
6358			if (next_distance != curr_distance) {
6359				sched_domains_numa_distance[level++] = next_distance;
6360				sched_domains_numa_levels = level;
6361				curr_distance = next_distance;
6362			} else break;
6363		}
6364
6365		/*
6366		 * In case of sched_debug() we verify the above assumption.
6367		 */
6368		if (!sched_debug())
6369			break;
6370	}
6371	/*
6372	 * 'level' contains the number of unique distances, excluding the
6373	 * identity distance node_distance(i,i).
6374	 *
6375	 * The sched_domains_numa_distance[] array includes the actual distance
6376	 * numbers.
6377	 */
6378
6379	/*
6380	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6381	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6382	 * the array will contain less then 'level' members. This could be
6383	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6384	 * in other functions.
6385	 *
6386	 * We reset it to 'level' at the end of this function.
6387	 */
6388	sched_domains_numa_levels = 0;
6389
6390	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6391	if (!sched_domains_numa_masks)
6392		return;
6393
6394	/*
6395	 * Now for each level, construct a mask per node which contains all
6396	 * cpus of nodes that are that many hops away from us.
6397	 */
6398	for (i = 0; i < level; i++) {
6399		sched_domains_numa_masks[i] =
6400			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6401		if (!sched_domains_numa_masks[i])
6402			return;
6403
6404		for (j = 0; j < nr_node_ids; j++) {
6405			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6406			if (!mask)
6407				return;
6408
6409			sched_domains_numa_masks[i][j] = mask;
6410
6411			for (k = 0; k < nr_node_ids; k++) {
6412				if (node_distance(j, k) > sched_domains_numa_distance[i])
6413					continue;
6414
6415				cpumask_or(mask, mask, cpumask_of_node(k));
6416			}
6417		}
6418	}
6419
6420	/* Compute default topology size */
6421	for (i = 0; sched_domain_topology[i].mask; i++);
6422
6423	tl = kzalloc((i + level + 1) *
6424			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6425	if (!tl)
6426		return;
6427
6428	/*
6429	 * Copy the default topology bits..
6430	 */
6431	for (i = 0; sched_domain_topology[i].mask; i++)
6432		tl[i] = sched_domain_topology[i];
6433
6434	/*
6435	 * .. and append 'j' levels of NUMA goodness.
6436	 */
6437	for (j = 0; j < level; i++, j++) {
6438		tl[i] = (struct sched_domain_topology_level){
6439			.mask = sd_numa_mask,
6440			.sd_flags = cpu_numa_flags,
6441			.flags = SDTL_OVERLAP,
6442			.numa_level = j,
6443			SD_INIT_NAME(NUMA)
6444		};
6445	}
6446
6447	sched_domain_topology = tl;
6448
6449	sched_domains_numa_levels = level;
6450}
6451
6452static void sched_domains_numa_masks_set(int cpu)
6453{
6454	int i, j;
6455	int node = cpu_to_node(cpu);
6456
6457	for (i = 0; i < sched_domains_numa_levels; i++) {
6458		for (j = 0; j < nr_node_ids; j++) {
6459			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6460				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6461		}
6462	}
6463}
6464
6465static void sched_domains_numa_masks_clear(int cpu)
6466{
6467	int i, j;
6468	for (i = 0; i < sched_domains_numa_levels; i++) {
6469		for (j = 0; j < nr_node_ids; j++)
6470			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6471	}
6472}
6473
6474/*
6475 * Update sched_domains_numa_masks[level][node] array when new cpus
6476 * are onlined.
6477 */
6478static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6479					   unsigned long action,
6480					   void *hcpu)
6481{
6482	int cpu = (long)hcpu;
6483
6484	switch (action & ~CPU_TASKS_FROZEN) {
6485	case CPU_ONLINE:
6486		sched_domains_numa_masks_set(cpu);
6487		break;
6488
6489	case CPU_DEAD:
6490		sched_domains_numa_masks_clear(cpu);
6491		break;
6492
6493	default:
6494		return NOTIFY_DONE;
6495	}
6496
6497	return NOTIFY_OK;
6498}
6499#else
6500static inline void sched_init_numa(void)
6501{
6502}
6503
6504static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6505					   unsigned long action,
6506					   void *hcpu)
6507{
6508	return 0;
6509}
6510#endif /* CONFIG_NUMA */
6511
6512static int __sdt_alloc(const struct cpumask *cpu_map)
6513{
6514	struct sched_domain_topology_level *tl;
6515	int j;
6516
6517	for_each_sd_topology(tl) {
6518		struct sd_data *sdd = &tl->data;
6519
6520		sdd->sd = alloc_percpu(struct sched_domain *);
6521		if (!sdd->sd)
6522			return -ENOMEM;
6523
6524		sdd->sg = alloc_percpu(struct sched_group *);
6525		if (!sdd->sg)
6526			return -ENOMEM;
6527
6528		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6529		if (!sdd->sgc)
6530			return -ENOMEM;
6531
6532		for_each_cpu(j, cpu_map) {
6533			struct sched_domain *sd;
6534			struct sched_group *sg;
6535			struct sched_group_capacity *sgc;
6536
6537		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6538					GFP_KERNEL, cpu_to_node(j));
6539			if (!sd)
6540				return -ENOMEM;
6541
6542			*per_cpu_ptr(sdd->sd, j) = sd;
6543
6544			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6545					GFP_KERNEL, cpu_to_node(j));
6546			if (!sg)
6547				return -ENOMEM;
6548
6549			sg->next = sg;
6550
6551			*per_cpu_ptr(sdd->sg, j) = sg;
6552
6553			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6554					GFP_KERNEL, cpu_to_node(j));
6555			if (!sgc)
6556				return -ENOMEM;
6557
6558			*per_cpu_ptr(sdd->sgc, j) = sgc;
6559		}
6560	}
6561
6562	return 0;
6563}
6564
6565static void __sdt_free(const struct cpumask *cpu_map)
6566{
6567	struct sched_domain_topology_level *tl;
6568	int j;
6569
6570	for_each_sd_topology(tl) {
6571		struct sd_data *sdd = &tl->data;
6572
6573		for_each_cpu(j, cpu_map) {
6574			struct sched_domain *sd;
6575
6576			if (sdd->sd) {
6577				sd = *per_cpu_ptr(sdd->sd, j);
6578				if (sd && (sd->flags & SD_OVERLAP))
6579					free_sched_groups(sd->groups, 0);
6580				kfree(*per_cpu_ptr(sdd->sd, j));
6581			}
6582
6583			if (sdd->sg)
6584				kfree(*per_cpu_ptr(sdd->sg, j));
6585			if (sdd->sgc)
6586				kfree(*per_cpu_ptr(sdd->sgc, j));
6587		}
6588		free_percpu(sdd->sd);
6589		sdd->sd = NULL;
6590		free_percpu(sdd->sg);
6591		sdd->sg = NULL;
6592		free_percpu(sdd->sgc);
6593		sdd->sgc = NULL;
6594	}
6595}
6596
6597struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6598		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6599		struct sched_domain *child, int cpu)
6600{
6601	struct sched_domain *sd = sd_init(tl, cpu);
6602	if (!sd)
6603		return child;
6604
6605	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6606	if (child) {
6607		sd->level = child->level + 1;
6608		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6609		child->parent = sd;
