core.c revision fd99f91aa007ba255aac44fe6cf21c1db398243a
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	if (rq->skip_clock_update > 0)
123		return;
124
125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126	rq->clock += delta;
127	update_rq_clock_task(rq, delta);
128}
129
130/*
131 * Debugging: various feature bits
132 */
133
134#define SCHED_FEAT(name, enabled)	\
135	(1UL << __SCHED_FEAT_##name) * enabled |
136
137const_debug unsigned int sysctl_sched_features =
138#include "features.h"
139	0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled)	\
145	#name ,
146
147static const char * const sched_feat_names[] = {
148#include "features.h"
149};
150
151#undef SCHED_FEAT
152
153static int sched_feat_show(struct seq_file *m, void *v)
154{
155	int i;
156
157	for (i = 0; i < __SCHED_FEAT_NR; i++) {
158		if (!(sysctl_sched_features & (1UL << i)))
159			seq_puts(m, "NO_");
160		seq_printf(m, "%s ", sched_feat_names[i]);
161	}
162	seq_puts(m, "\n");
163
164	return 0;
165}
166
167#ifdef HAVE_JUMP_LABEL
168
169#define jump_label_key__true  STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172#define SCHED_FEAT(name, enabled)	\
173	jump_label_key__##enabled ,
174
175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
183	if (static_key_enabled(&sched_feat_keys[i]))
184		static_key_slow_dec(&sched_feat_keys[i]);
185}
186
187static void sched_feat_enable(int i)
188{
189	if (!static_key_enabled(&sched_feat_keys[i]))
190		static_key_slow_inc(&sched_feat_keys[i]);
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
197static int sched_feat_set(char *cmp)
198{
199	int i;
200	int neg = 0;
201
202	if (strncmp(cmp, "NO_", 3) == 0) {
203		neg = 1;
204		cmp += 3;
205	}
206
207	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209			if (neg) {
210				sysctl_sched_features &= ~(1UL << i);
211				sched_feat_disable(i);
212			} else {
213				sysctl_sched_features |= (1UL << i);
214				sched_feat_enable(i);
215			}
216			break;
217		}
218	}
219
220	return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225		size_t cnt, loff_t *ppos)
226{
227	char buf[64];
228	char *cmp;
229	int i;
230
231	if (cnt > 63)
232		cnt = 63;
233
234	if (copy_from_user(&buf, ubuf, cnt))
235		return -EFAULT;
236
237	buf[cnt] = 0;
238	cmp = strstrip(buf);
239
240	i = sched_feat_set(cmp);
241	if (i == __SCHED_FEAT_NR)
242		return -EINVAL;
243
244	*ppos += cnt;
245
246	return cnt;
247}
248
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251	return single_open(filp, sched_feat_show, NULL);
252}
253
254static const struct file_operations sched_feat_fops = {
255	.open		= sched_feat_open,
256	.write		= sched_feat_write,
257	.read		= seq_read,
258	.llseek		= seq_lseek,
259	.release	= single_release,
260};
261
262static __init int sched_init_debug(void)
263{
264	debugfs_create_file("sched_features", 0644, NULL, NULL,
265			&sched_feat_fops);
266
267	return 0;
268}
269late_initcall(sched_init_debug);
270#endif /* CONFIG_SCHED_DEBUG */
271
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286/*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290unsigned int sysctl_sched_rt_period = 1000000;
291
292__read_mostly int scheduler_running;
293
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304	__acquires(rq->lock)
305{
306	struct rq *rq;
307
308	lockdep_assert_held(&p->pi_lock);
309
310	for (;;) {
311		rq = task_rq(p);
312		raw_spin_lock(&rq->lock);
313		if (likely(rq == task_rq(p)))
314			return rq;
315		raw_spin_unlock(&rq->lock);
316	}
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323	__acquires(p->pi_lock)
324	__acquires(rq->lock)
325{
326	struct rq *rq;
327
328	for (;;) {
329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330		rq = task_rq(p);
331		raw_spin_lock(&rq->lock);
332		if (likely(rq == task_rq(p)))
333			return rq;
334		raw_spin_unlock(&rq->lock);
335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336	}
337}
338
339static void __task_rq_unlock(struct rq *rq)
340	__releases(rq->lock)
341{
342	raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347	__releases(rq->lock)
348	__releases(p->pi_lock)
349{
350	raw_spin_unlock(&rq->lock);
351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358	__acquires(rq->lock)
359{
360	struct rq *rq;
361
362	local_irq_disable();
363	rq = this_rq();
364	raw_spin_lock(&rq->lock);
365
366	return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376	if (hrtimer_active(&rq->hrtick_timer))
377		hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390	raw_spin_lock(&rq->lock);
391	update_rq_clock(rq);
392	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393	raw_spin_unlock(&rq->lock);
394
395	return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399
400static int __hrtick_restart(struct rq *rq)
401{
402	struct hrtimer *timer = &rq->hrtick_timer;
403	ktime_t time = hrtimer_get_softexpires(timer);
404
405	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
412{
413	struct rq *rq = arg;
414
415	raw_spin_lock(&rq->lock);
416	__hrtick_restart(rq);
417	rq->hrtick_csd_pending = 0;
418	raw_spin_unlock(&rq->lock);
419}
420
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426void hrtick_start(struct rq *rq, u64 delay)
427{
428	struct hrtimer *timer = &rq->hrtick_timer;
429	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431	hrtimer_set_expires(timer, time);
432
433	if (rq == this_rq()) {
434		__hrtick_restart(rq);
435	} else if (!rq->hrtick_csd_pending) {
436		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437		rq->hrtick_csd_pending = 1;
438	}
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444	int cpu = (int)(long)hcpu;
445
446	switch (action) {
447	case CPU_UP_CANCELED:
448	case CPU_UP_CANCELED_FROZEN:
449	case CPU_DOWN_PREPARE:
450	case CPU_DOWN_PREPARE_FROZEN:
451	case CPU_DEAD:
452	case CPU_DEAD_FROZEN:
453		hrtick_clear(cpu_rq(cpu));
454		return NOTIFY_OK;
455	}
456
457	return NOTIFY_DONE;
458}
459
460static __init void init_hrtick(void)
461{
462	hotcpu_notifier(hotplug_hrtick, 0);
463}
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470void hrtick_start(struct rq *rq, u64 delay)
471{
472	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473			HRTIMER_MODE_REL_PINNED, 0);
474}
475
476static inline void init_hrtick(void)
477{
478}
479#endif /* CONFIG_SMP */
480
481static void init_rq_hrtick(struct rq *rq)
482{
483#ifdef CONFIG_SMP
484	rq->hrtick_csd_pending = 0;
485
486	rq->hrtick_csd.flags = 0;
487	rq->hrtick_csd.func = __hrtick_start;
488	rq->hrtick_csd.info = rq;
489#endif
490
491	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492	rq->hrtick_timer.function = hrtick;
493}
494#else	/* CONFIG_SCHED_HRTICK */
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
503static inline void init_hrtick(void)
504{
505}
506#endif	/* CONFIG_SCHED_HRTICK */
507
508/*
509 * cmpxchg based fetch_or, macro so it works for different integer types
510 */
511#define fetch_or(ptr, val)						\
512({	typeof(*(ptr)) __old, __val = *(ptr);				\
513 	for (;;) {							\
514 		__old = cmpxchg((ptr), __val, __val | (val));		\
515 		if (__old == __val)					\
516 			break;						\
517 		__val = __old;						\
518 	}								\
519 	__old;								\
520})
521
522#ifdef TIF_POLLING_NRFLAG
523/*
524 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
525 * this avoids any races wrt polling state changes and thereby avoids
526 * spurious IPIs.
527 */
528static bool set_nr_and_not_polling(struct task_struct *p)
529{
530	struct thread_info *ti = task_thread_info(p);
531	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
532}
533#else
534static bool set_nr_and_not_polling(struct task_struct *p)
535{
536	set_tsk_need_resched(p);
537	return true;
538}
539#endif
540
541/*
542 * resched_task - mark a task 'to be rescheduled now'.
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
548void resched_task(struct task_struct *p)
549{
550	int cpu;
551
552	lockdep_assert_held(&task_rq(p)->lock);
553
554	if (test_tsk_need_resched(p))
555		return;
556
557	cpu = task_cpu(p);
558
559	if (cpu == smp_processor_id()) {
560		set_tsk_need_resched(p);
561		set_preempt_need_resched();
562		return;
563	}
564
565	if (set_nr_and_not_polling(p))
566		smp_send_reschedule(cpu);
567}
568
569void resched_cpu(int cpu)
570{
571	struct rq *rq = cpu_rq(cpu);
572	unsigned long flags;
573
574	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
575		return;
576	resched_task(cpu_curr(cpu));
577	raw_spin_unlock_irqrestore(&rq->lock, flags);
578}
579
580#ifdef CONFIG_SMP
581#ifdef CONFIG_NO_HZ_COMMON
582/*
583 * In the semi idle case, use the nearest busy cpu for migrating timers
584 * from an idle cpu.  This is good for power-savings.
585 *
586 * We don't do similar optimization for completely idle system, as
587 * selecting an idle cpu will add more delays to the timers than intended
588 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
589 */
590int get_nohz_timer_target(int pinned)
591{
592	int cpu = smp_processor_id();
593	int i;
594	struct sched_domain *sd;
595
596	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
597		return cpu;
598
599	rcu_read_lock();
600	for_each_domain(cpu, sd) {
601		for_each_cpu(i, sched_domain_span(sd)) {
602			if (!idle_cpu(i)) {
603				cpu = i;
604				goto unlock;
605			}
606		}
607	}
608unlock:
609	rcu_read_unlock();
610	return cpu;
611}
612/*
613 * When add_timer_on() enqueues a timer into the timer wheel of an
614 * idle CPU then this timer might expire before the next timer event
615 * which is scheduled to wake up that CPU. In case of a completely
616 * idle system the next event might even be infinite time into the
617 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
618 * leaves the inner idle loop so the newly added timer is taken into
619 * account when the CPU goes back to idle and evaluates the timer
620 * wheel for the next timer event.
621 */
622static void wake_up_idle_cpu(int cpu)
623{
624	struct rq *rq = cpu_rq(cpu);
625
626	if (cpu == smp_processor_id())
627		return;
628
629	/*
630	 * This is safe, as this function is called with the timer
631	 * wheel base lock of (cpu) held. When the CPU is on the way
632	 * to idle and has not yet set rq->curr to idle then it will
633	 * be serialized on the timer wheel base lock and take the new
634	 * timer into account automatically.
635	 */
636	if (rq->curr != rq->idle)
637		return;
638
639	/*
640	 * We can set TIF_RESCHED on the idle task of the other CPU
641	 * lockless. The worst case is that the other CPU runs the
642	 * idle task through an additional NOOP schedule()
643	 */
644	set_tsk_need_resched(rq->idle);
645
646	/* NEED_RESCHED must be visible before we test polling */
647	smp_mb();
648	if (!tsk_is_polling(rq->idle))
649		smp_send_reschedule(cpu);
650}
651
652static bool wake_up_full_nohz_cpu(int cpu)
653{
654	if (tick_nohz_full_cpu(cpu)) {
655		if (cpu != smp_processor_id() ||
656		    tick_nohz_tick_stopped())
657			smp_send_reschedule(cpu);
658		return true;
659	}
660
661	return false;
662}
663
664void wake_up_nohz_cpu(int cpu)
665{
666	if (!wake_up_full_nohz_cpu(cpu))
667		wake_up_idle_cpu(cpu);
668}
669
670static inline bool got_nohz_idle_kick(void)
671{
672	int cpu = smp_processor_id();
673
674	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
675		return false;
676
677	if (idle_cpu(cpu) && !need_resched())
678		return true;
679
680	/*
681	 * We can't run Idle Load Balance on this CPU for this time so we
682	 * cancel it and clear NOHZ_BALANCE_KICK
683	 */
684	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
685	return false;
686}
687
688#else /* CONFIG_NO_HZ_COMMON */
689
690static inline bool got_nohz_idle_kick(void)
691{
692	return false;
693}
694
695#endif /* CONFIG_NO_HZ_COMMON */
696
697#ifdef CONFIG_NO_HZ_FULL
698bool sched_can_stop_tick(void)
699{
700       struct rq *rq;
701
702       rq = this_rq();
703
704       /* Make sure rq->nr_running update is visible after the IPI */
705       smp_rmb();
706
707       /* More than one running task need preemption */
708       if (rq->nr_running > 1)
709               return false;
710
711       return true;
712}
713#endif /* CONFIG_NO_HZ_FULL */
714
715void sched_avg_update(struct rq *rq)
716{
717	s64 period = sched_avg_period();
718
719	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
720		/*
721		 * Inline assembly required to prevent the compiler
722		 * optimising this loop into a divmod call.
723		 * See __iter_div_u64_rem() for another example of this.
724		 */
725		asm("" : "+rm" (rq->age_stamp));
726		rq->age_stamp += period;
727		rq->rt_avg /= 2;
728	}
729}
730
731#endif /* CONFIG_SMP */
732
733#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
734			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
735/*
736 * Iterate task_group tree rooted at *from, calling @down when first entering a
737 * node and @up when leaving it for the final time.
738 *
739 * Caller must hold rcu_lock or sufficient equivalent.
740 */
741int walk_tg_tree_from(struct task_group *from,
742			     tg_visitor down, tg_visitor up, void *data)
743{
744	struct task_group *parent, *child;
745	int ret;
746
747	parent = from;
748
749down:
750	ret = (*down)(parent, data);
751	if (ret)
752		goto out;
753	list_for_each_entry_rcu(child, &parent->children, siblings) {
754		parent = child;
755		goto down;
756
757up:
758		continue;
759	}
760	ret = (*up)(parent, data);
761	if (ret || parent == from)
762		goto out;
763
764	child = parent;
765	parent = parent->parent;
766	if (parent)
767		goto up;
768out:
769	return ret;
770}
771
772int tg_nop(struct task_group *tg, void *data)
773{
774	return 0;
775}
776#endif
777
778static void set_load_weight(struct task_struct *p)
779{
780	int prio = p->static_prio - MAX_RT_PRIO;
781	struct load_weight *load = &p->se.load;
782
783	/*
784	 * SCHED_IDLE tasks get minimal weight:
785	 */
786	if (p->policy == SCHED_IDLE) {
787		load->weight = scale_load(WEIGHT_IDLEPRIO);
788		load->inv_weight = WMULT_IDLEPRIO;
789		return;
790	}
791
792	load->weight = scale_load(prio_to_weight[prio]);
793	load->inv_weight = prio_to_wmult[prio];
794}
795
796static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
797{
798	update_rq_clock(rq);
799	sched_info_queued(rq, p);
800	p->sched_class->enqueue_task(rq, p, flags);
801}
802
803static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
804{
805	update_rq_clock(rq);
806	sched_info_dequeued(rq, p);
807	p->sched_class->dequeue_task(rq, p, flags);
808}
809
810void activate_task(struct rq *rq, struct task_struct *p, int flags)
811{
812	if (task_contributes_to_load(p))
813		rq->nr_uninterruptible--;
814
815	enqueue_task(rq, p, flags);
816}
817
818void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
819{
820	if (task_contributes_to_load(p))
821		rq->nr_uninterruptible++;
822
823	dequeue_task(rq, p, flags);
824}
825
826static void update_rq_clock_task(struct rq *rq, s64 delta)
827{
828/*
829 * In theory, the compile should just see 0 here, and optimize out the call
830 * to sched_rt_avg_update. But I don't trust it...
831 */
832#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
833	s64 steal = 0, irq_delta = 0;
834#endif
835#ifdef CONFIG_IRQ_TIME_ACCOUNTING
836	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
837
838	/*
839	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
840	 * this case when a previous update_rq_clock() happened inside a
841	 * {soft,}irq region.
842	 *
843	 * When this happens, we stop ->clock_task and only update the
844	 * prev_irq_time stamp to account for the part that fit, so that a next
845	 * update will consume the rest. This ensures ->clock_task is
846	 * monotonic.
847	 *
848	 * It does however cause some slight miss-attribution of {soft,}irq
849	 * time, a more accurate solution would be to update the irq_time using
850	 * the current rq->clock timestamp, except that would require using
851	 * atomic ops.
852	 */
853	if (irq_delta > delta)
854		irq_delta = delta;
855
856	rq->prev_irq_time += irq_delta;
857	delta -= irq_delta;
858#endif
859#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
860	if (static_key_false((&paravirt_steal_rq_enabled))) {
861		steal = paravirt_steal_clock(cpu_of(rq));
862		steal -= rq->prev_steal_time_rq;
863
864		if (unlikely(steal > delta))
865			steal = delta;
866
867		rq->prev_steal_time_rq += steal;
868		delta -= steal;
869	}
870#endif
871
872	rq->clock_task += delta;
873
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
876		sched_rt_avg_update(rq, irq_delta + steal);
877#endif
878}
879
880void sched_set_stop_task(int cpu, struct task_struct *stop)
881{
882	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
883	struct task_struct *old_stop = cpu_rq(cpu)->stop;
884
885	if (stop) {
886		/*
887		 * Make it appear like a SCHED_FIFO task, its something
888		 * userspace knows about and won't get confused about.
889		 *
890		 * Also, it will make PI more or less work without too
891		 * much confusion -- but then, stop work should not
892		 * rely on PI working anyway.
893		 */
894		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
895
896		stop->sched_class = &stop_sched_class;
897	}
898
899	cpu_rq(cpu)->stop = stop;
900
901	if (old_stop) {
902		/*
903		 * Reset it back to a normal scheduling class so that
904		 * it can die in pieces.
905		 */
906		old_stop->sched_class = &rt_sched_class;
907	}
908}
909
910/*
911 * __normal_prio - return the priority that is based on the static prio
912 */
913static inline int __normal_prio(struct task_struct *p)
914{
915	return p->static_prio;
916}
917
918/*
919 * Calculate the expected normal priority: i.e. priority
920 * without taking RT-inheritance into account. Might be
921 * boosted by interactivity modifiers. Changes upon fork,
922 * setprio syscalls, and whenever the interactivity
923 * estimator recalculates.
924 */
925static inline int normal_prio(struct task_struct *p)
926{
927	int prio;
928
929	if (task_has_dl_policy(p))
930		prio = MAX_DL_PRIO-1;
931	else if (task_has_rt_policy(p))
932		prio = MAX_RT_PRIO-1 - p->rt_priority;
933	else
934		prio = __normal_prio(p);
935	return prio;
936}
937
938/*
939 * Calculate the current priority, i.e. the priority
940 * taken into account by the scheduler. This value might
941 * be boosted by RT tasks, or might be boosted by
942 * interactivity modifiers. Will be RT if the task got
943 * RT-boosted. If not then it returns p->normal_prio.
944 */
945static int effective_prio(struct task_struct *p)
946{
947	p->normal_prio = normal_prio(p);
948	/*
949	 * If we are RT tasks or we were boosted to RT priority,
950	 * keep the priority unchanged. Otherwise, update priority
951	 * to the normal priority:
952	 */
953	if (!rt_prio(p->prio))
954		return p->normal_prio;
955	return p->prio;
956}
957
958/**
959 * task_curr - is this task currently executing on a CPU?
960 * @p: the task in question.
961 *
962 * Return: 1 if the task is currently executing. 0 otherwise.
963 */
964inline int task_curr(const struct task_struct *p)
965{
966	return cpu_curr(task_cpu(p)) == p;
967}
968
969static inline void check_class_changed(struct rq *rq, struct task_struct *p,
970				       const struct sched_class *prev_class,
971				       int oldprio)
972{
973	if (prev_class != p->sched_class) {
974		if (prev_class->switched_from)
975			prev_class->switched_from(rq, p);
976		p->sched_class->switched_to(rq, p);
977	} else if (oldprio != p->prio || dl_task(p))
978		p->sched_class->prio_changed(rq, p, oldprio);
979}
980
981void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
982{
983	const struct sched_class *class;
984
985	if (p->sched_class == rq->curr->sched_class) {
986		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
987	} else {
988		for_each_class(class) {
989			if (class == rq->curr->sched_class)
990				break;
991			if (class == p->sched_class) {
992				resched_task(rq->curr);
993				break;
994			}
995		}
996	}
997
998	/*
999	 * A queue event has occurred, and we're going to schedule.  In
1000	 * this case, we can save a useless back to back clock update.
1001	 */
1002	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1003		rq->skip_clock_update = 1;
1004}
1005
1006#ifdef CONFIG_SMP
1007void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1008{
1009#ifdef CONFIG_SCHED_DEBUG
1010	/*
1011	 * We should never call set_task_cpu() on a blocked task,
1012	 * ttwu() will sort out the placement.
1013	 */
1014	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1015			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1016
1017#ifdef CONFIG_LOCKDEP
1018	/*
1019	 * The caller should hold either p->pi_lock or rq->lock, when changing
1020	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1021	 *
1022	 * sched_move_task() holds both and thus holding either pins the cgroup,
1023	 * see task_group().
1024	 *
1025	 * Furthermore, all task_rq users should acquire both locks, see
1026	 * task_rq_lock().
1027	 */
1028	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1029				      lockdep_is_held(&task_rq(p)->lock)));
1030#endif
1031#endif
1032
1033	trace_sched_migrate_task(p, new_cpu);
1034
1035	if (task_cpu(p) != new_cpu) {
1036		if (p->sched_class->migrate_task_rq)
1037			p->sched_class->migrate_task_rq(p, new_cpu);
1038		p->se.nr_migrations++;
1039		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1040	}
1041
1042	__set_task_cpu(p, new_cpu);
1043}
1044
1045static void __migrate_swap_task(struct task_struct *p, int cpu)
1046{
1047	if (p->on_rq) {
1048		struct rq *src_rq, *dst_rq;
1049
1050		src_rq = task_rq(p);
1051		dst_rq = cpu_rq(cpu);
1052
1053		deactivate_task(src_rq, p, 0);
1054		set_task_cpu(p, cpu);
1055		activate_task(dst_rq, p, 0);
1056		check_preempt_curr(dst_rq, p, 0);
1057	} else {
1058		/*
1059		 * Task isn't running anymore; make it appear like we migrated
1060		 * it before it went to sleep. This means on wakeup we make the
1061		 * previous cpu our targer instead of where it really is.
1062		 */
1063		p->wake_cpu = cpu;
1064	}
1065}
1066
1067struct migration_swap_arg {
1068	struct task_struct *src_task, *dst_task;
1069	int src_cpu, dst_cpu;
1070};
1071
1072static int migrate_swap_stop(void *data)
1073{
1074	struct migration_swap_arg *arg = data;
1075	struct rq *src_rq, *dst_rq;
1076	int ret = -EAGAIN;
1077
1078	src_rq = cpu_rq(arg->src_cpu);
1079	dst_rq = cpu_rq(arg->dst_cpu);
1080
1081	double_raw_lock(&arg->src_task->pi_lock,
1082			&arg->dst_task->pi_lock);
1083	double_rq_lock(src_rq, dst_rq);
1084	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1085		goto unlock;
1086
1087	if (task_cpu(arg->src_task) != arg->src_cpu)
1088		goto unlock;
1089
1090	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1091		goto unlock;
1092
1093	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1094		goto unlock;
1095
1096	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1097	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1098
1099	ret = 0;
1100
1101unlock:
1102	double_rq_unlock(src_rq, dst_rq);
1103	raw_spin_unlock(&arg->dst_task->pi_lock);
1104	raw_spin_unlock(&arg->src_task->pi_lock);
1105
1106	return ret;
1107}
1108
1109/*
1110 * Cross migrate two tasks
1111 */
1112int migrate_swap(struct task_struct *cur, struct task_struct *p)
1113{
1114	struct migration_swap_arg arg;
1115	int ret = -EINVAL;
1116
1117	arg = (struct migration_swap_arg){
1118		.src_task = cur,
1119		.src_cpu = task_cpu(cur),
1120		.dst_task = p,
1121		.dst_cpu = task_cpu(p),
1122	};
1123
1124	if (arg.src_cpu == arg.dst_cpu)
1125		goto out;
1126
1127	/*
1128	 * These three tests are all lockless; this is OK since all of them
1129	 * will be re-checked with proper locks held further down the line.
1130	 */
1131	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1132		goto out;
1133
1134	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1135		goto out;
1136
1137	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1138		goto out;
1139
1140	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1141	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1142
1143out:
1144	return ret;
1145}
1146
1147struct migration_arg {
1148	struct task_struct *task;
1149	int dest_cpu;
1150};
1151
1152static int migration_cpu_stop(void *data);
1153
1154/*
1155 * wait_task_inactive - wait for a thread to unschedule.
1156 *
1157 * If @match_state is nonzero, it's the @p->state value just checked and
1158 * not expected to change.  If it changes, i.e. @p might have woken up,
1159 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1160 * we return a positive number (its total switch count).  If a second call
1161 * a short while later returns the same number, the caller can be sure that
1162 * @p has remained unscheduled the whole time.
1163 *
1164 * The caller must ensure that the task *will* unschedule sometime soon,
1165 * else this function might spin for a *long* time. This function can't
1166 * be called with interrupts off, or it may introduce deadlock with
1167 * smp_call_function() if an IPI is sent by the same process we are
1168 * waiting to become inactive.
1169 */
1170unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1171{
1172	unsigned long flags;
1173	int running, on_rq;
1174	unsigned long ncsw;
1175	struct rq *rq;
1176
1177	for (;;) {
1178		/*
1179		 * We do the initial early heuristics without holding
1180		 * any task-queue locks at all. We'll only try to get
1181		 * the runqueue lock when things look like they will
1182		 * work out!
1183		 */
1184		rq = task_rq(p);
1185
1186		/*
1187		 * If the task is actively running on another CPU
1188		 * still, just relax and busy-wait without holding
1189		 * any locks.
1190		 *
1191		 * NOTE! Since we don't hold any locks, it's not
1192		 * even sure that "rq" stays as the right runqueue!
1193		 * But we don't care, since "task_running()" will
1194		 * return false if the runqueue has changed and p
1195		 * is actually now running somewhere else!
1196		 */
1197		while (task_running(rq, p)) {
1198			if (match_state && unlikely(p->state != match_state))
1199				return 0;
1200			cpu_relax();
1201		}
1202
1203		/*
1204		 * Ok, time to look more closely! We need the rq
1205		 * lock now, to be *sure*. If we're wrong, we'll
1206		 * just go back and repeat.
1207		 */
1208		rq = task_rq_lock(p, &flags);
1209		trace_sched_wait_task(p);
1210		running = task_running(rq, p);
1211		on_rq = p->on_rq;
1212		ncsw = 0;
1213		if (!match_state || p->state == match_state)
1214			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1215		task_rq_unlock(rq, p, &flags);
1216
1217		/*
1218		 * If it changed from the expected state, bail out now.
1219		 */
1220		if (unlikely(!ncsw))
1221			break;
1222
1223		/*
1224		 * Was it really running after all now that we
1225		 * checked with the proper locks actually held?
1226		 *
1227		 * Oops. Go back and try again..
1228		 */
1229		if (unlikely(running)) {
1230			cpu_relax();
1231			continue;
1232		}
1233
1234		/*
1235		 * It's not enough that it's not actively running,
1236		 * it must be off the runqueue _entirely_, and not
1237		 * preempted!
1238		 *
1239		 * So if it was still runnable (but just not actively
1240		 * running right now), it's preempted, and we should
1241		 * yield - it could be a while.
1242		 */
1243		if (unlikely(on_rq)) {
1244			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1245
1246			set_current_state(TASK_UNINTERRUPTIBLE);
1247			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1248			continue;
1249		}
1250
1251		/*
1252		 * Ahh, all good. It wasn't running, and it wasn't
1253		 * runnable, which means that it will never become
1254		 * running in the future either. We're all done!
1255		 */
1256		break;
1257	}
1258
1259	return ncsw;
1260}
1261
1262/***
1263 * kick_process - kick a running thread to enter/exit the kernel
1264 * @p: the to-be-kicked thread
1265 *
1266 * Cause a process which is running on another CPU to enter
1267 * kernel-mode, without any delay. (to get signals handled.)
1268 *
1269 * NOTE: this function doesn't have to take the runqueue lock,
1270 * because all it wants to ensure is that the remote task enters
1271 * the kernel. If the IPI races and the task has been migrated
1272 * to another CPU then no harm is done and the purpose has been
1273 * achieved as well.
