core.c revision ff1df896aef8e0ec1556a5c44f424bd45bfa2cbe
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303	__acquires(rq->lock)
304{
305	struct rq *rq;
306
307	lockdep_assert_held(&p->pi_lock);
308
309	for (;;) {
310		rq = task_rq(p);
311		raw_spin_lock(&rq->lock);
312		if (likely(rq == task_rq(p)))
313			return rq;
314		raw_spin_unlock(&rq->lock);
315	}
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322	__acquires(p->pi_lock)
323	__acquires(rq->lock)
324{
325	struct rq *rq;
326
327	for (;;) {
328		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329		rq = task_rq(p);
330		raw_spin_lock(&rq->lock);
331		if (likely(rq == task_rq(p)))
332			return rq;
333		raw_spin_unlock(&rq->lock);
334		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335	}
336}
337
338static void __task_rq_unlock(struct rq *rq)
339	__releases(rq->lock)
340{
341	raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346	__releases(rq->lock)
347	__releases(p->pi_lock)
348{
349	raw_spin_unlock(&rq->lock);
350	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357	__acquires(rq->lock)
358{
359	struct rq *rq;
360
361	local_irq_disable();
362	rq = this_rq();
363	raw_spin_lock(&rq->lock);
364
365	return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401	struct hrtimer *timer = &rq->hrtick_timer;
402	ktime_t time = hrtimer_get_softexpires(timer);
403
404	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	__hrtick_restart(rq);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		__hrtick_restart(rq);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516	int cpu;
517
518	lockdep_assert_held(&task_rq(p)->lock);
519
520	if (test_tsk_need_resched(p))
521		return;
522
523	set_tsk_need_resched(p);
524
525	cpu = task_cpu(p);
526	if (cpu == smp_processor_id()) {
527		set_preempt_need_resched();
528		return;
529	}
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707			     tg_visitor down, tg_visitor up, void *data)
708{
709	struct task_group *parent, *child;
710	int ret;
711
712	parent = from;
713
714down:
715	ret = (*down)(parent, data);
716	if (ret)
717		goto out;
718	list_for_each_entry_rcu(child, &parent->children, siblings) {
719		parent = child;
720		goto down;
721
722up:
723		continue;
724	}
725	ret = (*up)(parent, data);
726	if (ret || parent == from)
727		goto out;
728
729	child = parent;
730	parent = parent->parent;
731	if (parent)
732		goto up;
733out:
734	return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739	return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745	int prio = p->static_prio - MAX_RT_PRIO;
746	struct load_weight *load = &p->se.load;
747
748	/*
749	 * SCHED_IDLE tasks get minimal weight:
750	 */
751	if (p->policy == SCHED_IDLE) {
752		load->weight = scale_load(WEIGHT_IDLEPRIO);
753		load->inv_weight = WMULT_IDLEPRIO;
754		return;
755	}
756
757	load->weight = scale_load(prio_to_weight[prio]);
758	load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763	update_rq_clock(rq);
764	sched_info_queued(rq, p);
765	p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770	update_rq_clock(rq);
771	sched_info_dequeued(rq, p);
772	p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible--;
779
780	enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785	if (task_contributes_to_load(p))
786		rq->nr_uninterruptible++;
787
788	dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803	/*
804	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805	 * this case when a previous update_rq_clock() happened inside a
806	 * {soft,}irq region.
807	 *
808	 * When this happens, we stop ->clock_task and only update the
809	 * prev_irq_time stamp to account for the part that fit, so that a next
810	 * update will consume the rest. This ensures ->clock_task is
811	 * monotonic.
812	 *
813	 * It does however cause some slight miss-attribution of {soft,}irq
814	 * time, a more accurate solution would be to update the irq_time using
815	 * the current rq->clock timestamp, except that would require using
816	 * atomic ops.
817	 */
818	if (irq_delta > delta)
819		irq_delta = delta;
820
821	rq->prev_irq_time += irq_delta;
822	delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825	if (static_key_false((&paravirt_steal_rq_enabled))) {
826		u64 st;
827
828		steal = paravirt_steal_clock(cpu_of(rq));
829		steal -= rq->prev_steal_time_rq;
830
831		if (unlikely(steal > delta))
832			steal = delta;
833
834		st = steal_ticks(steal);
835		steal = st * TICK_NSEC;
836
837		rq->prev_steal_time_rq += steal;
838
839		delta -= steal;
840	}
841#endif
842
843	rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847		sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856	if (stop) {
857		/*
858		 * Make it appear like a SCHED_FIFO task, its something
859		 * userspace knows about and won't get confused about.
860		 *
861		 * Also, it will make PI more or less work without too
862		 * much confusion -- but then, stop work should not
863		 * rely on PI working anyway.
864		 */
865		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867		stop->sched_class = &stop_sched_class;
868	}
869
870	cpu_rq(cpu)->stop = stop;
871
872	if (old_stop) {
873		/*
874		 * Reset it back to a normal scheduling class so that
875		 * it can die in pieces.
876		 */
877		old_stop->sched_class = &rt_sched_class;
878	}
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886	return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898	int prio;
899
900	if (task_has_dl_policy(p))
901		prio = MAX_DL_PRIO-1;
902	else if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio || dl_task(p))
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	arg = (struct migration_swap_arg){
1089		.src_task = cur,
1090		.src_cpu = task_cpu(cur),
1091		.dst_task = p,
1092		.dst_cpu = task_cpu(p),
1093	};
1094
1095	if (arg.src_cpu == arg.dst_cpu)
1096		goto out;
1097
1098	/*
1099	 * These three tests are all lockless; this is OK since all of them
1100	 * will be re-checked with proper locks held further down the line.
1101	 */
1102	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106		goto out;
1107
1108	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109		goto out;
1110
1111	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112
1113out:
1114	return ret;
1115}
1116
1117struct migration_arg {
1118	struct task_struct *task;
1119	int dest_cpu;
1120};
1121
1122static int migration_cpu_stop(void *data);
1123
1124/*
1125 * wait_task_inactive - wait for a thread to unschedule.
1126 *
1127 * If @match_state is nonzero, it's the @p->state value just checked and
1128 * not expected to change.  If it changes, i.e. @p might have woken up,
1129 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1130 * we return a positive number (its total switch count).  If a second call
1131 * a short while later returns the same number, the caller can be sure that
1132 * @p has remained unscheduled the whole time.
1133 *
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
1140unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1141{
1142	unsigned long flags;
1143	int running, on_rq;
1144	unsigned long ncsw;
1145	struct rq *rq;
1146
1147	for (;;) {
1148		/*
1149		 * We do the initial early heuristics without holding
1150		 * any task-queue locks at all. We'll only try to get
1151		 * the runqueue lock when things look like they will
1152		 * work out!
1153		 */
1154		rq = task_rq(p);
1155
1156		/*
1157		 * If the task is actively running on another CPU
1158		 * still, just relax and busy-wait without holding
1159		 * any locks.
1160		 *
1161		 * NOTE! Since we don't hold any locks, it's not
1162		 * even sure that "rq" stays as the right runqueue!
1163		 * But we don't care, since "task_running()" will
1164		 * return false if the runqueue has changed and p
1165		 * is actually now running somewhere else!
1166		 */
1167		while (task_running(rq, p)) {
1168			if (match_state && unlikely(p->state != match_state))
1169				return 0;
1170			cpu_relax();
1171		}
1172
1173		/*
1174		 * Ok, time to look more closely! We need the rq
1175		 * lock now, to be *sure*. If we're wrong, we'll
1176		 * just go back and repeat.
1177		 */
1178		rq = task_rq_lock(p, &flags);
1179		trace_sched_wait_task(p);
1180		running = task_running(rq, p);
1181		on_rq = p->on_rq;
1182		ncsw = 0;
1183		if (!match_state || p->state == match_state)
1184			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1185		task_rq_unlock(rq, p, &flags);
1186
1187		/*
1188		 * If it changed from the expected state, bail out now.
1189		 */
1190		if (unlikely(!ncsw))
1191			break;
1192
1193		/*
1194		 * Was it really running after all now that we
1195		 * checked with the proper locks actually held?
1196		 *
1197		 * Oops. Go back and try again..
1198		 */
1199		if (unlikely(running)) {
1200			cpu_relax();
1201			continue;
1202		}
1203
1204		/*
1205		 * It's not enough that it's not actively running,
1206		 * it must be off the runqueue _entirely_, and not
1207		 * preempted!
1208		 *
1209		 * So if it was still runnable (but just not actively
1210		 * running right now), it's preempted, and we should
1211		 * yield - it could be a while.
1212		 */
1213		if (unlikely(on_rq)) {
1214			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215
1216			set_current_state(TASK_UNINTERRUPTIBLE);
1217			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1218			continue;
1219		}
1220
1221		/*
1222		 * Ahh, all good. It wasn't running, and it wasn't
1223		 * runnable, which means that it will never become
1224		 * running in the future either. We're all done!
1225		 */
1226		break;
1227	}
1228
1229	return ncsw;
1230}
1231
1232/***
1233 * kick_process - kick a running thread to enter/exit the kernel
1234 * @p: the to-be-kicked thread
1235 *
1236 * Cause a process which is running on another CPU to enter
1237 * kernel-mode, without any delay. (to get signals handled.)
1238 *
1239 * NOTE: this function doesn't have to take the runqueue lock,
1240 * because all it wants to ensure is that the remote task enters
1241 * the kernel. If the IPI races and the task has been migrated
1242 * to another CPU then no harm is done and the purpose has been
1243 * achieved as well.
1244 */
1245void kick_process(struct task_struct *p)
1246{
1247	int cpu;
1248
1249	preempt_disable();
1250	cpu = task_cpu(p);
1251	if ((cpu != smp_processor_id()) && task_curr(p))
1252		smp_send_reschedule(cpu);
1253	preempt_enable();
1254}
1255EXPORT_SYMBOL_GPL(kick_process);
1256#endif /* CONFIG_SMP */
1257
1258#ifdef CONFIG_SMP
1259/*
1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1261 */
1262static int select_fallback_rq(int cpu, struct task_struct *p)
1263{
1264	int nid = cpu_to_node(cpu);
1265	const struct cpumask *nodemask = NULL;
1266	enum { cpuset, possible, fail } state = cpuset;
1267	int dest_cpu;
1268
1269	/*
1270	 * If the node that the cpu is on has been offlined, cpu_to_node()
1271	 * will return -1. There is no cpu on the node, and we should
1272	 * select the cpu on the other node.
1273	 */
1274	if (nid != -1) {
1275		nodemask = cpumask_of_node(nid);
1276
1277		/* Look for allowed, online CPU in same node. */
1278		for_each_cpu(dest_cpu, nodemask) {
1279			if (!cpu_online(dest_cpu))
1280				continue;
1281			if (!cpu_active(dest_cpu))
1282				continue;
1283			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284				return dest_cpu;
1285		}
1286	}
1287
1288	for (;;) {
1289		/* Any allowed, online CPU? */
1290		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1291			if (!cpu_online(dest_cpu))
1292				continue;
1293			if (!cpu_active(dest_cpu))
1294				continue;
1295			goto out;
1296		}
1297
1298		switch (state) {
1299		case cpuset:
1300			/* No more Mr. Nice Guy. */
1301			cpuset_cpus_allowed_fallback(p);
1302			state = possible;
1303			break;
1304
1305		case possible:
1306			do_set_cpus_allowed(p, cpu_possible_mask);
1307			state = fail;
1308			break;
1309
1310		case fail:
1311			BUG();
1312			break;
1313		}
1314	}
1315
1316out:
1317	if (state != cpuset) {
1318		/*
1319		 * Don't tell them about moving exiting tasks or
1320		 * kernel threads (both mm NULL), since they never
1321		 * leave kernel.
1322		 */
1323		if (p->mm && printk_ratelimit()) {
1324			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325					task_pid_nr(p), p->comm, cpu);
1326		}
1327	}
1328
1329	return dest_cpu;
1330}
1331
1332/*
1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1334 */
1335static inline
1336int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1337{
1338	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1339
1340	/*
1341	 * In order not to call set_task_cpu() on a blocking task we need
1342	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343	 * cpu.
1344	 *
1345	 * Since this is common to all placement strategies, this lives here.
1346	 *
1347	 * [ this allows ->select_task() to simply return task_cpu(p) and
1348	 *   not worry about this generic constraint ]
1349	 */
1350	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1351		     !cpu_online(cpu)))
1352		cpu = select_fallback_rq(task_cpu(p), p);
1353
1354	return cpu;
1355}
1356
1357static void update_avg(u64 *avg, u64 sample)
1358{
1359	s64 diff = sample - *avg;
1360	*avg += diff >> 3;
1361}
1362#endif
1363
1364static void
1365ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1366{
1367#ifdef CONFIG_SCHEDSTATS
1368	struct rq *rq = this_rq();
1369
1370#ifdef CONFIG_SMP
1371	int this_cpu = smp_processor_id();
1372
1373	if (cpu == this_cpu) {
1374		schedstat_inc(rq, ttwu_local);
1375		schedstat_inc(p, se.statistics.nr_wakeups_local);
1376	} else {
1377		struct sched_domain *sd;
1378
1379		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1380		rcu_read_lock();
1381		for_each_domain(this_cpu, sd) {
1382			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383				schedstat_inc(sd, ttwu_wake_remote);
1384				break;
1385			}
1386		}
1387		rcu_read_unlock();
1388	}
1389
1390	if (wake_flags & WF_MIGRATED)
1391		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392
1393#endif /* CONFIG_SMP */
1394
1395	schedstat_inc(rq, ttwu_count);
1396	schedstat_inc(p, se.statistics.nr_wakeups);
1397
1398	if (wake_flags & WF_SYNC)
1399		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1400
1401#endif /* CONFIG_SCHEDSTATS */
1402}
1403
1404static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405{
1406	activate_task(rq, p, en_flags);
1407	p->on_rq = 1;
1408
1409	/* if a worker is waking up, notify workqueue */
1410	if (p->flags & PF_WQ_WORKER)
1411		wq_worker_waking_up(p, cpu_of(rq));
1412}
1413
1414/*
1415 * Mark the task runnable and perform wakeup-preemption.
1416 */
1417static void
1418ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1419{
1420	check_preempt_curr(rq, p, wake_flags);
1421	trace_sched_wakeup(p, true);
1422
1423	p->state = TASK_RUNNING;
1424#ifdef CONFIG_SMP
1425	if (p->sched_class->task_woken)
1426		p->sched_class->task_woken(rq, p);
1427
1428	if (rq->idle_stamp) {
1429		u64 delta = rq_clock(rq) - rq->idle_stamp;
1430		u64 max = 2*rq->max_idle_balance_cost;
1431
1432		update_avg(&rq->avg_idle, delta);
1433
1434		if (rq->avg_idle > max)
1435			rq->avg_idle = max;
1436
1437		rq->idle_stamp = 0;
1438	}
1439#endif
1440}
1441
1442static void
1443ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444{
1445#ifdef CONFIG_SMP
1446	if (p->sched_contributes_to_load)
1447		rq->nr_uninterruptible--;
1448#endif
1449
1450	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451	ttwu_do_wakeup(rq, p, wake_flags);
1452}
1453
1454/*
1455 * Called in case the task @p isn't fully descheduled from its runqueue,
1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457 * since all we need to do is flip p->state to TASK_RUNNING, since
1458 * the task is still ->on_rq.
1459 */
1460static int ttwu_remote(struct task_struct *p, int wake_flags)
1461{
1462	struct rq *rq;
1463	int ret = 0;
1464
1465	rq = __task_rq_lock(p);
1466	if (p->on_rq) {
1467		/* check_preempt_curr() may use rq clock */
1468		update_rq_clock(rq);
1469		ttwu_do_wakeup(rq, p, wake_flags);
1470		ret = 1;
1471	}
1472	__task_rq_unlock(rq);
1473
1474	return ret;
1475}
1476
1477#ifdef CONFIG_SMP
1478static void sched_ttwu_pending(void)
1479{
1480	struct rq *rq = this_rq();
1481	struct llist_node *llist = llist_del_all(&rq->wake_list);
1482	struct task_struct *p;
1483
1484	raw_spin_lock(&rq->lock);
1485
1486	while (llist) {
1487		p = llist_entry(llist, struct task_struct, wake_entry);
1488		llist = llist_next(llist);
1489		ttwu_do_activate(rq, p, 0);
1490	}
1491
1492	raw_spin_unlock(&rq->lock);
1493}
1494
1495void scheduler_ipi(void)
1496{
1497	/*
1498	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500	 * this IPI.
1501	 */
1502	preempt_fold_need_resched();
1503
1504	if (llist_empty(&this_rq()->wake_list)
1505			&& !tick_nohz_full_cpu(smp_processor_id())
1506			&& !got_nohz_idle_kick())
1507		return;
1508
1509	/*
1510	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1511	 * traditionally all their work was done from the interrupt return
1512	 * path. Now that we actually do some work, we need to make sure
1513	 * we do call them.
1514	 *
1515	 * Some archs already do call them, luckily irq_enter/exit nest
1516	 * properly.
1517	 *
1518	 * Arguably we should visit all archs and update all handlers,
1519	 * however a fair share of IPIs are still resched only so this would
1520	 * somewhat pessimize the simple resched case.
1521	 */
1522	irq_enter();
1523	tick_nohz_full_check();
1524	sched_ttwu_pending();
1525
1526	/*
1527	 * Check if someone kicked us for doing the nohz idle load balance.
1528	 */
1529	if (unlikely(got_nohz_idle_kick())) {
1530		this_rq()->idle_balance = 1;
1531		raise_softirq_irqoff(SCHED_SOFTIRQ);
1532	}
1533	irq_exit();
1534}
1535
1536static void ttwu_queue_remote(struct task_struct *p, int cpu)
1537{
1538	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1539		smp_send_reschedule(cpu);
1540}
1541
1542bool cpus_share_cache(int this_cpu, int that_cpu)
1543{
1544	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545}
1546#endif /* CONFIG_SMP */
1547
1548static void ttwu_queue(struct task_struct *p, int cpu)
1549{
1550	struct rq *rq = cpu_rq(cpu);
1551
1552#if defined(CONFIG_SMP)
1553	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555		ttwu_queue_remote(p, cpu);
1556		return;
1557	}
1558#endif
1559
1560	raw_spin_lock(&rq->lock);
1561	ttwu_do_activate(rq, p, 0);
1562	raw_spin_unlock(&rq->lock);
1563}
1564
1565/**
1566 * try_to_wake_up - wake up a thread
1567 * @p: the thread to be awakened
1568 * @state: the mask of task states that can be woken
1569 * @wake_flags: wake modifier flags (WF_*)
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
1577 * Return: %true if @p was woken up, %false if it was already running.
1578 * or @state didn't match @p's state.
1579 */
1580static int
1581try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1582{
1583	unsigned long flags;
1584	int cpu, success = 0;
1585
1586	/*
1587	 * If we are going to wake up a thread waiting for CONDITION we
1588	 * need to ensure that CONDITION=1 done by the caller can not be
1589	 * reordered with p->state check below. This pairs with mb() in
1590	 * set_current_state() the waiting thread does.
1591	 */
1592	smp_mb__before_spinlock();
1593	raw_spin_lock_irqsave(&p->pi_lock, flags);
1594	if (!(p->state & state))
1595		goto out;
1596
1597	success = 1; /* we're going to change ->state */
1598	cpu = task_cpu(p);
1599
1600	if (p->on_rq && ttwu_remote(p, wake_flags))
1601		goto stat;
1602
1603#ifdef CONFIG_SMP
1604	/*
1605	 * If the owning (remote) cpu is still in the middle of schedule() with
1606	 * this task as prev, wait until its done referencing the task.
1607	 */
1608	while (p->on_cpu)
1609		cpu_relax();
1610	/*
1611	 * Pairs with the smp_wmb() in finish_lock_switch().
1612	 */
1613	smp_rmb();
1614
1615	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1616	p->state = TASK_WAKING;
1617
1618	if (p->sched_class->task_waking)
1619		p->sched_class->task_waking(p);
1620
1621	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1622	if (task_cpu(p) != cpu) {
1623		wake_flags |= WF_MIGRATED;
1624		set_task_cpu(p, cpu);
1625	}
1626#endif /* CONFIG_SMP */
1627
1628	ttwu_queue(p, cpu);
1629stat:
1630	ttwu_stat(p, cpu, wake_flags);
1631out:
1632	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1633
1634	return success;
1635}
1636
1637/**
1638 * try_to_wake_up_local - try to wake up a local task with rq lock held
1639 * @p: the thread to be awakened
1640 *
1641 * Put @p on the run-queue if it's not already there. The caller must
1642 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1643 * the current task.
1644 */
1645static void try_to_wake_up_local(struct task_struct *p)
1646{
1647	struct rq *rq = task_rq(p);
1648
1649	if (WARN_ON_ONCE(rq != this_rq()) ||
1650	    WARN_ON_ONCE(p == current))
1651		return;
1652
1653	lockdep_assert_held(&rq->lock);
1654
1655	if (!raw_spin_trylock(&p->pi_lock)) {
1656		raw_spin_unlock(&rq->lock);
1657		raw_spin_lock(&p->pi_lock);
1658		raw_spin_lock(&rq->lock);
1659	}
1660
1661	if (!(p->state & TASK_NORMAL))
1662		goto out;
1663
1664	if (!p->on_rq)
1665		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1666
1667	ttwu_do_wakeup(rq, p, 0);
1668	ttwu_stat(p, smp_processor_id(), 0);
1669out:
1670	raw_spin_unlock(&p->pi_lock);
1671}
1672
1673/**
1674 * wake_up_process - Wake up a specific process
1675 * @p: The process to be woken up.
1676 *
1677 * Attempt to wake up the nominated process and move it to the set of runnable
1678 * processes.
1679 *
1680 * Return: 1 if the process was woken up, 0 if it was already running.
1681 *
1682 * It may be assumed that this function implies a write memory barrier before
1683 * changing the task state if and only if any tasks are woken up.
1684 */
1685int wake_up_process(struct task_struct *p)
1686{
1687	WARN_ON(task_is_stopped_or_traced(p));
1688	return try_to_wake_up(p, TASK_NORMAL, 0);
1689}
1690EXPORT_SYMBOL(wake_up_process);
1691
1692int wake_up_state(struct task_struct *p, unsigned int state)
1693{
1694	return try_to_wake_up(p, state, 0);
1695}
1696
1697/*
1698 * Perform scheduler related setup for a newly forked process p.
1699 * p is forked by current.
1700 *
1701 * __sched_fork() is basic setup used by init_idle() too:
1702 */
1703static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1704{
1705	p->on_rq			= 0;
1706
1707	p->se.on_rq			= 0;
1708	p->se.exec_start		= 0;
1709	p->se.sum_exec_runtime		= 0;
1710	p->se.prev_sum_exec_runtime	= 0;
1711	p->se.nr_migrations		= 0;
1712	p->se.vruntime			= 0;
1713	INIT_LIST_HEAD(&p->se.group_node);
1714
1715#ifdef CONFIG_SCHEDSTATS
1716	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1717#endif
1718
1719	RB_CLEAR_NODE(&p->dl.rb_node);
1720	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1721	p->dl.dl_runtime = p->dl.runtime = 0;
1722	p->dl.dl_deadline = p->dl.deadline = 0;
1723	p->dl.dl_period = 0;
1724	p->dl.flags = 0;
1725
1726	INIT_LIST_HEAD(&p->rt.run_list);
1727
1728#ifdef CONFIG_PREEMPT_NOTIFIERS
1729	INIT_HLIST_HEAD(&p->preempt_notifiers);
1730#endif
1731
1732#ifdef CONFIG_NUMA_BALANCING
1733	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1734		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1735		p->mm->numa_scan_seq = 0;
1736	}
1737
1738	if (clone_flags & CLONE_VM)
1739		p->numa_preferred_nid = current->numa_preferred_nid;
1740	else
1741		p->numa_preferred_nid = -1;
1742
1743	p->node_stamp = 0ULL;
1744	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1745	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1746	p->numa_work.next = &p->numa_work;
1747	p->numa_faults_memory = NULL;
1748	p->numa_faults_buffer_memory = NULL;
1749
1750	INIT_LIST_HEAD(&p->numa_entry);
1751	p->numa_group = NULL;
1752#endif /* CONFIG_NUMA_BALANCING */
1753}
1754
1755#ifdef CONFIG_NUMA_BALANCING
1756#ifdef CONFIG_SCHED_DEBUG
1757void set_numabalancing_state(bool enabled)
1758{
1759	if (enabled)
1760		sched_feat_set("NUMA");
1761	else
1762		sched_feat_set("NO_NUMA");
1763}
1764#else
1765__read_mostly bool numabalancing_enabled;
1766
1767void set_numabalancing_state(bool enabled)
1768{
1769	numabalancing_enabled = enabled;
1770}
1771#endif /* CONFIG_SCHED_DEBUG */
1772#endif /* CONFIG_NUMA_BALANCING */
1773
1774/*
1775 * fork()/clone()-time setup:
1776 */
1777int sched_fork(unsigned long clone_flags, struct task_struct *p)
1778{
1779	unsigned long flags;
1780	int cpu = get_cpu();
1781
1782	__sched_fork(clone_flags, p);
1783	/*
1784	 * We mark the process as running here. This guarantees that
1785	 * nobody will actually run it, and a signal or other external
1786	 * event cannot wake it up and insert it on the runqueue either.
1787	 */
1788	p->state = TASK_RUNNING;
1789
1790	/*
1791	 * Make sure we do not leak PI boosting priority to the child.
1792	 */
1793	p->prio = current->normal_prio;
1794
1795	/*
1796	 * Revert to default priority/policy on fork if requested.