6610		sd->child = child;
6611
6612		if (!cpumask_subset(sched_domain_span(child),
6613				    sched_domain_span(sd))) {
6614			pr_err("BUG: arch topology borken\n");
6615#ifdef CONFIG_SCHED_DEBUG
6616			pr_err("     the %s domain not a subset of the %s domain\n",
6617					child->name, sd->name);
6618#endif
6619			/* Fixup, ensure @sd has at least @child cpus. */
6620			cpumask_or(sched_domain_span(sd),
6621				   sched_domain_span(sd),
6622				   sched_domain_span(child));
6623		}
6624
6625	}
6626	set_domain_attribute(sd, attr);
6627
6628	return sd;
6629}
6630
6631/*
6632 * Build sched domains for a given set of cpus and attach the sched domains
6633 * to the individual cpus
6634 */
6635static int build_sched_domains(const struct cpumask *cpu_map,
6636			       struct sched_domain_attr *attr)
6637{
6638	enum s_alloc alloc_state;
6639	struct sched_domain *sd;
6640	struct s_data d;
6641	int i, ret = -ENOMEM;
6642
6643	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6644	if (alloc_state != sa_rootdomain)
6645		goto error;
6646
6647	/* Set up domains for cpus specified by the cpu_map. */
6648	for_each_cpu(i, cpu_map) {
6649		struct sched_domain_topology_level *tl;
6650
6651		sd = NULL;
6652		for_each_sd_topology(tl) {
6653			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6654			if (tl == sched_domain_topology)
6655				*per_cpu_ptr(d.sd, i) = sd;
6656			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6657				sd->flags |= SD_OVERLAP;
6658			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6659				break;
6660		}
6661	}
6662
6663	/* Build the groups for the domains */
6664	for_each_cpu(i, cpu_map) {
6665		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6666			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6667			if (sd->flags & SD_OVERLAP) {
6668				if (build_overlap_sched_groups(sd, i))
6669					goto error;
6670			} else {
6671				if (build_sched_groups(sd, i))
6672					goto error;
6673			}
6674		}
6675	}
6676
6677	/* Calculate CPU capacity for physical packages and nodes */
6678	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6679		if (!cpumask_test_cpu(i, cpu_map))
6680			continue;
6681
6682		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6683			claim_allocations(i, sd);
6684			init_sched_groups_capacity(i, sd);
6685		}
6686	}
6687
6688	/* Attach the domains */
6689	rcu_read_lock();
6690	for_each_cpu(i, cpu_map) {
6691		sd = *per_cpu_ptr(d.sd, i);
6692		cpu_attach_domain(sd, d.rd, i);
6693	}
6694	rcu_read_unlock();
6695
6696	ret = 0;
6697error:
6698	__free_domain_allocs(&d, alloc_state, cpu_map);
6699	return ret;
6700}
6701
6702static cpumask_var_t *doms_cur;	/* current sched domains */
6703static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6704static struct sched_domain_attr *dattr_cur;
6705				/* attribues of custom domains in 'doms_cur' */
6706
6707/*
6708 * Special case: If a kmalloc of a doms_cur partition (array of
6709 * cpumask) fails, then fallback to a single sched domain,
6710 * as determined by the single cpumask fallback_doms.
6711 */
6712static cpumask_var_t fallback_doms;
6713
6714/*
6715 * arch_update_cpu_topology lets virtualized architectures update the
6716 * cpu core maps. It is supposed to return 1 if the topology changed
6717 * or 0 if it stayed the same.
6718 */
6719int __weak arch_update_cpu_topology(void)
6720{
6721	return 0;
6722}
6723
6724cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6725{
6726	int i;
6727	cpumask_var_t *doms;
6728
6729	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6730	if (!doms)
6731		return NULL;
6732	for (i = 0; i < ndoms; i++) {
6733		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6734			free_sched_domains(doms, i);
6735			return NULL;
6736		}
6737	}
6738	return doms;
6739}
6740
6741void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6742{
6743	unsigned int i;
6744	for (i = 0; i < ndoms; i++)
6745		free_cpumask_var(doms[i]);
6746	kfree(doms);
6747}
6748
6749/*
6750 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6751 * For now this just excludes isolated cpus, but could be used to
6752 * exclude other special cases in the future.
6753 */
6754static int init_sched_domains(const struct cpumask *cpu_map)
6755{
6756	int err;
6757
6758	arch_update_cpu_topology();
6759	ndoms_cur = 1;
6760	doms_cur = alloc_sched_domains(ndoms_cur);
6761	if (!doms_cur)
6762		doms_cur = &fallback_doms;
6763	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6764	err = build_sched_domains(doms_cur[0], NULL);
6765	register_sched_domain_sysctl();
6766
6767	return err;
6768}
6769
6770/*
6771 * Detach sched domains from a group of cpus specified in cpu_map
6772 * These cpus will now be attached to the NULL domain
6773 */
6774static void detach_destroy_domains(const struct cpumask *cpu_map)
6775{
6776	int i;
6777
6778	rcu_read_lock();
6779	for_each_cpu(i, cpu_map)
6780		cpu_attach_domain(NULL, &def_root_domain, i);
6781	rcu_read_unlock();
6782}
6783
6784/* handle null as "default" */
6785static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6786			struct sched_domain_attr *new, int idx_new)
6787{
6788	struct sched_domain_attr tmp;
6789
6790	/* fast path */
6791	if (!new && !cur)
6792		return 1;
6793
6794	tmp = SD_ATTR_INIT;
6795	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6796			new ? (new + idx_new) : &tmp,
6797			sizeof(struct sched_domain_attr));
6798}
6799
6800/*
6801 * Partition sched domains as specified by the 'ndoms_new'
6802 * cpumasks in the array doms_new[] of cpumasks. This compares
6803 * doms_new[] to the current sched domain partitioning, doms_cur[].
6804 * It destroys each deleted domain and builds each new domain.
6805 *
6806 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6807 * The masks don't intersect (don't overlap.) We should setup one
6808 * sched domain for each mask. CPUs not in any of the cpumasks will
6809 * not be load balanced. If the same cpumask appears both in the
6810 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6811 * it as it is.
6812 *
6813 * The passed in 'doms_new' should be allocated using
6814 * alloc_sched_domains.  This routine takes ownership of it and will
6815 * free_sched_domains it when done with it. If the caller failed the
6816 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6817 * and partition_sched_domains() will fallback to the single partition
6818 * 'fallback_doms', it also forces the domains to be rebuilt.
6819 *
6820 * If doms_new == NULL it will be replaced with cpu_online_mask.
6821 * ndoms_new == 0 is a special case for destroying existing domains,
6822 * and it will not create the default domain.