1274 */
1275void kick_process(struct task_struct *p)
1276{
1277	int cpu;
1278
1279	preempt_disable();
1280	cpu = task_cpu(p);
1281	if ((cpu != smp_processor_id()) && task_curr(p))
1282		smp_send_reschedule(cpu);
1283	preempt_enable();
1284}
1285EXPORT_SYMBOL_GPL(kick_process);
1286#endif /* CONFIG_SMP */
1287
1288#ifdef CONFIG_SMP
1289/*
1290 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1291 */
1292static int select_fallback_rq(int cpu, struct task_struct *p)
1293{
1294	int nid = cpu_to_node(cpu);
1295	const struct cpumask *nodemask = NULL;
1296	enum { cpuset, possible, fail } state = cpuset;
1297	int dest_cpu;
1298
1299	/*
1300	 * If the node that the cpu is on has been offlined, cpu_to_node()
1301	 * will return -1. There is no cpu on the node, and we should
1302	 * select the cpu on the other node.
1303	 */
1304	if (nid != -1) {
1305		nodemask = cpumask_of_node(nid);
1306
1307		/* Look for allowed, online CPU in same node. */
1308		for_each_cpu(dest_cpu, nodemask) {
1309			if (!cpu_online(dest_cpu))
1310				continue;
1311			if (!cpu_active(dest_cpu))
1312				continue;
1313			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1314				return dest_cpu;
1315		}
1316	}
1317
1318	for (;;) {
1319		/* Any allowed, online CPU? */
1320		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1321			if (!cpu_online(dest_cpu))
1322				continue;
1323			if (!cpu_active(dest_cpu))
1324				continue;
1325			goto out;
1326		}
1327
1328		switch (state) {
1329		case cpuset:
1330			/* No more Mr. Nice Guy. */
1331			cpuset_cpus_allowed_fallback(p);
1332			state = possible;
1333			break;
1334
1335		case possible:
1336			do_set_cpus_allowed(p, cpu_possible_mask);
1337			state = fail;
1338			break;
1339
1340		case fail:
1341			BUG();
1342			break;
1343		}
1344	}
1345
1346out:
1347	if (state != cpuset) {
1348		/*
1349		 * Don't tell them about moving exiting tasks or
1350		 * kernel threads (both mm NULL), since they never
1351		 * leave kernel.
1352		 */
1353		if (p->mm && printk_ratelimit()) {
1354			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1355					task_pid_nr(p), p->comm, cpu);
1356		}
1357	}
1358
1359	return dest_cpu;
1360}
1361
1362/*
1363 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1364 */
1365static inline
1366int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1367{
1368	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1369
1370	/*
1371	 * In order not to call set_task_cpu() on a blocking task we need
1372	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1373	 * cpu.
1374	 *
1375	 * Since this is common to all placement strategies, this lives here.
1376	 *
1377	 * [ this allows ->select_task() to simply return task_cpu(p) and
1378	 *   not worry about this generic constraint ]
1379	 */
1380	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1381		     !cpu_online(cpu)))
1382		cpu = select_fallback_rq(task_cpu(p), p);
1383
1384	return cpu;
1385}
1386
1387static void update_avg(u64 *avg, u64 sample)
1388{
1389	s64 diff = sample - *avg;
1390	*avg += diff >> 3;
1391}
1392#endif
1393
1394static void
1395ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1396{
1397#ifdef CONFIG_SCHEDSTATS
1398	struct rq *rq = this_rq();
1399
1400#ifdef CONFIG_SMP
1401	int this_cpu = smp_processor_id();
1402
1403	if (cpu == this_cpu) {
1404		schedstat_inc(rq, ttwu_local);
1405		schedstat_inc(p, se.statistics.nr_wakeups_local);
1406	} else {
1407		struct sched_domain *sd;
1408
1409		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1410		rcu_read_lock();
1411		for_each_domain(this_cpu, sd) {
1412			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1413				schedstat_inc(sd, ttwu_wake_remote);
1414				break;
1415			}
1416		}
1417		rcu_read_unlock();
1418	}
1419
1420	if (wake_flags & WF_MIGRATED)
1421		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1422
1423#endif /* CONFIG_SMP */
1424
1425	schedstat_inc(rq, ttwu_count);
1426	schedstat_inc(p, se.statistics.nr_wakeups);
1427
1428	if (wake_flags & WF_SYNC)
1429		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1430
1431#endif /* CONFIG_SCHEDSTATS */
1432}
1433
1434static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1435{
1436	activate_task(rq, p, en_flags);
1437	p->on_rq = 1;
1438
1439	/* if a worker is waking up, notify workqueue */
1440	if (p->flags & PF_WQ_WORKER)
1441		wq_worker_waking_up(p, cpu_of(rq));
1442}
1443
1444/*
1445 * Mark the task runnable and perform wakeup-preemption.
1446 */
1447static void
1448ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1449{
1450	check_preempt_curr(rq, p, wake_flags);
1451	trace_sched_wakeup(p, true);
1452
1453	p->state = TASK_RUNNING;
1454#ifdef CONFIG_SMP
1455	if (p->sched_class->task_woken)
1456		p->sched_class->task_woken(rq, p);
1457
1458	if (rq->idle_stamp) {
1459		u64 delta = rq_clock(rq) - rq->idle_stamp;
1460		u64 max = 2*rq->max_idle_balance_cost;
1461
1462		update_avg(&rq->avg_idle, delta);
1463
1464		if (rq->avg_idle > max)
1465			rq->avg_idle = max;
1466
1467		rq->idle_stamp = 0;
1468	}
1469#endif
1470}
1471
1472static void
1473ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1474{
1475#ifdef CONFIG_SMP
1476	if (p->sched_contributes_to_load)
1477		rq->nr_uninterruptible--;
1478#endif
1479
1480	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1481	ttwu_do_wakeup(rq, p, wake_flags);
1482}
1483
1484/*
1485 * Called in case the task @p isn't fully descheduled from its runqueue,
1486 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1487 * since all we need to do is flip p->state to TASK_RUNNING, since
1488 * the task is still ->on_rq.
1489 */
1490static int ttwu_remote(struct task_struct *p, int wake_flags)
1491{
1492	struct rq *rq;
1493	int ret = 0;
1494
1495	rq = __task_rq_lock(p);
1496	if (p->on_rq) {
1497		/* check_preempt_curr() may use rq clock */
1498		update_rq_clock(rq);
1499		ttwu_do_wakeup(rq, p, wake_flags);
1500		ret = 1;
1501	}
1502	__task_rq_unlock(rq);
1503
1504	return ret;
1505}
1506
1507#ifdef CONFIG_SMP
1508static void sched_ttwu_pending(void)
1509{
1510	struct rq *rq = this_rq();
1511	struct llist_node *llist = llist_del_all(&rq->wake_list);
1512	struct task_struct *p;
1513
1514	raw_spin_lock(&rq->lock);
1515
1516	while (llist) {
1517		p = llist_entry(llist, struct task_struct, wake_entry);
1518		llist = llist_next(llist);
1519		ttwu_do_activate(rq, p, 0);
1520	}
1521
1522	raw_spin_unlock(&rq->lock);
1523}
1524
1525void scheduler_ipi(void)
1526{
1527	/*
1528	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1529	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1530	 * this IPI.
1531	 */
1532	preempt_fold_need_resched();
1533
1534	if (llist_empty(&this_rq()->wake_list)
1535			&& !tick_nohz_full_cpu(smp_processor_id())
1536			&& !got_nohz_idle_kick())
1537		return;
1538
1539	/*
1540	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1541	 * traditionally all their work was done from the interrupt return
1542	 * path. Now that we actually do some work, we need to make sure
1543	 * we do call them.
1544	 *
1545	 * Some archs already do call them, luckily irq_enter/exit nest
1546	 * properly.
1547	 *
1548	 * Arguably we should visit all archs and update all handlers,
1549	 * however a fair share of IPIs are still resched only so this would
1550	 * somewhat pessimize the simple resched case.
1551	 */
1552	irq_enter();
1553	tick_nohz_full_check();
1554	sched_ttwu_pending();
1555
1556	/*
1557	 * Check if someone kicked us for doing the nohz idle load balance.
1558	 */
1559	if (unlikely(got_nohz_idle_kick())) {
1560		this_rq()->idle_balance = 1;
1561		raise_softirq_irqoff(SCHED_SOFTIRQ);
1562	}
1563	irq_exit();
1564}
1565
1566static void ttwu_queue_remote(struct task_struct *p, int cpu)
1567{
1568	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1569		smp_send_reschedule(cpu);
1570}
1571
1572bool cpus_share_cache(int this_cpu, int that_cpu)
1573{
1574	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1575}
1576#endif /* CONFIG_SMP */
1577
1578static void ttwu_queue(struct task_struct *p, int cpu)
1579{
1580	struct rq *rq = cpu_rq(cpu);
1581
1582#if defined(CONFIG_SMP)
1583	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1584		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1585		ttwu_queue_remote(p, cpu);
1586		return;
1587	}
1588#endif
1589
1590	raw_spin_lock(&rq->lock);
1591	ttwu_do_activate(rq, p, 0);
1592	raw_spin_unlock(&rq->lock);
1593}
1594
1595/**
1596 * try_to_wake_up - wake up a thread
1597 * @p: the thread to be awakened
1598 * @state: the mask of task states that can be woken
1599 * @wake_flags: wake modifier flags (WF_*)
1600 *
1601 * Put it on the run-queue if it's not already there. The "current"
1602 * thread is always on the run-queue (except when the actual
1603 * re-schedule is in progress), and as such you're allowed to do
1604 * the simpler "current->state = TASK_RUNNING" to mark yourself
1605 * runnable without the overhead of this.
1606 *
1607 * Return: %true if @p was woken up, %false if it was already running.
1608 * or @state didn't match @p's state.
1609 */
1610static int
1611try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1612{
1613	unsigned long flags;
1614	int cpu, success = 0;
1615
1616	/*
1617	 * If we are going to wake up a thread waiting for CONDITION we
1618	 * need to ensure that CONDITION=1 done by the caller can not be
1619	 * reordered with p->state check below. This pairs with mb() in
1620	 * set_current_state() the waiting thread does.
1621	 */
1622	smp_mb__before_spinlock();
1623	raw_spin_lock_irqsave(&p->pi_lock, flags);
1624	if (!(p->state & state))
1625		goto out;
1626
1627	success = 1; /* we're going to change ->state */
1628	cpu = task_cpu(p);
1629
1630	if (p->on_rq && ttwu_remote(p, wake_flags))
1631		goto stat;
1632
1633#ifdef CONFIG_SMP
1634	/*
1635	 * If the owning (remote) cpu is still in the middle of schedule() with
1636	 * this task as prev, wait until its done referencing the task.
1637	 */
1638	while (p->on_cpu)
1639		cpu_relax();
1640	/*
1641	 * Pairs with the smp_wmb() in finish_lock_switch().
1642	 */
1643	smp_rmb();
1644
1645	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1646	p->state = TASK_WAKING;
1647
1648	if (p->sched_class->task_waking)
1649		p->sched_class->task_waking(p);
1650
1651	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1652	if (task_cpu(p) != cpu) {
1653		wake_flags |= WF_MIGRATED;
1654		set_task_cpu(p, cpu);
1655	}
1656#endif /* CONFIG_SMP */
1657
1658	ttwu_queue(p, cpu);
1659stat:
1660	ttwu_stat(p, cpu, wake_flags);
1661out:
1662	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1663
1664	return success;
1665}
1666
1667/**
1668 * try_to_wake_up_local - try to wake up a local task with rq lock held
1669 * @p: the thread to be awakened
1670 *
1671 * Put @p on the run-queue if it's not already there. The caller must
1672 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1673 * the current task.
1674 */
1675static void try_to_wake_up_local(struct task_struct *p)
1676{
1677	struct rq *rq = task_rq(p);
1678
1679	if (WARN_ON_ONCE(rq != this_rq()) ||
1680	    WARN_ON_ONCE(p == current))
1681		return;
1682
1683	lockdep_assert_held(&rq->lock);
1684
1685	if (!raw_spin_trylock(&p->pi_lock)) {
1686		raw_spin_unlock(&rq->lock);
1687		raw_spin_lock(&p->pi_lock);
1688		raw_spin_lock(&rq->lock);
1689	}
1690
1691	if (!(p->state & TASK_NORMAL))
1692		goto out;
1693
1694	if (!p->on_rq)
1695		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1696
1697	ttwu_do_wakeup(rq, p, 0);
1698	ttwu_stat(p, smp_processor_id(), 0);
1699out:
1700	raw_spin_unlock(&p->pi_lock);
1701}
1702
1703/**
1704 * wake_up_process - Wake up a specific process
1705 * @p: The process to be woken up.
1706 *
1707 * Attempt to wake up the nominated process and move it to the set of runnable
1708 * processes.
1709 *
1710 * Return: 1 if the process was woken up, 0 if it was already running.
1711 *
1712 * It may be assumed that this function implies a write memory barrier before
1713 * changing the task state if and only if any tasks are woken up.
1714 */
1715int wake_up_process(struct task_struct *p)
1716{
1717	WARN_ON(task_is_stopped_or_traced(p));
1718	return try_to_wake_up(p, TASK_NORMAL, 0);
1719}
1720EXPORT_SYMBOL(wake_up_process);
1721
1722int wake_up_state(struct task_struct *p, unsigned int state)
1723{
1724	return try_to_wake_up(p, state, 0);
1725}
1726
1727/*
1728 * Perform scheduler related setup for a newly forked process p.
1729 * p is forked by current.
1730 *
1731 * __sched_fork() is basic setup used by init_idle() too:
1732 */
1733static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1734{
1735	p->on_rq			= 0;
1736
1737	p->se.on_rq			= 0;
1738	p->se.exec_start		= 0;
1739	p->se.sum_exec_runtime		= 0;
1740	p->se.prev_sum_exec_runtime	= 0;
1741	p->se.nr_migrations		= 0;
1742	p->se.vruntime			= 0;
1743	INIT_LIST_HEAD(&p->se.group_node);
1744
1745#ifdef CONFIG_SCHEDSTATS
1746	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1747#endif
1748
1749	RB_CLEAR_NODE(&p->dl.rb_node);
1750	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1751	p->dl.dl_runtime = p->dl.runtime = 0;
1752	p->dl.dl_deadline = p->dl.deadline = 0;
1753	p->dl.dl_period = 0;
1754	p->dl.flags = 0;
1755
1756	INIT_LIST_HEAD(&p->rt.run_list);
1757
1758#ifdef CONFIG_PREEMPT_NOTIFIERS
1759	INIT_HLIST_HEAD(&p->preempt_notifiers);
1760#endif
1761
1762#ifdef CONFIG_NUMA_BALANCING
1763	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1764		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1765		p->mm->numa_scan_seq = 0;
1766	}
1767
1768	if (clone_flags & CLONE_VM)
1769		p->numa_preferred_nid = current->numa_preferred_nid;
1770	else
1771		p->numa_preferred_nid = -1;
1772
1773	p->node_stamp = 0ULL;
1774	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1775	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1776	p->numa_work.next = &p->numa_work;
1777	p->numa_faults_memory = NULL;
1778	p->numa_faults_buffer_memory = NULL;
1779	p->last_task_numa_placement = 0;
1780	p->last_sum_exec_runtime = 0;
1781
1782	INIT_LIST_HEAD(&p->numa_entry);
1783	p->numa_group = NULL;
1784#endif /* CONFIG_NUMA_BALANCING */
1785}
1786
1787#ifdef CONFIG_NUMA_BALANCING
1788#ifdef CONFIG_SCHED_DEBUG
1789void set_numabalancing_state(bool enabled)
1790{
1791	if (enabled)
1792		sched_feat_set("NUMA");
1793	else
1794		sched_feat_set("NO_NUMA");
1795}
1796#else
1797__read_mostly bool numabalancing_enabled;
1798
1799void set_numabalancing_state(bool enabled)
1800{
1801	numabalancing_enabled = enabled;
1802}
1803#endif /* CONFIG_SCHED_DEBUG */
1804
1805#ifdef CONFIG_PROC_SYSCTL
1806int sysctl_numa_balancing(struct ctl_table *table, int write,
1807			 void __user *buffer, size_t *lenp, loff_t *ppos)
1808{
1809	struct ctl_table t;
1810	int err;
1811	int state = numabalancing_enabled;
1812
1813	if (write && !capable(CAP_SYS_ADMIN))
1814		return -EPERM;
1815
1816	t = *table;
1817	t.data = &state;
1818	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1819	if (err < 0)
1820		return err;
1821	if (write)
1822		set_numabalancing_state(state);
1823	return err;
1824}
1825#endif
1826#endif
1827
1828/*
1829 * fork()/clone()-time setup:
1830 */
1831int sched_fork(unsigned long clone_flags, struct task_struct *p)
1832{
1833	unsigned long flags;
1834	int cpu = get_cpu();
1835
1836	__sched_fork(clone_flags, p);
1837	/*
1838	 * We mark the process as running here. This guarantees that
1839	 * nobody will actually run it, and a signal or other external
1840	 * event cannot wake it up and insert it on the runqueue either.
1841	 */
1842	p->state = TASK_RUNNING;
1843
1844	/*
1845	 * Make sure we do not leak PI boosting priority to the child.
1846	 */
1847	p->prio = current->normal_prio;
1848
1849	/*
1850	 * Revert to default priority/policy on fork if requested.
1851	 */
1852	if (unlikely(p->sched_reset_on_fork)) {
1853		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1854			p->policy = SCHED_NORMAL;
1855			p->static_prio = NICE_TO_PRIO(0);
1856			p->rt_priority = 0;
1857		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1858			p->static_prio = NICE_TO_PRIO(0);
1859
1860		p->prio = p->normal_prio = __normal_prio(p);
1861		set_load_weight(p);
1862
1863		/*
1864		 * We don't need the reset flag anymore after the fork. It has
1865		 * fulfilled its duty:
1866		 */
1867		p->sched_reset_on_fork = 0;
1868	}
1869
1870	if (dl_prio(p->prio)) {
1871		put_cpu();
1872		return -EAGAIN;
1873	} else if (rt_prio(p->prio)) {
1874		p->sched_class = &rt_sched_class;
1875	} else {
1876		p->sched_class = &fair_sched_class;
1877	}
1878
1879	if (p->sched_class->task_fork)
1880		p->sched_class->task_fork(p);
1881
1882	/*
1883	 * The child is not yet in the pid-hash so no cgroup attach races,
1884	 * and the cgroup is pinned to this child due to cgroup_fork()
1885	 * is ran before sched_fork().
1886	 *
1887	 * Silence PROVE_RCU.
1888	 */
1889	raw_spin_lock_irqsave(&p->pi_lock, flags);
1890	set_task_cpu(p, cpu);
1891	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1892
1893#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1894	if (likely(sched_info_on()))
1895		memset(&p->sched_info, 0, sizeof(p->sched_info));
1896#endif
1897#if defined(CONFIG_SMP)
1898	p->on_cpu = 0;
1899#endif
1900	init_task_preempt_count(p);
1901#ifdef CONFIG_SMP
1902	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1903	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1904#endif
1905
1906	put_cpu();
1907	return 0;
1908}
1909
1910unsigned long to_ratio(u64 period, u64 runtime)
1911{
1912	if (runtime == RUNTIME_INF)
1913		return 1ULL << 20;
1914
1915	/*
1916	 * Doing this here saves a lot of checks in all
1917	 * the calling paths, and returning zero seems
1918	 * safe for them anyway.
1919	 */
1920	if (period == 0)
1921		return 0;
1922
1923	return div64_u64(runtime << 20, period);
1924}
1925
1926#ifdef CONFIG_SMP
1927inline struct dl_bw *dl_bw_of(int i)
1928{
1929	return &cpu_rq(i)->rd->dl_bw;
1930}
1931
1932static inline int dl_bw_cpus(int i)
1933{
1934	struct root_domain *rd = cpu_rq(i)->rd;
1935	int cpus = 0;
1936
1937	for_each_cpu_and(i, rd->span, cpu_active_mask)
1938		cpus++;
1939
1940	return cpus;
1941}
1942#else
1943inline struct dl_bw *dl_bw_of(int i)
1944{
1945	return &cpu_rq(i)->dl.dl_bw;
1946}
1947
1948static inline int dl_bw_cpus(int i)
1949{
1950	return 1;
1951}
1952#endif
1953
1954static inline
1955void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1956{
1957	dl_b->total_bw -= tsk_bw;
1958}
1959
1960static inline
1961void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1962{
1963	dl_b->total_bw += tsk_bw;
1964}
1965
1966static inline
1967bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1968{
1969	return dl_b->bw != -1 &&
1970	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1971}
1972
1973/*
1974 * We must be sure that accepting a new task (or allowing changing the
1975 * parameters of an existing one) is consistent with the bandwidth
1976 * constraints. If yes, this function also accordingly updates the currently
1977 * allocated bandwidth to reflect the new situation.
1978 *
1979 * This function is called while holding p's rq->lock.
1980 */
1981static int dl_overflow(struct task_struct *p, int policy,
1982		       const struct sched_attr *attr)
1983{
1984
1985	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1986	u64 period = attr->sched_period ?: attr->sched_deadline;
1987	u64 runtime = attr->sched_runtime;
1988	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1989	int cpus, err = -1;
1990
1991	if (new_bw == p->dl.dl_bw)
1992		return 0;
1993
1994	/*
1995	 * Either if a task, enters, leave, or stays -deadline but changes
1996	 * its parameters, we may need to update accordingly the total
1997	 * allocated bandwidth of the container.
1998	 */
1999	raw_spin_lock(&dl_b->lock);
2000	cpus = dl_bw_cpus(task_cpu(p));
2001	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2002	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2003		__dl_add(dl_b, new_bw);
2004		err = 0;
2005	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2006		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2007		__dl_clear(dl_b, p->dl.dl_bw);
2008		__dl_add(dl_b, new_bw);
2009		err = 0;
2010	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2011		__dl_clear(dl_b, p->dl.dl_bw);
2012		err = 0;
2013	}
2014	raw_spin_unlock(&dl_b->lock);
2015
2016	return err;
2017}
2018
2019extern void init_dl_bw(struct dl_bw *dl_b);
2020
2021/*
2022 * wake_up_new_task - wake up a newly created task for the first time.
2023 *
2024 * This function will do some initial scheduler statistics housekeeping
2025 * that must be done for every newly created context, then puts the task
2026 * on the runqueue and wakes it.
2027 */
2028void wake_up_new_task(struct task_struct *p)
2029{
2030	unsigned long flags;
2031	struct rq *rq;
2032
2033	raw_spin_lock_irqsave(&p->pi_lock, flags);
2034#ifdef CONFIG_SMP
2035	/*
2036	 * Fork balancing, do it here and not earlier because:
2037	 *  - cpus_allowed can change in the fork path
2038	 *  - any previously selected cpu might disappear through hotplug
2039	 */
2040	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2041#endif
2042
2043	/* Initialize new task's runnable average */
2044	init_task_runnable_average(p);
2045	rq = __task_rq_lock(p);
2046	activate_task(rq, p, 0);
2047	p->on_rq = 1;
2048	trace_sched_wakeup_new(p, true);
2049	check_preempt_curr(rq, p, WF_FORK);
2050#ifdef CONFIG_SMP
2051	if (p->sched_class->task_woken)
2052		p->sched_class->task_woken(rq, p);
2053#endif
2054	task_rq_unlock(rq, p, &flags);
2055}
2056
2057#ifdef CONFIG_PREEMPT_NOTIFIERS
2058
2059/**
2060 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2061 * @notifier: notifier struct to register
2062 */
2063void preempt_notifier_register(struct preempt_notifier *notifier)
2064{
2065	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2066}
2067EXPORT_SYMBOL_GPL(preempt_notifier_register);
2068
2069/**
2070 * preempt_notifier_unregister - no longer interested in preemption notifications
2071 * @notifier: notifier struct to unregister
2072 *
2073 * This is safe to call from within a preemption notifier.
2074 */
2075void preempt_notifier_unregister(struct preempt_notifier *notifier)
2076{
2077	hlist_del(&notifier->link);
2078}
2079EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2080
2081static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2082{
2083	struct preempt_notifier *notifier;
2084
2085	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2086		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2087}
2088
2089static void
2090fire_sched_out_preempt_notifiers(struct task_struct *curr,
2091				 struct task_struct *next)
2092{
2093	struct preempt_notifier *notifier;
2094
2095	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2096		notifier->ops->sched_out(notifier, next);
2097}
2098
2099#else /* !CONFIG_PREEMPT_NOTIFIERS */
2100
2101static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2102{
2103}
2104
2105static void
2106fire_sched_out_preempt_notifiers(struct task_struct *curr,
2107				 struct task_struct *next)
2108{
2109}
2110
2111#endif /* CONFIG_PREEMPT_NOTIFIERS */
2112
2113/**
2114 * prepare_task_switch - prepare to switch tasks
2115 * @rq: the runqueue preparing to switch
2116 * @prev: the current task that is being switched out
2117 * @next: the task we are going to switch to.
2118 *
2119 * This is called with the rq lock held and interrupts off. It must
2120 * be paired with a subsequent finish_task_switch after the context
2121 * switch.
2122 *
2123 * prepare_task_switch sets up locking and calls architecture specific
2124 * hooks.
2125 */
2126static inline void
2127prepare_task_switch(struct rq *rq, struct task_struct *prev,
2128		    struct task_struct *next)
2129{
2130	trace_sched_switch(prev, next);
2131	sched_info_switch(rq, prev, next);
2132	perf_event_task_sched_out(prev, next);
2133	fire_sched_out_preempt_notifiers(prev, next);
2134	prepare_lock_switch(rq, next);
2135	prepare_arch_switch(next);
2136}
2137
2138/**
2139 * finish_task_switch - clean up after a task-switch
2140 * @rq: runqueue associated with task-switch
2141 * @prev: the thread we just switched away from.
2142 *
2143 * finish_task_switch must be called after the context switch, paired
2144 * with a prepare_task_switch call before the context switch.
2145 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2146 * and do any other architecture-specific cleanup actions.
2147 *
2148 * Note that we may have delayed dropping an mm in context_switch(). If
2149 * so, we finish that here outside of the runqueue lock. (Doing it
2150 * with the lock held can cause deadlocks; see schedule() for
2151 * details.)
2152 */
2153static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2154	__releases(rq->lock)
2155{
2156	struct mm_struct *mm = rq->prev_mm;
2157	long prev_state;
2158
2159	rq->prev_mm = NULL;
2160
2161	/*
2162	 * A task struct has one reference for the use as "current".
2163	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2164	 * schedule one last time. The schedule call will never return, and
2165	 * the scheduled task must drop that reference.
2166	 * The test for TASK_DEAD must occur while the runqueue locks are
2167	 * still held, otherwise prev could be scheduled on another cpu, die
2168	 * there before we look at prev->state, and then the reference would
2169	 * be dropped twice.
2170	 *		Manfred Spraul <manfred@colorfullife.com>
2171	 */
2172	prev_state = prev->state;
2173	vtime_task_switch(prev);
2174	finish_arch_switch(prev);
2175	perf_event_task_sched_in(prev, current);
2176	finish_lock_switch(rq, prev);
2177	finish_arch_post_lock_switch();
2178
2179	fire_sched_in_preempt_notifiers(current);
2180	if (mm)
2181		mmdrop(mm);
2182	if (unlikely(prev_state == TASK_DEAD)) {
2183		if (prev->sched_class->task_dead)
2184			prev->sched_class->task_dead(prev);
2185
2186		/*
2187		 * Remove function-return probe instances associated with this
2188		 * task and put them back on the free list.
2189		 */
2190		kprobe_flush_task(prev);
2191		put_task_struct(prev);
2192	}
2193
2194	tick_nohz_task_switch(current);
2195}
2196
2197#ifdef CONFIG_SMP
2198
2199/* rq->lock is NOT held, but preemption is disabled */
2200static inline void post_schedule(struct rq *rq)
2201{
2202	if (rq->post_schedule) {
2203		unsigned long flags;
2204
2205		raw_spin_lock_irqsave(&rq->lock, flags);
2206		if (rq->curr->sched_class->post_schedule)
2207			rq->curr->sched_class->post_schedule(rq);
2208		raw_spin_unlock_irqrestore(&rq->lock, flags);
2209
2210		rq->post_schedule = 0;
2211	}
2212}
2213
2214#else
2215
2216static inline void post_schedule(struct rq *rq)
2217{
2218}
2219
2220#endif
2221
2222/**
2223 * schedule_tail - first thing a freshly forked thread must call.