1797	 */
1798	if (unlikely(p->sched_reset_on_fork)) {
1799		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1800			p->policy = SCHED_NORMAL;
1801			p->static_prio = NICE_TO_PRIO(0);
1802			p->rt_priority = 0;
1803		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1804			p->static_prio = NICE_TO_PRIO(0);
1805
1806		p->prio = p->normal_prio = __normal_prio(p);
1807		set_load_weight(p);
1808
1809		/*
1810		 * We don't need the reset flag anymore after the fork. It has
1811		 * fulfilled its duty:
1812		 */
1813		p->sched_reset_on_fork = 0;
1814	}
1815
1816	if (dl_prio(p->prio)) {
1817		put_cpu();
1818		return -EAGAIN;
1819	} else if (rt_prio(p->prio)) {
1820		p->sched_class = &rt_sched_class;
1821	} else {
1822		p->sched_class = &fair_sched_class;
1823	}
1824
1825	if (p->sched_class->task_fork)
1826		p->sched_class->task_fork(p);
1827
1828	/*
1829	 * The child is not yet in the pid-hash so no cgroup attach races,
1830	 * and the cgroup is pinned to this child due to cgroup_fork()
1831	 * is ran before sched_fork().
1832	 *
1833	 * Silence PROVE_RCU.
1834	 */
1835	raw_spin_lock_irqsave(&p->pi_lock, flags);
1836	set_task_cpu(p, cpu);
1837	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1838
1839#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1840	if (likely(sched_info_on()))
1841		memset(&p->sched_info, 0, sizeof(p->sched_info));
1842#endif
1843#if defined(CONFIG_SMP)
1844	p->on_cpu = 0;
1845#endif
1846	init_task_preempt_count(p);
1847#ifdef CONFIG_SMP
1848	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1849	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1850#endif
1851
1852	put_cpu();
1853	return 0;
1854}
1855
1856unsigned long to_ratio(u64 period, u64 runtime)
1857{
1858	if (runtime == RUNTIME_INF)
1859		return 1ULL << 20;
1860
1861	/*
1862	 * Doing this here saves a lot of checks in all
1863	 * the calling paths, and returning zero seems
1864	 * safe for them anyway.
1865	 */
1866	if (period == 0)
1867		return 0;
1868
1869	return div64_u64(runtime << 20, period);
1870}
1871
1872#ifdef CONFIG_SMP
1873inline struct dl_bw *dl_bw_of(int i)
1874{
1875	return &cpu_rq(i)->rd->dl_bw;
1876}
1877
1878static inline int dl_bw_cpus(int i)
1879{
1880	struct root_domain *rd = cpu_rq(i)->rd;
1881	int cpus = 0;
1882
1883	for_each_cpu_and(i, rd->span, cpu_active_mask)
1884		cpus++;
1885
1886	return cpus;
1887}
1888#else
1889inline struct dl_bw *dl_bw_of(int i)
1890{
1891	return &cpu_rq(i)->dl.dl_bw;
1892}
1893
1894static inline int dl_bw_cpus(int i)
1895{
1896	return 1;
1897}
1898#endif
1899
1900static inline
1901void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1902{
1903	dl_b->total_bw -= tsk_bw;
1904}
1905
1906static inline
1907void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1908{
1909	dl_b->total_bw += tsk_bw;
1910}
1911
1912static inline
1913bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1914{
1915	return dl_b->bw != -1 &&
1916	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1917}
1918
1919/*
1920 * We must be sure that accepting a new task (or allowing changing the
1921 * parameters of an existing one) is consistent with the bandwidth
1922 * constraints. If yes, this function also accordingly updates the currently
1923 * allocated bandwidth to reflect the new situation.
1924 *
1925 * This function is called while holding p's rq->lock.
1926 */
1927static int dl_overflow(struct task_struct *p, int policy,
1928		       const struct sched_attr *attr)
1929{
1930
1931	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1932	u64 period = attr->sched_period;
1933	u64 runtime = attr->sched_runtime;
1934	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1935	int cpus, err = -1;
1936
1937	if (new_bw == p->dl.dl_bw)
1938		return 0;
1939
1940	/*
1941	 * Either if a task, enters, leave, or stays -deadline but changes
1942	 * its parameters, we may need to update accordingly the total
1943	 * allocated bandwidth of the container.
1944	 */
1945	raw_spin_lock(&dl_b->lock);
1946	cpus = dl_bw_cpus(task_cpu(p));
1947	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1948	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1949		__dl_add(dl_b, new_bw);
1950		err = 0;
1951	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1952		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1953		__dl_clear(dl_b, p->dl.dl_bw);
1954		__dl_add(dl_b, new_bw);
1955		err = 0;
1956	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1957		__dl_clear(dl_b, p->dl.dl_bw);
1958		err = 0;
1959	}
1960	raw_spin_unlock(&dl_b->lock);
1961
1962	return err;
1963}
1964
1965extern void init_dl_bw(struct dl_bw *dl_b);
1966
1967/*
1968 * wake_up_new_task - wake up a newly created task for the first time.
1969 *
1970 * This function will do some initial scheduler statistics housekeeping
1971 * that must be done for every newly created context, then puts the task
1972 * on the runqueue and wakes it.
1973 */
1974void wake_up_new_task(struct task_struct *p)
1975{
1976	unsigned long flags;
1977	struct rq *rq;
1978
1979	raw_spin_lock_irqsave(&p->pi_lock, flags);
1980#ifdef CONFIG_SMP
1981	/*
1982	 * Fork balancing, do it here and not earlier because:
1983	 *  - cpus_allowed can change in the fork path
1984	 *  - any previously selected cpu might disappear through hotplug
1985	 */
1986	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1987#endif
1988
1989	/* Initialize new task's runnable average */
1990	init_task_runnable_average(p);
1991	rq = __task_rq_lock(p);
1992	activate_task(rq, p, 0);
1993	p->on_rq = 1;
1994	trace_sched_wakeup_new(p, true);
1995	check_preempt_curr(rq, p, WF_FORK);
1996#ifdef CONFIG_SMP
1997	if (p->sched_class->task_woken)
1998		p->sched_class->task_woken(rq, p);
1999#endif
2000	task_rq_unlock(rq, p, &flags);
2001}
2002
2003#ifdef CONFIG_PREEMPT_NOTIFIERS
2004
2005/**
2006 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2007 * @notifier: notifier struct to register
2008 */
2009void preempt_notifier_register(struct preempt_notifier *notifier)
2010{
2011	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2012}
2013EXPORT_SYMBOL_GPL(preempt_notifier_register);
2014
2015/**
2016 * preempt_notifier_unregister - no longer interested in preemption notifications
2017 * @notifier: notifier struct to unregister
2018 *
2019 * This is safe to call from within a preemption notifier.
2020 */
2021void preempt_notifier_unregister(struct preempt_notifier *notifier)
2022{
2023	hlist_del(&notifier->link);
2024}
2025EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2026
2027static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2028{
2029	struct preempt_notifier *notifier;
2030
2031	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2032		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2033}
2034
2035static void
2036fire_sched_out_preempt_notifiers(struct task_struct *curr,
2037				 struct task_struct *next)
2038{
2039	struct preempt_notifier *notifier;
2040
2041	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2042		notifier->ops->sched_out(notifier, next);
2043}
2044
2045#else /* !CONFIG_PREEMPT_NOTIFIERS */
2046
2047static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2048{
2049}
2050
2051static void
2052fire_sched_out_preempt_notifiers(struct task_struct *curr,
2053				 struct task_struct *next)
2054{
2055}
2056
2057#endif /* CONFIG_PREEMPT_NOTIFIERS */
2058
2059/**
2060 * prepare_task_switch - prepare to switch tasks
2061 * @rq: the runqueue preparing to switch
2062 * @prev: the current task that is being switched out
2063 * @next: the task we are going to switch to.
2064 *
2065 * This is called with the rq lock held and interrupts off. It must
2066 * be paired with a subsequent finish_task_switch after the context
2067 * switch.
2068 *
2069 * prepare_task_switch sets up locking and calls architecture specific
2070 * hooks.
2071 */
2072static inline void
2073prepare_task_switch(struct rq *rq, struct task_struct *prev,
2074		    struct task_struct *next)
2075{
2076	trace_sched_switch(prev, next);
2077	sched_info_switch(rq, prev, next);
2078	perf_event_task_sched_out(prev, next);
2079	fire_sched_out_preempt_notifiers(prev, next);
2080	prepare_lock_switch(rq, next);
2081	prepare_arch_switch(next);
2082}
2083
2084/**
2085 * finish_task_switch - clean up after a task-switch
2086 * @rq: runqueue associated with task-switch
2087 * @prev: the thread we just switched away from.
2088 *
2089 * finish_task_switch must be called after the context switch, paired
2090 * with a prepare_task_switch call before the context switch.
2091 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2092 * and do any other architecture-specific cleanup actions.
2093 *
2094 * Note that we may have delayed dropping an mm in context_switch(). If
2095 * so, we finish that here outside of the runqueue lock. (Doing it
2096 * with the lock held can cause deadlocks; see schedule() for
2097 * details.)
2098 */
2099static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2100	__releases(rq->lock)
2101{
2102	struct mm_struct *mm = rq->prev_mm;
2103	long prev_state;
2104
2105	rq->prev_mm = NULL;
2106
2107	/*
2108	 * A task struct has one reference for the use as "current".
2109	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2110	 * schedule one last time. The schedule call will never return, and
2111	 * the scheduled task must drop that reference.
2112	 * The test for TASK_DEAD must occur while the runqueue locks are
2113	 * still held, otherwise prev could be scheduled on another cpu, die
2114	 * there before we look at prev->state, and then the reference would
2115	 * be dropped twice.
2116	 *		Manfred Spraul <manfred@colorfullife.com>
2117	 */
2118	prev_state = prev->state;
2119	vtime_task_switch(prev);
2120	finish_arch_switch(prev);
2121	perf_event_task_sched_in(prev, current);
2122	finish_lock_switch(rq, prev);
2123	finish_arch_post_lock_switch();
2124
2125	fire_sched_in_preempt_notifiers(current);
2126	if (mm)
2127		mmdrop(mm);
2128	if (unlikely(prev_state == TASK_DEAD)) {
2129		task_numa_free(prev);
2130
2131		if (prev->sched_class->task_dead)
2132			prev->sched_class->task_dead(prev);
2133
2134		/*
2135		 * Remove function-return probe instances associated with this
2136		 * task and put them back on the free list.
2137		 */
2138		kprobe_flush_task(prev);
2139		put_task_struct(prev);
2140	}
2141
2142	tick_nohz_task_switch(current);
2143}
2144
2145#ifdef CONFIG_SMP
2146
2147/* assumes rq->lock is held */
2148static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2149{
2150	if (prev->sched_class->pre_schedule)
2151		prev->sched_class->pre_schedule(rq, prev);
2152}
2153
2154/* rq->lock is NOT held, but preemption is disabled */
2155static inline void post_schedule(struct rq *rq)
2156{
2157	if (rq->post_schedule) {
2158		unsigned long flags;
2159
2160		raw_spin_lock_irqsave(&rq->lock, flags);
2161		if (rq->curr->sched_class->post_schedule)
2162			rq->curr->sched_class->post_schedule(rq);
2163		raw_spin_unlock_irqrestore(&rq->lock, flags);
2164
2165		rq->post_schedule = 0;
2166	}
2167}
2168
2169#else
2170
2171static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2172{
2173}
2174
2175static inline void post_schedule(struct rq *rq)
2176{
2177}
2178
2179#endif
2180
2181/**
2182 * schedule_tail - first thing a freshly forked thread must call.
2183 * @prev: the thread we just switched away from.
2184 */
2185asmlinkage void schedule_tail(struct task_struct *prev)
2186	__releases(rq->lock)
2187{
2188	struct rq *rq = this_rq();
2189
2190	finish_task_switch(rq, prev);
2191
2192	/*
2193	 * FIXME: do we need to worry about rq being invalidated by the
2194	 * task_switch?
2195	 */
2196	post_schedule(rq);
2197
2198#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2199	/* In this case, finish_task_switch does not reenable preemption */
2200	preempt_enable();
2201#endif
2202	if (current->set_child_tid)
2203		put_user(task_pid_vnr(current), current->set_child_tid);
2204}
2205
2206/*
2207 * context_switch - switch to the new MM and the new
2208 * thread's register state.
2209 */
2210static inline void
2211context_switch(struct rq *rq, struct task_struct *prev,
2212	       struct task_struct *next)
2213{
2214	struct mm_struct *mm, *oldmm;
2215
2216	prepare_task_switch(rq, prev, next);
2217
2218	mm = next->mm;
2219	oldmm = prev->active_mm;
2220	/*
2221	 * For paravirt, this is coupled with an exit in switch_to to
2222	 * combine the page table reload and the switch backend into
2223	 * one hypercall.
2224	 */
2225	arch_start_context_switch(prev);
2226
2227	if (!mm) {
2228		next->active_mm = oldmm;
2229		atomic_inc(&oldmm->mm_count);
2230		enter_lazy_tlb(oldmm, next);
2231	} else
2232		switch_mm(oldmm, mm, next);
2233
2234	if (!prev->mm) {
2235		prev->active_mm = NULL;
2236		rq->prev_mm = oldmm;
2237	}
2238	/*
2239	 * Since the runqueue lock will be released by the next
2240	 * task (which is an invalid locking op but in the case
2241	 * of the scheduler it's an obvious special-case), so we
2242	 * do an early lockdep release here:
2243	 */
2244#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2245	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2246#endif
2247
2248	context_tracking_task_switch(prev, next);
2249	/* Here we just switch the register state and the stack. */
2250	switch_to(prev, next, prev);
2251
2252	barrier();
2253	/*
2254	 * this_rq must be evaluated again because prev may have moved
2255	 * CPUs since it called schedule(), thus the 'rq' on its stack
2256	 * frame will be invalid.
2257	 */
2258	finish_task_switch(this_rq(), prev);
2259}
2260
2261/*
2262 * nr_running and nr_context_switches:
2263 *
2264 * externally visible scheduler statistics: current number of runnable
2265 * threads, total number of context switches performed since bootup.
2266 */
2267unsigned long nr_running(void)
2268{
2269	unsigned long i, sum = 0;
2270
2271	for_each_online_cpu(i)
2272		sum += cpu_rq(i)->nr_running;
2273
2274	return sum;
2275}
2276
2277unsigned long long nr_context_switches(void)
2278{
2279	int i;
2280	unsigned long long sum = 0;
2281
2282	for_each_possible_cpu(i)
2283		sum += cpu_rq(i)->nr_switches;
2284
2285	return sum;
2286}
2287
2288unsigned long nr_iowait(void)
2289{
2290	unsigned long i, sum = 0;
2291
2292	for_each_possible_cpu(i)
2293		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2294
2295	return sum;
2296}
2297
2298unsigned long nr_iowait_cpu(int cpu)
2299{
2300	struct rq *this = cpu_rq(cpu);
2301	return atomic_read(&this->nr_iowait);
2302}
2303
2304#ifdef CONFIG_SMP
2305
2306/*
2307 * sched_exec - execve() is a valuable balancing opportunity, because at
2308 * this point the task has the smallest effective memory and cache footprint.
2309 */
2310void sched_exec(void)
2311{
2312	struct task_struct *p = current;
2313	unsigned long flags;
2314	int dest_cpu;
2315
2316	raw_spin_lock_irqsave(&p->pi_lock, flags);
2317	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2318	if (dest_cpu == smp_processor_id())
2319		goto unlock;
2320
2321	if (likely(cpu_active(dest_cpu))) {
2322		struct migration_arg arg = { p, dest_cpu };
2323
2324		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2325		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2326		return;
2327	}
2328unlock:
2329	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2330}
2331
2332#endif
2333
2334DEFINE_PER_CPU(struct kernel_stat, kstat);
2335DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2336
2337EXPORT_PER_CPU_SYMBOL(kstat);
2338EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2339
2340/*
2341 * Return any ns on the sched_clock that have not yet been accounted in
2342 * @p in case that task is currently running.
2343 *
2344 * Called with task_rq_lock() held on @rq.
2345 */
2346static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2347{
2348	u64 ns = 0;
2349
2350	if (task_current(rq, p)) {
2351		update_rq_clock(rq);
2352		ns = rq_clock_task(rq) - p->se.exec_start;
2353		if ((s64)ns < 0)
2354			ns = 0;
2355	}
2356
2357	return ns;
2358}
2359
2360unsigned long long task_delta_exec(struct task_struct *p)
2361{
2362	unsigned long flags;
2363	struct rq *rq;
2364	u64 ns = 0;
2365
2366	rq = task_rq_lock(p, &flags);
2367	ns = do_task_delta_exec(p, rq);
2368	task_rq_unlock(rq, p, &flags);
2369
2370	return ns;
2371}
2372
2373/*
2374 * Return accounted runtime for the task.
2375 * In case the task is currently running, return the runtime plus current's
2376 * pending runtime that have not been accounted yet.
2377 */
2378unsigned long long task_sched_runtime(struct task_struct *p)
2379{
2380	unsigned long flags;
2381	struct rq *rq;
2382	u64 ns = 0;
2383
2384#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2385	/*
2386	 * 64-bit doesn't need locks to atomically read a 64bit value.
2387	 * So we have a optimization chance when the task's delta_exec is 0.
2388	 * Reading ->on_cpu is racy, but this is ok.
2389	 *
2390	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2391	 * If we race with it entering cpu, unaccounted time is 0. This is
2392	 * indistinguishable from the read occurring a few cycles earlier.
2393	 */
2394	if (!p->on_cpu)
2395		return p->se.sum_exec_runtime;
2396#endif
2397
2398	rq = task_rq_lock(p, &flags);
2399	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2400	task_rq_unlock(rq, p, &flags);
2401
2402	return ns;
2403}
2404
2405/*
2406 * This function gets called by the timer code, with HZ frequency.
2407 * We call it with interrupts disabled.
2408 */
2409void scheduler_tick(void)
2410{
2411	int cpu = smp_processor_id();
2412	struct rq *rq = cpu_rq(cpu);
2413	struct task_struct *curr = rq->curr;
2414
2415	sched_clock_tick();
2416
2417	raw_spin_lock(&rq->lock);
2418	update_rq_clock(rq);
2419	curr->sched_class->task_tick(rq, curr, 0);
2420	update_cpu_load_active(rq);
2421	raw_spin_unlock(&rq->lock);
2422
2423	perf_event_task_tick();
2424
2425#ifdef CONFIG_SMP
2426	rq->idle_balance = idle_cpu(cpu);
2427	trigger_load_balance(rq);
2428#endif
2429	rq_last_tick_reset(rq);
2430}
2431
2432#ifdef CONFIG_NO_HZ_FULL
2433/**
2434 * scheduler_tick_max_deferment
2435 *
2436 * Keep at least one tick per second when a single
2437 * active task is running because the scheduler doesn't
2438 * yet completely support full dynticks environment.
2439 *
2440 * This makes sure that uptime, CFS vruntime, load
2441 * balancing, etc... continue to move forward, even
2442 * with a very low granularity.
2443 *
2444 * Return: Maximum deferment in nanoseconds.
2445 */
2446u64 scheduler_tick_max_deferment(void)
2447{
2448	struct rq *rq = this_rq();
2449	unsigned long next, now = ACCESS_ONCE(jiffies);
2450
2451	next = rq->last_sched_tick + HZ;
2452
2453	if (time_before_eq(next, now))
2454		return 0;
2455
2456	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2457}
2458#endif
2459
2460notrace unsigned long get_parent_ip(unsigned long addr)
2461{
2462	if (in_lock_functions(addr)) {
2463		addr = CALLER_ADDR2;
2464		if (in_lock_functions(addr))
2465			addr = CALLER_ADDR3;
2466	}
2467	return addr;
2468}
2469
2470#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2471				defined(CONFIG_PREEMPT_TRACER))
2472
2473void __kprobes preempt_count_add(int val)
2474{
2475#ifdef CONFIG_DEBUG_PREEMPT
2476	/*
2477	 * Underflow?
2478	 */
2479	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2480		return;
2481#endif
2482	__preempt_count_add(val);
2483#ifdef CONFIG_DEBUG_PREEMPT
2484	/*
2485	 * Spinlock count overflowing soon?
2486	 */
2487	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2488				PREEMPT_MASK - 10);
2489#endif
2490	if (preempt_count() == val)
2491		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2492}
2493EXPORT_SYMBOL(preempt_count_add);
2494
2495void __kprobes preempt_count_sub(int val)
2496{
2497#ifdef CONFIG_DEBUG_PREEMPT
2498	/*
2499	 * Underflow?
2500	 */
2501	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2502		return;
2503	/*
2504	 * Is the spinlock portion underflowing?
2505	 */
2506	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2507			!(preempt_count() & PREEMPT_MASK)))
2508		return;
2509#endif
2510
2511	if (preempt_count() == val)
2512		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2513	__preempt_count_sub(val);
2514}
2515EXPORT_SYMBOL(preempt_count_sub);
2516
2517#endif
2518
2519/*
2520 * Print scheduling while atomic bug:
2521 */
2522static noinline void __schedule_bug(struct task_struct *prev)
2523{
2524	if (oops_in_progress)
2525		return;
2526
2527	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2528		prev->comm, prev->pid, preempt_count());
2529
2530	debug_show_held_locks(prev);
2531	print_modules();
2532	if (irqs_disabled())
2533		print_irqtrace_events(prev);
2534	dump_stack();
2535	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2536}
2537
2538/*
2539 * Various schedule()-time debugging checks and statistics:
2540 */
2541static inline void schedule_debug(struct task_struct *prev)
2542{
2543	/*
2544	 * Test if we are atomic. Since do_exit() needs to call into
2545	 * schedule() atomically, we ignore that path. Otherwise whine
2546	 * if we are scheduling when we should not.
2547	 */
2548	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2549		__schedule_bug(prev);
2550	rcu_sleep_check();
2551
2552	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2553
2554	schedstat_inc(this_rq(), sched_count);
2555}
2556
2557static void put_prev_task(struct rq *rq, struct task_struct *prev)
2558{
2559	if (prev->on_rq || rq->skip_clock_update < 0)
2560		update_rq_clock(rq);
2561	prev->sched_class->put_prev_task(rq, prev);
2562}
2563
2564/*
2565 * Pick up the highest-prio task:
2566 */
2567static inline struct task_struct *
2568pick_next_task(struct rq *rq)
2569{
2570	const struct sched_class *class;
2571	struct task_struct *p;
2572
2573	/*
2574	 * Optimization: we know that if all tasks are in
2575	 * the fair class we can call that function directly:
2576	 */
2577	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2578		p = fair_sched_class.pick_next_task(rq);
2579		if (likely(p))
2580			return p;
2581	}
2582
2583	for_each_class(class) {
2584		p = class->pick_next_task(rq);
2585		if (p)
2586			return p;
2587	}
2588
2589	BUG(); /* the idle class will always have a runnable task */
2590}
2591
2592/*
2593 * __schedule() is the main scheduler function.
2594 *
2595 * The main means of driving the scheduler and thus entering this function are:
2596 *
2597 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2598 *
2599 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2600 *      paths. For example, see arch/x86/entry_64.S.
2601 *
2602 *      To drive preemption between tasks, the scheduler sets the flag in timer
2603 *      interrupt handler scheduler_tick().
2604 *
2605 *   3. Wakeups don't really cause entry into schedule(). They add a
2606 *      task to the run-queue and that's it.
2607 *
2608 *      Now, if the new task added to the run-queue preempts the current
2609 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2610 *      called on the nearest possible occasion:
2611 *
2612 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2613 *
2614 *         - in syscall or exception context, at the next outmost
2615 *           preempt_enable(). (this might be as soon as the wake_up()'s
2616 *           spin_unlock()!)
2617 *
2618 *         - in IRQ context, return from interrupt-handler to
2619 *           preemptible context
2620 *
2621 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2622 *         then at the next:
2623 *
2624 *          - cond_resched() call
2625 *          - explicit schedule() call
2626 *          - return from syscall or exception to user-space
2627 *          - return from interrupt-handler to user-space
2628 */
2629static void __sched __schedule(void)
2630{
2631	struct task_struct *prev, *next;
2632	unsigned long *switch_count;
2633	struct rq *rq;
2634	int cpu;
2635
2636need_resched:
2637	preempt_disable();
2638	cpu = smp_processor_id();
2639	rq = cpu_rq(cpu);
2640	rcu_note_context_switch(cpu);
2641	prev = rq->curr;
2642
2643	schedule_debug(prev);
2644
2645	if (sched_feat(HRTICK))
2646		hrtick_clear(rq);
2647
2648	/*
2649	 * Make sure that signal_pending_state()->signal_pending() below
2650	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2651	 * done by the caller to avoid the race with signal_wake_up().
2652	 */
2653	smp_mb__before_spinlock();
2654	raw_spin_lock_irq(&rq->lock);
2655
2656	switch_count = &prev->nivcsw;
2657	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2658		if (unlikely(signal_pending_state(prev->state, prev))) {
2659			prev->state = TASK_RUNNING;
2660		} else {
2661			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2662			prev->on_rq = 0;
2663
2664			/*
2665			 * If a worker went to sleep, notify and ask workqueue
2666			 * whether it wants to wake up a task to maintain
2667			 * concurrency.