6823 *
6824 * Call with hotplug lock held
6825 */
6826void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6827			     struct sched_domain_attr *dattr_new)
6828{
6829	int i, j, n;
6830	int new_topology;
6831
6832	mutex_lock(&sched_domains_mutex);
6833
6834	/* always unregister in case we don't destroy any domains */
6835	unregister_sched_domain_sysctl();
6836
6837	/* Let architecture update cpu core mappings. */
6838	new_topology = arch_update_cpu_topology();
6839
6840	n = doms_new ? ndoms_new : 0;
6841
6842	/* Destroy deleted domains */
6843	for (i = 0; i < ndoms_cur; i++) {
6844		for (j = 0; j < n && !new_topology; j++) {
6845			if (cpumask_equal(doms_cur[i], doms_new[j])
6846			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6847				goto match1;
6848		}
6849		/* no match - a current sched domain not in new doms_new[] */
6850		detach_destroy_domains(doms_cur[i]);
6851match1:
6852		;
6853	}
6854
6855	n = ndoms_cur;
6856	if (doms_new == NULL) {
6857		n = 0;
6858		doms_new = &fallback_doms;
6859		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6860		WARN_ON_ONCE(dattr_new);
6861	}
6862
6863	/* Build new domains */
6864	for (i = 0; i < ndoms_new; i++) {
6865		for (j = 0; j < n && !new_topology; j++) {
6866			if (cpumask_equal(doms_new[i], doms_cur[j])
6867			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6868				goto match2;
6869		}
6870		/* no match - add a new doms_new */
6871		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6872match2:
6873		;
6874	}
6875
6876	/* Remember the new sched domains */
6877	if (doms_cur != &fallback_doms)
6878		free_sched_domains(doms_cur, ndoms_cur);
6879	kfree(dattr_cur);	/* kfree(NULL) is safe */
6880	doms_cur = doms_new;
6881	dattr_cur = dattr_new;
6882	ndoms_cur = ndoms_new;
6883
6884	register_sched_domain_sysctl();
6885
6886	mutex_unlock(&sched_domains_mutex);
6887}
6888
6889static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6890
6891/*
6892 * Update cpusets according to cpu_active mask.  If cpusets are
6893 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6894 * around partition_sched_domains().
6895 *
6896 * If we come here as part of a suspend/resume, don't touch cpusets because we
6897 * want to restore it back to its original state upon resume anyway.
6898 */
6899static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6900			     void *hcpu)
6901{
6902	switch (action) {
6903	case CPU_ONLINE_FROZEN:
6904	case CPU_DOWN_FAILED_FROZEN:
6905
6906		/*
6907		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6908		 * resume sequence. As long as this is not the last online
6909		 * operation in the resume sequence, just build a single sched
6910		 * domain, ignoring cpusets.
6911		 */
6912		num_cpus_frozen--;
6913		if (likely(num_cpus_frozen)) {
6914			partition_sched_domains(1, NULL, NULL);
6915			break;
6916		}
6917
6918		/*
6919		 * This is the last CPU online operation. So fall through and
6920		 * restore the original sched domains by considering the
6921		 * cpuset configurations.
6922		 */
6923
6924	case CPU_ONLINE:
6925	case CPU_DOWN_FAILED:
6926		cpuset_update_active_cpus(true);
6927		break;
6928	default:
6929		return NOTIFY_DONE;
6930	}
6931	return NOTIFY_OK;
6932}
6933
6934static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6935			       void *hcpu)
6936{
6937	switch (action) {
6938	case CPU_DOWN_PREPARE:
6939		cpuset_update_active_cpus(false);
6940		break;
6941	case CPU_DOWN_PREPARE_FROZEN:
6942		num_cpus_frozen++;
6943		partition_sched_domains(1, NULL, NULL);
6944		break;
6945	default:
6946		return NOTIFY_DONE;
6947	}
6948	return NOTIFY_OK;
6949}
6950
6951void __init sched_init_smp(void)
6952{
6953	cpumask_var_t non_isolated_cpus;
6954
6955	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6956	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6957
6958	sched_init_numa();
6959
6960	/*
6961	 * There's no userspace yet to cause hotplug operations; hence all the
6962	 * cpu masks are stable and all blatant races in the below code cannot
6963	 * happen.
6964	 */
6965	mutex_lock(&sched_domains_mutex);
6966	init_sched_domains(cpu_active_mask);
6967	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6968	if (cpumask_empty(non_isolated_cpus))
6969		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6970	mutex_unlock(&sched_domains_mutex);
6971
6972	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6973	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6974	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6975
6976	init_hrtick();
6977
6978	/* Move init over to a non-isolated CPU */
6979	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6980		BUG();
6981	sched_init_granularity();
6982	free_cpumask_var(non_isolated_cpus);
6983
6984	init_sched_rt_class();
6985	init_sched_dl_class();
6986}
6987#else
6988void __init sched_init_smp(void)
6989{
6990	sched_init_granularity();
6991}
6992#endif /* CONFIG_SMP */
6993
6994const_debug unsigned int sysctl_timer_migration = 1;
6995
6996int in_sched_functions(unsigned long addr)
6997{
6998	return in_lock_functions(addr) ||
6999		(addr >= (unsigned long)__sched_text_start
7000		&& addr < (unsigned long)__sched_text_end);
7001}
7002
7003#ifdef CONFIG_CGROUP_SCHED
7004/*
7005 * Default task group.
7006 * Every task in system belongs to this group at bootup.
7007 */
7008struct task_group root_task_group;
7009LIST_HEAD(task_groups);
7010#endif
7011
7012DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7013
7014void __init sched_init(void)
7015{
7016	int i, j;
7017	unsigned long alloc_size = 0, ptr;
7018
7019#ifdef CONFIG_FAIR_GROUP_SCHED
7020	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7021#endif
7022#ifdef CONFIG_RT_GROUP_SCHED
7023	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7024#endif
7025#ifdef CONFIG_CPUMASK_OFFSTACK
7026	alloc_size += num_possible_cpus() * cpumask_size();
7027#endif
7028	if (alloc_size) {
7029		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7030
7031#ifdef CONFIG_FAIR_GROUP_SCHED
7032		root_task_group.se = (struct sched_entity **)ptr;
7033		ptr += nr_cpu_ids * sizeof(void **);
7034
7035		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7036		ptr += nr_cpu_ids * sizeof(void **);
7037
7038#endif /* CONFIG_FAIR_GROUP_SCHED */
7039#ifdef CONFIG_RT_GROUP_SCHED
7040		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7041		ptr += nr_cpu_ids * sizeof(void **);
7042
7043		root_task_group.rt_rq = (struct rt_rq **)ptr;
7044		ptr += nr_cpu_ids * sizeof(void **);
7045
7046#endif /* CONFIG_RT_GROUP_SCHED */
7047#ifdef CONFIG_CPUMASK_OFFSTACK
7048		for_each_possible_cpu(i) {
7049			per_cpu(load_balance_mask, i) = (void *)ptr;
7050			ptr += cpumask_size();
7051		}
7052#endif /* CONFIG_CPUMASK_OFFSTACK */
7053	}
7054
7055	init_rt_bandwidth(&def_rt_bandwidth,
7056			global_rt_period(), global_rt_runtime());
7057	init_dl_bandwidth(&def_dl_bandwidth,
7058			global_rt_period(), global_rt_runtime());
7059
7060#ifdef CONFIG_SMP
7061	init_defrootdomain();
7062#endif
7063
7064#ifdef CONFIG_RT_GROUP_SCHED
7065	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7066			global_rt_period(), global_rt_runtime());
7067#endif /* CONFIG_RT_GROUP_SCHED */
7068
7069#ifdef CONFIG_CGROUP_SCHED
7070	list_add(&root_task_group.list, &task_groups);
7071	INIT_LIST_HEAD(&root_task_group.children);
7072	INIT_LIST_HEAD(&root_task_group.siblings);
7073	autogroup_init(&init_task);
7074
7075#endif /* CONFIG_CGROUP_SCHED */
7076
7077	for_each_possible_cpu(i) {
7078		struct rq *rq;
7079
7080		rq = cpu_rq(i);
7081		raw_spin_lock_init(&rq->lock);
7082		rq->nr_running = 0;
7083		rq->calc_load_active = 0;
7084		rq->calc_load_update = jiffies + LOAD_FREQ;
7085		init_cfs_rq(&rq->cfs);
7086		init_rt_rq(&rq->rt, rq);
7087		init_dl_rq(&rq->dl, rq);
7088#ifdef CONFIG_FAIR_GROUP_SCHED
7089		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7091		/*
7092		 * How much cpu bandwidth does root_task_group get?