2224 * @prev: the thread we just switched away from.
2225 */
2226asmlinkage void schedule_tail(struct task_struct *prev)
2227	__releases(rq->lock)
2228{
2229	struct rq *rq = this_rq();
2230
2231	finish_task_switch(rq, prev);
2232
2233	/*
2234	 * FIXME: do we need to worry about rq being invalidated by the
2235	 * task_switch?
2236	 */
2237	post_schedule(rq);
2238
2239#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2240	/* In this case, finish_task_switch does not reenable preemption */
2241	preempt_enable();
2242#endif
2243	if (current->set_child_tid)
2244		put_user(task_pid_vnr(current), current->set_child_tid);
2245}
2246
2247/*
2248 * context_switch - switch to the new MM and the new
2249 * thread's register state.
2250 */
2251static inline void
2252context_switch(struct rq *rq, struct task_struct *prev,
2253	       struct task_struct *next)
2254{
2255	struct mm_struct *mm, *oldmm;
2256
2257	prepare_task_switch(rq, prev, next);
2258
2259	mm = next->mm;
2260	oldmm = prev->active_mm;
2261	/*
2262	 * For paravirt, this is coupled with an exit in switch_to to
2263	 * combine the page table reload and the switch backend into
2264	 * one hypercall.
2265	 */
2266	arch_start_context_switch(prev);
2267
2268	if (!mm) {
2269		next->active_mm = oldmm;
2270		atomic_inc(&oldmm->mm_count);
2271		enter_lazy_tlb(oldmm, next);
2272	} else
2273		switch_mm(oldmm, mm, next);
2274
2275	if (!prev->mm) {
2276		prev->active_mm = NULL;
2277		rq->prev_mm = oldmm;
2278	}
2279	/*
2280	 * Since the runqueue lock will be released by the next
2281	 * task (which is an invalid locking op but in the case
2282	 * of the scheduler it's an obvious special-case), so we
2283	 * do an early lockdep release here:
2284	 */
2285#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2286	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2287#endif
2288
2289	context_tracking_task_switch(prev, next);
2290	/* Here we just switch the register state and the stack. */
2291	switch_to(prev, next, prev);
2292
2293	barrier();
2294	/*
2295	 * this_rq must be evaluated again because prev may have moved
2296	 * CPUs since it called schedule(), thus the 'rq' on its stack
2297	 * frame will be invalid.
2298	 */
2299	finish_task_switch(this_rq(), prev);
2300}
2301
2302/*
2303 * nr_running and nr_context_switches:
2304 *
2305 * externally visible scheduler statistics: current number of runnable
2306 * threads, total number of context switches performed since bootup.
2307 */
2308unsigned long nr_running(void)
2309{
2310	unsigned long i, sum = 0;
2311
2312	for_each_online_cpu(i)
2313		sum += cpu_rq(i)->nr_running;
2314
2315	return sum;
2316}
2317
2318unsigned long long nr_context_switches(void)
2319{
2320	int i;
2321	unsigned long long sum = 0;
2322
2323	for_each_possible_cpu(i)
2324		sum += cpu_rq(i)->nr_switches;
2325
2326	return sum;
2327}
2328
2329unsigned long nr_iowait(void)
2330{
2331	unsigned long i, sum = 0;
2332
2333	for_each_possible_cpu(i)
2334		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2335
2336	return sum;
2337}
2338
2339unsigned long nr_iowait_cpu(int cpu)
2340{
2341	struct rq *this = cpu_rq(cpu);
2342	return atomic_read(&this->nr_iowait);
2343}
2344
2345#ifdef CONFIG_SMP
2346
2347/*
2348 * sched_exec - execve() is a valuable balancing opportunity, because at
2349 * this point the task has the smallest effective memory and cache footprint.
2350 */
2351void sched_exec(void)
2352{
2353	struct task_struct *p = current;
2354	unsigned long flags;
2355	int dest_cpu;
2356
2357	raw_spin_lock_irqsave(&p->pi_lock, flags);
2358	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2359	if (dest_cpu == smp_processor_id())
2360		goto unlock;
2361
2362	if (likely(cpu_active(dest_cpu))) {
2363		struct migration_arg arg = { p, dest_cpu };
2364
2365		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2366		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2367		return;
2368	}
2369unlock:
2370	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2371}
2372
2373#endif
2374
2375DEFINE_PER_CPU(struct kernel_stat, kstat);
2376DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2377
2378EXPORT_PER_CPU_SYMBOL(kstat);
2379EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2380
2381/*
2382 * Return any ns on the sched_clock that have not yet been accounted in
2383 * @p in case that task is currently running.
2384 *
2385 * Called with task_rq_lock() held on @rq.
2386 */
2387static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2388{
2389	u64 ns = 0;
2390
2391	if (task_current(rq, p)) {
2392		update_rq_clock(rq);
2393		ns = rq_clock_task(rq) - p->se.exec_start;
2394		if ((s64)ns < 0)
2395			ns = 0;
2396	}
2397
2398	return ns;
2399}
2400
2401unsigned long long task_delta_exec(struct task_struct *p)
2402{
2403	unsigned long flags;
2404	struct rq *rq;
2405	u64 ns = 0;
2406
2407	rq = task_rq_lock(p, &flags);
2408	ns = do_task_delta_exec(p, rq);
2409	task_rq_unlock(rq, p, &flags);
2410
2411	return ns;
2412}
2413
2414/*
2415 * Return accounted runtime for the task.
2416 * In case the task is currently running, return the runtime plus current's
2417 * pending runtime that have not been accounted yet.
2418 */
2419unsigned long long task_sched_runtime(struct task_struct *p)
2420{
2421	unsigned long flags;
2422	struct rq *rq;
2423	u64 ns = 0;
2424
2425#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2426	/*
2427	 * 64-bit doesn't need locks to atomically read a 64bit value.
2428	 * So we have a optimization chance when the task's delta_exec is 0.
2429	 * Reading ->on_cpu is racy, but this is ok.
2430	 *
2431	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2432	 * If we race with it entering cpu, unaccounted time is 0. This is
2433	 * indistinguishable from the read occurring a few cycles earlier.
2434	 */
2435	if (!p->on_cpu)
2436		return p->se.sum_exec_runtime;
2437#endif
2438
2439	rq = task_rq_lock(p, &flags);
2440	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2441	task_rq_unlock(rq, p, &flags);
2442
2443	return ns;
2444}
2445
2446/*
2447 * This function gets called by the timer code, with HZ frequency.
2448 * We call it with interrupts disabled.
2449 */
2450void scheduler_tick(void)
2451{
2452	int cpu = smp_processor_id();
2453	struct rq *rq = cpu_rq(cpu);
2454	struct task_struct *curr = rq->curr;
2455
2456	sched_clock_tick();
2457
2458	raw_spin_lock(&rq->lock);
2459	update_rq_clock(rq);
2460	curr->sched_class->task_tick(rq, curr, 0);
2461	update_cpu_load_active(rq);
2462	raw_spin_unlock(&rq->lock);
2463
2464	perf_event_task_tick();
2465
2466#ifdef CONFIG_SMP
2467	rq->idle_balance = idle_cpu(cpu);
2468	trigger_load_balance(rq);
2469#endif
2470	rq_last_tick_reset(rq);
2471}
2472
2473#ifdef CONFIG_NO_HZ_FULL
2474/**
2475 * scheduler_tick_max_deferment
2476 *
2477 * Keep at least one tick per second when a single
2478 * active task is running because the scheduler doesn't
2479 * yet completely support full dynticks environment.
2480 *
2481 * This makes sure that uptime, CFS vruntime, load
2482 * balancing, etc... continue to move forward, even
2483 * with a very low granularity.
2484 *
2485 * Return: Maximum deferment in nanoseconds.
2486 */
2487u64 scheduler_tick_max_deferment(void)
2488{
2489	struct rq *rq = this_rq();
2490	unsigned long next, now = ACCESS_ONCE(jiffies);
2491
2492	next = rq->last_sched_tick + HZ;
2493
2494	if (time_before_eq(next, now))
2495		return 0;
2496
2497	return jiffies_to_nsecs(next - now);
2498}
2499#endif
2500
2501notrace unsigned long get_parent_ip(unsigned long addr)
2502{
2503	if (in_lock_functions(addr)) {
2504		addr = CALLER_ADDR2;
2505		if (in_lock_functions(addr))
2506			addr = CALLER_ADDR3;
2507	}
2508	return addr;
2509}
2510
2511#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2512				defined(CONFIG_PREEMPT_TRACER))
2513
2514void __kprobes preempt_count_add(int val)
2515{
2516#ifdef CONFIG_DEBUG_PREEMPT
2517	/*
2518	 * Underflow?
2519	 */
2520	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2521		return;
2522#endif
2523	__preempt_count_add(val);
2524#ifdef CONFIG_DEBUG_PREEMPT
2525	/*
2526	 * Spinlock count overflowing soon?
2527	 */
2528	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2529				PREEMPT_MASK - 10);
2530#endif
2531	if (preempt_count() == val) {
2532		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2533#ifdef CONFIG_DEBUG_PREEMPT
2534		current->preempt_disable_ip = ip;
2535#endif
2536		trace_preempt_off(CALLER_ADDR0, ip);
2537	}
2538}
2539EXPORT_SYMBOL(preempt_count_add);
2540
2541void __kprobes preempt_count_sub(int val)
2542{
2543#ifdef CONFIG_DEBUG_PREEMPT
2544	/*
2545	 * Underflow?
2546	 */
2547	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2548		return;
2549	/*
2550	 * Is the spinlock portion underflowing?
2551	 */
2552	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2553			!(preempt_count() & PREEMPT_MASK)))
2554		return;
2555#endif
2556
2557	if (preempt_count() == val)
2558		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2559	__preempt_count_sub(val);
2560}
2561EXPORT_SYMBOL(preempt_count_sub);
2562
2563#endif
2564
2565/*
2566 * Print scheduling while atomic bug:
2567 */
2568static noinline void __schedule_bug(struct task_struct *prev)
2569{
2570	if (oops_in_progress)
2571		return;
2572
2573	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2574		prev->comm, prev->pid, preempt_count());
2575
2576	debug_show_held_locks(prev);
2577	print_modules();
2578	if (irqs_disabled())
2579		print_irqtrace_events(prev);
2580#ifdef CONFIG_DEBUG_PREEMPT
2581	if (in_atomic_preempt_off()) {
2582		pr_err("Preemption disabled at:");
2583		print_ip_sym(current->preempt_disable_ip);
2584		pr_cont("\n");
2585	}
2586#endif
2587	dump_stack();
2588	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2589}
2590
2591/*
2592 * Various schedule()-time debugging checks and statistics:
2593 */
2594static inline void schedule_debug(struct task_struct *prev)
2595{
2596	/*
2597	 * Test if we are atomic. Since do_exit() needs to call into
2598	 * schedule() atomically, we ignore that path. Otherwise whine
2599	 * if we are scheduling when we should not.
2600	 */
2601	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2602		__schedule_bug(prev);
2603	rcu_sleep_check();
2604
2605	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2606
2607	schedstat_inc(this_rq(), sched_count);
2608}
2609
2610/*
2611 * Pick up the highest-prio task:
2612 */
2613static inline struct task_struct *
2614pick_next_task(struct rq *rq, struct task_struct *prev)
2615{
2616	const struct sched_class *class = &fair_sched_class;
2617	struct task_struct *p;
2618
2619	/*
2620	 * Optimization: we know that if all tasks are in
2621	 * the fair class we can call that function directly:
2622	 */
2623	if (likely(prev->sched_class == class &&
2624		   rq->nr_running == rq->cfs.h_nr_running)) {
2625		p = fair_sched_class.pick_next_task(rq, prev);
2626		if (unlikely(p == RETRY_TASK))
2627			goto again;
2628
2629		/* assumes fair_sched_class->next == idle_sched_class */
2630		if (unlikely(!p))
2631			p = idle_sched_class.pick_next_task(rq, prev);
2632
2633		return p;
2634	}
2635
2636again:
2637	for_each_class(class) {
2638		p = class->pick_next_task(rq, prev);
2639		if (p) {
2640			if (unlikely(p == RETRY_TASK))
2641				goto again;
2642			return p;
2643		}
2644	}
2645
2646	BUG(); /* the idle class will always have a runnable task */
2647}
2648
2649/*
2650 * __schedule() is the main scheduler function.
2651 *
2652 * The main means of driving the scheduler and thus entering this function are:
2653 *
2654 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2655 *
2656 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2657 *      paths. For example, see arch/x86/entry_64.S.
2658 *
2659 *      To drive preemption between tasks, the scheduler sets the flag in timer
2660 *      interrupt handler scheduler_tick().
2661 *
2662 *   3. Wakeups don't really cause entry into schedule(). They add a
2663 *      task to the run-queue and that's it.
2664 *
2665 *      Now, if the new task added to the run-queue preempts the current
2666 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2667 *      called on the nearest possible occasion:
2668 *
2669 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2670 *
2671 *         - in syscall or exception context, at the next outmost
2672 *           preempt_enable(). (this might be as soon as the wake_up()'s
2673 *           spin_unlock()!)
2674 *
2675 *         - in IRQ context, return from interrupt-handler to
2676 *           preemptible context
2677 *
2678 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2679 *         then at the next:
2680 *
2681 *          - cond_resched() call
2682 *          - explicit schedule() call
2683 *          - return from syscall or exception to user-space
2684 *          - return from interrupt-handler to user-space
2685 */
2686static void __sched __schedule(void)
2687{
2688	struct task_struct *prev, *next;
2689	unsigned long *switch_count;
2690	struct rq *rq;
2691	int cpu;
2692
2693need_resched:
2694	preempt_disable();
2695	cpu = smp_processor_id();
2696	rq = cpu_rq(cpu);
2697	rcu_note_context_switch(cpu);
2698	prev = rq->curr;
2699
2700	schedule_debug(prev);
2701
2702	if (sched_feat(HRTICK))
2703		hrtick_clear(rq);
2704
2705	/*
2706	 * Make sure that signal_pending_state()->signal_pending() below
2707	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2708	 * done by the caller to avoid the race with signal_wake_up().
2709	 */
2710	smp_mb__before_spinlock();
2711	raw_spin_lock_irq(&rq->lock);
2712
2713	switch_count = &prev->nivcsw;
2714	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2715		if (unlikely(signal_pending_state(prev->state, prev))) {
2716			prev->state = TASK_RUNNING;
2717		} else {
2718			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2719			prev->on_rq = 0;
2720
2721			/*
2722			 * If a worker went to sleep, notify and ask workqueue
2723			 * whether it wants to wake up a task to maintain
2724			 * concurrency.
2725			 */
2726			if (prev->flags & PF_WQ_WORKER) {
2727				struct task_struct *to_wakeup;
2728
2729				to_wakeup = wq_worker_sleeping(prev, cpu);
2730				if (to_wakeup)
2731					try_to_wake_up_local(to_wakeup);
2732			}
2733		}
2734		switch_count = &prev->nvcsw;
2735	}
2736
2737	if (prev->on_rq || rq->skip_clock_update < 0)
2738		update_rq_clock(rq);
2739
2740	next = pick_next_task(rq, prev);
2741	clear_tsk_need_resched(prev);
2742	clear_preempt_need_resched();
2743	rq->skip_clock_update = 0;
2744
2745	if (likely(prev != next)) {
2746		rq->nr_switches++;
2747		rq->curr = next;
2748		++*switch_count;
2749
2750		context_switch(rq, prev, next); /* unlocks the rq */
2751		/*
2752		 * The context switch have flipped the stack from under us
2753		 * and restored the local variables which were saved when
2754		 * this task called schedule() in the past. prev == current
2755		 * is still correct, but it can be moved to another cpu/rq.
2756		 */
2757		cpu = smp_processor_id();
2758		rq = cpu_rq(cpu);
2759	} else
2760		raw_spin_unlock_irq(&rq->lock);
2761
2762	post_schedule(rq);
2763
2764	sched_preempt_enable_no_resched();
2765	if (need_resched())
2766		goto need_resched;
2767}
2768
2769static inline void sched_submit_work(struct task_struct *tsk)
2770{
2771	if (!tsk->state || tsk_is_pi_blocked(tsk))
2772		return;
2773	/*
2774	 * If we are going to sleep and we have plugged IO queued,
2775	 * make sure to submit it to avoid deadlocks.
2776	 */
2777	if (blk_needs_flush_plug(tsk))
2778		blk_schedule_flush_plug(tsk);
2779}
2780
2781asmlinkage void __sched schedule(void)
2782{
2783	struct task_struct *tsk = current;
2784
2785	sched_submit_work(tsk);
2786	__schedule();
2787}
2788EXPORT_SYMBOL(schedule);
2789
2790#ifdef CONFIG_CONTEXT_TRACKING
2791asmlinkage void __sched schedule_user(void)
2792{
2793	/*
2794	 * If we come here after a random call to set_need_resched(),
2795	 * or we have been woken up remotely but the IPI has not yet arrived,
2796	 * we haven't yet exited the RCU idle mode. Do it here manually until
2797	 * we find a better solution.
2798	 */
2799	user_exit();
2800	schedule();
2801	user_enter();
2802}
2803#endif
2804
2805/**
2806 * schedule_preempt_disabled - called with preemption disabled
2807 *
2808 * Returns with preemption disabled. Note: preempt_count must be 1
2809 */
2810void __sched schedule_preempt_disabled(void)
2811{
2812	sched_preempt_enable_no_resched();
2813	schedule();
2814	preempt_disable();
2815}
2816
2817#ifdef CONFIG_PREEMPT
2818/*
2819 * this is the entry point to schedule() from in-kernel preemption
2820 * off of preempt_enable. Kernel preemptions off return from interrupt
2821 * occur there and call schedule directly.
2822 */
2823asmlinkage void __sched notrace preempt_schedule(void)
2824{
2825	/*
2826	 * If there is a non-zero preempt_count or interrupts are disabled,
2827	 * we do not want to preempt the current task. Just return..
2828	 */
2829	if (likely(!preemptible()))
2830		return;
2831
2832	do {
2833		__preempt_count_add(PREEMPT_ACTIVE);
2834		__schedule();
2835		__preempt_count_sub(PREEMPT_ACTIVE);
2836
2837		/*
2838		 * Check again in case we missed a preemption opportunity
2839		 * between schedule and now.
2840		 */
2841		barrier();
2842	} while (need_resched());
2843}
2844EXPORT_SYMBOL(preempt_schedule);
2845#endif /* CONFIG_PREEMPT */
2846
2847/*
2848 * this is the entry point to schedule() from kernel preemption
2849 * off of irq context.
2850 * Note, that this is called and return with irqs disabled. This will
2851 * protect us against recursive calling from irq.
2852 */
2853asmlinkage void __sched preempt_schedule_irq(void)
2854{
2855	enum ctx_state prev_state;
2856
2857	/* Catch callers which need to be fixed */
2858	BUG_ON(preempt_count() || !irqs_disabled());
2859
2860	prev_state = exception_enter();
2861
2862	do {
2863		__preempt_count_add(PREEMPT_ACTIVE);
2864		local_irq_enable();
2865		__schedule();
2866		local_irq_disable();
2867		__preempt_count_sub(PREEMPT_ACTIVE);
2868
2869		/*
2870		 * Check again in case we missed a preemption opportunity
2871		 * between schedule and now.
2872		 */
2873		barrier();
2874	} while (need_resched());
2875
2876	exception_exit(prev_state);
2877}
2878
2879int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2880			  void *key)
2881{
2882	return try_to_wake_up(curr->private, mode, wake_flags);
2883}
2884EXPORT_SYMBOL(default_wake_function);
2885
2886#ifdef CONFIG_RT_MUTEXES
2887
2888/*
2889 * rt_mutex_setprio - set the current priority of a task
2890 * @p: task
2891 * @prio: prio value (kernel-internal form)
2892 *
2893 * This function changes the 'effective' priority of a task. It does
2894 * not touch ->normal_prio like __setscheduler().
2895 *
2896 * Used by the rt_mutex code to implement priority inheritance
2897 * logic. Call site only calls if the priority of the task changed.
2898 */
2899void rt_mutex_setprio(struct task_struct *p, int prio)
2900{
2901	int oldprio, on_rq, running, enqueue_flag = 0;
2902	struct rq *rq;
2903	const struct sched_class *prev_class;
2904
2905	BUG_ON(prio > MAX_PRIO);
2906
2907	rq = __task_rq_lock(p);
2908
2909	/*
2910	 * Idle task boosting is a nono in general. There is one
2911	 * exception, when PREEMPT_RT and NOHZ is active:
2912	 *
2913	 * The idle task calls get_next_timer_interrupt() and holds
2914	 * the timer wheel base->lock on the CPU and another CPU wants
2915	 * to access the timer (probably to cancel it). We can safely
2916	 * ignore the boosting request, as the idle CPU runs this code
2917	 * with interrupts disabled and will complete the lock
2918	 * protected section without being interrupted. So there is no
2919	 * real need to boost.
2920	 */
2921	if (unlikely(p == rq->idle)) {
2922		WARN_ON(p != rq->curr);
2923		WARN_ON(p->pi_blocked_on);
2924		goto out_unlock;
2925	}
2926
2927	trace_sched_pi_setprio(p, prio);
2928	p->pi_top_task = rt_mutex_get_top_task(p);
2929	oldprio = p->prio;
2930	prev_class = p->sched_class;
2931	on_rq = p->on_rq;
2932	running = task_current(rq, p);
2933	if (on_rq)
2934		dequeue_task(rq, p, 0);
2935	if (running)
2936		p->sched_class->put_prev_task(rq, p);
2937
2938	/*
2939	 * Boosting condition are:
2940	 * 1. -rt task is running and holds mutex A
2941	 *      --> -dl task blocks on mutex A
2942	 *
2943	 * 2. -dl task is running and holds mutex A
2944	 *      --> -dl task blocks on mutex A and could preempt the
2945	 *          running task
2946	 */
2947	if (dl_prio(prio)) {
2948		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2949			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2950			p->dl.dl_boosted = 1;
2951			p->dl.dl_throttled = 0;
2952			enqueue_flag = ENQUEUE_REPLENISH;
2953		} else
2954			p->dl.dl_boosted = 0;
2955		p->sched_class = &dl_sched_class;
2956	} else if (rt_prio(prio)) {
2957		if (dl_prio(oldprio))
2958			p->dl.dl_boosted = 0;
2959		if (oldprio < prio)
2960			enqueue_flag = ENQUEUE_HEAD;
2961		p->sched_class = &rt_sched_class;
2962	} else {
2963		if (dl_prio(oldprio))
2964			p->dl.dl_boosted = 0;
2965		p->sched_class = &fair_sched_class;
2966	}
2967
2968	p->prio = prio;
2969
2970	if (running)
2971		p->sched_class->set_curr_task(rq);
2972	if (on_rq)
2973		enqueue_task(rq, p, enqueue_flag);
2974
2975	check_class_changed(rq, p, prev_class, oldprio);
2976out_unlock:
2977	__task_rq_unlock(rq);
2978}
2979#endif
2980
2981void set_user_nice(struct task_struct *p, long nice)
2982{
2983	int old_prio, delta, on_rq;
2984	unsigned long flags;
2985	struct rq *rq;
2986
2987	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2988		return;
2989	/*
2990	 * We have to be careful, if called from sys_setpriority(),
2991	 * the task might be in the middle of scheduling on another CPU.
2992	 */
2993	rq = task_rq_lock(p, &flags);
2994	/*
2995	 * The RT priorities are set via sched_setscheduler(), but we still
2996	 * allow the 'normal' nice value to be set - but as expected
2997	 * it wont have any effect on scheduling until the task is
2998	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2999	 */
3000	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3001		p->static_prio = NICE_TO_PRIO(nice);
3002		goto out_unlock;
3003	}
3004	on_rq = p->on_rq;
3005	if (on_rq)
3006		dequeue_task(rq, p, 0);
3007
3008	p->static_prio = NICE_TO_PRIO(nice);
3009	set_load_weight(p);
3010	old_prio = p->prio;
3011	p->prio = effective_prio(p);
3012	delta = p->prio - old_prio;
3013
3014	if (on_rq) {
3015		enqueue_task(rq, p, 0);
3016		/*
3017		 * If the task increased its priority or is running and
3018		 * lowered its priority, then reschedule its CPU:
3019		 */
3020		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3021			resched_task(rq->curr);
3022	}
3023out_unlock:
3024	task_rq_unlock(rq, p, &flags);
3025}
3026EXPORT_SYMBOL(set_user_nice);
3027
3028/*
3029 * can_nice - check if a task can reduce its nice value
3030 * @p: task
3031 * @nice: nice value
3032 */
3033int can_nice(const struct task_struct *p, const int nice)
3034{
3035	/* convert nice value [19,-20] to rlimit style value [1,40] */
3036	int nice_rlim = 20 - nice;
3037
3038	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3039		capable(CAP_SYS_NICE));
3040}
3041
3042#ifdef __ARCH_WANT_SYS_NICE
3043
3044/*
3045 * sys_nice - change the priority of the current process.
3046 * @increment: priority increment
3047 *
3048 * sys_setpriority is a more generic, but much slower function that
3049 * does similar things.
3050 */
3051SYSCALL_DEFINE1(nice, int, increment)
3052{
3053	long nice, retval;
3054
3055	/*
3056	 * Setpriority might change our priority at the same moment.
3057	 * We don't have to worry. Conceptually one call occurs first
3058	 * and we have a single winner.
3059	 */
3060	if (increment < -40)
3061		increment = -40;
3062	if (increment > 40)
3063		increment = 40;
3064
3065	nice = task_nice(current) + increment;
3066	if (nice < MIN_NICE)
3067		nice = MIN_NICE;
3068	if (nice > MAX_NICE)
3069		nice = MAX_NICE;
3070
3071	if (increment < 0 && !can_nice(current, nice))
3072		return -EPERM;
3073
3074	retval = security_task_setnice(current, nice);
3075	if (retval)
3076		return retval;
3077
3078	set_user_nice(current, nice);
3079	return 0;
3080}
3081
3082#endif
3083
3084/**
3085 * task_prio - return the priority value of a given task.
3086 * @p: the task in question.
3087 *
3088 * Return: The priority value as seen by users in /proc.
3089 * RT tasks are offset by -200. Normal tasks are centered
3090 * around 0, value goes from -16 to +15.
3091 */
3092int task_prio(const struct task_struct *p)
3093{
3094	return p->prio - MAX_RT_PRIO;
3095}
3096
3097/**
3098 * idle_cpu - is a given cpu idle currently?
3099 * @cpu: the processor in question.
3100 *
3101 * Return: 1 if the CPU is currently idle. 0 otherwise.
3102 */
3103int idle_cpu(int cpu)
3104{
3105	struct rq *rq = cpu_rq(cpu);
3106
3107	if (rq->curr != rq->idle)
3108		return 0;
3109
3110	if (rq->nr_running)
3111		return 0;
3112
3113#ifdef CONFIG_SMP
3114	if (!llist_empty(&rq->wake_list))
3115		return 0;
3116#endif
3117
3118	return 1;
3119}
3120
3121/**
3122 * idle_task - return the idle task for a given cpu.
3123 * @cpu: the processor in question.
3124 *
3125 * Return: The idle task for the cpu @cpu.
3126 */
3127struct task_struct *idle_task(int cpu)
3128{
3129	return cpu_rq(cpu)->idle;
3130}
3131
3132/**
3133 * find_process_by_pid - find a process with a matching PID value.
3134 * @pid: the pid in question.
3135 *
3136 * The task of @pid, if found. %NULL otherwise.
3137 */
3138static struct task_struct *find_process_by_pid(pid_t pid)
3139{
3140	return pid ? find_task_by_vpid(pid) : current;
3141}
3142
3143/*
3144 * This function initializes the sched_dl_entity of a newly becoming
3145 * SCHED_DEADLINE task.
3146 *
3147 * Only the static values are considered here, the actual runtime and the
3148 * absolute deadline will be properly calculated when the task is enqueued
3149 * for the first time with its new policy.