2668			 */
2669			if (prev->flags & PF_WQ_WORKER) {
2670				struct task_struct *to_wakeup;
2671
2672				to_wakeup = wq_worker_sleeping(prev, cpu);
2673				if (to_wakeup)
2674					try_to_wake_up_local(to_wakeup);
2675			}
2676		}
2677		switch_count = &prev->nvcsw;
2678	}
2679
2680	pre_schedule(rq, prev);
2681
2682	if (unlikely(!rq->nr_running))
2683		idle_balance(cpu, rq);
2684
2685	put_prev_task(rq, prev);
2686	next = pick_next_task(rq);
2687	clear_tsk_need_resched(prev);
2688	clear_preempt_need_resched();
2689	rq->skip_clock_update = 0;
2690
2691	if (likely(prev != next)) {
2692		rq->nr_switches++;
2693		rq->curr = next;
2694		++*switch_count;
2695
2696		context_switch(rq, prev, next); /* unlocks the rq */
2697		/*
2698		 * The context switch have flipped the stack from under us
2699		 * and restored the local variables which were saved when
2700		 * this task called schedule() in the past. prev == current
2701		 * is still correct, but it can be moved to another cpu/rq.
2702		 */
2703		cpu = smp_processor_id();
2704		rq = cpu_rq(cpu);
2705	} else
2706		raw_spin_unlock_irq(&rq->lock);
2707
2708	post_schedule(rq);
2709
2710	sched_preempt_enable_no_resched();
2711	if (need_resched())
2712		goto need_resched;
2713}
2714
2715static inline void sched_submit_work(struct task_struct *tsk)
2716{
2717	if (!tsk->state || tsk_is_pi_blocked(tsk))
2718		return;
2719	/*
2720	 * If we are going to sleep and we have plugged IO queued,
2721	 * make sure to submit it to avoid deadlocks.
2722	 */
2723	if (blk_needs_flush_plug(tsk))
2724		blk_schedule_flush_plug(tsk);
2725}
2726
2727asmlinkage void __sched schedule(void)
2728{
2729	struct task_struct *tsk = current;
2730
2731	sched_submit_work(tsk);
2732	__schedule();
2733}
2734EXPORT_SYMBOL(schedule);
2735
2736#ifdef CONFIG_CONTEXT_TRACKING
2737asmlinkage void __sched schedule_user(void)
2738{
2739	/*
2740	 * If we come here after a random call to set_need_resched(),
2741	 * or we have been woken up remotely but the IPI has not yet arrived,
2742	 * we haven't yet exited the RCU idle mode. Do it here manually until
2743	 * we find a better solution.
2744	 */
2745	user_exit();
2746	schedule();
2747	user_enter();
2748}
2749#endif
2750
2751/**
2752 * schedule_preempt_disabled - called with preemption disabled
2753 *
2754 * Returns with preemption disabled. Note: preempt_count must be 1
2755 */
2756void __sched schedule_preempt_disabled(void)
2757{
2758	sched_preempt_enable_no_resched();
2759	schedule();
2760	preempt_disable();
2761}
2762
2763#ifdef CONFIG_PREEMPT
2764/*
2765 * this is the entry point to schedule() from in-kernel preemption
2766 * off of preempt_enable. Kernel preemptions off return from interrupt
2767 * occur there and call schedule directly.
2768 */
2769asmlinkage void __sched notrace preempt_schedule(void)
2770{
2771	/*
2772	 * If there is a non-zero preempt_count or interrupts are disabled,
2773	 * we do not want to preempt the current task. Just return..
2774	 */
2775	if (likely(!preemptible()))
2776		return;
2777
2778	do {
2779		__preempt_count_add(PREEMPT_ACTIVE);
2780		__schedule();
2781		__preempt_count_sub(PREEMPT_ACTIVE);
2782
2783		/*
2784		 * Check again in case we missed a preemption opportunity
2785		 * between schedule and now.
2786		 */
2787		barrier();
2788	} while (need_resched());
2789}
2790EXPORT_SYMBOL(preempt_schedule);
2791#endif /* CONFIG_PREEMPT */
2792
2793/*
2794 * this is the entry point to schedule() from kernel preemption
2795 * off of irq context.
2796 * Note, that this is called and return with irqs disabled. This will
2797 * protect us against recursive calling from irq.
2798 */
2799asmlinkage void __sched preempt_schedule_irq(void)
2800{
2801	enum ctx_state prev_state;
2802
2803	/* Catch callers which need to be fixed */
2804	BUG_ON(preempt_count() || !irqs_disabled());
2805
2806	prev_state = exception_enter();
2807
2808	do {
2809		__preempt_count_add(PREEMPT_ACTIVE);
2810		local_irq_enable();
2811		__schedule();
2812		local_irq_disable();
2813		__preempt_count_sub(PREEMPT_ACTIVE);
2814
2815		/*
2816		 * Check again in case we missed a preemption opportunity
2817		 * between schedule and now.
2818		 */
2819		barrier();
2820	} while (need_resched());
2821
2822	exception_exit(prev_state);
2823}
2824
2825int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2826			  void *key)
2827{
2828	return try_to_wake_up(curr->private, mode, wake_flags);
2829}
2830EXPORT_SYMBOL(default_wake_function);
2831
2832static long __sched
2833sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2834{
2835	unsigned long flags;
2836	wait_queue_t wait;
2837
2838	init_waitqueue_entry(&wait, current);
2839
2840	__set_current_state(state);
2841
2842	spin_lock_irqsave(&q->lock, flags);
2843	__add_wait_queue(q, &wait);
2844	spin_unlock(&q->lock);
2845	timeout = schedule_timeout(timeout);
2846	spin_lock_irq(&q->lock);
2847	__remove_wait_queue(q, &wait);
2848	spin_unlock_irqrestore(&q->lock, flags);
2849
2850	return timeout;
2851}
2852
2853void __sched interruptible_sleep_on(wait_queue_head_t *q)
2854{
2855	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2856}
2857EXPORT_SYMBOL(interruptible_sleep_on);
2858
2859long __sched
2860interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2861{
2862	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2863}
2864EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2865
2866void __sched sleep_on(wait_queue_head_t *q)
2867{
2868	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2869}
2870EXPORT_SYMBOL(sleep_on);
2871
2872long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2873{
2874	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2875}
2876EXPORT_SYMBOL(sleep_on_timeout);
2877
2878#ifdef CONFIG_RT_MUTEXES
2879
2880/*
2881 * rt_mutex_setprio - set the current priority of a task
2882 * @p: task
2883 * @prio: prio value (kernel-internal form)
2884 *
2885 * This function changes the 'effective' priority of a task. It does
2886 * not touch ->normal_prio like __setscheduler().
2887 *
2888 * Used by the rt_mutex code to implement priority inheritance logic.
2889 */
2890void rt_mutex_setprio(struct task_struct *p, int prio)
2891{
2892	int oldprio, on_rq, running, enqueue_flag = 0;
2893	struct rq *rq;
2894	const struct sched_class *prev_class;
2895
2896	BUG_ON(prio > MAX_PRIO);
2897
2898	rq = __task_rq_lock(p);
2899
2900	/*
2901	 * Idle task boosting is a nono in general. There is one
2902	 * exception, when PREEMPT_RT and NOHZ is active:
2903	 *
2904	 * The idle task calls get_next_timer_interrupt() and holds
2905	 * the timer wheel base->lock on the CPU and another CPU wants
2906	 * to access the timer (probably to cancel it). We can safely
2907	 * ignore the boosting request, as the idle CPU runs this code
2908	 * with interrupts disabled and will complete the lock
2909	 * protected section without being interrupted. So there is no
2910	 * real need to boost.
2911	 */
2912	if (unlikely(p == rq->idle)) {
2913		WARN_ON(p != rq->curr);
2914		WARN_ON(p->pi_blocked_on);
2915		goto out_unlock;
2916	}
2917
2918	trace_sched_pi_setprio(p, prio);
2919	p->pi_top_task = rt_mutex_get_top_task(p);
2920	oldprio = p->prio;
2921	prev_class = p->sched_class;
2922	on_rq = p->on_rq;
2923	running = task_current(rq, p);
2924	if (on_rq)
2925		dequeue_task(rq, p, 0);
2926	if (running)
2927		p->sched_class->put_prev_task(rq, p);
2928
2929	/*
2930	 * Boosting condition are:
2931	 * 1. -rt task is running and holds mutex A
2932	 *      --> -dl task blocks on mutex A
2933	 *
2934	 * 2. -dl task is running and holds mutex A
2935	 *      --> -dl task blocks on mutex A and could preempt the
2936	 *          running task
2937	 */
2938	if (dl_prio(prio)) {
2939		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2940			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2941			p->dl.dl_boosted = 1;
2942			p->dl.dl_throttled = 0;
2943			enqueue_flag = ENQUEUE_REPLENISH;
2944		} else
2945			p->dl.dl_boosted = 0;
2946		p->sched_class = &dl_sched_class;
2947	} else if (rt_prio(prio)) {
2948		if (dl_prio(oldprio))
2949			p->dl.dl_boosted = 0;
2950		if (oldprio < prio)
2951			enqueue_flag = ENQUEUE_HEAD;
2952		p->sched_class = &rt_sched_class;
2953	} else {
2954		if (dl_prio(oldprio))
2955			p->dl.dl_boosted = 0;
2956		p->sched_class = &fair_sched_class;
2957	}
2958
2959	p->prio = prio;
2960
2961	if (running)
2962		p->sched_class->set_curr_task(rq);
2963	if (on_rq)
2964		enqueue_task(rq, p, enqueue_flag);
2965
2966	check_class_changed(rq, p, prev_class, oldprio);
2967out_unlock:
2968	__task_rq_unlock(rq);
2969}
2970#endif
2971
2972void set_user_nice(struct task_struct *p, long nice)
2973{
2974	int old_prio, delta, on_rq;
2975	unsigned long flags;
2976	struct rq *rq;
2977
2978	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2979		return;
2980	/*
2981	 * We have to be careful, if called from sys_setpriority(),
2982	 * the task might be in the middle of scheduling on another CPU.
2983	 */
2984	rq = task_rq_lock(p, &flags);
2985	/*
2986	 * The RT priorities are set via sched_setscheduler(), but we still
2987	 * allow the 'normal' nice value to be set - but as expected
2988	 * it wont have any effect on scheduling until the task is
2989	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2990	 */
2991	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2992		p->static_prio = NICE_TO_PRIO(nice);
2993		goto out_unlock;
2994	}
2995	on_rq = p->on_rq;
2996	if (on_rq)
2997		dequeue_task(rq, p, 0);
2998
2999	p->static_prio = NICE_TO_PRIO(nice);
3000	set_load_weight(p);
3001	old_prio = p->prio;
3002	p->prio = effective_prio(p);
3003	delta = p->prio - old_prio;
3004
3005	if (on_rq) {
3006		enqueue_task(rq, p, 0);
3007		/*
3008		 * If the task increased its priority or is running and
3009		 * lowered its priority, then reschedule its CPU:
3010		 */
3011		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3012			resched_task(rq->curr);
3013	}
3014out_unlock:
3015	task_rq_unlock(rq, p, &flags);
3016}
3017EXPORT_SYMBOL(set_user_nice);
3018
3019/*
3020 * can_nice - check if a task can reduce its nice value
3021 * @p: task
3022 * @nice: nice value
3023 */
3024int can_nice(const struct task_struct *p, const int nice)
3025{
3026	/* convert nice value [19,-20] to rlimit style value [1,40] */
3027	int nice_rlim = 20 - nice;
3028
3029	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3030		capable(CAP_SYS_NICE));
3031}
3032
3033#ifdef __ARCH_WANT_SYS_NICE
3034
3035/*
3036 * sys_nice - change the priority of the current process.
3037 * @increment: priority increment
3038 *
3039 * sys_setpriority is a more generic, but much slower function that
3040 * does similar things.
3041 */
3042SYSCALL_DEFINE1(nice, int, increment)
3043{
3044	long nice, retval;
3045
3046	/*
3047	 * Setpriority might change our priority at the same moment.
3048	 * We don't have to worry. Conceptually one call occurs first
3049	 * and we have a single winner.
3050	 */
3051	if (increment < -40)
3052		increment = -40;
3053	if (increment > 40)
3054		increment = 40;
3055
3056	nice = TASK_NICE(current) + increment;
3057	if (nice < -20)
3058		nice = -20;
3059	if (nice > 19)
3060		nice = 19;
3061
3062	if (increment < 0 && !can_nice(current, nice))
3063		return -EPERM;
3064
3065	retval = security_task_setnice(current, nice);
3066	if (retval)
3067		return retval;
3068
3069	set_user_nice(current, nice);
3070	return 0;
3071}
3072
3073#endif
3074
3075/**
3076 * task_prio - return the priority value of a given task.
3077 * @p: the task in question.
3078 *
3079 * Return: The priority value as seen by users in /proc.
3080 * RT tasks are offset by -200. Normal tasks are centered
3081 * around 0, value goes from -16 to +15.
3082 */
3083int task_prio(const struct task_struct *p)
3084{
3085	return p->prio - MAX_RT_PRIO;
3086}
3087
3088/**
3089 * task_nice - return the nice value of a given task.
3090 * @p: the task in question.
3091 *
3092 * Return: The nice value [ -20 ... 0 ... 19 ].
3093 */
3094int task_nice(const struct task_struct *p)
3095{
3096	return TASK_NICE(p);
3097}
3098EXPORT_SYMBOL(task_nice);
3099
3100/**
3101 * idle_cpu - is a given cpu idle currently?
3102 * @cpu: the processor in question.
3103 *
3104 * Return: 1 if the CPU is currently idle. 0 otherwise.
3105 */
3106int idle_cpu(int cpu)
3107{
3108	struct rq *rq = cpu_rq(cpu);
3109
3110	if (rq->curr != rq->idle)
3111		return 0;
3112
3113	if (rq->nr_running)
3114		return 0;
3115
3116#ifdef CONFIG_SMP
3117	if (!llist_empty(&rq->wake_list))
3118		return 0;
3119#endif
3120
3121	return 1;
3122}
3123
3124/**
3125 * idle_task - return the idle task for a given cpu.
3126 * @cpu: the processor in question.
3127 *
3128 * Return: The idle task for the cpu @cpu.
3129 */
3130struct task_struct *idle_task(int cpu)
3131{
3132	return cpu_rq(cpu)->idle;
3133}
3134
3135/**
3136 * find_process_by_pid - find a process with a matching PID value.
3137 * @pid: the pid in question.
3138 *
3139 * The task of @pid, if found. %NULL otherwise.
3140 */
3141static struct task_struct *find_process_by_pid(pid_t pid)
3142{
3143	return pid ? find_task_by_vpid(pid) : current;
3144}
3145
3146/*
3147 * This function initializes the sched_dl_entity of a newly becoming
3148 * SCHED_DEADLINE task.
3149 *
3150 * Only the static values are considered here, the actual runtime and the
3151 * absolute deadline will be properly calculated when the task is enqueued
3152 * for the first time with its new policy.
3153 */
3154static void
3155__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3156{
3157	struct sched_dl_entity *dl_se = &p->dl;
3158
3159	init_dl_task_timer(dl_se);
3160	dl_se->dl_runtime = attr->sched_runtime;
3161	dl_se->dl_deadline = attr->sched_deadline;
3162	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3163	dl_se->flags = attr->sched_flags;
3164	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3165	dl_se->dl_throttled = 0;
3166	dl_se->dl_new = 1;
3167}
3168
3169/* Actually do priority change: must hold pi & rq lock. */
3170static void __setscheduler(struct rq *rq, struct task_struct *p,
3171			   const struct sched_attr *attr)
3172{
3173	int policy = attr->sched_policy;
3174
3175	if (policy == -1) /* setparam */
3176		policy = p->policy;
3177
3178	p->policy = policy;
3179
3180	if (dl_policy(policy))
3181		__setparam_dl(p, attr);
3182	else if (fair_policy(policy))
3183		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3184
3185	/*
3186	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3187	 * !rt_policy. Always setting this ensures that things like
3188	 * getparam()/getattr() don't report silly values for !rt tasks.
3189	 */
3190	p->rt_priority = attr->sched_priority;
3191
3192	p->normal_prio = normal_prio(p);
3193	p->prio = rt_mutex_getprio(p);
3194
3195	if (dl_prio(p->prio))
3196		p->sched_class = &dl_sched_class;
3197	else if (rt_prio(p->prio))
3198		p->sched_class = &rt_sched_class;
3199	else
3200		p->sched_class = &fair_sched_class;
3201
3202	set_load_weight(p);
3203}
3204
3205static void
3206__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3207{
3208	struct sched_dl_entity *dl_se = &p->dl;
3209
3210	attr->sched_priority = p->rt_priority;
3211	attr->sched_runtime = dl_se->dl_runtime;
3212	attr->sched_deadline = dl_se->dl_deadline;
3213	attr->sched_period = dl_se->dl_period;
3214	attr->sched_flags = dl_se->flags;
3215}
3216
3217/*
3218 * This function validates the new parameters of a -deadline task.
3219 * We ask for the deadline not being zero, and greater or equal
3220 * than the runtime, as well as the period of being zero or
3221 * greater than deadline. Furthermore, we have to be sure that
3222 * user parameters are above the internal resolution (1us); we
3223 * check sched_runtime only since it is always the smaller one.
3224 */
3225static bool
3226__checkparam_dl(const struct sched_attr *attr)
3227{
3228	return attr && attr->sched_deadline != 0 &&
3229		(attr->sched_period == 0 ||
3230		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3231		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3232		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3233}
3234
3235/*
3236 * check the target process has a UID that matches the current process's
3237 */
3238static bool check_same_owner(struct task_struct *p)
3239{
3240	const struct cred *cred = current_cred(), *pcred;
3241	bool match;
3242
3243	rcu_read_lock();
3244	pcred = __task_cred(p);
3245	match = (uid_eq(cred->euid, pcred->euid) ||
3246		 uid_eq(cred->euid, pcred->uid));
3247	rcu_read_unlock();
3248	return match;
3249}
3250
3251static int __sched_setscheduler(struct task_struct *p,
3252				const struct sched_attr *attr,
3253				bool user)
3254{
3255	int retval, oldprio, oldpolicy = -1, on_rq, running;
3256	int policy = attr->sched_policy;
3257	unsigned long flags;
3258	const struct sched_class *prev_class;
3259	struct rq *rq;
3260	int reset_on_fork;
3261
3262	/* may grab non-irq protected spin_locks */
3263	BUG_ON(in_interrupt());
3264recheck:
3265	/* double check policy once rq lock held */
3266	if (policy < 0) {
3267		reset_on_fork = p->sched_reset_on_fork;
3268		policy = oldpolicy = p->policy;
3269	} else {
3270		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3271
3272		if (policy != SCHED_DEADLINE &&
3273				policy != SCHED_FIFO && policy != SCHED_RR &&
3274				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3275				policy != SCHED_IDLE)
3276			return -EINVAL;
3277	}
3278
3279	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3280		return -EINVAL;
3281
3282	/*
3283	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3284	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3285	 * SCHED_BATCH and SCHED_IDLE is 0.
3286	 */
3287	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3288	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3289		return -EINVAL;
3290	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3291	    (rt_policy(policy) != (attr->sched_priority != 0)))
3292		return -EINVAL;
3293
3294	/*
3295	 * Allow unprivileged RT tasks to decrease priority:
3296	 */
3297	if (user && !capable(CAP_SYS_NICE)) {
3298		if (fair_policy(policy)) {
3299			if (attr->sched_nice < TASK_NICE(p) &&
3300			    !can_nice(p, attr->sched_nice))
3301				return -EPERM;
3302		}
3303
3304		if (rt_policy(policy)) {
3305			unsigned long rlim_rtprio =
3306					task_rlimit(p, RLIMIT_RTPRIO);
3307
3308			/* can't set/change the rt policy */
3309			if (policy != p->policy && !rlim_rtprio)
3310				return -EPERM;
3311
3312			/* can't increase priority */
3313			if (attr->sched_priority > p->rt_priority &&
3314			    attr->sched_priority > rlim_rtprio)
3315				return -EPERM;
3316		}
3317
3318		/*
3319		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3320		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3321		 */
3322		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3323			if (!can_nice(p, TASK_NICE(p)))
3324				return -EPERM;
3325		}
3326
3327		/* can't change other user's priorities */
3328		if (!check_same_owner(p))
3329			return -EPERM;
3330
3331		/* Normal users shall not reset the sched_reset_on_fork flag */
3332		if (p->sched_reset_on_fork && !reset_on_fork)
3333			return -EPERM;
3334	}
3335
3336	if (user) {
3337		retval = security_task_setscheduler(p);
3338		if (retval)
3339			return retval;
3340	}
3341
3342	/*
3343	 * make sure no PI-waiters arrive (or leave) while we are
3344	 * changing the priority of the task:
3345	 *
3346	 * To be able to change p->policy safely, the appropriate
3347	 * runqueue lock must be held.
3348	 */
3349	rq = task_rq_lock(p, &flags);
3350
3351	/*
3352	 * Changing the policy of the stop threads its a very bad idea
3353	 */
3354	if (p == rq->stop) {
3355		task_rq_unlock(rq, p, &flags);
3356		return -EINVAL;
3357	}
3358
3359	/*
3360	 * If not changing anything there's no need to proceed further:
3361	 */
3362	if (unlikely(policy == p->policy)) {
3363		if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3364			goto change;
3365		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3366			goto change;
3367		if (dl_policy(policy))
3368			goto change;
3369
3370		task_rq_unlock(rq, p, &flags);
3371		return 0;
3372	}
3373change:
3374
3375	if (user) {
3376#ifdef CONFIG_RT_GROUP_SCHED
3377		/*
3378		 * Do not allow realtime tasks into groups that have no runtime
3379		 * assigned.
3380		 */
3381		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3382				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3383				!task_group_is_autogroup(task_group(p))) {
3384			task_rq_unlock(rq, p, &flags);
3385			return -EPERM;
3386		}
3387#endif
3388#ifdef CONFIG_SMP
3389		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3390			cpumask_t *span = rq->rd->span;
3391
3392			/*
3393			 * Don't allow tasks with an affinity mask smaller than
3394			 * the entire root_domain to become SCHED_DEADLINE. We
3395			 * will also fail if there's no bandwidth available.
3396			 */
3397			if (!cpumask_subset(span, &p->cpus_allowed) ||
3398			    rq->rd->dl_bw.bw == 0) {
3399				task_rq_unlock(rq, p, &flags);
3400				return -EPERM;
3401			}
3402		}
3403#endif
3404	}
3405
3406	/* recheck policy now with rq lock held */
3407	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3408		policy = oldpolicy = -1;
3409		task_rq_unlock(rq, p, &flags);
3410		goto recheck;
3411	}
3412
3413	/*
3414	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3415	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3416	 * is available.
3417	 */
3418	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3419		task_rq_unlock(rq, p, &flags);
3420		return -EBUSY;
3421	}
3422
3423	on_rq = p->on_rq;
3424	running = task_current(rq, p);
3425	if (on_rq)
3426		dequeue_task(rq, p, 0);
3427	if (running)
3428		p->sched_class->put_prev_task(rq, p);
3429
3430	p->sched_reset_on_fork = reset_on_fork;
3431
3432	oldprio = p->prio;
3433	prev_class = p->sched_class;
3434	__setscheduler(rq, p, attr);
3435
3436	if (running)
3437		p->sched_class->set_curr_task(rq);
3438	if (on_rq)
3439		enqueue_task(rq, p, 0);
3440
3441	check_class_changed(rq, p, prev_class, oldprio);
3442	task_rq_unlock(rq, p, &flags);
3443
3444	rt_mutex_adjust_pi(p);
3445
3446	return 0;
3447}
3448
3449static int _sched_setscheduler(struct task_struct *p, int policy,
3450			       const struct sched_param *param, bool check)
3451{
3452	struct sched_attr attr = {
3453		.sched_policy   = policy,
3454		.sched_priority = param->sched_priority,
3455		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3456	};
3457
3458	/*
3459	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3460	 */
3461	if (policy & SCHED_RESET_ON_FORK) {
3462		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3463		policy &= ~SCHED_RESET_ON_FORK;
3464		attr.sched_policy = policy;
3465	}
3466
3467	return __sched_setscheduler(p, &attr, check);
3468}
3469/**
3470 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3471 * @p: the task in question.
3472 * @policy: new policy.
3473 * @param: structure containing the new RT priority.
3474 *
3475 * Return: 0 on success. An error code otherwise.
3476 *
3477 * NOTE that the task may be already dead.
3478 */
3479int sched_setscheduler(struct task_struct *p, int policy,
3480		       const struct sched_param *param)
3481{
3482	return _sched_setscheduler(p, policy, param, true);
3483}
3484EXPORT_SYMBOL_GPL(sched_setscheduler);
3485
3486int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3487{
3488	return __sched_setscheduler(p, attr, true);
3489}
3490EXPORT_SYMBOL_GPL(sched_setattr);
3491
3492/**
3493 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3494 * @p: the task in question.
3495 * @policy: new policy.
3496 * @param: structure containing the new RT priority.
3497 *
3498 * Just like sched_setscheduler, only don't bother checking if the
3499 * current context has permission.  For example, this is needed in
3500 * stop_machine(): we create temporary high priority worker threads,
3501 * but our caller might not have that capability.
3502 *
3503 * Return: 0 on success. An error code otherwise.
3504 */
3505int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3506			       const struct sched_param *param)
3507{
3508	return _sched_setscheduler(p, policy, param, false);
3509}
3510
3511static int
3512do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3513{
3514	struct sched_param lparam;
3515	struct task_struct *p;
3516	int retval;
3517
3518	if (!param || pid < 0)
3519		return -EINVAL;
3520	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3521		return -EFAULT;
3522
3523	rcu_read_lock();
3524	retval = -ESRCH;
3525	p = find_process_by_pid(pid);
3526	if (p != NULL)
3527		retval = sched_setscheduler(p, policy, &lparam);
3528	rcu_read_unlock();
3529
3530	return retval;
3531}
3532
3533/*
3534 * Mimics kernel/events/core.c perf_copy_attr().