7093		 *
7094		 * In case of task-groups formed thr' the cgroup filesystem, it
7095		 * gets 100% of the cpu resources in the system. This overall
7096		 * system cpu resource is divided among the tasks of
7097		 * root_task_group and its child task-groups in a fair manner,
7098		 * based on each entity's (task or task-group's) weight
7099		 * (se->load.weight).
7100		 *
7101		 * In other words, if root_task_group has 10 tasks of weight
7102		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7103		 * then A0's share of the cpu resource is:
7104		 *
7105		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7106		 *
7107		 * We achieve this by letting root_task_group's tasks sit
7108		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7109		 */
7110		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7111		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7112#endif /* CONFIG_FAIR_GROUP_SCHED */
7113
7114		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7115#ifdef CONFIG_RT_GROUP_SCHED
7116		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7117#endif
7118
7119		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7120			rq->cpu_load[j] = 0;
7121
7122		rq->last_load_update_tick = jiffies;
7123
7124#ifdef CONFIG_SMP
7125		rq->sd = NULL;
7126		rq->rd = NULL;
7127		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7128		rq->post_schedule = 0;
7129		rq->active_balance = 0;
7130		rq->next_balance = jiffies;
7131		rq->push_cpu = 0;
7132		rq->cpu = i;
7133		rq->online = 0;
7134		rq->idle_stamp = 0;
7135		rq->avg_idle = 2*sysctl_sched_migration_cost;
7136		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7137
7138		INIT_LIST_HEAD(&rq->cfs_tasks);
7139
7140		rq_attach_root(rq, &def_root_domain);
7141#ifdef CONFIG_NO_HZ_COMMON
7142		rq->nohz_flags = 0;
7143#endif
7144#ifdef CONFIG_NO_HZ_FULL
7145		rq->last_sched_tick = 0;
7146#endif
7147#endif
7148		init_rq_hrtick(rq);
7149		atomic_set(&rq->nr_iowait, 0);
7150	}
7151
7152	set_load_weight(&init_task);
7153
7154#ifdef CONFIG_PREEMPT_NOTIFIERS
7155	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7156#endif
7157
7158	/*
7159	 * The boot idle thread does lazy MMU switching as well:
7160	 */
7161	atomic_inc(&init_mm.mm_count);
7162	enter_lazy_tlb(&init_mm, current);
7163
7164	/*
7165	 * Make us the idle thread. Technically, schedule() should not be
7166	 * called from this thread, however somewhere below it might be,
7167	 * but because we are the idle thread, we just pick up running again
7168	 * when this runqueue becomes "idle".
7169	 */
7170	init_idle(current, smp_processor_id());
7171
7172	calc_load_update = jiffies + LOAD_FREQ;
7173
7174	/*
7175	 * During early bootup we pretend to be a normal task:
7176	 */
7177	current->sched_class = &fair_sched_class;
7178
7179#ifdef CONFIG_SMP
7180	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7181	/* May be allocated at isolcpus cmdline parse time */
7182	if (cpu_isolated_map == NULL)
7183		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7184	idle_thread_set_boot_cpu();
7185	set_cpu_rq_start_time();
7186#endif
7187	init_sched_fair_class();
7188
7189	scheduler_running = 1;
7190}
7191
7192#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7193static inline int preempt_count_equals(int preempt_offset)
7194{
7195	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7196
7197	return (nested == preempt_offset);
7198}
7199
7200void __might_sleep(const char *file, int line, int preempt_offset)
7201{
7202	static unsigned long prev_jiffy;	/* ratelimiting */
7203
7204	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7205	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7206	     !is_idle_task(current)) ||
7207	    system_state != SYSTEM_RUNNING || oops_in_progress)
7208		return;
7209	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7210		return;
7211	prev_jiffy = jiffies;
7212
7213	printk(KERN_ERR
7214		"BUG: sleeping function called from invalid context at %s:%d\n",
7215			file, line);
7216	printk(KERN_ERR
7217		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7218			in_atomic(), irqs_disabled(),
7219			current->pid, current->comm);
7220
7221	debug_show_held_locks(current);
7222	if (irqs_disabled())
7223		print_irqtrace_events(current);
7224#ifdef CONFIG_DEBUG_PREEMPT
7225	if (!preempt_count_equals(preempt_offset)) {
7226		pr_err("Preemption disabled at:");
7227		print_ip_sym(current->preempt_disable_ip);
7228		pr_cont("\n");
7229	}
7230#endif
7231	dump_stack();
7232}
7233EXPORT_SYMBOL(__might_sleep);
7234#endif
7235
7236#ifdef CONFIG_MAGIC_SYSRQ
7237static void normalize_task(struct rq *rq, struct task_struct *p)
7238{
7239	const struct sched_class *prev_class = p->sched_class;
7240	struct sched_attr attr = {
7241		.sched_policy = SCHED_NORMAL,
7242	};
7243	int old_prio = p->prio;
7244	int queued;
7245
7246	queued = task_on_rq_queued(p);
7247	if (queued)
7248		dequeue_task(rq, p, 0);
7249	__setscheduler(rq, p, &attr);
7250	if (queued) {
7251		enqueue_task(rq, p, 0);
7252		resched_curr(rq);
7253	}
7254
7255	check_class_changed(rq, p, prev_class, old_prio);
7256}
7257
7258void normalize_rt_tasks(void)
7259{
7260	struct task_struct *g, *p;
7261	unsigned long flags;
7262	struct rq *rq;
7263
7264	read_lock(&tasklist_lock);
7265	for_each_process_thread(g, p) {
7266		/*
7267		 * Only normalize user tasks:
7268		 */
7269		if (p->flags & PF_KTHREAD)
7270			continue;
7271
7272		p->se.exec_start		= 0;
7273#ifdef CONFIG_SCHEDSTATS
7274		p->se.statistics.wait_start	= 0;
7275		p->se.statistics.sleep_start	= 0;
7276		p->se.statistics.block_start	= 0;
7277#endif
7278
7279		if (!dl_task(p) && !rt_task(p)) {
7280			/*
7281			 * Renice negative nice level userspace
7282			 * tasks back to 0:
7283			 */
7284			if (task_nice(p) < 0)
7285				set_user_nice(p, 0);
7286			continue;
7287		}
7288
7289		rq = task_rq_lock(p, &flags);
7290		normalize_task(rq, p);
7291		task_rq_unlock(rq, p, &flags);
7292	}
7293	read_unlock(&tasklist_lock);
7294}
7295
7296#endif /* CONFIG_MAGIC_SYSRQ */
7297
7298#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7299/*
7300 * These functions are only useful for the IA64 MCA handling, or kdb.