3150 */
3151static void
3152__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3153{
3154	struct sched_dl_entity *dl_se = &p->dl;
3155
3156	init_dl_task_timer(dl_se);
3157	dl_se->dl_runtime = attr->sched_runtime;
3158	dl_se->dl_deadline = attr->sched_deadline;
3159	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3160	dl_se->flags = attr->sched_flags;
3161	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3162	dl_se->dl_throttled = 0;
3163	dl_se->dl_new = 1;
3164	dl_se->dl_yielded = 0;
3165}
3166
3167static void __setscheduler_params(struct task_struct *p,
3168		const struct sched_attr *attr)
3169{
3170	int policy = attr->sched_policy;
3171
3172	if (policy == -1) /* setparam */
3173		policy = p->policy;
3174
3175	p->policy = policy;
3176
3177	if (dl_policy(policy))
3178		__setparam_dl(p, attr);
3179	else if (fair_policy(policy))
3180		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3181
3182	/*
3183	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3184	 * !rt_policy. Always setting this ensures that things like
3185	 * getparam()/getattr() don't report silly values for !rt tasks.
3186	 */
3187	p->rt_priority = attr->sched_priority;
3188	p->normal_prio = normal_prio(p);
3189	set_load_weight(p);
3190}
3191
3192/* Actually do priority change: must hold pi & rq lock. */
3193static void __setscheduler(struct rq *rq, struct task_struct *p,
3194			   const struct sched_attr *attr)
3195{
3196	__setscheduler_params(p, attr);
3197
3198	/*
3199	 * If we get here, there was no pi waiters boosting the
3200	 * task. It is safe to use the normal prio.
3201	 */
3202	p->prio = normal_prio(p);
3203
3204	if (dl_prio(p->prio))
3205		p->sched_class = &dl_sched_class;
3206	else if (rt_prio(p->prio))
3207		p->sched_class = &rt_sched_class;
3208	else
3209		p->sched_class = &fair_sched_class;
3210}
3211
3212static void
3213__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3214{
3215	struct sched_dl_entity *dl_se = &p->dl;
3216
3217	attr->sched_priority = p->rt_priority;
3218	attr->sched_runtime = dl_se->dl_runtime;
3219	attr->sched_deadline = dl_se->dl_deadline;
3220	attr->sched_period = dl_se->dl_period;
3221	attr->sched_flags = dl_se->flags;
3222}
3223
3224/*
3225 * This function validates the new parameters of a -deadline task.
3226 * We ask for the deadline not being zero, and greater or equal
3227 * than the runtime, as well as the period of being zero or
3228 * greater than deadline. Furthermore, we have to be sure that
3229 * user parameters are above the internal resolution (1us); we
3230 * check sched_runtime only since it is always the smaller one.
3231 */
3232static bool
3233__checkparam_dl(const struct sched_attr *attr)
3234{
3235	return attr && attr->sched_deadline != 0 &&
3236		(attr->sched_period == 0 ||
3237		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3238		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3239		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3240}
3241
3242/*
3243 * check the target process has a UID that matches the current process's
3244 */
3245static bool check_same_owner(struct task_struct *p)
3246{
3247	const struct cred *cred = current_cred(), *pcred;
3248	bool match;
3249
3250	rcu_read_lock();
3251	pcred = __task_cred(p);
3252	match = (uid_eq(cred->euid, pcred->euid) ||
3253		 uid_eq(cred->euid, pcred->uid));
3254	rcu_read_unlock();
3255	return match;
3256}
3257
3258static int __sched_setscheduler(struct task_struct *p,
3259				const struct sched_attr *attr,
3260				bool user)
3261{
3262	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3263		      MAX_RT_PRIO - 1 - attr->sched_priority;
3264	int retval, oldprio, oldpolicy = -1, on_rq, running;
3265	int policy = attr->sched_policy;
3266	unsigned long flags;
3267	const struct sched_class *prev_class;
3268	struct rq *rq;
3269	int reset_on_fork;
3270
3271	/* may grab non-irq protected spin_locks */
3272	BUG_ON(in_interrupt());
3273recheck:
3274	/* double check policy once rq lock held */
3275	if (policy < 0) {
3276		reset_on_fork = p->sched_reset_on_fork;
3277		policy = oldpolicy = p->policy;
3278	} else {
3279		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3280
3281		if (policy != SCHED_DEADLINE &&
3282				policy != SCHED_FIFO && policy != SCHED_RR &&
3283				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3284				policy != SCHED_IDLE)
3285			return -EINVAL;
3286	}
3287
3288	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3289		return -EINVAL;
3290
3291	/*
3292	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3293	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3294	 * SCHED_BATCH and SCHED_IDLE is 0.
3295	 */
3296	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3297	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3298		return -EINVAL;
3299	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3300	    (rt_policy(policy) != (attr->sched_priority != 0)))
3301		return -EINVAL;
3302
3303	/*
3304	 * Allow unprivileged RT tasks to decrease priority:
3305	 */
3306	if (user && !capable(CAP_SYS_NICE)) {
3307		if (fair_policy(policy)) {
3308			if (attr->sched_nice < task_nice(p) &&
3309			    !can_nice(p, attr->sched_nice))
3310				return -EPERM;
3311		}
3312
3313		if (rt_policy(policy)) {
3314			unsigned long rlim_rtprio =
3315					task_rlimit(p, RLIMIT_RTPRIO);
3316
3317			/* can't set/change the rt policy */
3318			if (policy != p->policy && !rlim_rtprio)
3319				return -EPERM;
3320
3321			/* can't increase priority */
3322			if (attr->sched_priority > p->rt_priority &&
3323			    attr->sched_priority > rlim_rtprio)
3324				return -EPERM;
3325		}
3326
3327		 /*
3328		  * Can't set/change SCHED_DEADLINE policy at all for now
3329		  * (safest behavior); in the future we would like to allow
3330		  * unprivileged DL tasks to increase their relative deadline
3331		  * or reduce their runtime (both ways reducing utilization)
3332		  */
3333		if (dl_policy(policy))
3334			return -EPERM;
3335
3336		/*
3337		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3338		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3339		 */
3340		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3341			if (!can_nice(p, task_nice(p)))
3342				return -EPERM;
3343		}
3344
3345		/* can't change other user's priorities */
3346		if (!check_same_owner(p))
3347			return -EPERM;
3348
3349		/* Normal users shall not reset the sched_reset_on_fork flag */
3350		if (p->sched_reset_on_fork && !reset_on_fork)
3351			return -EPERM;
3352	}
3353
3354	if (user) {
3355		retval = security_task_setscheduler(p);
3356		if (retval)
3357			return retval;
3358	}
3359
3360	/*
3361	 * make sure no PI-waiters arrive (or leave) while we are
3362	 * changing the priority of the task:
3363	 *
3364	 * To be able to change p->policy safely, the appropriate
3365	 * runqueue lock must be held.
3366	 */
3367	rq = task_rq_lock(p, &flags);
3368
3369	/*
3370	 * Changing the policy of the stop threads its a very bad idea
3371	 */
3372	if (p == rq->stop) {
3373		task_rq_unlock(rq, p, &flags);
3374		return -EINVAL;
3375	}
3376
3377	/*
3378	 * If not changing anything there's no need to proceed further,
3379	 * but store a possible modification of reset_on_fork.
3380	 */
3381	if (unlikely(policy == p->policy)) {
3382		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3383			goto change;
3384		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3385			goto change;
3386		if (dl_policy(policy))
3387			goto change;
3388
3389		p->sched_reset_on_fork = reset_on_fork;
3390		task_rq_unlock(rq, p, &flags);
3391		return 0;
3392	}
3393change:
3394
3395	if (user) {
3396#ifdef CONFIG_RT_GROUP_SCHED
3397		/*
3398		 * Do not allow realtime tasks into groups that have no runtime
3399		 * assigned.
3400		 */
3401		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3402				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3403				!task_group_is_autogroup(task_group(p))) {
3404			task_rq_unlock(rq, p, &flags);
3405			return -EPERM;
3406		}
3407#endif
3408#ifdef CONFIG_SMP
3409		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3410			cpumask_t *span = rq->rd->span;
3411
3412			/*
3413			 * Don't allow tasks with an affinity mask smaller than
3414			 * the entire root_domain to become SCHED_DEADLINE. We
3415			 * will also fail if there's no bandwidth available.
3416			 */
3417			if (!cpumask_subset(span, &p->cpus_allowed) ||
3418			    rq->rd->dl_bw.bw == 0) {
3419				task_rq_unlock(rq, p, &flags);
3420				return -EPERM;
3421			}
3422		}
3423#endif
3424	}
3425
3426	/* recheck policy now with rq lock held */
3427	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3428		policy = oldpolicy = -1;
3429		task_rq_unlock(rq, p, &flags);
3430		goto recheck;
3431	}
3432
3433	/*
3434	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3435	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3436	 * is available.
3437	 */
3438	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3439		task_rq_unlock(rq, p, &flags);
3440		return -EBUSY;
3441	}
3442
3443	p->sched_reset_on_fork = reset_on_fork;
3444	oldprio = p->prio;
3445
3446	/*
3447	 * Special case for priority boosted tasks.
3448	 *
3449	 * If the new priority is lower or equal (user space view)
3450	 * than the current (boosted) priority, we just store the new
3451	 * normal parameters and do not touch the scheduler class and
3452	 * the runqueue. This will be done when the task deboost
3453	 * itself.
3454	 */
3455	if (rt_mutex_check_prio(p, newprio)) {
3456		__setscheduler_params(p, attr);
3457		task_rq_unlock(rq, p, &flags);
3458		return 0;
3459	}
3460
3461	on_rq = p->on_rq;
3462	running = task_current(rq, p);
3463	if (on_rq)
3464		dequeue_task(rq, p, 0);
3465	if (running)
3466		p->sched_class->put_prev_task(rq, p);
3467
3468	prev_class = p->sched_class;
3469	__setscheduler(rq, p, attr);
3470
3471	if (running)
3472		p->sched_class->set_curr_task(rq);
3473	if (on_rq) {
3474		/*
3475		 * We enqueue to tail when the priority of a task is
3476		 * increased (user space view).
3477		 */
3478		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3479	}
3480
3481	check_class_changed(rq, p, prev_class, oldprio);
3482	task_rq_unlock(rq, p, &flags);
3483
3484	rt_mutex_adjust_pi(p);
3485
3486	return 0;
3487}
3488
3489static int _sched_setscheduler(struct task_struct *p, int policy,
3490			       const struct sched_param *param, bool check)
3491{
3492	struct sched_attr attr = {
3493		.sched_policy   = policy,
3494		.sched_priority = param->sched_priority,
3495		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3496	};
3497
3498	/*
3499	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3500	 */
3501	if (policy & SCHED_RESET_ON_FORK) {
3502		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3503		policy &= ~SCHED_RESET_ON_FORK;
3504		attr.sched_policy = policy;
3505	}
3506
3507	return __sched_setscheduler(p, &attr, check);
3508}
3509/**
3510 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3511 * @p: the task in question.
3512 * @policy: new policy.
3513 * @param: structure containing the new RT priority.
3514 *
3515 * Return: 0 on success. An error code otherwise.
3516 *
3517 * NOTE that the task may be already dead.
3518 */
3519int sched_setscheduler(struct task_struct *p, int policy,
3520		       const struct sched_param *param)
3521{
3522	return _sched_setscheduler(p, policy, param, true);
3523}
3524EXPORT_SYMBOL_GPL(sched_setscheduler);
3525
3526int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3527{
3528	return __sched_setscheduler(p, attr, true);
3529}
3530EXPORT_SYMBOL_GPL(sched_setattr);
3531
3532/**
3533 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3534 * @p: the task in question.
3535 * @policy: new policy.
3536 * @param: structure containing the new RT priority.
3537 *
3538 * Just like sched_setscheduler, only don't bother checking if the
3539 * current context has permission.  For example, this is needed in
3540 * stop_machine(): we create temporary high priority worker threads,
3541 * but our caller might not have that capability.
3542 *
3543 * Return: 0 on success. An error code otherwise.
3544 */
3545int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3546			       const struct sched_param *param)
3547{
3548	return _sched_setscheduler(p, policy, param, false);
3549}
3550
3551static int
3552do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3553{
3554	struct sched_param lparam;
3555	struct task_struct *p;
3556	int retval;
3557
3558	if (!param || pid < 0)
3559		return -EINVAL;
3560	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3561		return -EFAULT;
3562
3563	rcu_read_lock();
3564	retval = -ESRCH;
3565	p = find_process_by_pid(pid);
3566	if (p != NULL)
3567		retval = sched_setscheduler(p, policy, &lparam);
3568	rcu_read_unlock();
3569
3570	return retval;
3571}
3572
3573/*
3574 * Mimics kernel/events/core.c perf_copy_attr().
3575 */
3576static int sched_copy_attr(struct sched_attr __user *uattr,
3577			   struct sched_attr *attr)
3578{
3579	u32 size;
3580	int ret;
3581
3582	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3583		return -EFAULT;
3584
3585	/*
3586	 * zero the full structure, so that a short copy will be nice.
3587	 */
3588	memset(attr, 0, sizeof(*attr));
3589
3590	ret = get_user(size, &uattr->size);
3591	if (ret)
3592		return ret;
3593
3594	if (size > PAGE_SIZE)	/* silly large */
3595		goto err_size;
3596
3597	if (!size)		/* abi compat */
3598		size = SCHED_ATTR_SIZE_VER0;
3599
3600	if (size < SCHED_ATTR_SIZE_VER0)
3601		goto err_size;
3602
3603	/*
3604	 * If we're handed a bigger struct than we know of,
3605	 * ensure all the unknown bits are 0 - i.e. new
3606	 * user-space does not rely on any kernel feature
3607	 * extensions we dont know about yet.
3608	 */
3609	if (size > sizeof(*attr)) {
3610		unsigned char __user *addr;
3611		unsigned char __user *end;
3612		unsigned char val;
3613
3614		addr = (void __user *)uattr + sizeof(*attr);
3615		end  = (void __user *)uattr + size;
3616
3617		for (; addr < end; addr++) {
3618			ret = get_user(val, addr);
3619			if (ret)
3620				return ret;
3621			if (val)
3622				goto err_size;
3623		}
3624		size = sizeof(*attr);
3625	}
3626
3627	ret = copy_from_user(attr, uattr, size);
3628	if (ret)
3629		return -EFAULT;
3630
3631	/*
3632	 * XXX: do we want to be lenient like existing syscalls; or do we want
3633	 * to be strict and return an error on out-of-bounds values?
3634	 */
3635	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3636
3637out:
3638	return ret;
3639
3640err_size:
3641	put_user(sizeof(*attr), &uattr->size);
3642	ret = -E2BIG;
3643	goto out;
3644}
3645
3646/**
3647 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3648 * @pid: the pid in question.
3649 * @policy: new policy.
3650 * @param: structure containing the new RT priority.
3651 *
3652 * Return: 0 on success. An error code otherwise.
3653 */
3654SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3655		struct sched_param __user *, param)
3656{
3657	/* negative values for policy are not valid */
3658	if (policy < 0)
3659		return -EINVAL;
3660
3661	return do_sched_setscheduler(pid, policy, param);
3662}
3663
3664/**
3665 * sys_sched_setparam - set/change the RT priority of a thread
3666 * @pid: the pid in question.
3667 * @param: structure containing the new RT priority.
3668 *
3669 * Return: 0 on success. An error code otherwise.
3670 */
3671SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3672{
3673	return do_sched_setscheduler(pid, -1, param);
3674}
3675
3676/**
3677 * sys_sched_setattr - same as above, but with extended sched_attr
3678 * @pid: the pid in question.
3679 * @uattr: structure containing the extended parameters.
3680 * @flags: for future extension.
3681 */
3682SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3683			       unsigned int, flags)
3684{
3685	struct sched_attr attr;
3686	struct task_struct *p;
3687	int retval;
3688
3689	if (!uattr || pid < 0 || flags)
3690		return -EINVAL;
3691
3692	if (sched_copy_attr(uattr, &attr))
3693		return -EFAULT;
3694
3695	rcu_read_lock();
3696	retval = -ESRCH;
3697	p = find_process_by_pid(pid);
3698	if (p != NULL)
3699		retval = sched_setattr(p, &attr);
3700	rcu_read_unlock();
3701
3702	return retval;
3703}
3704
3705/**
3706 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3707 * @pid: the pid in question.
3708 *
3709 * Return: On success, the policy of the thread. Otherwise, a negative error
3710 * code.
3711 */
3712SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3713{
3714	struct task_struct *p;
3715	int retval;
3716
3717	if (pid < 0)
3718		return -EINVAL;
3719
3720	retval = -ESRCH;
3721	rcu_read_lock();
3722	p = find_process_by_pid(pid);
3723	if (p) {
3724		retval = security_task_getscheduler(p);
3725		if (!retval)
3726			retval = p->policy
3727				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3728	}
3729	rcu_read_unlock();
3730	return retval;
3731}
3732
3733/**
3734 * sys_sched_getparam - get the RT priority of a thread
3735 * @pid: the pid in question.
3736 * @param: structure containing the RT priority.
3737 *
3738 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3739 * code.
3740 */
3741SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3742{
3743	struct sched_param lp;
3744	struct task_struct *p;
3745	int retval;
3746
3747	if (!param || pid < 0)
3748		return -EINVAL;
3749
3750	rcu_read_lock();
3751	p = find_process_by_pid(pid);
3752	retval = -ESRCH;
3753	if (!p)
3754		goto out_unlock;
3755
3756	retval = security_task_getscheduler(p);
3757	if (retval)
3758		goto out_unlock;
3759
3760	if (task_has_dl_policy(p)) {
3761		retval = -EINVAL;
3762		goto out_unlock;
3763	}
3764	lp.sched_priority = p->rt_priority;
3765	rcu_read_unlock();
3766
3767	/*
3768	 * This one might sleep, we cannot do it with a spinlock held ...
3769	 */
3770	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3771
3772	return retval;
3773
3774out_unlock:
3775	rcu_read_unlock();
3776	return retval;
3777}
3778
3779static int sched_read_attr(struct sched_attr __user *uattr,
3780			   struct sched_attr *attr,
3781			   unsigned int usize)
3782{
3783	int ret;
3784
3785	if (!access_ok(VERIFY_WRITE, uattr, usize))
3786		return -EFAULT;
3787
3788	/*
3789	 * If we're handed a smaller struct than we know of,
3790	 * ensure all the unknown bits are 0 - i.e. old
3791	 * user-space does not get uncomplete information.
3792	 */
3793	if (usize < sizeof(*attr)) {
3794		unsigned char *addr;
3795		unsigned char *end;
3796
3797		addr = (void *)attr + usize;
3798		end  = (void *)attr + sizeof(*attr);
3799
3800		for (; addr < end; addr++) {
3801			if (*addr)
3802				goto err_size;
3803		}
3804
3805		attr->size = usize;
3806	}
3807
3808	ret = copy_to_user(uattr, attr, attr->size);
3809	if (ret)
3810		return -EFAULT;
3811
3812out:
3813	return ret;
3814
3815err_size:
3816	ret = -E2BIG;
3817	goto out;
3818}
3819
3820/**
3821 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3822 * @pid: the pid in question.
3823 * @uattr: structure containing the extended parameters.
3824 * @size: sizeof(attr) for fwd/bwd comp.
3825 * @flags: for future extension.
3826 */
3827SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3828		unsigned int, size, unsigned int, flags)
3829{
3830	struct sched_attr attr = {
3831		.size = sizeof(struct sched_attr),
3832	};
3833	struct task_struct *p;
3834	int retval;
3835
3836	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3837	    size < SCHED_ATTR_SIZE_VER0 || flags)
3838		return -EINVAL;
3839
3840	rcu_read_lock();
3841	p = find_process_by_pid(pid);
3842	retval = -ESRCH;
3843	if (!p)
3844		goto out_unlock;
3845
3846	retval = security_task_getscheduler(p);
3847	if (retval)
3848		goto out_unlock;
3849
3850	attr.sched_policy = p->policy;
3851	if (p->sched_reset_on_fork)
3852		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3853	if (task_has_dl_policy(p))
3854		__getparam_dl(p, &attr);
3855	else if (task_has_rt_policy(p))
3856		attr.sched_priority = p->rt_priority;
3857	else
3858		attr.sched_nice = task_nice(p);
3859
3860	rcu_read_unlock();
3861
3862	retval = sched_read_attr(uattr, &attr, size);
3863	return retval;
3864
3865out_unlock:
3866	rcu_read_unlock();
3867	return retval;
3868}
3869
3870long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3871{
3872	cpumask_var_t cpus_allowed, new_mask;
3873	struct task_struct *p;
3874	int retval;
3875
3876	rcu_read_lock();
3877
3878	p = find_process_by_pid(pid);
3879	if (!p) {
3880		rcu_read_unlock();
3881		return -ESRCH;
3882	}
3883
3884	/* Prevent p going away */
3885	get_task_struct(p);
3886	rcu_read_unlock();
3887
3888	if (p->flags & PF_NO_SETAFFINITY) {
3889		retval = -EINVAL;
3890		goto out_put_task;
3891	}
3892	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3893		retval = -ENOMEM;
3894		goto out_put_task;
3895	}
3896	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3897		retval = -ENOMEM;
3898		goto out_free_cpus_allowed;
3899	}
3900	retval = -EPERM;
3901	if (!check_same_owner(p)) {
3902		rcu_read_lock();
3903		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3904			rcu_read_unlock();
3905			goto out_unlock;
3906		}
3907		rcu_read_unlock();
3908	}
3909
3910	retval = security_task_setscheduler(p);
3911	if (retval)
3912		goto out_unlock;
3913
3914
3915	cpuset_cpus_allowed(p, cpus_allowed);
3916	cpumask_and(new_mask, in_mask, cpus_allowed);
3917
3918	/*
3919	 * Since bandwidth control happens on root_domain basis,
3920	 * if admission test is enabled, we only admit -deadline
3921	 * tasks allowed to run on all the CPUs in the task's
3922	 * root_domain.
3923	 */
3924#ifdef CONFIG_SMP
3925	if (task_has_dl_policy(p)) {
3926		const struct cpumask *span = task_rq(p)->rd->span;
3927
3928		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3929			retval = -EBUSY;
3930			goto out_unlock;
3931		}
3932	}
3933#endif
3934again:
3935	retval = set_cpus_allowed_ptr(p, new_mask);
3936
3937	if (!retval) {
3938		cpuset_cpus_allowed(p, cpus_allowed);
3939		if (!cpumask_subset(new_mask, cpus_allowed)) {
3940			/*
3941			 * We must have raced with a concurrent cpuset
3942			 * update. Just reset the cpus_allowed to the
3943			 * cpuset's cpus_allowed
3944			 */
3945			cpumask_copy(new_mask, cpus_allowed);
3946			goto again;
3947		}
3948	}
3949out_unlock:
3950	free_cpumask_var(new_mask);
3951out_free_cpus_allowed:
3952	free_cpumask_var(cpus_allowed);
3953out_put_task:
3954	put_task_struct(p);
3955	return retval;
3956}
3957
3958static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3959			     struct cpumask *new_mask)
3960{
3961	if (len < cpumask_size())
3962		cpumask_clear(new_mask);
3963	else if (len > cpumask_size())
3964		len = cpumask_size();
3965
3966	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3967}
3968
3969/**
3970 * sys_sched_setaffinity - set the cpu affinity of a process
3971 * @pid: pid of the process
3972 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3973 * @user_mask_ptr: user-space pointer to the new cpu mask
3974 *
3975 * Return: 0 on success. An error code otherwise.
3976 */
3977SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3978		unsigned long __user *, user_mask_ptr)
3979{
3980	cpumask_var_t new_mask;
3981	int retval;
3982
3983	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3984		return -ENOMEM;
3985
3986	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3987	if (retval == 0)
3988		retval = sched_setaffinity(pid, new_mask);
3989	free_cpumask_var(new_mask);
3990	return retval;
3991}
3992
3993long sched_getaffinity(pid_t pid, struct cpumask *mask)
3994{
3995	struct task_struct *p;
3996	unsigned long flags;
3997	int retval;
3998
3999	rcu_read_lock();
4000
4001	retval = -ESRCH;
4002	p = find_process_by_pid(pid);
4003	if (!p)
4004		goto out_unlock;
4005
4006	retval = security_task_getscheduler(p);
4007	if (retval)
4008		goto out_unlock;
4009
4010	raw_spin_lock_irqsave(&p->pi_lock, flags);
4011	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4012	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4013
4014out_unlock:
4015	rcu_read_unlock();
4016
4017	return retval;
4018}
4019
4020/**
4021 * sys_sched_getaffinity - get the cpu affinity of a process
4022 * @pid: pid of the process
4023 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4024 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4025 *
4026 * Return: 0 on success. An error code otherwise.
4027 */
4028SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4029		unsigned long __user *, user_mask_ptr)
4030{
4031	int ret;
4032	cpumask_var_t mask;
4033
4034	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4035		return -EINVAL;
4036	if (len & (sizeof(unsigned long)-1))
4037		return -EINVAL;
4038
4039	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4040		return -ENOMEM;
4041
4042	ret = sched_getaffinity(pid, mask);
4043	if (ret == 0) {
4044		size_t retlen = min_t(size_t, len, cpumask_size());
4045
4046		if (copy_to_user(user_mask_ptr, mask, retlen))
4047			ret = -EFAULT;
4048		else
4049			ret = retlen;
4050	}
4051	free_cpumask_var(mask);
4052
4053	return ret;
4054}
4055
4056/**
4057 * sys_sched_yield - yield the current processor to other threads.
4058 *
4059 * This function yields the current CPU to other tasks. If there are no
4060 * other threads running on this CPU then this function will return.
4061 *
4062 * Return: 0.
4063 */
4064SYSCALL_DEFINE0(sched_yield)
4065{
4066	struct rq *rq = this_rq_lock();
4067
4068	schedstat_inc(rq, yld_count);
4069	current->sched_class->yield_task(rq);
4070
4071	/*
4072	 * Since we are going to call schedule() anyway, there's
4073	 * no need to preempt or enable interrupts:
4074	 */
4075	__release(rq->lock);
4076	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4077	do_raw_spin_unlock(&rq->lock);
4078	sched_preempt_enable_no_resched();
4079
4080	schedule();
4081
4082	return 0;
4083}
4084
4085static void __cond_resched(void)
4086{
4087	__preempt_count_add(PREEMPT_ACTIVE);
4088	__schedule();
4089	__preempt_count_sub(PREEMPT_ACTIVE);
4090}
4091
4092int __sched _cond_resched(void)
4093{
4094	if (should_resched()) {
4095		__cond_resched();
4096		return 1;
4097	}
4098	return 0;
4099}
4100EXPORT_SYMBOL(_cond_resched);
4101
4102/*
4103 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4104 * call schedule, and on return reacquire the lock.
4105 *
4106 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4107 * operations here to prevent schedule() from being called twice (once via
4108 * spin_unlock(), once by hand).
4109 */
4110int __cond_resched_lock(spinlock_t *lock)
4111{
4112	int resched = should_resched();
4113	int ret = 0;
4114
4115	lockdep_assert_held(lock);
4116
4117	if (spin_needbreak(lock) || resched) {
4118		spin_unlock(lock);
4119		if (resched)
4120			__cond_resched();
4121		else
4122			cpu_relax();
4123		ret = 1;
4124		spin_lock(lock);
4125	}
4126	return ret;
4127}
4128EXPORT_SYMBOL(__cond_resched_lock);
4129
4130int __sched __cond_resched_softirq(void)
4131{
4132	BUG_ON(!in_softirq());
4133
4134	if (should_resched()) {
4135		local_bh_enable();
4136		__cond_resched();
4137		local_bh_disable();
4138		return 1;
4139	}
4140	return 0;
4141}
4142EXPORT_SYMBOL(__cond_resched_softirq);
4143
4144/**
4145 * yield - yield the current processor to other threads.
4146 *
4147 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4148 *
4149 * The scheduler is at all times free to pick the calling task as the most
4150 * eligible task to run, if removing the yield() call from your code breaks
4151 * it, its already broken.
4152 *
4153 * Typical broken usage is:
4154 *
4155 * while (!event)
4156 * 	yield();
4157 *
4158 * where one assumes that yield() will let 'the other' process run that will
4159 * make event true. If the current task is a SCHED_FIFO task that will never
4160 * happen. Never use yield() as a progress guarantee!!
4161 *
4162 * If you want to use yield() to wait for something, use wait_event().
4163 * If you want to use yield() to be 'nice' for others, use cond_resched().
4164 * If you still want to use yield(), do not!