3535 */
3536static int sched_copy_attr(struct sched_attr __user *uattr,
3537			   struct sched_attr *attr)
3538{
3539	u32 size;
3540	int ret;
3541
3542	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3543		return -EFAULT;
3544
3545	/*
3546	 * zero the full structure, so that a short copy will be nice.
3547	 */
3548	memset(attr, 0, sizeof(*attr));
3549
3550	ret = get_user(size, &uattr->size);
3551	if (ret)
3552		return ret;
3553
3554	if (size > PAGE_SIZE)	/* silly large */
3555		goto err_size;
3556
3557	if (!size)		/* abi compat */
3558		size = SCHED_ATTR_SIZE_VER0;
3559
3560	if (size < SCHED_ATTR_SIZE_VER0)
3561		goto err_size;
3562
3563	/*
3564	 * If we're handed a bigger struct than we know of,
3565	 * ensure all the unknown bits are 0 - i.e. new
3566	 * user-space does not rely on any kernel feature
3567	 * extensions we dont know about yet.
3568	 */
3569	if (size > sizeof(*attr)) {
3570		unsigned char __user *addr;
3571		unsigned char __user *end;
3572		unsigned char val;
3573
3574		addr = (void __user *)uattr + sizeof(*attr);
3575		end  = (void __user *)uattr + size;
3576
3577		for (; addr < end; addr++) {
3578			ret = get_user(val, addr);
3579			if (ret)
3580				return ret;
3581			if (val)
3582				goto err_size;
3583		}
3584		size = sizeof(*attr);
3585	}
3586
3587	ret = copy_from_user(attr, uattr, size);
3588	if (ret)
3589		return -EFAULT;
3590
3591	/*
3592	 * XXX: do we want to be lenient like existing syscalls; or do we want
3593	 * to be strict and return an error on out-of-bounds values?
3594	 */
3595	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3596
3597out:
3598	return ret;
3599
3600err_size:
3601	put_user(sizeof(*attr), &uattr->size);
3602	ret = -E2BIG;
3603	goto out;
3604}
3605
3606/**
3607 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3608 * @pid: the pid in question.
3609 * @policy: new policy.
3610 * @param: structure containing the new RT priority.
3611 *
3612 * Return: 0 on success. An error code otherwise.
3613 */
3614SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3615		struct sched_param __user *, param)
3616{
3617	/* negative values for policy are not valid */
3618	if (policy < 0)
3619		return -EINVAL;
3620
3621	return do_sched_setscheduler(pid, policy, param);
3622}
3623
3624/**
3625 * sys_sched_setparam - set/change the RT priority of a thread
3626 * @pid: the pid in question.
3627 * @param: structure containing the new RT priority.
3628 *
3629 * Return: 0 on success. An error code otherwise.
3630 */
3631SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3632{
3633	return do_sched_setscheduler(pid, -1, param);
3634}
3635
3636/**
3637 * sys_sched_setattr - same as above, but with extended sched_attr
3638 * @pid: the pid in question.
3639 * @uattr: structure containing the extended parameters.
3640 */
3641SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3642{
3643	struct sched_attr attr;
3644	struct task_struct *p;
3645	int retval;
3646
3647	if (!uattr || pid < 0)
3648		return -EINVAL;
3649
3650	if (sched_copy_attr(uattr, &attr))
3651		return -EFAULT;
3652
3653	rcu_read_lock();
3654	retval = -ESRCH;
3655	p = find_process_by_pid(pid);
3656	if (p != NULL)
3657		retval = sched_setattr(p, &attr);
3658	rcu_read_unlock();
3659
3660	return retval;
3661}
3662
3663/**
3664 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3665 * @pid: the pid in question.
3666 *
3667 * Return: On success, the policy of the thread. Otherwise, a negative error
3668 * code.
3669 */
3670SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3671{
3672	struct task_struct *p;
3673	int retval;
3674
3675	if (pid < 0)
3676		return -EINVAL;
3677
3678	retval = -ESRCH;
3679	rcu_read_lock();
3680	p = find_process_by_pid(pid);
3681	if (p) {
3682		retval = security_task_getscheduler(p);
3683		if (!retval)
3684			retval = p->policy
3685				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3686	}
3687	rcu_read_unlock();
3688	return retval;
3689}
3690
3691/**
3692 * sys_sched_getparam - get the RT priority of a thread
3693 * @pid: the pid in question.
3694 * @param: structure containing the RT priority.
3695 *
3696 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3697 * code.
3698 */
3699SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3700{
3701	struct sched_param lp;
3702	struct task_struct *p;
3703	int retval;
3704
3705	if (!param || pid < 0)
3706		return -EINVAL;
3707
3708	rcu_read_lock();
3709	p = find_process_by_pid(pid);
3710	retval = -ESRCH;
3711	if (!p)
3712		goto out_unlock;
3713
3714	retval = security_task_getscheduler(p);
3715	if (retval)
3716		goto out_unlock;
3717
3718	if (task_has_dl_policy(p)) {
3719		retval = -EINVAL;
3720		goto out_unlock;
3721	}
3722	lp.sched_priority = p->rt_priority;
3723	rcu_read_unlock();
3724
3725	/*
3726	 * This one might sleep, we cannot do it with a spinlock held ...
3727	 */
3728	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3729
3730	return retval;
3731
3732out_unlock:
3733	rcu_read_unlock();
3734	return retval;
3735}
3736
3737static int sched_read_attr(struct sched_attr __user *uattr,
3738			   struct sched_attr *attr,
3739			   unsigned int usize)
3740{
3741	int ret;
3742
3743	if (!access_ok(VERIFY_WRITE, uattr, usize))
3744		return -EFAULT;
3745
3746	/*
3747	 * If we're handed a smaller struct than we know of,
3748	 * ensure all the unknown bits are 0 - i.e. old
3749	 * user-space does not get uncomplete information.
3750	 */
3751	if (usize < sizeof(*attr)) {
3752		unsigned char *addr;
3753		unsigned char *end;
3754
3755		addr = (void *)attr + usize;
3756		end  = (void *)attr + sizeof(*attr);
3757
3758		for (; addr < end; addr++) {
3759			if (*addr)
3760				goto err_size;
3761		}
3762
3763		attr->size = usize;
3764	}
3765
3766	ret = copy_to_user(uattr, attr, usize);
3767	if (ret)
3768		return -EFAULT;
3769
3770out:
3771	return ret;
3772
3773err_size:
3774	ret = -E2BIG;
3775	goto out;
3776}
3777
3778/**
3779 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3780 * @pid: the pid in question.
3781 * @uattr: structure containing the extended parameters.
3782 * @size: sizeof(attr) for fwd/bwd comp.
3783 */
3784SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3785		unsigned int, size)
3786{
3787	struct sched_attr attr = {
3788		.size = sizeof(struct sched_attr),
3789	};
3790	struct task_struct *p;
3791	int retval;
3792
3793	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3794	    size < SCHED_ATTR_SIZE_VER0)
3795		return -EINVAL;
3796
3797	rcu_read_lock();
3798	p = find_process_by_pid(pid);
3799	retval = -ESRCH;
3800	if (!p)
3801		goto out_unlock;
3802
3803	retval = security_task_getscheduler(p);
3804	if (retval)
3805		goto out_unlock;
3806
3807	attr.sched_policy = p->policy;
3808	if (p->sched_reset_on_fork)
3809		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3810	if (task_has_dl_policy(p))
3811		__getparam_dl(p, &attr);
3812	else if (task_has_rt_policy(p))
3813		attr.sched_priority = p->rt_priority;
3814	else
3815		attr.sched_nice = TASK_NICE(p);
3816
3817	rcu_read_unlock();
3818
3819	retval = sched_read_attr(uattr, &attr, size);
3820	return retval;
3821
3822out_unlock:
3823	rcu_read_unlock();
3824	return retval;
3825}
3826
3827long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3828{
3829	cpumask_var_t cpus_allowed, new_mask;
3830	struct task_struct *p;
3831	int retval;
3832
3833	rcu_read_lock();
3834
3835	p = find_process_by_pid(pid);
3836	if (!p) {
3837		rcu_read_unlock();
3838		return -ESRCH;
3839	}
3840
3841	/* Prevent p going away */
3842	get_task_struct(p);
3843	rcu_read_unlock();
3844
3845	if (p->flags & PF_NO_SETAFFINITY) {
3846		retval = -EINVAL;
3847		goto out_put_task;
3848	}
3849	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3850		retval = -ENOMEM;
3851		goto out_put_task;
3852	}
3853	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3854		retval = -ENOMEM;
3855		goto out_free_cpus_allowed;
3856	}
3857	retval = -EPERM;
3858	if (!check_same_owner(p)) {
3859		rcu_read_lock();
3860		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3861			rcu_read_unlock();
3862			goto out_unlock;
3863		}
3864		rcu_read_unlock();
3865	}
3866
3867	retval = security_task_setscheduler(p);
3868	if (retval)
3869		goto out_unlock;
3870
3871
3872	cpuset_cpus_allowed(p, cpus_allowed);
3873	cpumask_and(new_mask, in_mask, cpus_allowed);
3874
3875	/*
3876	 * Since bandwidth control happens on root_domain basis,
3877	 * if admission test is enabled, we only admit -deadline
3878	 * tasks allowed to run on all the CPUs in the task's
3879	 * root_domain.
3880	 */
3881#ifdef CONFIG_SMP
3882	if (task_has_dl_policy(p)) {
3883		const struct cpumask *span = task_rq(p)->rd->span;
3884
3885		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3886			retval = -EBUSY;
3887			goto out_unlock;
3888		}
3889	}
3890#endif
3891again:
3892	retval = set_cpus_allowed_ptr(p, new_mask);
3893
3894	if (!retval) {
3895		cpuset_cpus_allowed(p, cpus_allowed);
3896		if (!cpumask_subset(new_mask, cpus_allowed)) {
3897			/*
3898			 * We must have raced with a concurrent cpuset
3899			 * update. Just reset the cpus_allowed to the
3900			 * cpuset's cpus_allowed
3901			 */
3902			cpumask_copy(new_mask, cpus_allowed);
3903			goto again;
3904		}
3905	}
3906out_unlock:
3907	free_cpumask_var(new_mask);
3908out_free_cpus_allowed:
3909	free_cpumask_var(cpus_allowed);
3910out_put_task:
3911	put_task_struct(p);
3912	return retval;
3913}
3914
3915static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3916			     struct cpumask *new_mask)
3917{
3918	if (len < cpumask_size())
3919		cpumask_clear(new_mask);
3920	else if (len > cpumask_size())
3921		len = cpumask_size();
3922
3923	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3924}
3925
3926/**
3927 * sys_sched_setaffinity - set the cpu affinity of a process
3928 * @pid: pid of the process
3929 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3930 * @user_mask_ptr: user-space pointer to the new cpu mask
3931 *
3932 * Return: 0 on success. An error code otherwise.
3933 */
3934SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3935		unsigned long __user *, user_mask_ptr)
3936{
3937	cpumask_var_t new_mask;
3938	int retval;
3939
3940	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3941		return -ENOMEM;
3942
3943	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3944	if (retval == 0)
3945		retval = sched_setaffinity(pid, new_mask);
3946	free_cpumask_var(new_mask);
3947	return retval;
3948}
3949
3950long sched_getaffinity(pid_t pid, struct cpumask *mask)
3951{
3952	struct task_struct *p;
3953	unsigned long flags;
3954	int retval;
3955
3956	rcu_read_lock();
3957
3958	retval = -ESRCH;
3959	p = find_process_by_pid(pid);
3960	if (!p)
3961		goto out_unlock;
3962
3963	retval = security_task_getscheduler(p);
3964	if (retval)
3965		goto out_unlock;
3966
3967	raw_spin_lock_irqsave(&p->pi_lock, flags);
3968	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3969	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3970
3971out_unlock:
3972	rcu_read_unlock();
3973
3974	return retval;
3975}
3976
3977/**
3978 * sys_sched_getaffinity - get the cpu affinity of a process
3979 * @pid: pid of the process
3980 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3981 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3982 *
3983 * Return: 0 on success. An error code otherwise.
3984 */
3985SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3986		unsigned long __user *, user_mask_ptr)
3987{
3988	int ret;
3989	cpumask_var_t mask;
3990
3991	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3992		return -EINVAL;
3993	if (len & (sizeof(unsigned long)-1))
3994		return -EINVAL;
3995
3996	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3997		return -ENOMEM;
3998
3999	ret = sched_getaffinity(pid, mask);
4000	if (ret == 0) {
4001		size_t retlen = min_t(size_t, len, cpumask_size());
4002
4003		if (copy_to_user(user_mask_ptr, mask, retlen))
4004			ret = -EFAULT;
4005		else
4006			ret = retlen;
4007	}
4008	free_cpumask_var(mask);
4009
4010	return ret;
4011}
4012
4013/**
4014 * sys_sched_yield - yield the current processor to other threads.
4015 *
4016 * This function yields the current CPU to other tasks. If there are no
4017 * other threads running on this CPU then this function will return.
4018 *
4019 * Return: 0.
4020 */
4021SYSCALL_DEFINE0(sched_yield)
4022{
4023	struct rq *rq = this_rq_lock();
4024
4025	schedstat_inc(rq, yld_count);
4026	current->sched_class->yield_task(rq);
4027
4028	/*
4029	 * Since we are going to call schedule() anyway, there's
4030	 * no need to preempt or enable interrupts:
4031	 */
4032	__release(rq->lock);
4033	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4034	do_raw_spin_unlock(&rq->lock);
4035	sched_preempt_enable_no_resched();
4036
4037	schedule();
4038
4039	return 0;
4040}
4041
4042static void __cond_resched(void)
4043{
4044	__preempt_count_add(PREEMPT_ACTIVE);
4045	__schedule();
4046	__preempt_count_sub(PREEMPT_ACTIVE);
4047}
4048
4049int __sched _cond_resched(void)
4050{
4051	if (should_resched()) {
4052		__cond_resched();
4053		return 1;
4054	}
4055	return 0;
4056}
4057EXPORT_SYMBOL(_cond_resched);
4058
4059/*
4060 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4061 * call schedule, and on return reacquire the lock.
4062 *
4063 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4064 * operations here to prevent schedule() from being called twice (once via
4065 * spin_unlock(), once by hand).
4066 */
4067int __cond_resched_lock(spinlock_t *lock)
4068{
4069	int resched = should_resched();
4070	int ret = 0;
4071
4072	lockdep_assert_held(lock);
4073
4074	if (spin_needbreak(lock) || resched) {
4075		spin_unlock(lock);
4076		if (resched)
4077			__cond_resched();
4078		else
4079			cpu_relax();
4080		ret = 1;
4081		spin_lock(lock);
4082	}
4083	return ret;
4084}
4085EXPORT_SYMBOL(__cond_resched_lock);
4086
4087int __sched __cond_resched_softirq(void)
4088{
4089	BUG_ON(!in_softirq());
4090
4091	if (should_resched()) {
4092		local_bh_enable();
4093		__cond_resched();
4094		local_bh_disable();
4095		return 1;
4096	}
4097	return 0;
4098}
4099EXPORT_SYMBOL(__cond_resched_softirq);
4100
4101/**
4102 * yield - yield the current processor to other threads.
4103 *
4104 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4105 *
4106 * The scheduler is at all times free to pick the calling task as the most
4107 * eligible task to run, if removing the yield() call from your code breaks
4108 * it, its already broken.
4109 *
4110 * Typical broken usage is:
4111 *
4112 * while (!event)
4113 * 	yield();
4114 *
4115 * where one assumes that yield() will let 'the other' process run that will
4116 * make event true. If the current task is a SCHED_FIFO task that will never
4117 * happen. Never use yield() as a progress guarantee!!
4118 *
4119 * If you want to use yield() to wait for something, use wait_event().
4120 * If you want to use yield() to be 'nice' for others, use cond_resched().
4121 * If you still want to use yield(), do not!
4122 */
4123void __sched yield(void)
4124{
4125	set_current_state(TASK_RUNNING);
4126	sys_sched_yield();
4127}
4128EXPORT_SYMBOL(yield);
4129
4130/**
4131 * yield_to - yield the current processor to another thread in
4132 * your thread group, or accelerate that thread toward the
4133 * processor it's on.
4134 * @p: target task
4135 * @preempt: whether task preemption is allowed or not
4136 *
4137 * It's the caller's job to ensure that the target task struct
4138 * can't go away on us before we can do any checks.
4139 *
4140 * Return:
4141 *	true (>0) if we indeed boosted the target task.
4142 *	false (0) if we failed to boost the target.
4143 *	-ESRCH if there's no task to yield to.
4144 */
4145bool __sched yield_to(struct task_struct *p, bool preempt)
4146{
4147	struct task_struct *curr = current;
4148	struct rq *rq, *p_rq;
4149	unsigned long flags;
4150	int yielded = 0;
4151
4152	local_irq_save(flags);
4153	rq = this_rq();
4154
4155again:
4156	p_rq = task_rq(p);
4157	/*
4158	 * If we're the only runnable task on the rq and target rq also
4159	 * has only one task, there's absolutely no point in yielding.
4160	 */
4161	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4162		yielded = -ESRCH;
4163		goto out_irq;
4164	}
4165
4166	double_rq_lock(rq, p_rq);
4167	if (task_rq(p) != p_rq) {
4168		double_rq_unlock(rq, p_rq);
4169		goto again;
4170	}
4171
4172	if (!curr->sched_class->yield_to_task)
4173		goto out_unlock;
4174
4175	if (curr->sched_class != p->sched_class)
4176		goto out_unlock;
4177
4178	if (task_running(p_rq, p) || p->state)
4179		goto out_unlock;
4180
4181	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4182	if (yielded) {
4183		schedstat_inc(rq, yld_count);
4184		/*
4185		 * Make p's CPU reschedule; pick_next_entity takes care of
4186		 * fairness.
4187		 */
4188		if (preempt && rq != p_rq)
4189			resched_task(p_rq->curr);
4190	}
4191
4192out_unlock:
4193	double_rq_unlock(rq, p_rq);
4194out_irq:
4195	local_irq_restore(flags);
4196
4197	if (yielded > 0)
4198		schedule();
4199
4200	return yielded;
4201}
4202EXPORT_SYMBOL_GPL(yield_to);
4203
4204/*
4205 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4206 * that process accounting knows that this is a task in IO wait state.
4207 */
4208void __sched io_schedule(void)
4209{
4210	struct rq *rq = raw_rq();
4211
4212	delayacct_blkio_start();
4213	atomic_inc(&rq->nr_iowait);
4214	blk_flush_plug(current);
4215	current->in_iowait = 1;
4216	schedule();
4217	current->in_iowait = 0;
4218	atomic_dec(&rq->nr_iowait);
4219	delayacct_blkio_end();
4220}
4221EXPORT_SYMBOL(io_schedule);
4222
4223long __sched io_schedule_timeout(long timeout)
4224{
4225	struct rq *rq = raw_rq();
4226	long ret;
4227
4228	delayacct_blkio_start();
4229	atomic_inc(&rq->nr_iowait);
4230	blk_flush_plug(current);
4231	current->in_iowait = 1;
4232	ret = schedule_timeout(timeout);
4233	current->in_iowait = 0;
4234	atomic_dec(&rq->nr_iowait);
4235	delayacct_blkio_end();
4236	return ret;
4237}
4238
4239/**
4240 * sys_sched_get_priority_max - return maximum RT priority.
4241 * @policy: scheduling class.
4242 *
4243 * Return: On success, this syscall returns the maximum
4244 * rt_priority that can be used by a given scheduling class.
4245 * On failure, a negative error code is returned.
4246 */
4247SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4248{
4249	int ret = -EINVAL;
4250
4251	switch (policy) {
4252	case SCHED_FIFO:
4253	case SCHED_RR:
4254		ret = MAX_USER_RT_PRIO-1;
4255		break;
4256	case SCHED_DEADLINE:
4257	case SCHED_NORMAL:
4258	case SCHED_BATCH:
4259	case SCHED_IDLE:
4260		ret = 0;
4261		break;
4262	}
4263	return ret;
4264}
4265
4266/**
4267 * sys_sched_get_priority_min - return minimum RT priority.
4268 * @policy: scheduling class.
4269 *
4270 * Return: On success, this syscall returns the minimum
4271 * rt_priority that can be used by a given scheduling class.
4272 * On failure, a negative error code is returned.
4273 */
4274SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4275{
4276	int ret = -EINVAL;
4277
4278	switch (policy) {
4279	case SCHED_FIFO:
4280	case SCHED_RR:
4281		ret = 1;
4282		break;
4283	case SCHED_DEADLINE:
4284	case SCHED_NORMAL:
4285	case SCHED_BATCH:
4286	case SCHED_IDLE:
4287		ret = 0;
4288	}
4289	return ret;
4290}
4291
4292/**
4293 * sys_sched_rr_get_interval - return the default timeslice of a process.
4294 * @pid: pid of the process.
4295 * @interval: userspace pointer to the timeslice value.
4296 *
4297 * this syscall writes the default timeslice value of a given process
4298 * into the user-space timespec buffer. A value of '0' means infinity.
4299 *
4300 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4301 * an error code.
4302 */
4303SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4304		struct timespec __user *, interval)
4305{
4306	struct task_struct *p;
4307	unsigned int time_slice;
4308	unsigned long flags;
4309	struct rq *rq;
4310	int retval;
4311	struct timespec t;
4312
4313	if (pid < 0)
4314		return -EINVAL;
4315
4316	retval = -ESRCH;
4317	rcu_read_lock();
4318	p = find_process_by_pid(pid);
4319	if (!p)
4320		goto out_unlock;
4321
4322	retval = security_task_getscheduler(p);
4323	if (retval)
4324		goto out_unlock;
4325
4326	rq = task_rq_lock(p, &flags);
4327	time_slice = 0;
4328	if (p->sched_class->get_rr_interval)
4329		time_slice = p->sched_class->get_rr_interval(rq, p);
4330	task_rq_unlock(rq, p, &flags);
4331
4332	rcu_read_unlock();
4333	jiffies_to_timespec(time_slice, &t);
4334	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4335	return retval;
4336
4337out_unlock:
4338	rcu_read_unlock();
4339	return retval;
4340}
4341
4342static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4343
4344void sched_show_task(struct task_struct *p)
4345{
4346	unsigned long free = 0;
4347	int ppid;
4348	unsigned state;
4349
4350	state = p->state ? __ffs(p->state) + 1 : 0;
4351	printk(KERN_INFO "%-15.15s %c", p->comm,
4352		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4353#if BITS_PER_LONG == 32
4354	if (state == TASK_RUNNING)
4355		printk(KERN_CONT " running  ");
4356	else
4357		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4358#else
4359	if (state == TASK_RUNNING)
4360		printk(KERN_CONT "  running task    ");
4361	else
4362		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4363#endif
4364#ifdef CONFIG_DEBUG_STACK_USAGE
4365	free = stack_not_used(p);
4366#endif
4367	rcu_read_lock();
4368	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4369	rcu_read_unlock();
4370	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4371		task_pid_nr(p), ppid,
4372		(unsigned long)task_thread_info(p)->flags);
4373
4374	print_worker_info(KERN_INFO, p);
4375	show_stack(p, NULL);
4376}
4377
4378void show_state_filter(unsigned long state_filter)
4379{
4380	struct task_struct *g, *p;
4381
4382#if BITS_PER_LONG == 32
4383	printk(KERN_INFO
4384		"  task                PC stack   pid father\n");
4385#else
4386	printk(KERN_INFO
4387		"  task                        PC stack   pid father\n");
4388#endif
4389	rcu_read_lock();
4390	do_each_thread(g, p) {
4391		/*
4392		 * reset the NMI-timeout, listing all files on a slow
4393		 * console might take a lot of time:
4394		 */
4395		touch_nmi_watchdog();
4396		if (!state_filter || (p->state & state_filter))
4397			sched_show_task(p);
4398	} while_each_thread(g, p);
4399
4400	touch_all_softlockup_watchdogs();
4401
4402#ifdef CONFIG_SCHED_DEBUG
4403	sysrq_sched_debug_show();
4404#endif
4405	rcu_read_unlock();
4406	/*
4407	 * Only show locks if all tasks are dumped:
4408	 */
4409	if (!state_filter)
4410		debug_show_all_locks();
4411}
4412
4413void init_idle_bootup_task(struct task_struct *idle)
4414{
4415	idle->sched_class = &idle_sched_class;
4416}
4417
4418/**
4419 * init_idle - set up an idle thread for a given CPU
4420 * @idle: task in question
4421 * @cpu: cpu the idle task belongs to
4422 *
4423 * NOTE: this function does not set the idle thread's NEED_RESCHED
4424 * flag, to make booting more robust.
4425 */
4426void init_idle(struct task_struct *idle, int cpu)
4427{
4428	struct rq *rq = cpu_rq(cpu);
4429	unsigned long flags;
4430
4431	raw_spin_lock_irqsave(&rq->lock, flags);
4432
4433	__sched_fork(0, idle);
4434	idle->state = TASK_RUNNING;
4435	idle->se.exec_start = sched_clock();
4436
4437	do_set_cpus_allowed(idle, cpumask_of(cpu));
4438	/*
4439	 * We're having a chicken and egg problem, even though we are
4440	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4441	 * lockdep check in task_group() will fail.
4442	 *
4443	 * Similar case to sched_fork(). / Alternatively we could
4444	 * use task_rq_lock() here and obtain the other rq->lock.