7301 *
7302 * They can only be called when the whole system has been
7303 * stopped - every CPU needs to be quiescent, and no scheduling
7304 * activity can take place. Using them for anything else would
7305 * be a serious bug, and as a result, they aren't even visible
7306 * under any other configuration.
7307 */
7308
7309/**
7310 * curr_task - return the current task for a given cpu.
7311 * @cpu: the processor in question.
7312 *
7313 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7314 *
7315 * Return: The current task for @cpu.
7316 */
7317struct task_struct *curr_task(int cpu)
7318{
7319	return cpu_curr(cpu);
7320}
7321
7322#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7323
7324#ifdef CONFIG_IA64
7325/**
7326 * set_curr_task - set the current task for a given cpu.
7327 * @cpu: the processor in question.
7328 * @p: the task pointer to set.
7329 *
7330 * Description: This function must only be used when non-maskable interrupts
7331 * are serviced on a separate stack. It allows the architecture to switch the
7332 * notion of the current task on a cpu in a non-blocking manner. This function
7333 * must be called with all CPU's synchronized, and interrupts disabled, the
7334 * and caller must save the original value of the current task (see
7335 * curr_task() above) and restore that value before reenabling interrupts and
7336 * re-starting the system.
7337 *
7338 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7339 */
7340void set_curr_task(int cpu, struct task_struct *p)
7341{
7342	cpu_curr(cpu) = p;
7343}
7344
7345#endif
7346
7347#ifdef CONFIG_CGROUP_SCHED
7348/* task_group_lock serializes the addition/removal of task groups */
7349static DEFINE_SPINLOCK(task_group_lock);
7350
7351static void free_sched_group(struct task_group *tg)
7352{
7353	free_fair_sched_group(tg);
7354	free_rt_sched_group(tg);
7355	autogroup_free(tg);
7356	kfree(tg);
7357}
7358
7359/* allocate runqueue etc for a new task group */
7360struct task_group *sched_create_group(struct task_group *parent)
7361{
7362	struct task_group *tg;
7363
7364	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7365	if (!tg)
7366		return ERR_PTR(-ENOMEM);
7367
7368	if (!alloc_fair_sched_group(tg, parent))
7369		goto err;
7370
7371	if (!alloc_rt_sched_group(tg, parent))
7372		goto err;
7373
7374	return tg;
7375
7376err:
7377	free_sched_group(tg);
7378	return ERR_PTR(-ENOMEM);
7379}
7380
7381void sched_online_group(struct task_group *tg, struct task_group *parent)
7382{
7383	unsigned long flags;
7384
7385	spin_lock_irqsave(&task_group_lock, flags);
7386	list_add_rcu(&tg->list, &task_groups);
7387
7388	WARN_ON(!parent); /* root should already exist */
7389
7390	tg->parent = parent;
7391	INIT_LIST_HEAD(&tg->children);
7392	list_add_rcu(&tg->siblings, &parent->children);
7393	spin_unlock_irqrestore(&task_group_lock, flags);
7394}
7395
7396/* rcu callback to free various structures associated with a task group */
7397static void free_sched_group_rcu(struct rcu_head *rhp)
7398{
7399	/* now it should be safe to free those cfs_rqs */
7400	free_sched_group(container_of(rhp, struct task_group, rcu));
7401}
7402
7403/* Destroy runqueue etc associated with a task group */
7404void sched_destroy_group(struct task_group *tg)
7405{
7406	/* wait for possible concurrent references to cfs_rqs complete */
7407	call_rcu(&tg->rcu, free_sched_group_rcu);
7408}
7409
7410void sched_offline_group(struct task_group *tg)
7411{
7412	unsigned long flags;
7413	int i;
7414
7415	/* end participation in shares distribution */
7416	for_each_possible_cpu(i)
7417		unregister_fair_sched_group(tg, i);
7418
7419	spin_lock_irqsave(&task_group_lock, flags);
7420	list_del_rcu(&tg->list);
7421	list_del_rcu(&tg->siblings);
7422	spin_unlock_irqrestore(&task_group_lock, flags);
7423}
7424
7425/* change task's runqueue when it moves between groups.
7426 *	The caller of this function should have put the task in its new group
7427 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7428 *	reflect its new group.
7429 */
7430void sched_move_task(struct task_struct *tsk)
7431{
7432	struct task_group *tg;
7433	int queued, running;
7434	unsigned long flags;
7435	struct rq *rq;
7436
7437	rq = task_rq_lock(tsk, &flags);
7438
7439	running = task_current(rq, tsk);
7440	queued = task_on_rq_queued(tsk);
7441
7442	if (queued)
7443		dequeue_task(rq, tsk, 0);
7444	if (unlikely(running))
7445		put_prev_task(rq, tsk);
7446
7447	/*
7448	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7449	 * which is pointless here. Thus, we pass "true" to task_css_check()
7450	 * to prevent lockdep warnings.
7451	 */
7452	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7453			  struct task_group, css);
7454	tg = autogroup_task_group(tsk, tg);
7455	tsk->sched_task_group = tg;
7456
7457#ifdef CONFIG_FAIR_GROUP_SCHED
7458	if (tsk->sched_class->task_move_group)
7459		tsk->sched_class->task_move_group(tsk, queued);
7460	else
7461#endif
7462		set_task_rq(tsk, task_cpu(tsk));
7463
7464	if (unlikely(running))
7465		tsk->sched_class->set_curr_task(rq);
7466	if (queued)
7467		enqueue_task(rq, tsk, 0);
7468
7469	task_rq_unlock(rq, tsk, &flags);
7470}
7471#endif /* CONFIG_CGROUP_SCHED */
7472
7473#ifdef CONFIG_RT_GROUP_SCHED
7474/*
7475 * Ensure that the real time constraints are schedulable.
7476 */
7477static DEFINE_MUTEX(rt_constraints_mutex);
7478
7479/* Must be called with tasklist_lock held */
7480static inline int tg_has_rt_tasks(struct task_group *tg)
7481{
7482	struct task_struct *g, *p;
7483
7484	for_each_process_thread(g, p) {
7485		if (rt_task(p) && task_group(p) == tg)
7486			return 1;
7487	}
7488
7489	return 0;
7490}
7491
7492struct rt_schedulable_data {
7493	struct task_group *tg;
7494	u64 rt_period;
7495	u64 rt_runtime;
7496};
7497
7498static int tg_rt_schedulable(struct task_group *tg, void *data)
7499{
7500	struct rt_schedulable_data *d = data;
7501	struct task_group *child;
7502	unsigned long total, sum = 0;
7503	u64 period, runtime;
7504
7505	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7506	runtime = tg->rt_bandwidth.rt_runtime;
7507
7508	if (tg == d->tg) {
7509		period = d->rt_period;
7510		runtime = d->rt_runtime;
7511	}
7512
7513	/*
7514	 * Cannot have more runtime than the period.
