core.c revision fd2ac4f4a65a7f34b0bc6433fcca1192d7ba8b8e
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96	smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104	smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110{
111	unsigned long delta;
112	ktime_t soft, hard, now;
113
114	for (;;) {
115		if (hrtimer_active(period_timer))
116			break;
117
118		now = hrtimer_cb_get_time(period_timer);
119		hrtimer_forward(period_timer, now, period);
120
121		soft = hrtimer_get_softexpires(period_timer);
122		hard = hrtimer_get_expires(period_timer);
123		delta = ktime_to_ns(ktime_sub(hard, soft));
124		__hrtimer_start_range_ns(period_timer, soft, delta,
125					 HRTIMER_MODE_ABS_PINNED, 0);
126	}
127}
128
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134void update_rq_clock(struct rq *rq)
135{
136	s64 delta;
137
138	if (rq->skip_clock_update > 0)
139		return;
140
141	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142	rq->clock += delta;
143	update_rq_clock_task(rq, delta);
144}
145
146/*
147 * Debugging: various feature bits
148 */
149
150#define SCHED_FEAT(name, enabled)	\
151	(1UL << __SCHED_FEAT_##name) * enabled |
152
153const_debug unsigned int sysctl_sched_features =
154#include "features.h"
155	0;
156
157#undef SCHED_FEAT
158
159#ifdef CONFIG_SCHED_DEBUG
160#define SCHED_FEAT(name, enabled)	\
161	#name ,
162
163static const char * const sched_feat_names[] = {
164#include "features.h"
165};
166
167#undef SCHED_FEAT
168
169static int sched_feat_show(struct seq_file *m, void *v)
170{
171	int i;
172
173	for (i = 0; i < __SCHED_FEAT_NR; i++) {
174		if (!(sysctl_sched_features & (1UL << i)))
175			seq_puts(m, "NO_");
176		seq_printf(m, "%s ", sched_feat_names[i]);
177	}
178	seq_puts(m, "\n");
179
180	return 0;
181}
182
183#ifdef HAVE_JUMP_LABEL
184
185#define jump_label_key__true  STATIC_KEY_INIT_TRUE
186#define jump_label_key__false STATIC_KEY_INIT_FALSE
187
188#define SCHED_FEAT(name, enabled)	\
189	jump_label_key__##enabled ,
190
191struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192#include "features.h"
193};
194
195#undef SCHED_FEAT
196
197static void sched_feat_disable(int i)
198{
199	if (static_key_enabled(&sched_feat_keys[i]))
200		static_key_slow_dec(&sched_feat_keys[i]);
201}
202
203static void sched_feat_enable(int i)
204{
205	if (!static_key_enabled(&sched_feat_keys[i]))
206		static_key_slow_inc(&sched_feat_keys[i]);
207}
208#else
209static void sched_feat_disable(int i) { };
210static void sched_feat_enable(int i) { };
211#endif /* HAVE_JUMP_LABEL */
212
213static int sched_feat_set(char *cmp)
214{
215	int i;
216	int neg = 0;
217
218	if (strncmp(cmp, "NO_", 3) == 0) {
219		neg = 1;
220		cmp += 3;
221	}
222
223	for (i = 0; i < __SCHED_FEAT_NR; i++) {
224		if (strcmp(cmp, sched_feat_names[i]) == 0) {
225			if (neg) {
226				sysctl_sched_features &= ~(1UL << i);
227				sched_feat_disable(i);
228			} else {
229				sysctl_sched_features |= (1UL << i);
230				sched_feat_enable(i);
231			}
232			break;
233		}
234	}
235
236	return i;
237}
238
239static ssize_t
240sched_feat_write(struct file *filp, const char __user *ubuf,
241		size_t cnt, loff_t *ppos)
242{
243	char buf[64];
244	char *cmp;
245	int i;
246
247	if (cnt > 63)
248		cnt = 63;
249
250	if (copy_from_user(&buf, ubuf, cnt))
251		return -EFAULT;
252
253	buf[cnt] = 0;
254	cmp = strstrip(buf);
255
256	i = sched_feat_set(cmp);
257	if (i == __SCHED_FEAT_NR)
258		return -EINVAL;
259
260	*ppos += cnt;
261
262	return cnt;
263}
264
265static int sched_feat_open(struct inode *inode, struct file *filp)
266{
267	return single_open(filp, sched_feat_show, NULL);
268}
269
270static const struct file_operations sched_feat_fops = {
271	.open		= sched_feat_open,
272	.write		= sched_feat_write,
273	.read		= seq_read,
274	.llseek		= seq_lseek,
275	.release	= single_release,
276};
277
278static __init int sched_init_debug(void)
279{
280	debugfs_create_file("sched_features", 0644, NULL, NULL,
281			&sched_feat_fops);
282
283	return 0;
284}
285late_initcall(sched_init_debug);
286#endif /* CONFIG_SCHED_DEBUG */
287
288/*
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
291 */
292const_debug unsigned int sysctl_sched_nr_migrate = 32;
293
294/*
295 * period over which we average the RT time consumption, measured
296 * in ms.
297 *
298 * default: 1s
299 */
300const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301
302/*
303 * period over which we measure -rt task cpu usage in us.
304 * default: 1s
305 */
306unsigned int sysctl_sched_rt_period = 1000000;
307
308__read_mostly int scheduler_running;
309
310/*
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
313 */
314int sysctl_sched_rt_runtime = 950000;
315
316/*
317 * __task_rq_lock - lock the rq @p resides on.
318 */
319static inline struct rq *__task_rq_lock(struct task_struct *p)
320	__acquires(rq->lock)
321{
322	struct rq *rq;
323
324	lockdep_assert_held(&p->pi_lock);
325
326	for (;;) {
327		rq = task_rq(p);
328		raw_spin_lock(&rq->lock);
329		if (likely(rq == task_rq(p)))
330			return rq;
331		raw_spin_unlock(&rq->lock);
332	}
333}
334
335/*
336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
337 */
338static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339	__acquires(p->pi_lock)
340	__acquires(rq->lock)
341{
342	struct rq *rq;
343
344	for (;;) {
345		raw_spin_lock_irqsave(&p->pi_lock, *flags);
346		rq = task_rq(p);
347		raw_spin_lock(&rq->lock);
348		if (likely(rq == task_rq(p)))
349			return rq;
350		raw_spin_unlock(&rq->lock);
351		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352	}
353}
354
355static void __task_rq_unlock(struct rq *rq)
356	__releases(rq->lock)
357{
358	raw_spin_unlock(&rq->lock);
359}
360
361static inline void
362task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363	__releases(rq->lock)
364	__releases(p->pi_lock)
365{
366	raw_spin_unlock(&rq->lock);
367	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
368}
369
370/*
371 * this_rq_lock - lock this runqueue and disable interrupts.
372 */
373static struct rq *this_rq_lock(void)
374	__acquires(rq->lock)
375{
376	struct rq *rq;
377
378	local_irq_disable();
379	rq = this_rq();
380	raw_spin_lock(&rq->lock);
381
382	return rq;
383}
384
385#ifdef CONFIG_SCHED_HRTICK
386/*
387 * Use HR-timers to deliver accurate preemption points.
388 */
389
390static void hrtick_clear(struct rq *rq)
391{
392	if (hrtimer_active(&rq->hrtick_timer))
393		hrtimer_cancel(&rq->hrtick_timer);
394}
395
396/*
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
399 */
400static enum hrtimer_restart hrtick(struct hrtimer *timer)
401{
402	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403
404	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405
406	raw_spin_lock(&rq->lock);
407	update_rq_clock(rq);
408	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409	raw_spin_unlock(&rq->lock);
410
411	return HRTIMER_NORESTART;
412}
413
414#ifdef CONFIG_SMP
415
416static int __hrtick_restart(struct rq *rq)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = hrtimer_get_softexpires(timer);
420
421	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422}
423
424/*
425 * called from hardirq (IPI) context
426 */
427static void __hrtick_start(void *arg)
428{
429	struct rq *rq = arg;
430
431	raw_spin_lock(&rq->lock);
432	__hrtick_restart(rq);
433	rq->hrtick_csd_pending = 0;
434	raw_spin_unlock(&rq->lock);
435}
436
437/*
438 * Called to set the hrtick timer state.
439 *
440 * called with rq->lock held and irqs disabled
441 */
442void hrtick_start(struct rq *rq, u64 delay)
443{
444	struct hrtimer *timer = &rq->hrtick_timer;
445	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446
447	hrtimer_set_expires(timer, time);
448
449	if (rq == this_rq()) {
450		__hrtick_restart(rq);
451	} else if (!rq->hrtick_csd_pending) {
452		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453		rq->hrtick_csd_pending = 1;
454	}
455}
456
457static int
458hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459{
460	int cpu = (int)(long)hcpu;
461
462	switch (action) {
463	case CPU_UP_CANCELED:
464	case CPU_UP_CANCELED_FROZEN:
465	case CPU_DOWN_PREPARE:
466	case CPU_DOWN_PREPARE_FROZEN:
467	case CPU_DEAD:
468	case CPU_DEAD_FROZEN:
469		hrtick_clear(cpu_rq(cpu));
470		return NOTIFY_OK;
471	}
472
473	return NOTIFY_DONE;
474}
475
476static __init void init_hrtick(void)
477{
478	hotcpu_notifier(hotplug_hrtick, 0);
479}
480#else
481/*
482 * Called to set the hrtick timer state.
483 *
484 * called with rq->lock held and irqs disabled
485 */
486void hrtick_start(struct rq *rq, u64 delay)
487{
488	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489			HRTIMER_MODE_REL_PINNED, 0);
490}
491
492static inline void init_hrtick(void)
493{
494}
495#endif /* CONFIG_SMP */
496
497static void init_rq_hrtick(struct rq *rq)
498{
499#ifdef CONFIG_SMP
500	rq->hrtick_csd_pending = 0;
501
502	rq->hrtick_csd.flags = 0;
503	rq->hrtick_csd.func = __hrtick_start;
504	rq->hrtick_csd.info = rq;
505#endif
506
507	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508	rq->hrtick_timer.function = hrtick;
509}
510#else	/* CONFIG_SCHED_HRTICK */
511static inline void hrtick_clear(struct rq *rq)
512{
513}
514
515static inline void init_rq_hrtick(struct rq *rq)
516{
517}
518
519static inline void init_hrtick(void)
520{
521}
522#endif	/* CONFIG_SCHED_HRTICK */
523
524/*
525 * cmpxchg based fetch_or, macro so it works for different integer types
526 */
527#define fetch_or(ptr, val)						\
528({	typeof(*(ptr)) __old, __val = *(ptr);				\
529 	for (;;) {							\
530 		__old = cmpxchg((ptr), __val, __val | (val));		\
531 		if (__old == __val)					\
532 			break;						\
533 		__val = __old;						\
534 	}								\
535 	__old;								\
536})
537
538#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
539/*
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
542 * spurious IPIs.
543 */
544static bool set_nr_and_not_polling(struct task_struct *p)
545{
546	struct thread_info *ti = task_thread_info(p);
547	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548}
549
550/*
551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
552 *
553 * If this returns true, then the idle task promises to call
554 * sched_ttwu_pending() and reschedule soon.
555 */
556static bool set_nr_if_polling(struct task_struct *p)
557{
558	struct thread_info *ti = task_thread_info(p);
559	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
560
561	for (;;) {
562		if (!(val & _TIF_POLLING_NRFLAG))
563			return false;
564		if (val & _TIF_NEED_RESCHED)
565			return true;
566		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
567		if (old == val)
568			break;
569		val = old;
570	}
571	return true;
572}
573
574#else
575static bool set_nr_and_not_polling(struct task_struct *p)
576{
577	set_tsk_need_resched(p);
578	return true;
579}
580
581#ifdef CONFIG_SMP
582static bool set_nr_if_polling(struct task_struct *p)
583{
584	return false;
585}
586#endif
587#endif
588
589/*
590 * resched_task - mark a task 'to be rescheduled now'.
591 *
592 * On UP this means the setting of the need_resched flag, on SMP it
593 * might also involve a cross-CPU call to trigger the scheduler on
594 * the target CPU.
595 */
596void resched_task(struct task_struct *p)
597{
598	int cpu;
599
600	lockdep_assert_held(&task_rq(p)->lock);
601
602	if (test_tsk_need_resched(p))
603		return;
604
605	cpu = task_cpu(p);
606
607	if (cpu == smp_processor_id()) {
608		set_tsk_need_resched(p);
609		set_preempt_need_resched();
610		return;
611	}
612
613	if (set_nr_and_not_polling(p))
614		smp_send_reschedule(cpu);
615	else
616		trace_sched_wake_idle_without_ipi(cpu);
617}
618
619void resched_cpu(int cpu)
620{
621	struct rq *rq = cpu_rq(cpu);
622	unsigned long flags;
623
624	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
625		return;
626	resched_task(cpu_curr(cpu));
627	raw_spin_unlock_irqrestore(&rq->lock, flags);
628}
629
630#ifdef CONFIG_SMP
631#ifdef CONFIG_NO_HZ_COMMON
632/*
633 * In the semi idle case, use the nearest busy cpu for migrating timers
634 * from an idle cpu.  This is good for power-savings.
635 *
636 * We don't do similar optimization for completely idle system, as
637 * selecting an idle cpu will add more delays to the timers than intended
638 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
639 */
640int get_nohz_timer_target(int pinned)
641{
642	int cpu = smp_processor_id();
643	int i;
644	struct sched_domain *sd;
645
646	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
647		return cpu;
648
649	rcu_read_lock();
650	for_each_domain(cpu, sd) {
651		for_each_cpu(i, sched_domain_span(sd)) {
652			if (!idle_cpu(i)) {
653				cpu = i;
654				goto unlock;
655			}
656		}
657	}
658unlock:
659	rcu_read_unlock();
660	return cpu;
661}
662/*
663 * When add_timer_on() enqueues a timer into the timer wheel of an
664 * idle CPU then this timer might expire before the next timer event
665 * which is scheduled to wake up that CPU. In case of a completely
666 * idle system the next event might even be infinite time into the
667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668 * leaves the inner idle loop so the newly added timer is taken into
669 * account when the CPU goes back to idle and evaluates the timer
670 * wheel for the next timer event.
671 */
672static void wake_up_idle_cpu(int cpu)
673{
674	struct rq *rq = cpu_rq(cpu);
675
676	if (cpu == smp_processor_id())
677		return;
678
679	if (set_nr_and_not_polling(rq->idle))
680		smp_send_reschedule(cpu);
681	else
682		trace_sched_wake_idle_without_ipi(cpu);
683}
684
685static bool wake_up_full_nohz_cpu(int cpu)
686{
687	/*
688	 * We just need the target to call irq_exit() and re-evaluate
689	 * the next tick. The nohz full kick at least implies that.
690	 * If needed we can still optimize that later with an
691	 * empty IRQ.
692	 */
693	if (tick_nohz_full_cpu(cpu)) {
694		if (cpu != smp_processor_id() ||
695		    tick_nohz_tick_stopped())
696			tick_nohz_full_kick_cpu(cpu);
697		return true;
698	}
699
700	return false;
701}
702
703void wake_up_nohz_cpu(int cpu)
704{
705	if (!wake_up_full_nohz_cpu(cpu))
706		wake_up_idle_cpu(cpu);
707}
708
709static inline bool got_nohz_idle_kick(void)
710{
711	int cpu = smp_processor_id();
712
713	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
714		return false;
715
716	if (idle_cpu(cpu) && !need_resched())
717		return true;
718
719	/*
720	 * We can't run Idle Load Balance on this CPU for this time so we
721	 * cancel it and clear NOHZ_BALANCE_KICK
722	 */
723	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
724	return false;
725}
726
727#else /* CONFIG_NO_HZ_COMMON */
728
729static inline bool got_nohz_idle_kick(void)
730{
731	return false;
732}
733
734#endif /* CONFIG_NO_HZ_COMMON */
735
736#ifdef CONFIG_NO_HZ_FULL
737bool sched_can_stop_tick(void)
738{
739       struct rq *rq;
740
741       rq = this_rq();
742
743       /* Make sure rq->nr_running update is visible after the IPI */
744       smp_rmb();
745
746       /* More than one running task need preemption */
747       if (rq->nr_running > 1)
748               return false;
749
750       return true;
751}
752#endif /* CONFIG_NO_HZ_FULL */
753
754void sched_avg_update(struct rq *rq)
755{
756	s64 period = sched_avg_period();
757
758	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
759		/*
760		 * Inline assembly required to prevent the compiler
761		 * optimising this loop into a divmod call.
762		 * See __iter_div_u64_rem() for another example of this.
763		 */
764		asm("" : "+rm" (rq->age_stamp));
765		rq->age_stamp += period;
766		rq->rt_avg /= 2;
767	}
768}
769
770#endif /* CONFIG_SMP */
771
772#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
773			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
774/*
775 * Iterate task_group tree rooted at *from, calling @down when first entering a
776 * node and @up when leaving it for the final time.
777 *
778 * Caller must hold rcu_lock or sufficient equivalent.
779 */
780int walk_tg_tree_from(struct task_group *from,
781			     tg_visitor down, tg_visitor up, void *data)
782{
783	struct task_group *parent, *child;
784	int ret;
785
786	parent = from;
787
788down:
789	ret = (*down)(parent, data);
790	if (ret)
791		goto out;
792	list_for_each_entry_rcu(child, &parent->children, siblings) {
793		parent = child;
794		goto down;
795
796up:
797		continue;
798	}
799	ret = (*up)(parent, data);
800	if (ret || parent == from)
801		goto out;
802
803	child = parent;
804	parent = parent->parent;
805	if (parent)
806		goto up;
807out:
808	return ret;
809}
810
811int tg_nop(struct task_group *tg, void *data)
812{
813	return 0;
814}
815#endif
816
817static void set_load_weight(struct task_struct *p)
818{
819	int prio = p->static_prio - MAX_RT_PRIO;
820	struct load_weight *load = &p->se.load;
821
822	/*
823	 * SCHED_IDLE tasks get minimal weight:
824	 */
825	if (p->policy == SCHED_IDLE) {
826		load->weight = scale_load(WEIGHT_IDLEPRIO);
827		load->inv_weight = WMULT_IDLEPRIO;
828		return;
829	}
830
831	load->weight = scale_load(prio_to_weight[prio]);
832	load->inv_weight = prio_to_wmult[prio];
833}
834
835static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
836{
837	update_rq_clock(rq);
838	sched_info_queued(rq, p);
839	p->sched_class->enqueue_task(rq, p, flags);
840}
841
842static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
843{
844	update_rq_clock(rq);
845	sched_info_dequeued(rq, p);
846	p->sched_class->dequeue_task(rq, p, flags);
847}
848
849void activate_task(struct rq *rq, struct task_struct *p, int flags)
850{
851	if (task_contributes_to_load(p))
852		rq->nr_uninterruptible--;
853
854	enqueue_task(rq, p, flags);
855}
856
857void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
858{
859	if (task_contributes_to_load(p))
860		rq->nr_uninterruptible++;
861
862	dequeue_task(rq, p, flags);
863}
864
865static void update_rq_clock_task(struct rq *rq, s64 delta)
866{
867/*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872	s64 steal = 0, irq_delta = 0;
873#endif
874#ifdef CONFIG_IRQ_TIME_ACCOUNTING
875	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876
877	/*
878	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879	 * this case when a previous update_rq_clock() happened inside a
880	 * {soft,}irq region.
881	 *
882	 * When this happens, we stop ->clock_task and only update the
883	 * prev_irq_time stamp to account for the part that fit, so that a next
884	 * update will consume the rest. This ensures ->clock_task is
885	 * monotonic.
886	 *
887	 * It does however cause some slight miss-attribution of {soft,}irq
888	 * time, a more accurate solution would be to update the irq_time using
889	 * the current rq->clock timestamp, except that would require using
890	 * atomic ops.
891	 */
892	if (irq_delta > delta)
893		irq_delta = delta;
894
895	rq->prev_irq_time += irq_delta;
896	delta -= irq_delta;
897#endif
898#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899	if (static_key_false((&paravirt_steal_rq_enabled))) {
900		steal = paravirt_steal_clock(cpu_of(rq));
901		steal -= rq->prev_steal_time_rq;
902
903		if (unlikely(steal > delta))
904			steal = delta;
905
906		rq->prev_steal_time_rq += steal;
907		delta -= steal;
908	}
909#endif
910
911	rq->clock_task += delta;
912
913#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
914	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
915		sched_rt_avg_update(rq, irq_delta + steal);
916#endif
917}
918
919void sched_set_stop_task(int cpu, struct task_struct *stop)
920{
921	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
922	struct task_struct *old_stop = cpu_rq(cpu)->stop;
923
924	if (stop) {
925		/*
926		 * Make it appear like a SCHED_FIFO task, its something
927		 * userspace knows about and won't get confused about.
928		 *
929		 * Also, it will make PI more or less work without too
930		 * much confusion -- but then, stop work should not
931		 * rely on PI working anyway.
932		 */
933		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
934
935		stop->sched_class = &stop_sched_class;
936	}
937
938	cpu_rq(cpu)->stop = stop;
939
940	if (old_stop) {
941		/*
942		 * Reset it back to a normal scheduling class so that
943		 * it can die in pieces.
944		 */
945		old_stop->sched_class = &rt_sched_class;
946	}
947}
948
949/*
950 * __normal_prio - return the priority that is based on the static prio
951 */
952static inline int __normal_prio(struct task_struct *p)
953{
954	return p->static_prio;
955}
956
957/*
958 * Calculate the expected normal priority: i.e. priority
959 * without taking RT-inheritance into account. Might be
960 * boosted by interactivity modifiers. Changes upon fork,
961 * setprio syscalls, and whenever the interactivity
962 * estimator recalculates.
963 */
964static inline int normal_prio(struct task_struct *p)
965{
966	int prio;
967
968	if (task_has_dl_policy(p))
969		prio = MAX_DL_PRIO-1;
970	else if (task_has_rt_policy(p))
971		prio = MAX_RT_PRIO-1 - p->rt_priority;
972	else
973		prio = __normal_prio(p);
974	return prio;
975}
976
977/*
978 * Calculate the current priority, i.e. the priority
979 * taken into account by the scheduler. This value might
980 * be boosted by RT tasks, or might be boosted by
981 * interactivity modifiers. Will be RT if the task got
982 * RT-boosted. If not then it returns p->normal_prio.
983 */
984static int effective_prio(struct task_struct *p)
985{
986	p->normal_prio = normal_prio(p);
987	/*
988	 * If we are RT tasks or we were boosted to RT priority,
989	 * keep the priority unchanged. Otherwise, update priority
990	 * to the normal priority:
991	 */
992	if (!rt_prio(p->prio))
993		return p->normal_prio;
994	return p->prio;
995}
996
997/**
998 * task_curr - is this task currently executing on a CPU?
999 * @p: the task in question.
1000 *
1001 * Return: 1 if the task is currently executing. 0 otherwise.
1002 */
1003inline int task_curr(const struct task_struct *p)
1004{
1005	return cpu_curr(task_cpu(p)) == p;
1006}
1007
1008static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1009				       const struct sched_class *prev_class,
1010				       int oldprio)
1011{
1012	if (prev_class != p->sched_class) {
1013		if (prev_class->switched_from)
1014			prev_class->switched_from(rq, p);
1015		p->sched_class->switched_to(rq, p);
1016	} else if (oldprio != p->prio || dl_task(p))
1017		p->sched_class->prio_changed(rq, p, oldprio);
1018}
1019
1020void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1021{
1022	const struct sched_class *class;
1023
1024	if (p->sched_class == rq->curr->sched_class) {
1025		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1026	} else {
1027		for_each_class(class) {
1028			if (class == rq->curr->sched_class)
1029				break;
1030			if (class == p->sched_class) {
1031				resched_task(rq->curr);
1032				break;
1033			}
1034		}
1035	}
1036
1037	/*
1038	 * A queue event has occurred, and we're going to schedule.  In
1039	 * this case, we can save a useless back to back clock update.
1040	 */
1041	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1042		rq->skip_clock_update = 1;
1043}
1044
1045#ifdef CONFIG_SMP
1046void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1047{
1048#ifdef CONFIG_SCHED_DEBUG
1049	/*
1050	 * We should never call set_task_cpu() on a blocked task,
1051	 * ttwu() will sort out the placement.
1052	 */
1053	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1054			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1055
1056#ifdef CONFIG_LOCKDEP
1057	/*
1058	 * The caller should hold either p->pi_lock or rq->lock, when changing
1059	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1060	 *
1061	 * sched_move_task() holds both and thus holding either pins the cgroup,
1062	 * see task_group().
1063	 *
1064	 * Furthermore, all task_rq users should acquire both locks, see
1065	 * task_rq_lock().
1066	 */
1067	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1068				      lockdep_is_held(&task_rq(p)->lock)));
1069#endif
1070#endif
1071
1072	trace_sched_migrate_task(p, new_cpu);
1073
1074	if (task_cpu(p) != new_cpu) {
1075		if (p->sched_class->migrate_task_rq)
1076			p->sched_class->migrate_task_rq(p, new_cpu);
1077		p->se.nr_migrations++;
1078		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1079	}
1080
1081	__set_task_cpu(p, new_cpu);
1082}
1083
1084static void __migrate_swap_task(struct task_struct *p, int cpu)
1085{
1086	if (p->on_rq) {
1087		struct rq *src_rq, *dst_rq;
1088
1089		src_rq = task_rq(p);
1090		dst_rq = cpu_rq(cpu);
1091
1092		deactivate_task(src_rq, p, 0);
1093		set_task_cpu(p, cpu);
1094		activate_task(dst_rq, p, 0);
1095		check_preempt_curr(dst_rq, p, 0);
1096	} else {
1097		/*
1098		 * Task isn't running anymore; make it appear like we migrated
1099		 * it before it went to sleep. This means on wakeup we make the
1100		 * previous cpu our targer instead of where it really is.
1101		 */
1102		p->wake_cpu = cpu;
1103	}
1104}
1105
1106struct migration_swap_arg {
1107	struct task_struct *src_task, *dst_task;
1108	int src_cpu, dst_cpu;
1109};
1110
1111static int migrate_swap_stop(void *data)
1112{
1113	struct migration_swap_arg *arg = data;
1114	struct rq *src_rq, *dst_rq;
1115	int ret = -EAGAIN;
1116
1117	src_rq = cpu_rq(arg->src_cpu);
1118	dst_rq = cpu_rq(arg->dst_cpu);
1119
1120	double_raw_lock(&arg->src_task->pi_lock,
1121			&arg->dst_task->pi_lock);
1122	double_rq_lock(src_rq, dst_rq);
1123	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1124		goto unlock;
1125
1126	if (task_cpu(arg->src_task) != arg->src_cpu)
1127		goto unlock;
1128
1129	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1130		goto unlock;
1131
1132	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1133		goto unlock;
1134
1135	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1136	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1137
1138	ret = 0;
1139
1140unlock:
1141	double_rq_unlock(src_rq, dst_rq);
1142	raw_spin_unlock(&arg->dst_task->pi_lock);
1143	raw_spin_unlock(&arg->src_task->pi_lock);
1144
1145	return ret;
1146}
1147
1148/*
1149 * Cross migrate two tasks
1150 */
1151int migrate_swap(struct task_struct *cur, struct task_struct *p)
1152{
1153	struct migration_swap_arg arg;
1154	int ret = -EINVAL;
1155
1156	arg = (struct migration_swap_arg){
1157		.src_task = cur,
1158		.src_cpu = task_cpu(cur),
1159		.dst_task = p,
1160		.dst_cpu = task_cpu(p),
1161	};
1162
1163	if (arg.src_cpu == arg.dst_cpu)
1164		goto out;
1165
1166	/*
1167	 * These three tests are all lockless; this is OK since all of them
1168	 * will be re-checked with proper locks held further down the line.
1169	 */
1170	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1171		goto out;
1172
1173	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1174		goto out;
1175
1176	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1177		goto out;
1178
1179	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1180	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1181
1182out:
1183	return ret;
1184}
1185
1186struct migration_arg {
1187	struct task_struct *task;
1188	int dest_cpu;
1189};
1190
1191static int migration_cpu_stop(void *data);
1192
1193/*
1194 * wait_task_inactive - wait for a thread to unschedule.
1195 *
1196 * If @match_state is nonzero, it's the @p->state value just checked and
1197 * not expected to change.  If it changes, i.e. @p might have woken up,
1198 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1199 * we return a positive number (its total switch count).  If a second call
1200 * a short while later returns the same number, the caller can be sure that
1201 * @p has remained unscheduled the whole time.
1202 *
1203 * The caller must ensure that the task *will* unschedule sometime soon,
1204 * else this function might spin for a *long* time. This function can't
1205 * be called with interrupts off, or it may introduce deadlock with
1206 * smp_call_function() if an IPI is sent by the same process we are
1207 * waiting to become inactive.