4165 */
4166void __sched yield(void)
4167{
4168	set_current_state(TASK_RUNNING);
4169	sys_sched_yield();
4170}
4171EXPORT_SYMBOL(yield);
4172
4173/**
4174 * yield_to - yield the current processor to another thread in
4175 * your thread group, or accelerate that thread toward the
4176 * processor it's on.
4177 * @p: target task
4178 * @preempt: whether task preemption is allowed or not
4179 *
4180 * It's the caller's job to ensure that the target task struct
4181 * can't go away on us before we can do any checks.
4182 *
4183 * Return:
4184 *	true (>0) if we indeed boosted the target task.
4185 *	false (0) if we failed to boost the target.
4186 *	-ESRCH if there's no task to yield to.
4187 */
4188bool __sched yield_to(struct task_struct *p, bool preempt)
4189{
4190	struct task_struct *curr = current;
4191	struct rq *rq, *p_rq;
4192	unsigned long flags;
4193	int yielded = 0;
4194
4195	local_irq_save(flags);
4196	rq = this_rq();
4197
4198again:
4199	p_rq = task_rq(p);
4200	/*
4201	 * If we're the only runnable task on the rq and target rq also
4202	 * has only one task, there's absolutely no point in yielding.
4203	 */
4204	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4205		yielded = -ESRCH;
4206		goto out_irq;
4207	}
4208
4209	double_rq_lock(rq, p_rq);
4210	if (task_rq(p) != p_rq) {
4211		double_rq_unlock(rq, p_rq);
4212		goto again;
4213	}
4214
4215	if (!curr->sched_class->yield_to_task)
4216		goto out_unlock;
4217
4218	if (curr->sched_class != p->sched_class)
4219		goto out_unlock;
4220
4221	if (task_running(p_rq, p) || p->state)
4222		goto out_unlock;
4223
4224	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4225	if (yielded) {
4226		schedstat_inc(rq, yld_count);
4227		/*
4228		 * Make p's CPU reschedule; pick_next_entity takes care of
4229		 * fairness.
4230		 */
4231		if (preempt && rq != p_rq)
4232			resched_task(p_rq->curr);
4233	}
4234
4235out_unlock:
4236	double_rq_unlock(rq, p_rq);
4237out_irq:
4238	local_irq_restore(flags);
4239
4240	if (yielded > 0)
4241		schedule();
4242
4243	return yielded;
4244}
4245EXPORT_SYMBOL_GPL(yield_to);
4246
4247/*
4248 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4249 * that process accounting knows that this is a task in IO wait state.
4250 */
4251void __sched io_schedule(void)
4252{
4253	struct rq *rq = raw_rq();
4254
4255	delayacct_blkio_start();
4256	atomic_inc(&rq->nr_iowait);
4257	blk_flush_plug(current);
4258	current->in_iowait = 1;
4259	schedule();
4260	current->in_iowait = 0;
4261	atomic_dec(&rq->nr_iowait);
4262	delayacct_blkio_end();
4263}
4264EXPORT_SYMBOL(io_schedule);
4265
4266long __sched io_schedule_timeout(long timeout)
4267{
4268	struct rq *rq = raw_rq();
4269	long ret;
4270
4271	delayacct_blkio_start();
4272	atomic_inc(&rq->nr_iowait);
4273	blk_flush_plug(current);
4274	current->in_iowait = 1;
4275	ret = schedule_timeout(timeout);
4276	current->in_iowait = 0;
4277	atomic_dec(&rq->nr_iowait);
4278	delayacct_blkio_end();
4279	return ret;
4280}
4281
4282/**
4283 * sys_sched_get_priority_max - return maximum RT priority.
4284 * @policy: scheduling class.
4285 *
4286 * Return: On success, this syscall returns the maximum
4287 * rt_priority that can be used by a given scheduling class.
4288 * On failure, a negative error code is returned.
4289 */
4290SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4291{
4292	int ret = -EINVAL;
4293
4294	switch (policy) {
4295	case SCHED_FIFO:
4296	case SCHED_RR:
4297		ret = MAX_USER_RT_PRIO-1;
4298		break;
4299	case SCHED_DEADLINE:
4300	case SCHED_NORMAL:
4301	case SCHED_BATCH:
4302	case SCHED_IDLE:
4303		ret = 0;
4304		break;
4305	}
4306	return ret;
4307}
4308
4309/**
4310 * sys_sched_get_priority_min - return minimum RT priority.
4311 * @policy: scheduling class.
4312 *
4313 * Return: On success, this syscall returns the minimum
4314 * rt_priority that can be used by a given scheduling class.
4315 * On failure, a negative error code is returned.
4316 */
4317SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4318{
4319	int ret = -EINVAL;
4320
4321	switch (policy) {
4322	case SCHED_FIFO:
4323	case SCHED_RR:
4324		ret = 1;
4325		break;
4326	case SCHED_DEADLINE:
4327	case SCHED_NORMAL:
4328	case SCHED_BATCH:
4329	case SCHED_IDLE:
4330		ret = 0;
4331	}
4332	return ret;
4333}
4334
4335/**
4336 * sys_sched_rr_get_interval - return the default timeslice of a process.
4337 * @pid: pid of the process.
4338 * @interval: userspace pointer to the timeslice value.
4339 *
4340 * this syscall writes the default timeslice value of a given process
4341 * into the user-space timespec buffer. A value of '0' means infinity.
4342 *
4343 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4344 * an error code.
4345 */
4346SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4347		struct timespec __user *, interval)
4348{
4349	struct task_struct *p;
4350	unsigned int time_slice;
4351	unsigned long flags;
4352	struct rq *rq;
4353	int retval;
4354	struct timespec t;
4355
4356	if (pid < 0)
4357		return -EINVAL;
4358
4359	retval = -ESRCH;
4360	rcu_read_lock();
4361	p = find_process_by_pid(pid);
4362	if (!p)
4363		goto out_unlock;
4364
4365	retval = security_task_getscheduler(p);
4366	if (retval)
4367		goto out_unlock;
4368
4369	rq = task_rq_lock(p, &flags);
4370	time_slice = 0;
4371	if (p->sched_class->get_rr_interval)
4372		time_slice = p->sched_class->get_rr_interval(rq, p);
4373	task_rq_unlock(rq, p, &flags);
4374
4375	rcu_read_unlock();
4376	jiffies_to_timespec(time_slice, &t);
4377	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4378	return retval;
4379
4380out_unlock:
4381	rcu_read_unlock();
4382	return retval;
4383}
4384
4385static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4386
4387void sched_show_task(struct task_struct *p)
4388{
4389	unsigned long free = 0;
4390	int ppid;
4391	unsigned state;
4392
4393	state = p->state ? __ffs(p->state) + 1 : 0;
4394	printk(KERN_INFO "%-15.15s %c", p->comm,
4395		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4396#if BITS_PER_LONG == 32
4397	if (state == TASK_RUNNING)
4398		printk(KERN_CONT " running  ");
4399	else
4400		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4401#else
4402	if (state == TASK_RUNNING)
4403		printk(KERN_CONT "  running task    ");
4404	else
4405		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4406#endif
4407#ifdef CONFIG_DEBUG_STACK_USAGE
4408	free = stack_not_used(p);
4409#endif
4410	rcu_read_lock();
4411	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4412	rcu_read_unlock();
4413	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4414		task_pid_nr(p), ppid,
4415		(unsigned long)task_thread_info(p)->flags);
4416
4417	print_worker_info(KERN_INFO, p);
4418	show_stack(p, NULL);
4419}
4420
4421void show_state_filter(unsigned long state_filter)
4422{
4423	struct task_struct *g, *p;
4424
4425#if BITS_PER_LONG == 32
4426	printk(KERN_INFO
4427		"  task                PC stack   pid father\n");
4428#else
4429	printk(KERN_INFO
4430		"  task                        PC stack   pid father\n");
4431#endif
4432	rcu_read_lock();
4433	do_each_thread(g, p) {
4434		/*
4435		 * reset the NMI-timeout, listing all files on a slow
4436		 * console might take a lot of time:
4437		 */
4438		touch_nmi_watchdog();
4439		if (!state_filter || (p->state & state_filter))
4440			sched_show_task(p);
4441	} while_each_thread(g, p);
4442
4443	touch_all_softlockup_watchdogs();
4444
4445#ifdef CONFIG_SCHED_DEBUG
4446	sysrq_sched_debug_show();
4447#endif
4448	rcu_read_unlock();
4449	/*
4450	 * Only show locks if all tasks are dumped:
4451	 */
4452	if (!state_filter)
4453		debug_show_all_locks();
4454}
4455
4456void init_idle_bootup_task(struct task_struct *idle)
4457{
4458	idle->sched_class = &idle_sched_class;
4459}
4460
4461/**
4462 * init_idle - set up an idle thread for a given CPU
4463 * @idle: task in question
4464 * @cpu: cpu the idle task belongs to
4465 *
4466 * NOTE: this function does not set the idle thread's NEED_RESCHED
4467 * flag, to make booting more robust.
4468 */
4469void init_idle(struct task_struct *idle, int cpu)
4470{
4471	struct rq *rq = cpu_rq(cpu);
4472	unsigned long flags;
4473
4474	raw_spin_lock_irqsave(&rq->lock, flags);
4475
4476	__sched_fork(0, idle);
4477	idle->state = TASK_RUNNING;
4478	idle->se.exec_start = sched_clock();
4479
4480	do_set_cpus_allowed(idle, cpumask_of(cpu));
4481	/*
4482	 * We're having a chicken and egg problem, even though we are
4483	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4484	 * lockdep check in task_group() will fail.
4485	 *
4486	 * Similar case to sched_fork(). / Alternatively we could
4487	 * use task_rq_lock() here and obtain the other rq->lock.
4488	 *
4489	 * Silence PROVE_RCU
4490	 */
4491	rcu_read_lock();
4492	__set_task_cpu(idle, cpu);
4493	rcu_read_unlock();
4494
4495	rq->curr = rq->idle = idle;
4496	idle->on_rq = 1;
4497#if defined(CONFIG_SMP)
4498	idle->on_cpu = 1;
4499#endif
4500	raw_spin_unlock_irqrestore(&rq->lock, flags);
4501
4502	/* Set the preempt count _outside_ the spinlocks! */
4503	init_idle_preempt_count(idle, cpu);
4504
4505	/*
4506	 * The idle tasks have their own, simple scheduling class:
4507	 */
4508	idle->sched_class = &idle_sched_class;
4509	ftrace_graph_init_idle_task(idle, cpu);
4510	vtime_init_idle(idle, cpu);
4511#if defined(CONFIG_SMP)
4512	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4513#endif
4514}
4515
4516#ifdef CONFIG_SMP
4517void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4518{
4519	if (p->sched_class && p->sched_class->set_cpus_allowed)
4520		p->sched_class->set_cpus_allowed(p, new_mask);
4521
4522	cpumask_copy(&p->cpus_allowed, new_mask);
4523	p->nr_cpus_allowed = cpumask_weight(new_mask);
4524}
4525
4526/*
4527 * This is how migration works:
4528 *
4529 * 1) we invoke migration_cpu_stop() on the target CPU using
4530 *    stop_one_cpu().
4531 * 2) stopper starts to run (implicitly forcing the migrated thread
4532 *    off the CPU)
4533 * 3) it checks whether the migrated task is still in the wrong runqueue.
4534 * 4) if it's in the wrong runqueue then the migration thread removes
4535 *    it and puts it into the right queue.
4536 * 5) stopper completes and stop_one_cpu() returns and the migration
4537 *    is done.
4538 */
4539
4540/*
4541 * Change a given task's CPU affinity. Migrate the thread to a
4542 * proper CPU and schedule it away if the CPU it's executing on
4543 * is removed from the allowed bitmask.
4544 *
4545 * NOTE: the caller must have a valid reference to the task, the
4546 * task must not exit() & deallocate itself prematurely. The
4547 * call is not atomic; no spinlocks may be held.
4548 */
4549int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4550{
4551	unsigned long flags;
4552	struct rq *rq;
4553	unsigned int dest_cpu;
4554	int ret = 0;
4555
4556	rq = task_rq_lock(p, &flags);
4557
4558	if (cpumask_equal(&p->cpus_allowed, new_mask))
4559		goto out;
4560
4561	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4562		ret = -EINVAL;
4563		goto out;
4564	}
4565
4566	do_set_cpus_allowed(p, new_mask);
4567
4568	/* Can the task run on the task's current CPU? If so, we're done */
4569	if (cpumask_test_cpu(task_cpu(p), new_mask))
4570		goto out;
4571
4572	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4573	if (p->on_rq) {
4574		struct migration_arg arg = { p, dest_cpu };
4575		/* Need help from migration thread: drop lock and wait. */
4576		task_rq_unlock(rq, p, &flags);
4577		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4578		tlb_migrate_finish(p->mm);
4579		return 0;
4580	}
4581out:
4582	task_rq_unlock(rq, p, &flags);
4583
4584	return ret;
4585}
4586EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4587
4588/*
4589 * Move (not current) task off this cpu, onto dest cpu. We're doing
4590 * this because either it can't run here any more (set_cpus_allowed()
4591 * away from this CPU, or CPU going down), or because we're
4592 * attempting to rebalance this task on exec (sched_exec).
4593 *
4594 * So we race with normal scheduler movements, but that's OK, as long
4595 * as the task is no longer on this CPU.
4596 *
4597 * Returns non-zero if task was successfully migrated.
4598 */
4599static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4600{
4601	struct rq *rq_dest, *rq_src;
4602	int ret = 0;
4603
4604	if (unlikely(!cpu_active(dest_cpu)))
4605		return ret;
4606
4607	rq_src = cpu_rq(src_cpu);
4608	rq_dest = cpu_rq(dest_cpu);
4609
4610	raw_spin_lock(&p->pi_lock);
4611	double_rq_lock(rq_src, rq_dest);
4612	/* Already moved. */
4613	if (task_cpu(p) != src_cpu)
4614		goto done;
4615	/* Affinity changed (again). */
4616	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4617		goto fail;
4618
4619	/*
4620	 * If we're not on a rq, the next wake-up will ensure we're
4621	 * placed properly.
4622	 */
4623	if (p->on_rq) {
4624		dequeue_task(rq_src, p, 0);
4625		set_task_cpu(p, dest_cpu);
4626		enqueue_task(rq_dest, p, 0);
4627		check_preempt_curr(rq_dest, p, 0);
4628	}
4629done:
4630	ret = 1;
4631fail:
4632	double_rq_unlock(rq_src, rq_dest);
4633	raw_spin_unlock(&p->pi_lock);
4634	return ret;
4635}
4636
4637#ifdef CONFIG_NUMA_BALANCING
4638/* Migrate current task p to target_cpu */
4639int migrate_task_to(struct task_struct *p, int target_cpu)
4640{
4641	struct migration_arg arg = { p, target_cpu };
4642	int curr_cpu = task_cpu(p);
4643
4644	if (curr_cpu == target_cpu)
4645		return 0;
4646
4647	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4648		return -EINVAL;
4649
4650	/* TODO: This is not properly updating schedstats */
4651
4652	trace_sched_move_numa(p, curr_cpu, target_cpu);
4653	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4654}
4655
4656/*
4657 * Requeue a task on a given node and accurately track the number of NUMA
4658 * tasks on the runqueues
4659 */
4660void sched_setnuma(struct task_struct *p, int nid)
4661{
4662	struct rq *rq;
4663	unsigned long flags;
4664	bool on_rq, running;
4665
4666	rq = task_rq_lock(p, &flags);
4667	on_rq = p->on_rq;
4668	running = task_current(rq, p);
4669
4670	if (on_rq)
4671		dequeue_task(rq, p, 0);
4672	if (running)
4673		p->sched_class->put_prev_task(rq, p);
4674
4675	p->numa_preferred_nid = nid;
4676
4677	if (running)
4678		p->sched_class->set_curr_task(rq);
4679	if (on_rq)
4680		enqueue_task(rq, p, 0);
4681	task_rq_unlock(rq, p, &flags);
4682}
4683#endif
4684
4685/*
4686 * migration_cpu_stop - this will be executed by a highprio stopper thread
4687 * and performs thread migration by bumping thread off CPU then
4688 * 'pushing' onto another runqueue.
4689 */
4690static int migration_cpu_stop(void *data)
4691{
4692	struct migration_arg *arg = data;
4693
4694	/*
4695	 * The original target cpu might have gone down and we might
4696	 * be on another cpu but it doesn't matter.
4697	 */
4698	local_irq_disable();
4699	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4700	local_irq_enable();
4701	return 0;
4702}
4703
4704#ifdef CONFIG_HOTPLUG_CPU
4705
4706/*
4707 * Ensures that the idle task is using init_mm right before its cpu goes
4708 * offline.
4709 */
4710void idle_task_exit(void)
4711{
4712	struct mm_struct *mm = current->active_mm;
4713
4714	BUG_ON(cpu_online(smp_processor_id()));
4715
4716	if (mm != &init_mm) {
4717		switch_mm(mm, &init_mm, current);
4718		finish_arch_post_lock_switch();
4719	}
4720	mmdrop(mm);
4721}
4722
4723/*
4724 * Since this CPU is going 'away' for a while, fold any nr_active delta
4725 * we might have. Assumes we're called after migrate_tasks() so that the
4726 * nr_active count is stable.
4727 *
4728 * Also see the comment "Global load-average calculations".
4729 */
4730static void calc_load_migrate(struct rq *rq)
4731{
4732	long delta = calc_load_fold_active(rq);
4733	if (delta)
4734		atomic_long_add(delta, &calc_load_tasks);
4735}
4736
4737static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4738{
4739}
4740
4741static const struct sched_class fake_sched_class = {
4742	.put_prev_task = put_prev_task_fake,
4743};
4744
4745static struct task_struct fake_task = {
4746	/*
4747	 * Avoid pull_{rt,dl}_task()
4748	 */
4749	.prio = MAX_PRIO + 1,
4750	.sched_class = &fake_sched_class,
4751};
4752
4753/*
4754 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4755 * try_to_wake_up()->select_task_rq().
4756 *
4757 * Called with rq->lock held even though we'er in stop_machine() and
4758 * there's no concurrency possible, we hold the required locks anyway
4759 * because of lock validation efforts.
4760 */
4761static void migrate_tasks(unsigned int dead_cpu)
4762{
4763	struct rq *rq = cpu_rq(dead_cpu);
4764	struct task_struct *next, *stop = rq->stop;
4765	int dest_cpu;
4766
4767	/*
4768	 * Fudge the rq selection such that the below task selection loop
4769	 * doesn't get stuck on the currently eligible stop task.
4770	 *
4771	 * We're currently inside stop_machine() and the rq is either stuck
4772	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4773	 * either way we should never end up calling schedule() until we're
4774	 * done here.
4775	 */
4776	rq->stop = NULL;
4777
4778	/*
4779	 * put_prev_task() and pick_next_task() sched
4780	 * class method both need to have an up-to-date
4781	 * value of rq->clock[_task]
4782	 */
4783	update_rq_clock(rq);
4784
4785	for ( ; ; ) {
4786		/*
4787		 * There's this thread running, bail when that's the only
4788		 * remaining thread.
4789		 */
4790		if (rq->nr_running == 1)
4791			break;
4792
4793		next = pick_next_task(rq, &fake_task);
4794		BUG_ON(!next);
4795		next->sched_class->put_prev_task(rq, next);
4796
4797		/* Find suitable destination for @next, with force if needed. */
4798		dest_cpu = select_fallback_rq(dead_cpu, next);
4799		raw_spin_unlock(&rq->lock);
4800
4801		__migrate_task(next, dead_cpu, dest_cpu);
4802
4803		raw_spin_lock(&rq->lock);
4804	}
4805
4806	rq->stop = stop;
4807}
4808
4809#endif /* CONFIG_HOTPLUG_CPU */
4810
4811#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4812
4813static struct ctl_table sd_ctl_dir[] = {
4814	{
4815		.procname	= "sched_domain",
4816		.mode		= 0555,
4817	},
4818	{}
4819};
4820
4821static struct ctl_table sd_ctl_root[] = {
4822	{
4823		.procname	= "kernel",
4824		.mode		= 0555,
4825		.child		= sd_ctl_dir,
4826	},
4827	{}
4828};
4829
4830static struct ctl_table *sd_alloc_ctl_entry(int n)
4831{
4832	struct ctl_table *entry =
4833		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4834
4835	return entry;
4836}
4837
4838static void sd_free_ctl_entry(struct ctl_table **tablep)
4839{
4840	struct ctl_table *entry;
4841
4842	/*
4843	 * In the intermediate directories, both the child directory and
4844	 * procname are dynamically allocated and could fail but the mode
4845	 * will always be set. In the lowest directory the names are
4846	 * static strings and all have proc handlers.
4847	 */
4848	for (entry = *tablep; entry->mode; entry++) {
4849		if (entry->child)
4850			sd_free_ctl_entry(&entry->child);
4851		if (entry->proc_handler == NULL)
4852			kfree(entry->procname);
4853	}
4854
4855	kfree(*tablep);
4856	*tablep = NULL;
4857}
4858
4859static int min_load_idx = 0;
4860static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4861
4862static void
4863set_table_entry(struct ctl_table *entry,
4864		const char *procname, void *data, int maxlen,
4865		umode_t mode, proc_handler *proc_handler,
4866		bool load_idx)
4867{
4868	entry->procname = procname;
4869	entry->data = data;
4870	entry->maxlen = maxlen;
4871	entry->mode = mode;
4872	entry->proc_handler = proc_handler;
4873
4874	if (load_idx) {
4875		entry->extra1 = &min_load_idx;
4876		entry->extra2 = &max_load_idx;
4877	}
4878}
4879
4880static struct ctl_table *
4881sd_alloc_ctl_domain_table(struct sched_domain *sd)
4882{
4883	struct ctl_table *table = sd_alloc_ctl_entry(14);
4884
4885	if (table == NULL)
4886		return NULL;
4887
4888	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4889		sizeof(long), 0644, proc_doulongvec_minmax, false);
4890	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4891		sizeof(long), 0644, proc_doulongvec_minmax, false);
4892	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4893		sizeof(int), 0644, proc_dointvec_minmax, true);
4894	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4895		sizeof(int), 0644, proc_dointvec_minmax, true);
4896	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4897		sizeof(int), 0644, proc_dointvec_minmax, true);
4898	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4899		sizeof(int), 0644, proc_dointvec_minmax, true);
4900	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4901		sizeof(int), 0644, proc_dointvec_minmax, true);
4902	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4903		sizeof(int), 0644, proc_dointvec_minmax, false);
4904	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4905		sizeof(int), 0644, proc_dointvec_minmax, false);
4906	set_table_entry(&table[9], "cache_nice_tries",
4907		&sd->cache_nice_tries,
4908		sizeof(int), 0644, proc_dointvec_minmax, false);
4909	set_table_entry(&table[10], "flags", &sd->flags,
4910		sizeof(int), 0644, proc_dointvec_minmax, false);
4911	set_table_entry(&table[11], "max_newidle_lb_cost",
4912		&sd->max_newidle_lb_cost,
4913		sizeof(long), 0644, proc_doulongvec_minmax, false);
4914	set_table_entry(&table[12], "name", sd->name,
4915		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4916	/* &table[13] is terminator */
4917
4918	return table;
4919}
4920
4921static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4922{
4923	struct ctl_table *entry, *table;
4924	struct sched_domain *sd;
4925	int domain_num = 0, i;
4926	char buf[32];
4927
4928	for_each_domain(cpu, sd)
4929		domain_num++;
4930	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4931	if (table == NULL)
4932		return NULL;
4933
4934	i = 0;
4935	for_each_domain(cpu, sd) {
4936		snprintf(buf, 32, "domain%d", i);
4937		entry->procname = kstrdup(buf, GFP_KERNEL);
4938		entry->mode = 0555;
4939		entry->child = sd_alloc_ctl_domain_table(sd);
4940		entry++;
4941		i++;
4942	}
4943	return table;
4944}
4945
4946static struct ctl_table_header *sd_sysctl_header;
4947static void register_sched_domain_sysctl(void)
4948{
4949	int i, cpu_num = num_possible_cpus();
4950	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4951	char buf[32];
4952
4953	WARN_ON(sd_ctl_dir[0].child);
4954	sd_ctl_dir[0].child = entry;
4955
4956	if (entry == NULL)
4957		return;
4958
4959	for_each_possible_cpu(i) {
4960		snprintf(buf, 32, "cpu%d", i);
4961		entry->procname = kstrdup(buf, GFP_KERNEL);
4962		entry->mode = 0555;
4963		entry->child = sd_alloc_ctl_cpu_table(i);
4964		entry++;
4965	}
4966
4967	WARN_ON(sd_sysctl_header);
4968	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4969}
4970
4971/* may be called multiple times per register */
4972static void unregister_sched_domain_sysctl(void)
4973{
4974	if (sd_sysctl_header)
4975		unregister_sysctl_table(sd_sysctl_header);
4976	sd_sysctl_header = NULL;
4977	if (sd_ctl_dir[0].child)
4978		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4979}
4980#else
4981static void register_sched_domain_sysctl(void)
4982{
4983}
4984static void unregister_sched_domain_sysctl(void)
4985{
4986}
4987#endif
4988
4989static void set_rq_online(struct rq *rq)
4990{
4991	if (!rq->online) {
4992		const struct sched_class *class;
4993
4994		cpumask_set_cpu(rq->cpu, rq->rd->online);
4995		rq->online = 1;
4996
4997		for_each_class(class) {
4998			if (class->rq_online)
4999				class->rq_online(rq);
5000		}
5001	}
5002}
5003
5004static void set_rq_offline(struct rq *rq)
5005{
5006	if (rq->online) {
5007		const struct sched_class *class;
5008
5009		for_each_class(class) {
5010			if (class->rq_offline)
5011				class->rq_offline(rq);
5012		}
5013
5014		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5015		rq->online = 0;
5016	}
5017}
5018
5019/*
5020 * migration_call - callback that gets triggered when a CPU is added.
5021 * Here we can start up the necessary migration thread for the new CPU.
5022 */
5023static int
5024migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5025{
5026	int cpu = (long)hcpu;
5027	unsigned long flags;
5028	struct rq *rq = cpu_rq(cpu);
5029
5030	switch (action & ~CPU_TASKS_FROZEN) {
5031
5032	case CPU_UP_PREPARE:
5033		rq->calc_load_update = calc_load_update;
5034		break;
5035
5036	case CPU_ONLINE:
5037		/* Update our root-domain */
5038		raw_spin_lock_irqsave(&rq->lock, flags);
5039		if (rq->rd) {
5040			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5041
5042			set_rq_online(rq);
5043		}
5044		raw_spin_unlock_irqrestore(&rq->lock, flags);
5045		break;
5046
5047#ifdef CONFIG_HOTPLUG_CPU
5048	case CPU_DYING:
5049		sched_ttwu_pending();
5050		/* Update our root-domain */
5051		raw_spin_lock_irqsave(&rq->lock, flags);
5052		if (rq->rd) {
5053			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5054			set_rq_offline(rq);
5055		}
5056		migrate_tasks(cpu);
5057		BUG_ON(rq->nr_running != 1); /* the migration thread */
5058		raw_spin_unlock_irqrestore(&rq->lock, flags);
5059		break;
5060
5061	case CPU_DEAD:
5062		calc_load_migrate(rq);
5063		break;
5064#endif
5065	}
5066
5067	update_max_interval();
5068
5069	return NOTIFY_OK;
5070}
5071
5072/*
5073 * Register at high priority so that task migration (migrate_all_tasks)
5074 * happens before everything else.  This has to be lower priority than
5075 * the notifier in the perf_event subsystem, though.