7515	 */
7516	if (runtime > period && runtime != RUNTIME_INF)
7517		return -EINVAL;
7518
7519	/*
7520	 * Ensure we don't starve existing RT tasks.
7521	 */
7522	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7523		return -EBUSY;
7524
7525	total = to_ratio(period, runtime);
7526
7527	/*
7528	 * Nobody can have more than the global setting allows.
7529	 */
7530	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7531		return -EINVAL;
7532
7533	/*
7534	 * The sum of our children's runtime should not exceed our own.
7535	 */
7536	list_for_each_entry_rcu(child, &tg->children, siblings) {
7537		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7538		runtime = child->rt_bandwidth.rt_runtime;
7539
7540		if (child == d->tg) {
7541			period = d->rt_period;
7542			runtime = d->rt_runtime;
7543		}
7544
7545		sum += to_ratio(period, runtime);
7546	}
7547
7548	if (sum > total)
7549		return -EINVAL;
7550
7551	return 0;
7552}
7553
7554static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7555{
7556	int ret;
7557
7558	struct rt_schedulable_data data = {
7559		.tg = tg,
7560		.rt_period = period,
7561		.rt_runtime = runtime,
7562	};
7563
7564	rcu_read_lock();
7565	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7566	rcu_read_unlock();
7567
7568	return ret;
7569}
7570
7571static int tg_set_rt_bandwidth(struct task_group *tg,
7572		u64 rt_period, u64 rt_runtime)
7573{
7574	int i, err = 0;
7575
7576	mutex_lock(&rt_constraints_mutex);
7577	read_lock(&tasklist_lock);
7578	err = __rt_schedulable(tg, rt_period, rt_runtime);
7579	if (err)
7580		goto unlock;
7581
7582	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7583	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7584	tg->rt_bandwidth.rt_runtime = rt_runtime;
7585
7586	for_each_possible_cpu(i) {
7587		struct rt_rq *rt_rq = tg->rt_rq[i];
7588
7589		raw_spin_lock(&rt_rq->rt_runtime_lock);
7590		rt_rq->rt_runtime = rt_runtime;
7591		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7592	}
7593	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7594unlock:
7595	read_unlock(&tasklist_lock);
7596	mutex_unlock(&rt_constraints_mutex);
7597
7598	return err;
7599}
7600
7601static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7602{
7603	u64 rt_runtime, rt_period;
7604
7605	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7606	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7607	if (rt_runtime_us < 0)
7608		rt_runtime = RUNTIME_INF;
7609
7610	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7611}
7612
7613static long sched_group_rt_runtime(struct task_group *tg)
7614{
7615	u64 rt_runtime_us;
7616
7617	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7618		return -1;
7619
7620	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7621	do_div(rt_runtime_us, NSEC_PER_USEC);
7622	return rt_runtime_us;
7623}
7624
7625static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7626{
7627	u64 rt_runtime, rt_period;
7628
7629	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7630	rt_runtime = tg->rt_bandwidth.rt_runtime;
7631
7632	if (rt_period == 0)
7633		return -EINVAL;
7634
7635	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7636}
7637
7638static long sched_group_rt_period(struct task_group *tg)
7639{
7640	u64 rt_period_us;
7641
7642	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7643	do_div(rt_period_us, NSEC_PER_USEC);
7644	return rt_period_us;
7645}
7646#endif /* CONFIG_RT_GROUP_SCHED */
7647
7648#ifdef CONFIG_RT_GROUP_SCHED
7649static int sched_rt_global_constraints(void)
7650{
7651	int ret = 0;
7652
7653	mutex_lock(&rt_constraints_mutex);
7654	read_lock(&tasklist_lock);
7655	ret = __rt_schedulable(NULL, 0, 0);
7656	read_unlock(&tasklist_lock);
7657	mutex_unlock(&rt_constraints_mutex);
7658
7659	return ret;
7660}
7661
7662static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7663{
7664	/* Don't accept realtime tasks when there is no way for them to run */
7665	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7666		return 0;
7667
7668	return 1;
7669}
7670
7671#else /* !CONFIG_RT_GROUP_SCHED */
7672static int sched_rt_global_constraints(void)
7673{
7674	unsigned long flags;
7675	int i, ret = 0;
7676
7677	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7678	for_each_possible_cpu(i) {
7679		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7680
7681		raw_spin_lock(&rt_rq->rt_runtime_lock);
7682		rt_rq->rt_runtime = global_rt_runtime();
7683		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7684	}
7685	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7686
7687	return ret;
7688}
7689#endif /* CONFIG_RT_GROUP_SCHED */
7690
7691static int sched_dl_global_constraints(void)
7692{
7693	u64 runtime = global_rt_runtime();
7694	u64 period = global_rt_period();
7695	u64 new_bw = to_ratio(period, runtime);
7696	struct dl_bw *dl_b;
7697	int cpu, ret = 0;
7698	unsigned long flags;
7699
7700	/*
7701	 * Here we want to check the bandwidth not being set to some
7702	 * value smaller than the currently allocated bandwidth in
7703	 * any of the root_domains.
7704	 *
7705	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7706	 * cycling on root_domains... Discussion on different/better
7707	 * solutions is welcome!
7708	 */
7709	for_each_possible_cpu(cpu) {
7710		rcu_read_lock_sched();
7711		dl_b = dl_bw_of(cpu);
7712
7713		raw_spin_lock_irqsave(&dl_b->lock, flags);
7714		if (new_bw < dl_b->total_bw)
7715			ret = -EBUSY;
7716		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7717
7718		rcu_read_unlock_sched();
7719
7720		if (ret)
7721			break;
7722	}
7723
7724	return ret;
7725}
7726
7727static void sched_dl_do_global(void)
7728{
7729	u64 new_bw = -1;
7730	struct dl_bw *dl_b;
7731	int cpu;
7732	unsigned long flags;
7733
7734	def_dl_bandwidth.dl_period = global_rt_period();
7735	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7736
7737	if (global_rt_runtime() != RUNTIME_INF)
7738		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7739
7740	/*
7741	 * FIXME: As above...