1208 */
1209unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1210{
1211	unsigned long flags;
1212	int running, on_rq;
1213	unsigned long ncsw;
1214	struct rq *rq;
1215
1216	for (;;) {
1217		/*
1218		 * We do the initial early heuristics without holding
1219		 * any task-queue locks at all. We'll only try to get
1220		 * the runqueue lock when things look like they will
1221		 * work out!
1222		 */
1223		rq = task_rq(p);
1224
1225		/*
1226		 * If the task is actively running on another CPU
1227		 * still, just relax and busy-wait without holding
1228		 * any locks.
1229		 *
1230		 * NOTE! Since we don't hold any locks, it's not
1231		 * even sure that "rq" stays as the right runqueue!
1232		 * But we don't care, since "task_running()" will
1233		 * return false if the runqueue has changed and p
1234		 * is actually now running somewhere else!
1235		 */
1236		while (task_running(rq, p)) {
1237			if (match_state && unlikely(p->state != match_state))
1238				return 0;
1239			cpu_relax();
1240		}
1241
1242		/*
1243		 * Ok, time to look more closely! We need the rq
1244		 * lock now, to be *sure*. If we're wrong, we'll
1245		 * just go back and repeat.
1246		 */
1247		rq = task_rq_lock(p, &flags);
1248		trace_sched_wait_task(p);
1249		running = task_running(rq, p);
1250		on_rq = p->on_rq;
1251		ncsw = 0;
1252		if (!match_state || p->state == match_state)
1253			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1254		task_rq_unlock(rq, p, &flags);
1255
1256		/*
1257		 * If it changed from the expected state, bail out now.
1258		 */
1259		if (unlikely(!ncsw))
1260			break;
1261
1262		/*
1263		 * Was it really running after all now that we
1264		 * checked with the proper locks actually held?
1265		 *
1266		 * Oops. Go back and try again..
1267		 */
1268		if (unlikely(running)) {
1269			cpu_relax();
1270			continue;
1271		}
1272
1273		/*
1274		 * It's not enough that it's not actively running,
1275		 * it must be off the runqueue _entirely_, and not
1276		 * preempted!
1277		 *
1278		 * So if it was still runnable (but just not actively
1279		 * running right now), it's preempted, and we should
1280		 * yield - it could be a while.
1281		 */
1282		if (unlikely(on_rq)) {
1283			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1284
1285			set_current_state(TASK_UNINTERRUPTIBLE);
1286			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1287			continue;
1288		}
1289
1290		/*
1291		 * Ahh, all good. It wasn't running, and it wasn't
1292		 * runnable, which means that it will never become
1293		 * running in the future either. We're all done!
1294		 */
1295		break;
1296	}
1297
1298	return ncsw;
1299}
1300
1301/***
1302 * kick_process - kick a running thread to enter/exit the kernel
1303 * @p: the to-be-kicked thread
1304 *
1305 * Cause a process which is running on another CPU to enter
1306 * kernel-mode, without any delay. (to get signals handled.)
1307 *
1308 * NOTE: this function doesn't have to take the runqueue lock,
1309 * because all it wants to ensure is that the remote task enters
1310 * the kernel. If the IPI races and the task has been migrated
1311 * to another CPU then no harm is done and the purpose has been
1312 * achieved as well.
1313 */
1314void kick_process(struct task_struct *p)
1315{
1316	int cpu;
1317
1318	preempt_disable();
1319	cpu = task_cpu(p);
1320	if ((cpu != smp_processor_id()) && task_curr(p))
1321		smp_send_reschedule(cpu);
1322	preempt_enable();
1323}
1324EXPORT_SYMBOL_GPL(kick_process);
1325#endif /* CONFIG_SMP */
1326
1327#ifdef CONFIG_SMP
1328/*
1329 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1330 */
1331static int select_fallback_rq(int cpu, struct task_struct *p)
1332{
1333	int nid = cpu_to_node(cpu);
1334	const struct cpumask *nodemask = NULL;
1335	enum { cpuset, possible, fail } state = cpuset;
1336	int dest_cpu;
1337
1338	/*
1339	 * If the node that the cpu is on has been offlined, cpu_to_node()
1340	 * will return -1. There is no cpu on the node, and we should
1341	 * select the cpu on the other node.
1342	 */
1343	if (nid != -1) {
1344		nodemask = cpumask_of_node(nid);
1345
1346		/* Look for allowed, online CPU in same node. */
1347		for_each_cpu(dest_cpu, nodemask) {
1348			if (!cpu_online(dest_cpu))
1349				continue;
1350			if (!cpu_active(dest_cpu))
1351				continue;
1352			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1353				return dest_cpu;
1354		}
1355	}
1356
1357	for (;;) {
1358		/* Any allowed, online CPU? */
1359		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1360			if (!cpu_online(dest_cpu))
1361				continue;
1362			if (!cpu_active(dest_cpu))
1363				continue;
1364			goto out;
1365		}
1366
1367		switch (state) {
1368		case cpuset:
1369			/* No more Mr. Nice Guy. */
1370			cpuset_cpus_allowed_fallback(p);
1371			state = possible;
1372			break;
1373
1374		case possible:
1375			do_set_cpus_allowed(p, cpu_possible_mask);
1376			state = fail;
1377			break;
1378
1379		case fail:
1380			BUG();
1381			break;
1382		}
1383	}
1384
1385out:
1386	if (state != cpuset) {
1387		/*
1388		 * Don't tell them about moving exiting tasks or
1389		 * kernel threads (both mm NULL), since they never
1390		 * leave kernel.
1391		 */
1392		if (p->mm && printk_ratelimit()) {
1393			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1394					task_pid_nr(p), p->comm, cpu);
1395		}
1396	}
1397
1398	return dest_cpu;
1399}
1400
1401/*
1402 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1403 */
1404static inline
1405int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1406{
1407	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1408
1409	/*
1410	 * In order not to call set_task_cpu() on a blocking task we need
1411	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1412	 * cpu.
1413	 *
1414	 * Since this is common to all placement strategies, this lives here.
1415	 *
1416	 * [ this allows ->select_task() to simply return task_cpu(p) and
1417	 *   not worry about this generic constraint ]
1418	 */
1419	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1420		     !cpu_online(cpu)))
1421		cpu = select_fallback_rq(task_cpu(p), p);
1422
1423	return cpu;
1424}
1425
1426static void update_avg(u64 *avg, u64 sample)
1427{
1428	s64 diff = sample - *avg;
1429	*avg += diff >> 3;
1430}
1431#endif
1432
1433static void
1434ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1435{
1436#ifdef CONFIG_SCHEDSTATS
1437	struct rq *rq = this_rq();
1438
1439#ifdef CONFIG_SMP
1440	int this_cpu = smp_processor_id();
1441
1442	if (cpu == this_cpu) {
1443		schedstat_inc(rq, ttwu_local);
1444		schedstat_inc(p, se.statistics.nr_wakeups_local);
1445	} else {
1446		struct sched_domain *sd;
1447
1448		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1449		rcu_read_lock();
1450		for_each_domain(this_cpu, sd) {
1451			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1452				schedstat_inc(sd, ttwu_wake_remote);
1453				break;
1454			}
1455		}
1456		rcu_read_unlock();
1457	}
1458
1459	if (wake_flags & WF_MIGRATED)
1460		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1461
1462#endif /* CONFIG_SMP */
1463
1464	schedstat_inc(rq, ttwu_count);
1465	schedstat_inc(p, se.statistics.nr_wakeups);
1466
1467	if (wake_flags & WF_SYNC)
1468		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1469
1470#endif /* CONFIG_SCHEDSTATS */
1471}
1472
1473static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1474{
1475	activate_task(rq, p, en_flags);
1476	p->on_rq = 1;
1477
1478	/* if a worker is waking up, notify workqueue */
1479	if (p->flags & PF_WQ_WORKER)
1480		wq_worker_waking_up(p, cpu_of(rq));
1481}
1482
1483/*
1484 * Mark the task runnable and perform wakeup-preemption.
1485 */
1486static void
1487ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1488{
1489	check_preempt_curr(rq, p, wake_flags);
1490	trace_sched_wakeup(p, true);
1491
1492	p->state = TASK_RUNNING;
1493#ifdef CONFIG_SMP
1494	if (p->sched_class->task_woken)
1495		p->sched_class->task_woken(rq, p);
1496
1497	if (rq->idle_stamp) {
1498		u64 delta = rq_clock(rq) - rq->idle_stamp;
1499		u64 max = 2*rq->max_idle_balance_cost;
1500
1501		update_avg(&rq->avg_idle, delta);
1502
1503		if (rq->avg_idle > max)
1504			rq->avg_idle = max;
1505
1506		rq->idle_stamp = 0;
1507	}
1508#endif
1509}
1510
1511static void
1512ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1513{
1514#ifdef CONFIG_SMP
1515	if (p->sched_contributes_to_load)
1516		rq->nr_uninterruptible--;
1517#endif
1518
1519	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1520	ttwu_do_wakeup(rq, p, wake_flags);
1521}
1522
1523/*
1524 * Called in case the task @p isn't fully descheduled from its runqueue,
1525 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1526 * since all we need to do is flip p->state to TASK_RUNNING, since
1527 * the task is still ->on_rq.
1528 */
1529static int ttwu_remote(struct task_struct *p, int wake_flags)
1530{
1531	struct rq *rq;
1532	int ret = 0;
1533
1534	rq = __task_rq_lock(p);
1535	if (p->on_rq) {
1536		/* check_preempt_curr() may use rq clock */
1537		update_rq_clock(rq);
1538		ttwu_do_wakeup(rq, p, wake_flags);
1539		ret = 1;
1540	}
1541	__task_rq_unlock(rq);
1542
1543	return ret;
1544}
1545
1546#ifdef CONFIG_SMP
1547void sched_ttwu_pending(void)
1548{
1549	struct rq *rq = this_rq();
1550	struct llist_node *llist = llist_del_all(&rq->wake_list);
1551	struct task_struct *p;
1552	unsigned long flags;
1553
1554	if (!llist)
1555		return;
1556
1557	raw_spin_lock_irqsave(&rq->lock, flags);
1558
1559	while (llist) {
1560		p = llist_entry(llist, struct task_struct, wake_entry);
1561		llist = llist_next(llist);
1562		ttwu_do_activate(rq, p, 0);
1563	}
1564
1565	raw_spin_unlock_irqrestore(&rq->lock, flags);
1566}
1567
1568void scheduler_ipi(void)
1569{
1570	/*
1571	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1572	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1573	 * this IPI.
1574	 */
1575	preempt_fold_need_resched();
1576
1577	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1578		return;
1579
1580	/*
1581	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1582	 * traditionally all their work was done from the interrupt return
1583	 * path. Now that we actually do some work, we need to make sure
1584	 * we do call them.
1585	 *
1586	 * Some archs already do call them, luckily irq_enter/exit nest
1587	 * properly.
1588	 *
1589	 * Arguably we should visit all archs and update all handlers,
1590	 * however a fair share of IPIs are still resched only so this would
1591	 * somewhat pessimize the simple resched case.
1592	 */
1593	irq_enter();
1594	sched_ttwu_pending();
1595
1596	/*
1597	 * Check if someone kicked us for doing the nohz idle load balance.
1598	 */
1599	if (unlikely(got_nohz_idle_kick())) {
1600		this_rq()->idle_balance = 1;
1601		raise_softirq_irqoff(SCHED_SOFTIRQ);
1602	}
1603	irq_exit();
1604}
1605
1606static void ttwu_queue_remote(struct task_struct *p, int cpu)
1607{
1608	struct rq *rq = cpu_rq(cpu);
1609
1610	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1611		if (!set_nr_if_polling(rq->idle))
1612			smp_send_reschedule(cpu);
1613		else
1614			trace_sched_wake_idle_without_ipi(cpu);
1615	}
1616}
1617
1618bool cpus_share_cache(int this_cpu, int that_cpu)
1619{
1620	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1621}
1622#endif /* CONFIG_SMP */
1623
1624static void ttwu_queue(struct task_struct *p, int cpu)
1625{
1626	struct rq *rq = cpu_rq(cpu);
1627
1628#if defined(CONFIG_SMP)
1629	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1630		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1631		ttwu_queue_remote(p, cpu);
1632		return;
1633	}
1634#endif
1635
1636	raw_spin_lock(&rq->lock);
1637	ttwu_do_activate(rq, p, 0);
1638	raw_spin_unlock(&rq->lock);
1639}
1640
1641/**
1642 * try_to_wake_up - wake up a thread
1643 * @p: the thread to be awakened
1644 * @state: the mask of task states that can be woken
1645 * @wake_flags: wake modifier flags (WF_*)
1646 *
1647 * Put it on the run-queue if it's not already there. The "current"
1648 * thread is always on the run-queue (except when the actual
1649 * re-schedule is in progress), and as such you're allowed to do
1650 * the simpler "current->state = TASK_RUNNING" to mark yourself
1651 * runnable without the overhead of this.
1652 *
1653 * Return: %true if @p was woken up, %false if it was already running.
1654 * or @state didn't match @p's state.
1655 */
1656static int
1657try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1658{
1659	unsigned long flags;
1660	int cpu, success = 0;
1661
1662	/*
1663	 * If we are going to wake up a thread waiting for CONDITION we
1664	 * need to ensure that CONDITION=1 done by the caller can not be
1665	 * reordered with p->state check below. This pairs with mb() in
1666	 * set_current_state() the waiting thread does.
1667	 */
1668	smp_mb__before_spinlock();
1669	raw_spin_lock_irqsave(&p->pi_lock, flags);
1670	if (!(p->state & state))
1671		goto out;
1672
1673	success = 1; /* we're going to change ->state */
1674	cpu = task_cpu(p);
1675
1676	if (p->on_rq && ttwu_remote(p, wake_flags))
1677		goto stat;
1678
1679#ifdef CONFIG_SMP
1680	/*
1681	 * If the owning (remote) cpu is still in the middle of schedule() with
1682	 * this task as prev, wait until its done referencing the task.
1683	 */
1684	while (p->on_cpu)
1685		cpu_relax();
1686	/*
1687	 * Pairs with the smp_wmb() in finish_lock_switch().
1688	 */
1689	smp_rmb();
1690
1691	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1692	p->state = TASK_WAKING;
1693
1694	if (p->sched_class->task_waking)
1695		p->sched_class->task_waking(p);
1696
1697	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1698	if (task_cpu(p) != cpu) {
1699		wake_flags |= WF_MIGRATED;
1700		set_task_cpu(p, cpu);
1701	}
1702#endif /* CONFIG_SMP */
1703
1704	ttwu_queue(p, cpu);
1705stat:
1706	ttwu_stat(p, cpu, wake_flags);
1707out:
1708	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1709
1710	return success;
1711}
1712
1713/**
1714 * try_to_wake_up_local - try to wake up a local task with rq lock held
1715 * @p: the thread to be awakened
1716 *
1717 * Put @p on the run-queue if it's not already there. The caller must
1718 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1719 * the current task.
1720 */
1721static void try_to_wake_up_local(struct task_struct *p)
1722{
1723	struct rq *rq = task_rq(p);
1724
1725	if (WARN_ON_ONCE(rq != this_rq()) ||
1726	    WARN_ON_ONCE(p == current))
1727		return;
1728
1729	lockdep_assert_held(&rq->lock);
1730
1731	if (!raw_spin_trylock(&p->pi_lock)) {
1732		raw_spin_unlock(&rq->lock);
1733		raw_spin_lock(&p->pi_lock);
1734		raw_spin_lock(&rq->lock);
1735	}
1736
1737	if (!(p->state & TASK_NORMAL))
1738		goto out;
1739
1740	if (!p->on_rq)
1741		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1742
1743	ttwu_do_wakeup(rq, p, 0);
1744	ttwu_stat(p, smp_processor_id(), 0);
1745out:
1746	raw_spin_unlock(&p->pi_lock);
1747}
1748
1749/**
1750 * wake_up_process - Wake up a specific process
1751 * @p: The process to be woken up.
1752 *
1753 * Attempt to wake up the nominated process and move it to the set of runnable
1754 * processes.
1755 *
1756 * Return: 1 if the process was woken up, 0 if it was already running.
1757 *
1758 * It may be assumed that this function implies a write memory barrier before
1759 * changing the task state if and only if any tasks are woken up.
1760 */
1761int wake_up_process(struct task_struct *p)
1762{
1763	WARN_ON(task_is_stopped_or_traced(p));
1764	return try_to_wake_up(p, TASK_NORMAL, 0);
1765}
1766EXPORT_SYMBOL(wake_up_process);
1767
1768int wake_up_state(struct task_struct *p, unsigned int state)
1769{
1770	return try_to_wake_up(p, state, 0);
1771}
1772
1773/*
1774 * Perform scheduler related setup for a newly forked process p.
1775 * p is forked by current.
1776 *
1777 * __sched_fork() is basic setup used by init_idle() too:
1778 */
1779static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1780{
1781	p->on_rq			= 0;
1782
1783	p->se.on_rq			= 0;
1784	p->se.exec_start		= 0;
1785	p->se.sum_exec_runtime		= 0;
1786	p->se.prev_sum_exec_runtime	= 0;
1787	p->se.nr_migrations		= 0;
1788	p->se.vruntime			= 0;
1789	INIT_LIST_HEAD(&p->se.group_node);
1790
1791#ifdef CONFIG_SCHEDSTATS
1792	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1793#endif
1794
1795	RB_CLEAR_NODE(&p->dl.rb_node);
1796	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1797	p->dl.dl_runtime = p->dl.runtime = 0;
1798	p->dl.dl_deadline = p->dl.deadline = 0;
1799	p->dl.dl_period = 0;
1800	p->dl.flags = 0;
1801
1802	INIT_LIST_HEAD(&p->rt.run_list);
1803
1804#ifdef CONFIG_PREEMPT_NOTIFIERS
1805	INIT_HLIST_HEAD(&p->preempt_notifiers);
1806#endif
1807
1808#ifdef CONFIG_NUMA_BALANCING
1809	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1810		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1811		p->mm->numa_scan_seq = 0;
1812	}
1813
1814	if (clone_flags & CLONE_VM)
1815		p->numa_preferred_nid = current->numa_preferred_nid;
1816	else
1817		p->numa_preferred_nid = -1;
1818
1819	p->node_stamp = 0ULL;
1820	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1821	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1822	p->numa_work.next = &p->numa_work;
1823	p->numa_faults_memory = NULL;
1824	p->numa_faults_buffer_memory = NULL;
1825	p->last_task_numa_placement = 0;
1826	p->last_sum_exec_runtime = 0;
1827
1828	INIT_LIST_HEAD(&p->numa_entry);
1829	p->numa_group = NULL;
1830#endif /* CONFIG_NUMA_BALANCING */
1831}
1832
1833#ifdef CONFIG_NUMA_BALANCING
1834#ifdef CONFIG_SCHED_DEBUG
1835void set_numabalancing_state(bool enabled)
1836{
1837	if (enabled)
1838		sched_feat_set("NUMA");
1839	else
1840		sched_feat_set("NO_NUMA");
1841}
1842#else
1843__read_mostly bool numabalancing_enabled;
1844
1845void set_numabalancing_state(bool enabled)
1846{
1847	numabalancing_enabled = enabled;
1848}
1849#endif /* CONFIG_SCHED_DEBUG */
1850
1851#ifdef CONFIG_PROC_SYSCTL
1852int sysctl_numa_balancing(struct ctl_table *table, int write,
1853			 void __user *buffer, size_t *lenp, loff_t *ppos)
1854{
1855	struct ctl_table t;
1856	int err;
1857	int state = numabalancing_enabled;
1858
1859	if (write && !capable(CAP_SYS_ADMIN))
1860		return -EPERM;
1861
1862	t = *table;
1863	t.data = &state;
1864	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1865	if (err < 0)
1866		return err;
1867	if (write)
1868		set_numabalancing_state(state);
1869	return err;
1870}
1871#endif
1872#endif
1873
1874/*
1875 * fork()/clone()-time setup:
1876 */
1877int sched_fork(unsigned long clone_flags, struct task_struct *p)
1878{
1879	unsigned long flags;
1880	int cpu = get_cpu();
1881
1882	__sched_fork(clone_flags, p);
1883	/*
1884	 * We mark the process as running here. This guarantees that
1885	 * nobody will actually run it, and a signal or other external
1886	 * event cannot wake it up and insert it on the runqueue either.
1887	 */
1888	p->state = TASK_RUNNING;
1889
1890	/*
1891	 * Make sure we do not leak PI boosting priority to the child.
1892	 */
1893	p->prio = current->normal_prio;
1894
1895	/*
1896	 * Revert to default priority/policy on fork if requested.
1897	 */
1898	if (unlikely(p->sched_reset_on_fork)) {
1899		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1900			p->policy = SCHED_NORMAL;
1901			p->static_prio = NICE_TO_PRIO(0);
1902			p->rt_priority = 0;
1903		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1904			p->static_prio = NICE_TO_PRIO(0);
1905
1906		p->prio = p->normal_prio = __normal_prio(p);
1907		set_load_weight(p);
1908
1909		/*
1910		 * We don't need the reset flag anymore after the fork. It has
1911		 * fulfilled its duty:
1912		 */
1913		p->sched_reset_on_fork = 0;
1914	}
1915
1916	if (dl_prio(p->prio)) {
1917		put_cpu();
1918		return -EAGAIN;
1919	} else if (rt_prio(p->prio)) {
1920		p->sched_class = &rt_sched_class;
1921	} else {
1922		p->sched_class = &fair_sched_class;
1923	}
1924
1925	if (p->sched_class->task_fork)
1926		p->sched_class->task_fork(p);
1927
1928	/*
1929	 * The child is not yet in the pid-hash so no cgroup attach races,
1930	 * and the cgroup is pinned to this child due to cgroup_fork()
1931	 * is ran before sched_fork().
1932	 *
1933	 * Silence PROVE_RCU.
1934	 */
1935	raw_spin_lock_irqsave(&p->pi_lock, flags);
1936	set_task_cpu(p, cpu);
1937	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1938
1939#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1940	if (likely(sched_info_on()))
1941		memset(&p->sched_info, 0, sizeof(p->sched_info));
1942#endif
1943#if defined(CONFIG_SMP)
1944	p->on_cpu = 0;
1945#endif
1946	init_task_preempt_count(p);
1947#ifdef CONFIG_SMP
1948	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1949	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1950#endif
1951
1952	put_cpu();
1953	return 0;
1954}
1955
1956unsigned long to_ratio(u64 period, u64 runtime)
1957{
1958	if (runtime == RUNTIME_INF)
1959		return 1ULL << 20;
1960
1961	/*
1962	 * Doing this here saves a lot of checks in all
1963	 * the calling paths, and returning zero seems
1964	 * safe for them anyway.
1965	 */
1966	if (period == 0)
1967		return 0;
1968
1969	return div64_u64(runtime << 20, period);
1970}
1971
1972#ifdef CONFIG_SMP
1973inline struct dl_bw *dl_bw_of(int i)
1974{
1975	return &cpu_rq(i)->rd->dl_bw;
1976}
1977
1978static inline int dl_bw_cpus(int i)
1979{
1980	struct root_domain *rd = cpu_rq(i)->rd;
1981	int cpus = 0;
1982
1983	for_each_cpu_and(i, rd->span, cpu_active_mask)
1984		cpus++;
1985
1986	return cpus;
1987}
1988#else
1989inline struct dl_bw *dl_bw_of(int i)
1990{
1991	return &cpu_rq(i)->dl.dl_bw;
1992}
1993
1994static inline int dl_bw_cpus(int i)
1995{
1996	return 1;
1997}
1998#endif
1999
2000static inline
2001void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2002{
2003	dl_b->total_bw -= tsk_bw;
2004}
2005
2006static inline
2007void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2008{
2009	dl_b->total_bw += tsk_bw;
2010}
2011
2012static inline
2013bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2014{
2015	return dl_b->bw != -1 &&
2016	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2017}
2018
2019/*
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2024 *
2025 * This function is called while holding p's rq->lock.
2026 */
2027static int dl_overflow(struct task_struct *p, int policy,
2028		       const struct sched_attr *attr)
2029{
2030
2031	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2032	u64 period = attr->sched_period ?: attr->sched_deadline;
2033	u64 runtime = attr->sched_runtime;
2034	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2035	int cpus, err = -1;
2036
2037	if (new_bw == p->dl.dl_bw)
2038		return 0;
2039
2040	/*
2041	 * Either if a task, enters, leave, or stays -deadline but changes
2042	 * its parameters, we may need to update accordingly the total
2043	 * allocated bandwidth of the container.
2044	 */
2045	raw_spin_lock(&dl_b->lock);
2046	cpus = dl_bw_cpus(task_cpu(p));
2047	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2048	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2049		__dl_add(dl_b, new_bw);
2050		err = 0;
2051	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2052		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2053		__dl_clear(dl_b, p->dl.dl_bw);
2054		__dl_add(dl_b, new_bw);
2055		err = 0;
2056	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2057		__dl_clear(dl_b, p->dl.dl_bw);
2058		err = 0;
2059	}
2060	raw_spin_unlock(&dl_b->lock);
2061
2062	return err;
2063}
2064
2065extern void init_dl_bw(struct dl_bw *dl_b);
2066
2067/*
2068 * wake_up_new_task - wake up a newly created task for the first time.
2069 *
2070 * This function will do some initial scheduler statistics housekeeping
2071 * that must be done for every newly created context, then puts the task
2072 * on the runqueue and wakes it.
2073 */
2074void wake_up_new_task(struct task_struct *p)
2075{
2076	unsigned long flags;
2077	struct rq *rq;
2078
2079	raw_spin_lock_irqsave(&p->pi_lock, flags);
2080#ifdef CONFIG_SMP
2081	/*
2082	 * Fork balancing, do it here and not earlier because:
2083	 *  - cpus_allowed can change in the fork path
2084	 *  - any previously selected cpu might disappear through hotplug
2085	 */
2086	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2087#endif
2088
2089	/* Initialize new task's runnable average */
2090	init_task_runnable_average(p);
2091	rq = __task_rq_lock(p);
2092	activate_task(rq, p, 0);
2093	p->on_rq = 1;
2094	trace_sched_wakeup_new(p, true);
2095	check_preempt_curr(rq, p, WF_FORK);
2096#ifdef CONFIG_SMP
2097	if (p->sched_class->task_woken)
2098		p->sched_class->task_woken(rq, p);
2099#endif
2100	task_rq_unlock(rq, p, &flags);
2101}
2102
2103#ifdef CONFIG_PREEMPT_NOTIFIERS
2104
2105/**
2106 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2107 * @notifier: notifier struct to register
2108 */
2109void preempt_notifier_register(struct preempt_notifier *notifier)
2110{
2111	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2112}
2113EXPORT_SYMBOL_GPL(preempt_notifier_register);
2114
2115/**
2116 * preempt_notifier_unregister - no longer interested in preemption notifications
2117 * @notifier: notifier struct to unregister
2118 *
2119 * This is safe to call from within a preemption notifier.
2120 */
2121void preempt_notifier_unregister(struct preempt_notifier *notifier)
2122{
2123	hlist_del(&notifier->link);
2124}
2125EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2126
2127static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2128{
2129	struct preempt_notifier *notifier;
2130
2131	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2132		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2133}
2134
2135static void
2136fire_sched_out_preempt_notifiers(struct task_struct *curr,
2137				 struct task_struct *next)
2138{
2139	struct preempt_notifier *notifier;
2140
2141	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2142		notifier->ops->sched_out(notifier, next);
2143}
2144
2145#else /* !CONFIG_PREEMPT_NOTIFIERS */
2146
2147static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2148{
2149}
2150
2151static void
2152fire_sched_out_preempt_notifiers(struct task_struct *curr,
2153				 struct task_struct *next)
2154{
2155}
2156
2157#endif /* CONFIG_PREEMPT_NOTIFIERS */
2158
2159/**
2160 * prepare_task_switch - prepare to switch tasks
2161 * @rq: the runqueue preparing to switch
2162 * @prev: the current task that is being switched out
2163 * @next: the task we are going to switch to.
2164 *
2165 * This is called with the rq lock held and interrupts off. It must
2166 * be paired with a subsequent finish_task_switch after the context
2167 * switch.
2168 *
2169 * prepare_task_switch sets up locking and calls architecture specific
2170 * hooks.
2171 */
2172static inline void
2173prepare_task_switch(struct rq *rq, struct task_struct *prev,
2174		    struct task_struct *next)
2175{
2176	trace_sched_switch(prev, next);
2177	sched_info_switch(rq, prev, next);
2178	perf_event_task_sched_out(prev, next);
2179	fire_sched_out_preempt_notifiers(prev, next);
2180	prepare_lock_switch(rq, next);
2181	prepare_arch_switch(next);
2182}
2183
2184/**
2185 * finish_task_switch - clean up after a task-switch
2186 * @rq: runqueue associated with task-switch
2187 * @prev: the thread we just switched away from.
2188 *
2189 * finish_task_switch must be called after the context switch, paired
2190 * with a prepare_task_switch call before the context switch.