5076 */
5077static struct notifier_block migration_notifier = {
5078	.notifier_call = migration_call,
5079	.priority = CPU_PRI_MIGRATION,
5080};
5081
5082static int sched_cpu_active(struct notifier_block *nfb,
5083				      unsigned long action, void *hcpu)
5084{
5085	switch (action & ~CPU_TASKS_FROZEN) {
5086	case CPU_STARTING:
5087	case CPU_DOWN_FAILED:
5088		set_cpu_active((long)hcpu, true);
5089		return NOTIFY_OK;
5090	default:
5091		return NOTIFY_DONE;
5092	}
5093}
5094
5095static int sched_cpu_inactive(struct notifier_block *nfb,
5096					unsigned long action, void *hcpu)
5097{
5098	unsigned long flags;
5099	long cpu = (long)hcpu;
5100
5101	switch (action & ~CPU_TASKS_FROZEN) {
5102	case CPU_DOWN_PREPARE:
5103		set_cpu_active(cpu, false);
5104
5105		/* explicitly allow suspend */
5106		if (!(action & CPU_TASKS_FROZEN)) {
5107			struct dl_bw *dl_b = dl_bw_of(cpu);
5108			bool overflow;
5109			int cpus;
5110
5111			raw_spin_lock_irqsave(&dl_b->lock, flags);
5112			cpus = dl_bw_cpus(cpu);
5113			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5114			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5115
5116			if (overflow)
5117				return notifier_from_errno(-EBUSY);
5118		}
5119		return NOTIFY_OK;
5120	}
5121
5122	return NOTIFY_DONE;
5123}
5124
5125static int __init migration_init(void)
5126{
5127	void *cpu = (void *)(long)smp_processor_id();
5128	int err;
5129
5130	/* Initialize migration for the boot CPU */
5131	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5132	BUG_ON(err == NOTIFY_BAD);
5133	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5134	register_cpu_notifier(&migration_notifier);
5135
5136	/* Register cpu active notifiers */
5137	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5138	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5139
5140	return 0;
5141}
5142early_initcall(migration_init);
5143#endif
5144
5145#ifdef CONFIG_SMP
5146
5147static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5148
5149#ifdef CONFIG_SCHED_DEBUG
5150
5151static __read_mostly int sched_debug_enabled;
5152
5153static int __init sched_debug_setup(char *str)
5154{
5155	sched_debug_enabled = 1;
5156
5157	return 0;
5158}
5159early_param("sched_debug", sched_debug_setup);
5160
5161static inline bool sched_debug(void)
5162{
5163	return sched_debug_enabled;
5164}
5165
5166static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5167				  struct cpumask *groupmask)
5168{
5169	struct sched_group *group = sd->groups;
5170	char str[256];
5171
5172	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5173	cpumask_clear(groupmask);
5174
5175	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5176
5177	if (!(sd->flags & SD_LOAD_BALANCE)) {
5178		printk("does not load-balance\n");
5179		if (sd->parent)
5180			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5181					" has parent");
5182		return -1;
5183	}
5184
5185	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5186
5187	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5188		printk(KERN_ERR "ERROR: domain->span does not contain "
5189				"CPU%d\n", cpu);
5190	}
5191	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5192		printk(KERN_ERR "ERROR: domain->groups does not contain"
5193				" CPU%d\n", cpu);
5194	}
5195
5196	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5197	do {
5198		if (!group) {
5199			printk("\n");
5200			printk(KERN_ERR "ERROR: group is NULL\n");
5201			break;
5202		}
5203
5204		/*
5205		 * Even though we initialize ->power to something semi-sane,
5206		 * we leave power_orig unset. This allows us to detect if
5207		 * domain iteration is still funny without causing /0 traps.
5208		 */
5209		if (!group->sgp->power_orig) {
5210			printk(KERN_CONT "\n");
5211			printk(KERN_ERR "ERROR: domain->cpu_power not "
5212					"set\n");
5213			break;
5214		}
5215
5216		if (!cpumask_weight(sched_group_cpus(group))) {
5217			printk(KERN_CONT "\n");
5218			printk(KERN_ERR "ERROR: empty group\n");
5219			break;
5220		}
5221
5222		if (!(sd->flags & SD_OVERLAP) &&
5223		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5224			printk(KERN_CONT "\n");
5225			printk(KERN_ERR "ERROR: repeated CPUs\n");
5226			break;
5227		}
5228
5229		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5230
5231		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5232
5233		printk(KERN_CONT " %s", str);
5234		if (group->sgp->power != SCHED_POWER_SCALE) {
5235			printk(KERN_CONT " (cpu_power = %d)",
5236				group->sgp->power);
5237		}
5238
5239		group = group->next;
5240	} while (group != sd->groups);
5241	printk(KERN_CONT "\n");
5242
5243	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5244		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5245
5246	if (sd->parent &&
5247	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5248		printk(KERN_ERR "ERROR: parent span is not a superset "
5249			"of domain->span\n");
5250	return 0;
5251}
5252
5253static void sched_domain_debug(struct sched_domain *sd, int cpu)
5254{
5255	int level = 0;
5256
5257	if (!sched_debug_enabled)
5258		return;
5259
5260	if (!sd) {
5261		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5262		return;
5263	}
5264
5265	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5266
5267	for (;;) {
5268		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5269			break;
5270		level++;
5271		sd = sd->parent;
5272		if (!sd)
5273			break;
5274	}
5275}
5276#else /* !CONFIG_SCHED_DEBUG */
5277# define sched_domain_debug(sd, cpu) do { } while (0)
5278static inline bool sched_debug(void)
5279{
5280	return false;
5281}
5282#endif /* CONFIG_SCHED_DEBUG */
5283
5284static int sd_degenerate(struct sched_domain *sd)
5285{
5286	if (cpumask_weight(sched_domain_span(sd)) == 1)
5287		return 1;
5288
5289	/* Following flags need at least 2 groups */
5290	if (sd->flags & (SD_LOAD_BALANCE |
5291			 SD_BALANCE_NEWIDLE |
5292			 SD_BALANCE_FORK |
5293			 SD_BALANCE_EXEC |
5294			 SD_SHARE_CPUPOWER |
5295			 SD_SHARE_PKG_RESOURCES |
5296			 SD_SHARE_POWERDOMAIN)) {
5297		if (sd->groups != sd->groups->next)
5298			return 0;
5299	}
5300
5301	/* Following flags don't use groups */
5302	if (sd->flags & (SD_WAKE_AFFINE))
5303		return 0;
5304
5305	return 1;
5306}
5307
5308static int
5309sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5310{
5311	unsigned long cflags = sd->flags, pflags = parent->flags;
5312
5313	if (sd_degenerate(parent))
5314		return 1;
5315
5316	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5317		return 0;
5318
5319	/* Flags needing groups don't count if only 1 group in parent */
5320	if (parent->groups == parent->groups->next) {
5321		pflags &= ~(SD_LOAD_BALANCE |
5322				SD_BALANCE_NEWIDLE |
5323				SD_BALANCE_FORK |
5324				SD_BALANCE_EXEC |
5325				SD_SHARE_CPUPOWER |
5326				SD_SHARE_PKG_RESOURCES |
5327				SD_PREFER_SIBLING |
5328				SD_SHARE_POWERDOMAIN);
5329		if (nr_node_ids == 1)
5330			pflags &= ~SD_SERIALIZE;
5331	}
5332	if (~cflags & pflags)
5333		return 0;
5334
5335	return 1;
5336}
5337
5338static void free_rootdomain(struct rcu_head *rcu)
5339{
5340	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5341
5342	cpupri_cleanup(&rd->cpupri);
5343	cpudl_cleanup(&rd->cpudl);
5344	free_cpumask_var(rd->dlo_mask);
5345	free_cpumask_var(rd->rto_mask);
5346	free_cpumask_var(rd->online);
5347	free_cpumask_var(rd->span);
5348	kfree(rd);
5349}
5350
5351static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5352{
5353	struct root_domain *old_rd = NULL;
5354	unsigned long flags;
5355
5356	raw_spin_lock_irqsave(&rq->lock, flags);
5357
5358	if (rq->rd) {
5359		old_rd = rq->rd;
5360
5361		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5362			set_rq_offline(rq);
5363
5364		cpumask_clear_cpu(rq->cpu, old_rd->span);
5365
5366		/*
5367		 * If we dont want to free the old_rd yet then
5368		 * set old_rd to NULL to skip the freeing later
5369		 * in this function:
5370		 */
5371		if (!atomic_dec_and_test(&old_rd->refcount))
5372			old_rd = NULL;
5373	}
5374
5375	atomic_inc(&rd->refcount);
5376	rq->rd = rd;
5377
5378	cpumask_set_cpu(rq->cpu, rd->span);
5379	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5380		set_rq_online(rq);
5381
5382	raw_spin_unlock_irqrestore(&rq->lock, flags);
5383
5384	if (old_rd)
5385		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5386}
5387
5388static int init_rootdomain(struct root_domain *rd)
5389{
5390	memset(rd, 0, sizeof(*rd));
5391
5392	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5393		goto out;
5394	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5395		goto free_span;
5396	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5397		goto free_online;
5398	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5399		goto free_dlo_mask;
5400
5401	init_dl_bw(&rd->dl_bw);
5402	if (cpudl_init(&rd->cpudl) != 0)
5403		goto free_dlo_mask;
5404
5405	if (cpupri_init(&rd->cpupri) != 0)
5406		goto free_rto_mask;
5407	return 0;
5408
5409free_rto_mask:
5410	free_cpumask_var(rd->rto_mask);
5411free_dlo_mask:
5412	free_cpumask_var(rd->dlo_mask);
5413free_online:
5414	free_cpumask_var(rd->online);
5415free_span:
5416	free_cpumask_var(rd->span);
5417out:
5418	return -ENOMEM;
5419}
5420
5421/*
5422 * By default the system creates a single root-domain with all cpus as
5423 * members (mimicking the global state we have today).
5424 */
5425struct root_domain def_root_domain;
5426
5427static void init_defrootdomain(void)
5428{
5429	init_rootdomain(&def_root_domain);
5430
5431	atomic_set(&def_root_domain.refcount, 1);
5432}
5433
5434static struct root_domain *alloc_rootdomain(void)
5435{
5436	struct root_domain *rd;
5437
5438	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5439	if (!rd)
5440		return NULL;
5441
5442	if (init_rootdomain(rd) != 0) {
5443		kfree(rd);
5444		return NULL;
5445	}
5446
5447	return rd;
5448}
5449
5450static void free_sched_groups(struct sched_group *sg, int free_sgp)
5451{
5452	struct sched_group *tmp, *first;
5453
5454	if (!sg)
5455		return;
5456
5457	first = sg;
5458	do {
5459		tmp = sg->next;
5460
5461		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5462			kfree(sg->sgp);
5463
5464		kfree(sg);
5465		sg = tmp;
5466	} while (sg != first);
5467}
5468
5469static void free_sched_domain(struct rcu_head *rcu)
5470{
5471	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5472
5473	/*
5474	 * If its an overlapping domain it has private groups, iterate and
5475	 * nuke them all.
5476	 */
5477	if (sd->flags & SD_OVERLAP) {
5478		free_sched_groups(sd->groups, 1);
5479	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5480		kfree(sd->groups->sgp);
5481		kfree(sd->groups);
5482	}
5483	kfree(sd);
5484}
5485
5486static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5487{
5488	call_rcu(&sd->rcu, free_sched_domain);
5489}
5490
5491static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5492{
5493	for (; sd; sd = sd->parent)
5494		destroy_sched_domain(sd, cpu);
5495}
5496
5497/*
5498 * Keep a special pointer to the highest sched_domain that has
5499 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5500 * allows us to avoid some pointer chasing select_idle_sibling().
5501 *
5502 * Also keep a unique ID per domain (we use the first cpu number in
5503 * the cpumask of the domain), this allows us to quickly tell if
5504 * two cpus are in the same cache domain, see cpus_share_cache().
5505 */
5506DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5507DEFINE_PER_CPU(int, sd_llc_size);
5508DEFINE_PER_CPU(int, sd_llc_id);
5509DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5510DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5511DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5512
5513static void update_top_cache_domain(int cpu)
5514{
5515	struct sched_domain *sd;
5516	struct sched_domain *busy_sd = NULL;
5517	int id = cpu;
5518	int size = 1;
5519
5520	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5521	if (sd) {
5522		id = cpumask_first(sched_domain_span(sd));
5523		size = cpumask_weight(sched_domain_span(sd));
5524		busy_sd = sd->parent; /* sd_busy */
5525	}
5526	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5527
5528	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5529	per_cpu(sd_llc_size, cpu) = size;
5530	per_cpu(sd_llc_id, cpu) = id;
5531
5532	sd = lowest_flag_domain(cpu, SD_NUMA);
5533	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5534
5535	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5536	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5537}
5538
5539/*
5540 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5541 * hold the hotplug lock.
5542 */
5543static void
5544cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5545{
5546	struct rq *rq = cpu_rq(cpu);
5547	struct sched_domain *tmp;
5548
5549	/* Remove the sched domains which do not contribute to scheduling. */
5550	for (tmp = sd; tmp; ) {
5551		struct sched_domain *parent = tmp->parent;
5552		if (!parent)
5553			break;
5554
5555		if (sd_parent_degenerate(tmp, parent)) {
5556			tmp->parent = parent->parent;
5557			if (parent->parent)
5558				parent->parent->child = tmp;
5559			/*
5560			 * Transfer SD_PREFER_SIBLING down in case of a
5561			 * degenerate parent; the spans match for this
5562			 * so the property transfers.
5563			 */
5564			if (parent->flags & SD_PREFER_SIBLING)
5565				tmp->flags |= SD_PREFER_SIBLING;
5566			destroy_sched_domain(parent, cpu);
5567		} else
5568			tmp = tmp->parent;
5569	}
5570
5571	if (sd && sd_degenerate(sd)) {
5572		tmp = sd;
5573		sd = sd->parent;
5574		destroy_sched_domain(tmp, cpu);
5575		if (sd)
5576			sd->child = NULL;
5577	}
5578
5579	sched_domain_debug(sd, cpu);
5580
5581	rq_attach_root(rq, rd);
5582	tmp = rq->sd;
5583	rcu_assign_pointer(rq->sd, sd);
5584	destroy_sched_domains(tmp, cpu);
5585
5586	update_top_cache_domain(cpu);
5587}
5588
5589/* cpus with isolated domains */
5590static cpumask_var_t cpu_isolated_map;
5591
5592/* Setup the mask of cpus configured for isolated domains */
5593static int __init isolated_cpu_setup(char *str)
5594{
5595	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5596	cpulist_parse(str, cpu_isolated_map);
5597	return 1;
5598}
5599
5600__setup("isolcpus=", isolated_cpu_setup);
5601
5602struct s_data {
5603	struct sched_domain ** __percpu sd;
5604	struct root_domain	*rd;
5605};
5606
5607enum s_alloc {
5608	sa_rootdomain,
5609	sa_sd,
5610	sa_sd_storage,
5611	sa_none,
5612};
5613
5614/*
5615 * Build an iteration mask that can exclude certain CPUs from the upwards
5616 * domain traversal.
5617 *
5618 * Asymmetric node setups can result in situations where the domain tree is of
5619 * unequal depth, make sure to skip domains that already cover the entire
5620 * range.
5621 *
5622 * In that case build_sched_domains() will have terminated the iteration early
5623 * and our sibling sd spans will be empty. Domains should always include the
5624 * cpu they're built on, so check that.
5625 *
5626 */
5627static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5628{
5629	const struct cpumask *span = sched_domain_span(sd);
5630	struct sd_data *sdd = sd->private;
5631	struct sched_domain *sibling;
5632	int i;
5633
5634	for_each_cpu(i, span) {
5635		sibling = *per_cpu_ptr(sdd->sd, i);
5636		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5637			continue;
5638
5639		cpumask_set_cpu(i, sched_group_mask(sg));
5640	}
5641}
5642
5643/*
5644 * Return the canonical balance cpu for this group, this is the first cpu
5645 * of this group that's also in the iteration mask.
5646 */
5647int group_balance_cpu(struct sched_group *sg)
5648{
5649	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5650}
5651
5652static int
5653build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5654{
5655	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5656	const struct cpumask *span = sched_domain_span(sd);
5657	struct cpumask *covered = sched_domains_tmpmask;
5658	struct sd_data *sdd = sd->private;
5659	struct sched_domain *child;
5660	int i;
5661
5662	cpumask_clear(covered);
5663
5664	for_each_cpu(i, span) {
5665		struct cpumask *sg_span;
5666
5667		if (cpumask_test_cpu(i, covered))
5668			continue;
5669
5670		child = *per_cpu_ptr(sdd->sd, i);
5671
5672		/* See the comment near build_group_mask(). */
5673		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5674			continue;
5675
5676		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5677				GFP_KERNEL, cpu_to_node(cpu));
5678
5679		if (!sg)
5680			goto fail;
5681
5682		sg_span = sched_group_cpus(sg);
5683		if (child->child) {
5684			child = child->child;
5685			cpumask_copy(sg_span, sched_domain_span(child));
5686		} else
5687			cpumask_set_cpu(i, sg_span);
5688
5689		cpumask_or(covered, covered, sg_span);
5690
5691		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5692		if (atomic_inc_return(&sg->sgp->ref) == 1)
5693			build_group_mask(sd, sg);
5694
5695		/*
5696		 * Initialize sgp->power such that even if we mess up the
5697		 * domains and no possible iteration will get us here, we won't
5698		 * die on a /0 trap.
5699		 */
5700		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5701		sg->sgp->power_orig = sg->sgp->power;
5702
5703		/*
5704		 * Make sure the first group of this domain contains the
5705		 * canonical balance cpu. Otherwise the sched_domain iteration
5706		 * breaks. See update_sg_lb_stats().
5707		 */
5708		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5709		    group_balance_cpu(sg) == cpu)
5710			groups = sg;
5711
5712		if (!first)
5713			first = sg;
5714		if (last)
5715			last->next = sg;
5716		last = sg;
5717		last->next = first;
5718	}
5719	sd->groups = groups;
5720
5721	return 0;
5722
5723fail:
5724	free_sched_groups(first, 0);
5725
5726	return -ENOMEM;
5727}
5728
5729static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5730{
5731	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5732	struct sched_domain *child = sd->child;
5733
5734	if (child)
5735		cpu = cpumask_first(sched_domain_span(child));
5736
5737	if (sg) {
5738		*sg = *per_cpu_ptr(sdd->sg, cpu);
5739		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5740		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5741	}
5742
5743	return cpu;
5744}
5745
5746/*
5747 * build_sched_groups will build a circular linked list of the groups
5748 * covered by the given span, and will set each group's ->cpumask correctly,
5749 * and ->cpu_power to 0.
5750 *
5751 * Assumes the sched_domain tree is fully constructed
5752 */
5753static int
5754build_sched_groups(struct sched_domain *sd, int cpu)
5755{
5756	struct sched_group *first = NULL, *last = NULL;
5757	struct sd_data *sdd = sd->private;
5758	const struct cpumask *span = sched_domain_span(sd);
5759	struct cpumask *covered;
5760	int i;
5761
5762	get_group(cpu, sdd, &sd->groups);
5763	atomic_inc(&sd->groups->ref);
5764
5765	if (cpu != cpumask_first(span))
5766		return 0;
5767
5768	lockdep_assert_held(&sched_domains_mutex);
5769	covered = sched_domains_tmpmask;
5770
5771	cpumask_clear(covered);
5772
5773	for_each_cpu(i, span) {
5774		struct sched_group *sg;
5775		int group, j;
5776
5777		if (cpumask_test_cpu(i, covered))
5778			continue;
5779
5780		group = get_group(i, sdd, &sg);
5781		cpumask_clear(sched_group_cpus(sg));
5782		sg->sgp->power = 0;
5783		cpumask_setall(sched_group_mask(sg));
5784
5785		for_each_cpu(j, span) {
5786			if (get_group(j, sdd, NULL) != group)
5787				continue;
5788
5789			cpumask_set_cpu(j, covered);
5790			cpumask_set_cpu(j, sched_group_cpus(sg));
5791		}
5792
5793		if (!first)
5794			first = sg;
5795		if (last)
5796			last->next = sg;
5797		last = sg;
5798	}
5799	last->next = first;
5800
5801	return 0;
5802}
5803
5804/*
5805 * Initialize sched groups cpu_power.
5806 *
5807 * cpu_power indicates the capacity of sched group, which is used while
5808 * distributing the load between different sched groups in a sched domain.
5809 * Typically cpu_power for all the groups in a sched domain will be same unless
5810 * there are asymmetries in the topology. If there are asymmetries, group
5811 * having more cpu_power will pickup more load compared to the group having
5812 * less cpu_power.
5813 */
5814static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5815{
5816	struct sched_group *sg = sd->groups;
5817
5818	WARN_ON(!sg);
5819
5820	do {
5821		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5822		sg = sg->next;
5823	} while (sg != sd->groups);
5824
5825	if (cpu != group_balance_cpu(sg))
5826		return;
5827
5828	update_group_power(sd, cpu);
5829	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5830}
5831
5832/*
5833 * Initializers for schedule domains
5834 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5835 */
5836
5837static int default_relax_domain_level = -1;
5838int sched_domain_level_max;
5839
5840static int __init setup_relax_domain_level(char *str)
5841{
5842	if (kstrtoint(str, 0, &default_relax_domain_level))
5843		pr_warn("Unable to set relax_domain_level\n");
5844
5845	return 1;
5846}
5847__setup("relax_domain_level=", setup_relax_domain_level);
5848
5849static void set_domain_attribute(struct sched_domain *sd,
5850				 struct sched_domain_attr *attr)
5851{
5852	int request;
5853
5854	if (!attr || attr->relax_domain_level < 0) {
5855		if (default_relax_domain_level < 0)
5856			return;
5857		else
5858			request = default_relax_domain_level;
5859	} else
5860		request = attr->relax_domain_level;
5861	if (request < sd->level) {
5862		/* turn off idle balance on this domain */
5863		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5864	} else {
5865		/* turn on idle balance on this domain */
5866		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5867	}
5868}
5869
5870static void __sdt_free(const struct cpumask *cpu_map);
5871static int __sdt_alloc(const struct cpumask *cpu_map);
5872
5873static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5874				 const struct cpumask *cpu_map)
5875{
5876	switch (what) {
5877	case sa_rootdomain:
5878		if (!atomic_read(&d->rd->refcount))
5879			free_rootdomain(&d->rd->rcu); /* fall through */
5880	case sa_sd:
5881		free_percpu(d->sd); /* fall through */
5882	case sa_sd_storage:
5883		__sdt_free(cpu_map); /* fall through */
5884	case sa_none:
5885		break;
5886	}
5887}
5888
5889static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5890						   const struct cpumask *cpu_map)
5891{
5892	memset(d, 0, sizeof(*d));
5893
5894	if (__sdt_alloc(cpu_map))
5895		return sa_sd_storage;
5896	d->sd = alloc_percpu(struct sched_domain *);
5897	if (!d->sd)
5898		return sa_sd_storage;
5899	d->rd = alloc_rootdomain();
5900	if (!d->rd)
5901		return sa_sd;
5902	return sa_rootdomain;
5903}
5904
5905/*
5906 * NULL the sd_data elements we've used to build the sched_domain and
5907 * sched_group structure so that the subsequent __free_domain_allocs()
5908 * will not free the data we're using.
5909 */
5910static void claim_allocations(int cpu, struct sched_domain *sd)
5911{
5912	struct sd_data *sdd = sd->private;
5913
5914	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5915	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5916
5917	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5918		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5919
5920	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5921		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5922}
5923
5924#ifdef CONFIG_NUMA
5925static int sched_domains_numa_levels;
5926static int *sched_domains_numa_distance;
5927static struct cpumask ***sched_domains_numa_masks;
5928static int sched_domains_curr_level;
5929#endif
5930
5931/*
5932 * SD_flags allowed in topology descriptions.
5933 *
5934 * SD_SHARE_CPUPOWER      - describes SMT topologies
5935 * SD_SHARE_PKG_RESOURCES - describes shared caches
5936 * SD_NUMA                - describes NUMA topologies
5937 * SD_SHARE_POWERDOMAIN   - describes shared power domain
5938 *
5939 * Odd one out:
5940 * SD_ASYM_PACKING        - describes SMT quirks
5941 */
5942#define TOPOLOGY_SD_FLAGS		\
5943	(SD_SHARE_CPUPOWER |		\
5944	 SD_SHARE_PKG_RESOURCES |	\
5945	 SD_NUMA |			\
5946	 SD_ASYM_PACKING |		\
5947	 SD_SHARE_POWERDOMAIN)
5948
5949static struct sched_domain *
5950sd_init(struct sched_domain_topology_level *tl, int cpu)
5951{
5952	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5953	int sd_weight, sd_flags = 0;
5954
5955#ifdef CONFIG_NUMA
5956	/*
5957	 * Ugly hack to pass state to sd_numa_mask()...
5958	 */
5959	sched_domains_curr_level = tl->numa_level;
5960#endif
5961
5962	sd_weight = cpumask_weight(tl->mask(cpu));
5963
5964	if (tl->sd_flags)
5965		sd_flags = (*tl->sd_flags)();
5966	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
5967			"wrong sd_flags in topology description\n"))
5968		sd_flags &= ~TOPOLOGY_SD_FLAGS;
5969
5970	*sd = (struct sched_domain){
5971		.min_interval		= sd_weight,
5972		.max_interval		= 2*sd_weight,
5973		.busy_factor		= 32,
5974		.imbalance_pct		= 125,
5975
5976		.cache_nice_tries	= 0,
5977		.busy_idx		= 0,
5978		.idle_idx		= 0,
5979		.newidle_idx		= 0,
5980		.wake_idx		= 0,
5981		.forkexec_idx		= 0,
5982
5983		.flags			= 1*SD_LOAD_BALANCE
5984					| 1*SD_BALANCE_NEWIDLE
5985					| 1*SD_BALANCE_EXEC
5986					| 1*SD_BALANCE_FORK
5987					| 0*SD_BALANCE_WAKE
5988					| 1*SD_WAKE_AFFINE
5989					| 0*SD_SHARE_CPUPOWER
5990					| 0*SD_SHARE_PKG_RESOURCES
5991					| 0*SD_SERIALIZE
5992					| 0*SD_PREFER_SIBLING
5993					| 0*SD_NUMA
5994					| sd_flags
5995					,
5996
5997		.last_balance		= jiffies,
5998		.balance_interval	= sd_weight,
5999		.smt_gain		= 0,
6000		.max_newidle_lb_cost	= 0,
6001		.next_decay_max_lb_cost	= jiffies,
6002#ifdef CONFIG_SCHED_DEBUG
6003		.name			= tl->name,
6004#endif
6005	};
6006
6007	/*
6008	 * Convert topological properties into behaviour.
6009	 */
6010
6011	if (sd->flags & SD_SHARE_CPUPOWER) {
6012		sd->imbalance_pct = 110;
6013		sd->smt_gain = 1178; /* ~15% */
6014
6015	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6016		sd->imbalance_pct = 117;
6017		sd->cache_nice_tries = 1;
6018		sd->busy_idx = 2;
6019
6020#ifdef CONFIG_NUMA
6021	} else if (sd->flags & SD_NUMA) {
6022		sd->cache_nice_tries = 2;
6023		sd->busy_idx = 3;
6024		sd->idle_idx = 2;
6025
6026		sd->flags |= SD_SERIALIZE;
6027		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6028			sd->flags &= ~(SD_BALANCE_EXEC |
6029				       SD_BALANCE_FORK |
6030				       SD_WAKE_AFFINE);
6031		}
6032
6033#endif
6034	} else {
6035		sd->flags |= SD_PREFER_SIBLING;
6036		sd->cache_nice_tries = 1;
6037		sd->busy_idx = 2;
6038		sd->idle_idx = 1;
6039	}
6040
6041	sd->private = &tl->data;
6042
6043	return sd;
6044}
6045
6046/*
6047 * Topology list, bottom-up.
6048 */
6049static struct sched_domain_topology_level default_topology[] = {
6050#ifdef CONFIG_SCHED_SMT
6051	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6052#endif
6053#ifdef CONFIG_SCHED_MC
6054	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6055#endif
6056	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6057	{ NULL, },
6058};
6059
6060struct sched_domain_topology_level *sched_domain_topology = default_topology;
6061
6062#define for_each_sd_topology(tl)			\
6063	for (tl = sched_domain_topology; tl->mask; tl++)
6064
6065void set_sched_topology(struct sched_domain_topology_level *tl)
6066{
6067	sched_domain_topology = tl;
6068}
6069
6070#ifdef CONFIG_NUMA
6071
6072static const struct cpumask *sd_numa_mask(int cpu)
6073{
6074	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6075}
6076
6077static void sched_numa_warn(const char *str)
6078{
6079	static int done = false;
6080	int i,j;
6081
6082	if (done)
6083		return;
6084
6085	done = true;
6086
6087	printk(KERN_WARNING "ERROR: %s\n\n", str);
6088
6089	for (i = 0; i < nr_node_ids; i++) {
6090		printk(KERN_WARNING "  ");
6091		for (j = 0; j < nr_node_ids; j++)
6092			printk(KERN_CONT "%02d ", node_distance(i,j));
6093		printk(KERN_CONT "\n");
6094	}
6095	printk(KERN_WARNING "\n");
6096}
6097
6098static bool find_numa_distance(int distance)
6099{
6100	int i;
6101
6102	if (distance == node_distance(0, 0))
6103		return true;
6104
6105	for (i = 0; i < sched_domains_numa_levels; i++) {
6106		if (sched_domains_numa_distance[i] == distance)
6107			return true;
6108	}
6109
6110	return false;
6111}
6112
6113static void sched_init_numa(void)
6114{
6115	int next_distance, curr_distance = node_distance(0, 0);
6116	struct sched_domain_topology_level *tl;
6117	int level = 0;
6118	int i, j, k;
6119
6120	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6121	if (!sched_domains_numa_distance)
6122		return;
6123
6124	/*
6125	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6126	 * unique distances in the node_distance() table.