7742	 */
7743	for_each_possible_cpu(cpu) {
7744		rcu_read_lock_sched();
7745		dl_b = dl_bw_of(cpu);
7746
7747		raw_spin_lock_irqsave(&dl_b->lock, flags);
7748		dl_b->bw = new_bw;
7749		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7750
7751		rcu_read_unlock_sched();
7752	}
7753}
7754
7755static int sched_rt_global_validate(void)
7756{
7757	if (sysctl_sched_rt_period <= 0)
7758		return -EINVAL;
7759
7760	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7761		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7762		return -EINVAL;
7763
7764	return 0;
7765}
7766
7767static void sched_rt_do_global(void)
7768{
7769	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7770	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7771}
7772
7773int sched_rt_handler(struct ctl_table *table, int write,
7774		void __user *buffer, size_t *lenp,
7775		loff_t *ppos)
7776{
7777	int old_period, old_runtime;
7778	static DEFINE_MUTEX(mutex);
7779	int ret;
7780
7781	mutex_lock(&mutex);
7782	old_period = sysctl_sched_rt_period;
7783	old_runtime = sysctl_sched_rt_runtime;
7784
7785	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7786
7787	if (!ret && write) {
7788		ret = sched_rt_global_validate();
7789		if (ret)
7790			goto undo;
7791
7792		ret = sched_rt_global_constraints();
7793		if (ret)
7794			goto undo;
7795
7796		ret = sched_dl_global_constraints();
7797		if (ret)
7798			goto undo;
7799
7800		sched_rt_do_global();
7801		sched_dl_do_global();
7802	}
7803	if (0) {
7804undo:
7805		sysctl_sched_rt_period = old_period;
7806		sysctl_sched_rt_runtime = old_runtime;
7807	}
7808	mutex_unlock(&mutex);
7809
7810	return ret;
7811}
7812
7813int sched_rr_handler(struct ctl_table *table, int write,
7814		void __user *buffer, size_t *lenp,
7815		loff_t *ppos)
7816{
7817	int ret;
7818	static DEFINE_MUTEX(mutex);
7819
7820	mutex_lock(&mutex);
7821	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7822	/* make sure that internally we keep jiffies */
7823	/* also, writing zero resets timeslice to default */
7824	if (!ret && write) {
7825		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7826			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7827	}
7828	mutex_unlock(&mutex);
7829	return ret;
7830}
7831
7832#ifdef CONFIG_CGROUP_SCHED
7833
7834static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7835{
7836	return css ? container_of(css, struct task_group, css) : NULL;
7837}
7838
7839static struct cgroup_subsys_state *
7840cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7841{
7842	struct task_group *parent = css_tg(parent_css);
7843	struct task_group *tg;
7844
7845	if (!parent) {
7846		/* This is early initialization for the top cgroup */
7847		return &root_task_group.css;
7848	}
7849
7850	tg = sched_create_group(parent);
7851	if (IS_ERR(tg))
7852		return ERR_PTR(-ENOMEM);
7853
7854	return &tg->css;
7855}
7856
7857static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7858{
7859	struct task_group *tg = css_tg(css);
7860	struct task_group *parent = css_tg(css->parent);
7861
7862	if (parent)
7863		sched_online_group(tg, parent);
7864	return 0;
7865}
7866
7867static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7868{
7869	struct task_group *tg = css_tg(css);
7870
7871	sched_destroy_group(tg);
7872}
7873
7874static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7875{
7876	struct task_group *tg = css_tg(css);
7877
7878	sched_offline_group(tg);
7879}
7880
7881static void cpu_cgroup_fork(struct task_struct *task)
7882{
7883	sched_move_task(task);
7884}
7885
7886static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7887				 struct cgroup_taskset *tset)
7888{
7889	struct task_struct *task;
7890
7891	cgroup_taskset_for_each(task, tset) {
7892#ifdef CONFIG_RT_GROUP_SCHED
7893		if (!sched_rt_can_attach(css_tg(css), task))
7894			return -EINVAL;
7895#else
7896		/* We don't support RT-tasks being in separate groups */
7897		if (task->sched_class != &fair_sched_class)
7898			return -EINVAL;
7899#endif
7900	}
7901	return 0;
7902}
7903
7904static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7905			      struct cgroup_taskset *tset)
7906{
7907	struct task_struct *task;
7908
7909	cgroup_taskset_for_each(task, tset)
7910		sched_move_task(task);
7911}
7912
7913static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7914			    struct cgroup_subsys_state *old_css,
7915			    struct task_struct *task)
7916{
7917	/*
7918	 * cgroup_exit() is called in the copy_process() failure path.
7919	 * Ignore this case since the task hasn't ran yet, this avoids
7920	 * trying to poke a half freed task state from generic code.
7921	 */
7922	if (!(task->flags & PF_EXITING))
7923		return;
7924
7925	sched_move_task(task);
7926}
7927
7928#ifdef CONFIG_FAIR_GROUP_SCHED
7929static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7930				struct cftype *cftype, u64 shareval)
7931{
7932	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7933}
7934
7935static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7936			       struct cftype *cft)
7937{
7938	struct task_group *tg = css_tg(css);
7939
7940	return (u64) scale_load_down(tg->shares);
7941}
7942
7943#ifdef CONFIG_CFS_BANDWIDTH
7944static DEFINE_MUTEX(cfs_constraints_mutex);
7945
7946const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7947const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7948
7949static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7950
7951static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7952{
7953	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7954	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7955
7956	if (tg == &root_task_group)
7957		return -EINVAL;
7958
7959	/*
7960	 * Ensure we have at some amount of bandwidth every period.  This is
7961	 * to prevent reaching a state of large arrears when throttled via
7962	 * entity_tick() resulting in prolonged exit starvation.
7963	 */
7964	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7965		return -EINVAL;
7966
7967	/*
7968	 * Likewise, bound things on the otherside by preventing insane quota
7969	 * periods.  This also allows us to normalize in computing quota
7970	 * feasibility.
7971	 */
7972	if (period > max_cfs_quota_period)
7973		return -EINVAL;
7974
7975	/*
7976	 * Prevent race between setting of cfs_rq->runtime_enabled and
7977	 * unthrottle_offline_cfs_rqs().