2191 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2192 * and do any other architecture-specific cleanup actions.
2193 *
2194 * Note that we may have delayed dropping an mm in context_switch(). If
2195 * so, we finish that here outside of the runqueue lock. (Doing it
2196 * with the lock held can cause deadlocks; see schedule() for
2197 * details.)
2198 */
2199static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2200	__releases(rq->lock)
2201{
2202	struct mm_struct *mm = rq->prev_mm;
2203	long prev_state;
2204
2205	rq->prev_mm = NULL;
2206
2207	/*
2208	 * A task struct has one reference for the use as "current".
2209	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2210	 * schedule one last time. The schedule call will never return, and
2211	 * the scheduled task must drop that reference.
2212	 * The test for TASK_DEAD must occur while the runqueue locks are
2213	 * still held, otherwise prev could be scheduled on another cpu, die
2214	 * there before we look at prev->state, and then the reference would
2215	 * be dropped twice.
2216	 *		Manfred Spraul <manfred@colorfullife.com>
2217	 */
2218	prev_state = prev->state;
2219	vtime_task_switch(prev);
2220	finish_arch_switch(prev);
2221	perf_event_task_sched_in(prev, current);
2222	finish_lock_switch(rq, prev);
2223	finish_arch_post_lock_switch();
2224
2225	fire_sched_in_preempt_notifiers(current);
2226	if (mm)
2227		mmdrop(mm);
2228	if (unlikely(prev_state == TASK_DEAD)) {
2229		if (prev->sched_class->task_dead)
2230			prev->sched_class->task_dead(prev);
2231
2232		/*
2233		 * Remove function-return probe instances associated with this
2234		 * task and put them back on the free list.
2235		 */
2236		kprobe_flush_task(prev);
2237		put_task_struct(prev);
2238	}
2239
2240	tick_nohz_task_switch(current);
2241}
2242
2243#ifdef CONFIG_SMP
2244
2245/* rq->lock is NOT held, but preemption is disabled */
2246static inline void post_schedule(struct rq *rq)
2247{
2248	if (rq->post_schedule) {
2249		unsigned long flags;
2250
2251		raw_spin_lock_irqsave(&rq->lock, flags);
2252		if (rq->curr->sched_class->post_schedule)
2253			rq->curr->sched_class->post_schedule(rq);
2254		raw_spin_unlock_irqrestore(&rq->lock, flags);
2255
2256		rq->post_schedule = 0;
2257	}
2258}
2259
2260#else
2261
2262static inline void post_schedule(struct rq *rq)
2263{
2264}
2265
2266#endif
2267
2268/**
2269 * schedule_tail - first thing a freshly forked thread must call.
2270 * @prev: the thread we just switched away from.
2271 */
2272asmlinkage __visible void schedule_tail(struct task_struct *prev)
2273	__releases(rq->lock)
2274{
2275	struct rq *rq = this_rq();
2276
2277	finish_task_switch(rq, prev);
2278
2279	/*
2280	 * FIXME: do we need to worry about rq being invalidated by the
2281	 * task_switch?
2282	 */
2283	post_schedule(rq);
2284
2285#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2286	/* In this case, finish_task_switch does not reenable preemption */
2287	preempt_enable();
2288#endif
2289	if (current->set_child_tid)
2290		put_user(task_pid_vnr(current), current->set_child_tid);
2291}
2292
2293/*
2294 * context_switch - switch to the new MM and the new
2295 * thread's register state.
2296 */
2297static inline void
2298context_switch(struct rq *rq, struct task_struct *prev,
2299	       struct task_struct *next)
2300{
2301	struct mm_struct *mm, *oldmm;
2302
2303	prepare_task_switch(rq, prev, next);
2304
2305	mm = next->mm;
2306	oldmm = prev->active_mm;
2307	/*
2308	 * For paravirt, this is coupled with an exit in switch_to to
2309	 * combine the page table reload and the switch backend into
2310	 * one hypercall.
2311	 */
2312	arch_start_context_switch(prev);
2313
2314	if (!mm) {
2315		next->active_mm = oldmm;
2316		atomic_inc(&oldmm->mm_count);
2317		enter_lazy_tlb(oldmm, next);
2318	} else
2319		switch_mm(oldmm, mm, next);
2320
2321	if (!prev->mm) {
2322		prev->active_mm = NULL;
2323		rq->prev_mm = oldmm;
2324	}
2325	/*
2326	 * Since the runqueue lock will be released by the next
2327	 * task (which is an invalid locking op but in the case
2328	 * of the scheduler it's an obvious special-case), so we
2329	 * do an early lockdep release here:
2330	 */
2331#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2332	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2333#endif
2334
2335	context_tracking_task_switch(prev, next);
2336	/* Here we just switch the register state and the stack. */
2337	switch_to(prev, next, prev);
2338
2339	barrier();
2340	/*
2341	 * this_rq must be evaluated again because prev may have moved
2342	 * CPUs since it called schedule(), thus the 'rq' on its stack
2343	 * frame will be invalid.
2344	 */
2345	finish_task_switch(this_rq(), prev);
2346}
2347
2348/*
2349 * nr_running and nr_context_switches:
2350 *
2351 * externally visible scheduler statistics: current number of runnable
2352 * threads, total number of context switches performed since bootup.
2353 */
2354unsigned long nr_running(void)
2355{
2356	unsigned long i, sum = 0;
2357
2358	for_each_online_cpu(i)
2359		sum += cpu_rq(i)->nr_running;
2360
2361	return sum;
2362}
2363
2364unsigned long long nr_context_switches(void)
2365{
2366	int i;
2367	unsigned long long sum = 0;
2368
2369	for_each_possible_cpu(i)
2370		sum += cpu_rq(i)->nr_switches;
2371
2372	return sum;
2373}
2374
2375unsigned long nr_iowait(void)
2376{
2377	unsigned long i, sum = 0;
2378
2379	for_each_possible_cpu(i)
2380		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2381
2382	return sum;
2383}
2384
2385unsigned long nr_iowait_cpu(int cpu)
2386{
2387	struct rq *this = cpu_rq(cpu);
2388	return atomic_read(&this->nr_iowait);
2389}
2390
2391#ifdef CONFIG_SMP
2392
2393/*
2394 * sched_exec - execve() is a valuable balancing opportunity, because at
2395 * this point the task has the smallest effective memory and cache footprint.
2396 */
2397void sched_exec(void)
2398{
2399	struct task_struct *p = current;
2400	unsigned long flags;
2401	int dest_cpu;
2402
2403	raw_spin_lock_irqsave(&p->pi_lock, flags);
2404	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2405	if (dest_cpu == smp_processor_id())
2406		goto unlock;
2407
2408	if (likely(cpu_active(dest_cpu))) {
2409		struct migration_arg arg = { p, dest_cpu };
2410
2411		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2412		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2413		return;
2414	}
2415unlock:
2416	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2417}
2418
2419#endif
2420
2421DEFINE_PER_CPU(struct kernel_stat, kstat);
2422DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2423
2424EXPORT_PER_CPU_SYMBOL(kstat);
2425EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2426
2427/*
2428 * Return any ns on the sched_clock that have not yet been accounted in
2429 * @p in case that task is currently running.
2430 *
2431 * Called with task_rq_lock() held on @rq.
2432 */
2433static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2434{
2435	u64 ns = 0;
2436
2437	if (task_current(rq, p)) {
2438		update_rq_clock(rq);
2439		ns = rq_clock_task(rq) - p->se.exec_start;
2440		if ((s64)ns < 0)
2441			ns = 0;
2442	}
2443
2444	return ns;
2445}
2446
2447unsigned long long task_delta_exec(struct task_struct *p)
2448{
2449	unsigned long flags;
2450	struct rq *rq;
2451	u64 ns = 0;
2452
2453	rq = task_rq_lock(p, &flags);
2454	ns = do_task_delta_exec(p, rq);
2455	task_rq_unlock(rq, p, &flags);
2456
2457	return ns;
2458}
2459
2460/*
2461 * Return accounted runtime for the task.
2462 * In case the task is currently running, return the runtime plus current's
2463 * pending runtime that have not been accounted yet.
2464 */
2465unsigned long long task_sched_runtime(struct task_struct *p)
2466{
2467	unsigned long flags;
2468	struct rq *rq;
2469	u64 ns = 0;
2470
2471#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2472	/*
2473	 * 64-bit doesn't need locks to atomically read a 64bit value.
2474	 * So we have a optimization chance when the task's delta_exec is 0.
2475	 * Reading ->on_cpu is racy, but this is ok.
2476	 *
2477	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2478	 * If we race with it entering cpu, unaccounted time is 0. This is
2479	 * indistinguishable from the read occurring a few cycles earlier.
2480	 */
2481	if (!p->on_cpu)
2482		return p->se.sum_exec_runtime;
2483#endif
2484
2485	rq = task_rq_lock(p, &flags);
2486	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2487	task_rq_unlock(rq, p, &flags);
2488
2489	return ns;
2490}
2491
2492/*
2493 * This function gets called by the timer code, with HZ frequency.
2494 * We call it with interrupts disabled.
2495 */
2496void scheduler_tick(void)
2497{
2498	int cpu = smp_processor_id();
2499	struct rq *rq = cpu_rq(cpu);
2500	struct task_struct *curr = rq->curr;
2501
2502	sched_clock_tick();
2503
2504	raw_spin_lock(&rq->lock);
2505	update_rq_clock(rq);
2506	curr->sched_class->task_tick(rq, curr, 0);
2507	update_cpu_load_active(rq);
2508	raw_spin_unlock(&rq->lock);
2509
2510	perf_event_task_tick();
2511
2512#ifdef CONFIG_SMP
2513	rq->idle_balance = idle_cpu(cpu);
2514	trigger_load_balance(rq);
2515#endif
2516	rq_last_tick_reset(rq);
2517}
2518
2519#ifdef CONFIG_NO_HZ_FULL
2520/**
2521 * scheduler_tick_max_deferment
2522 *
2523 * Keep at least one tick per second when a single
2524 * active task is running because the scheduler doesn't
2525 * yet completely support full dynticks environment.
2526 *
2527 * This makes sure that uptime, CFS vruntime, load
2528 * balancing, etc... continue to move forward, even
2529 * with a very low granularity.
2530 *
2531 * Return: Maximum deferment in nanoseconds.
2532 */
2533u64 scheduler_tick_max_deferment(void)
2534{
2535	struct rq *rq = this_rq();
2536	unsigned long next, now = ACCESS_ONCE(jiffies);
2537
2538	next = rq->last_sched_tick + HZ;
2539
2540	if (time_before_eq(next, now))
2541		return 0;
2542
2543	return jiffies_to_nsecs(next - now);
2544}
2545#endif
2546
2547notrace unsigned long get_parent_ip(unsigned long addr)
2548{
2549	if (in_lock_functions(addr)) {
2550		addr = CALLER_ADDR2;
2551		if (in_lock_functions(addr))
2552			addr = CALLER_ADDR3;
2553	}
2554	return addr;
2555}
2556
2557#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2558				defined(CONFIG_PREEMPT_TRACER))
2559
2560void preempt_count_add(int val)
2561{
2562#ifdef CONFIG_DEBUG_PREEMPT
2563	/*
2564	 * Underflow?
2565	 */
2566	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2567		return;
2568#endif
2569	__preempt_count_add(val);
2570#ifdef CONFIG_DEBUG_PREEMPT
2571	/*
2572	 * Spinlock count overflowing soon?
2573	 */
2574	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2575				PREEMPT_MASK - 10);
2576#endif
2577	if (preempt_count() == val) {
2578		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2579#ifdef CONFIG_DEBUG_PREEMPT
2580		current->preempt_disable_ip = ip;
2581#endif
2582		trace_preempt_off(CALLER_ADDR0, ip);
2583	}
2584}
2585EXPORT_SYMBOL(preempt_count_add);
2586NOKPROBE_SYMBOL(preempt_count_add);
2587
2588void preempt_count_sub(int val)
2589{
2590#ifdef CONFIG_DEBUG_PREEMPT
2591	/*
2592	 * Underflow?
2593	 */
2594	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2595		return;
2596	/*
2597	 * Is the spinlock portion underflowing?
2598	 */
2599	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2600			!(preempt_count() & PREEMPT_MASK)))
2601		return;
2602#endif
2603
2604	if (preempt_count() == val)
2605		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2606	__preempt_count_sub(val);
2607}
2608EXPORT_SYMBOL(preempt_count_sub);
2609NOKPROBE_SYMBOL(preempt_count_sub);
2610
2611#endif
2612
2613/*
2614 * Print scheduling while atomic bug:
2615 */
2616static noinline void __schedule_bug(struct task_struct *prev)
2617{
2618	if (oops_in_progress)
2619		return;
2620
2621	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2622		prev->comm, prev->pid, preempt_count());
2623
2624	debug_show_held_locks(prev);
2625	print_modules();
2626	if (irqs_disabled())
2627		print_irqtrace_events(prev);
2628#ifdef CONFIG_DEBUG_PREEMPT
2629	if (in_atomic_preempt_off()) {
2630		pr_err("Preemption disabled at:");
2631		print_ip_sym(current->preempt_disable_ip);
2632		pr_cont("\n");
2633	}
2634#endif
2635	dump_stack();
2636	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2637}
2638
2639/*
2640 * Various schedule()-time debugging checks and statistics:
2641 */
2642static inline void schedule_debug(struct task_struct *prev)
2643{
2644	/*
2645	 * Test if we are atomic. Since do_exit() needs to call into
2646	 * schedule() atomically, we ignore that path. Otherwise whine
2647	 * if we are scheduling when we should not.
2648	 */
2649	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2650		__schedule_bug(prev);
2651	rcu_sleep_check();
2652
2653	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2654
2655	schedstat_inc(this_rq(), sched_count);
2656}
2657
2658/*
2659 * Pick up the highest-prio task:
2660 */
2661static inline struct task_struct *
2662pick_next_task(struct rq *rq, struct task_struct *prev)
2663{
2664	const struct sched_class *class = &fair_sched_class;
2665	struct task_struct *p;
2666
2667	/*
2668	 * Optimization: we know that if all tasks are in
2669	 * the fair class we can call that function directly:
2670	 */
2671	if (likely(prev->sched_class == class &&
2672		   rq->nr_running == rq->cfs.h_nr_running)) {
2673		p = fair_sched_class.pick_next_task(rq, prev);
2674		if (unlikely(p == RETRY_TASK))
2675			goto again;
2676
2677		/* assumes fair_sched_class->next == idle_sched_class */
2678		if (unlikely(!p))
2679			p = idle_sched_class.pick_next_task(rq, prev);
2680
2681		return p;
2682	}
2683
2684again:
2685	for_each_class(class) {
2686		p = class->pick_next_task(rq, prev);
2687		if (p) {
2688			if (unlikely(p == RETRY_TASK))
2689				goto again;
2690			return p;
2691		}
2692	}
2693
2694	BUG(); /* the idle class will always have a runnable task */
2695}
2696
2697/*
2698 * __schedule() is the main scheduler function.
2699 *
2700 * The main means of driving the scheduler and thus entering this function are:
2701 *
2702 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2703 *
2704 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2705 *      paths. For example, see arch/x86/entry_64.S.
2706 *
2707 *      To drive preemption between tasks, the scheduler sets the flag in timer
2708 *      interrupt handler scheduler_tick().
2709 *
2710 *   3. Wakeups don't really cause entry into schedule(). They add a
2711 *      task to the run-queue and that's it.
2712 *
2713 *      Now, if the new task added to the run-queue preempts the current
2714 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2715 *      called on the nearest possible occasion:
2716 *
2717 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2718 *
2719 *         - in syscall or exception context, at the next outmost
2720 *           preempt_enable(). (this might be as soon as the wake_up()'s
2721 *           spin_unlock()!)
2722 *
2723 *         - in IRQ context, return from interrupt-handler to
2724 *           preemptible context
2725 *
2726 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2727 *         then at the next:
2728 *
2729 *          - cond_resched() call
2730 *          - explicit schedule() call
2731 *          - return from syscall or exception to user-space
2732 *          - return from interrupt-handler to user-space
2733 */
2734static void __sched __schedule(void)
2735{
2736	struct task_struct *prev, *next;
2737	unsigned long *switch_count;
2738	struct rq *rq;
2739	int cpu;
2740
2741need_resched:
2742	preempt_disable();
2743	cpu = smp_processor_id();
2744	rq = cpu_rq(cpu);
2745	rcu_note_context_switch(cpu);
2746	prev = rq->curr;
2747
2748	schedule_debug(prev);
2749
2750	if (sched_feat(HRTICK))
2751		hrtick_clear(rq);
2752
2753	/*
2754	 * Make sure that signal_pending_state()->signal_pending() below
2755	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2756	 * done by the caller to avoid the race with signal_wake_up().
2757	 */
2758	smp_mb__before_spinlock();
2759	raw_spin_lock_irq(&rq->lock);
2760
2761	switch_count = &prev->nivcsw;
2762	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2763		if (unlikely(signal_pending_state(prev->state, prev))) {
2764			prev->state = TASK_RUNNING;
2765		} else {
2766			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2767			prev->on_rq = 0;
2768
2769			/*
2770			 * If a worker went to sleep, notify and ask workqueue
2771			 * whether it wants to wake up a task to maintain
2772			 * concurrency.
2773			 */
2774			if (prev->flags & PF_WQ_WORKER) {
2775				struct task_struct *to_wakeup;
2776
2777				to_wakeup = wq_worker_sleeping(prev, cpu);
2778				if (to_wakeup)
2779					try_to_wake_up_local(to_wakeup);
2780			}
2781		}
2782		switch_count = &prev->nvcsw;
2783	}
2784
2785	if (prev->on_rq || rq->skip_clock_update < 0)
2786		update_rq_clock(rq);
2787
2788	next = pick_next_task(rq, prev);
2789	clear_tsk_need_resched(prev);
2790	clear_preempt_need_resched();
2791	rq->skip_clock_update = 0;
2792
2793	if (likely(prev != next)) {
2794		rq->nr_switches++;
2795		rq->curr = next;
2796		++*switch_count;
2797
2798		context_switch(rq, prev, next); /* unlocks the rq */
2799		/*
2800		 * The context switch have flipped the stack from under us
2801		 * and restored the local variables which were saved when
2802		 * this task called schedule() in the past. prev == current
2803		 * is still correct, but it can be moved to another cpu/rq.
2804		 */
2805		cpu = smp_processor_id();
2806		rq = cpu_rq(cpu);
2807	} else
2808		raw_spin_unlock_irq(&rq->lock);
2809
2810	post_schedule(rq);
2811
2812	sched_preempt_enable_no_resched();
2813	if (need_resched())
2814		goto need_resched;
2815}
2816
2817static inline void sched_submit_work(struct task_struct *tsk)
2818{
2819	if (!tsk->state || tsk_is_pi_blocked(tsk))
2820		return;
2821	/*
2822	 * If we are going to sleep and we have plugged IO queued,
2823	 * make sure to submit it to avoid deadlocks.
2824	 */
2825	if (blk_needs_flush_plug(tsk))
2826		blk_schedule_flush_plug(tsk);
2827}
2828
2829asmlinkage __visible void __sched schedule(void)
2830{
2831	struct task_struct *tsk = current;
2832
2833	sched_submit_work(tsk);
2834	__schedule();
2835}
2836EXPORT_SYMBOL(schedule);
2837
2838#ifdef CONFIG_CONTEXT_TRACKING
2839asmlinkage __visible void __sched schedule_user(void)
2840{
2841	/*
2842	 * If we come here after a random call to set_need_resched(),
2843	 * or we have been woken up remotely but the IPI has not yet arrived,
2844	 * we haven't yet exited the RCU idle mode. Do it here manually until
2845	 * we find a better solution.
2846	 */
2847	user_exit();
2848	schedule();
2849	user_enter();
2850}
2851#endif
2852
2853/**
2854 * schedule_preempt_disabled - called with preemption disabled
2855 *
2856 * Returns with preemption disabled. Note: preempt_count must be 1
2857 */
2858void __sched schedule_preempt_disabled(void)
2859{
2860	sched_preempt_enable_no_resched();
2861	schedule();
2862	preempt_disable();
2863}
2864
2865#ifdef CONFIG_PREEMPT
2866/*
2867 * this is the entry point to schedule() from in-kernel preemption
2868 * off of preempt_enable. Kernel preemptions off return from interrupt
2869 * occur there and call schedule directly.
2870 */
2871asmlinkage __visible void __sched notrace preempt_schedule(void)
2872{
2873	/*
2874	 * If there is a non-zero preempt_count or interrupts are disabled,
2875	 * we do not want to preempt the current task. Just return..
2876	 */
2877	if (likely(!preemptible()))
2878		return;
2879
2880	do {
2881		__preempt_count_add(PREEMPT_ACTIVE);
2882		__schedule();
2883		__preempt_count_sub(PREEMPT_ACTIVE);
2884
2885		/*
2886		 * Check again in case we missed a preemption opportunity
2887		 * between schedule and now.
2888		 */
2889		barrier();
2890	} while (need_resched());
2891}
2892NOKPROBE_SYMBOL(preempt_schedule);
2893EXPORT_SYMBOL(preempt_schedule);
2894#endif /* CONFIG_PREEMPT */
2895
2896/*
2897 * this is the entry point to schedule() from kernel preemption
2898 * off of irq context.
2899 * Note, that this is called and return with irqs disabled. This will
2900 * protect us against recursive calling from irq.
2901 */
2902asmlinkage __visible void __sched preempt_schedule_irq(void)
2903{
2904	enum ctx_state prev_state;
2905
2906	/* Catch callers which need to be fixed */
2907	BUG_ON(preempt_count() || !irqs_disabled());
2908
2909	prev_state = exception_enter();
2910
2911	do {
2912		__preempt_count_add(PREEMPT_ACTIVE);
2913		local_irq_enable();
2914		__schedule();
2915		local_irq_disable();
2916		__preempt_count_sub(PREEMPT_ACTIVE);
2917
2918		/*
2919		 * Check again in case we missed a preemption opportunity
2920		 * between schedule and now.
2921		 */
2922		barrier();
2923	} while (need_resched());
2924
2925	exception_exit(prev_state);
2926}
2927
2928int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2929			  void *key)
2930{
2931	return try_to_wake_up(curr->private, mode, wake_flags);
2932}
2933EXPORT_SYMBOL(default_wake_function);
2934
2935#ifdef CONFIG_RT_MUTEXES
2936
2937/*
2938 * rt_mutex_setprio - set the current priority of a task
2939 * @p: task
2940 * @prio: prio value (kernel-internal form)
2941 *
2942 * This function changes the 'effective' priority of a task. It does
2943 * not touch ->normal_prio like __setscheduler().
2944 *
2945 * Used by the rt_mutex code to implement priority inheritance
2946 * logic. Call site only calls if the priority of the task changed.
2947 */
2948void rt_mutex_setprio(struct task_struct *p, int prio)
2949{
2950	int oldprio, on_rq, running, enqueue_flag = 0;
2951	struct rq *rq;
2952	const struct sched_class *prev_class;
2953
2954	BUG_ON(prio > MAX_PRIO);
2955
2956	rq = __task_rq_lock(p);
2957
2958	/*
2959	 * Idle task boosting is a nono in general. There is one
2960	 * exception, when PREEMPT_RT and NOHZ is active:
2961	 *
2962	 * The idle task calls get_next_timer_interrupt() and holds
2963	 * the timer wheel base->lock on the CPU and another CPU wants
2964	 * to access the timer (probably to cancel it). We can safely
2965	 * ignore the boosting request, as the idle CPU runs this code
2966	 * with interrupts disabled and will complete the lock
2967	 * protected section without being interrupted. So there is no
2968	 * real need to boost.
2969	 */
2970	if (unlikely(p == rq->idle)) {
2971		WARN_ON(p != rq->curr);
2972		WARN_ON(p->pi_blocked_on);
2973		goto out_unlock;
2974	}
2975
2976	trace_sched_pi_setprio(p, prio);
2977	p->pi_top_task = rt_mutex_get_top_task(p);
2978	oldprio = p->prio;
2979	prev_class = p->sched_class;
2980	on_rq = p->on_rq;
2981	running = task_current(rq, p);
2982	if (on_rq)
2983		dequeue_task(rq, p, 0);
2984	if (running)
2985		p->sched_class->put_prev_task(rq, p);
2986
2987	/*
2988	 * Boosting condition are:
2989	 * 1. -rt task is running and holds mutex A
2990	 *      --> -dl task blocks on mutex A
2991	 *
2992	 * 2. -dl task is running and holds mutex A
2993	 *      --> -dl task blocks on mutex A and could preempt the
2994	 *          running task
2995	 */
2996	if (dl_prio(prio)) {
2997		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2998			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2999			p->dl.dl_boosted = 1;
3000			p->dl.dl_throttled = 0;
3001			enqueue_flag = ENQUEUE_REPLENISH;
3002		} else
3003			p->dl.dl_boosted = 0;
3004		p->sched_class = &dl_sched_class;
3005	} else if (rt_prio(prio)) {
3006		if (dl_prio(oldprio))
3007			p->dl.dl_boosted = 0;
3008		if (oldprio < prio)
3009			enqueue_flag = ENQUEUE_HEAD;
3010		p->sched_class = &rt_sched_class;
3011	} else {
3012		if (dl_prio(oldprio))
3013			p->dl.dl_boosted = 0;
3014		p->sched_class = &fair_sched_class;
3015	}
3016
3017	p->prio = prio;
3018
3019	if (running)
3020		p->sched_class->set_curr_task(rq);
3021	if (on_rq)
3022		enqueue_task(rq, p, enqueue_flag);
3023
3024	check_class_changed(rq, p, prev_class, oldprio);
3025out_unlock:
3026	__task_rq_unlock(rq);
3027}
3028#endif
3029
3030void set_user_nice(struct task_struct *p, long nice)
3031{
3032	int old_prio, delta, on_rq;
3033	unsigned long flags;
3034	struct rq *rq;
3035
3036	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3037		return;
3038	/*
3039	 * We have to be careful, if called from sys_setpriority(),
3040	 * the task might be in the middle of scheduling on another CPU.
3041	 */
3042	rq = task_rq_lock(p, &flags);
3043	/*
3044	 * The RT priorities are set via sched_setscheduler(), but we still
3045	 * allow the 'normal' nice value to be set - but as expected
3046	 * it wont have any effect on scheduling until the task is
3047	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3048	 */
3049	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3050		p->static_prio = NICE_TO_PRIO(nice);
3051		goto out_unlock;
3052	}
3053	on_rq = p->on_rq;
3054	if (on_rq)
3055		dequeue_task(rq, p, 0);
3056
3057	p->static_prio = NICE_TO_PRIO(nice);
3058	set_load_weight(p);
3059	old_prio = p->prio;
3060	p->prio = effective_prio(p);
3061	delta = p->prio - old_prio;
3062
3063	if (on_rq) {
3064		enqueue_task(rq, p, 0);
3065		/*
3066		 * If the task increased its priority or is running and
3067		 * lowered its priority, then reschedule its CPU:
3068		 */
3069		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3070			resched_task(rq->curr);
3071	}
3072out_unlock:
3073	task_rq_unlock(rq, p, &flags);
3074}
3075EXPORT_SYMBOL(set_user_nice);
3076
3077/*
3078 * can_nice - check if a task can reduce its nice value
3079 * @p: task
3080 * @nice: nice value
3081 */
3082int can_nice(const struct task_struct *p, const int nice)
3083{
3084	/* convert nice value [19,-20] to rlimit style value [1,40] */
3085	int nice_rlim = nice_to_rlimit(nice);
3086
3087	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3088		capable(CAP_SYS_NICE));
3089}
3090
3091#ifdef __ARCH_WANT_SYS_NICE
3092
3093/*
3094 * sys_nice - change the priority of the current process.
3095 * @increment: priority increment
3096 *
3097 * sys_setpriority is a more generic, but much slower function that
3098 * does similar things.
3099 */
3100SYSCALL_DEFINE1(nice, int, increment)
3101{
3102	long nice, retval;
3103
3104	/*
3105	 * Setpriority might change our priority at the same moment.
3106	 * We don't have to worry. Conceptually one call occurs first
3107	 * and we have a single winner.
3108	 */
3109	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3110	nice = task_nice(current) + increment;
3111
3112	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3113	if (increment < 0 && !can_nice(current, nice))
3114		return -EPERM;
3115
3116	retval = security_task_setnice(current, nice);
3117	if (retval)
3118		return retval;
3119
3120	set_user_nice(current, nice);
3121	return 0;
3122}
3123
3124#endif
3125
3126/**
3127 * task_prio - return the priority value of a given task.
3128 * @p: the task in question.
3129 *
3130 * Return: The priority value as seen by users in /proc.
3131 * RT tasks are offset by -200. Normal tasks are centered
3132 * around 0, value goes from -16 to +15.
3133 */
3134int task_prio(const struct task_struct *p)
3135{
3136	return p->prio - MAX_RT_PRIO;
3137}
3138
3139/**
3140 * idle_cpu - is a given cpu idle currently?