6127	 *
6128	 * Assumes node_distance(0,j) includes all distances in
6129	 * node_distance(i,j) in order to avoid cubic time.
6130	 */
6131	next_distance = curr_distance;
6132	for (i = 0; i < nr_node_ids; i++) {
6133		for (j = 0; j < nr_node_ids; j++) {
6134			for (k = 0; k < nr_node_ids; k++) {
6135				int distance = node_distance(i, k);
6136
6137				if (distance > curr_distance &&
6138				    (distance < next_distance ||
6139				     next_distance == curr_distance))
6140					next_distance = distance;
6141
6142				/*
6143				 * While not a strong assumption it would be nice to know
6144				 * about cases where if node A is connected to B, B is not
6145				 * equally connected to A.
6146				 */
6147				if (sched_debug() && node_distance(k, i) != distance)
6148					sched_numa_warn("Node-distance not symmetric");
6149
6150				if (sched_debug() && i && !find_numa_distance(distance))
6151					sched_numa_warn("Node-0 not representative");
6152			}
6153			if (next_distance != curr_distance) {
6154				sched_domains_numa_distance[level++] = next_distance;
6155				sched_domains_numa_levels = level;
6156				curr_distance = next_distance;
6157			} else break;
6158		}
6159
6160		/*
6161		 * In case of sched_debug() we verify the above assumption.
6162		 */
6163		if (!sched_debug())
6164			break;
6165	}
6166	/*
6167	 * 'level' contains the number of unique distances, excluding the
6168	 * identity distance node_distance(i,i).
6169	 *
6170	 * The sched_domains_numa_distance[] array includes the actual distance
6171	 * numbers.
6172	 */
6173
6174	/*
6175	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6176	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6177	 * the array will contain less then 'level' members. This could be
6178	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6179	 * in other functions.
6180	 *
6181	 * We reset it to 'level' at the end of this function.
6182	 */
6183	sched_domains_numa_levels = 0;
6184
6185	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6186	if (!sched_domains_numa_masks)
6187		return;
6188
6189	/*
6190	 * Now for each level, construct a mask per node which contains all
6191	 * cpus of nodes that are that many hops away from us.
6192	 */
6193	for (i = 0; i < level; i++) {
6194		sched_domains_numa_masks[i] =
6195			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6196		if (!sched_domains_numa_masks[i])
6197			return;
6198
6199		for (j = 0; j < nr_node_ids; j++) {
6200			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6201			if (!mask)
6202				return;
6203
6204			sched_domains_numa_masks[i][j] = mask;
6205
6206			for (k = 0; k < nr_node_ids; k++) {
6207				if (node_distance(j, k) > sched_domains_numa_distance[i])
6208					continue;
6209
6210				cpumask_or(mask, mask, cpumask_of_node(k));
6211			}
6212		}
6213	}
6214
6215	/* Compute default topology size */
6216	for (i = 0; sched_domain_topology[i].mask; i++);
6217
6218	tl = kzalloc((i + level) *
6219			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6220	if (!tl)
6221		return;
6222
6223	/*
6224	 * Copy the default topology bits..
6225	 */
6226	for (i = 0; sched_domain_topology[i].mask; i++)
6227		tl[i] = sched_domain_topology[i];
6228
6229	/*
6230	 * .. and append 'j' levels of NUMA goodness.
6231	 */
6232	for (j = 0; j < level; i++, j++) {
6233		tl[i] = (struct sched_domain_topology_level){
6234			.mask = sd_numa_mask,
6235			.sd_flags = cpu_numa_flags,
6236			.flags = SDTL_OVERLAP,
6237			.numa_level = j,
6238			SD_INIT_NAME(NUMA)
6239		};
6240	}
6241
6242	sched_domain_topology = tl;
6243
6244	sched_domains_numa_levels = level;
6245}
6246
6247static void sched_domains_numa_masks_set(int cpu)
6248{
6249	int i, j;
6250	int node = cpu_to_node(cpu);
6251
6252	for (i = 0; i < sched_domains_numa_levels; i++) {
6253		for (j = 0; j < nr_node_ids; j++) {
6254			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6255				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6256		}
6257	}
6258}
6259
6260static void sched_domains_numa_masks_clear(int cpu)
6261{
6262	int i, j;
6263	for (i = 0; i < sched_domains_numa_levels; i++) {
6264		for (j = 0; j < nr_node_ids; j++)
6265			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6266	}
6267}
6268
6269/*
6270 * Update sched_domains_numa_masks[level][node] array when new cpus
6271 * are onlined.
6272 */
6273static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6274					   unsigned long action,
6275					   void *hcpu)
6276{
6277	int cpu = (long)hcpu;
6278
6279	switch (action & ~CPU_TASKS_FROZEN) {
6280	case CPU_ONLINE:
6281		sched_domains_numa_masks_set(cpu);
6282		break;
6283
6284	case CPU_DEAD:
6285		sched_domains_numa_masks_clear(cpu);
6286		break;
6287
6288	default:
6289		return NOTIFY_DONE;
6290	}
6291
6292	return NOTIFY_OK;
6293}
6294#else
6295static inline void sched_init_numa(void)
6296{
6297}
6298
6299static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6300					   unsigned long action,
6301					   void *hcpu)
6302{
6303	return 0;
6304}
6305#endif /* CONFIG_NUMA */
6306
6307static int __sdt_alloc(const struct cpumask *cpu_map)
6308{
6309	struct sched_domain_topology_level *tl;
6310	int j;
6311
6312	for_each_sd_topology(tl) {
6313		struct sd_data *sdd = &tl->data;
6314
6315		sdd->sd = alloc_percpu(struct sched_domain *);
6316		if (!sdd->sd)
6317			return -ENOMEM;
6318
6319		sdd->sg = alloc_percpu(struct sched_group *);
6320		if (!sdd->sg)
6321			return -ENOMEM;
6322
6323		sdd->sgp = alloc_percpu(struct sched_group_power *);
6324		if (!sdd->sgp)
6325			return -ENOMEM;
6326
6327		for_each_cpu(j, cpu_map) {
6328			struct sched_domain *sd;
6329			struct sched_group *sg;
6330			struct sched_group_power *sgp;
6331
6332		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6333					GFP_KERNEL, cpu_to_node(j));
6334			if (!sd)
6335				return -ENOMEM;
6336
6337			*per_cpu_ptr(sdd->sd, j) = sd;
6338
6339			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6340					GFP_KERNEL, cpu_to_node(j));
6341			if (!sg)
6342				return -ENOMEM;
6343
6344			sg->next = sg;
6345
6346			*per_cpu_ptr(sdd->sg, j) = sg;
6347
6348			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6349					GFP_KERNEL, cpu_to_node(j));
6350			if (!sgp)
6351				return -ENOMEM;
6352
6353			*per_cpu_ptr(sdd->sgp, j) = sgp;
6354		}
6355	}
6356
6357	return 0;
6358}
6359
6360static void __sdt_free(const struct cpumask *cpu_map)
6361{
6362	struct sched_domain_topology_level *tl;
6363	int j;
6364
6365	for_each_sd_topology(tl) {
6366		struct sd_data *sdd = &tl->data;
6367
6368		for_each_cpu(j, cpu_map) {
6369			struct sched_domain *sd;
6370
6371			if (sdd->sd) {
6372				sd = *per_cpu_ptr(sdd->sd, j);
6373				if (sd && (sd->flags & SD_OVERLAP))
6374					free_sched_groups(sd->groups, 0);
6375				kfree(*per_cpu_ptr(sdd->sd, j));
6376			}
6377
6378			if (sdd->sg)
6379				kfree(*per_cpu_ptr(sdd->sg, j));
6380			if (sdd->sgp)
6381				kfree(*per_cpu_ptr(sdd->sgp, j));
6382		}
6383		free_percpu(sdd->sd);
6384		sdd->sd = NULL;
6385		free_percpu(sdd->sg);
6386		sdd->sg = NULL;
6387		free_percpu(sdd->sgp);
6388		sdd->sgp = NULL;
6389	}
6390}
6391
6392struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6393		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6394		struct sched_domain *child, int cpu)
6395{
6396	struct sched_domain *sd = sd_init(tl, cpu);
6397	if (!sd)
6398		return child;
6399
6400	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6401	if (child) {
6402		sd->level = child->level + 1;
6403		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6404		child->parent = sd;
6405		sd->child = child;
6406	}
6407	set_domain_attribute(sd, attr);
6408
6409	return sd;
6410}
6411
6412/*
6413 * Build sched domains for a given set of cpus and attach the sched domains
6414 * to the individual cpus
6415 */
6416static int build_sched_domains(const struct cpumask *cpu_map,
6417			       struct sched_domain_attr *attr)
6418{
6419	enum s_alloc alloc_state;
6420	struct sched_domain *sd;
6421	struct s_data d;
6422	int i, ret = -ENOMEM;
6423
6424	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6425	if (alloc_state != sa_rootdomain)
6426		goto error;
6427
6428	/* Set up domains for cpus specified by the cpu_map. */
6429	for_each_cpu(i, cpu_map) {
6430		struct sched_domain_topology_level *tl;
6431
6432		sd = NULL;
6433		for_each_sd_topology(tl) {
6434			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6435			if (tl == sched_domain_topology)
6436				*per_cpu_ptr(d.sd, i) = sd;
6437			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6438				sd->flags |= SD_OVERLAP;
6439			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6440				break;
6441		}
6442	}
6443
6444	/* Build the groups for the domains */
6445	for_each_cpu(i, cpu_map) {
6446		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6447			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6448			if (sd->flags & SD_OVERLAP) {
6449				if (build_overlap_sched_groups(sd, i))
6450					goto error;
6451			} else {
6452				if (build_sched_groups(sd, i))
6453					goto error;
6454			}
6455		}
6456	}
6457
6458	/* Calculate CPU power for physical packages and nodes */
6459	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6460		if (!cpumask_test_cpu(i, cpu_map))
6461			continue;
6462
6463		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6464			claim_allocations(i, sd);
6465			init_sched_groups_power(i, sd);
6466		}
6467	}
6468
6469	/* Attach the domains */
6470	rcu_read_lock();
6471	for_each_cpu(i, cpu_map) {
6472		sd = *per_cpu_ptr(d.sd, i);
6473		cpu_attach_domain(sd, d.rd, i);
6474	}
6475	rcu_read_unlock();
6476
6477	ret = 0;
6478error:
6479	__free_domain_allocs(&d, alloc_state, cpu_map);
6480	return ret;
6481}
6482
6483static cpumask_var_t *doms_cur;	/* current sched domains */
6484static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6485static struct sched_domain_attr *dattr_cur;
6486				/* attribues of custom domains in 'doms_cur' */
6487
6488/*
6489 * Special case: If a kmalloc of a doms_cur partition (array of
6490 * cpumask) fails, then fallback to a single sched domain,
6491 * as determined by the single cpumask fallback_doms.
6492 */
6493static cpumask_var_t fallback_doms;
6494
6495/*
6496 * arch_update_cpu_topology lets virtualized architectures update the
6497 * cpu core maps. It is supposed to return 1 if the topology changed
6498 * or 0 if it stayed the same.
6499 */
6500int __weak arch_update_cpu_topology(void)
6501{
6502	return 0;
6503}
6504
6505cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6506{
6507	int i;
6508	cpumask_var_t *doms;
6509
6510	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6511	if (!doms)
6512		return NULL;
6513	for (i = 0; i < ndoms; i++) {
6514		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6515			free_sched_domains(doms, i);
6516			return NULL;
6517		}
6518	}
6519	return doms;
6520}
6521
6522void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6523{
6524	unsigned int i;
6525	for (i = 0; i < ndoms; i++)
6526		free_cpumask_var(doms[i]);
6527	kfree(doms);
6528}
6529
6530/*
6531 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6532 * For now this just excludes isolated cpus, but could be used to
6533 * exclude other special cases in the future.
6534 */
6535static int init_sched_domains(const struct cpumask *cpu_map)
6536{
6537	int err;
6538
6539	arch_update_cpu_topology();
6540	ndoms_cur = 1;
6541	doms_cur = alloc_sched_domains(ndoms_cur);
6542	if (!doms_cur)
6543		doms_cur = &fallback_doms;
6544	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6545	err = build_sched_domains(doms_cur[0], NULL);
6546	register_sched_domain_sysctl();
6547
6548	return err;
6549}
6550
6551/*
6552 * Detach sched domains from a group of cpus specified in cpu_map
6553 * These cpus will now be attached to the NULL domain
6554 */
6555static void detach_destroy_domains(const struct cpumask *cpu_map)
6556{
6557	int i;
6558
6559	rcu_read_lock();
6560	for_each_cpu(i, cpu_map)
6561		cpu_attach_domain(NULL, &def_root_domain, i);
6562	rcu_read_unlock();
6563}
6564
6565/* handle null as "default" */
6566static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6567			struct sched_domain_attr *new, int idx_new)
6568{
6569	struct sched_domain_attr tmp;
6570
6571	/* fast path */
6572	if (!new && !cur)
6573		return 1;
6574
6575	tmp = SD_ATTR_INIT;
6576	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6577			new ? (new + idx_new) : &tmp,
6578			sizeof(struct sched_domain_attr));
6579}
6580
6581/*
6582 * Partition sched domains as specified by the 'ndoms_new'
6583 * cpumasks in the array doms_new[] of cpumasks. This compares
6584 * doms_new[] to the current sched domain partitioning, doms_cur[].
6585 * It destroys each deleted domain and builds each new domain.
6586 *
6587 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6588 * The masks don't intersect (don't overlap.) We should setup one
6589 * sched domain for each mask. CPUs not in any of the cpumasks will
6590 * not be load balanced. If the same cpumask appears both in the
6591 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6592 * it as it is.
6593 *
6594 * The passed in 'doms_new' should be allocated using
6595 * alloc_sched_domains.  This routine takes ownership of it and will
6596 * free_sched_domains it when done with it. If the caller failed the
6597 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6598 * and partition_sched_domains() will fallback to the single partition
6599 * 'fallback_doms', it also forces the domains to be rebuilt.
6600 *
6601 * If doms_new == NULL it will be replaced with cpu_online_mask.
6602 * ndoms_new == 0 is a special case for destroying existing domains,
6603 * and it will not create the default domain.
6604 *
6605 * Call with hotplug lock held
6606 */
6607void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6608			     struct sched_domain_attr *dattr_new)
6609{
6610	int i, j, n;
6611	int new_topology;
6612
6613	mutex_lock(&sched_domains_mutex);
6614
6615	/* always unregister in case we don't destroy any domains */
6616	unregister_sched_domain_sysctl();
6617
6618	/* Let architecture update cpu core mappings. */
6619	new_topology = arch_update_cpu_topology();
6620
6621	n = doms_new ? ndoms_new : 0;
6622
6623	/* Destroy deleted domains */
6624	for (i = 0; i < ndoms_cur; i++) {
6625		for (j = 0; j < n && !new_topology; j++) {
6626			if (cpumask_equal(doms_cur[i], doms_new[j])
6627			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6628				goto match1;
6629		}
6630		/* no match - a current sched domain not in new doms_new[] */
6631		detach_destroy_domains(doms_cur[i]);
6632match1:
6633		;
6634	}
6635
6636	n = ndoms_cur;
6637	if (doms_new == NULL) {
6638		n = 0;
6639		doms_new = &fallback_doms;
6640		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6641		WARN_ON_ONCE(dattr_new);
6642	}
6643
6644	/* Build new domains */
6645	for (i = 0; i < ndoms_new; i++) {
6646		for (j = 0; j < n && !new_topology; j++) {
6647			if (cpumask_equal(doms_new[i], doms_cur[j])
6648			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6649				goto match2;
6650		}
6651		/* no match - add a new doms_new */
6652		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6653match2:
6654		;
6655	}
6656
6657	/* Remember the new sched domains */
6658	if (doms_cur != &fallback_doms)
6659		free_sched_domains(doms_cur, ndoms_cur);
6660	kfree(dattr_cur);	/* kfree(NULL) is safe */
6661	doms_cur = doms_new;
6662	dattr_cur = dattr_new;
6663	ndoms_cur = ndoms_new;
6664
6665	register_sched_domain_sysctl();
6666
6667	mutex_unlock(&sched_domains_mutex);
6668}
6669
6670static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6671
6672/*
6673 * Update cpusets according to cpu_active mask.  If cpusets are
6674 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6675 * around partition_sched_domains().
6676 *
6677 * If we come here as part of a suspend/resume, don't touch cpusets because we
6678 * want to restore it back to its original state upon resume anyway.
6679 */
6680static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6681			     void *hcpu)
6682{
6683	switch (action) {
6684	case CPU_ONLINE_FROZEN:
6685	case CPU_DOWN_FAILED_FROZEN:
6686
6687		/*
6688		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6689		 * resume sequence. As long as this is not the last online
6690		 * operation in the resume sequence, just build a single sched
6691		 * domain, ignoring cpusets.
6692		 */
6693		num_cpus_frozen--;
6694		if (likely(num_cpus_frozen)) {
6695			partition_sched_domains(1, NULL, NULL);
6696			break;
6697		}
6698
6699		/*
6700		 * This is the last CPU online operation. So fall through and
6701		 * restore the original sched domains by considering the
6702		 * cpuset configurations.
6703		 */
6704
6705	case CPU_ONLINE:
6706	case CPU_DOWN_FAILED:
6707		cpuset_update_active_cpus(true);
6708		break;
6709	default:
6710		return NOTIFY_DONE;
6711	}
6712	return NOTIFY_OK;
6713}
6714
6715static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6716			       void *hcpu)
6717{
6718	switch (action) {
6719	case CPU_DOWN_PREPARE:
6720		cpuset_update_active_cpus(false);
6721		break;
6722	case CPU_DOWN_PREPARE_FROZEN:
6723		num_cpus_frozen++;
6724		partition_sched_domains(1, NULL, NULL);
6725		break;
6726	default:
6727		return NOTIFY_DONE;
6728	}
6729	return NOTIFY_OK;
6730}
6731
6732void __init sched_init_smp(void)
6733{
6734	cpumask_var_t non_isolated_cpus;
6735
6736	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6737	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6738
6739	sched_init_numa();
6740
6741	/*
6742	 * There's no userspace yet to cause hotplug operations; hence all the
6743	 * cpu masks are stable and all blatant races in the below code cannot
6744	 * happen.
6745	 */
6746	mutex_lock(&sched_domains_mutex);
6747	init_sched_domains(cpu_active_mask);
6748	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6749	if (cpumask_empty(non_isolated_cpus))
6750		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6751	mutex_unlock(&sched_domains_mutex);
6752
6753	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6754	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6755	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6756
6757	init_hrtick();
6758
6759	/* Move init over to a non-isolated CPU */
6760	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6761		BUG();
6762	sched_init_granularity();
6763	free_cpumask_var(non_isolated_cpus);
6764
6765	init_sched_rt_class();
6766	init_sched_dl_class();
6767}
6768#else
6769void __init sched_init_smp(void)
6770{
6771	sched_init_granularity();
6772}
6773#endif /* CONFIG_SMP */
6774
6775const_debug unsigned int sysctl_timer_migration = 1;
6776
6777int in_sched_functions(unsigned long addr)
6778{
6779	return in_lock_functions(addr) ||
6780		(addr >= (unsigned long)__sched_text_start
6781		&& addr < (unsigned long)__sched_text_end);
6782}
6783
6784#ifdef CONFIG_CGROUP_SCHED
6785/*
6786 * Default task group.
6787 * Every task in system belongs to this group at bootup.
6788 */
6789struct task_group root_task_group;
6790LIST_HEAD(task_groups);
6791#endif
6792
6793DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6794
6795void __init sched_init(void)
6796{
6797	int i, j;
6798	unsigned long alloc_size = 0, ptr;
6799
6800#ifdef CONFIG_FAIR_GROUP_SCHED
6801	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6802#endif
6803#ifdef CONFIG_RT_GROUP_SCHED
6804	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6805#endif
6806#ifdef CONFIG_CPUMASK_OFFSTACK
6807	alloc_size += num_possible_cpus() * cpumask_size();
6808#endif
6809	if (alloc_size) {
6810		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6811
6812#ifdef CONFIG_FAIR_GROUP_SCHED
6813		root_task_group.se = (struct sched_entity **)ptr;
6814		ptr += nr_cpu_ids * sizeof(void **);
6815
6816		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6817		ptr += nr_cpu_ids * sizeof(void **);
6818
6819#endif /* CONFIG_FAIR_GROUP_SCHED */
6820#ifdef CONFIG_RT_GROUP_SCHED
6821		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6822		ptr += nr_cpu_ids * sizeof(void **);
6823
6824		root_task_group.rt_rq = (struct rt_rq **)ptr;
6825		ptr += nr_cpu_ids * sizeof(void **);
6826
6827#endif /* CONFIG_RT_GROUP_SCHED */
6828#ifdef CONFIG_CPUMASK_OFFSTACK
6829		for_each_possible_cpu(i) {
6830			per_cpu(load_balance_mask, i) = (void *)ptr;
6831			ptr += cpumask_size();
6832		}
6833#endif /* CONFIG_CPUMASK_OFFSTACK */
6834	}
6835
6836	init_rt_bandwidth(&def_rt_bandwidth,
6837			global_rt_period(), global_rt_runtime());
6838	init_dl_bandwidth(&def_dl_bandwidth,
6839			global_rt_period(), global_rt_runtime());
6840
6841#ifdef CONFIG_SMP
6842	init_defrootdomain();
6843#endif
6844
6845#ifdef CONFIG_RT_GROUP_SCHED
6846	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6847			global_rt_period(), global_rt_runtime());
6848#endif /* CONFIG_RT_GROUP_SCHED */
6849
6850#ifdef CONFIG_CGROUP_SCHED
6851	list_add(&root_task_group.list, &task_groups);
6852	INIT_LIST_HEAD(&root_task_group.children);
6853	INIT_LIST_HEAD(&root_task_group.siblings);
6854	autogroup_init(&init_task);
6855
6856#endif /* CONFIG_CGROUP_SCHED */
6857
6858	for_each_possible_cpu(i) {
6859		struct rq *rq;
6860
6861		rq = cpu_rq(i);
6862		raw_spin_lock_init(&rq->lock);
6863		rq->nr_running = 0;
6864		rq->calc_load_active = 0;
6865		rq->calc_load_update = jiffies + LOAD_FREQ;
6866		init_cfs_rq(&rq->cfs);
6867		init_rt_rq(&rq->rt, rq);
6868		init_dl_rq(&rq->dl, rq);
6869#ifdef CONFIG_FAIR_GROUP_SCHED
6870		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6871		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6872		/*
6873		 * How much cpu bandwidth does root_task_group get?
6874		 *
6875		 * In case of task-groups formed thr' the cgroup filesystem, it
6876		 * gets 100% of the cpu resources in the system. This overall
6877		 * system cpu resource is divided among the tasks of
6878		 * root_task_group and its child task-groups in a fair manner,
6879		 * based on each entity's (task or task-group's) weight
6880		 * (se->load.weight).
6881		 *
6882		 * In other words, if root_task_group has 10 tasks of weight
6883		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6884		 * then A0's share of the cpu resource is:
6885		 *
6886		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6887		 *
6888		 * We achieve this by letting root_task_group's tasks sit
6889		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6890		 */
6891		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6892		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6893#endif /* CONFIG_FAIR_GROUP_SCHED */
6894
6895		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6896#ifdef CONFIG_RT_GROUP_SCHED
6897		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6898#endif
6899
6900		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6901			rq->cpu_load[j] = 0;
6902
6903		rq->last_load_update_tick = jiffies;
6904
6905#ifdef CONFIG_SMP
6906		rq->sd = NULL;
6907		rq->rd = NULL;
6908		rq->cpu_power = SCHED_POWER_SCALE;
6909		rq->post_schedule = 0;
6910		rq->active_balance = 0;
6911		rq->next_balance = jiffies;
6912		rq->push_cpu = 0;
6913		rq->cpu = i;
6914		rq->online = 0;
6915		rq->idle_stamp = 0;
6916		rq->avg_idle = 2*sysctl_sched_migration_cost;
6917		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6918
6919		INIT_LIST_HEAD(&rq->cfs_tasks);
6920
6921		rq_attach_root(rq, &def_root_domain);
6922#ifdef CONFIG_NO_HZ_COMMON
6923		rq->nohz_flags = 0;
6924#endif
6925#ifdef CONFIG_NO_HZ_FULL
6926		rq->last_sched_tick = 0;
6927#endif
6928#endif
6929		init_rq_hrtick(rq);
6930		atomic_set(&rq->nr_iowait, 0);
6931	}
6932
6933	set_load_weight(&init_task);
6934
6935#ifdef CONFIG_PREEMPT_NOTIFIERS
6936	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6937#endif
6938
6939	/*
6940	 * The boot idle thread does lazy MMU switching as well:
6941	 */
6942	atomic_inc(&init_mm.mm_count);
6943	enter_lazy_tlb(&init_mm, current);
6944
6945	/*
6946	 * Make us the idle thread. Technically, schedule() should not be
6947	 * called from this thread, however somewhere below it might be,
6948	 * but because we are the idle thread, we just pick up running again
6949	 * when this runqueue becomes "idle".
6950	 */
6951	init_idle(current, smp_processor_id());
6952
6953	calc_load_update = jiffies + LOAD_FREQ;
6954
6955	/*
6956	 * During early bootup we pretend to be a normal task:
6957	 */
6958	current->sched_class = &fair_sched_class;
6959
6960#ifdef CONFIG_SMP
6961	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6962	/* May be allocated at isolcpus cmdline parse time */
6963	if (cpu_isolated_map == NULL)
6964		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6965	idle_thread_set_boot_cpu();
6966#endif
6967	init_sched_fair_class();
6968
6969	scheduler_running = 1;
6970}
6971
6972#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6973static inline int preempt_count_equals(int preempt_offset)
6974{
6975	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6976
6977	return (nested == preempt_offset);
6978}
6979
6980void __might_sleep(const char *file, int line, int preempt_offset)
6981{
6982	static unsigned long prev_jiffy;	/* ratelimiting */
6983
6984	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6985	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6986	     !is_idle_task(current)) ||
6987	    system_state != SYSTEM_RUNNING || oops_in_progress)
6988		return;
6989	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6990		return;
6991	prev_jiffy = jiffies;
6992
6993	printk(KERN_ERR
6994		"BUG: sleeping function called from invalid context at %s:%d\n",
6995			file, line);
6996	printk(KERN_ERR
6997		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6998			in_atomic(), irqs_disabled(),
6999			current->pid, current->comm);
7000
7001	debug_show_held_locks(current);
7002	if (irqs_disabled())
7003		print_irqtrace_events(current);
7004#ifdef CONFIG_DEBUG_PREEMPT
7005	if (!preempt_count_equals(preempt_offset)) {
7006		pr_err("Preemption disabled at:");
7007		print_ip_sym(current->preempt_disable_ip);
7008		pr_cont("\n");
7009	}
7010#endif
7011	dump_stack();
7012}
7013EXPORT_SYMBOL(__might_sleep);
7014#endif
7015
7016#ifdef CONFIG_MAGIC_SYSRQ
7017static void normalize_task(struct rq *rq, struct task_struct *p)
7018{
7019	const struct sched_class *prev_class = p->sched_class;
7020	struct sched_attr attr = {
7021		.sched_policy = SCHED_NORMAL,
7022	};
7023	int old_prio = p->prio;
7024	int on_rq;
7025
7026	on_rq = p->on_rq;
7027	if (on_rq)
7028		dequeue_task(rq, p, 0);
7029	__setscheduler(rq, p, &attr);
7030	if (on_rq) {
7031		enqueue_task(rq, p, 0);
7032		resched_task(rq->curr);
7033	}
7034
7035	check_class_changed(rq, p, prev_class, old_prio);
7036}
7037
7038void normalize_rt_tasks(void)
7039{
7040	struct task_struct *g, *p;
7041	unsigned long flags;
7042	struct rq *rq;
7043
7044	read_lock_irqsave(&tasklist_lock, flags);
7045	do_each_thread(g, p) {
7046		/*
7047		 * Only normalize user tasks:
7048		 */
7049		if (!p->mm)
7050			continue;
7051
7052		p->se.exec_start		= 0;
7053#ifdef CONFIG_SCHEDSTATS
7054		p->se.statistics.wait_start	= 0;
7055		p->se.statistics.sleep_start	= 0;
7056		p->se.statistics.block_start	= 0;
7057#endif
7058
7059		if (!dl_task(p) && !rt_task(p)) {
7060			/*
7061			 * Renice negative nice level userspace
7062			 * tasks back to 0:
7063			 */
7064			if (task_nice(p) < 0 && p->mm)
7065				set_user_nice(p, 0);
7066			continue;
7067		}
7068
7069		raw_spin_lock(&p->pi_lock);
7070		rq = __task_rq_lock(p);
7071
7072		normalize_task(rq, p);
7073
7074		__task_rq_unlock(rq);
7075		raw_spin_unlock(&p->pi_lock);
7076	} while_each_thread(g, p);
7077
7078	read_unlock_irqrestore(&tasklist_lock, flags);
7079}
7080
7081#endif /* CONFIG_MAGIC_SYSRQ */
7082
7083#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7084/*
7085 * These functions are only useful for the IA64 MCA handling, or kdb.