4445	 *
4446	 * Silence PROVE_RCU
4447	 */
4448	rcu_read_lock();
4449	__set_task_cpu(idle, cpu);
4450	rcu_read_unlock();
4451
4452	rq->curr = rq->idle = idle;
4453#if defined(CONFIG_SMP)
4454	idle->on_cpu = 1;
4455#endif
4456	raw_spin_unlock_irqrestore(&rq->lock, flags);
4457
4458	/* Set the preempt count _outside_ the spinlocks! */
4459	init_idle_preempt_count(idle, cpu);
4460
4461	/*
4462	 * The idle tasks have their own, simple scheduling class:
4463	 */
4464	idle->sched_class = &idle_sched_class;
4465	ftrace_graph_init_idle_task(idle, cpu);
4466	vtime_init_idle(idle, cpu);
4467#if defined(CONFIG_SMP)
4468	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4469#endif
4470}
4471
4472#ifdef CONFIG_SMP
4473void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4474{
4475	if (p->sched_class && p->sched_class->set_cpus_allowed)
4476		p->sched_class->set_cpus_allowed(p, new_mask);
4477
4478	cpumask_copy(&p->cpus_allowed, new_mask);
4479	p->nr_cpus_allowed = cpumask_weight(new_mask);
4480}
4481
4482/*
4483 * This is how migration works:
4484 *
4485 * 1) we invoke migration_cpu_stop() on the target CPU using
4486 *    stop_one_cpu().
4487 * 2) stopper starts to run (implicitly forcing the migrated thread
4488 *    off the CPU)
4489 * 3) it checks whether the migrated task is still in the wrong runqueue.
4490 * 4) if it's in the wrong runqueue then the migration thread removes
4491 *    it and puts it into the right queue.
4492 * 5) stopper completes and stop_one_cpu() returns and the migration
4493 *    is done.
4494 */
4495
4496/*
4497 * Change a given task's CPU affinity. Migrate the thread to a
4498 * proper CPU and schedule it away if the CPU it's executing on
4499 * is removed from the allowed bitmask.
4500 *
4501 * NOTE: the caller must have a valid reference to the task, the
4502 * task must not exit() & deallocate itself prematurely. The
4503 * call is not atomic; no spinlocks may be held.
4504 */
4505int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4506{
4507	unsigned long flags;
4508	struct rq *rq;
4509	unsigned int dest_cpu;
4510	int ret = 0;
4511
4512	rq = task_rq_lock(p, &flags);
4513
4514	if (cpumask_equal(&p->cpus_allowed, new_mask))
4515		goto out;
4516
4517	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4518		ret = -EINVAL;
4519		goto out;
4520	}
4521
4522	do_set_cpus_allowed(p, new_mask);
4523
4524	/* Can the task run on the task's current CPU? If so, we're done */
4525	if (cpumask_test_cpu(task_cpu(p), new_mask))
4526		goto out;
4527
4528	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4529	if (p->on_rq) {
4530		struct migration_arg arg = { p, dest_cpu };
4531		/* Need help from migration thread: drop lock and wait. */
4532		task_rq_unlock(rq, p, &flags);
4533		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4534		tlb_migrate_finish(p->mm);
4535		return 0;
4536	}
4537out:
4538	task_rq_unlock(rq, p, &flags);
4539
4540	return ret;
4541}
4542EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4543
4544/*
4545 * Move (not current) task off this cpu, onto dest cpu. We're doing
4546 * this because either it can't run here any more (set_cpus_allowed()
4547 * away from this CPU, or CPU going down), or because we're
4548 * attempting to rebalance this task on exec (sched_exec).
4549 *
4550 * So we race with normal scheduler movements, but that's OK, as long
4551 * as the task is no longer on this CPU.
4552 *
4553 * Returns non-zero if task was successfully migrated.
4554 */
4555static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4556{
4557	struct rq *rq_dest, *rq_src;
4558	int ret = 0;
4559
4560	if (unlikely(!cpu_active(dest_cpu)))
4561		return ret;
4562
4563	rq_src = cpu_rq(src_cpu);
4564	rq_dest = cpu_rq(dest_cpu);
4565
4566	raw_spin_lock(&p->pi_lock);
4567	double_rq_lock(rq_src, rq_dest);
4568	/* Already moved. */
4569	if (task_cpu(p) != src_cpu)
4570		goto done;
4571	/* Affinity changed (again). */
4572	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4573		goto fail;
4574
4575	/*
4576	 * If we're not on a rq, the next wake-up will ensure we're
4577	 * placed properly.
4578	 */
4579	if (p->on_rq) {
4580		dequeue_task(rq_src, p, 0);
4581		set_task_cpu(p, dest_cpu);
4582		enqueue_task(rq_dest, p, 0);
4583		check_preempt_curr(rq_dest, p, 0);
4584	}
4585done:
4586	ret = 1;
4587fail:
4588	double_rq_unlock(rq_src, rq_dest);
4589	raw_spin_unlock(&p->pi_lock);
4590	return ret;
4591}
4592
4593#ifdef CONFIG_NUMA_BALANCING
4594/* Migrate current task p to target_cpu */
4595int migrate_task_to(struct task_struct *p, int target_cpu)
4596{
4597	struct migration_arg arg = { p, target_cpu };
4598	int curr_cpu = task_cpu(p);
4599
4600	if (curr_cpu == target_cpu)
4601		return 0;
4602
4603	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4604		return -EINVAL;
4605
4606	/* TODO: This is not properly updating schedstats */
4607
4608	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4609}
4610
4611/*
4612 * Requeue a task on a given node and accurately track the number of NUMA
4613 * tasks on the runqueues
4614 */
4615void sched_setnuma(struct task_struct *p, int nid)
4616{
4617	struct rq *rq;
4618	unsigned long flags;
4619	bool on_rq, running;
4620
4621	rq = task_rq_lock(p, &flags);
4622	on_rq = p->on_rq;
4623	running = task_current(rq, p);
4624
4625	if (on_rq)
4626		dequeue_task(rq, p, 0);
4627	if (running)
4628		p->sched_class->put_prev_task(rq, p);
4629
4630	p->numa_preferred_nid = nid;
4631
4632	if (running)
4633		p->sched_class->set_curr_task(rq);
4634	if (on_rq)
4635		enqueue_task(rq, p, 0);
4636	task_rq_unlock(rq, p, &flags);
4637}
4638#endif
4639
4640/*
4641 * migration_cpu_stop - this will be executed by a highprio stopper thread
4642 * and performs thread migration by bumping thread off CPU then
4643 * 'pushing' onto another runqueue.
4644 */
4645static int migration_cpu_stop(void *data)
4646{
4647	struct migration_arg *arg = data;
4648
4649	/*
4650	 * The original target cpu might have gone down and we might
4651	 * be on another cpu but it doesn't matter.
4652	 */
4653	local_irq_disable();
4654	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4655	local_irq_enable();
4656	return 0;
4657}
4658
4659#ifdef CONFIG_HOTPLUG_CPU
4660
4661/*
4662 * Ensures that the idle task is using init_mm right before its cpu goes
4663 * offline.
4664 */
4665void idle_task_exit(void)
4666{
4667	struct mm_struct *mm = current->active_mm;
4668
4669	BUG_ON(cpu_online(smp_processor_id()));
4670
4671	if (mm != &init_mm)
4672		switch_mm(mm, &init_mm, current);
4673	mmdrop(mm);
4674}
4675
4676/*
4677 * Since this CPU is going 'away' for a while, fold any nr_active delta
4678 * we might have. Assumes we're called after migrate_tasks() so that the
4679 * nr_active count is stable.
4680 *
4681 * Also see the comment "Global load-average calculations".
4682 */
4683static void calc_load_migrate(struct rq *rq)
4684{
4685	long delta = calc_load_fold_active(rq);
4686	if (delta)
4687		atomic_long_add(delta, &calc_load_tasks);
4688}
4689
4690/*
4691 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4692 * try_to_wake_up()->select_task_rq().
4693 *
4694 * Called with rq->lock held even though we'er in stop_machine() and
4695 * there's no concurrency possible, we hold the required locks anyway
4696 * because of lock validation efforts.
4697 */
4698static void migrate_tasks(unsigned int dead_cpu)
4699{
4700	struct rq *rq = cpu_rq(dead_cpu);
4701	struct task_struct *next, *stop = rq->stop;
4702	int dest_cpu;
4703
4704	/*
4705	 * Fudge the rq selection such that the below task selection loop
4706	 * doesn't get stuck on the currently eligible stop task.
4707	 *
4708	 * We're currently inside stop_machine() and the rq is either stuck
4709	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4710	 * either way we should never end up calling schedule() until we're
4711	 * done here.
4712	 */
4713	rq->stop = NULL;
4714
4715	/*
4716	 * put_prev_task() and pick_next_task() sched
4717	 * class method both need to have an up-to-date
4718	 * value of rq->clock[_task]
4719	 */
4720	update_rq_clock(rq);
4721
4722	for ( ; ; ) {
4723		/*
4724		 * There's this thread running, bail when that's the only
4725		 * remaining thread.
4726		 */
4727		if (rq->nr_running == 1)
4728			break;
4729
4730		next = pick_next_task(rq);
4731		BUG_ON(!next);
4732		next->sched_class->put_prev_task(rq, next);
4733
4734		/* Find suitable destination for @next, with force if needed. */
4735		dest_cpu = select_fallback_rq(dead_cpu, next);
4736		raw_spin_unlock(&rq->lock);
4737
4738		__migrate_task(next, dead_cpu, dest_cpu);
4739
4740		raw_spin_lock(&rq->lock);
4741	}
4742
4743	rq->stop = stop;
4744}
4745
4746#endif /* CONFIG_HOTPLUG_CPU */
4747
4748#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4749
4750static struct ctl_table sd_ctl_dir[] = {
4751	{
4752		.procname	= "sched_domain",
4753		.mode		= 0555,
4754	},
4755	{}
4756};
4757
4758static struct ctl_table sd_ctl_root[] = {
4759	{
4760		.procname	= "kernel",
4761		.mode		= 0555,
4762		.child		= sd_ctl_dir,
4763	},
4764	{}
4765};
4766
4767static struct ctl_table *sd_alloc_ctl_entry(int n)
4768{
4769	struct ctl_table *entry =
4770		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4771
4772	return entry;
4773}
4774
4775static void sd_free_ctl_entry(struct ctl_table **tablep)
4776{
4777	struct ctl_table *entry;
4778
4779	/*
4780	 * In the intermediate directories, both the child directory and
4781	 * procname are dynamically allocated and could fail but the mode
4782	 * will always be set. In the lowest directory the names are
4783	 * static strings and all have proc handlers.
4784	 */
4785	for (entry = *tablep; entry->mode; entry++) {
4786		if (entry->child)
4787			sd_free_ctl_entry(&entry->child);
4788		if (entry->proc_handler == NULL)
4789			kfree(entry->procname);
4790	}
4791
4792	kfree(*tablep);
4793	*tablep = NULL;
4794}
4795
4796static int min_load_idx = 0;
4797static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4798
4799static void
4800set_table_entry(struct ctl_table *entry,
4801		const char *procname, void *data, int maxlen,
4802		umode_t mode, proc_handler *proc_handler,
4803		bool load_idx)
4804{
4805	entry->procname = procname;
4806	entry->data = data;
4807	entry->maxlen = maxlen;
4808	entry->mode = mode;
4809	entry->proc_handler = proc_handler;
4810
4811	if (load_idx) {
4812		entry->extra1 = &min_load_idx;
4813		entry->extra2 = &max_load_idx;
4814	}
4815}
4816
4817static struct ctl_table *
4818sd_alloc_ctl_domain_table(struct sched_domain *sd)
4819{
4820	struct ctl_table *table = sd_alloc_ctl_entry(13);
4821
4822	if (table == NULL)
4823		return NULL;
4824
4825	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4826		sizeof(long), 0644, proc_doulongvec_minmax, false);
4827	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4828		sizeof(long), 0644, proc_doulongvec_minmax, false);
4829	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4830		sizeof(int), 0644, proc_dointvec_minmax, true);
4831	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4832		sizeof(int), 0644, proc_dointvec_minmax, true);
4833	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4834		sizeof(int), 0644, proc_dointvec_minmax, true);
4835	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4836		sizeof(int), 0644, proc_dointvec_minmax, true);
4837	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4838		sizeof(int), 0644, proc_dointvec_minmax, true);
4839	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4840		sizeof(int), 0644, proc_dointvec_minmax, false);
4841	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4842		sizeof(int), 0644, proc_dointvec_minmax, false);
4843	set_table_entry(&table[9], "cache_nice_tries",
4844		&sd->cache_nice_tries,
4845		sizeof(int), 0644, proc_dointvec_minmax, false);
4846	set_table_entry(&table[10], "flags", &sd->flags,
4847		sizeof(int), 0644, proc_dointvec_minmax, false);
4848	set_table_entry(&table[11], "name", sd->name,
4849		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4850	/* &table[12] is terminator */
4851
4852	return table;
4853}
4854
4855static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4856{
4857	struct ctl_table *entry, *table;
4858	struct sched_domain *sd;
4859	int domain_num = 0, i;
4860	char buf[32];
4861
4862	for_each_domain(cpu, sd)
4863		domain_num++;
4864	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4865	if (table == NULL)
4866		return NULL;
4867
4868	i = 0;
4869	for_each_domain(cpu, sd) {
4870		snprintf(buf, 32, "domain%d", i);
4871		entry->procname = kstrdup(buf, GFP_KERNEL);
4872		entry->mode = 0555;
4873		entry->child = sd_alloc_ctl_domain_table(sd);
4874		entry++;
4875		i++;
4876	}
4877	return table;
4878}
4879
4880static struct ctl_table_header *sd_sysctl_header;
4881static void register_sched_domain_sysctl(void)
4882{
4883	int i, cpu_num = num_possible_cpus();
4884	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4885	char buf[32];
4886
4887	WARN_ON(sd_ctl_dir[0].child);
4888	sd_ctl_dir[0].child = entry;
4889
4890	if (entry == NULL)
4891		return;
4892
4893	for_each_possible_cpu(i) {
4894		snprintf(buf, 32, "cpu%d", i);
4895		entry->procname = kstrdup(buf, GFP_KERNEL);
4896		entry->mode = 0555;
4897		entry->child = sd_alloc_ctl_cpu_table(i);
4898		entry++;
4899	}
4900
4901	WARN_ON(sd_sysctl_header);
4902	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4903}
4904
4905/* may be called multiple times per register */
4906static void unregister_sched_domain_sysctl(void)
4907{
4908	if (sd_sysctl_header)
4909		unregister_sysctl_table(sd_sysctl_header);
4910	sd_sysctl_header = NULL;
4911	if (sd_ctl_dir[0].child)
4912		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4913}
4914#else
4915static void register_sched_domain_sysctl(void)
4916{
4917}
4918static void unregister_sched_domain_sysctl(void)
4919{
4920}
4921#endif
4922
4923static void set_rq_online(struct rq *rq)
4924{
4925	if (!rq->online) {
4926		const struct sched_class *class;
4927
4928		cpumask_set_cpu(rq->cpu, rq->rd->online);
4929		rq->online = 1;
4930
4931		for_each_class(class) {
4932			if (class->rq_online)
4933				class->rq_online(rq);
4934		}
4935	}
4936}
4937
4938static void set_rq_offline(struct rq *rq)
4939{
4940	if (rq->online) {
4941		const struct sched_class *class;
4942
4943		for_each_class(class) {
4944			if (class->rq_offline)
4945				class->rq_offline(rq);
4946		}
4947
4948		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4949		rq->online = 0;
4950	}
4951}
4952
4953/*
4954 * migration_call - callback that gets triggered when a CPU is added.
4955 * Here we can start up the necessary migration thread for the new CPU.
4956 */
4957static int
4958migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4959{
4960	int cpu = (long)hcpu;
4961	unsigned long flags;
4962	struct rq *rq = cpu_rq(cpu);
4963
4964	switch (action & ~CPU_TASKS_FROZEN) {
4965
4966	case CPU_UP_PREPARE:
4967		rq->calc_load_update = calc_load_update;
4968		break;
4969
4970	case CPU_ONLINE:
4971		/* Update our root-domain */
4972		raw_spin_lock_irqsave(&rq->lock, flags);
4973		if (rq->rd) {
4974			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4975
4976			set_rq_online(rq);
4977		}
4978		raw_spin_unlock_irqrestore(&rq->lock, flags);
4979		break;
4980
4981#ifdef CONFIG_HOTPLUG_CPU
4982	case CPU_DYING:
4983		sched_ttwu_pending();
4984		/* Update our root-domain */
4985		raw_spin_lock_irqsave(&rq->lock, flags);
4986		if (rq->rd) {
4987			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4988			set_rq_offline(rq);
4989		}
4990		migrate_tasks(cpu);
4991		BUG_ON(rq->nr_running != 1); /* the migration thread */
4992		raw_spin_unlock_irqrestore(&rq->lock, flags);
4993		break;
4994
4995	case CPU_DEAD:
4996		calc_load_migrate(rq);
4997		break;
4998#endif
4999	}
5000
5001	update_max_interval();
5002
5003	return NOTIFY_OK;
5004}
5005
5006/*
5007 * Register at high priority so that task migration (migrate_all_tasks)
5008 * happens before everything else.  This has to be lower priority than
5009 * the notifier in the perf_event subsystem, though.
5010 */
5011static struct notifier_block migration_notifier = {
5012	.notifier_call = migration_call,
5013	.priority = CPU_PRI_MIGRATION,
5014};
5015
5016static int sched_cpu_active(struct notifier_block *nfb,
5017				      unsigned long action, void *hcpu)
5018{
5019	switch (action & ~CPU_TASKS_FROZEN) {
5020	case CPU_STARTING:
5021	case CPU_DOWN_FAILED:
5022		set_cpu_active((long)hcpu, true);
5023		return NOTIFY_OK;
5024	default:
5025		return NOTIFY_DONE;
5026	}
5027}
5028
5029static int sched_cpu_inactive(struct notifier_block *nfb,
5030					unsigned long action, void *hcpu)
5031{
5032	unsigned long flags;
5033	long cpu = (long)hcpu;
5034
5035	switch (action & ~CPU_TASKS_FROZEN) {
5036	case CPU_DOWN_PREPARE:
5037		set_cpu_active(cpu, false);
5038
5039		/* explicitly allow suspend */
5040		if (!(action & CPU_TASKS_FROZEN)) {
5041			struct dl_bw *dl_b = dl_bw_of(cpu);
5042			bool overflow;
5043			int cpus;
5044
5045			raw_spin_lock_irqsave(&dl_b->lock, flags);
5046			cpus = dl_bw_cpus(cpu);
5047			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5048			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5049
5050			if (overflow)
5051				return notifier_from_errno(-EBUSY);
5052		}
5053		return NOTIFY_OK;
5054	}
5055
5056	return NOTIFY_DONE;
5057}
5058
5059static int __init migration_init(void)
5060{
5061	void *cpu = (void *)(long)smp_processor_id();
5062	int err;
5063
5064	/* Initialize migration for the boot CPU */
5065	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5066	BUG_ON(err == NOTIFY_BAD);
5067	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5068	register_cpu_notifier(&migration_notifier);
5069
5070	/* Register cpu active notifiers */
5071	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5072	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5073
5074	return 0;
5075}
5076early_initcall(migration_init);
5077#endif
5078
5079#ifdef CONFIG_SMP
5080
5081static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5082
5083#ifdef CONFIG_SCHED_DEBUG
5084
5085static __read_mostly int sched_debug_enabled;
5086
5087static int __init sched_debug_setup(char *str)
5088{
5089	sched_debug_enabled = 1;
5090
5091	return 0;
5092}
5093early_param("sched_debug", sched_debug_setup);
5094
5095static inline bool sched_debug(void)
5096{
5097	return sched_debug_enabled;
5098}
5099
5100static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5101				  struct cpumask *groupmask)
5102{
5103	struct sched_group *group = sd->groups;
5104	char str[256];
5105
5106	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5107	cpumask_clear(groupmask);
5108
5109	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5110
5111	if (!(sd->flags & SD_LOAD_BALANCE)) {
5112		printk("does not load-balance\n");
5113		if (sd->parent)
5114			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5115					" has parent");
5116		return -1;
5117	}
5118
5119	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5120
5121	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5122		printk(KERN_ERR "ERROR: domain->span does not contain "
5123				"CPU%d\n", cpu);
5124	}
5125	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5126		printk(KERN_ERR "ERROR: domain->groups does not contain"
5127				" CPU%d\n", cpu);
5128	}
5129
5130	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5131	do {
5132		if (!group) {
5133			printk("\n");
5134			printk(KERN_ERR "ERROR: group is NULL\n");
5135			break;
5136		}
5137
5138		/*
5139		 * Even though we initialize ->power to something semi-sane,
5140		 * we leave power_orig unset. This allows us to detect if
5141		 * domain iteration is still funny without causing /0 traps.
5142		 */
5143		if (!group->sgp->power_orig) {
5144			printk(KERN_CONT "\n");
5145			printk(KERN_ERR "ERROR: domain->cpu_power not "
5146					"set\n");
5147			break;
5148		}
5149
5150		if (!cpumask_weight(sched_group_cpus(group))) {
5151			printk(KERN_CONT "\n");
5152			printk(KERN_ERR "ERROR: empty group\n");
5153			break;
5154		}
5155
5156		if (!(sd->flags & SD_OVERLAP) &&
5157		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5158			printk(KERN_CONT "\n");
5159			printk(KERN_ERR "ERROR: repeated CPUs\n");
5160			break;
5161		}
5162
5163		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5164
5165		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5166
5167		printk(KERN_CONT " %s", str);
5168		if (group->sgp->power != SCHED_POWER_SCALE) {
5169			printk(KERN_CONT " (cpu_power = %d)",
5170				group->sgp->power);
5171		}
5172
5173		group = group->next;
5174	} while (group != sd->groups);
5175	printk(KERN_CONT "\n");
5176
5177	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5178		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5179
5180	if (sd->parent &&
5181	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5182		printk(KERN_ERR "ERROR: parent span is not a superset "
5183			"of domain->span\n");
5184	return 0;
5185}
5186
5187static void sched_domain_debug(struct sched_domain *sd, int cpu)
5188{
5189	int level = 0;
5190
5191	if (!sched_debug_enabled)
5192		return;
5193
5194	if (!sd) {
5195		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5196		return;
5197	}
5198
5199	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5200
5201	for (;;) {
5202		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5203			break;
5204		level++;
5205		sd = sd->parent;
5206		if (!sd)
5207			break;
5208	}
5209}
5210#else /* !CONFIG_SCHED_DEBUG */
5211# define sched_domain_debug(sd, cpu) do { } while (0)
5212static inline bool sched_debug(void)
5213{
5214	return false;
5215}
5216#endif /* CONFIG_SCHED_DEBUG */
5217
5218static int sd_degenerate(struct sched_domain *sd)
5219{
5220	if (cpumask_weight(sched_domain_span(sd)) == 1)
5221		return 1;
5222
5223	/* Following flags need at least 2 groups */
5224	if (sd->flags & (SD_LOAD_BALANCE |
5225			 SD_BALANCE_NEWIDLE |
5226			 SD_BALANCE_FORK |
5227			 SD_BALANCE_EXEC |
5228			 SD_SHARE_CPUPOWER |
5229			 SD_SHARE_PKG_RESOURCES)) {
5230		if (sd->groups != sd->groups->next)
5231			return 0;
5232	}
5233
5234	/* Following flags don't use groups */
5235	if (sd->flags & (SD_WAKE_AFFINE))
5236		return 0;
5237
5238	return 1;
5239}
5240
5241static int
5242sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5243{
5244	unsigned long cflags = sd->flags, pflags = parent->flags;
5245
5246	if (sd_degenerate(parent))
5247		return 1;
5248
5249	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5250		return 0;
5251
5252	/* Flags needing groups don't count if only 1 group in parent */
5253	if (parent->groups == parent->groups->next) {
5254		pflags &= ~(SD_LOAD_BALANCE |
5255				SD_BALANCE_NEWIDLE |
5256				SD_BALANCE_FORK |
5257				SD_BALANCE_EXEC |
5258				SD_SHARE_CPUPOWER |
5259				SD_SHARE_PKG_RESOURCES |
5260				SD_PREFER_SIBLING);
5261		if (nr_node_ids == 1)
5262			pflags &= ~SD_SERIALIZE;
5263	}
5264	if (~cflags & pflags)
5265		return 0;
5266
5267	return 1;
5268}
5269
5270static void free_rootdomain(struct rcu_head *rcu)
5271{
5272	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5273
5274	cpupri_cleanup(&rd->cpupri);
5275	cpudl_cleanup(&rd->cpudl);
5276	free_cpumask_var(rd->dlo_mask);
5277	free_cpumask_var(rd->rto_mask);
5278	free_cpumask_var(rd->online);
5279	free_cpumask_var(rd->span);
5280	kfree(rd);
5281}
5282
5283static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5284{
5285	struct root_domain *old_rd = NULL;
5286	unsigned long flags;
5287
5288	raw_spin_lock_irqsave(&rq->lock, flags);
5289
5290	if (rq->rd) {
5291		old_rd = rq->rd;
5292
5293		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5294			set_rq_offline(rq);
5295
5296		cpumask_clear_cpu(rq->cpu, old_rd->span);
5297
5298		/*
5299		 * If we dont want to free the old_rd yet then
5300		 * set old_rd to NULL to skip the freeing later
5301		 * in this function:
5302		 */
5303		if (!atomic_dec_and_test(&old_rd->refcount))
5304			old_rd = NULL;
5305	}
5306
5307	atomic_inc(&rd->refcount);
5308	rq->rd = rd;
5309
5310	cpumask_set_cpu(rq->cpu, rd->span);
5311	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5312		set_rq_online(rq);
5313
5314	raw_spin_unlock_irqrestore(&rq->lock, flags);
5315
5316	if (old_rd)
5317		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5318}
5319
5320static int init_rootdomain(struct root_domain *rd)
5321{
5322	memset(rd, 0, sizeof(*rd));
5323
5324	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5325		goto out;
5326	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5327		goto free_span;
5328	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5329		goto free_online;
5330	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5331		goto free_dlo_mask;
5332
5333	init_dl_bw(&rd->dl_bw);
5334	if (cpudl_init(&rd->cpudl) != 0)
5335		goto free_dlo_mask;
5336
5337	if (cpupri_init(&rd->cpupri) != 0)
5338		goto free_rto_mask;
5339	return 0;
5340
5341free_rto_mask:
5342	free_cpumask_var(rd->rto_mask);
5343free_dlo_mask:
5344	free_cpumask_var(rd->dlo_mask);
5345free_online:
5346	free_cpumask_var(rd->online);
5347free_span:
5348	free_cpumask_var(rd->span);
5349out:
5350	return -ENOMEM;
5351}
5352
5353/*
5354 * By default the system creates a single root-domain with all cpus as
5355 * members (mimicking the global state we have today).