7978	 */
7979	get_online_cpus();
7980	mutex_lock(&cfs_constraints_mutex);
7981	ret = __cfs_schedulable(tg, period, quota);
7982	if (ret)
7983		goto out_unlock;
7984
7985	runtime_enabled = quota != RUNTIME_INF;
7986	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7987	/*
7988	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7989	 * before making related changes, and on->off must occur afterwards
7990	 */
7991	if (runtime_enabled && !runtime_was_enabled)
7992		cfs_bandwidth_usage_inc();
7993	raw_spin_lock_irq(&cfs_b->lock);
7994	cfs_b->period = ns_to_ktime(period);
7995	cfs_b->quota = quota;
7996
7997	__refill_cfs_bandwidth_runtime(cfs_b);
7998	/* restart the period timer (if active) to handle new period expiry */
7999	if (runtime_enabled && cfs_b->timer_active) {
8000		/* force a reprogram */
8001		__start_cfs_bandwidth(cfs_b, true);
8002	}
8003	raw_spin_unlock_irq(&cfs_b->lock);
8004
8005	for_each_online_cpu(i) {
8006		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8007		struct rq *rq = cfs_rq->rq;
8008
8009		raw_spin_lock_irq(&rq->lock);
8010		cfs_rq->runtime_enabled = runtime_enabled;
8011		cfs_rq->runtime_remaining = 0;
8012
8013		if (cfs_rq->throttled)
8014			unthrottle_cfs_rq(cfs_rq);
8015		raw_spin_unlock_irq(&rq->lock);
8016	}
8017	if (runtime_was_enabled && !runtime_enabled)
8018		cfs_bandwidth_usage_dec();
8019out_unlock:
8020	mutex_unlock(&cfs_constraints_mutex);
8021	put_online_cpus();
8022
8023	return ret;
8024}
8025
8026int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8027{
8028	u64 quota, period;
8029
8030	period = ktime_to_ns(tg->cfs_bandwidth.period);
8031	if (cfs_quota_us < 0)
8032		quota = RUNTIME_INF;
8033	else
8034		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8035
8036	return tg_set_cfs_bandwidth(tg, period, quota);
8037}
8038
8039long tg_get_cfs_quota(struct task_group *tg)
8040{
8041	u64 quota_us;
8042
8043	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8044		return -1;
8045
8046	quota_us = tg->cfs_bandwidth.quota;
8047	do_div(quota_us, NSEC_PER_USEC);
8048
8049	return quota_us;
8050}
8051
8052int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8053{
8054	u64 quota, period;
8055
8056	period = (u64)cfs_period_us * NSEC_PER_USEC;
8057	quota = tg->cfs_bandwidth.quota;
8058
8059	return tg_set_cfs_bandwidth(tg, period, quota);
8060}
8061
8062long tg_get_cfs_period(struct task_group *tg)
8063{
8064	u64 cfs_period_us;
8065
8066	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8067	do_div(cfs_period_us, NSEC_PER_USEC);
8068
8069	return cfs_period_us;
8070}
8071
8072static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8073				  struct cftype *cft)
8074{
8075	return tg_get_cfs_quota(css_tg(css));
8076}
8077
8078static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8079				   struct cftype *cftype, s64 cfs_quota_us)
8080{
8081	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8082}
8083
8084static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8085				   struct cftype *cft)
8086{
8087	return tg_get_cfs_period(css_tg(css));
8088}
8089
8090static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8091				    struct cftype *cftype, u64 cfs_period_us)
8092{
8093	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8094}
8095
8096struct cfs_schedulable_data {
8097	struct task_group *tg;
8098	u64 period, quota;
8099};
8100
8101/*
8102 * normalize group quota/period to be quota/max_period
8103 * note: units are usecs
8104 */
8105static u64 normalize_cfs_quota(struct task_group *tg,
8106			       struct cfs_schedulable_data *d)
8107{
8108	u64 quota, period;
8109
8110	if (tg == d->tg) {
8111		period = d->period;
8112		quota = d->quota;
8113	} else {
8114		period = tg_get_cfs_period(tg);
8115		quota = tg_get_cfs_quota(tg);
8116	}
8117
8118	/* note: these should typically be equivalent */
8119	if (quota == RUNTIME_INF || quota == -1)
8120		return RUNTIME_INF;
8121
8122	return to_ratio(period, quota);
8123}
8124
8125static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8126{
8127	struct cfs_schedulable_data *d = data;
8128	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8129	s64 quota = 0, parent_quota = -1;
8130
8131	if (!tg->parent) {
8132		quota = RUNTIME_INF;
8133	} else {
8134		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8135
8136		quota = normalize_cfs_quota(tg, d);
8137		parent_quota = parent_b->hierarchical_quota;
8138
8139		/*
8140		 * ensure max(child_quota) <= parent_quota, inherit when no
8141		 * limit is set
8142		 */
8143		if (quota == RUNTIME_INF)
8144			quota = parent_quota;
8145		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8146			return -EINVAL;
8147	}
8148	cfs_b->hierarchical_quota = quota;
8149
8150	return 0;
8151}
8152
8153static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8154{
8155	int ret;
8156	struct cfs_schedulable_data data = {
8157		.tg = tg,
8158		.period = period,
8159		.quota = quota,
8160	};
8161
8162	if (quota != RUNTIME_INF) {
8163		do_div(data.period, NSEC_PER_USEC);
8164		do_div(data.quota, NSEC_PER_USEC);
8165	}
8166
8167	rcu_read_lock();
8168	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8169	rcu_read_unlock();
8170
8171	return ret;
8172}
8173
8174static int cpu_stats_show(struct seq_file *sf, void *v)
8175{
8176	struct task_group *tg = css_tg(seq_css(sf));
8177	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8178
8179	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8180	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8181	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8182
8183	return 0;
8184}
8185#endif /* CONFIG_CFS_BANDWIDTH */
8186#endif /* CONFIG_FAIR_GROUP_SCHED */
8187
8188#ifdef CONFIG_RT_GROUP_SCHED
8189static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8190				struct cftype *cft, s64 val)
8191{
8192	return sched_group_set_rt_runtime(css_tg(css), val);
8193}
8194
8195static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8196			       struct cftype *cft)
8197{
8198	return sched_group_rt_runtime(css_tg(css));
8199}
8200
8201static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8202				    struct cftype *cftype, u64 rt_period_us)
8203{
8204	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8205}
8206
8207static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8208				   struct cftype *cft)
8209{
8210	return sched_group_rt_period(css_tg(css));
8211}
8212#endif /* CONFIG_RT_GROUP_SCHED */
8213
8214static struct cftype cpu_files[] = {
8215#ifdef CONFIG_FAIR_GROUP_SCHED
8216	{
8217		.name = "shares",
8218		.read_u64 = cpu_shares_read_u64,
8219		.write_u64 = cpu_shares_write_u64,
8220	},
8221#endif
8222#ifdef CONFIG_CFS_BANDWIDTH
8223	{
8224		.name = "cfs_quota_us",
8225		.read_s64 = cpu_cfs_quota_read_s64,
8226		.write_s64 = cpu_cfs_quota_write_s64,
8227	},
8228	{
8229		.name = "cfs_period_us",
8230		.read_u64 = cpu_cfs_period_read_u64,
8231		.write_u64 = cpu_cfs_period_write_u64,
8232	},
8233	{
8234		.name = "stat",
8235		.seq_show = cpu_stats_show,
8236	},
8237#endif
8238#ifdef CONFIG_RT_GROUP_SCHED
8239	{
8240		.name = "rt_runtime_us",
8241		.read_s64 = cpu_rt_runtime_read,
8242		.write_s64 = cpu_rt_runtime_write,
8243	},
8244	{
8245		.name = "rt_period_us",
8246		.read_u64 = cpu_rt_period_read_uint,
8247		.write_u64 = cpu_rt_period_write_uint,
8248	},
8249#endif
8250	{ }	/* terminate */
8251};
8252
8253struct cgroup_subsys cpu_cgrp_subsys = {
8254	.css_alloc	= cpu_cgroup_css_alloc,
8255	.css_free	= cpu_cgroup_css_free,
8256	.css_online	= cpu_cgroup_css_online,
8257	.css_offline	= cpu_cgroup_css_offline,
8258	.fork		= cpu_cgroup_fork,
8259	.can_attach	= cpu_cgroup_can_attach,
8260	.attach		= cpu_cgroup_attach,
8261	.exit		= cpu_cgroup_exit,
8262	.legacy_cftypes	= cpu_files,
8263	.early_init	= 1,
8264};
8265
8266#endif	/* CONFIG_CGROUP_SCHED */
8267
8268void dump_cpu_task(int cpu)
8269{
8270	pr_info("Task dump for CPU %d:\n", cpu);
8271	sched_show_task(cpu_curr(cpu));
8272}
8273