3141 * @cpu: the processor in question.
3142 *
3143 * Return: 1 if the CPU is currently idle. 0 otherwise.
3144 */
3145int idle_cpu(int cpu)
3146{
3147	struct rq *rq = cpu_rq(cpu);
3148
3149	if (rq->curr != rq->idle)
3150		return 0;
3151
3152	if (rq->nr_running)
3153		return 0;
3154
3155#ifdef CONFIG_SMP
3156	if (!llist_empty(&rq->wake_list))
3157		return 0;
3158#endif
3159
3160	return 1;
3161}
3162
3163/**
3164 * idle_task - return the idle task for a given cpu.
3165 * @cpu: the processor in question.
3166 *
3167 * Return: The idle task for the cpu @cpu.
3168 */
3169struct task_struct *idle_task(int cpu)
3170{
3171	return cpu_rq(cpu)->idle;
3172}
3173
3174/**
3175 * find_process_by_pid - find a process with a matching PID value.
3176 * @pid: the pid in question.
3177 *
3178 * The task of @pid, if found. %NULL otherwise.
3179 */
3180static struct task_struct *find_process_by_pid(pid_t pid)
3181{
3182	return pid ? find_task_by_vpid(pid) : current;
3183}
3184
3185/*
3186 * This function initializes the sched_dl_entity of a newly becoming
3187 * SCHED_DEADLINE task.
3188 *
3189 * Only the static values are considered here, the actual runtime and the
3190 * absolute deadline will be properly calculated when the task is enqueued
3191 * for the first time with its new policy.
3192 */
3193static void
3194__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3195{
3196	struct sched_dl_entity *dl_se = &p->dl;
3197
3198	init_dl_task_timer(dl_se);
3199	dl_se->dl_runtime = attr->sched_runtime;
3200	dl_se->dl_deadline = attr->sched_deadline;
3201	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3202	dl_se->flags = attr->sched_flags;
3203	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3204	dl_se->dl_throttled = 0;
3205	dl_se->dl_new = 1;
3206	dl_se->dl_yielded = 0;
3207}
3208
3209static void __setscheduler_params(struct task_struct *p,
3210		const struct sched_attr *attr)
3211{
3212	int policy = attr->sched_policy;
3213
3214	if (policy == -1) /* setparam */
3215		policy = p->policy;
3216
3217	p->policy = policy;
3218
3219	if (dl_policy(policy))
3220		__setparam_dl(p, attr);
3221	else if (fair_policy(policy))
3222		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3223
3224	/*
3225	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3226	 * !rt_policy. Always setting this ensures that things like
3227	 * getparam()/getattr() don't report silly values for !rt tasks.
3228	 */
3229	p->rt_priority = attr->sched_priority;
3230	p->normal_prio = normal_prio(p);
3231	set_load_weight(p);
3232}
3233
3234/* Actually do priority change: must hold pi & rq lock. */
3235static void __setscheduler(struct rq *rq, struct task_struct *p,
3236			   const struct sched_attr *attr)
3237{
3238	__setscheduler_params(p, attr);
3239
3240	/*
3241	 * If we get here, there was no pi waiters boosting the
3242	 * task. It is safe to use the normal prio.
3243	 */
3244	p->prio = normal_prio(p);
3245
3246	if (dl_prio(p->prio))
3247		p->sched_class = &dl_sched_class;
3248	else if (rt_prio(p->prio))
3249		p->sched_class = &rt_sched_class;
3250	else
3251		p->sched_class = &fair_sched_class;
3252}
3253
3254static void
3255__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3256{
3257	struct sched_dl_entity *dl_se = &p->dl;
3258
3259	attr->sched_priority = p->rt_priority;
3260	attr->sched_runtime = dl_se->dl_runtime;
3261	attr->sched_deadline = dl_se->dl_deadline;
3262	attr->sched_period = dl_se->dl_period;
3263	attr->sched_flags = dl_se->flags;
3264}
3265
3266/*
3267 * This function validates the new parameters of a -deadline task.
3268 * We ask for the deadline not being zero, and greater or equal
3269 * than the runtime, as well as the period of being zero or
3270 * greater than deadline. Furthermore, we have to be sure that
3271 * user parameters are above the internal resolution of 1us (we
3272 * check sched_runtime only since it is always the smaller one) and
3273 * below 2^63 ns (we have to check both sched_deadline and
3274 * sched_period, as the latter can be zero).
3275 */
3276static bool
3277__checkparam_dl(const struct sched_attr *attr)
3278{
3279	/* deadline != 0 */
3280	if (attr->sched_deadline == 0)
3281		return false;
3282
3283	/*
3284	 * Since we truncate DL_SCALE bits, make sure we're at least
3285	 * that big.
3286	 */
3287	if (attr->sched_runtime < (1ULL << DL_SCALE))
3288		return false;
3289
3290	/*
3291	 * Since we use the MSB for wrap-around and sign issues, make
3292	 * sure it's not set (mind that period can be equal to zero).
3293	 */
3294	if (attr->sched_deadline & (1ULL << 63) ||
3295	    attr->sched_period & (1ULL << 63))
3296		return false;
3297
3298	/* runtime <= deadline <= period (if period != 0) */
3299	if ((attr->sched_period != 0 &&
3300	     attr->sched_period < attr->sched_deadline) ||
3301	    attr->sched_deadline < attr->sched_runtime)
3302		return false;
3303
3304	return true;
3305}
3306
3307/*
3308 * check the target process has a UID that matches the current process's
3309 */
3310static bool check_same_owner(struct task_struct *p)
3311{
3312	const struct cred *cred = current_cred(), *pcred;
3313	bool match;
3314
3315	rcu_read_lock();
3316	pcred = __task_cred(p);
3317	match = (uid_eq(cred->euid, pcred->euid) ||
3318		 uid_eq(cred->euid, pcred->uid));
3319	rcu_read_unlock();
3320	return match;
3321}
3322
3323static int __sched_setscheduler(struct task_struct *p,
3324				const struct sched_attr *attr,
3325				bool user)
3326{
3327	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3328		      MAX_RT_PRIO - 1 - attr->sched_priority;
3329	int retval, oldprio, oldpolicy = -1, on_rq, running;
3330	int policy = attr->sched_policy;
3331	unsigned long flags;
3332	const struct sched_class *prev_class;
3333	struct rq *rq;
3334	int reset_on_fork;
3335
3336	/* may grab non-irq protected spin_locks */
3337	BUG_ON(in_interrupt());
3338recheck:
3339	/* double check policy once rq lock held */
3340	if (policy < 0) {
3341		reset_on_fork = p->sched_reset_on_fork;
3342		policy = oldpolicy = p->policy;
3343	} else {
3344		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3345
3346		if (policy != SCHED_DEADLINE &&
3347				policy != SCHED_FIFO && policy != SCHED_RR &&
3348				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3349				policy != SCHED_IDLE)
3350			return -EINVAL;
3351	}
3352
3353	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3354		return -EINVAL;
3355
3356	/*
3357	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3358	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3359	 * SCHED_BATCH and SCHED_IDLE is 0.
3360	 */
3361	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3362	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3363		return -EINVAL;
3364	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3365	    (rt_policy(policy) != (attr->sched_priority != 0)))
3366		return -EINVAL;
3367
3368	/*
3369	 * Allow unprivileged RT tasks to decrease priority:
3370	 */
3371	if (user && !capable(CAP_SYS_NICE)) {
3372		if (fair_policy(policy)) {
3373			if (attr->sched_nice < task_nice(p) &&
3374			    !can_nice(p, attr->sched_nice))
3375				return -EPERM;
3376		}
3377
3378		if (rt_policy(policy)) {
3379			unsigned long rlim_rtprio =
3380					task_rlimit(p, RLIMIT_RTPRIO);
3381
3382			/* can't set/change the rt policy */
3383			if (policy != p->policy && !rlim_rtprio)
3384				return -EPERM;
3385
3386			/* can't increase priority */
3387			if (attr->sched_priority > p->rt_priority &&
3388			    attr->sched_priority > rlim_rtprio)
3389				return -EPERM;
3390		}
3391
3392		 /*
3393		  * Can't set/change SCHED_DEADLINE policy at all for now
3394		  * (safest behavior); in the future we would like to allow
3395		  * unprivileged DL tasks to increase their relative deadline
3396		  * or reduce their runtime (both ways reducing utilization)
3397		  */
3398		if (dl_policy(policy))
3399			return -EPERM;
3400
3401		/*
3402		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3403		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3404		 */
3405		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3406			if (!can_nice(p, task_nice(p)))
3407				return -EPERM;
3408		}
3409
3410		/* can't change other user's priorities */
3411		if (!check_same_owner(p))
3412			return -EPERM;
3413
3414		/* Normal users shall not reset the sched_reset_on_fork flag */
3415		if (p->sched_reset_on_fork && !reset_on_fork)
3416			return -EPERM;
3417	}
3418
3419	if (user) {
3420		retval = security_task_setscheduler(p);
3421		if (retval)
3422			return retval;
3423	}
3424
3425	/*
3426	 * make sure no PI-waiters arrive (or leave) while we are
3427	 * changing the priority of the task:
3428	 *
3429	 * To be able to change p->policy safely, the appropriate
3430	 * runqueue lock must be held.
3431	 */
3432	rq = task_rq_lock(p, &flags);
3433
3434	/*
3435	 * Changing the policy of the stop threads its a very bad idea
3436	 */
3437	if (p == rq->stop) {
3438		task_rq_unlock(rq, p, &flags);
3439		return -EINVAL;
3440	}
3441
3442	/*
3443	 * If not changing anything there's no need to proceed further,
3444	 * but store a possible modification of reset_on_fork.
3445	 */
3446	if (unlikely(policy == p->policy)) {
3447		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3448			goto change;
3449		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3450			goto change;
3451		if (dl_policy(policy))
3452			goto change;
3453
3454		p->sched_reset_on_fork = reset_on_fork;
3455		task_rq_unlock(rq, p, &flags);
3456		return 0;
3457	}
3458change:
3459
3460	if (user) {
3461#ifdef CONFIG_RT_GROUP_SCHED
3462		/*
3463		 * Do not allow realtime tasks into groups that have no runtime
3464		 * assigned.
3465		 */
3466		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3467				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3468				!task_group_is_autogroup(task_group(p))) {
3469			task_rq_unlock(rq, p, &flags);
3470			return -EPERM;
3471		}
3472#endif
3473#ifdef CONFIG_SMP
3474		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3475			cpumask_t *span = rq->rd->span;
3476
3477			/*
3478			 * Don't allow tasks with an affinity mask smaller than
3479			 * the entire root_domain to become SCHED_DEADLINE. We
3480			 * will also fail if there's no bandwidth available.
3481			 */
3482			if (!cpumask_subset(span, &p->cpus_allowed) ||
3483			    rq->rd->dl_bw.bw == 0) {
3484				task_rq_unlock(rq, p, &flags);
3485				return -EPERM;
3486			}
3487		}
3488#endif
3489	}
3490
3491	/* recheck policy now with rq lock held */
3492	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3493		policy = oldpolicy = -1;
3494		task_rq_unlock(rq, p, &flags);
3495		goto recheck;
3496	}
3497
3498	/*
3499	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3500	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3501	 * is available.
3502	 */
3503	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3504		task_rq_unlock(rq, p, &flags);
3505		return -EBUSY;
3506	}
3507
3508	p->sched_reset_on_fork = reset_on_fork;
3509	oldprio = p->prio;
3510
3511	/*
3512	 * Special case for priority boosted tasks.
3513	 *
3514	 * If the new priority is lower or equal (user space view)
3515	 * than the current (boosted) priority, we just store the new
3516	 * normal parameters and do not touch the scheduler class and
3517	 * the runqueue. This will be done when the task deboost
3518	 * itself.
3519	 */
3520	if (rt_mutex_check_prio(p, newprio)) {
3521		__setscheduler_params(p, attr);
3522		task_rq_unlock(rq, p, &flags);
3523		return 0;
3524	}
3525
3526	on_rq = p->on_rq;
3527	running = task_current(rq, p);
3528	if (on_rq)
3529		dequeue_task(rq, p, 0);
3530	if (running)
3531		p->sched_class->put_prev_task(rq, p);
3532
3533	prev_class = p->sched_class;
3534	__setscheduler(rq, p, attr);
3535
3536	if (running)
3537		p->sched_class->set_curr_task(rq);
3538	if (on_rq) {
3539		/*
3540		 * We enqueue to tail when the priority of a task is
3541		 * increased (user space view).
3542		 */
3543		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3544	}
3545
3546	check_class_changed(rq, p, prev_class, oldprio);
3547	task_rq_unlock(rq, p, &flags);
3548
3549	rt_mutex_adjust_pi(p);
3550
3551	return 0;
3552}
3553
3554static int _sched_setscheduler(struct task_struct *p, int policy,
3555			       const struct sched_param *param, bool check)
3556{
3557	struct sched_attr attr = {
3558		.sched_policy   = policy,
3559		.sched_priority = param->sched_priority,
3560		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3561	};
3562
3563	/*
3564	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3565	 */
3566	if (policy & SCHED_RESET_ON_FORK) {
3567		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3568		policy &= ~SCHED_RESET_ON_FORK;
3569		attr.sched_policy = policy;
3570	}
3571
3572	return __sched_setscheduler(p, &attr, check);
3573}
3574/**
3575 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3576 * @p: the task in question.
3577 * @policy: new policy.
3578 * @param: structure containing the new RT priority.
3579 *
3580 * Return: 0 on success. An error code otherwise.
3581 *
3582 * NOTE that the task may be already dead.
3583 */
3584int sched_setscheduler(struct task_struct *p, int policy,
3585		       const struct sched_param *param)
3586{
3587	return _sched_setscheduler(p, policy, param, true);
3588}
3589EXPORT_SYMBOL_GPL(sched_setscheduler);
3590
3591int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3592{
3593	return __sched_setscheduler(p, attr, true);
3594}
3595EXPORT_SYMBOL_GPL(sched_setattr);
3596
3597/**
3598 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3599 * @p: the task in question.
3600 * @policy: new policy.
3601 * @param: structure containing the new RT priority.
3602 *
3603 * Just like sched_setscheduler, only don't bother checking if the
3604 * current context has permission.  For example, this is needed in
3605 * stop_machine(): we create temporary high priority worker threads,
3606 * but our caller might not have that capability.
3607 *
3608 * Return: 0 on success. An error code otherwise.
3609 */
3610int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3611			       const struct sched_param *param)
3612{
3613	return _sched_setscheduler(p, policy, param, false);
3614}
3615
3616static int
3617do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3618{
3619	struct sched_param lparam;
3620	struct task_struct *p;
3621	int retval;
3622
3623	if (!param || pid < 0)
3624		return -EINVAL;
3625	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3626		return -EFAULT;
3627
3628	rcu_read_lock();
3629	retval = -ESRCH;
3630	p = find_process_by_pid(pid);
3631	if (p != NULL)
3632		retval = sched_setscheduler(p, policy, &lparam);
3633	rcu_read_unlock();
3634
3635	return retval;
3636}
3637
3638/*
3639 * Mimics kernel/events/core.c perf_copy_attr().
3640 */
3641static int sched_copy_attr(struct sched_attr __user *uattr,
3642			   struct sched_attr *attr)
3643{
3644	u32 size;
3645	int ret;
3646
3647	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3648		return -EFAULT;
3649
3650	/*
3651	 * zero the full structure, so that a short copy will be nice.
3652	 */
3653	memset(attr, 0, sizeof(*attr));
3654
3655	ret = get_user(size, &uattr->size);
3656	if (ret)
3657		return ret;
3658
3659	if (size > PAGE_SIZE)	/* silly large */
3660		goto err_size;
3661
3662	if (!size)		/* abi compat */
3663		size = SCHED_ATTR_SIZE_VER0;
3664
3665	if (size < SCHED_ATTR_SIZE_VER0)
3666		goto err_size;
3667
3668	/*
3669	 * If we're handed a bigger struct than we know of,
3670	 * ensure all the unknown bits are 0 - i.e. new
3671	 * user-space does not rely on any kernel feature
3672	 * extensions we dont know about yet.
3673	 */
3674	if (size > sizeof(*attr)) {
3675		unsigned char __user *addr;
3676		unsigned char __user *end;
3677		unsigned char val;
3678
3679		addr = (void __user *)uattr + sizeof(*attr);
3680		end  = (void __user *)uattr + size;
3681
3682		for (; addr < end; addr++) {
3683			ret = get_user(val, addr);
3684			if (ret)
3685				return ret;
3686			if (val)
3687				goto err_size;
3688		}
3689		size = sizeof(*attr);
3690	}
3691
3692	ret = copy_from_user(attr, uattr, size);
3693	if (ret)
3694		return -EFAULT;
3695
3696	/*
3697	 * XXX: do we want to be lenient like existing syscalls; or do we want
3698	 * to be strict and return an error on out-of-bounds values?
3699	 */
3700	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3701
3702	return 0;
3703
3704err_size:
3705	put_user(sizeof(*attr), &uattr->size);
3706	return -E2BIG;
3707}
3708
3709/**
3710 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3711 * @pid: the pid in question.
3712 * @policy: new policy.
3713 * @param: structure containing the new RT priority.
3714 *
3715 * Return: 0 on success. An error code otherwise.
3716 */
3717SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3718		struct sched_param __user *, param)
3719{
3720	/* negative values for policy are not valid */
3721	if (policy < 0)
3722		return -EINVAL;
3723
3724	return do_sched_setscheduler(pid, policy, param);
3725}
3726
3727/**
3728 * sys_sched_setparam - set/change the RT priority of a thread
3729 * @pid: the pid in question.
3730 * @param: structure containing the new RT priority.
3731 *
3732 * Return: 0 on success. An error code otherwise.
3733 */
3734SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3735{
3736	return do_sched_setscheduler(pid, -1, param);
3737}
3738
3739/**
3740 * sys_sched_setattr - same as above, but with extended sched_attr
3741 * @pid: the pid in question.
3742 * @uattr: structure containing the extended parameters.
3743 * @flags: for future extension.
3744 */
3745SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3746			       unsigned int, flags)
3747{
3748	struct sched_attr attr;
3749	struct task_struct *p;
3750	int retval;
3751
3752	if (!uattr || pid < 0 || flags)
3753		return -EINVAL;
3754
3755	retval = sched_copy_attr(uattr, &attr);
3756	if (retval)
3757		return retval;
3758
3759	if ((int)attr.sched_policy < 0)
3760		return -EINVAL;
3761
3762	rcu_read_lock();
3763	retval = -ESRCH;
3764	p = find_process_by_pid(pid);
3765	if (p != NULL)
3766		retval = sched_setattr(p, &attr);
3767	rcu_read_unlock();
3768
3769	return retval;
3770}
3771
3772/**
3773 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3774 * @pid: the pid in question.
3775 *
3776 * Return: On success, the policy of the thread. Otherwise, a negative error
3777 * code.
3778 */
3779SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3780{
3781	struct task_struct *p;
3782	int retval;
3783
3784	if (pid < 0)
3785		return -EINVAL;
3786
3787	retval = -ESRCH;
3788	rcu_read_lock();
3789	p = find_process_by_pid(pid);
3790	if (p) {
3791		retval = security_task_getscheduler(p);
3792		if (!retval)
3793			retval = p->policy
3794				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3795	}
3796	rcu_read_unlock();
3797	return retval;
3798}
3799
3800/**
3801 * sys_sched_getparam - get the RT priority of a thread
3802 * @pid: the pid in question.
3803 * @param: structure containing the RT priority.
3804 *
3805 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3806 * code.
3807 */
3808SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3809{
3810	struct sched_param lp = { .sched_priority = 0 };
3811	struct task_struct *p;
3812	int retval;
3813
3814	if (!param || pid < 0)
3815		return -EINVAL;
3816
3817	rcu_read_lock();
3818	p = find_process_by_pid(pid);
3819	retval = -ESRCH;
3820	if (!p)
3821		goto out_unlock;
3822
3823	retval = security_task_getscheduler(p);
3824	if (retval)
3825		goto out_unlock;
3826
3827	if (task_has_rt_policy(p))
3828		lp.sched_priority = p->rt_priority;
3829	rcu_read_unlock();
3830
3831	/*
3832	 * This one might sleep, we cannot do it with a spinlock held ...
3833	 */
3834	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3835
3836	return retval;
3837
3838out_unlock:
3839	rcu_read_unlock();
3840	return retval;
3841}
3842
3843static int sched_read_attr(struct sched_attr __user *uattr,
3844			   struct sched_attr *attr,
3845			   unsigned int usize)
3846{
3847	int ret;
3848
3849	if (!access_ok(VERIFY_WRITE, uattr, usize))
3850		return -EFAULT;
3851
3852	/*
3853	 * If we're handed a smaller struct than we know of,
3854	 * ensure all the unknown bits are 0 - i.e. old
3855	 * user-space does not get uncomplete information.
3856	 */
3857	if (usize < sizeof(*attr)) {
3858		unsigned char *addr;
3859		unsigned char *end;
3860
3861		addr = (void *)attr + usize;
3862		end  = (void *)attr + sizeof(*attr);
3863
3864		for (; addr < end; addr++) {
3865			if (*addr)
3866				return -EFBIG;
3867		}
3868
3869		attr->size = usize;
3870	}
3871
3872	ret = copy_to_user(uattr, attr, attr->size);
3873	if (ret)
3874		return -EFAULT;
3875
3876	return 0;
3877}
3878
3879/**
3880 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3881 * @pid: the pid in question.
3882 * @uattr: structure containing the extended parameters.
3883 * @size: sizeof(attr) for fwd/bwd comp.
3884 * @flags: for future extension.
3885 */
3886SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3887		unsigned int, size, unsigned int, flags)
3888{
3889	struct sched_attr attr = {
3890		.size = sizeof(struct sched_attr),
3891	};
3892	struct task_struct *p;
3893	int retval;
3894
3895	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3896	    size < SCHED_ATTR_SIZE_VER0 || flags)
3897		return -EINVAL;
3898
3899	rcu_read_lock();
3900	p = find_process_by_pid(pid);
3901	retval = -ESRCH;
3902	if (!p)
3903		goto out_unlock;
3904
3905	retval = security_task_getscheduler(p);
3906	if (retval)
3907		goto out_unlock;
3908
3909	attr.sched_policy = p->policy;
3910	if (p->sched_reset_on_fork)
3911		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3912	if (task_has_dl_policy(p))
3913		__getparam_dl(p, &attr);
3914	else if (task_has_rt_policy(p))
3915		attr.sched_priority = p->rt_priority;
3916	else
3917		attr.sched_nice = task_nice(p);
3918
3919	rcu_read_unlock();
3920
3921	retval = sched_read_attr(uattr, &attr, size);
3922	return retval;
3923
3924out_unlock:
3925	rcu_read_unlock();
3926	return retval;
3927}
3928
3929long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3930{
3931	cpumask_var_t cpus_allowed, new_mask;
3932	struct task_struct *p;
3933	int retval;
3934
3935	rcu_read_lock();
3936
3937	p = find_process_by_pid(pid);
3938	if (!p) {
3939		rcu_read_unlock();
3940		return -ESRCH;
3941	}
3942
3943	/* Prevent p going away */
3944	get_task_struct(p);
3945	rcu_read_unlock();
3946
3947	if (p->flags & PF_NO_SETAFFINITY) {
3948		retval = -EINVAL;
3949		goto out_put_task;
3950	}
3951	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3952		retval = -ENOMEM;
3953		goto out_put_task;
3954	}
3955	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3956		retval = -ENOMEM;
3957		goto out_free_cpus_allowed;
3958	}
3959	retval = -EPERM;
3960	if (!check_same_owner(p)) {
3961		rcu_read_lock();
3962		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3963			rcu_read_unlock();
3964			goto out_unlock;
3965		}
3966		rcu_read_unlock();
3967	}
3968
3969	retval = security_task_setscheduler(p);
3970	if (retval)
3971		goto out_unlock;
3972
3973
3974	cpuset_cpus_allowed(p, cpus_allowed);
3975	cpumask_and(new_mask, in_mask, cpus_allowed);
3976
3977	/*
3978	 * Since bandwidth control happens on root_domain basis,
3979	 * if admission test is enabled, we only admit -deadline
3980	 * tasks allowed to run on all the CPUs in the task's
3981	 * root_domain.
3982	 */
3983#ifdef CONFIG_SMP
3984	if (task_has_dl_policy(p)) {
3985		const struct cpumask *span = task_rq(p)->rd->span;
3986
3987		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3988			retval = -EBUSY;
3989			goto out_unlock;
3990		}
3991	}
3992#endif
3993again:
3994	retval = set_cpus_allowed_ptr(p, new_mask);
3995
3996	if (!retval) {
3997		cpuset_cpus_allowed(p, cpus_allowed);
3998		if (!cpumask_subset(new_mask, cpus_allowed)) {
3999			/*
4000			 * We must have raced with a concurrent cpuset
4001			 * update. Just reset the cpus_allowed to the
4002			 * cpuset's cpus_allowed
4003			 */
4004			cpumask_copy(new_mask, cpus_allowed);
4005			goto again;
4006		}
4007	}
4008out_unlock:
4009	free_cpumask_var(new_mask);
4010out_free_cpus_allowed:
4011	free_cpumask_var(cpus_allowed);
4012out_put_task:
4013	put_task_struct(p);
4014	return retval;
4015}
4016
4017static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4018			     struct cpumask *new_mask)
4019{
4020	if (len < cpumask_size())
4021		cpumask_clear(new_mask);
4022	else if (len > cpumask_size())
4023		len = cpumask_size();
4024
4025	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4026}
4027
4028/**
4029 * sys_sched_setaffinity - set the cpu affinity of a process
4030 * @pid: pid of the process
4031 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4032 * @user_mask_ptr: user-space pointer to the new cpu mask
4033 *
4034 * Return: 0 on success. An error code otherwise.
4035 */
4036SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4037		unsigned long __user *, user_mask_ptr)
4038{
4039	cpumask_var_t new_mask;
4040	int retval;
4041
4042	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4043		return -ENOMEM;
4044
4045	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4046	if (retval == 0)
4047		retval = sched_setaffinity(pid, new_mask);
4048	free_cpumask_var(new_mask);
4049	return retval;
4050}
4051
4052long sched_getaffinity(pid_t pid, struct cpumask *mask)
4053{
4054	struct task_struct *p;
4055	unsigned long flags;
4056	int retval;
4057
4058	rcu_read_lock();
4059
4060	retval = -ESRCH;
4061	p = find_process_by_pid(pid);
4062	if (!p)
4063		goto out_unlock;
4064
4065	retval = security_task_getscheduler(p);
4066	if (retval)
4067		goto out_unlock;
4068
4069	raw_spin_lock_irqsave(&p->pi_lock, flags);
4070	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4071	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4072
4073out_unlock:
4074	rcu_read_unlock();
4075
4076	return retval;
4077}
4078
4079/**
4080 * sys_sched_getaffinity - get the cpu affinity of a process
4081 * @pid: pid of the process
4082 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4083 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4084 *
4085 * Return: 0 on success. An error code otherwise.
4086 */
4087SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4088		unsigned long __user *, user_mask_ptr)
4089{
4090	int ret;
4091	cpumask_var_t mask;
4092
4093	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4094		return -EINVAL;
4095	if (len & (sizeof(unsigned long)-1))
4096		return -EINVAL;
4097
4098	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4099		return -ENOMEM;
4100
4101	ret = sched_getaffinity(pid, mask);
4102	if (ret == 0) {
4103		size_t retlen = min_t(size_t, len, cpumask_size());
4104
4105		if (copy_to_user(user_mask_ptr, mask, retlen))
4106			ret = -EFAULT;
4107		else
4108			ret = retlen;
4109	}
4110	free_cpumask_var(mask);
4111
4112	return ret;
4113}
4114
4115/**
4116 * sys_sched_yield - yield the current processor to other threads.
4117 *
4118 * This function yields the current CPU to other tasks. If there are no
4119 * other threads running on this CPU then this function will return.
4120 *
4121 * Return: 0.
4122 */
4123SYSCALL_DEFINE0(sched_yield)
4124{
4125	struct rq *rq = this_rq_lock();
4126
4127	schedstat_inc(rq, yld_count);
4128	current->sched_class->yield_task(rq);
4129
4130	/*
4131	 * Since we are going to call schedule() anyway, there's
4132	 * no need to preempt or enable interrupts:
4133	 */
4134	__release(rq->lock);
4135	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4136	do_raw_spin_unlock(&rq->lock);
4137	sched_preempt_enable_no_resched();
4138
4139	schedule();
4140
4141	return 0;
4142}
4143
4144static void __cond_resched(void)
4145{
4146	__preempt_count_add(PREEMPT_ACTIVE);
4147	__schedule();
4148	__preempt_count_sub(PREEMPT_ACTIVE);
4149}
4150
4151int __sched _cond_resched(void)
4152{
4153	rcu_cond_resched();
4154	if (should_resched()) {
4155		__cond_resched();
4156		return 1;
4157	}
4158	return 0;
4159}
4160EXPORT_SYMBOL(_cond_resched);
4161
4162/*
4163 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4164 * call schedule, and on return reacquire the lock.