7086 *
7087 * They can only be called when the whole system has been
7088 * stopped - every CPU needs to be quiescent, and no scheduling
7089 * activity can take place. Using them for anything else would
7090 * be a serious bug, and as a result, they aren't even visible
7091 * under any other configuration.
7092 */
7093
7094/**
7095 * curr_task - return the current task for a given cpu.
7096 * @cpu: the processor in question.
7097 *
7098 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7099 *
7100 * Return: The current task for @cpu.
7101 */
7102struct task_struct *curr_task(int cpu)
7103{
7104	return cpu_curr(cpu);
7105}
7106
7107#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7108
7109#ifdef CONFIG_IA64
7110/**
7111 * set_curr_task - set the current task for a given cpu.
7112 * @cpu: the processor in question.
7113 * @p: the task pointer to set.
7114 *
7115 * Description: This function must only be used when non-maskable interrupts
7116 * are serviced on a separate stack. It allows the architecture to switch the
7117 * notion of the current task on a cpu in a non-blocking manner. This function
7118 * must be called with all CPU's synchronized, and interrupts disabled, the
7119 * and caller must save the original value of the current task (see
7120 * curr_task() above) and restore that value before reenabling interrupts and
7121 * re-starting the system.
7122 *
7123 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7124 */
7125void set_curr_task(int cpu, struct task_struct *p)
7126{
7127	cpu_curr(cpu) = p;
7128}
7129
7130#endif
7131
7132#ifdef CONFIG_CGROUP_SCHED
7133/* task_group_lock serializes the addition/removal of task groups */
7134static DEFINE_SPINLOCK(task_group_lock);
7135
7136static void free_sched_group(struct task_group *tg)
7137{
7138	free_fair_sched_group(tg);
7139	free_rt_sched_group(tg);
7140	autogroup_free(tg);
7141	kfree(tg);
7142}
7143
7144/* allocate runqueue etc for a new task group */
7145struct task_group *sched_create_group(struct task_group *parent)
7146{
7147	struct task_group *tg;
7148
7149	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7150	if (!tg)
7151		return ERR_PTR(-ENOMEM);
7152
7153	if (!alloc_fair_sched_group(tg, parent))
7154		goto err;
7155
7156	if (!alloc_rt_sched_group(tg, parent))
7157		goto err;
7158
7159	return tg;
7160
7161err:
7162	free_sched_group(tg);
7163	return ERR_PTR(-ENOMEM);
7164}
7165
7166void sched_online_group(struct task_group *tg, struct task_group *parent)
7167{
7168	unsigned long flags;
7169
7170	spin_lock_irqsave(&task_group_lock, flags);
7171	list_add_rcu(&tg->list, &task_groups);
7172
7173	WARN_ON(!parent); /* root should already exist */
7174
7175	tg->parent = parent;
7176	INIT_LIST_HEAD(&tg->children);
7177	list_add_rcu(&tg->siblings, &parent->children);
7178	spin_unlock_irqrestore(&task_group_lock, flags);
7179}
7180
7181/* rcu callback to free various structures associated with a task group */
7182static void free_sched_group_rcu(struct rcu_head *rhp)
7183{
7184	/* now it should be safe to free those cfs_rqs */
7185	free_sched_group(container_of(rhp, struct task_group, rcu));
7186}
7187
7188/* Destroy runqueue etc associated with a task group */
7189void sched_destroy_group(struct task_group *tg)
7190{
7191	/* wait for possible concurrent references to cfs_rqs complete */
7192	call_rcu(&tg->rcu, free_sched_group_rcu);
7193}
7194
7195void sched_offline_group(struct task_group *tg)
7196{
7197	unsigned long flags;
7198	int i;
7199
7200	/* end participation in shares distribution */
7201	for_each_possible_cpu(i)
7202		unregister_fair_sched_group(tg, i);
7203
7204	spin_lock_irqsave(&task_group_lock, flags);
7205	list_del_rcu(&tg->list);
7206	list_del_rcu(&tg->siblings);
7207	spin_unlock_irqrestore(&task_group_lock, flags);
7208}
7209
7210/* change task's runqueue when it moves between groups.
7211 *	The caller of this function should have put the task in its new group
7212 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7213 *	reflect its new group.
7214 */
7215void sched_move_task(struct task_struct *tsk)
7216{
7217	struct task_group *tg;
7218	int on_rq, running;
7219	unsigned long flags;
7220	struct rq *rq;
7221
7222	rq = task_rq_lock(tsk, &flags);
7223
7224	running = task_current(rq, tsk);
7225	on_rq = tsk->on_rq;
7226
7227	if (on_rq)
7228		dequeue_task(rq, tsk, 0);
7229	if (unlikely(running))
7230		tsk->sched_class->put_prev_task(rq, tsk);
7231
7232	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7233				lockdep_is_held(&tsk->sighand->siglock)),
7234			  struct task_group, css);
7235	tg = autogroup_task_group(tsk, tg);
7236	tsk->sched_task_group = tg;
7237
7238#ifdef CONFIG_FAIR_GROUP_SCHED
7239	if (tsk->sched_class->task_move_group)
7240		tsk->sched_class->task_move_group(tsk, on_rq);
7241	else
7242#endif
7243		set_task_rq(tsk, task_cpu(tsk));
7244
7245	if (unlikely(running))
7246		tsk->sched_class->set_curr_task(rq);
7247	if (on_rq)
7248		enqueue_task(rq, tsk, 0);
7249
7250	task_rq_unlock(rq, tsk, &flags);
7251}
7252#endif /* CONFIG_CGROUP_SCHED */
7253
7254#ifdef CONFIG_RT_GROUP_SCHED
7255/*
7256 * Ensure that the real time constraints are schedulable.
7257 */
7258static DEFINE_MUTEX(rt_constraints_mutex);
7259
7260/* Must be called with tasklist_lock held */
7261static inline int tg_has_rt_tasks(struct task_group *tg)
7262{
7263	struct task_struct *g, *p;
7264
7265	do_each_thread(g, p) {
7266		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7267			return 1;
7268	} while_each_thread(g, p);
7269
7270	return 0;
7271}
7272
7273struct rt_schedulable_data {
7274	struct task_group *tg;
7275	u64 rt_period;
7276	u64 rt_runtime;
7277};
7278
7279static int tg_rt_schedulable(struct task_group *tg, void *data)
7280{
7281	struct rt_schedulable_data *d = data;
7282	struct task_group *child;
7283	unsigned long total, sum = 0;
7284	u64 period, runtime;
7285
7286	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7287	runtime = tg->rt_bandwidth.rt_runtime;
7288
7289	if (tg == d->tg) {
7290		period = d->rt_period;
7291		runtime = d->rt_runtime;
7292	}
7293
7294	/*
7295	 * Cannot have more runtime than the period.
7296	 */
7297	if (runtime > period && runtime != RUNTIME_INF)
7298		return -EINVAL;
7299
7300	/*
7301	 * Ensure we don't starve existing RT tasks.
7302	 */
7303	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7304		return -EBUSY;
7305
7306	total = to_ratio(period, runtime);
7307
7308	/*
7309	 * Nobody can have more than the global setting allows.
7310	 */
7311	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7312		return -EINVAL;
7313
7314	/*
7315	 * The sum of our children's runtime should not exceed our own.
7316	 */
7317	list_for_each_entry_rcu(child, &tg->children, siblings) {
7318		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7319		runtime = child->rt_bandwidth.rt_runtime;
7320
7321		if (child == d->tg) {
7322			period = d->rt_period;
7323			runtime = d->rt_runtime;
7324		}
7325
7326		sum += to_ratio(period, runtime);
7327	}
7328
7329	if (sum > total)
7330		return -EINVAL;
7331
7332	return 0;
7333}
7334
7335static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7336{
7337	int ret;
7338
7339	struct rt_schedulable_data data = {
7340		.tg = tg,
7341		.rt_period = period,
7342		.rt_runtime = runtime,
7343	};
7344
7345	rcu_read_lock();
7346	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7347	rcu_read_unlock();
7348
7349	return ret;
7350}
7351
7352static int tg_set_rt_bandwidth(struct task_group *tg,
7353		u64 rt_period, u64 rt_runtime)
7354{
7355	int i, err = 0;
7356
7357	mutex_lock(&rt_constraints_mutex);
7358	read_lock(&tasklist_lock);
7359	err = __rt_schedulable(tg, rt_period, rt_runtime);
7360	if (err)
7361		goto unlock;
7362
7363	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7364	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7365	tg->rt_bandwidth.rt_runtime = rt_runtime;
7366
7367	for_each_possible_cpu(i) {
7368		struct rt_rq *rt_rq = tg->rt_rq[i];
7369
7370		raw_spin_lock(&rt_rq->rt_runtime_lock);
7371		rt_rq->rt_runtime = rt_runtime;
7372		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7373	}
7374	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7375unlock:
7376	read_unlock(&tasklist_lock);
7377	mutex_unlock(&rt_constraints_mutex);
7378
7379	return err;
7380}
7381
7382static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7383{
7384	u64 rt_runtime, rt_period;
7385
7386	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7387	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7388	if (rt_runtime_us < 0)
7389		rt_runtime = RUNTIME_INF;
7390
7391	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7392}
7393
7394static long sched_group_rt_runtime(struct task_group *tg)
7395{
7396	u64 rt_runtime_us;
7397
7398	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7399		return -1;
7400
7401	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7402	do_div(rt_runtime_us, NSEC_PER_USEC);
7403	return rt_runtime_us;
7404}
7405
7406static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7407{
7408	u64 rt_runtime, rt_period;
7409
7410	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7411	rt_runtime = tg->rt_bandwidth.rt_runtime;
7412
7413	if (rt_period == 0)
7414		return -EINVAL;
7415
7416	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7417}
7418
7419static long sched_group_rt_period(struct task_group *tg)
7420{
7421	u64 rt_period_us;
7422
7423	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7424	do_div(rt_period_us, NSEC_PER_USEC);
7425	return rt_period_us;
7426}
7427#endif /* CONFIG_RT_GROUP_SCHED */
7428
7429#ifdef CONFIG_RT_GROUP_SCHED
7430static int sched_rt_global_constraints(void)
7431{
7432	int ret = 0;
7433
7434	mutex_lock(&rt_constraints_mutex);
7435	read_lock(&tasklist_lock);
7436	ret = __rt_schedulable(NULL, 0, 0);
7437	read_unlock(&tasklist_lock);
7438	mutex_unlock(&rt_constraints_mutex);
7439
7440	return ret;
7441}
7442
7443static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7444{
7445	/* Don't accept realtime tasks when there is no way for them to run */
7446	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7447		return 0;
7448
7449	return 1;
7450}
7451
7452#else /* !CONFIG_RT_GROUP_SCHED */
7453static int sched_rt_global_constraints(void)
7454{
7455	unsigned long flags;
7456	int i, ret = 0;
7457
7458	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7459	for_each_possible_cpu(i) {
7460		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7461
7462		raw_spin_lock(&rt_rq->rt_runtime_lock);
7463		rt_rq->rt_runtime = global_rt_runtime();
7464		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7465	}
7466	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7467
7468	return ret;
7469}
7470#endif /* CONFIG_RT_GROUP_SCHED */
7471
7472static int sched_dl_global_constraints(void)
7473{
7474	u64 runtime = global_rt_runtime();
7475	u64 period = global_rt_period();
7476	u64 new_bw = to_ratio(period, runtime);
7477	int cpu, ret = 0;
7478	unsigned long flags;
7479
7480	/*
7481	 * Here we want to check the bandwidth not being set to some
7482	 * value smaller than the currently allocated bandwidth in
7483	 * any of the root_domains.
7484	 *
7485	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7486	 * cycling on root_domains... Discussion on different/better
7487	 * solutions is welcome!
7488	 */
7489	for_each_possible_cpu(cpu) {
7490		struct dl_bw *dl_b = dl_bw_of(cpu);
7491
7492		raw_spin_lock_irqsave(&dl_b->lock, flags);
7493		if (new_bw < dl_b->total_bw)
7494			ret = -EBUSY;
7495		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7496
7497		if (ret)
7498			break;
7499	}
7500
7501	return ret;
7502}
7503
7504static void sched_dl_do_global(void)
7505{
7506	u64 new_bw = -1;
7507	int cpu;
7508	unsigned long flags;
7509
7510	def_dl_bandwidth.dl_period = global_rt_period();
7511	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7512
7513	if (global_rt_runtime() != RUNTIME_INF)
7514		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7515
7516	/*
7517	 * FIXME: As above...
7518	 */
7519	for_each_possible_cpu(cpu) {
7520		struct dl_bw *dl_b = dl_bw_of(cpu);
7521
7522		raw_spin_lock_irqsave(&dl_b->lock, flags);
7523		dl_b->bw = new_bw;
7524		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7525	}
7526}
7527
7528static int sched_rt_global_validate(void)
7529{
7530	if (sysctl_sched_rt_period <= 0)
7531		return -EINVAL;
7532
7533	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7534		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7535		return -EINVAL;
7536
7537	return 0;
7538}
7539
7540static void sched_rt_do_global(void)
7541{
7542	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7543	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7544}
7545
7546int sched_rt_handler(struct ctl_table *table, int write,
7547		void __user *buffer, size_t *lenp,
7548		loff_t *ppos)
7549{
7550	int old_period, old_runtime;
7551	static DEFINE_MUTEX(mutex);
7552	int ret;
7553
7554	mutex_lock(&mutex);
7555	old_period = sysctl_sched_rt_period;
7556	old_runtime = sysctl_sched_rt_runtime;
7557
7558	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7559
7560	if (!ret && write) {
7561		ret = sched_rt_global_validate();
7562		if (ret)
7563			goto undo;
7564
7565		ret = sched_rt_global_constraints();
7566		if (ret)
7567			goto undo;
7568
7569		ret = sched_dl_global_constraints();
7570		if (ret)
7571			goto undo;
7572
7573		sched_rt_do_global();
7574		sched_dl_do_global();
7575	}
7576	if (0) {
7577undo:
7578		sysctl_sched_rt_period = old_period;
7579		sysctl_sched_rt_runtime = old_runtime;
7580	}
7581	mutex_unlock(&mutex);
7582
7583	return ret;
7584}
7585
7586int sched_rr_handler(struct ctl_table *table, int write,
7587		void __user *buffer, size_t *lenp,
7588		loff_t *ppos)
7589{
7590	int ret;
7591	static DEFINE_MUTEX(mutex);
7592
7593	mutex_lock(&mutex);
7594	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7595	/* make sure that internally we keep jiffies */
7596	/* also, writing zero resets timeslice to default */
7597	if (!ret && write) {
7598		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7599			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7600	}
7601	mutex_unlock(&mutex);
7602	return ret;
7603}
7604
7605#ifdef CONFIG_CGROUP_SCHED
7606
7607static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7608{
7609	return css ? container_of(css, struct task_group, css) : NULL;
7610}
7611
7612static struct cgroup_subsys_state *
7613cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7614{
7615	struct task_group *parent = css_tg(parent_css);
7616	struct task_group *tg;
7617
7618	if (!parent) {
7619		/* This is early initialization for the top cgroup */
7620		return &root_task_group.css;
7621	}
7622
7623	tg = sched_create_group(parent);
7624	if (IS_ERR(tg))
7625		return ERR_PTR(-ENOMEM);
7626
7627	return &tg->css;
7628}
7629
7630static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7631{
7632	struct task_group *tg = css_tg(css);
7633	struct task_group *parent = css_tg(css_parent(css));
7634
7635	if (parent)
7636		sched_online_group(tg, parent);
7637	return 0;
7638}
7639
7640static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7641{
7642	struct task_group *tg = css_tg(css);
7643
7644	sched_destroy_group(tg);
7645}
7646
7647static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7648{
7649	struct task_group *tg = css_tg(css);
7650
7651	sched_offline_group(tg);
7652}
7653
7654static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7655				 struct cgroup_taskset *tset)
7656{
7657	struct task_struct *task;
7658
7659	cgroup_taskset_for_each(task, tset) {
7660#ifdef CONFIG_RT_GROUP_SCHED
7661		if (!sched_rt_can_attach(css_tg(css), task))
7662			return -EINVAL;
7663#else
7664		/* We don't support RT-tasks being in separate groups */
7665		if (task->sched_class != &fair_sched_class)
7666			return -EINVAL;
7667#endif
7668	}
7669	return 0;
7670}
7671
7672static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7673			      struct cgroup_taskset *tset)
7674{
7675	struct task_struct *task;
7676
7677	cgroup_taskset_for_each(task, tset)
7678		sched_move_task(task);
7679}
7680
7681static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7682			    struct cgroup_subsys_state *old_css,
7683			    struct task_struct *task)
7684{
7685	/*
7686	 * cgroup_exit() is called in the copy_process() failure path.
7687	 * Ignore this case since the task hasn't ran yet, this avoids
7688	 * trying to poke a half freed task state from generic code.
7689	 */
7690	if (!(task->flags & PF_EXITING))
7691		return;
7692
7693	sched_move_task(task);
7694}
7695
7696#ifdef CONFIG_FAIR_GROUP_SCHED
7697static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7698				struct cftype *cftype, u64 shareval)
7699{
7700	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7701}
7702
7703static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7704			       struct cftype *cft)
7705{
7706	struct task_group *tg = css_tg(css);
7707
7708	return (u64) scale_load_down(tg->shares);
7709}
7710
7711#ifdef CONFIG_CFS_BANDWIDTH
7712static DEFINE_MUTEX(cfs_constraints_mutex);
7713
7714const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7715const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7716
7717static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7718
7719static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7720{
7721	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7722	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7723
7724	if (tg == &root_task_group)
7725		return -EINVAL;
7726
7727	/*
7728	 * Ensure we have at some amount of bandwidth every period.  This is
7729	 * to prevent reaching a state of large arrears when throttled via
7730	 * entity_tick() resulting in prolonged exit starvation.
7731	 */
7732	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7733		return -EINVAL;
7734
7735	/*
7736	 * Likewise, bound things on the otherside by preventing insane quota
7737	 * periods.  This also allows us to normalize in computing quota
7738	 * feasibility.
7739	 */
7740	if (period > max_cfs_quota_period)
7741		return -EINVAL;
7742
7743	mutex_lock(&cfs_constraints_mutex);
7744	ret = __cfs_schedulable(tg, period, quota);
7745	if (ret)
7746		goto out_unlock;
7747
7748	runtime_enabled = quota != RUNTIME_INF;
7749	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7750	/*
7751	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7752	 * before making related changes, and on->off must occur afterwards
7753	 */
7754	if (runtime_enabled && !runtime_was_enabled)
7755		cfs_bandwidth_usage_inc();
7756	raw_spin_lock_irq(&cfs_b->lock);
7757	cfs_b->period = ns_to_ktime(period);
7758	cfs_b->quota = quota;
7759
7760	__refill_cfs_bandwidth_runtime(cfs_b);
7761	/* restart the period timer (if active) to handle new period expiry */
7762	if (runtime_enabled && cfs_b->timer_active) {
7763		/* force a reprogram */
7764		cfs_b->timer_active = 0;
7765		__start_cfs_bandwidth(cfs_b);
7766	}
7767	raw_spin_unlock_irq(&cfs_b->lock);
7768
7769	for_each_possible_cpu(i) {
7770		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7771		struct rq *rq = cfs_rq->rq;
7772
7773		raw_spin_lock_irq(&rq->lock);
7774		cfs_rq->runtime_enabled = runtime_enabled;
7775		cfs_rq->runtime_remaining = 0;
7776
7777		if (cfs_rq->throttled)
7778			unthrottle_cfs_rq(cfs_rq);
7779		raw_spin_unlock_irq(&rq->lock);
7780	}
7781	if (runtime_was_enabled && !runtime_enabled)
7782		cfs_bandwidth_usage_dec();
7783out_unlock:
7784	mutex_unlock(&cfs_constraints_mutex);
7785
7786	return ret;
7787}
7788
7789int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7790{
7791	u64 quota, period;
7792
7793	period = ktime_to_ns(tg->cfs_bandwidth.period);
7794	if (cfs_quota_us < 0)
7795		quota = RUNTIME_INF;
7796	else
7797		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7798
7799	return tg_set_cfs_bandwidth(tg, period, quota);
7800}
7801
7802long tg_get_cfs_quota(struct task_group *tg)
7803{
7804	u64 quota_us;
7805
7806	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7807		return -1;
7808
7809	quota_us = tg->cfs_bandwidth.quota;
7810	do_div(quota_us, NSEC_PER_USEC);
7811
7812	return quota_us;
7813}
7814
7815int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7816{
7817	u64 quota, period;
7818
7819	period = (u64)cfs_period_us * NSEC_PER_USEC;
7820	quota = tg->cfs_bandwidth.quota;
7821
7822	return tg_set_cfs_bandwidth(tg, period, quota);
7823}
7824
7825long tg_get_cfs_period(struct task_group *tg)
7826{
7827	u64 cfs_period_us;
7828
7829	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7830	do_div(cfs_period_us, NSEC_PER_USEC);
7831
7832	return cfs_period_us;
7833}
7834
7835static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7836				  struct cftype *cft)
7837{
7838	return tg_get_cfs_quota(css_tg(css));
7839}
7840
7841static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7842				   struct cftype *cftype, s64 cfs_quota_us)
7843{
7844	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7845}
7846
7847static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7848				   struct cftype *cft)
7849{
7850	return tg_get_cfs_period(css_tg(css));
7851}
7852
7853static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7854				    struct cftype *cftype, u64 cfs_period_us)
7855{
7856	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7857}
7858
7859struct cfs_schedulable_data {
7860	struct task_group *tg;
7861	u64 period, quota;
7862};
7863
7864/*
7865 * normalize group quota/period to be quota/max_period
7866 * note: units are usecs
7867 */
7868static u64 normalize_cfs_quota(struct task_group *tg,
7869			       struct cfs_schedulable_data *d)
7870{
7871	u64 quota, period;
7872
7873	if (tg == d->tg) {
7874		period = d->period;
7875		quota = d->quota;
7876	} else {
7877		period = tg_get_cfs_period(tg);
7878		quota = tg_get_cfs_quota(tg);
7879	}
7880
7881	/* note: these should typically be equivalent */
7882	if (quota == RUNTIME_INF || quota == -1)
7883		return RUNTIME_INF;
7884
7885	return to_ratio(period, quota);
7886}
7887
7888static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7889{
7890	struct cfs_schedulable_data *d = data;
7891	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7892	s64 quota = 0, parent_quota = -1;
7893
7894	if (!tg->parent) {
7895		quota = RUNTIME_INF;
7896	} else {
7897		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7898
7899		quota = normalize_cfs_quota(tg, d);
7900		parent_quota = parent_b->hierarchal_quota;
7901
7902		/*
7903		 * ensure max(child_quota) <= parent_quota, inherit when no
7904		 * limit is set
7905		 */
7906		if (quota == RUNTIME_INF)
7907			quota = parent_quota;
7908		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7909			return -EINVAL;
7910	}
7911	cfs_b->hierarchal_quota = quota;
7912
7913	return 0;
7914}
7915
7916static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7917{
7918	int ret;
7919	struct cfs_schedulable_data data = {
7920		.tg = tg,
7921		.period = period,
7922		.quota = quota,
7923	};
7924
7925	if (quota != RUNTIME_INF) {
7926		do_div(data.period, NSEC_PER_USEC);
7927		do_div(data.quota, NSEC_PER_USEC);
7928	}
7929
7930	rcu_read_lock();
7931	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7932	rcu_read_unlock();
7933
7934	return ret;
7935}
7936
7937static int cpu_stats_show(struct seq_file *sf, void *v)
7938{
7939	struct task_group *tg = css_tg(seq_css(sf));
7940	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7941
7942	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7943	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7944	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7945
7946	return 0;
7947}
7948#endif /* CONFIG_CFS_BANDWIDTH */
7949#endif /* CONFIG_FAIR_GROUP_SCHED */
7950
7951#ifdef CONFIG_RT_GROUP_SCHED
7952static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7953				struct cftype *cft, s64 val)
7954{
7955	return sched_group_set_rt_runtime(css_tg(css), val);
7956}
7957
7958static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7959			       struct cftype *cft)
7960{
7961	return sched_group_rt_runtime(css_tg(css));
7962}
7963
7964static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7965				    struct cftype *cftype, u64 rt_period_us)
7966{
7967	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7968}
7969
7970static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7971				   struct cftype *cft)
7972{
7973	return sched_group_rt_period(css_tg(css));
7974}
7975#endif /* CONFIG_RT_GROUP_SCHED */
7976
7977static struct cftype cpu_files[] = {
7978#ifdef CONFIG_FAIR_GROUP_SCHED
7979	{
7980		.name = "shares",
7981		.read_u64 = cpu_shares_read_u64,
7982		.write_u64 = cpu_shares_write_u64,
7983	},
7984#endif
7985#ifdef CONFIG_CFS_BANDWIDTH
7986	{
7987		.name = "cfs_quota_us",
7988		.read_s64 = cpu_cfs_quota_read_s64,
7989		.write_s64 = cpu_cfs_quota_write_s64,
7990	},
7991	{
7992		.name = "cfs_period_us",
7993		.read_u64 = cpu_cfs_period_read_u64,
7994		.write_u64 = cpu_cfs_period_write_u64,
7995	},
7996	{
7997		.name = "stat",
7998		.seq_show = cpu_stats_show,
7999	},
8000#endif
8001#ifdef CONFIG_RT_GROUP_SCHED
8002	{
8003		.name = "rt_runtime_us",
8004		.read_s64 = cpu_rt_runtime_read,
8005		.write_s64 = cpu_rt_runtime_write,
8006	},
8007	{
8008		.name = "rt_period_us",
8009		.read_u64 = cpu_rt_period_read_uint,
8010		.write_u64 = cpu_rt_period_write_uint,
8011	},
8012#endif
8013	{ }	/* terminate */
8014};
8015
8016struct cgroup_subsys cpu_cgrp_subsys = {
8017	.css_alloc	= cpu_cgroup_css_alloc,
8018	.css_free	= cpu_cgroup_css_free,
8019	.css_online	= cpu_cgroup_css_online,
8020	.css_offline	= cpu_cgroup_css_offline,
8021	.can_attach	= cpu_cgroup_can_attach,
8022	.attach		= cpu_cgroup_attach,
8023	.exit		= cpu_cgroup_exit,
8024	.base_cftypes	= cpu_files,
8025	.early_init	= 1,
8026};
8027
8028#endif	/* CONFIG_CGROUP_SCHED */
8029
8030void dump_cpu_task(int cpu)
8031{
8032	pr_info("Task dump for CPU %d:\n", cpu);
8033	sched_show_task(cpu_curr(cpu));
8034}
8035