5356 */
5357struct root_domain def_root_domain;
5358
5359static void init_defrootdomain(void)
5360{
5361	init_rootdomain(&def_root_domain);
5362
5363	atomic_set(&def_root_domain.refcount, 1);
5364}
5365
5366static struct root_domain *alloc_rootdomain(void)
5367{
5368	struct root_domain *rd;
5369
5370	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5371	if (!rd)
5372		return NULL;
5373
5374	if (init_rootdomain(rd) != 0) {
5375		kfree(rd);
5376		return NULL;
5377	}
5378
5379	return rd;
5380}
5381
5382static void free_sched_groups(struct sched_group *sg, int free_sgp)
5383{
5384	struct sched_group *tmp, *first;
5385
5386	if (!sg)
5387		return;
5388
5389	first = sg;
5390	do {
5391		tmp = sg->next;
5392
5393		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5394			kfree(sg->sgp);
5395
5396		kfree(sg);
5397		sg = tmp;
5398	} while (sg != first);
5399}
5400
5401static void free_sched_domain(struct rcu_head *rcu)
5402{
5403	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5404
5405	/*
5406	 * If its an overlapping domain it has private groups, iterate and
5407	 * nuke them all.
5408	 */
5409	if (sd->flags & SD_OVERLAP) {
5410		free_sched_groups(sd->groups, 1);
5411	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5412		kfree(sd->groups->sgp);
5413		kfree(sd->groups);
5414	}
5415	kfree(sd);
5416}
5417
5418static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5419{
5420	call_rcu(&sd->rcu, free_sched_domain);
5421}
5422
5423static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5424{
5425	for (; sd; sd = sd->parent)
5426		destroy_sched_domain(sd, cpu);
5427}
5428
5429/*
5430 * Keep a special pointer to the highest sched_domain that has
5431 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5432 * allows us to avoid some pointer chasing select_idle_sibling().
5433 *
5434 * Also keep a unique ID per domain (we use the first cpu number in
5435 * the cpumask of the domain), this allows us to quickly tell if
5436 * two cpus are in the same cache domain, see cpus_share_cache().
5437 */
5438DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5439DEFINE_PER_CPU(int, sd_llc_size);
5440DEFINE_PER_CPU(int, sd_llc_id);
5441DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5442DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5443DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5444
5445static void update_top_cache_domain(int cpu)
5446{
5447	struct sched_domain *sd;
5448	struct sched_domain *busy_sd = NULL;
5449	int id = cpu;
5450	int size = 1;
5451
5452	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5453	if (sd) {
5454		id = cpumask_first(sched_domain_span(sd));
5455		size = cpumask_weight(sched_domain_span(sd));
5456		busy_sd = sd->parent; /* sd_busy */
5457	}
5458	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5459
5460	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5461	per_cpu(sd_llc_size, cpu) = size;
5462	per_cpu(sd_llc_id, cpu) = id;
5463
5464	sd = lowest_flag_domain(cpu, SD_NUMA);
5465	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5466
5467	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5468	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5469}
5470
5471/*
5472 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5473 * hold the hotplug lock.
5474 */
5475static void
5476cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5477{
5478	struct rq *rq = cpu_rq(cpu);
5479	struct sched_domain *tmp;
5480
5481	/* Remove the sched domains which do not contribute to scheduling. */
5482	for (tmp = sd; tmp; ) {
5483		struct sched_domain *parent = tmp->parent;
5484		if (!parent)
5485			break;
5486
5487		if (sd_parent_degenerate(tmp, parent)) {
5488			tmp->parent = parent->parent;
5489			if (parent->parent)
5490				parent->parent->child = tmp;
5491			/*
5492			 * Transfer SD_PREFER_SIBLING down in case of a
5493			 * degenerate parent; the spans match for this
5494			 * so the property transfers.
5495			 */
5496			if (parent->flags & SD_PREFER_SIBLING)
5497				tmp->flags |= SD_PREFER_SIBLING;
5498			destroy_sched_domain(parent, cpu);
5499		} else
5500			tmp = tmp->parent;
5501	}
5502
5503	if (sd && sd_degenerate(sd)) {
5504		tmp = sd;
5505		sd = sd->parent;
5506		destroy_sched_domain(tmp, cpu);
5507		if (sd)
5508			sd->child = NULL;
5509	}
5510
5511	sched_domain_debug(sd, cpu);
5512
5513	rq_attach_root(rq, rd);
5514	tmp = rq->sd;
5515	rcu_assign_pointer(rq->sd, sd);
5516	destroy_sched_domains(tmp, cpu);
5517
5518	update_top_cache_domain(cpu);
5519}
5520
5521/* cpus with isolated domains */
5522static cpumask_var_t cpu_isolated_map;
5523
5524/* Setup the mask of cpus configured for isolated domains */
5525static int __init isolated_cpu_setup(char *str)
5526{
5527	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5528	cpulist_parse(str, cpu_isolated_map);
5529	return 1;
5530}
5531
5532__setup("isolcpus=", isolated_cpu_setup);
5533
5534static const struct cpumask *cpu_cpu_mask(int cpu)
5535{
5536	return cpumask_of_node(cpu_to_node(cpu));
5537}
5538
5539struct sd_data {
5540	struct sched_domain **__percpu sd;
5541	struct sched_group **__percpu sg;
5542	struct sched_group_power **__percpu sgp;
5543};
5544
5545struct s_data {
5546	struct sched_domain ** __percpu sd;
5547	struct root_domain	*rd;
5548};
5549
5550enum s_alloc {
5551	sa_rootdomain,
5552	sa_sd,
5553	sa_sd_storage,
5554	sa_none,
5555};
5556
5557struct sched_domain_topology_level;
5558
5559typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5560typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5561
5562#define SDTL_OVERLAP	0x01
5563
5564struct sched_domain_topology_level {
5565	sched_domain_init_f init;
5566	sched_domain_mask_f mask;
5567	int		    flags;
5568	int		    numa_level;
5569	struct sd_data      data;
5570};
5571
5572/*
5573 * Build an iteration mask that can exclude certain CPUs from the upwards
5574 * domain traversal.
5575 *
5576 * Asymmetric node setups can result in situations where the domain tree is of
5577 * unequal depth, make sure to skip domains that already cover the entire
5578 * range.
5579 *
5580 * In that case build_sched_domains() will have terminated the iteration early
5581 * and our sibling sd spans will be empty. Domains should always include the
5582 * cpu they're built on, so check that.
5583 *
5584 */
5585static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5586{
5587	const struct cpumask *span = sched_domain_span(sd);
5588	struct sd_data *sdd = sd->private;
5589	struct sched_domain *sibling;
5590	int i;
5591
5592	for_each_cpu(i, span) {
5593		sibling = *per_cpu_ptr(sdd->sd, i);
5594		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5595			continue;
5596
5597		cpumask_set_cpu(i, sched_group_mask(sg));
5598	}
5599}
5600
5601/*
5602 * Return the canonical balance cpu for this group, this is the first cpu
5603 * of this group that's also in the iteration mask.
5604 */
5605int group_balance_cpu(struct sched_group *sg)
5606{
5607	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5608}
5609
5610static int
5611build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5612{
5613	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5614	const struct cpumask *span = sched_domain_span(sd);
5615	struct cpumask *covered = sched_domains_tmpmask;
5616	struct sd_data *sdd = sd->private;
5617	struct sched_domain *child;
5618	int i;
5619
5620	cpumask_clear(covered);
5621
5622	for_each_cpu(i, span) {
5623		struct cpumask *sg_span;
5624
5625		if (cpumask_test_cpu(i, covered))
5626			continue;
5627
5628		child = *per_cpu_ptr(sdd->sd, i);
5629
5630		/* See the comment near build_group_mask(). */
5631		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5632			continue;
5633
5634		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5635				GFP_KERNEL, cpu_to_node(cpu));
5636
5637		if (!sg)
5638			goto fail;
5639
5640		sg_span = sched_group_cpus(sg);
5641		if (child->child) {
5642			child = child->child;
5643			cpumask_copy(sg_span, sched_domain_span(child));
5644		} else
5645			cpumask_set_cpu(i, sg_span);
5646
5647		cpumask_or(covered, covered, sg_span);
5648
5649		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5650		if (atomic_inc_return(&sg->sgp->ref) == 1)
5651			build_group_mask(sd, sg);
5652
5653		/*
5654		 * Initialize sgp->power such that even if we mess up the
5655		 * domains and no possible iteration will get us here, we won't
5656		 * die on a /0 trap.
5657		 */
5658		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5659		sg->sgp->power_orig = sg->sgp->power;
5660
5661		/*
5662		 * Make sure the first group of this domain contains the
5663		 * canonical balance cpu. Otherwise the sched_domain iteration
5664		 * breaks. See update_sg_lb_stats().
5665		 */
5666		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5667		    group_balance_cpu(sg) == cpu)
5668			groups = sg;
5669
5670		if (!first)
5671			first = sg;
5672		if (last)
5673			last->next = sg;
5674		last = sg;
5675		last->next = first;
5676	}
5677	sd->groups = groups;
5678
5679	return 0;
5680
5681fail:
5682	free_sched_groups(first, 0);
5683
5684	return -ENOMEM;
5685}
5686
5687static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5688{
5689	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5690	struct sched_domain *child = sd->child;
5691
5692	if (child)
5693		cpu = cpumask_first(sched_domain_span(child));
5694
5695	if (sg) {
5696		*sg = *per_cpu_ptr(sdd->sg, cpu);
5697		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5698		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5699	}
5700
5701	return cpu;
5702}
5703
5704/*
5705 * build_sched_groups will build a circular linked list of the groups
5706 * covered by the given span, and will set each group's ->cpumask correctly,
5707 * and ->cpu_power to 0.
5708 *
5709 * Assumes the sched_domain tree is fully constructed
5710 */
5711static int
5712build_sched_groups(struct sched_domain *sd, int cpu)
5713{
5714	struct sched_group *first = NULL, *last = NULL;
5715	struct sd_data *sdd = sd->private;
5716	const struct cpumask *span = sched_domain_span(sd);
5717	struct cpumask *covered;
5718	int i;
5719
5720	get_group(cpu, sdd, &sd->groups);
5721	atomic_inc(&sd->groups->ref);
5722
5723	if (cpu != cpumask_first(span))
5724		return 0;
5725
5726	lockdep_assert_held(&sched_domains_mutex);
5727	covered = sched_domains_tmpmask;
5728
5729	cpumask_clear(covered);
5730
5731	for_each_cpu(i, span) {
5732		struct sched_group *sg;
5733		int group, j;
5734
5735		if (cpumask_test_cpu(i, covered))
5736			continue;
5737
5738		group = get_group(i, sdd, &sg);
5739		cpumask_clear(sched_group_cpus(sg));
5740		sg->sgp->power = 0;
5741		cpumask_setall(sched_group_mask(sg));
5742
5743		for_each_cpu(j, span) {
5744			if (get_group(j, sdd, NULL) != group)
5745				continue;
5746
5747			cpumask_set_cpu(j, covered);
5748			cpumask_set_cpu(j, sched_group_cpus(sg));
5749		}
5750
5751		if (!first)
5752			first = sg;
5753		if (last)
5754			last->next = sg;
5755		last = sg;
5756	}
5757	last->next = first;
5758
5759	return 0;
5760}
5761
5762/*
5763 * Initialize sched groups cpu_power.
5764 *
5765 * cpu_power indicates the capacity of sched group, which is used while
5766 * distributing the load between different sched groups in a sched domain.
5767 * Typically cpu_power for all the groups in a sched domain will be same unless
5768 * there are asymmetries in the topology. If there are asymmetries, group
5769 * having more cpu_power will pickup more load compared to the group having
5770 * less cpu_power.
5771 */
5772static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5773{
5774	struct sched_group *sg = sd->groups;
5775
5776	WARN_ON(!sg);
5777
5778	do {
5779		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5780		sg = sg->next;
5781	} while (sg != sd->groups);
5782
5783	if (cpu != group_balance_cpu(sg))
5784		return;
5785
5786	update_group_power(sd, cpu);
5787	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5788}
5789
5790int __weak arch_sd_sibling_asym_packing(void)
5791{
5792       return 0*SD_ASYM_PACKING;
5793}
5794
5795/*
5796 * Initializers for schedule domains
5797 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5798 */
5799
5800#ifdef CONFIG_SCHED_DEBUG
5801# define SD_INIT_NAME(sd, type)		sd->name = #type
5802#else
5803# define SD_INIT_NAME(sd, type)		do { } while (0)
5804#endif
5805
5806#define SD_INIT_FUNC(type)						\
5807static noinline struct sched_domain *					\
5808sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5809{									\
5810	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5811	*sd = SD_##type##_INIT;						\
5812	SD_INIT_NAME(sd, type);						\
5813	sd->private = &tl->data;					\
5814	return sd;							\
5815}
5816
5817SD_INIT_FUNC(CPU)
5818#ifdef CONFIG_SCHED_SMT
5819 SD_INIT_FUNC(SIBLING)
5820#endif
5821#ifdef CONFIG_SCHED_MC
5822 SD_INIT_FUNC(MC)
5823#endif
5824#ifdef CONFIG_SCHED_BOOK
5825 SD_INIT_FUNC(BOOK)
5826#endif
5827
5828static int default_relax_domain_level = -1;
5829int sched_domain_level_max;
5830
5831static int __init setup_relax_domain_level(char *str)
5832{
5833	if (kstrtoint(str, 0, &default_relax_domain_level))
5834		pr_warn("Unable to set relax_domain_level\n");
5835
5836	return 1;
5837}
5838__setup("relax_domain_level=", setup_relax_domain_level);
5839
5840static void set_domain_attribute(struct sched_domain *sd,
5841				 struct sched_domain_attr *attr)
5842{
5843	int request;
5844
5845	if (!attr || attr->relax_domain_level < 0) {
5846		if (default_relax_domain_level < 0)
5847			return;
5848		else
5849			request = default_relax_domain_level;
5850	} else
5851		request = attr->relax_domain_level;
5852	if (request < sd->level) {
5853		/* turn off idle balance on this domain */
5854		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5855	} else {
5856		/* turn on idle balance on this domain */
5857		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5858	}
5859}
5860
5861static void __sdt_free(const struct cpumask *cpu_map);
5862static int __sdt_alloc(const struct cpumask *cpu_map);
5863
5864static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5865				 const struct cpumask *cpu_map)
5866{
5867	switch (what) {
5868	case sa_rootdomain:
5869		if (!atomic_read(&d->rd->refcount))
5870			free_rootdomain(&d->rd->rcu); /* fall through */
5871	case sa_sd:
5872		free_percpu(d->sd); /* fall through */
5873	case sa_sd_storage:
5874		__sdt_free(cpu_map); /* fall through */
5875	case sa_none:
5876		break;
5877	}
5878}
5879
5880static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5881						   const struct cpumask *cpu_map)
5882{
5883	memset(d, 0, sizeof(*d));
5884
5885	if (__sdt_alloc(cpu_map))
5886		return sa_sd_storage;
5887	d->sd = alloc_percpu(struct sched_domain *);
5888	if (!d->sd)
5889		return sa_sd_storage;
5890	d->rd = alloc_rootdomain();
5891	if (!d->rd)
5892		return sa_sd;
5893	return sa_rootdomain;
5894}
5895
5896/*
5897 * NULL the sd_data elements we've used to build the sched_domain and
5898 * sched_group structure so that the subsequent __free_domain_allocs()
5899 * will not free the data we're using.
5900 */
5901static void claim_allocations(int cpu, struct sched_domain *sd)
5902{
5903	struct sd_data *sdd = sd->private;
5904
5905	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5906	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5907
5908	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5909		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5910
5911	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5912		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5913}
5914
5915#ifdef CONFIG_SCHED_SMT
5916static const struct cpumask *cpu_smt_mask(int cpu)
5917{
5918	return topology_thread_cpumask(cpu);
5919}
5920#endif
5921
5922/*
5923 * Topology list, bottom-up.
5924 */
5925static struct sched_domain_topology_level default_topology[] = {
5926#ifdef CONFIG_SCHED_SMT
5927	{ sd_init_SIBLING, cpu_smt_mask, },
5928#endif
5929#ifdef CONFIG_SCHED_MC
5930	{ sd_init_MC, cpu_coregroup_mask, },
5931#endif
5932#ifdef CONFIG_SCHED_BOOK
5933	{ sd_init_BOOK, cpu_book_mask, },
5934#endif
5935	{ sd_init_CPU, cpu_cpu_mask, },
5936	{ NULL, },
5937};
5938
5939static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5940
5941#define for_each_sd_topology(tl)			\
5942	for (tl = sched_domain_topology; tl->init; tl++)
5943
5944#ifdef CONFIG_NUMA
5945
5946static int sched_domains_numa_levels;
5947static int *sched_domains_numa_distance;
5948static struct cpumask ***sched_domains_numa_masks;
5949static int sched_domains_curr_level;
5950
5951static inline int sd_local_flags(int level)
5952{
5953	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5954		return 0;
5955
5956	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5957}
5958
5959static struct sched_domain *
5960sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5961{
5962	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5963	int level = tl->numa_level;
5964	int sd_weight = cpumask_weight(
5965			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5966
5967	*sd = (struct sched_domain){
5968		.min_interval		= sd_weight,
5969		.max_interval		= 2*sd_weight,
5970		.busy_factor		= 32,
5971		.imbalance_pct		= 125,
5972		.cache_nice_tries	= 2,
5973		.busy_idx		= 3,
5974		.idle_idx		= 2,
5975		.newidle_idx		= 0,
5976		.wake_idx		= 0,
5977		.forkexec_idx		= 0,
5978
5979		.flags			= 1*SD_LOAD_BALANCE
5980					| 1*SD_BALANCE_NEWIDLE
5981					| 0*SD_BALANCE_EXEC
5982					| 0*SD_BALANCE_FORK
5983					| 0*SD_BALANCE_WAKE
5984					| 0*SD_WAKE_AFFINE
5985					| 0*SD_SHARE_CPUPOWER
5986					| 0*SD_SHARE_PKG_RESOURCES
5987					| 1*SD_SERIALIZE
5988					| 0*SD_PREFER_SIBLING
5989					| 1*SD_NUMA
5990					| sd_local_flags(level)
5991					,
5992		.last_balance		= jiffies,
5993		.balance_interval	= sd_weight,
5994	};
5995	SD_INIT_NAME(sd, NUMA);
5996	sd->private = &tl->data;
5997
5998	/*
5999	 * Ugly hack to pass state to sd_numa_mask()...
6000	 */
6001	sched_domains_curr_level = tl->numa_level;
6002
6003	return sd;
6004}
6005
6006static const struct cpumask *sd_numa_mask(int cpu)
6007{
6008	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6009}
6010
6011static void sched_numa_warn(const char *str)
6012{
6013	static int done = false;
6014	int i,j;
6015
6016	if (done)
6017		return;
6018
6019	done = true;
6020
6021	printk(KERN_WARNING "ERROR: %s\n\n", str);
6022
6023	for (i = 0; i < nr_node_ids; i++) {
6024		printk(KERN_WARNING "  ");
6025		for (j = 0; j < nr_node_ids; j++)
6026			printk(KERN_CONT "%02d ", node_distance(i,j));
6027		printk(KERN_CONT "\n");
6028	}
6029	printk(KERN_WARNING "\n");
6030}
6031
6032static bool find_numa_distance(int distance)
6033{
6034	int i;
6035
6036	if (distance == node_distance(0, 0))
6037		return true;
6038
6039	for (i = 0; i < sched_domains_numa_levels; i++) {
6040		if (sched_domains_numa_distance[i] == distance)
6041			return true;
6042	}
6043
6044	return false;
6045}
6046
6047static void sched_init_numa(void)
6048{
6049	int next_distance, curr_distance = node_distance(0, 0);
6050	struct sched_domain_topology_level *tl;
6051	int level = 0;
6052	int i, j, k;
6053
6054	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6055	if (!sched_domains_numa_distance)
6056		return;
6057
6058	/*
6059	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6060	 * unique distances in the node_distance() table.
6061	 *
6062	 * Assumes node_distance(0,j) includes all distances in
6063	 * node_distance(i,j) in order to avoid cubic time.
6064	 */
6065	next_distance = curr_distance;
6066	for (i = 0; i < nr_node_ids; i++) {
6067		for (j = 0; j < nr_node_ids; j++) {
6068			for (k = 0; k < nr_node_ids; k++) {
6069				int distance = node_distance(i, k);
6070
6071				if (distance > curr_distance &&
6072				    (distance < next_distance ||
6073				     next_distance == curr_distance))
6074					next_distance = distance;
6075
6076				/*
6077				 * While not a strong assumption it would be nice to know
6078				 * about cases where if node A is connected to B, B is not
6079				 * equally connected to A.
6080				 */
6081				if (sched_debug() && node_distance(k, i) != distance)
6082					sched_numa_warn("Node-distance not symmetric");
6083
6084				if (sched_debug() && i && !find_numa_distance(distance))
6085					sched_numa_warn("Node-0 not representative");
6086			}
6087			if (next_distance != curr_distance) {
6088				sched_domains_numa_distance[level++] = next_distance;
6089				sched_domains_numa_levels = level;
6090				curr_distance = next_distance;
6091			} else break;
6092		}
6093
6094		/*
6095		 * In case of sched_debug() we verify the above assumption.
6096		 */
6097		if (!sched_debug())
6098			break;
6099	}
6100	/*
6101	 * 'level' contains the number of unique distances, excluding the
6102	 * identity distance node_distance(i,i).
6103	 *
6104	 * The sched_domains_numa_distance[] array includes the actual distance
6105	 * numbers.
6106	 */
6107
6108	/*
6109	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6110	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6111	 * the array will contain less then 'level' members. This could be
6112	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6113	 * in other functions.
6114	 *
6115	 * We reset it to 'level' at the end of this function.
6116	 */
6117	sched_domains_numa_levels = 0;
6118
6119	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6120	if (!sched_domains_numa_masks)
6121		return;
6122
6123	/*
6124	 * Now for each level, construct a mask per node which contains all
6125	 * cpus of nodes that are that many hops away from us.
6126	 */
6127	for (i = 0; i < level; i++) {
6128		sched_domains_numa_masks[i] =
6129			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6130		if (!sched_domains_numa_masks[i])
6131			return;
6132
6133		for (j = 0; j < nr_node_ids; j++) {
6134			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6135			if (!mask)
6136				return;
6137
6138			sched_domains_numa_masks[i][j] = mask;
6139
6140			for (k = 0; k < nr_node_ids; k++) {
6141				if (node_distance(j, k) > sched_domains_numa_distance[i])
6142					continue;
6143
6144				cpumask_or(mask, mask, cpumask_of_node(k));
6145			}
6146		}
6147	}
6148
6149	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6150			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6151	if (!tl)
6152		return;
6153
6154	/*
6155	 * Copy the default topology bits..
6156	 */
6157	for (i = 0; default_topology[i].init; i++)
6158		tl[i] = default_topology[i];
6159
6160	/*
6161	 * .. and append 'j' levels of NUMA goodness.
6162	 */
6163	for (j = 0; j < level; i++, j++) {
6164		tl[i] = (struct sched_domain_topology_level){
6165			.init = sd_numa_init,
6166			.mask = sd_numa_mask,
6167			.flags = SDTL_OVERLAP,
6168			.numa_level = j,
6169		};
6170	}
6171
6172	sched_domain_topology = tl;
6173
6174	sched_domains_numa_levels = level;
6175}
6176
6177static void sched_domains_numa_masks_set(int cpu)
6178{
6179	int i, j;
6180	int node = cpu_to_node(cpu);
6181
6182	for (i = 0; i < sched_domains_numa_levels; i++) {
6183		for (j = 0; j < nr_node_ids; j++) {
6184			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6185				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6186		}
6187	}
6188}
6189
6190static void sched_domains_numa_masks_clear(int cpu)
6191{
6192	int i, j;
6193	for (i = 0; i < sched_domains_numa_levels; i++) {
6194		for (j = 0; j < nr_node_ids; j++)
6195			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6196	}
6197}
6198
6199/*
6200 * Update sched_domains_numa_masks[level][node] array when new cpus
6201 * are onlined.