4165 *
4166 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4167 * operations here to prevent schedule() from being called twice (once via
4168 * spin_unlock(), once by hand).
4169 */
4170int __cond_resched_lock(spinlock_t *lock)
4171{
4172	bool need_rcu_resched = rcu_should_resched();
4173	int resched = should_resched();
4174	int ret = 0;
4175
4176	lockdep_assert_held(lock);
4177
4178	if (spin_needbreak(lock) || resched || need_rcu_resched) {
4179		spin_unlock(lock);
4180		if (resched)
4181			__cond_resched();
4182		else if (unlikely(need_rcu_resched))
4183			rcu_resched();
4184		else
4185			cpu_relax();
4186		ret = 1;
4187		spin_lock(lock);
4188	}
4189	return ret;
4190}
4191EXPORT_SYMBOL(__cond_resched_lock);
4192
4193int __sched __cond_resched_softirq(void)
4194{
4195	BUG_ON(!in_softirq());
4196
4197	rcu_cond_resched();  /* BH disabled OK, just recording QSes. */
4198	if (should_resched()) {
4199		local_bh_enable();
4200		__cond_resched();
4201		local_bh_disable();
4202		return 1;
4203	}
4204	return 0;
4205}
4206EXPORT_SYMBOL(__cond_resched_softirq);
4207
4208/**
4209 * yield - yield the current processor to other threads.
4210 *
4211 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4212 *
4213 * The scheduler is at all times free to pick the calling task as the most
4214 * eligible task to run, if removing the yield() call from your code breaks
4215 * it, its already broken.
4216 *
4217 * Typical broken usage is:
4218 *
4219 * while (!event)
4220 * 	yield();
4221 *
4222 * where one assumes that yield() will let 'the other' process run that will
4223 * make event true. If the current task is a SCHED_FIFO task that will never
4224 * happen. Never use yield() as a progress guarantee!!
4225 *
4226 * If you want to use yield() to wait for something, use wait_event().
4227 * If you want to use yield() to be 'nice' for others, use cond_resched().
4228 * If you still want to use yield(), do not!
4229 */
4230void __sched yield(void)
4231{
4232	set_current_state(TASK_RUNNING);
4233	sys_sched_yield();
4234}
4235EXPORT_SYMBOL(yield);
4236
4237/**
4238 * yield_to - yield the current processor to another thread in
4239 * your thread group, or accelerate that thread toward the
4240 * processor it's on.
4241 * @p: target task
4242 * @preempt: whether task preemption is allowed or not
4243 *
4244 * It's the caller's job to ensure that the target task struct
4245 * can't go away on us before we can do any checks.
4246 *
4247 * Return:
4248 *	true (>0) if we indeed boosted the target task.
4249 *	false (0) if we failed to boost the target.
4250 *	-ESRCH if there's no task to yield to.
4251 */
4252int __sched yield_to(struct task_struct *p, bool preempt)
4253{
4254	struct task_struct *curr = current;
4255	struct rq *rq, *p_rq;
4256	unsigned long flags;
4257	int yielded = 0;
4258
4259	local_irq_save(flags);
4260	rq = this_rq();
4261
4262again:
4263	p_rq = task_rq(p);
4264	/*
4265	 * If we're the only runnable task on the rq and target rq also
4266	 * has only one task, there's absolutely no point in yielding.
4267	 */
4268	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4269		yielded = -ESRCH;
4270		goto out_irq;
4271	}
4272
4273	double_rq_lock(rq, p_rq);
4274	if (task_rq(p) != p_rq) {
4275		double_rq_unlock(rq, p_rq);
4276		goto again;
4277	}
4278
4279	if (!curr->sched_class->yield_to_task)
4280		goto out_unlock;
4281
4282	if (curr->sched_class != p->sched_class)
4283		goto out_unlock;
4284
4285	if (task_running(p_rq, p) || p->state)
4286		goto out_unlock;
4287
4288	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4289	if (yielded) {
4290		schedstat_inc(rq, yld_count);
4291		/*
4292		 * Make p's CPU reschedule; pick_next_entity takes care of
4293		 * fairness.
4294		 */
4295		if (preempt && rq != p_rq)
4296			resched_task(p_rq->curr);
4297	}
4298
4299out_unlock:
4300	double_rq_unlock(rq, p_rq);
4301out_irq:
4302	local_irq_restore(flags);
4303
4304	if (yielded > 0)
4305		schedule();
4306
4307	return yielded;
4308}
4309EXPORT_SYMBOL_GPL(yield_to);
4310
4311/*
4312 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4313 * that process accounting knows that this is a task in IO wait state.
4314 */
4315void __sched io_schedule(void)
4316{
4317	struct rq *rq = raw_rq();
4318
4319	delayacct_blkio_start();
4320	atomic_inc(&rq->nr_iowait);
4321	blk_flush_plug(current);
4322	current->in_iowait = 1;
4323	schedule();
4324	current->in_iowait = 0;
4325	atomic_dec(&rq->nr_iowait);
4326	delayacct_blkio_end();
4327}
4328EXPORT_SYMBOL(io_schedule);
4329
4330long __sched io_schedule_timeout(long timeout)
4331{
4332	struct rq *rq = raw_rq();
4333	long ret;
4334
4335	delayacct_blkio_start();
4336	atomic_inc(&rq->nr_iowait);
4337	blk_flush_plug(current);
4338	current->in_iowait = 1;
4339	ret = schedule_timeout(timeout);
4340	current->in_iowait = 0;
4341	atomic_dec(&rq->nr_iowait);
4342	delayacct_blkio_end();
4343	return ret;
4344}
4345
4346/**
4347 * sys_sched_get_priority_max - return maximum RT priority.
4348 * @policy: scheduling class.
4349 *
4350 * Return: On success, this syscall returns the maximum
4351 * rt_priority that can be used by a given scheduling class.
4352 * On failure, a negative error code is returned.
4353 */
4354SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4355{
4356	int ret = -EINVAL;
4357
4358	switch (policy) {
4359	case SCHED_FIFO:
4360	case SCHED_RR:
4361		ret = MAX_USER_RT_PRIO-1;
4362		break;
4363	case SCHED_DEADLINE:
4364	case SCHED_NORMAL:
4365	case SCHED_BATCH:
4366	case SCHED_IDLE:
4367		ret = 0;
4368		break;
4369	}
4370	return ret;
4371}
4372
4373/**
4374 * sys_sched_get_priority_min - return minimum RT priority.
4375 * @policy: scheduling class.
4376 *
4377 * Return: On success, this syscall returns the minimum
4378 * rt_priority that can be used by a given scheduling class.
4379 * On failure, a negative error code is returned.
4380 */
4381SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4382{
4383	int ret = -EINVAL;
4384
4385	switch (policy) {
4386	case SCHED_FIFO:
4387	case SCHED_RR:
4388		ret = 1;
4389		break;
4390	case SCHED_DEADLINE:
4391	case SCHED_NORMAL:
4392	case SCHED_BATCH:
4393	case SCHED_IDLE:
4394		ret = 0;
4395	}
4396	return ret;
4397}
4398
4399/**
4400 * sys_sched_rr_get_interval - return the default timeslice of a process.
4401 * @pid: pid of the process.
4402 * @interval: userspace pointer to the timeslice value.
4403 *
4404 * this syscall writes the default timeslice value of a given process
4405 * into the user-space timespec buffer. A value of '0' means infinity.
4406 *
4407 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4408 * an error code.
4409 */
4410SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4411		struct timespec __user *, interval)
4412{
4413	struct task_struct *p;
4414	unsigned int time_slice;
4415	unsigned long flags;
4416	struct rq *rq;
4417	int retval;
4418	struct timespec t;
4419
4420	if (pid < 0)
4421		return -EINVAL;
4422
4423	retval = -ESRCH;
4424	rcu_read_lock();
4425	p = find_process_by_pid(pid);
4426	if (!p)
4427		goto out_unlock;
4428
4429	retval = security_task_getscheduler(p);
4430	if (retval)
4431		goto out_unlock;
4432
4433	rq = task_rq_lock(p, &flags);
4434	time_slice = 0;
4435	if (p->sched_class->get_rr_interval)
4436		time_slice = p->sched_class->get_rr_interval(rq, p);
4437	task_rq_unlock(rq, p, &flags);
4438
4439	rcu_read_unlock();
4440	jiffies_to_timespec(time_slice, &t);
4441	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4442	return retval;
4443
4444out_unlock:
4445	rcu_read_unlock();
4446	return retval;
4447}
4448
4449static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4450
4451void sched_show_task(struct task_struct *p)
4452{
4453	unsigned long free = 0;
4454	int ppid;
4455	unsigned state;
4456
4457	state = p->state ? __ffs(p->state) + 1 : 0;
4458	printk(KERN_INFO "%-15.15s %c", p->comm,
4459		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4460#if BITS_PER_LONG == 32
4461	if (state == TASK_RUNNING)
4462		printk(KERN_CONT " running  ");
4463	else
4464		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4465#else
4466	if (state == TASK_RUNNING)
4467		printk(KERN_CONT "  running task    ");
4468	else
4469		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4470#endif
4471#ifdef CONFIG_DEBUG_STACK_USAGE
4472	free = stack_not_used(p);
4473#endif
4474	rcu_read_lock();
4475	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4476	rcu_read_unlock();
4477	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4478		task_pid_nr(p), ppid,
4479		(unsigned long)task_thread_info(p)->flags);
4480
4481	print_worker_info(KERN_INFO, p);
4482	show_stack(p, NULL);
4483}
4484
4485void show_state_filter(unsigned long state_filter)
4486{
4487	struct task_struct *g, *p;
4488
4489#if BITS_PER_LONG == 32
4490	printk(KERN_INFO
4491		"  task                PC stack   pid father\n");
4492#else
4493	printk(KERN_INFO
4494		"  task                        PC stack   pid father\n");
4495#endif
4496	rcu_read_lock();
4497	do_each_thread(g, p) {
4498		/*
4499		 * reset the NMI-timeout, listing all files on a slow
4500		 * console might take a lot of time:
4501		 */
4502		touch_nmi_watchdog();
4503		if (!state_filter || (p->state & state_filter))
4504			sched_show_task(p);
4505	} while_each_thread(g, p);
4506
4507	touch_all_softlockup_watchdogs();
4508
4509#ifdef CONFIG_SCHED_DEBUG
4510	sysrq_sched_debug_show();
4511#endif
4512	rcu_read_unlock();
4513	/*
4514	 * Only show locks if all tasks are dumped:
4515	 */
4516	if (!state_filter)
4517		debug_show_all_locks();
4518}
4519
4520void init_idle_bootup_task(struct task_struct *idle)
4521{
4522	idle->sched_class = &idle_sched_class;
4523}
4524
4525/**
4526 * init_idle - set up an idle thread for a given CPU
4527 * @idle: task in question
4528 * @cpu: cpu the idle task belongs to
4529 *
4530 * NOTE: this function does not set the idle thread's NEED_RESCHED
4531 * flag, to make booting more robust.
4532 */
4533void init_idle(struct task_struct *idle, int cpu)
4534{
4535	struct rq *rq = cpu_rq(cpu);
4536	unsigned long flags;
4537
4538	raw_spin_lock_irqsave(&rq->lock, flags);
4539
4540	__sched_fork(0, idle);
4541	idle->state = TASK_RUNNING;
4542	idle->se.exec_start = sched_clock();
4543
4544	do_set_cpus_allowed(idle, cpumask_of(cpu));
4545	/*
4546	 * We're having a chicken and egg problem, even though we are
4547	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4548	 * lockdep check in task_group() will fail.
4549	 *
4550	 * Similar case to sched_fork(). / Alternatively we could
4551	 * use task_rq_lock() here and obtain the other rq->lock.
4552	 *
4553	 * Silence PROVE_RCU
4554	 */
4555	rcu_read_lock();
4556	__set_task_cpu(idle, cpu);
4557	rcu_read_unlock();
4558
4559	rq->curr = rq->idle = idle;
4560	idle->on_rq = 1;
4561#if defined(CONFIG_SMP)
4562	idle->on_cpu = 1;
4563#endif
4564	raw_spin_unlock_irqrestore(&rq->lock, flags);
4565
4566	/* Set the preempt count _outside_ the spinlocks! */
4567	init_idle_preempt_count(idle, cpu);
4568
4569	/*
4570	 * The idle tasks have their own, simple scheduling class:
4571	 */
4572	idle->sched_class = &idle_sched_class;
4573	ftrace_graph_init_idle_task(idle, cpu);
4574	vtime_init_idle(idle, cpu);
4575#if defined(CONFIG_SMP)
4576	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4577#endif
4578}
4579
4580#ifdef CONFIG_SMP
4581void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4582{
4583	if (p->sched_class && p->sched_class->set_cpus_allowed)
4584		p->sched_class->set_cpus_allowed(p, new_mask);
4585
4586	cpumask_copy(&p->cpus_allowed, new_mask);
4587	p->nr_cpus_allowed = cpumask_weight(new_mask);
4588}
4589
4590/*
4591 * This is how migration works:
4592 *
4593 * 1) we invoke migration_cpu_stop() on the target CPU using
4594 *    stop_one_cpu().
4595 * 2) stopper starts to run (implicitly forcing the migrated thread
4596 *    off the CPU)
4597 * 3) it checks whether the migrated task is still in the wrong runqueue.
4598 * 4) if it's in the wrong runqueue then the migration thread removes
4599 *    it and puts it into the right queue.
4600 * 5) stopper completes and stop_one_cpu() returns and the migration
4601 *    is done.
4602 */
4603
4604/*
4605 * Change a given task's CPU affinity. Migrate the thread to a
4606 * proper CPU and schedule it away if the CPU it's executing on
4607 * is removed from the allowed bitmask.
4608 *
4609 * NOTE: the caller must have a valid reference to the task, the
4610 * task must not exit() & deallocate itself prematurely. The
4611 * call is not atomic; no spinlocks may be held.
4612 */
4613int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4614{
4615	unsigned long flags;
4616	struct rq *rq;
4617	unsigned int dest_cpu;
4618	int ret = 0;
4619
4620	rq = task_rq_lock(p, &flags);
4621
4622	if (cpumask_equal(&p->cpus_allowed, new_mask))
4623		goto out;
4624
4625	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4626		ret = -EINVAL;
4627		goto out;
4628	}
4629
4630	do_set_cpus_allowed(p, new_mask);
4631
4632	/* Can the task run on the task's current CPU? If so, we're done */
4633	if (cpumask_test_cpu(task_cpu(p), new_mask))
4634		goto out;
4635
4636	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4637	if (p->on_rq) {
4638		struct migration_arg arg = { p, dest_cpu };
4639		/* Need help from migration thread: drop lock and wait. */
4640		task_rq_unlock(rq, p, &flags);
4641		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4642		tlb_migrate_finish(p->mm);
4643		return 0;
4644	}
4645out:
4646	task_rq_unlock(rq, p, &flags);
4647
4648	return ret;
4649}
4650EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4651
4652/*
4653 * Move (not current) task off this cpu, onto dest cpu. We're doing
4654 * this because either it can't run here any more (set_cpus_allowed()
4655 * away from this CPU, or CPU going down), or because we're
4656 * attempting to rebalance this task on exec (sched_exec).
4657 *
4658 * So we race with normal scheduler movements, but that's OK, as long
4659 * as the task is no longer on this CPU.
4660 *
4661 * Returns non-zero if task was successfully migrated.
4662 */
4663static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4664{
4665	struct rq *rq_dest, *rq_src;
4666	int ret = 0;
4667
4668	if (unlikely(!cpu_active(dest_cpu)))
4669		return ret;
4670
4671	rq_src = cpu_rq(src_cpu);
4672	rq_dest = cpu_rq(dest_cpu);
4673
4674	raw_spin_lock(&p->pi_lock);
4675	double_rq_lock(rq_src, rq_dest);
4676	/* Already moved. */
4677	if (task_cpu(p) != src_cpu)
4678		goto done;
4679	/* Affinity changed (again). */
4680	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4681		goto fail;
4682
4683	/*
4684	 * If we're not on a rq, the next wake-up will ensure we're
4685	 * placed properly.
4686	 */
4687	if (p->on_rq) {
4688		dequeue_task(rq_src, p, 0);
4689		set_task_cpu(p, dest_cpu);
4690		enqueue_task(rq_dest, p, 0);
4691		check_preempt_curr(rq_dest, p, 0);
4692	}
4693done:
4694	ret = 1;
4695fail:
4696	double_rq_unlock(rq_src, rq_dest);
4697	raw_spin_unlock(&p->pi_lock);
4698	return ret;
4699}
4700
4701#ifdef CONFIG_NUMA_BALANCING
4702/* Migrate current task p to target_cpu */
4703int migrate_task_to(struct task_struct *p, int target_cpu)
4704{
4705	struct migration_arg arg = { p, target_cpu };
4706	int curr_cpu = task_cpu(p);
4707
4708	if (curr_cpu == target_cpu)
4709		return 0;
4710
4711	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4712		return -EINVAL;
4713
4714	/* TODO: This is not properly updating schedstats */
4715
4716	trace_sched_move_numa(p, curr_cpu, target_cpu);
4717	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4718}
4719
4720/*
4721 * Requeue a task on a given node and accurately track the number of NUMA
4722 * tasks on the runqueues
4723 */
4724void sched_setnuma(struct task_struct *p, int nid)
4725{
4726	struct rq *rq;
4727	unsigned long flags;
4728	bool on_rq, running;
4729
4730	rq = task_rq_lock(p, &flags);
4731	on_rq = p->on_rq;
4732	running = task_current(rq, p);
4733
4734	if (on_rq)
4735		dequeue_task(rq, p, 0);
4736	if (running)
4737		p->sched_class->put_prev_task(rq, p);
4738
4739	p->numa_preferred_nid = nid;
4740
4741	if (running)
4742		p->sched_class->set_curr_task(rq);
4743	if (on_rq)
4744		enqueue_task(rq, p, 0);
4745	task_rq_unlock(rq, p, &flags);
4746}
4747#endif
4748
4749/*
4750 * migration_cpu_stop - this will be executed by a highprio stopper thread
4751 * and performs thread migration by bumping thread off CPU then
4752 * 'pushing' onto another runqueue.
4753 */
4754static int migration_cpu_stop(void *data)
4755{
4756	struct migration_arg *arg = data;
4757
4758	/*
4759	 * The original target cpu might have gone down and we might
4760	 * be on another cpu but it doesn't matter.
4761	 */
4762	local_irq_disable();
4763	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4764	local_irq_enable();
4765	return 0;
4766}
4767
4768#ifdef CONFIG_HOTPLUG_CPU
4769
4770/*
4771 * Ensures that the idle task is using init_mm right before its cpu goes
4772 * offline.
4773 */
4774void idle_task_exit(void)
4775{
4776	struct mm_struct *mm = current->active_mm;
4777
4778	BUG_ON(cpu_online(smp_processor_id()));
4779
4780	if (mm != &init_mm) {
4781		switch_mm(mm, &init_mm, current);
4782		finish_arch_post_lock_switch();
4783	}
4784	mmdrop(mm);
4785}
4786
4787/*
4788 * Since this CPU is going 'away' for a while, fold any nr_active delta
4789 * we might have. Assumes we're called after migrate_tasks() so that the
4790 * nr_active count is stable.
4791 *
4792 * Also see the comment "Global load-average calculations".
4793 */
4794static void calc_load_migrate(struct rq *rq)
4795{
4796	long delta = calc_load_fold_active(rq);
4797	if (delta)
4798		atomic_long_add(delta, &calc_load_tasks);
4799}
4800
4801static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4802{
4803}
4804
4805static const struct sched_class fake_sched_class = {
4806	.put_prev_task = put_prev_task_fake,
4807};
4808
4809static struct task_struct fake_task = {
4810	/*
4811	 * Avoid pull_{rt,dl}_task()
4812	 */
4813	.prio = MAX_PRIO + 1,
4814	.sched_class = &fake_sched_class,
4815};
4816
4817/*
4818 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4819 * try_to_wake_up()->select_task_rq().
4820 *
4821 * Called with rq->lock held even though we'er in stop_machine() and
4822 * there's no concurrency possible, we hold the required locks anyway
4823 * because of lock validation efforts.
4824 */
4825static void migrate_tasks(unsigned int dead_cpu)
4826{
4827	struct rq *rq = cpu_rq(dead_cpu);
4828	struct task_struct *next, *stop = rq->stop;
4829	int dest_cpu;
4830
4831	/*
4832	 * Fudge the rq selection such that the below task selection loop
4833	 * doesn't get stuck on the currently eligible stop task.
4834	 *
4835	 * We're currently inside stop_machine() and the rq is either stuck
4836	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4837	 * either way we should never end up calling schedule() until we're
4838	 * done here.
4839	 */
4840	rq->stop = NULL;
4841
4842	/*
4843	 * put_prev_task() and pick_next_task() sched
4844	 * class method both need to have an up-to-date
4845	 * value of rq->clock[_task]
4846	 */
4847	update_rq_clock(rq);
4848
4849	for ( ; ; ) {
4850		/*
4851		 * There's this thread running, bail when that's the only
4852		 * remaining thread.
4853		 */
4854		if (rq->nr_running == 1)
4855			break;
4856
4857		next = pick_next_task(rq, &fake_task);
4858		BUG_ON(!next);
4859		next->sched_class->put_prev_task(rq, next);
4860
4861		/* Find suitable destination for @next, with force if needed. */
4862		dest_cpu = select_fallback_rq(dead_cpu, next);
4863		raw_spin_unlock(&rq->lock);
4864
4865		__migrate_task(next, dead_cpu, dest_cpu);
4866
4867		raw_spin_lock(&rq->lock);
4868	}
4869
4870	rq->stop = stop;
4871}
4872
4873#endif /* CONFIG_HOTPLUG_CPU */
4874
4875#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4876
4877static struct ctl_table sd_ctl_dir[] = {
4878	{
4879		.procname	= "sched_domain",
4880		.mode		= 0555,
4881	},
4882	{}
4883};
4884
4885static struct ctl_table sd_ctl_root[] = {
4886	{
4887		.procname	= "kernel",
4888		.mode		= 0555,
4889		.child		= sd_ctl_dir,
4890	},
4891	{}
4892};
4893
4894static struct ctl_table *sd_alloc_ctl_entry(int n)
4895{
4896	struct ctl_table *entry =
4897		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4898
4899	return entry;
4900}
4901
4902static void sd_free_ctl_entry(struct ctl_table **tablep)
4903{
4904	struct ctl_table *entry;
4905
4906	/*
4907	 * In the intermediate directories, both the child directory and
4908	 * procname are dynamically allocated and could fail but the mode
4909	 * will always be set. In the lowest directory the names are
4910	 * static strings and all have proc handlers.
4911	 */
4912	for (entry = *tablep; entry->mode; entry++) {
4913		if (entry->child)
4914			sd_free_ctl_entry(&entry->child);
4915		if (entry->proc_handler == NULL)
4916			kfree(entry->procname);
4917	}
4918
4919	kfree(*tablep);
4920	*tablep = NULL;
4921}
4922
4923static int min_load_idx = 0;
4924static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4925
4926static void
4927set_table_entry(struct ctl_table *entry,
4928		const char *procname, void *data, int maxlen,
4929		umode_t mode, proc_handler *proc_handler,
4930		bool load_idx)
4931{
4932	entry->procname = procname;
4933	entry->data = data;
4934	entry->maxlen = maxlen;
4935	entry->mode = mode;
4936	entry->proc_handler = proc_handler;
4937
4938	if (load_idx) {
4939		entry->extra1 = &min_load_idx;
4940		entry->extra2 = &max_load_idx;
4941	}
4942}
4943
4944static struct ctl_table *
4945sd_alloc_ctl_domain_table(struct sched_domain *sd)
4946{
4947	struct ctl_table *table = sd_alloc_ctl_entry(14);
4948
4949	if (table == NULL)
4950		return NULL;
4951
4952	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4953		sizeof(long), 0644, proc_doulongvec_minmax, false);
4954	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4955		sizeof(long), 0644, proc_doulongvec_minmax, false);
4956	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4957		sizeof(int), 0644, proc_dointvec_minmax, true);
4958	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4959		sizeof(int), 0644, proc_dointvec_minmax, true);
4960	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4961		sizeof(int), 0644, proc_dointvec_minmax, true);
4962	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4963		sizeof(int), 0644, proc_dointvec_minmax, true);
4964	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4965		sizeof(int), 0644, proc_dointvec_minmax, true);
4966	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4967		sizeof(int), 0644, proc_dointvec_minmax, false);
4968	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4969		sizeof(int), 0644, proc_dointvec_minmax, false);
4970	set_table_entry(&table[9], "cache_nice_tries",
4971		&sd->cache_nice_tries,
4972		sizeof(int), 0644, proc_dointvec_minmax, false);
4973	set_table_entry(&table[10], "flags", &sd->flags,
4974		sizeof(int), 0644, proc_dointvec_minmax, false);
4975	set_table_entry(&table[11], "max_newidle_lb_cost",
4976		&sd->max_newidle_lb_cost,
4977		sizeof(long), 0644, proc_doulongvec_minmax, false);
4978	set_table_entry(&table[12], "name", sd->name,
4979		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4980	/* &table[13] is terminator */
4981
4982	return table;
4983}
4984
4985static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4986{
4987	struct ctl_table *entry, *table;
4988	struct sched_domain *sd;
4989	int domain_num = 0, i;
4990	char buf[32];
4991
4992	for_each_domain(cpu, sd)
4993		domain_num++;
4994	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4995	if (table == NULL)
4996		return NULL;
4997
4998	i = 0;
4999	for_each_domain(cpu, sd) {
5000		snprintf(buf, 32, "domain%d", i);
5001		entry->procname = kstrdup(buf, GFP_KERNEL);
5002		entry->mode = 0555;
5003		entry->child = sd_alloc_ctl_domain_table(sd);
5004		entry++;
5005		i++;
5006	}
5007	return table;
5008}
5009
5010static struct ctl_table_header *sd_sysctl_header;
5011static void register_sched_domain_sysctl(void)
5012{
5013	int i, cpu_num = num_possible_cpus();
5014	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5015	char buf[32];
5016
5017	WARN_ON(sd_ctl_dir[0].child);
5018	sd_ctl_dir[0].child = entry;
5019
5020	if (entry == NULL)
5021		return;
5022
5023	for_each_possible_cpu(i) {
5024		snprintf(buf, 32, "cpu%d", i);
5025		entry->procname = kstrdup(buf, GFP_KERNEL);
5026		entry->mode = 0555;
5027		entry->child = sd_alloc_ctl_cpu_table(i);
5028		entry++;
5029	}
5030
5031	WARN_ON(sd_sysctl_header);
5032	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5033}
5034
5035/* may be called multiple times per register */
5036static void unregister_sched_domain_sysctl(void)
5037{
5038	if (sd_sysctl_header)
5039		unregister_sysctl_table(sd_sysctl_header);
5040	sd_sysctl_header = NULL;
5041	if (sd_ctl_dir[0].child)
5042		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5043}
5044#else
5045static void register_sched_domain_sysctl(void)
5046{
5047}
5048static void unregister_sched_domain_sysctl(void)
5049{
5050}
5051#endif
5052
5053static void set_rq_online(struct rq *rq)
5054{
5055	if (!rq->online) {
5056		const struct sched_class *class;
5057
5058		cpumask_set_cpu(rq->cpu, rq->rd->online);
5059		rq->online = 1;
5060
5061		for_each_class(class) {
5062			if (class->rq_online)
5063				class->rq_online(rq);
5064		}
5065	}
5066}
5067
5068static void set_rq_offline(struct rq *rq)
5069{
5070	if (rq->online) {
5071		const struct sched_class *class;
5072
5073		for_each_class(class) {
5074			if (class->rq_offline)
5075				class->rq_offline(rq);
5076		}
5077
5078		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5079		rq->online = 0;
5080	}
5081}
5082
5083/*
5084 * migration_call - callback that gets triggered when a CPU is added.
5085 * Here we can start up the necessary migration thread for the new CPU.