6202 */
6203static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6204					   unsigned long action,
6205					   void *hcpu)
6206{
6207	int cpu = (long)hcpu;
6208
6209	switch (action & ~CPU_TASKS_FROZEN) {
6210	case CPU_ONLINE:
6211		sched_domains_numa_masks_set(cpu);
6212		break;
6213
6214	case CPU_DEAD:
6215		sched_domains_numa_masks_clear(cpu);
6216		break;
6217
6218	default:
6219		return NOTIFY_DONE;
6220	}
6221
6222	return NOTIFY_OK;
6223}
6224#else
6225static inline void sched_init_numa(void)
6226{
6227}
6228
6229static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6230					   unsigned long action,
6231					   void *hcpu)
6232{
6233	return 0;
6234}
6235#endif /* CONFIG_NUMA */
6236
6237static int __sdt_alloc(const struct cpumask *cpu_map)
6238{
6239	struct sched_domain_topology_level *tl;
6240	int j;
6241
6242	for_each_sd_topology(tl) {
6243		struct sd_data *sdd = &tl->data;
6244
6245		sdd->sd = alloc_percpu(struct sched_domain *);
6246		if (!sdd->sd)
6247			return -ENOMEM;
6248
6249		sdd->sg = alloc_percpu(struct sched_group *);
6250		if (!sdd->sg)
6251			return -ENOMEM;
6252
6253		sdd->sgp = alloc_percpu(struct sched_group_power *);
6254		if (!sdd->sgp)
6255			return -ENOMEM;
6256
6257		for_each_cpu(j, cpu_map) {
6258			struct sched_domain *sd;
6259			struct sched_group *sg;
6260			struct sched_group_power *sgp;
6261
6262		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6263					GFP_KERNEL, cpu_to_node(j));
6264			if (!sd)
6265				return -ENOMEM;
6266
6267			*per_cpu_ptr(sdd->sd, j) = sd;
6268
6269			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6270					GFP_KERNEL, cpu_to_node(j));
6271			if (!sg)
6272				return -ENOMEM;
6273
6274			sg->next = sg;
6275
6276			*per_cpu_ptr(sdd->sg, j) = sg;
6277
6278			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6279					GFP_KERNEL, cpu_to_node(j));
6280			if (!sgp)
6281				return -ENOMEM;
6282
6283			*per_cpu_ptr(sdd->sgp, j) = sgp;
6284		}
6285	}
6286
6287	return 0;
6288}
6289
6290static void __sdt_free(const struct cpumask *cpu_map)
6291{
6292	struct sched_domain_topology_level *tl;
6293	int j;
6294
6295	for_each_sd_topology(tl) {
6296		struct sd_data *sdd = &tl->data;
6297
6298		for_each_cpu(j, cpu_map) {
6299			struct sched_domain *sd;
6300
6301			if (sdd->sd) {
6302				sd = *per_cpu_ptr(sdd->sd, j);
6303				if (sd && (sd->flags & SD_OVERLAP))
6304					free_sched_groups(sd->groups, 0);
6305				kfree(*per_cpu_ptr(sdd->sd, j));
6306			}
6307
6308			if (sdd->sg)
6309				kfree(*per_cpu_ptr(sdd->sg, j));
6310			if (sdd->sgp)
6311				kfree(*per_cpu_ptr(sdd->sgp, j));
6312		}
6313		free_percpu(sdd->sd);
6314		sdd->sd = NULL;
6315		free_percpu(sdd->sg);
6316		sdd->sg = NULL;
6317		free_percpu(sdd->sgp);
6318		sdd->sgp = NULL;
6319	}
6320}
6321
6322struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6323		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6324		struct sched_domain *child, int cpu)
6325{
6326	struct sched_domain *sd = tl->init(tl, cpu);
6327	if (!sd)
6328		return child;
6329
6330	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6331	if (child) {
6332		sd->level = child->level + 1;
6333		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6334		child->parent = sd;
6335		sd->child = child;
6336	}
6337	set_domain_attribute(sd, attr);
6338
6339	return sd;
6340}
6341
6342/*
6343 * Build sched domains for a given set of cpus and attach the sched domains
6344 * to the individual cpus
6345 */
6346static int build_sched_domains(const struct cpumask *cpu_map,
6347			       struct sched_domain_attr *attr)
6348{
6349	enum s_alloc alloc_state;
6350	struct sched_domain *sd;
6351	struct s_data d;
6352	int i, ret = -ENOMEM;
6353
6354	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6355	if (alloc_state != sa_rootdomain)
6356		goto error;
6357
6358	/* Set up domains for cpus specified by the cpu_map. */
6359	for_each_cpu(i, cpu_map) {
6360		struct sched_domain_topology_level *tl;
6361
6362		sd = NULL;
6363		for_each_sd_topology(tl) {
6364			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6365			if (tl == sched_domain_topology)
6366				*per_cpu_ptr(d.sd, i) = sd;
6367			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6368				sd->flags |= SD_OVERLAP;
6369			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6370				break;
6371		}
6372	}
6373
6374	/* Build the groups for the domains */
6375	for_each_cpu(i, cpu_map) {
6376		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6377			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6378			if (sd->flags & SD_OVERLAP) {
6379				if (build_overlap_sched_groups(sd, i))
6380					goto error;
6381			} else {
6382				if (build_sched_groups(sd, i))
6383					goto error;
6384			}
6385		}
6386	}
6387
6388	/* Calculate CPU power for physical packages and nodes */
6389	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6390		if (!cpumask_test_cpu(i, cpu_map))
6391			continue;
6392
6393		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6394			claim_allocations(i, sd);
6395			init_sched_groups_power(i, sd);
6396		}
6397	}
6398
6399	/* Attach the domains */
6400	rcu_read_lock();
6401	for_each_cpu(i, cpu_map) {
6402		sd = *per_cpu_ptr(d.sd, i);
6403		cpu_attach_domain(sd, d.rd, i);
6404	}
6405	rcu_read_unlock();
6406
6407	ret = 0;
6408error:
6409	__free_domain_allocs(&d, alloc_state, cpu_map);
6410	return ret;
6411}
6412
6413static cpumask_var_t *doms_cur;	/* current sched domains */
6414static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6415static struct sched_domain_attr *dattr_cur;
6416				/* attribues of custom domains in 'doms_cur' */
6417
6418/*
6419 * Special case: If a kmalloc of a doms_cur partition (array of
6420 * cpumask) fails, then fallback to a single sched domain,
6421 * as determined by the single cpumask fallback_doms.
6422 */
6423static cpumask_var_t fallback_doms;
6424
6425/*
6426 * arch_update_cpu_topology lets virtualized architectures update the
6427 * cpu core maps. It is supposed to return 1 if the topology changed
6428 * or 0 if it stayed the same.
6429 */
6430int __attribute__((weak)) arch_update_cpu_topology(void)
6431{
6432	return 0;
6433}
6434
6435cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6436{
6437	int i;
6438	cpumask_var_t *doms;
6439
6440	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6441	if (!doms)
6442		return NULL;
6443	for (i = 0; i < ndoms; i++) {
6444		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6445			free_sched_domains(doms, i);
6446			return NULL;
6447		}
6448	}
6449	return doms;
6450}
6451
6452void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6453{
6454	unsigned int i;
6455	for (i = 0; i < ndoms; i++)
6456		free_cpumask_var(doms[i]);
6457	kfree(doms);
6458}
6459
6460/*
6461 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6462 * For now this just excludes isolated cpus, but could be used to
6463 * exclude other special cases in the future.
6464 */
6465static int init_sched_domains(const struct cpumask *cpu_map)
6466{
6467	int err;
6468
6469	arch_update_cpu_topology();
6470	ndoms_cur = 1;
6471	doms_cur = alloc_sched_domains(ndoms_cur);
6472	if (!doms_cur)
6473		doms_cur = &fallback_doms;
6474	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6475	err = build_sched_domains(doms_cur[0], NULL);
6476	register_sched_domain_sysctl();
6477
6478	return err;
6479}
6480
6481/*
6482 * Detach sched domains from a group of cpus specified in cpu_map
6483 * These cpus will now be attached to the NULL domain
6484 */
6485static void detach_destroy_domains(const struct cpumask *cpu_map)
6486{
6487	int i;
6488
6489	rcu_read_lock();
6490	for_each_cpu(i, cpu_map)
6491		cpu_attach_domain(NULL, &def_root_domain, i);
6492	rcu_read_unlock();
6493}
6494
6495/* handle null as "default" */
6496static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6497			struct sched_domain_attr *new, int idx_new)
6498{
6499	struct sched_domain_attr tmp;
6500
6501	/* fast path */
6502	if (!new && !cur)
6503		return 1;
6504
6505	tmp = SD_ATTR_INIT;
6506	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6507			new ? (new + idx_new) : &tmp,
6508			sizeof(struct sched_domain_attr));
6509}
6510
6511/*
6512 * Partition sched domains as specified by the 'ndoms_new'
6513 * cpumasks in the array doms_new[] of cpumasks. This compares
6514 * doms_new[] to the current sched domain partitioning, doms_cur[].
6515 * It destroys each deleted domain and builds each new domain.
6516 *
6517 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6518 * The masks don't intersect (don't overlap.) We should setup one
6519 * sched domain for each mask. CPUs not in any of the cpumasks will
6520 * not be load balanced. If the same cpumask appears both in the
6521 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6522 * it as it is.
6523 *
6524 * The passed in 'doms_new' should be allocated using
6525 * alloc_sched_domains.  This routine takes ownership of it and will
6526 * free_sched_domains it when done with it. If the caller failed the
6527 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6528 * and partition_sched_domains() will fallback to the single partition
6529 * 'fallback_doms', it also forces the domains to be rebuilt.
6530 *
6531 * If doms_new == NULL it will be replaced with cpu_online_mask.
6532 * ndoms_new == 0 is a special case for destroying existing domains,
6533 * and it will not create the default domain.
6534 *
6535 * Call with hotplug lock held
6536 */
6537void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6538			     struct sched_domain_attr *dattr_new)
6539{
6540	int i, j, n;
6541	int new_topology;
6542
6543	mutex_lock(&sched_domains_mutex);
6544
6545	/* always unregister in case we don't destroy any domains */
6546	unregister_sched_domain_sysctl();
6547
6548	/* Let architecture update cpu core mappings. */
6549	new_topology = arch_update_cpu_topology();
6550
6551	n = doms_new ? ndoms_new : 0;
6552
6553	/* Destroy deleted domains */
6554	for (i = 0; i < ndoms_cur; i++) {
6555		for (j = 0; j < n && !new_topology; j++) {
6556			if (cpumask_equal(doms_cur[i], doms_new[j])
6557			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6558				goto match1;
6559		}
6560		/* no match - a current sched domain not in new doms_new[] */
6561		detach_destroy_domains(doms_cur[i]);
6562match1:
6563		;
6564	}
6565
6566	n = ndoms_cur;
6567	if (doms_new == NULL) {
6568		n = 0;
6569		doms_new = &fallback_doms;
6570		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6571		WARN_ON_ONCE(dattr_new);
6572	}
6573
6574	/* Build new domains */
6575	for (i = 0; i < ndoms_new; i++) {
6576		for (j = 0; j < n && !new_topology; j++) {
6577			if (cpumask_equal(doms_new[i], doms_cur[j])
6578			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6579				goto match2;
6580		}
6581		/* no match - add a new doms_new */
6582		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6583match2:
6584		;
6585	}
6586
6587	/* Remember the new sched domains */
6588	if (doms_cur != &fallback_doms)
6589		free_sched_domains(doms_cur, ndoms_cur);
6590	kfree(dattr_cur);	/* kfree(NULL) is safe */
6591	doms_cur = doms_new;
6592	dattr_cur = dattr_new;
6593	ndoms_cur = ndoms_new;
6594
6595	register_sched_domain_sysctl();
6596
6597	mutex_unlock(&sched_domains_mutex);
6598}
6599
6600static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6601
6602/*
6603 * Update cpusets according to cpu_active mask.  If cpusets are
6604 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6605 * around partition_sched_domains().
6606 *
6607 * If we come here as part of a suspend/resume, don't touch cpusets because we
6608 * want to restore it back to its original state upon resume anyway.
6609 */
6610static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6611			     void *hcpu)
6612{
6613	switch (action) {
6614	case CPU_ONLINE_FROZEN:
6615	case CPU_DOWN_FAILED_FROZEN:
6616
6617		/*
6618		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6619		 * resume sequence. As long as this is not the last online
6620		 * operation in the resume sequence, just build a single sched
6621		 * domain, ignoring cpusets.
6622		 */
6623		num_cpus_frozen--;
6624		if (likely(num_cpus_frozen)) {
6625			partition_sched_domains(1, NULL, NULL);
6626			break;
6627		}
6628
6629		/*
6630		 * This is the last CPU online operation. So fall through and
6631		 * restore the original sched domains by considering the
6632		 * cpuset configurations.
6633		 */
6634
6635	case CPU_ONLINE:
6636	case CPU_DOWN_FAILED:
6637		cpuset_update_active_cpus(true);
6638		break;
6639	default:
6640		return NOTIFY_DONE;
6641	}
6642	return NOTIFY_OK;
6643}
6644
6645static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6646			       void *hcpu)
6647{
6648	switch (action) {
6649	case CPU_DOWN_PREPARE:
6650		cpuset_update_active_cpus(false);
6651		break;
6652	case CPU_DOWN_PREPARE_FROZEN:
6653		num_cpus_frozen++;
6654		partition_sched_domains(1, NULL, NULL);
6655		break;
6656	default:
6657		return NOTIFY_DONE;
6658	}
6659	return NOTIFY_OK;
6660}
6661
6662void __init sched_init_smp(void)
6663{
6664	cpumask_var_t non_isolated_cpus;
6665
6666	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6667	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6668
6669	sched_init_numa();
6670
6671	/*
6672	 * There's no userspace yet to cause hotplug operations; hence all the
6673	 * cpu masks are stable and all blatant races in the below code cannot
6674	 * happen.
6675	 */
6676	mutex_lock(&sched_domains_mutex);
6677	init_sched_domains(cpu_active_mask);
6678	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6679	if (cpumask_empty(non_isolated_cpus))
6680		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6681	mutex_unlock(&sched_domains_mutex);
6682
6683	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6684	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6685	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6686
6687	init_hrtick();
6688
6689	/* Move init over to a non-isolated CPU */
6690	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6691		BUG();
6692	sched_init_granularity();
6693	free_cpumask_var(non_isolated_cpus);
6694
6695	init_sched_rt_class();
6696	init_sched_dl_class();
6697}
6698#else
6699void __init sched_init_smp(void)
6700{
6701	sched_init_granularity();
6702}
6703#endif /* CONFIG_SMP */
6704
6705const_debug unsigned int sysctl_timer_migration = 1;
6706
6707int in_sched_functions(unsigned long addr)
6708{
6709	return in_lock_functions(addr) ||
6710		(addr >= (unsigned long)__sched_text_start
6711		&& addr < (unsigned long)__sched_text_end);
6712}
6713
6714#ifdef CONFIG_CGROUP_SCHED
6715/*
6716 * Default task group.
6717 * Every task in system belongs to this group at bootup.
6718 */
6719struct task_group root_task_group;
6720LIST_HEAD(task_groups);
6721#endif
6722
6723DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6724
6725void __init sched_init(void)
6726{
6727	int i, j;
6728	unsigned long alloc_size = 0, ptr;
6729
6730#ifdef CONFIG_FAIR_GROUP_SCHED
6731	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6732#endif
6733#ifdef CONFIG_RT_GROUP_SCHED
6734	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6735#endif
6736#ifdef CONFIG_CPUMASK_OFFSTACK
6737	alloc_size += num_possible_cpus() * cpumask_size();
6738#endif
6739	if (alloc_size) {
6740		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6741
6742#ifdef CONFIG_FAIR_GROUP_SCHED
6743		root_task_group.se = (struct sched_entity **)ptr;
6744		ptr += nr_cpu_ids * sizeof(void **);
6745
6746		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6747		ptr += nr_cpu_ids * sizeof(void **);
6748
6749#endif /* CONFIG_FAIR_GROUP_SCHED */
6750#ifdef CONFIG_RT_GROUP_SCHED
6751		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6752		ptr += nr_cpu_ids * sizeof(void **);
6753
6754		root_task_group.rt_rq = (struct rt_rq **)ptr;
6755		ptr += nr_cpu_ids * sizeof(void **);
6756
6757#endif /* CONFIG_RT_GROUP_SCHED */
6758#ifdef CONFIG_CPUMASK_OFFSTACK
6759		for_each_possible_cpu(i) {
6760			per_cpu(load_balance_mask, i) = (void *)ptr;
6761			ptr += cpumask_size();
6762		}
6763#endif /* CONFIG_CPUMASK_OFFSTACK */
6764	}
6765
6766	init_rt_bandwidth(&def_rt_bandwidth,
6767			global_rt_period(), global_rt_runtime());
6768	init_dl_bandwidth(&def_dl_bandwidth,
6769			global_rt_period(), global_rt_runtime());
6770
6771#ifdef CONFIG_SMP
6772	init_defrootdomain();
6773#endif
6774
6775#ifdef CONFIG_RT_GROUP_SCHED
6776	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6777			global_rt_period(), global_rt_runtime());
6778#endif /* CONFIG_RT_GROUP_SCHED */
6779
6780#ifdef CONFIG_CGROUP_SCHED
6781	list_add(&root_task_group.list, &task_groups);
6782	INIT_LIST_HEAD(&root_task_group.children);
6783	INIT_LIST_HEAD(&root_task_group.siblings);
6784	autogroup_init(&init_task);
6785
6786#endif /* CONFIG_CGROUP_SCHED */
6787
6788	for_each_possible_cpu(i) {
6789		struct rq *rq;
6790
6791		rq = cpu_rq(i);
6792		raw_spin_lock_init(&rq->lock);
6793		rq->nr_running = 0;
6794		rq->calc_load_active = 0;
6795		rq->calc_load_update = jiffies + LOAD_FREQ;
6796		init_cfs_rq(&rq->cfs);
6797		init_rt_rq(&rq->rt, rq);
6798		init_dl_rq(&rq->dl, rq);
6799#ifdef CONFIG_FAIR_GROUP_SCHED
6800		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6801		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6802		/*
6803		 * How much cpu bandwidth does root_task_group get?
6804		 *
6805		 * In case of task-groups formed thr' the cgroup filesystem, it
6806		 * gets 100% of the cpu resources in the system. This overall
6807		 * system cpu resource is divided among the tasks of
6808		 * root_task_group and its child task-groups in a fair manner,
6809		 * based on each entity's (task or task-group's) weight
6810		 * (se->load.weight).
6811		 *
6812		 * In other words, if root_task_group has 10 tasks of weight
6813		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6814		 * then A0's share of the cpu resource is:
6815		 *
6816		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6817		 *
6818		 * We achieve this by letting root_task_group's tasks sit
6819		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6820		 */
6821		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6822		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6823#endif /* CONFIG_FAIR_GROUP_SCHED */
6824
6825		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6826#ifdef CONFIG_RT_GROUP_SCHED
6827		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6828		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6829#endif
6830
6831		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6832			rq->cpu_load[j] = 0;
6833
6834		rq->last_load_update_tick = jiffies;
6835
6836#ifdef CONFIG_SMP
6837		rq->sd = NULL;
6838		rq->rd = NULL;
6839		rq->cpu_power = SCHED_POWER_SCALE;
6840		rq->post_schedule = 0;
6841		rq->active_balance = 0;
6842		rq->next_balance = jiffies;
6843		rq->push_cpu = 0;
6844		rq->cpu = i;
6845		rq->online = 0;
6846		rq->idle_stamp = 0;
6847		rq->avg_idle = 2*sysctl_sched_migration_cost;
6848		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6849
6850		INIT_LIST_HEAD(&rq->cfs_tasks);
6851
6852		rq_attach_root(rq, &def_root_domain);
6853#ifdef CONFIG_NO_HZ_COMMON
6854		rq->nohz_flags = 0;
6855#endif
6856#ifdef CONFIG_NO_HZ_FULL
6857		rq->last_sched_tick = 0;
6858#endif
6859#endif
6860		init_rq_hrtick(rq);
6861		atomic_set(&rq->nr_iowait, 0);
6862	}
6863
6864	set_load_weight(&init_task);
6865
6866#ifdef CONFIG_PREEMPT_NOTIFIERS
6867	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6868#endif
6869
6870	/*
6871	 * The boot idle thread does lazy MMU switching as well:
6872	 */
6873	atomic_inc(&init_mm.mm_count);
6874	enter_lazy_tlb(&init_mm, current);
6875
6876	/*
6877	 * Make us the idle thread. Technically, schedule() should not be
6878	 * called from this thread, however somewhere below it might be,
6879	 * but because we are the idle thread, we just pick up running again
6880	 * when this runqueue becomes "idle".
6881	 */
6882	init_idle(current, smp_processor_id());
6883
6884	calc_load_update = jiffies + LOAD_FREQ;
6885
6886	/*
6887	 * During early bootup we pretend to be a normal task:
6888	 */
6889	current->sched_class = &fair_sched_class;
6890
6891#ifdef CONFIG_SMP
6892	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6893	/* May be allocated at isolcpus cmdline parse time */
6894	if (cpu_isolated_map == NULL)
6895		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6896	idle_thread_set_boot_cpu();
6897#endif
6898	init_sched_fair_class();
6899
6900	scheduler_running = 1;
6901}
6902
6903#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6904static inline int preempt_count_equals(int preempt_offset)
6905{
6906	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6907
6908	return (nested == preempt_offset);
6909}
6910
6911void __might_sleep(const char *file, int line, int preempt_offset)
6912{
6913	static unsigned long prev_jiffy;	/* ratelimiting */
6914
6915	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6916	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6917	    system_state != SYSTEM_RUNNING || oops_in_progress)
6918		return;
6919	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6920		return;
6921	prev_jiffy = jiffies;
6922
6923	printk(KERN_ERR
6924		"BUG: sleeping function called from invalid context at %s:%d\n",
6925			file, line);
6926	printk(KERN_ERR
6927		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6928			in_atomic(), irqs_disabled(),
6929			current->pid, current->comm);
6930
6931	debug_show_held_locks(current);
6932	if (irqs_disabled())
6933		print_irqtrace_events(current);
6934	dump_stack();
6935}
6936EXPORT_SYMBOL(__might_sleep);
6937#endif
6938
6939#ifdef CONFIG_MAGIC_SYSRQ
6940static void normalize_task(struct rq *rq, struct task_struct *p)
6941{
6942	const struct sched_class *prev_class = p->sched_class;
6943	struct sched_attr attr = {
6944		.sched_policy = SCHED_NORMAL,
6945	};
6946	int old_prio = p->prio;
6947	int on_rq;
6948
6949	on_rq = p->on_rq;
6950	if (on_rq)
6951		dequeue_task(rq, p, 0);
6952	__setscheduler(rq, p, &attr);
6953	if (on_rq) {
6954		enqueue_task(rq, p, 0);
6955		resched_task(rq->curr);
6956	}
6957
6958	check_class_changed(rq, p, prev_class, old_prio);
6959}
6960
6961void normalize_rt_tasks(void)
6962{
6963	struct task_struct *g, *p;
6964	unsigned long flags;
6965	struct rq *rq;
6966
6967	read_lock_irqsave(&tasklist_lock, flags);
6968	do_each_thread(g, p) {
6969		/*
6970		 * Only normalize user tasks:
6971		 */
6972		if (!p->mm)
6973			continue;
6974
6975		p->se.exec_start		= 0;
6976#ifdef CONFIG_SCHEDSTATS
6977		p->se.statistics.wait_start	= 0;
6978		p->se.statistics.sleep_start	= 0;
6979		p->se.statistics.block_start	= 0;
6980#endif
6981
6982		if (!dl_task(p) && !rt_task(p)) {
6983			/*
6984			 * Renice negative nice level userspace
6985			 * tasks back to 0:
6986			 */
6987			if (TASK_NICE(p) < 0 && p->mm)
6988				set_user_nice(p, 0);
6989			continue;
6990		}
6991
6992		raw_spin_lock(&p->pi_lock);
6993		rq = __task_rq_lock(p);
6994
6995		normalize_task(rq, p);
6996
6997		__task_rq_unlock(rq);
6998		raw_spin_unlock(&p->pi_lock);
6999	} while_each_thread(g, p);
7000
7001	read_unlock_irqrestore(&tasklist_lock, flags);
7002}
7003
7004#endif /* CONFIG_MAGIC_SYSRQ */
7005
7006#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7007/*
7008 * These functions are only useful for the IA64 MCA handling, or kdb.
7009 *
7010 * They can only be called when the whole system has been
7011 * stopped - every CPU needs to be quiescent, and no scheduling
7012 * activity can take place. Using them for anything else would
7013 * be a serious bug, and as a result, they aren't even visible
7014 * under any other configuration.
7015 */
7016
7017/**
7018 * curr_task - return the current task for a given cpu.
7019 * @cpu: the processor in question.
7020 *
7021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7022 *
7023 * Return: The current task for @cpu.
7024 */
7025struct task_struct *curr_task(int cpu)
7026{
7027	return cpu_curr(cpu);
7028}
7029
7030#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7031
7032#ifdef CONFIG_IA64
7033/**
7034 * set_curr_task - set the current task for a given cpu.
7035 * @cpu: the processor in question.
7036 * @p: the task pointer to set.
7037 *
7038 * Description: This function must only be used when non-maskable interrupts
7039 * are serviced on a separate stack. It allows the architecture to switch the
7040 * notion of the current task on a cpu in a non-blocking manner. This function
7041 * must be called with all CPU's synchronized, and interrupts disabled, the
7042 * and caller must save the original value of the current task (see
7043 * curr_task() above) and restore that value before reenabling interrupts and
7044 * re-starting the system.