5086 */
5087static int
5088migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5089{
5090	int cpu = (long)hcpu;
5091	unsigned long flags;
5092	struct rq *rq = cpu_rq(cpu);
5093
5094	switch (action & ~CPU_TASKS_FROZEN) {
5095
5096	case CPU_UP_PREPARE:
5097		rq->calc_load_update = calc_load_update;
5098		break;
5099
5100	case CPU_ONLINE:
5101		/* Update our root-domain */
5102		raw_spin_lock_irqsave(&rq->lock, flags);
5103		if (rq->rd) {
5104			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5105
5106			set_rq_online(rq);
5107		}
5108		raw_spin_unlock_irqrestore(&rq->lock, flags);
5109		break;
5110
5111#ifdef CONFIG_HOTPLUG_CPU
5112	case CPU_DYING:
5113		sched_ttwu_pending();
5114		/* Update our root-domain */
5115		raw_spin_lock_irqsave(&rq->lock, flags);
5116		if (rq->rd) {
5117			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5118			set_rq_offline(rq);
5119		}
5120		migrate_tasks(cpu);
5121		BUG_ON(rq->nr_running != 1); /* the migration thread */
5122		raw_spin_unlock_irqrestore(&rq->lock, flags);
5123		break;
5124
5125	case CPU_DEAD:
5126		calc_load_migrate(rq);
5127		break;
5128#endif
5129	}
5130
5131	update_max_interval();
5132
5133	return NOTIFY_OK;
5134}
5135
5136/*
5137 * Register at high priority so that task migration (migrate_all_tasks)
5138 * happens before everything else.  This has to be lower priority than
5139 * the notifier in the perf_event subsystem, though.
5140 */
5141static struct notifier_block migration_notifier = {
5142	.notifier_call = migration_call,
5143	.priority = CPU_PRI_MIGRATION,
5144};
5145
5146static void __cpuinit set_cpu_rq_start_time(void)
5147{
5148	int cpu = smp_processor_id();
5149	struct rq *rq = cpu_rq(cpu);
5150	rq->age_stamp = sched_clock_cpu(cpu);
5151}
5152
5153static int sched_cpu_active(struct notifier_block *nfb,
5154				      unsigned long action, void *hcpu)
5155{
5156	switch (action & ~CPU_TASKS_FROZEN) {
5157	case CPU_STARTING:
5158		set_cpu_rq_start_time();
5159		return NOTIFY_OK;
5160	case CPU_DOWN_FAILED:
5161		set_cpu_active((long)hcpu, true);
5162		return NOTIFY_OK;
5163	default:
5164		return NOTIFY_DONE;
5165	}
5166}
5167
5168static int sched_cpu_inactive(struct notifier_block *nfb,
5169					unsigned long action, void *hcpu)
5170{
5171	unsigned long flags;
5172	long cpu = (long)hcpu;
5173
5174	switch (action & ~CPU_TASKS_FROZEN) {
5175	case CPU_DOWN_PREPARE:
5176		set_cpu_active(cpu, false);
5177
5178		/* explicitly allow suspend */
5179		if (!(action & CPU_TASKS_FROZEN)) {
5180			struct dl_bw *dl_b = dl_bw_of(cpu);
5181			bool overflow;
5182			int cpus;
5183
5184			raw_spin_lock_irqsave(&dl_b->lock, flags);
5185			cpus = dl_bw_cpus(cpu);
5186			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5187			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5188
5189			if (overflow)
5190				return notifier_from_errno(-EBUSY);
5191		}
5192		return NOTIFY_OK;
5193	}
5194
5195	return NOTIFY_DONE;
5196}
5197
5198static int __init migration_init(void)
5199{
5200	void *cpu = (void *)(long)smp_processor_id();
5201	int err;
5202
5203	/* Initialize migration for the boot CPU */
5204	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5205	BUG_ON(err == NOTIFY_BAD);
5206	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5207	register_cpu_notifier(&migration_notifier);
5208
5209	/* Register cpu active notifiers */
5210	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5211	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5212
5213	return 0;
5214}
5215early_initcall(migration_init);
5216#endif
5217
5218#ifdef CONFIG_SMP
5219
5220static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5221
5222#ifdef CONFIG_SCHED_DEBUG
5223
5224static __read_mostly int sched_debug_enabled;
5225
5226static int __init sched_debug_setup(char *str)
5227{
5228	sched_debug_enabled = 1;
5229
5230	return 0;
5231}
5232early_param("sched_debug", sched_debug_setup);
5233
5234static inline bool sched_debug(void)
5235{
5236	return sched_debug_enabled;
5237}
5238
5239static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5240				  struct cpumask *groupmask)
5241{
5242	struct sched_group *group = sd->groups;
5243	char str[256];
5244
5245	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5246	cpumask_clear(groupmask);
5247
5248	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5249
5250	if (!(sd->flags & SD_LOAD_BALANCE)) {
5251		printk("does not load-balance\n");
5252		if (sd->parent)
5253			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5254					" has parent");
5255		return -1;
5256	}
5257
5258	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5259
5260	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5261		printk(KERN_ERR "ERROR: domain->span does not contain "
5262				"CPU%d\n", cpu);
5263	}
5264	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5265		printk(KERN_ERR "ERROR: domain->groups does not contain"
5266				" CPU%d\n", cpu);
5267	}
5268
5269	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5270	do {
5271		if (!group) {
5272			printk("\n");
5273			printk(KERN_ERR "ERROR: group is NULL\n");
5274			break;
5275		}
5276
5277		/*
5278		 * Even though we initialize ->capacity to something semi-sane,
5279		 * we leave capacity_orig unset. This allows us to detect if
5280		 * domain iteration is still funny without causing /0 traps.
5281		 */
5282		if (!group->sgc->capacity_orig) {
5283			printk(KERN_CONT "\n");
5284			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5285			break;
5286		}
5287
5288		if (!cpumask_weight(sched_group_cpus(group))) {
5289			printk(KERN_CONT "\n");
5290			printk(KERN_ERR "ERROR: empty group\n");
5291			break;
5292		}
5293
5294		if (!(sd->flags & SD_OVERLAP) &&
5295		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5296			printk(KERN_CONT "\n");
5297			printk(KERN_ERR "ERROR: repeated CPUs\n");
5298			break;
5299		}
5300
5301		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5302
5303		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5304
5305		printk(KERN_CONT " %s", str);
5306		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5307			printk(KERN_CONT " (cpu_capacity = %d)",
5308				group->sgc->capacity);
5309		}
5310
5311		group = group->next;
5312	} while (group != sd->groups);
5313	printk(KERN_CONT "\n");
5314
5315	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5316		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5317
5318	if (sd->parent &&
5319	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5320		printk(KERN_ERR "ERROR: parent span is not a superset "
5321			"of domain->span\n");
5322	return 0;
5323}
5324
5325static void sched_domain_debug(struct sched_domain *sd, int cpu)
5326{
5327	int level = 0;
5328
5329	if (!sched_debug_enabled)
5330		return;
5331
5332	if (!sd) {
5333		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5334		return;
5335	}
5336
5337	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5338
5339	for (;;) {
5340		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5341			break;
5342		level++;
5343		sd = sd->parent;
5344		if (!sd)
5345			break;
5346	}
5347}
5348#else /* !CONFIG_SCHED_DEBUG */
5349# define sched_domain_debug(sd, cpu) do { } while (0)
5350static inline bool sched_debug(void)
5351{
5352	return false;
5353}
5354#endif /* CONFIG_SCHED_DEBUG */
5355
5356static int sd_degenerate(struct sched_domain *sd)
5357{
5358	if (cpumask_weight(sched_domain_span(sd)) == 1)
5359		return 1;
5360
5361	/* Following flags need at least 2 groups */
5362	if (sd->flags & (SD_LOAD_BALANCE |
5363			 SD_BALANCE_NEWIDLE |
5364			 SD_BALANCE_FORK |
5365			 SD_BALANCE_EXEC |
5366			 SD_SHARE_CPUCAPACITY |
5367			 SD_SHARE_PKG_RESOURCES |
5368			 SD_SHARE_POWERDOMAIN)) {
5369		if (sd->groups != sd->groups->next)
5370			return 0;
5371	}
5372
5373	/* Following flags don't use groups */
5374	if (sd->flags & (SD_WAKE_AFFINE))
5375		return 0;
5376
5377	return 1;
5378}
5379
5380static int
5381sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5382{
5383	unsigned long cflags = sd->flags, pflags = parent->flags;
5384
5385	if (sd_degenerate(parent))
5386		return 1;
5387
5388	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5389		return 0;
5390
5391	/* Flags needing groups don't count if only 1 group in parent */
5392	if (parent->groups == parent->groups->next) {
5393		pflags &= ~(SD_LOAD_BALANCE |
5394				SD_BALANCE_NEWIDLE |
5395				SD_BALANCE_FORK |
5396				SD_BALANCE_EXEC |
5397				SD_SHARE_CPUCAPACITY |
5398				SD_SHARE_PKG_RESOURCES |
5399				SD_PREFER_SIBLING |
5400				SD_SHARE_POWERDOMAIN);
5401		if (nr_node_ids == 1)
5402			pflags &= ~SD_SERIALIZE;
5403	}
5404	if (~cflags & pflags)
5405		return 0;
5406
5407	return 1;
5408}
5409
5410static void free_rootdomain(struct rcu_head *rcu)
5411{
5412	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5413
5414	cpupri_cleanup(&rd->cpupri);
5415	cpudl_cleanup(&rd->cpudl);
5416	free_cpumask_var(rd->dlo_mask);
5417	free_cpumask_var(rd->rto_mask);
5418	free_cpumask_var(rd->online);
5419	free_cpumask_var(rd->span);
5420	kfree(rd);
5421}
5422
5423static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5424{
5425	struct root_domain *old_rd = NULL;
5426	unsigned long flags;
5427
5428	raw_spin_lock_irqsave(&rq->lock, flags);
5429
5430	if (rq->rd) {
5431		old_rd = rq->rd;
5432
5433		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5434			set_rq_offline(rq);
5435
5436		cpumask_clear_cpu(rq->cpu, old_rd->span);
5437
5438		/*
5439		 * If we dont want to free the old_rd yet then
5440		 * set old_rd to NULL to skip the freeing later
5441		 * in this function:
5442		 */
5443		if (!atomic_dec_and_test(&old_rd->refcount))
5444			old_rd = NULL;
5445	}
5446
5447	atomic_inc(&rd->refcount);
5448	rq->rd = rd;
5449
5450	cpumask_set_cpu(rq->cpu, rd->span);
5451	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5452		set_rq_online(rq);
5453
5454	raw_spin_unlock_irqrestore(&rq->lock, flags);
5455
5456	if (old_rd)
5457		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5458}
5459
5460static int init_rootdomain(struct root_domain *rd)
5461{
5462	memset(rd, 0, sizeof(*rd));
5463
5464	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5465		goto out;
5466	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5467		goto free_span;
5468	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5469		goto free_online;
5470	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5471		goto free_dlo_mask;
5472
5473	init_dl_bw(&rd->dl_bw);
5474	if (cpudl_init(&rd->cpudl) != 0)
5475		goto free_dlo_mask;
5476
5477	if (cpupri_init(&rd->cpupri) != 0)
5478		goto free_rto_mask;
5479	return 0;
5480
5481free_rto_mask:
5482	free_cpumask_var(rd->rto_mask);
5483free_dlo_mask:
5484	free_cpumask_var(rd->dlo_mask);
5485free_online:
5486	free_cpumask_var(rd->online);
5487free_span:
5488	free_cpumask_var(rd->span);
5489out:
5490	return -ENOMEM;
5491}
5492
5493/*
5494 * By default the system creates a single root-domain with all cpus as
5495 * members (mimicking the global state we have today).
5496 */
5497struct root_domain def_root_domain;
5498
5499static void init_defrootdomain(void)
5500{
5501	init_rootdomain(&def_root_domain);
5502
5503	atomic_set(&def_root_domain.refcount, 1);
5504}
5505
5506static struct root_domain *alloc_rootdomain(void)
5507{
5508	struct root_domain *rd;
5509
5510	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5511	if (!rd)
5512		return NULL;
5513
5514	if (init_rootdomain(rd) != 0) {
5515		kfree(rd);
5516		return NULL;
5517	}
5518
5519	return rd;
5520}
5521
5522static void free_sched_groups(struct sched_group *sg, int free_sgc)
5523{
5524	struct sched_group *tmp, *first;
5525
5526	if (!sg)
5527		return;
5528
5529	first = sg;
5530	do {
5531		tmp = sg->next;
5532
5533		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5534			kfree(sg->sgc);
5535
5536		kfree(sg);
5537		sg = tmp;
5538	} while (sg != first);
5539}
5540
5541static void free_sched_domain(struct rcu_head *rcu)
5542{
5543	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5544
5545	/*
5546	 * If its an overlapping domain it has private groups, iterate and
5547	 * nuke them all.
5548	 */
5549	if (sd->flags & SD_OVERLAP) {
5550		free_sched_groups(sd->groups, 1);
5551	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5552		kfree(sd->groups->sgc);
5553		kfree(sd->groups);
5554	}
5555	kfree(sd);
5556}
5557
5558static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5559{
5560	call_rcu(&sd->rcu, free_sched_domain);
5561}
5562
5563static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5564{
5565	for (; sd; sd = sd->parent)
5566		destroy_sched_domain(sd, cpu);
5567}
5568
5569/*
5570 * Keep a special pointer to the highest sched_domain that has
5571 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5572 * allows us to avoid some pointer chasing select_idle_sibling().
5573 *
5574 * Also keep a unique ID per domain (we use the first cpu number in
5575 * the cpumask of the domain), this allows us to quickly tell if
5576 * two cpus are in the same cache domain, see cpus_share_cache().
5577 */
5578DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5579DEFINE_PER_CPU(int, sd_llc_size);
5580DEFINE_PER_CPU(int, sd_llc_id);
5581DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5582DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5583DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5584
5585static void update_top_cache_domain(int cpu)
5586{
5587	struct sched_domain *sd;
5588	struct sched_domain *busy_sd = NULL;
5589	int id = cpu;
5590	int size = 1;
5591
5592	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5593	if (sd) {
5594		id = cpumask_first(sched_domain_span(sd));
5595		size = cpumask_weight(sched_domain_span(sd));
5596		busy_sd = sd->parent; /* sd_busy */
5597	}
5598	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5599
5600	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5601	per_cpu(sd_llc_size, cpu) = size;
5602	per_cpu(sd_llc_id, cpu) = id;
5603
5604	sd = lowest_flag_domain(cpu, SD_NUMA);
5605	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5606
5607	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5608	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5609}
5610
5611/*
5612 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5613 * hold the hotplug lock.
5614 */
5615static void
5616cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5617{
5618	struct rq *rq = cpu_rq(cpu);
5619	struct sched_domain *tmp;
5620
5621	/* Remove the sched domains which do not contribute to scheduling. */
5622	for (tmp = sd; tmp; ) {
5623		struct sched_domain *parent = tmp->parent;
5624		if (!parent)
5625			break;
5626
5627		if (sd_parent_degenerate(tmp, parent)) {
5628			tmp->parent = parent->parent;
5629			if (parent->parent)
5630				parent->parent->child = tmp;
5631			/*
5632			 * Transfer SD_PREFER_SIBLING down in case of a
5633			 * degenerate parent; the spans match for this
5634			 * so the property transfers.
5635			 */
5636			if (parent->flags & SD_PREFER_SIBLING)
5637				tmp->flags |= SD_PREFER_SIBLING;
5638			destroy_sched_domain(parent, cpu);
5639		} else
5640			tmp = tmp->parent;
5641	}
5642
5643	if (sd && sd_degenerate(sd)) {
5644		tmp = sd;
5645		sd = sd->parent;
5646		destroy_sched_domain(tmp, cpu);
5647		if (sd)
5648			sd->child = NULL;
5649	}
5650
5651	sched_domain_debug(sd, cpu);
5652
5653	rq_attach_root(rq, rd);
5654	tmp = rq->sd;
5655	rcu_assign_pointer(rq->sd, sd);
5656	destroy_sched_domains(tmp, cpu);
5657
5658	update_top_cache_domain(cpu);
5659}
5660
5661/* cpus with isolated domains */
5662static cpumask_var_t cpu_isolated_map;
5663
5664/* Setup the mask of cpus configured for isolated domains */
5665static int __init isolated_cpu_setup(char *str)
5666{
5667	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5668	cpulist_parse(str, cpu_isolated_map);
5669	return 1;
5670}
5671
5672__setup("isolcpus=", isolated_cpu_setup);
5673
5674struct s_data {
5675	struct sched_domain ** __percpu sd;
5676	struct root_domain	*rd;
5677};
5678
5679enum s_alloc {
5680	sa_rootdomain,
5681	sa_sd,
5682	sa_sd_storage,
5683	sa_none,
5684};
5685
5686/*
5687 * Build an iteration mask that can exclude certain CPUs from the upwards
5688 * domain traversal.
5689 *
5690 * Asymmetric node setups can result in situations where the domain tree is of
5691 * unequal depth, make sure to skip domains that already cover the entire
5692 * range.
5693 *
5694 * In that case build_sched_domains() will have terminated the iteration early
5695 * and our sibling sd spans will be empty. Domains should always include the
5696 * cpu they're built on, so check that.
5697 *
5698 */
5699static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5700{
5701	const struct cpumask *span = sched_domain_span(sd);
5702	struct sd_data *sdd = sd->private;
5703	struct sched_domain *sibling;
5704	int i;
5705
5706	for_each_cpu(i, span) {
5707		sibling = *per_cpu_ptr(sdd->sd, i);
5708		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5709			continue;
5710
5711		cpumask_set_cpu(i, sched_group_mask(sg));
5712	}
5713}
5714
5715/*
5716 * Return the canonical balance cpu for this group, this is the first cpu
5717 * of this group that's also in the iteration mask.
5718 */
5719int group_balance_cpu(struct sched_group *sg)
5720{
5721	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5722}
5723
5724static int
5725build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5726{
5727	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5728	const struct cpumask *span = sched_domain_span(sd);
5729	struct cpumask *covered = sched_domains_tmpmask;
5730	struct sd_data *sdd = sd->private;
5731	struct sched_domain *child;
5732	int i;
5733
5734	cpumask_clear(covered);
5735
5736	for_each_cpu(i, span) {
5737		struct cpumask *sg_span;
5738
5739		if (cpumask_test_cpu(i, covered))
5740			continue;
5741
5742		child = *per_cpu_ptr(sdd->sd, i);
5743
5744		/* See the comment near build_group_mask(). */
5745		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5746			continue;
5747
5748		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5749				GFP_KERNEL, cpu_to_node(cpu));
5750
5751		if (!sg)
5752			goto fail;
5753
5754		sg_span = sched_group_cpus(sg);
5755		if (child->child) {
5756			child = child->child;
5757			cpumask_copy(sg_span, sched_domain_span(child));
5758		} else
5759			cpumask_set_cpu(i, sg_span);
5760
5761		cpumask_or(covered, covered, sg_span);
5762
5763		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5764		if (atomic_inc_return(&sg->sgc->ref) == 1)
5765			build_group_mask(sd, sg);
5766
5767		/*
5768		 * Initialize sgc->capacity such that even if we mess up the
5769		 * domains and no possible iteration will get us here, we won't
5770		 * die on a /0 trap.
5771		 */
5772		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5773		sg->sgc->capacity_orig = sg->sgc->capacity;
5774
5775		/*
5776		 * Make sure the first group of this domain contains the
5777		 * canonical balance cpu. Otherwise the sched_domain iteration
5778		 * breaks. See update_sg_lb_stats().
5779		 */
5780		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5781		    group_balance_cpu(sg) == cpu)
5782			groups = sg;
5783
5784		if (!first)
5785			first = sg;
5786		if (last)
5787			last->next = sg;
5788		last = sg;
5789		last->next = first;
5790	}
5791	sd->groups = groups;
5792
5793	return 0;
5794
5795fail:
5796	free_sched_groups(first, 0);
5797
5798	return -ENOMEM;
5799}
5800
5801static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5802{
5803	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5804	struct sched_domain *child = sd->child;
5805
5806	if (child)
5807		cpu = cpumask_first(sched_domain_span(child));
5808
5809	if (sg) {
5810		*sg = *per_cpu_ptr(sdd->sg, cpu);
5811		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5812		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5813	}
5814
5815	return cpu;
5816}
5817
5818/*
5819 * build_sched_groups will build a circular linked list of the groups
5820 * covered by the given span, and will set each group's ->cpumask correctly,
5821 * and ->cpu_capacity to 0.
5822 *
5823 * Assumes the sched_domain tree is fully constructed
5824 */
5825static int
5826build_sched_groups(struct sched_domain *sd, int cpu)
5827{
5828	struct sched_group *first = NULL, *last = NULL;
5829	struct sd_data *sdd = sd->private;
5830	const struct cpumask *span = sched_domain_span(sd);
5831	struct cpumask *covered;
5832	int i;
5833
5834	get_group(cpu, sdd, &sd->groups);
5835	atomic_inc(&sd->groups->ref);
5836
5837	if (cpu != cpumask_first(span))
5838		return 0;
5839
5840	lockdep_assert_held(&sched_domains_mutex);
5841	covered = sched_domains_tmpmask;
5842
5843	cpumask_clear(covered);
5844
5845	for_each_cpu(i, span) {
5846		struct sched_group *sg;
5847		int group, j;
5848
5849		if (cpumask_test_cpu(i, covered))
5850			continue;
5851
5852		group = get_group(i, sdd, &sg);
5853		cpumask_setall(sched_group_mask(sg));
5854
5855		for_each_cpu(j, span) {
5856			if (get_group(j, sdd, NULL) != group)
5857				continue;
5858
5859			cpumask_set_cpu(j, covered);
5860			cpumask_set_cpu(j, sched_group_cpus(sg));
5861		}
5862
5863		if (!first)
5864			first = sg;
5865		if (last)
5866			last->next = sg;
5867		last = sg;
5868	}
5869	last->next = first;
5870
5871	return 0;
5872}
5873
5874/*
5875 * Initialize sched groups cpu_capacity.
5876 *
5877 * cpu_capacity indicates the capacity of sched group, which is used while
5878 * distributing the load between different sched groups in a sched domain.
5879 * Typically cpu_capacity for all the groups in a sched domain will be same
5880 * unless there are asymmetries in the topology. If there are asymmetries,
5881 * group having more cpu_capacity will pickup more load compared to the
5882 * group having less cpu_capacity.
5883 */
5884static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5885{
5886	struct sched_group *sg = sd->groups;
5887
5888	WARN_ON(!sg);
5889
5890	do {
5891		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5892		sg = sg->next;
5893	} while (sg != sd->groups);
5894
5895	if (cpu != group_balance_cpu(sg))
5896		return;
5897
5898	update_group_capacity(sd, cpu);
5899	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5900}
5901
5902/*
5903 * Initializers for schedule domains
5904 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5905 */
5906
5907static int default_relax_domain_level = -1;
5908int sched_domain_level_max;
5909
5910static int __init setup_relax_domain_level(char *str)
5911{
5912	if (kstrtoint(str, 0, &default_relax_domain_level))
5913		pr_warn("Unable to set relax_domain_level\n");
5914
5915	return 1;
5916}
5917__setup("relax_domain_level=", setup_relax_domain_level);
5918
5919static void set_domain_attribute(struct sched_domain *sd,
5920				 struct sched_domain_attr *attr)
5921{
5922	int request;
5923
5924	if (!attr || attr->relax_domain_level < 0) {
5925		if (default_relax_domain_level < 0)
5926			return;
5927		else
5928			request = default_relax_domain_level;
5929	} else
5930		request = attr->relax_domain_level;
5931	if (request < sd->level) {
5932		/* turn off idle balance on this domain */
5933		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5934	} else {
5935		/* turn on idle balance on this domain */
5936		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5937	}
5938}
5939
5940static void __sdt_free(const struct cpumask *cpu_map);
5941static int __sdt_alloc(const struct cpumask *cpu_map);
5942
5943static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5944				 const struct cpumask *cpu_map)
5945{
5946	switch (what) {
5947	case sa_rootdomain:
5948		if (!atomic_read(&d->rd->refcount))
5949			free_rootdomain(&d->rd->rcu); /* fall through */
5950	case sa_sd:
5951		free_percpu(d->sd); /* fall through */
5952	case sa_sd_storage:
5953		__sdt_free(cpu_map); /* fall through */
5954	case sa_none:
5955		break;
5956	}
5957}
5958
5959static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5960						   const struct cpumask *cpu_map)
5961{
5962	memset(d, 0, sizeof(*d));
5963
5964	if (__sdt_alloc(cpu_map))
5965		return sa_sd_storage;
5966	d->sd = alloc_percpu(struct sched_domain *);
5967	if (!d->sd)
5968		return sa_sd_storage;
5969	d->rd = alloc_rootdomain();
5970	if (!d->rd)
5971		return sa_sd;
5972	return sa_rootdomain;
5973}
5974
5975/*
5976 * NULL the sd_data elements we've used to build the sched_domain and
5977 * sched_group structure so that the subsequent __free_domain_allocs()
5978 * will not free the data we're using.
5979 */
5980static void claim_allocations(int cpu, struct sched_domain *sd)
5981{
5982	struct sd_data *sdd = sd->private;
5983
5984	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5985	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5986
5987	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5988		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5989
5990	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5991		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5992}
5993
5994#ifdef CONFIG_NUMA
5995static int sched_domains_numa_levels;
5996static int *sched_domains_numa_distance;
5997static struct cpumask ***sched_domains_numa_masks;
5998static int sched_domains_curr_level;
5999#endif
6000
6001/*
6002 * SD_flags allowed in topology descriptions.
6003 *
6004 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6005 * SD_SHARE_PKG_RESOURCES - describes shared caches
6006 * SD_NUMA                - describes NUMA topologies
6007 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6008 *
6009 * Odd one out:
6010 * SD_ASYM_PACKING        - describes SMT quirks
6011 */
6012#define TOPOLOGY_SD_FLAGS		\
6013	(SD_SHARE_CPUCAPACITY |		\
6014	 SD_SHARE_PKG_RESOURCES |	\
6015	 SD_NUMA |			\
6016	 SD_ASYM_PACKING |		\
6017	 SD_SHARE_POWERDOMAIN)
6018
6019static struct sched_domain *
6020sd_init(struct sched_domain_topology_level *tl, int cpu)
6021{
6022	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6023	int sd_weight, sd_flags = 0;
6024
6025#ifdef CONFIG_NUMA
6026	/*
6027	 * Ugly hack to pass state to sd_numa_mask()...
6028	 */
6029	sched_domains_curr_level = tl->numa_level;
6030#endif
6031
6032	sd_weight = cpumask_weight(tl->mask(cpu));
6033
6034	if (tl->sd_flags)
6035		sd_flags = (*tl->sd_flags)();
6036	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6037			"wrong sd_flags in topology description\n"))
6038		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6039
6040	*sd = (struct sched_domain){
6041		.min_interval		= sd_weight,
6042		.max_interval		= 2*sd_weight,
6043		.busy_factor		= 32,
6044		.imbalance_pct		= 125,
6045
6046		.cache_nice_tries	= 0,
6047		.busy_idx		= 0,
6048		.idle_idx		= 0,
6049		.newidle_idx		= 0,
6050		.wake_idx		= 0,
6051		.forkexec_idx		= 0,
6052
6053		.flags			= 1*SD_LOAD_BALANCE
6054					| 1*SD_BALANCE_NEWIDLE
6055					| 1*SD_BALANCE_EXEC
6056					| 1*SD_BALANCE_FORK
6057					| 0*SD_BALANCE_WAKE
6058					| 1*SD_WAKE_AFFINE
6059					| 0*SD_SHARE_CPUCAPACITY
6060					| 0*SD_SHARE_PKG_RESOURCES
6061					| 0*SD_SERIALIZE
6062					| 0*SD_PREFER_SIBLING
6063					| 0*SD_NUMA
6064					| sd_flags
6065					,
6066
6067		.last_balance		= jiffies,
6068		.balance_interval	= sd_weight,
6069		.smt_gain		= 0,
6070		.max_newidle_lb_cost	= 0,
6071		.next_decay_max_lb_cost	= jiffies,
6072#ifdef CONFIG_SCHED_DEBUG
6073		.name			= tl->name,
6074#endif
6075	};
6076
6077	/*
6078	 * Convert topological properties into behaviour.
6079	 */
6080
6081	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6082		sd->imbalance_pct = 110;
6083		sd->smt_gain = 1178; /* ~15% */
6084
6085	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6086		sd->imbalance_pct = 117;
6087		sd->cache_nice_tries = 1;
6088		sd->busy_idx = 2;
6089
6090#ifdef CONFIG_NUMA
6091	} else if (sd->flags & SD_NUMA) {
6092		sd->cache_nice_tries = 2;
6093		sd->busy_idx = 3;
6094		sd->idle_idx = 2;
6095
6096		sd->flags |= SD_SERIALIZE;
6097		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6098			sd->flags &= ~(SD_BALANCE_EXEC |
6099				       SD_BALANCE_FORK |
6100				       SD_WAKE_AFFINE);
6101		}
6102
6103#endif
6104	} else {
6105		sd->flags |= SD_PREFER_SIBLING;
6106		sd->cache_nice_tries = 1;
6107		sd->busy_idx = 2;
6108		sd->idle_idx = 1;
6109	}
6110
6111	sd->private = &tl->data;
6112
6113	return sd;
6114}
6115
6116/*
6117 * Topology list, bottom-up.
6118 */
6119static struct sched_domain_topology_level default_topology[] = {
6120#ifdef CONFIG_SCHED_SMT
6121	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6122#endif
6123#ifdef CONFIG_SCHED_MC
6124	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6125#endif
6126	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6127	{ NULL, },
6128};
6129
6130struct sched_domain_topology_level *sched_domain_topology = default_topology;
6131
6132#define for_each_sd_topology(tl)			\
6133	for (tl = sched_domain_topology; tl->mask; tl++)
6134
6135void set_sched_topology(struct sched_domain_topology_level *tl)
6136{
6137	sched_domain_topology = tl;
6138}
6139
6140#ifdef CONFIG_NUMA
6141
6142static const struct cpumask *sd_numa_mask(int cpu)
6143{
6144	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6145}
6146
6147static void sched_numa_warn(const char *str)
6148{
6149	static int done = false;
6150	int i,j;
6151
6152	if (done)
6153		return;
6154
6155	done = true;
6156
6157	printk(KERN_WARNING "ERROR: %s\n\n", str);
6158
6159	for (i = 0; i < nr_node_ids; i++) {
6160		printk(KERN_WARNING "  ");
6161		for (j = 0; j < nr_node_ids; j++)
6162			printk(KERN_CONT "%02d ", node_distance(i,j));
6163		printk(KERN_CONT "\n");
6164	}
6165	printk(KERN_WARNING "\n");
6166}
6167
6168static bool find_numa_distance(int distance)
6169{
6170	int i;
6171
6172	if (distance == node_distance(0, 0))
6173		return true;
6174
6175	for (i = 0; i < sched_domains_numa_levels; i++) {
6176		if (sched_domains_numa_distance[i] == distance)
6177			return true;
6178	}
6179
6180	return false;
6181}
6182
6183static void sched_init_numa(void)
6184{
6185	int next_distance, curr_distance = node_distance(0, 0);
6186	struct sched_domain_topology_level *tl;
6187	int level = 0;
6188	int i, j, k;
6189
6190	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6191	if (!sched_domains_numa_distance)
6192		return;
6193
6194	/*
6195	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6196	 * unique distances in the node_distance() table.
6197	 *
6198	 * Assumes node_distance(0,j) includes all distances in
6199	 * node_distance(i,j) in order to avoid cubic time.
6200	 */
6201	next_distance = curr_distance;
6202	for (i = 0; i < nr_node_ids; i++) {
6203		for (j = 0; j < nr_node_ids; j++) {
6204			for (k = 0; k < nr_node_ids; k++) {
6205				int distance = node_distance(i, k);
6206
6207				if (distance > curr_distance &&
6208				    (distance < next_distance ||
6209				     next_distance == curr_distance))
6210					next_distance = distance;
6211
6212				/*
6213				 * While not a strong assumption it would be nice to know
6214				 * about cases where if node A is connected to B, B is not
6215				 * equally connected to A.
6216				 */
6217				if (sched_debug() && node_distance(k, i) != distance)
6218					sched_numa_warn("Node-distance not symmetric");
6219
6220				if (sched_debug() && i && !find_numa_distance(distance))
6221					sched_numa_warn("Node-0 not representative");
6222			}
6223			if (next_distance != curr_distance) {
6224				sched_domains_numa_distance[level++] = next_distance;
6225				sched_domains_numa_levels = level;
6226				curr_distance = next_distance;
6227			} else break;
6228		}
6229
6230		/*
6231		 * In case of sched_debug() we verify the above assumption.
6232		 */
6233		if (!sched_debug())
6234			break;
6235	}
6236	/*
6237	 * 'level' contains the number of unique distances, excluding the
6238	 * identity distance node_distance(i,i).
6239	 *
6240	 * The sched_domains_numa_distance[] array includes the actual distance
6241	 * numbers.
6242	 */
6243
6244	/*
6245	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6246	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6247	 * the array will contain less then 'level' members. This could be
6248	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6249	 * in other functions.
6250	 *
6251	 * We reset it to 'level' at the end of this function.
6252	 */
6253	sched_domains_numa_levels = 0;
6254
6255	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6256	if (!sched_domains_numa_masks)
6257		return;
6258
6259	/*
6260	 * Now for each level, construct a mask per node which contains all
6261	 * cpus of nodes that are that many hops away from us.
6262	 */
6263	for (i = 0; i < level; i++) {
6264		sched_domains_numa_masks[i] =
6265			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6266		if (!sched_domains_numa_masks[i])
6267			return;
6268
6269		for (j = 0; j < nr_node_ids; j++) {
6270			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6271			if (!mask)
6272				return;
6273
6274			sched_domains_numa_masks[i][j] = mask;
6275
6276			for (k = 0; k < nr_node_ids; k++) {
6277				if (node_distance(j, k) > sched_domains_numa_distance[i])
6278					continue;
6279
6280				cpumask_or(mask, mask, cpumask_of_node(k));
6281			}
6282		}
6283	}
6284
6285	/* Compute default topology size */
6286	for (i = 0; sched_domain_topology[i].mask; i++);
6287
6288	tl = kzalloc((i + level + 1) *
6289			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6290	if (!tl)
6291		return;
6292
6293	/*
6294	 * Copy the default topology bits..
6295	 */
6296	for (i = 0; sched_domain_topology[i].mask; i++)
6297		tl[i] = sched_domain_topology[i];
6298
6299	/*
6300	 * .. and append 'j' levels of NUMA goodness.
6301	 */
6302	for (j = 0; j < level; i++, j++) {
6303		tl[i] = (struct sched_domain_topology_level){
6304			.mask = sd_numa_mask,
6305			.sd_flags = cpu_numa_flags,
6306			.flags = SDTL_OVERLAP,
6307			.numa_level = j,
6308			SD_INIT_NAME(NUMA)
6309		};
6310	}
6311
6312	sched_domain_topology = tl;
6313
6314	sched_domains_numa_levels = level;
6315}
6316
6317static void sched_domains_numa_masks_set(int cpu)
6318{
6319	int i, j;
6320	int node = cpu_to_node(cpu);
6321
6322	for (i = 0; i < sched_domains_numa_levels; i++) {
6323		for (j = 0; j < nr_node_ids; j++) {
6324			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6325				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6326		}
6327	}
6328}
6329
6330static void sched_domains_numa_masks_clear(int cpu)
6331{
6332	int i, j;
6333	for (i = 0; i < sched_domains_numa_levels; i++) {
6334		for (j = 0; j < nr_node_ids; j++)
6335			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6336	}
6337}
6338
6339/*
6340 * Update sched_domains_numa_masks[level][node] array when new cpus
6341 * are onlined.
6342 */
6343static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6344					   unsigned long action,
6345					   void *hcpu)
6346{
6347	int cpu = (long)hcpu;
6348
6349	switch (action & ~CPU_TASKS_FROZEN) {
6350	case CPU_ONLINE:
6351		sched_domains_numa_masks_set(cpu);
6352		break;
6353
6354	case CPU_DEAD:
6355		sched_domains_numa_masks_clear(cpu);
6356		break;
6357
6358	default:
6359		return NOTIFY_DONE;
6360	}
6361
6362	return NOTIFY_OK;
6363}
6364#else
6365static inline void sched_init_numa(void)
6366{
6367}
6368
6369static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6370					   unsigned long action,
6371					   void *hcpu)
6372{
6373	return 0;
6374}
6375#endif /* CONFIG_NUMA */
6376
6377static int __sdt_alloc(const struct cpumask *cpu_map)
6378{
6379	struct sched_domain_topology_level *tl;
6380	int j;
6381
6382	for_each_sd_topology(tl) {
6383		struct sd_data *sdd = &tl->data;
6384
6385		sdd->sd = alloc_percpu(struct sched_domain *);
6386		if (!sdd->sd)
6387			return -ENOMEM;
6388
6389		sdd->sg = alloc_percpu(struct sched_group *);
6390		if (!sdd->sg)
6391			return -ENOMEM;
6392
6393		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6394		if (!sdd->sgc)
6395			return -ENOMEM;
6396
6397		for_each_cpu(j, cpu_map) {
6398			struct sched_domain *sd;
6399			struct sched_group *sg;
6400			struct sched_group_capacity *sgc;
6401
6402		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6403					GFP_KERNEL, cpu_to_node(j));
6404			if (!sd)
6405				return -ENOMEM;
6406
6407			*per_cpu_ptr(sdd->sd, j) = sd;
6408
6409			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6410					GFP_KERNEL, cpu_to_node(j));
6411			if (!sg)
6412				return -ENOMEM;
6413
6414			sg->next = sg;
6415
6416			*per_cpu_ptr(sdd->sg, j) = sg;
6417
6418			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6419					GFP_KERNEL, cpu_to_node(j));
6420			if (!sgc)
6421				return -ENOMEM;
6422
6423			*per_cpu_ptr(sdd->sgc, j) = sgc;
6424		}
6425	}
6426
6427	return 0;
6428}
6429
6430static void __sdt_free(const struct cpumask *cpu_map)
6431{
6432	struct sched_domain_topology_level *tl;
6433	int j;
6434
6435	for_each_sd_topology(tl) {
6436		struct sd_data *sdd = &tl->data;
6437
6438		for_each_cpu(j, cpu_map) {
6439			struct sched_domain *sd;
6440
6441			if (sdd->sd) {
6442				sd = *per_cpu_ptr(sdd->sd, j);
6443				if (sd && (sd->flags & SD_OVERLAP))
6444					free_sched_groups(sd->groups, 0);
6445				kfree(*per_cpu_ptr(sdd->sd, j));
6446			}
6447
6448			if (sdd->sg)
6449				kfree(*per_cpu_ptr(sdd->sg, j));
6450			if (sdd->sgc)
6451				kfree(*per_cpu_ptr(sdd->sgc, j));
6452		}
6453		free_percpu(sdd->sd);
6454		sdd->sd = NULL;
6455		free_percpu(sdd->sg);
6456		sdd->sg = NULL;
6457		free_percpu(sdd->sgc);
6458		sdd->sgc = NULL;
6459	}
6460}
6461
6462struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6463		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6464		struct sched_domain *child, int cpu)
6465{
6466	struct sched_domain *sd = sd_init(tl, cpu);
6467	if (!sd)
6468		return child;
6469
6470	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6471	if (child) {
6472		sd->level = child->level + 1;
6473		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6474		child->parent = sd;
6475		sd->child = child;
6476	}
6477	set_domain_attribute(sd, attr);
6478
6479	return sd;
6480}
6481
6482/*
6483 * Build sched domains for a given set of cpus and attach the sched domains
6484 * to the individual cpus
6485 */
6486static int build_sched_domains(const struct cpumask *cpu_map,
6487			       struct sched_domain_attr *attr)
6488{
6489	enum s_alloc alloc_state;
6490	struct sched_domain *sd;
6491	struct s_data d;
6492	int i, ret = -ENOMEM;
6493
6494	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6495	if (alloc_state != sa_rootdomain)
6496		goto error;
6497
6498	/* Set up domains for cpus specified by the cpu_map. */
6499	for_each_cpu(i, cpu_map) {
6500		struct sched_domain_topology_level *tl;
6501
6502		sd = NULL;
6503		for_each_sd_topology(tl) {
6504			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6505			if (tl == sched_domain_topology)
6506				*per_cpu_ptr(d.sd, i) = sd;
6507			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6508				sd->flags |= SD_OVERLAP;
6509			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6510				break;
6511		}
6512	}
6513
6514	/* Build the groups for the domains */
6515	for_each_cpu(i, cpu_map) {
6516		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6517			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6518			if (sd->flags & SD_OVERLAP) {
6519				if (build_overlap_sched_groups(sd, i))
6520					goto error;
6521			} else {
6522				if (build_sched_groups(sd, i))
6523					goto error;
6524			}
6525		}
6526	}
6527
6528	/* Calculate CPU capacity for physical packages and nodes */
6529	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6530		if (!cpumask_test_cpu(i, cpu_map))
6531			continue;
6532
6533		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6534			claim_allocations(i, sd);
6535			init_sched_groups_capacity(i, sd);
6536		}
6537	}
6538
6539	/* Attach the domains */
6540	rcu_read_lock();
6541	for_each_cpu(i, cpu_map) {
6542		sd = *per_cpu_ptr(d.sd, i);
6543		cpu_attach_domain(sd, d.rd, i);
6544	}
6545	rcu_read_unlock();
6546
6547	ret = 0;
6548error:
6549	__free_domain_allocs(&d, alloc_state, cpu_map);
6550	return ret;
6551}
6552
6553static cpumask_var_t *doms_cur;	/* current sched domains */
6554static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6555static struct sched_domain_attr *dattr_cur;
6556				/* attribues of custom domains in 'doms_cur' */
6557
6558/*
6559 * Special case: If a kmalloc of a doms_cur partition (array of
6560 * cpumask) fails, then fallback to a single sched domain,
6561 * as determined by the single cpumask fallback_doms.
6562 */
6563static cpumask_var_t fallback_doms;
6564
6565/*
6566 * arch_update_cpu_topology lets virtualized architectures update the
6567 * cpu core maps. It is supposed to return 1 if the topology changed
6568 * or 0 if it stayed the same.
6569 */
6570int __weak arch_update_cpu_topology(void)
6571{
6572	return 0;
6573}
6574
6575cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6576{
6577	int i;
6578	cpumask_var_t *doms;
6579
6580	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6581	if (!doms)
6582		return NULL;
6583	for (i = 0; i < ndoms; i++) {
6584		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6585			free_sched_domains(doms, i);
6586			return NULL;
6587		}
6588	}
6589	return doms;
6590}
6591
6592void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6593{
6594	unsigned int i;
6595	for (i = 0; i < ndoms; i++)
6596		free_cpumask_var(doms[i]);
6597	kfree(doms);
6598}
6599
6600/*
6601 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6602 * For now this just excludes isolated cpus, but could be used to
6603 * exclude other special cases in the future.
6604 */
6605static int init_sched_domains(const struct cpumask *cpu_map)
6606{
6607	int err;
6608
6609	arch_update_cpu_topology();
6610	ndoms_cur = 1;
6611	doms_cur = alloc_sched_domains(ndoms_cur);
6612	if (!doms_cur)
6613		doms_cur = &fallback_doms;
6614	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6615	err = build_sched_domains(doms_cur[0], NULL);
6616	register_sched_domain_sysctl();
6617
6618	return err;
6619}
6620
6621/*
6622 * Detach sched domains from a group of cpus specified in cpu_map
6623 * These cpus will now be attached to the NULL domain
6624 */
6625static void detach_destroy_domains(const struct cpumask *cpu_map)
6626{
6627	int i;
6628
6629	rcu_read_lock();
6630	for_each_cpu(i, cpu_map)
6631		cpu_attach_domain(NULL, &def_root_domain, i);
6632	rcu_read_unlock();
6633}
6634
6635/* handle null as "default" */
6636static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6637			struct sched_domain_attr *new, int idx_new)
6638{
6639	struct sched_domain_attr tmp;
6640
6641	/* fast path */
6642	if (!new && !cur)
6643		return 1;
6644
6645	tmp = SD_ATTR_INIT;
6646	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6647			new ? (new + idx_new) : &tmp,
6648			sizeof(struct sched_domain_attr));
6649}
6650
6651/*
6652 * Partition sched domains as specified by the 'ndoms_new'
6653 * cpumasks in the array doms_new[] of cpumasks. This compares
6654 * doms_new[] to the current sched domain partitioning, doms_cur[].
6655 * It destroys each deleted domain and builds each new domain.
6656 *
6657 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6658 * The masks don't intersect (don't overlap.) We should setup one
6659 * sched domain for each mask. CPUs not in any of the cpumasks will
6660 * not be load balanced. If the same cpumask appears both in the
6661 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6662 * it as it is.
6663 *
6664 * The passed in 'doms_new' should be allocated using
6665 * alloc_sched_domains.  This routine takes ownership of it and will
6666 * free_sched_domains it when done with it. If the caller failed the
6667 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6668 * and partition_sched_domains() will fallback to the single partition
6669 * 'fallback_doms', it also forces the domains to be rebuilt.
6670 *
6671 * If doms_new == NULL it will be replaced with cpu_online_mask.
6672 * ndoms_new == 0 is a special case for destroying existing domains,
6673 * and it will not create the default domain.
6674 *
6675 * Call with hotplug lock held
6676 */
6677void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6678			     struct sched_domain_attr *dattr_new)
6679{
6680	int i, j, n;
6681	int new_topology;
6682
6683	mutex_lock(&sched_domains_mutex);
6684
6685	/* always unregister in case we don't destroy any domains */
6686	unregister_sched_domain_sysctl();
6687
6688	/* Let architecture update cpu core mappings. */
6689	new_topology = arch_update_cpu_topology();
6690
6691	n = doms_new ? ndoms_new : 0;
6692
6693	/* Destroy deleted domains */
6694	for (i = 0; i < ndoms_cur; i++) {
6695		for (j = 0; j < n && !new_topology; j++) {
6696			if (cpumask_equal(doms_cur[i], doms_new[j])
6697			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6698				goto match1;
6699		}
6700		/* no match - a current sched domain not in new doms_new[] */
6701		detach_destroy_domains(doms_cur[i]);
6702match1:
6703		;
6704	}
6705
6706	n = ndoms_cur;
6707	if (doms_new == NULL) {
6708		n = 0;
6709		doms_new = &fallback_doms;
6710		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6711		WARN_ON_ONCE(dattr_new);
6712	}
6713
6714	/* Build new domains */
6715	for (i = 0; i < ndoms_new; i++) {
6716		for (j = 0; j < n && !new_topology; j++) {
6717			if (cpumask_equal(doms_new[i], doms_cur[j])
6718			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6719				goto match2;
6720		}
6721		/* no match - add a new doms_new */
6722		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6723match2:
6724		;
6725	}
6726
6727	/* Remember the new sched domains */
6728	if (doms_cur != &fallback_doms)
6729		free_sched_domains(doms_cur, ndoms_cur);
6730	kfree(dattr_cur);	/* kfree(NULL) is safe */
6731	doms_cur = doms_new;
6732	dattr_cur = dattr_new;
6733	ndoms_cur = ndoms_new;
6734
6735	register_sched_domain_sysctl();
6736
6737	mutex_unlock(&sched_domains_mutex);
6738}
6739
6740static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6741
6742/*
6743 * Update cpusets according to cpu_active mask.  If cpusets are
6744 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6745 * around partition_sched_domains().
6746 *
6747 * If we come here as part of a suspend/resume, don't touch cpusets because we
6748 * want to restore it back to its original state upon resume anyway.
6749 */
6750static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6751			     void *hcpu)
6752{
6753	switch (action) {
6754	case CPU_ONLINE_FROZEN:
6755	case CPU_DOWN_FAILED_FROZEN:
6756
6757		/*
6758		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6759		 * resume sequence. As long as this is not the last online
6760		 * operation in the resume sequence, just build a single sched
6761		 * domain, ignoring cpusets.
6762		 */
6763		num_cpus_frozen--;
6764		if (likely(num_cpus_frozen)) {
6765			partition_sched_domains(1, NULL, NULL);
6766			break;
6767		}
6768
6769		/*
6770		 * This is the last CPU online operation. So fall through and
6771		 * restore the original sched domains by considering the
6772		 * cpuset configurations.
6773		 */
6774
6775	case CPU_ONLINE:
6776	case CPU_DOWN_FAILED:
6777		cpuset_update_active_cpus(true);
6778		break;
6779	default:
6780		return NOTIFY_DONE;
6781	}
6782	return NOTIFY_OK;
6783}
6784
6785static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6786			       void *hcpu)
6787{
6788	switch (action) {
6789	case CPU_DOWN_PREPARE:
6790		cpuset_update_active_cpus(false);
6791		break;
6792	case CPU_DOWN_PREPARE_FROZEN:
6793		num_cpus_frozen++;
6794		partition_sched_domains(1, NULL, NULL);
6795		break;
6796	default:
6797		return NOTIFY_DONE;
6798	}
6799	return NOTIFY_OK;
6800}
6801
6802void __init sched_init_smp(void)
6803{
6804	cpumask_var_t non_isolated_cpus;
6805
6806	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6807	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6808
6809	sched_init_numa();
6810
6811	/*
6812	 * There's no userspace yet to cause hotplug operations; hence all the
6813	 * cpu masks are stable and all blatant races in the below code cannot
6814	 * happen.
6815	 */
6816	mutex_lock(&sched_domains_mutex);
6817	init_sched_domains(cpu_active_mask);
6818	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6819	if (cpumask_empty(non_isolated_cpus))
6820		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6821	mutex_unlock(&sched_domains_mutex);
6822
6823	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6824	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6825	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6826
6827	init_hrtick();
6828
6829	/* Move init over to a non-isolated CPU */
6830	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6831		BUG();
6832	sched_init_granularity();
6833	free_cpumask_var(non_isolated_cpus);
6834
6835	init_sched_rt_class();
6836	init_sched_dl_class();
6837}
6838#else
6839void __init sched_init_smp(void)
6840{
6841	sched_init_granularity();
6842}
6843#endif /* CONFIG_SMP */
6844
6845const_debug unsigned int sysctl_timer_migration = 1;
6846
6847int in_sched_functions(unsigned long addr)
6848{
6849	return in_lock_functions(addr) ||
6850		(addr >= (unsigned long)__sched_text_start
6851		&& addr < (unsigned long)__sched_text_end);
6852}
6853
6854#ifdef CONFIG_CGROUP_SCHED
6855/*
6856 * Default task group.
6857 * Every task in system belongs to this group at bootup.
6858 */
6859struct task_group root_task_group;
6860LIST_HEAD(task_groups);
6861#endif
6862
6863DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6864
6865void __init sched_init(void)
6866{
6867	int i, j;
6868	unsigned long alloc_size = 0, ptr;
6869
6870#ifdef CONFIG_FAIR_GROUP_SCHED
6871	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6872#endif
6873#ifdef CONFIG_RT_GROUP_SCHED
6874	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6875#endif
6876#ifdef CONFIG_CPUMASK_OFFSTACK
6877	alloc_size += num_possible_cpus() * cpumask_size();
6878#endif
6879	if (alloc_size) {
6880		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6881
6882#ifdef CONFIG_FAIR_GROUP_SCHED
6883		root_task_group.se = (struct sched_entity **)ptr;
6884		ptr += nr_cpu_ids * sizeof(void **);
6885
6886		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6887		ptr += nr_cpu_ids * sizeof(void **);
6888
6889#endif /* CONFIG_FAIR_GROUP_SCHED */
6890#ifdef CONFIG_RT_GROUP_SCHED
6891		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6892		ptr += nr_cpu_ids * sizeof(void **);
6893
6894		root_task_group.rt_rq = (struct rt_rq **)ptr;
6895		ptr += nr_cpu_ids * sizeof(void **);
6896
6897#endif /* CONFIG_RT_GROUP_SCHED */
6898#ifdef CONFIG_CPUMASK_OFFSTACK
6899		for_each_possible_cpu(i) {
6900			per_cpu(load_balance_mask, i) = (void *)ptr;
6901			ptr += cpumask_size();
6902		}
6903#endif /* CONFIG_CPUMASK_OFFSTACK */
6904	}
6905
6906	init_rt_bandwidth(&def_rt_bandwidth,
6907			global_rt_period(), global_rt_runtime());
6908	init_dl_bandwidth(&def_dl_bandwidth,
6909			global_rt_period(), global_rt_runtime());
6910
6911#ifdef CONFIG_SMP
6912	init_defrootdomain();
6913#endif
6914
6915#ifdef CONFIG_RT_GROUP_SCHED
6916	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6917			global_rt_period(), global_rt_runtime());
6918#endif /* CONFIG_RT_GROUP_SCHED */
6919
6920#ifdef CONFIG_CGROUP_SCHED
6921	list_add(&root_task_group.list, &task_groups);
6922	INIT_LIST_HEAD(&root_task_group.children);
6923	INIT_LIST_HEAD(&root_task_group.siblings);
6924	autogroup_init(&init_task);
6925
6926#endif /* CONFIG_CGROUP_SCHED */
6927
6928	for_each_possible_cpu(i) {
6929		struct rq *rq;
6930
6931		rq = cpu_rq(i);
6932		raw_spin_lock_init(&rq->lock);
6933		rq->nr_running = 0;
6934		rq->calc_load_active = 0;
6935		rq->calc_load_update = jiffies + LOAD_FREQ;
6936		init_cfs_rq(&rq->cfs);
6937		init_rt_rq(&rq->rt, rq);
6938		init_dl_rq(&rq->dl, rq);
6939#ifdef CONFIG_FAIR_GROUP_SCHED
6940		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6941		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6942		/*
6943		 * How much cpu bandwidth does root_task_group get?
6944		 *
6945		 * In case of task-groups formed thr' the cgroup filesystem, it
6946		 * gets 100% of the cpu resources in the system. This overall
6947		 * system cpu resource is divided among the tasks of
6948		 * root_task_group and its child task-groups in a fair manner,
6949		 * based on each entity's (task or task-group's) weight
6950		 * (se->load.weight).
6951		 *
6952		 * In other words, if root_task_group has 10 tasks of weight
6953		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6954		 * then A0's share of the cpu resource is:
6955		 *
6956		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6957		 *
6958		 * We achieve this by letting root_task_group's tasks sit
6959		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6960		 */
6961		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6962		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6963#endif /* CONFIG_FAIR_GROUP_SCHED */
6964
6965		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6966#ifdef CONFIG_RT_GROUP_SCHED
6967		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6968#endif
6969
6970		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6971			rq->cpu_load[j] = 0;
6972
6973		rq->last_load_update_tick = jiffies;
6974
6975#ifdef CONFIG_SMP
6976		rq->sd = NULL;
6977		rq->rd = NULL;
6978		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6979		rq->post_schedule = 0;
6980		rq->active_balance = 0;
6981		rq->next_balance = jiffies;
6982		rq->push_cpu = 0;
6983		rq->cpu = i;
6984		rq->online = 0;
6985		rq->idle_stamp = 0;
6986		rq->avg_idle = 2*sysctl_sched_migration_cost;
6987		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6988
6989		INIT_LIST_HEAD(&rq->cfs_tasks);
6990
6991		rq_attach_root(rq, &def_root_domain);
6992#ifdef CONFIG_NO_HZ_COMMON
6993		rq->nohz_flags = 0;
6994#endif
6995#ifdef CONFIG_NO_HZ_FULL
6996		rq->last_sched_tick = 0;
6997#endif
6998#endif
6999		init_rq_hrtick(rq);
7000		atomic_set(&rq->nr_iowait, 0);
7001	}
7002
7003	set_load_weight(&init_task);
7004
7005#ifdef CONFIG_PREEMPT_NOTIFIERS
7006	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7007#endif
7008
7009	/*
7010	 * The boot idle thread does lazy MMU switching as well:
7011	 */
7012	atomic_inc(&init_mm.mm_count);
7013	enter_lazy_tlb(&init_mm, current);
7014
7015	/*
7016	 * Make us the idle thread. Technically, schedule() should not be
7017	 * called from this thread, however somewhere below it might be,
7018	 * but because we are the idle thread, we just pick up running again
7019	 * when this runqueue becomes "idle".