7045 *
7046 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7047 */
7048void set_curr_task(int cpu, struct task_struct *p)
7049{
7050	cpu_curr(cpu) = p;
7051}
7052
7053#endif
7054
7055#ifdef CONFIG_CGROUP_SCHED
7056/* task_group_lock serializes the addition/removal of task groups */
7057static DEFINE_SPINLOCK(task_group_lock);
7058
7059static void free_sched_group(struct task_group *tg)
7060{
7061	free_fair_sched_group(tg);
7062	free_rt_sched_group(tg);
7063	autogroup_free(tg);
7064	kfree(tg);
7065}
7066
7067/* allocate runqueue etc for a new task group */
7068struct task_group *sched_create_group(struct task_group *parent)
7069{
7070	struct task_group *tg;
7071
7072	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7073	if (!tg)
7074		return ERR_PTR(-ENOMEM);
7075
7076	if (!alloc_fair_sched_group(tg, parent))
7077		goto err;
7078
7079	if (!alloc_rt_sched_group(tg, parent))
7080		goto err;
7081
7082	return tg;
7083
7084err:
7085	free_sched_group(tg);
7086	return ERR_PTR(-ENOMEM);
7087}
7088
7089void sched_online_group(struct task_group *tg, struct task_group *parent)
7090{
7091	unsigned long flags;
7092
7093	spin_lock_irqsave(&task_group_lock, flags);
7094	list_add_rcu(&tg->list, &task_groups);
7095
7096	WARN_ON(!parent); /* root should already exist */
7097
7098	tg->parent = parent;
7099	INIT_LIST_HEAD(&tg->children);
7100	list_add_rcu(&tg->siblings, &parent->children);
7101	spin_unlock_irqrestore(&task_group_lock, flags);
7102}
7103
7104/* rcu callback to free various structures associated with a task group */
7105static void free_sched_group_rcu(struct rcu_head *rhp)
7106{
7107	/* now it should be safe to free those cfs_rqs */
7108	free_sched_group(container_of(rhp, struct task_group, rcu));
7109}
7110
7111/* Destroy runqueue etc associated with a task group */
7112void sched_destroy_group(struct task_group *tg)
7113{
7114	/* wait for possible concurrent references to cfs_rqs complete */
7115	call_rcu(&tg->rcu, free_sched_group_rcu);
7116}
7117
7118void sched_offline_group(struct task_group *tg)
7119{
7120	unsigned long flags;
7121	int i;
7122
7123	/* end participation in shares distribution */
7124	for_each_possible_cpu(i)
7125		unregister_fair_sched_group(tg, i);
7126
7127	spin_lock_irqsave(&task_group_lock, flags);
7128	list_del_rcu(&tg->list);
7129	list_del_rcu(&tg->siblings);
7130	spin_unlock_irqrestore(&task_group_lock, flags);
7131}
7132
7133/* change task's runqueue when it moves between groups.
7134 *	The caller of this function should have put the task in its new group
7135 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7136 *	reflect its new group.
7137 */
7138void sched_move_task(struct task_struct *tsk)
7139{
7140	struct task_group *tg;
7141	int on_rq, running;
7142	unsigned long flags;
7143	struct rq *rq;
7144
7145	rq = task_rq_lock(tsk, &flags);
7146
7147	running = task_current(rq, tsk);
7148	on_rq = tsk->on_rq;
7149
7150	if (on_rq)
7151		dequeue_task(rq, tsk, 0);
7152	if (unlikely(running))
7153		tsk->sched_class->put_prev_task(rq, tsk);
7154
7155	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7156				lockdep_is_held(&tsk->sighand->siglock)),
7157			  struct task_group, css);
7158	tg = autogroup_task_group(tsk, tg);
7159	tsk->sched_task_group = tg;
7160
7161#ifdef CONFIG_FAIR_GROUP_SCHED
7162	if (tsk->sched_class->task_move_group)
7163		tsk->sched_class->task_move_group(tsk, on_rq);
7164	else
7165#endif
7166		set_task_rq(tsk, task_cpu(tsk));
7167
7168	if (unlikely(running))
7169		tsk->sched_class->set_curr_task(rq);
7170	if (on_rq)
7171		enqueue_task(rq, tsk, 0);
7172
7173	task_rq_unlock(rq, tsk, &flags);
7174}
7175#endif /* CONFIG_CGROUP_SCHED */
7176
7177#ifdef CONFIG_RT_GROUP_SCHED
7178/*
7179 * Ensure that the real time constraints are schedulable.
7180 */
7181static DEFINE_MUTEX(rt_constraints_mutex);
7182
7183/* Must be called with tasklist_lock held */
7184static inline int tg_has_rt_tasks(struct task_group *tg)
7185{
7186	struct task_struct *g, *p;
7187
7188	do_each_thread(g, p) {
7189		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7190			return 1;
7191	} while_each_thread(g, p);
7192
7193	return 0;
7194}
7195
7196struct rt_schedulable_data {
7197	struct task_group *tg;
7198	u64 rt_period;
7199	u64 rt_runtime;
7200};
7201
7202static int tg_rt_schedulable(struct task_group *tg, void *data)
7203{
7204	struct rt_schedulable_data *d = data;
7205	struct task_group *child;
7206	unsigned long total, sum = 0;
7207	u64 period, runtime;
7208
7209	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7210	runtime = tg->rt_bandwidth.rt_runtime;
7211
7212	if (tg == d->tg) {
7213		period = d->rt_period;
7214		runtime = d->rt_runtime;
7215	}
7216
7217	/*
7218	 * Cannot have more runtime than the period.
7219	 */
7220	if (runtime > period && runtime != RUNTIME_INF)
7221		return -EINVAL;
7222
7223	/*
7224	 * Ensure we don't starve existing RT tasks.
7225	 */
7226	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7227		return -EBUSY;
7228
7229	total = to_ratio(period, runtime);
7230
7231	/*
7232	 * Nobody can have more than the global setting allows.
7233	 */
7234	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7235		return -EINVAL;
7236
7237	/*
7238	 * The sum of our children's runtime should not exceed our own.
7239	 */
7240	list_for_each_entry_rcu(child, &tg->children, siblings) {
7241		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7242		runtime = child->rt_bandwidth.rt_runtime;
7243
7244		if (child == d->tg) {
7245			period = d->rt_period;
7246			runtime = d->rt_runtime;
7247		}
7248
7249		sum += to_ratio(period, runtime);
7250	}
7251
7252	if (sum > total)
7253		return -EINVAL;
7254
7255	return 0;
7256}
7257
7258static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7259{
7260	int ret;
7261
7262	struct rt_schedulable_data data = {
7263		.tg = tg,
7264		.rt_period = period,
7265		.rt_runtime = runtime,
7266	};
7267
7268	rcu_read_lock();
7269	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7270	rcu_read_unlock();
7271
7272	return ret;
7273}
7274
7275static int tg_set_rt_bandwidth(struct task_group *tg,
7276		u64 rt_period, u64 rt_runtime)
7277{
7278	int i, err = 0;
7279
7280	mutex_lock(&rt_constraints_mutex);
7281	read_lock(&tasklist_lock);
7282	err = __rt_schedulable(tg, rt_period, rt_runtime);
7283	if (err)
7284		goto unlock;
7285
7286	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7287	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7288	tg->rt_bandwidth.rt_runtime = rt_runtime;
7289
7290	for_each_possible_cpu(i) {
7291		struct rt_rq *rt_rq = tg->rt_rq[i];
7292
7293		raw_spin_lock(&rt_rq->rt_runtime_lock);
7294		rt_rq->rt_runtime = rt_runtime;
7295		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7296	}
7297	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7298unlock:
7299	read_unlock(&tasklist_lock);
7300	mutex_unlock(&rt_constraints_mutex);
7301
7302	return err;
7303}
7304
7305static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7306{
7307	u64 rt_runtime, rt_period;
7308
7309	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7310	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7311	if (rt_runtime_us < 0)
7312		rt_runtime = RUNTIME_INF;
7313
7314	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7315}
7316
7317static long sched_group_rt_runtime(struct task_group *tg)
7318{
7319	u64 rt_runtime_us;
7320
7321	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7322		return -1;
7323
7324	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7325	do_div(rt_runtime_us, NSEC_PER_USEC);
7326	return rt_runtime_us;
7327}
7328
7329static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7330{
7331	u64 rt_runtime, rt_period;
7332
7333	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7334	rt_runtime = tg->rt_bandwidth.rt_runtime;
7335
7336	if (rt_period == 0)
7337		return -EINVAL;
7338
7339	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7340}
7341
7342static long sched_group_rt_period(struct task_group *tg)
7343{
7344	u64 rt_period_us;
7345
7346	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7347	do_div(rt_period_us, NSEC_PER_USEC);
7348	return rt_period_us;
7349}
7350#endif /* CONFIG_RT_GROUP_SCHED */
7351
7352#ifdef CONFIG_RT_GROUP_SCHED
7353static int sched_rt_global_constraints(void)
7354{
7355	int ret = 0;
7356
7357	mutex_lock(&rt_constraints_mutex);
7358	read_lock(&tasklist_lock);
7359	ret = __rt_schedulable(NULL, 0, 0);
7360	read_unlock(&tasklist_lock);
7361	mutex_unlock(&rt_constraints_mutex);
7362
7363	return ret;
7364}
7365
7366static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7367{
7368	/* Don't accept realtime tasks when there is no way for them to run */
7369	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7370		return 0;
7371
7372	return 1;
7373}
7374
7375#else /* !CONFIG_RT_GROUP_SCHED */
7376static int sched_rt_global_constraints(void)
7377{
7378	unsigned long flags;
7379	int i, ret = 0;
7380
7381	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7382	for_each_possible_cpu(i) {
7383		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7384
7385		raw_spin_lock(&rt_rq->rt_runtime_lock);
7386		rt_rq->rt_runtime = global_rt_runtime();
7387		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7388	}
7389	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7390
7391	return ret;
7392}
7393#endif /* CONFIG_RT_GROUP_SCHED */
7394
7395static int sched_dl_global_constraints(void)
7396{
7397	u64 runtime = global_rt_runtime();
7398	u64 period = global_rt_period();
7399	u64 new_bw = to_ratio(period, runtime);
7400	int cpu, ret = 0;
7401
7402	/*
7403	 * Here we want to check the bandwidth not being set to some
7404	 * value smaller than the currently allocated bandwidth in
7405	 * any of the root_domains.
7406	 *
7407	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7408	 * cycling on root_domains... Discussion on different/better
7409	 * solutions is welcome!
7410	 */
7411	for_each_possible_cpu(cpu) {
7412		struct dl_bw *dl_b = dl_bw_of(cpu);
7413
7414		raw_spin_lock(&dl_b->lock);
7415		if (new_bw < dl_b->total_bw)
7416			ret = -EBUSY;
7417		raw_spin_unlock(&dl_b->lock);
7418
7419		if (ret)
7420			break;
7421	}
7422
7423	return ret;
7424}
7425
7426static void sched_dl_do_global(void)
7427{
7428	u64 new_bw = -1;
7429	int cpu;
7430
7431	def_dl_bandwidth.dl_period = global_rt_period();
7432	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7433
7434	if (global_rt_runtime() != RUNTIME_INF)
7435		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7436
7437	/*
7438	 * FIXME: As above...
7439	 */
7440	for_each_possible_cpu(cpu) {
7441		struct dl_bw *dl_b = dl_bw_of(cpu);
7442
7443		raw_spin_lock(&dl_b->lock);
7444		dl_b->bw = new_bw;
7445		raw_spin_unlock(&dl_b->lock);
7446	}
7447}
7448
7449static int sched_rt_global_validate(void)
7450{
7451	if (sysctl_sched_rt_period <= 0)
7452		return -EINVAL;
7453
7454	if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7455		return -EINVAL;
7456
7457	return 0;
7458}
7459
7460static void sched_rt_do_global(void)
7461{
7462	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7463	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7464}
7465
7466int sched_rt_handler(struct ctl_table *table, int write,
7467		void __user *buffer, size_t *lenp,
7468		loff_t *ppos)
7469{
7470	int old_period, old_runtime;
7471	static DEFINE_MUTEX(mutex);
7472	int ret;
7473
7474	mutex_lock(&mutex);
7475	old_period = sysctl_sched_rt_period;
7476	old_runtime = sysctl_sched_rt_runtime;
7477
7478	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7479
7480	if (!ret && write) {
7481		ret = sched_rt_global_validate();
7482		if (ret)
7483			goto undo;
7484
7485		ret = sched_rt_global_constraints();
7486		if (ret)
7487			goto undo;
7488
7489		ret = sched_dl_global_constraints();
7490		if (ret)
7491			goto undo;
7492
7493		sched_rt_do_global();
7494		sched_dl_do_global();
7495	}
7496	if (0) {
7497undo:
7498		sysctl_sched_rt_period = old_period;
7499		sysctl_sched_rt_runtime = old_runtime;
7500	}
7501	mutex_unlock(&mutex);
7502
7503	return ret;
7504}
7505
7506int sched_rr_handler(struct ctl_table *table, int write,
7507		void __user *buffer, size_t *lenp,
7508		loff_t *ppos)
7509{
7510	int ret;
7511	static DEFINE_MUTEX(mutex);
7512
7513	mutex_lock(&mutex);
7514	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7515	/* make sure that internally we keep jiffies */
7516	/* also, writing zero resets timeslice to default */
7517	if (!ret && write) {
7518		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7519			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7520	}
7521	mutex_unlock(&mutex);
7522	return ret;
7523}
7524
7525#ifdef CONFIG_CGROUP_SCHED
7526
7527static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7528{
7529	return css ? container_of(css, struct task_group, css) : NULL;
7530}
7531
7532static struct cgroup_subsys_state *
7533cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7534{
7535	struct task_group *parent = css_tg(parent_css);
7536	struct task_group *tg;
7537
7538	if (!parent) {
7539		/* This is early initialization for the top cgroup */
7540		return &root_task_group.css;
7541	}
7542
7543	tg = sched_create_group(parent);
7544	if (IS_ERR(tg))
7545		return ERR_PTR(-ENOMEM);
7546
7547	return &tg->css;
7548}
7549
7550static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7551{
7552	struct task_group *tg = css_tg(css);
7553	struct task_group *parent = css_tg(css_parent(css));
7554
7555	if (parent)
7556		sched_online_group(tg, parent);
7557	return 0;
7558}
7559
7560static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7561{
7562	struct task_group *tg = css_tg(css);
7563
7564	sched_destroy_group(tg);
7565}
7566
7567static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7568{
7569	struct task_group *tg = css_tg(css);
7570
7571	sched_offline_group(tg);
7572}
7573
7574static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7575				 struct cgroup_taskset *tset)
7576{
7577	struct task_struct *task;
7578
7579	cgroup_taskset_for_each(task, css, tset) {
7580#ifdef CONFIG_RT_GROUP_SCHED
7581		if (!sched_rt_can_attach(css_tg(css), task))
7582			return -EINVAL;
7583#else
7584		/* We don't support RT-tasks being in separate groups */
7585		if (task->sched_class != &fair_sched_class)
7586			return -EINVAL;
7587#endif
7588	}
7589	return 0;
7590}
7591
7592static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7593			      struct cgroup_taskset *tset)
7594{
7595	struct task_struct *task;
7596
7597	cgroup_taskset_for_each(task, css, tset)
7598		sched_move_task(task);
7599}
7600
7601static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7602			    struct cgroup_subsys_state *old_css,
7603			    struct task_struct *task)
7604{
7605	/*
7606	 * cgroup_exit() is called in the copy_process() failure path.
7607	 * Ignore this case since the task hasn't ran yet, this avoids
7608	 * trying to poke a half freed task state from generic code.
7609	 */
7610	if (!(task->flags & PF_EXITING))
7611		return;
7612
7613	sched_move_task(task);
7614}
7615
7616#ifdef CONFIG_FAIR_GROUP_SCHED
7617static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7618				struct cftype *cftype, u64 shareval)
7619{
7620	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7621}
7622
7623static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7624			       struct cftype *cft)
7625{
7626	struct task_group *tg = css_tg(css);
7627
7628	return (u64) scale_load_down(tg->shares);
7629}
7630
7631#ifdef CONFIG_CFS_BANDWIDTH
7632static DEFINE_MUTEX(cfs_constraints_mutex);
7633
7634const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7635const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7636
7637static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7638
7639static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7640{
7641	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7642	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7643
7644	if (tg == &root_task_group)
7645		return -EINVAL;
7646
7647	/*
7648	 * Ensure we have at some amount of bandwidth every period.  This is
7649	 * to prevent reaching a state of large arrears when throttled via
7650	 * entity_tick() resulting in prolonged exit starvation.
7651	 */
7652	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7653		return -EINVAL;
7654
7655	/*
7656	 * Likewise, bound things on the otherside by preventing insane quota
7657	 * periods.  This also allows us to normalize in computing quota
7658	 * feasibility.
7659	 */
7660	if (period > max_cfs_quota_period)
7661		return -EINVAL;
7662
7663	mutex_lock(&cfs_constraints_mutex);
7664	ret = __cfs_schedulable(tg, period, quota);
7665	if (ret)
7666		goto out_unlock;
7667
7668	runtime_enabled = quota != RUNTIME_INF;
7669	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7670	/*
7671	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7672	 * before making related changes, and on->off must occur afterwards
7673	 */
7674	if (runtime_enabled && !runtime_was_enabled)
7675		cfs_bandwidth_usage_inc();
7676	raw_spin_lock_irq(&cfs_b->lock);
7677	cfs_b->period = ns_to_ktime(period);
7678	cfs_b->quota = quota;
7679
7680	__refill_cfs_bandwidth_runtime(cfs_b);
7681	/* restart the period timer (if active) to handle new period expiry */
7682	if (runtime_enabled && cfs_b->timer_active) {
7683		/* force a reprogram */
7684		cfs_b->timer_active = 0;
7685		__start_cfs_bandwidth(cfs_b);
7686	}
7687	raw_spin_unlock_irq(&cfs_b->lock);
7688
7689	for_each_possible_cpu(i) {
7690		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7691		struct rq *rq = cfs_rq->rq;
7692
7693		raw_spin_lock_irq(&rq->lock);
7694		cfs_rq->runtime_enabled = runtime_enabled;
7695		cfs_rq->runtime_remaining = 0;
7696
7697		if (cfs_rq->throttled)
7698			unthrottle_cfs_rq(cfs_rq);
7699		raw_spin_unlock_irq(&rq->lock);
7700	}
7701	if (runtime_was_enabled && !runtime_enabled)
7702		cfs_bandwidth_usage_dec();
7703out_unlock:
7704	mutex_unlock(&cfs_constraints_mutex);
7705
7706	return ret;
7707}
7708
7709int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7710{
7711	u64 quota, period;
7712
7713	period = ktime_to_ns(tg->cfs_bandwidth.period);
7714	if (cfs_quota_us < 0)
7715		quota = RUNTIME_INF;
7716	else
7717		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7718
7719	return tg_set_cfs_bandwidth(tg, period, quota);
7720}
7721
7722long tg_get_cfs_quota(struct task_group *tg)
7723{
7724	u64 quota_us;
7725
7726	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7727		return -1;
7728
7729	quota_us = tg->cfs_bandwidth.quota;
7730	do_div(quota_us, NSEC_PER_USEC);
7731
7732	return quota_us;
7733}
7734
7735int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7736{
7737	u64 quota, period;
7738
7739	period = (u64)cfs_period_us * NSEC_PER_USEC;
7740	quota = tg->cfs_bandwidth.quota;
7741
7742	return tg_set_cfs_bandwidth(tg, period, quota);
7743}
7744
7745long tg_get_cfs_period(struct task_group *tg)
7746{
7747	u64 cfs_period_us;
7748
7749	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7750	do_div(cfs_period_us, NSEC_PER_USEC);
7751
7752	return cfs_period_us;
7753}
7754
7755static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7756				  struct cftype *cft)
7757{
7758	return tg_get_cfs_quota(css_tg(css));
7759}
7760
7761static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7762				   struct cftype *cftype, s64 cfs_quota_us)
7763{
7764	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7765}
7766
7767static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7768				   struct cftype *cft)
7769{
7770	return tg_get_cfs_period(css_tg(css));
7771}
7772
7773static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7774				    struct cftype *cftype, u64 cfs_period_us)
7775{
7776	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7777}
7778
7779struct cfs_schedulable_data {
7780	struct task_group *tg;
7781	u64 period, quota;
7782};
7783
7784/*
7785 * normalize group quota/period to be quota/max_period
7786 * note: units are usecs
7787 */
7788static u64 normalize_cfs_quota(struct task_group *tg,
7789			       struct cfs_schedulable_data *d)
7790{
7791	u64 quota, period;
7792
7793	if (tg == d->tg) {
7794		period = d->period;
7795		quota = d->quota;
7796	} else {
7797		period = tg_get_cfs_period(tg);
7798		quota = tg_get_cfs_quota(tg);
7799	}
7800
7801	/* note: these should typically be equivalent */
7802	if (quota == RUNTIME_INF || quota == -1)
7803		return RUNTIME_INF;
7804
7805	return to_ratio(period, quota);
7806}
7807
7808static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7809{
7810	struct cfs_schedulable_data *d = data;
7811	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7812	s64 quota = 0, parent_quota = -1;
7813
7814	if (!tg->parent) {
7815		quota = RUNTIME_INF;
7816	} else {
7817		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7818
7819		quota = normalize_cfs_quota(tg, d);
7820		parent_quota = parent_b->hierarchal_quota;
7821
7822		/*
7823		 * ensure max(child_quota) <= parent_quota, inherit when no
7824		 * limit is set
7825		 */
7826		if (quota == RUNTIME_INF)
7827			quota = parent_quota;
7828		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7829			return -EINVAL;
7830	}
7831	cfs_b->hierarchal_quota = quota;
7832
7833	return 0;
7834}
7835
7836static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7837{
7838	int ret;
7839	struct cfs_schedulable_data data = {
7840		.tg = tg,
7841		.period = period,
7842		.quota = quota,
7843	};
7844
7845	if (quota != RUNTIME_INF) {
7846		do_div(data.period, NSEC_PER_USEC);
7847		do_div(data.quota, NSEC_PER_USEC);
7848	}
7849
7850	rcu_read_lock();
7851	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7852	rcu_read_unlock();
7853
7854	return ret;
7855}
7856
7857static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7858		struct cgroup_map_cb *cb)
7859{
7860	struct task_group *tg = css_tg(css);
7861	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7862
7863	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7864	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7865	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7866
7867	return 0;
7868}
7869#endif /* CONFIG_CFS_BANDWIDTH */
7870#endif /* CONFIG_FAIR_GROUP_SCHED */
7871
7872#ifdef CONFIG_RT_GROUP_SCHED
7873static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7874				struct cftype *cft, s64 val)
7875{
7876	return sched_group_set_rt_runtime(css_tg(css), val);
7877}
7878
7879static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7880			       struct cftype *cft)
7881{
7882	return sched_group_rt_runtime(css_tg(css));
7883}
7884
7885static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7886				    struct cftype *cftype, u64 rt_period_us)
7887{
7888	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7889}
7890
7891static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7892				   struct cftype *cft)
7893{
7894	return sched_group_rt_period(css_tg(css));
7895}
7896#endif /* CONFIG_RT_GROUP_SCHED */
7897
7898static struct cftype cpu_files[] = {
7899#ifdef CONFIG_FAIR_GROUP_SCHED
7900	{
7901		.name = "shares",
7902		.read_u64 = cpu_shares_read_u64,
7903		.write_u64 = cpu_shares_write_u64,
7904	},
7905#endif
7906#ifdef CONFIG_CFS_BANDWIDTH
7907	{
7908		.name = "cfs_quota_us",
7909		.read_s64 = cpu_cfs_quota_read_s64,
7910		.write_s64 = cpu_cfs_quota_write_s64,
7911	},
7912	{
7913		.name = "cfs_period_us",
7914		.read_u64 = cpu_cfs_period_read_u64,
7915		.write_u64 = cpu_cfs_period_write_u64,
7916	},
7917	{
7918		.name = "stat",
7919		.read_map = cpu_stats_show,
7920	},
7921#endif
7922#ifdef CONFIG_RT_GROUP_SCHED
7923	{
7924		.name = "rt_runtime_us",
7925		.read_s64 = cpu_rt_runtime_read,
7926		.write_s64 = cpu_rt_runtime_write,
7927	},
7928	{
7929		.name = "rt_period_us",
7930		.read_u64 = cpu_rt_period_read_uint,
7931		.write_u64 = cpu_rt_period_write_uint,
7932	},
7933#endif
7934	{ }	/* terminate */
7935};
7936
7937struct cgroup_subsys cpu_cgroup_subsys = {
7938	.name		= "cpu",
7939	.css_alloc	= cpu_cgroup_css_alloc,
7940	.css_free	= cpu_cgroup_css_free,
7941	.css_online	= cpu_cgroup_css_online,
7942	.css_offline	= cpu_cgroup_css_offline,
7943	.can_attach	= cpu_cgroup_can_attach,
7944	.attach		= cpu_cgroup_attach,
7945	.exit		= cpu_cgroup_exit,
7946	.subsys_id	= cpu_cgroup_subsys_id,
7947	.base_cftypes	= cpu_files,
7948	.early_init	= 1,
7949};
7950
7951#endif	/* CONFIG_CGROUP_SCHED */
7952
7953void dump_cpu_task(int cpu)
7954{
7955	pr_info("Task dump for CPU %d:\n", cpu);
7956	sched_show_task(cpu_curr(cpu));
7957}
7958