7020	 */
7021	init_idle(current, smp_processor_id());
7022
7023	calc_load_update = jiffies + LOAD_FREQ;
7024
7025	/*
7026	 * During early bootup we pretend to be a normal task:
7027	 */
7028	current->sched_class = &fair_sched_class;
7029
7030#ifdef CONFIG_SMP
7031	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7032	/* May be allocated at isolcpus cmdline parse time */
7033	if (cpu_isolated_map == NULL)
7034		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7035	idle_thread_set_boot_cpu();
7036	set_cpu_rq_start_time();
7037#endif
7038	init_sched_fair_class();
7039
7040	scheduler_running = 1;
7041}
7042
7043#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7044static inline int preempt_count_equals(int preempt_offset)
7045{
7046	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7047
7048	return (nested == preempt_offset);
7049}
7050
7051void __might_sleep(const char *file, int line, int preempt_offset)
7052{
7053	static unsigned long prev_jiffy;	/* ratelimiting */
7054
7055	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7056	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7057	     !is_idle_task(current)) ||
7058	    system_state != SYSTEM_RUNNING || oops_in_progress)
7059		return;
7060	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7061		return;
7062	prev_jiffy = jiffies;
7063
7064	printk(KERN_ERR
7065		"BUG: sleeping function called from invalid context at %s:%d\n",
7066			file, line);
7067	printk(KERN_ERR
7068		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7069			in_atomic(), irqs_disabled(),
7070			current->pid, current->comm);
7071
7072	debug_show_held_locks(current);
7073	if (irqs_disabled())
7074		print_irqtrace_events(current);
7075#ifdef CONFIG_DEBUG_PREEMPT
7076	if (!preempt_count_equals(preempt_offset)) {
7077		pr_err("Preemption disabled at:");
7078		print_ip_sym(current->preempt_disable_ip);
7079		pr_cont("\n");
7080	}
7081#endif
7082	dump_stack();
7083}
7084EXPORT_SYMBOL(__might_sleep);
7085#endif
7086
7087#ifdef CONFIG_MAGIC_SYSRQ
7088static void normalize_task(struct rq *rq, struct task_struct *p)
7089{
7090	const struct sched_class *prev_class = p->sched_class;
7091	struct sched_attr attr = {
7092		.sched_policy = SCHED_NORMAL,
7093	};
7094	int old_prio = p->prio;
7095	int on_rq;
7096
7097	on_rq = p->on_rq;
7098	if (on_rq)
7099		dequeue_task(rq, p, 0);
7100	__setscheduler(rq, p, &attr);
7101	if (on_rq) {
7102		enqueue_task(rq, p, 0);
7103		resched_task(rq->curr);
7104	}
7105
7106	check_class_changed(rq, p, prev_class, old_prio);
7107}
7108
7109void normalize_rt_tasks(void)
7110{
7111	struct task_struct *g, *p;
7112	unsigned long flags;
7113	struct rq *rq;
7114
7115	read_lock_irqsave(&tasklist_lock, flags);
7116	do_each_thread(g, p) {
7117		/*
7118		 * Only normalize user tasks:
7119		 */
7120		if (!p->mm)
7121			continue;
7122
7123		p->se.exec_start		= 0;
7124#ifdef CONFIG_SCHEDSTATS
7125		p->se.statistics.wait_start	= 0;
7126		p->se.statistics.sleep_start	= 0;
7127		p->se.statistics.block_start	= 0;
7128#endif
7129
7130		if (!dl_task(p) && !rt_task(p)) {
7131			/*
7132			 * Renice negative nice level userspace
7133			 * tasks back to 0:
7134			 */
7135			if (task_nice(p) < 0 && p->mm)
7136				set_user_nice(p, 0);
7137			continue;
7138		}
7139
7140		raw_spin_lock(&p->pi_lock);
7141		rq = __task_rq_lock(p);
7142
7143		normalize_task(rq, p);
7144
7145		__task_rq_unlock(rq);
7146		raw_spin_unlock(&p->pi_lock);
7147	} while_each_thread(g, p);
7148
7149	read_unlock_irqrestore(&tasklist_lock, flags);
7150}
7151
7152#endif /* CONFIG_MAGIC_SYSRQ */
7153
7154#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7155/*
7156 * These functions are only useful for the IA64 MCA handling, or kdb.
7157 *
7158 * They can only be called when the whole system has been
7159 * stopped - every CPU needs to be quiescent, and no scheduling
7160 * activity can take place. Using them for anything else would
7161 * be a serious bug, and as a result, they aren't even visible
7162 * under any other configuration.
7163 */
7164
7165/**
7166 * curr_task - return the current task for a given cpu.
7167 * @cpu: the processor in question.
7168 *
7169 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7170 *
7171 * Return: The current task for @cpu.
7172 */
7173struct task_struct *curr_task(int cpu)
7174{
7175	return cpu_curr(cpu);
7176}
7177
7178#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7179
7180#ifdef CONFIG_IA64
7181/**
7182 * set_curr_task - set the current task for a given cpu.
7183 * @cpu: the processor in question.
7184 * @p: the task pointer to set.
7185 *
7186 * Description: This function must only be used when non-maskable interrupts
7187 * are serviced on a separate stack. It allows the architecture to switch the
7188 * notion of the current task on a cpu in a non-blocking manner. This function
7189 * must be called with all CPU's synchronized, and interrupts disabled, the
7190 * and caller must save the original value of the current task (see
7191 * curr_task() above) and restore that value before reenabling interrupts and
7192 * re-starting the system.
7193 *
7194 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7195 */
7196void set_curr_task(int cpu, struct task_struct *p)
7197{
7198	cpu_curr(cpu) = p;
7199}
7200
7201#endif
7202
7203#ifdef CONFIG_CGROUP_SCHED
7204/* task_group_lock serializes the addition/removal of task groups */
7205static DEFINE_SPINLOCK(task_group_lock);
7206
7207static void free_sched_group(struct task_group *tg)
7208{
7209	free_fair_sched_group(tg);
7210	free_rt_sched_group(tg);
7211	autogroup_free(tg);
7212	kfree(tg);
7213}
7214
7215/* allocate runqueue etc for a new task group */
7216struct task_group *sched_create_group(struct task_group *parent)
7217{
7218	struct task_group *tg;
7219
7220	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7221	if (!tg)
7222		return ERR_PTR(-ENOMEM);
7223
7224	if (!alloc_fair_sched_group(tg, parent))
7225		goto err;
7226
7227	if (!alloc_rt_sched_group(tg, parent))
7228		goto err;
7229
7230	return tg;
7231
7232err:
7233	free_sched_group(tg);
7234	return ERR_PTR(-ENOMEM);
7235}
7236
7237void sched_online_group(struct task_group *tg, struct task_group *parent)
7238{
7239	unsigned long flags;
7240
7241	spin_lock_irqsave(&task_group_lock, flags);
7242	list_add_rcu(&tg->list, &task_groups);
7243
7244	WARN_ON(!parent); /* root should already exist */
7245
7246	tg->parent = parent;
7247	INIT_LIST_HEAD(&tg->children);
7248	list_add_rcu(&tg->siblings, &parent->children);
7249	spin_unlock_irqrestore(&task_group_lock, flags);
7250}
7251
7252/* rcu callback to free various structures associated with a task group */
7253static void free_sched_group_rcu(struct rcu_head *rhp)
7254{
7255	/* now it should be safe to free those cfs_rqs */
7256	free_sched_group(container_of(rhp, struct task_group, rcu));
7257}
7258
7259/* Destroy runqueue etc associated with a task group */
7260void sched_destroy_group(struct task_group *tg)
7261{
7262	/* wait for possible concurrent references to cfs_rqs complete */
7263	call_rcu(&tg->rcu, free_sched_group_rcu);
7264}
7265
7266void sched_offline_group(struct task_group *tg)
7267{
7268	unsigned long flags;
7269	int i;
7270
7271	/* end participation in shares distribution */
7272	for_each_possible_cpu(i)
7273		unregister_fair_sched_group(tg, i);
7274
7275	spin_lock_irqsave(&task_group_lock, flags);
7276	list_del_rcu(&tg->list);
7277	list_del_rcu(&tg->siblings);
7278	spin_unlock_irqrestore(&task_group_lock, flags);
7279}
7280
7281/* change task's runqueue when it moves between groups.
7282 *	The caller of this function should have put the task in its new group
7283 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7284 *	reflect its new group.
7285 */
7286void sched_move_task(struct task_struct *tsk)
7287{
7288	struct task_group *tg;
7289	int on_rq, running;
7290	unsigned long flags;
7291	struct rq *rq;
7292
7293	rq = task_rq_lock(tsk, &flags);
7294
7295	running = task_current(rq, tsk);
7296	on_rq = tsk->on_rq;
7297
7298	if (on_rq)
7299		dequeue_task(rq, tsk, 0);
7300	if (unlikely(running))
7301		tsk->sched_class->put_prev_task(rq, tsk);
7302
7303	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7304				lockdep_is_held(&tsk->sighand->siglock)),
7305			  struct task_group, css);
7306	tg = autogroup_task_group(tsk, tg);
7307	tsk->sched_task_group = tg;
7308
7309#ifdef CONFIG_FAIR_GROUP_SCHED
7310	if (tsk->sched_class->task_move_group)
7311		tsk->sched_class->task_move_group(tsk, on_rq);
7312	else
7313#endif
7314		set_task_rq(tsk, task_cpu(tsk));
7315
7316	if (unlikely(running))
7317		tsk->sched_class->set_curr_task(rq);
7318	if (on_rq)
7319		enqueue_task(rq, tsk, 0);
7320
7321	task_rq_unlock(rq, tsk, &flags);
7322}
7323#endif /* CONFIG_CGROUP_SCHED */
7324
7325#ifdef CONFIG_RT_GROUP_SCHED
7326/*
7327 * Ensure that the real time constraints are schedulable.
7328 */
7329static DEFINE_MUTEX(rt_constraints_mutex);
7330
7331/* Must be called with tasklist_lock held */
7332static inline int tg_has_rt_tasks(struct task_group *tg)
7333{
7334	struct task_struct *g, *p;
7335
7336	do_each_thread(g, p) {
7337		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7338			return 1;
7339	} while_each_thread(g, p);
7340
7341	return 0;
7342}
7343
7344struct rt_schedulable_data {
7345	struct task_group *tg;
7346	u64 rt_period;
7347	u64 rt_runtime;
7348};
7349
7350static int tg_rt_schedulable(struct task_group *tg, void *data)
7351{
7352	struct rt_schedulable_data *d = data;
7353	struct task_group *child;
7354	unsigned long total, sum = 0;
7355	u64 period, runtime;
7356
7357	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7358	runtime = tg->rt_bandwidth.rt_runtime;
7359
7360	if (tg == d->tg) {
7361		period = d->rt_period;
7362		runtime = d->rt_runtime;
7363	}
7364
7365	/*
7366	 * Cannot have more runtime than the period.
7367	 */
7368	if (runtime > period && runtime != RUNTIME_INF)
7369		return -EINVAL;
7370
7371	/*
7372	 * Ensure we don't starve existing RT tasks.
7373	 */
7374	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7375		return -EBUSY;
7376
7377	total = to_ratio(period, runtime);
7378
7379	/*
7380	 * Nobody can have more than the global setting allows.
7381	 */
7382	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7383		return -EINVAL;
7384
7385	/*
7386	 * The sum of our children's runtime should not exceed our own.
7387	 */
7388	list_for_each_entry_rcu(child, &tg->children, siblings) {
7389		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7390		runtime = child->rt_bandwidth.rt_runtime;
7391
7392		if (child == d->tg) {
7393			period = d->rt_period;
7394			runtime = d->rt_runtime;
7395		}
7396
7397		sum += to_ratio(period, runtime);
7398	}
7399
7400	if (sum > total)
7401		return -EINVAL;
7402
7403	return 0;
7404}
7405
7406static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7407{
7408	int ret;
7409
7410	struct rt_schedulable_data data = {
7411		.tg = tg,
7412		.rt_period = period,
7413		.rt_runtime = runtime,
7414	};
7415
7416	rcu_read_lock();
7417	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7418	rcu_read_unlock();
7419
7420	return ret;
7421}
7422
7423static int tg_set_rt_bandwidth(struct task_group *tg,
7424		u64 rt_period, u64 rt_runtime)
7425{
7426	int i, err = 0;
7427
7428	mutex_lock(&rt_constraints_mutex);
7429	read_lock(&tasklist_lock);
7430	err = __rt_schedulable(tg, rt_period, rt_runtime);
7431	if (err)
7432		goto unlock;
7433
7434	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7435	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7436	tg->rt_bandwidth.rt_runtime = rt_runtime;
7437
7438	for_each_possible_cpu(i) {
7439		struct rt_rq *rt_rq = tg->rt_rq[i];
7440
7441		raw_spin_lock(&rt_rq->rt_runtime_lock);
7442		rt_rq->rt_runtime = rt_runtime;
7443		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7444	}
7445	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7446unlock:
7447	read_unlock(&tasklist_lock);
7448	mutex_unlock(&rt_constraints_mutex);
7449
7450	return err;
7451}
7452
7453static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7454{
7455	u64 rt_runtime, rt_period;
7456
7457	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7458	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7459	if (rt_runtime_us < 0)
7460		rt_runtime = RUNTIME_INF;
7461
7462	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7463}
7464
7465static long sched_group_rt_runtime(struct task_group *tg)
7466{
7467	u64 rt_runtime_us;
7468
7469	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7470		return -1;
7471
7472	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7473	do_div(rt_runtime_us, NSEC_PER_USEC);
7474	return rt_runtime_us;
7475}
7476
7477static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7478{
7479	u64 rt_runtime, rt_period;
7480
7481	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7482	rt_runtime = tg->rt_bandwidth.rt_runtime;
7483
7484	if (rt_period == 0)
7485		return -EINVAL;
7486
7487	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7488}
7489
7490static long sched_group_rt_period(struct task_group *tg)
7491{
7492	u64 rt_period_us;
7493
7494	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7495	do_div(rt_period_us, NSEC_PER_USEC);
7496	return rt_period_us;
7497}
7498#endif /* CONFIG_RT_GROUP_SCHED */
7499
7500#ifdef CONFIG_RT_GROUP_SCHED
7501static int sched_rt_global_constraints(void)
7502{
7503	int ret = 0;
7504
7505	mutex_lock(&rt_constraints_mutex);
7506	read_lock(&tasklist_lock);
7507	ret = __rt_schedulable(NULL, 0, 0);
7508	read_unlock(&tasklist_lock);
7509	mutex_unlock(&rt_constraints_mutex);
7510
7511	return ret;
7512}
7513
7514static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7515{
7516	/* Don't accept realtime tasks when there is no way for them to run */
7517	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7518		return 0;
7519
7520	return 1;
7521}
7522
7523#else /* !CONFIG_RT_GROUP_SCHED */
7524static int sched_rt_global_constraints(void)
7525{
7526	unsigned long flags;
7527	int i, ret = 0;
7528
7529	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7530	for_each_possible_cpu(i) {
7531		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7532
7533		raw_spin_lock(&rt_rq->rt_runtime_lock);
7534		rt_rq->rt_runtime = global_rt_runtime();
7535		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7536	}
7537	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7538
7539	return ret;
7540}
7541#endif /* CONFIG_RT_GROUP_SCHED */
7542
7543static int sched_dl_global_constraints(void)
7544{
7545	u64 runtime = global_rt_runtime();
7546	u64 period = global_rt_period();
7547	u64 new_bw = to_ratio(period, runtime);
7548	int cpu, ret = 0;
7549	unsigned long flags;
7550
7551	/*
7552	 * Here we want to check the bandwidth not being set to some
7553	 * value smaller than the currently allocated bandwidth in
7554	 * any of the root_domains.
7555	 *
7556	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7557	 * cycling on root_domains... Discussion on different/better
7558	 * solutions is welcome!
7559	 */
7560	for_each_possible_cpu(cpu) {
7561		struct dl_bw *dl_b = dl_bw_of(cpu);
7562
7563		raw_spin_lock_irqsave(&dl_b->lock, flags);
7564		if (new_bw < dl_b->total_bw)
7565			ret = -EBUSY;
7566		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7567
7568		if (ret)
7569			break;
7570	}
7571
7572	return ret;
7573}
7574
7575static void sched_dl_do_global(void)
7576{
7577	u64 new_bw = -1;
7578	int cpu;
7579	unsigned long flags;
7580
7581	def_dl_bandwidth.dl_period = global_rt_period();
7582	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7583
7584	if (global_rt_runtime() != RUNTIME_INF)
7585		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7586
7587	/*
7588	 * FIXME: As above...
7589	 */
7590	for_each_possible_cpu(cpu) {
7591		struct dl_bw *dl_b = dl_bw_of(cpu);
7592
7593		raw_spin_lock_irqsave(&dl_b->lock, flags);
7594		dl_b->bw = new_bw;
7595		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7596	}
7597}
7598
7599static int sched_rt_global_validate(void)
7600{
7601	if (sysctl_sched_rt_period <= 0)
7602		return -EINVAL;
7603
7604	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7605		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7606		return -EINVAL;
7607
7608	return 0;
7609}
7610
7611static void sched_rt_do_global(void)
7612{
7613	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7614	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7615}
7616
7617int sched_rt_handler(struct ctl_table *table, int write,
7618		void __user *buffer, size_t *lenp,
7619		loff_t *ppos)
7620{
7621	int old_period, old_runtime;
7622	static DEFINE_MUTEX(mutex);
7623	int ret;
7624
7625	mutex_lock(&mutex);
7626	old_period = sysctl_sched_rt_period;
7627	old_runtime = sysctl_sched_rt_runtime;
7628
7629	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7630
7631	if (!ret && write) {
7632		ret = sched_rt_global_validate();
7633		if (ret)
7634			goto undo;
7635
7636		ret = sched_rt_global_constraints();
7637		if (ret)
7638			goto undo;
7639
7640		ret = sched_dl_global_constraints();
7641		if (ret)
7642			goto undo;
7643
7644		sched_rt_do_global();
7645		sched_dl_do_global();
7646	}
7647	if (0) {
7648undo:
7649		sysctl_sched_rt_period = old_period;
7650		sysctl_sched_rt_runtime = old_runtime;
7651	}
7652	mutex_unlock(&mutex);
7653
7654	return ret;
7655}
7656
7657int sched_rr_handler(struct ctl_table *table, int write,
7658		void __user *buffer, size_t *lenp,
7659		loff_t *ppos)
7660{
7661	int ret;
7662	static DEFINE_MUTEX(mutex);
7663
7664	mutex_lock(&mutex);
7665	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7666	/* make sure that internally we keep jiffies */
7667	/* also, writing zero resets timeslice to default */
7668	if (!ret && write) {
7669		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7670			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7671	}
7672	mutex_unlock(&mutex);
7673	return ret;
7674}
7675
7676#ifdef CONFIG_CGROUP_SCHED
7677
7678static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7679{
7680	return css ? container_of(css, struct task_group, css) : NULL;
7681}
7682
7683static struct cgroup_subsys_state *
7684cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7685{
7686	struct task_group *parent = css_tg(parent_css);
7687	struct task_group *tg;
7688
7689	if (!parent) {
7690		/* This is early initialization for the top cgroup */
7691		return &root_task_group.css;
7692	}
7693
7694	tg = sched_create_group(parent);
7695	if (IS_ERR(tg))
7696		return ERR_PTR(-ENOMEM);
7697
7698	return &tg->css;
7699}
7700
7701static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7702{
7703	struct task_group *tg = css_tg(css);
7704	struct task_group *parent = css_tg(css->parent);
7705
7706	if (parent)
7707		sched_online_group(tg, parent);
7708	return 0;
7709}
7710
7711static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7712{
7713	struct task_group *tg = css_tg(css);
7714
7715	sched_destroy_group(tg);
7716}
7717
7718static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7719{
7720	struct task_group *tg = css_tg(css);
7721
7722	sched_offline_group(tg);
7723}
7724
7725static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7726				 struct cgroup_taskset *tset)
7727{
7728	struct task_struct *task;
7729
7730	cgroup_taskset_for_each(task, tset) {
7731#ifdef CONFIG_RT_GROUP_SCHED
7732		if (!sched_rt_can_attach(css_tg(css), task))
7733			return -EINVAL;
7734#else
7735		/* We don't support RT-tasks being in separate groups */
7736		if (task->sched_class != &fair_sched_class)
7737			return -EINVAL;
7738#endif
7739	}
7740	return 0;
7741}
7742
7743static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7744			      struct cgroup_taskset *tset)
7745{
7746	struct task_struct *task;
7747
7748	cgroup_taskset_for_each(task, tset)
7749		sched_move_task(task);
7750}
7751
7752static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7753			    struct cgroup_subsys_state *old_css,
7754			    struct task_struct *task)
7755{
7756	/*
7757	 * cgroup_exit() is called in the copy_process() failure path.
7758	 * Ignore this case since the task hasn't ran yet, this avoids
7759	 * trying to poke a half freed task state from generic code.
7760	 */
7761	if (!(task->flags & PF_EXITING))
7762		return;
7763
7764	sched_move_task(task);
7765}
7766
7767#ifdef CONFIG_FAIR_GROUP_SCHED
7768static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7769				struct cftype *cftype, u64 shareval)
7770{
7771	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7772}
7773
7774static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7775			       struct cftype *cft)
7776{
7777	struct task_group *tg = css_tg(css);
7778
7779	return (u64) scale_load_down(tg->shares);
7780}
7781
7782#ifdef CONFIG_CFS_BANDWIDTH
7783static DEFINE_MUTEX(cfs_constraints_mutex);
7784
7785const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7786const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7787
7788static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7789
7790static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7791{
7792	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7793	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7794
7795	if (tg == &root_task_group)
7796		return -EINVAL;
7797
7798	/*
7799	 * Ensure we have at some amount of bandwidth every period.  This is
7800	 * to prevent reaching a state of large arrears when throttled via
7801	 * entity_tick() resulting in prolonged exit starvation.
7802	 */
7803	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7804		return -EINVAL;
7805
7806	/*
7807	 * Likewise, bound things on the otherside by preventing insane quota
7808	 * periods.  This also allows us to normalize in computing quota
7809	 * feasibility.
7810	 */
7811	if (period > max_cfs_quota_period)
7812		return -EINVAL;
7813
7814	mutex_lock(&cfs_constraints_mutex);
7815	ret = __cfs_schedulable(tg, period, quota);
7816	if (ret)
7817		goto out_unlock;
7818
7819	runtime_enabled = quota != RUNTIME_INF;
7820	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7821	/*
7822	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7823	 * before making related changes, and on->off must occur afterwards
7824	 */
7825	if (runtime_enabled && !runtime_was_enabled)
7826		cfs_bandwidth_usage_inc();
7827	raw_spin_lock_irq(&cfs_b->lock);
7828	cfs_b->period = ns_to_ktime(period);
7829	cfs_b->quota = quota;
7830
7831	__refill_cfs_bandwidth_runtime(cfs_b);
7832	/* restart the period timer (if active) to handle new period expiry */
7833	if (runtime_enabled && cfs_b->timer_active) {
7834		/* force a reprogram */
7835		__start_cfs_bandwidth(cfs_b, true);
7836	}
7837	raw_spin_unlock_irq(&cfs_b->lock);
7838
7839	for_each_possible_cpu(i) {
7840		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7841		struct rq *rq = cfs_rq->rq;
7842
7843		raw_spin_lock_irq(&rq->lock);
7844		cfs_rq->runtime_enabled = runtime_enabled;
7845		cfs_rq->runtime_remaining = 0;
7846
7847		if (cfs_rq->throttled)
7848			unthrottle_cfs_rq(cfs_rq);
7849		raw_spin_unlock_irq(&rq->lock);
7850	}
7851	if (runtime_was_enabled && !runtime_enabled)
7852		cfs_bandwidth_usage_dec();
7853out_unlock:
7854	mutex_unlock(&cfs_constraints_mutex);
7855
7856	return ret;
7857}
7858
7859int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7860{
7861	u64 quota, period;
7862
7863	period = ktime_to_ns(tg->cfs_bandwidth.period);
7864	if (cfs_quota_us < 0)
7865		quota = RUNTIME_INF;
7866	else
7867		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7868
7869	return tg_set_cfs_bandwidth(tg, period, quota);
7870}
7871
7872long tg_get_cfs_quota(struct task_group *tg)
7873{
7874	u64 quota_us;
7875
7876	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7877		return -1;
7878
7879	quota_us = tg->cfs_bandwidth.quota;
7880	do_div(quota_us, NSEC_PER_USEC);
7881
7882	return quota_us;
7883}
7884
7885int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7886{
7887	u64 quota, period;
7888
7889	period = (u64)cfs_period_us * NSEC_PER_USEC;
7890	quota = tg->cfs_bandwidth.quota;
7891
7892	return tg_set_cfs_bandwidth(tg, period, quota);
7893}
7894
7895long tg_get_cfs_period(struct task_group *tg)
7896{
7897	u64 cfs_period_us;
7898
7899	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7900	do_div(cfs_period_us, NSEC_PER_USEC);
7901
7902	return cfs_period_us;
7903}
7904
7905static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7906				  struct cftype *cft)
7907{
7908	return tg_get_cfs_quota(css_tg(css));
7909}
7910
7911static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7912				   struct cftype *cftype, s64 cfs_quota_us)
7913{
7914	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7915}
7916
7917static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7918				   struct cftype *cft)
7919{
7920	return tg_get_cfs_period(css_tg(css));
7921}
7922
7923static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7924				    struct cftype *cftype, u64 cfs_period_us)
7925{
7926	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7927}
7928
7929struct cfs_schedulable_data {
7930	struct task_group *tg;
7931	u64 period, quota;
7932};
7933
7934/*
7935 * normalize group quota/period to be quota/max_period
7936 * note: units are usecs
7937 */
7938static u64 normalize_cfs_quota(struct task_group *tg,
7939			       struct cfs_schedulable_data *d)
7940{
7941	u64 quota, period;
7942
7943	if (tg == d->tg) {
7944		period = d->period;
7945		quota = d->quota;
7946	} else {
7947		period = tg_get_cfs_period(tg);
7948		quota = tg_get_cfs_quota(tg);
7949	}
7950
7951	/* note: these should typically be equivalent */
7952	if (quota == RUNTIME_INF || quota == -1)
7953		return RUNTIME_INF;
7954
7955	return to_ratio(period, quota);
7956}
7957
7958static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7959{
7960	struct cfs_schedulable_data *d = data;
7961	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7962	s64 quota = 0, parent_quota = -1;
7963
7964	if (!tg->parent) {
7965		quota = RUNTIME_INF;
7966	} else {
7967		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7968
7969		quota = normalize_cfs_quota(tg, d);
7970		parent_quota = parent_b->hierarchal_quota;
7971
7972		/*
7973		 * ensure max(child_quota) <= parent_quota, inherit when no
7974		 * limit is set
7975		 */
7976		if (quota == RUNTIME_INF)
7977			quota = parent_quota;
7978		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7979			return -EINVAL;
7980	}
7981	cfs_b->hierarchal_quota = quota;
7982
7983	return 0;
7984}
7985
7986static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7987{
7988	int ret;
7989	struct cfs_schedulable_data data = {
7990		.tg = tg,
7991		.period = period,
7992		.quota = quota,
7993	};
7994
7995	if (quota != RUNTIME_INF) {
7996		do_div(data.period, NSEC_PER_USEC);
7997		do_div(data.quota, NSEC_PER_USEC);
7998	}
7999
8000	rcu_read_lock();
8001	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8002	rcu_read_unlock();
8003
8004	return ret;
8005}
8006
8007static int cpu_stats_show(struct seq_file *sf, void *v)
8008{
8009	struct task_group *tg = css_tg(seq_css(sf));
8010	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8011
8012	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8013	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8014	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8015
8016	return 0;
8017}
8018#endif /* CONFIG_CFS_BANDWIDTH */
8019#endif /* CONFIG_FAIR_GROUP_SCHED */
8020
8021#ifdef CONFIG_RT_GROUP_SCHED
8022static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8023				struct cftype *cft, s64 val)
8024{
8025	return sched_group_set_rt_runtime(css_tg(css), val);
8026}
8027
8028static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8029			       struct cftype *cft)
8030{
8031	return sched_group_rt_runtime(css_tg(css));
8032}
8033
8034static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8035				    struct cftype *cftype, u64 rt_period_us)
8036{
8037	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8038}
8039
8040static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8041				   struct cftype *cft)
8042{
8043	return sched_group_rt_period(css_tg(css));
8044}
8045#endif /* CONFIG_RT_GROUP_SCHED */
8046
8047static struct cftype cpu_files[] = {
8048#ifdef CONFIG_FAIR_GROUP_SCHED
8049	{
8050		.name = "shares",
8051		.read_u64 = cpu_shares_read_u64,
8052		.write_u64 = cpu_shares_write_u64,
8053	},
8054#endif
8055#ifdef CONFIG_CFS_BANDWIDTH
8056	{
8057		.name = "cfs_quota_us",
8058		.read_s64 = cpu_cfs_quota_read_s64,
8059		.write_s64 = cpu_cfs_quota_write_s64,
8060	},
8061	{
8062		.name = "cfs_period_us",
8063		.read_u64 = cpu_cfs_period_read_u64,
8064		.write_u64 = cpu_cfs_period_write_u64,
8065	},
8066	{
8067		.name = "stat",
8068		.seq_show = cpu_stats_show,
8069	},
8070#endif
8071#ifdef CONFIG_RT_GROUP_SCHED
8072	{
8073		.name = "rt_runtime_us",
8074		.read_s64 = cpu_rt_runtime_read,
8075		.write_s64 = cpu_rt_runtime_write,
8076	},
8077	{
8078		.name = "rt_period_us",
8079		.read_u64 = cpu_rt_period_read_uint,
8080		.write_u64 = cpu_rt_period_write_uint,
8081	},
8082#endif
8083	{ }	/* terminate */
8084};
8085
8086struct cgroup_subsys cpu_cgrp_subsys = {
8087	.css_alloc	= cpu_cgroup_css_alloc,
8088	.css_free	= cpu_cgroup_css_free,
8089	.css_online	= cpu_cgroup_css_online,
8090	.css_offline	= cpu_cgroup_css_offline,
8091	.can_attach	= cpu_cgroup_can_attach,
8092	.attach		= cpu_cgroup_attach,
8093	.exit		= cpu_cgroup_exit,
8094	.base_cftypes	= cpu_files,
8095	.early_init	= 1,
8096};
8097
8098#endif	/* CONFIG_CGROUP_SCHED */
8099
8100void dump_cpu_task(int cpu)
8101{
8102	pr_info("Task dump for CPU %d:\n", cpu);
8103	sched_show_task(cpu_curr(cpu));
8104}
8105