cputime.c revision 1e4dda08b4c39b3d8f4a3ee7269d49e0200c8af8
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
6#include <linux/context_tracking.h>
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31	sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36	sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
47void irqtime_account_irq(struct task_struct *curr)
48{
49	unsigned long flags;
50	s64 delta;
51	int cpu;
52
53	if (!sched_clock_irqtime)
54		return;
55
56	local_irq_save(flags);
57
58	cpu = smp_processor_id();
59	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60	__this_cpu_add(irq_start_time, delta);
61
62	irq_time_write_begin();
63	/*
64	 * We do not account for softirq time from ksoftirqd here.
65	 * We want to continue accounting softirq time to ksoftirqd thread
66	 * in that case, so as not to confuse scheduler with a special task
67	 * that do not consume any time, but still wants to run.
68	 */
69	if (hardirq_count())
70		__this_cpu_add(cpu_hardirq_time, delta);
71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72		__this_cpu_add(cpu_softirq_time, delta);
73
74	irq_time_write_end();
75	local_irq_restore(flags);
76}
77EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79static int irqtime_account_hi_update(void)
80{
81	u64 *cpustat = kcpustat_this_cpu->cpustat;
82	unsigned long flags;
83	u64 latest_ns;
84	int ret = 0;
85
86	local_irq_save(flags);
87	latest_ns = this_cpu_read(cpu_hardirq_time);
88	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89		ret = 1;
90	local_irq_restore(flags);
91	return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96	u64 *cpustat = kcpustat_this_cpu->cpustat;
97	unsigned long flags;
98	u64 latest_ns;
99	int ret = 0;
100
101	local_irq_save(flags);
102	latest_ns = this_cpu_read(cpu_softirq_time);
103	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104		ret = 1;
105	local_irq_restore(flags);
106	return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime	(0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116					    u64 tmp)
117{
118	/*
119	 * Since all updates are sure to touch the root cgroup, we
120	 * get ourselves ahead and touch it first. If the root cgroup
121	 * is the only cgroup, then nothing else should be necessary.
122	 *
123	 */
124	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125
126	cpuacct_account_field(p, index, tmp);
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136		       cputime_t cputime_scaled)
137{
138	int index;
139
140	/* Add user time to process. */
141	p->utime += cputime;
142	p->utimescaled += cputime_scaled;
143	account_group_user_time(p, cputime);
144
145	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147	/* Add user time to cpustat. */
148	task_group_account_field(p, index, (__force u64) cputime);
149
150	/* Account for user time used */
151	acct_account_cputime(p);
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161			       cputime_t cputime_scaled)
162{
163	u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165	/* Add guest time to process. */
166	p->utime += cputime;
167	p->utimescaled += cputime_scaled;
168	account_group_user_time(p, cputime);
169	p->gtime += cputime;
170
171	/* Add guest time to cpustat. */
172	if (task_nice(p) > 0) {
173		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175	} else {
176		cpustat[CPUTIME_USER] += (__force u64) cputime;
177		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178	}
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190			cputime_t cputime_scaled, int index)
191{
192	/* Add system time to process. */
193	p->stime += cputime;
194	p->stimescaled += cputime_scaled;
195	account_group_system_time(p, cputime);
196
197	/* Add system time to cpustat. */
198	task_group_account_field(p, index, (__force u64) cputime);
199
200	/* Account for system time used */
201	acct_account_cputime(p);
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212			 cputime_t cputime, cputime_t cputime_scaled)
213{
214	int index;
215
216	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217		account_guest_time(p, cputime, cputime_scaled);
218		return;
219	}
220
221	if (hardirq_count() - hardirq_offset)
222		index = CPUTIME_IRQ;
223	else if (in_serving_softirq())
224		index = CPUTIME_SOFTIRQ;
225	else
226		index = CPUTIME_SYSTEM;
227
228	__account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237	u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248	u64 *cpustat = kcpustat_this_cpu->cpustat;
249	struct rq *rq = this_rq();
250
251	if (atomic_read(&rq->nr_iowait) > 0)
252		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253	else
254		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260	if (static_key_false(&paravirt_steal_enabled)) {
261		u64 steal;
262		cputime_t steal_ct;
263
264		steal = paravirt_steal_clock(smp_processor_id());
265		steal -= this_rq()->prev_steal_time;
266
267		/*
268		 * cputime_t may be less precise than nsecs (eg: if it's
269		 * based on jiffies). Lets cast the result to cputime
270		 * granularity and account the rest on the next rounds.
271		 */
272		steal_ct = nsecs_to_cputime(steal);
273		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274
275		account_steal_time(steal_ct);
276		return steal_ct;
277	}
278#endif
279	return false;
280}
281
282/*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287{
288	struct signal_struct *sig = tsk->signal;
289	cputime_t utime, stime;
290	struct task_struct *t;
291
292	times->utime = sig->utime;
293	times->stime = sig->stime;
294	times->sum_exec_runtime = sig->sum_sched_runtime;
295
296	rcu_read_lock();
297	for_each_thread(tsk, t) {
298		task_cputime(t, &utime, &stime);
299		times->utime += utime;
300		times->stime += stime;
301		times->sum_exec_runtime += task_sched_runtime(t);
302	}
303	rcu_read_unlock();
304}
305
306#ifdef CONFIG_IRQ_TIME_ACCOUNTING
307/*
308 * Account a tick to a process and cpustat
309 * @p: the process that the cpu time gets accounted to
310 * @user_tick: is the tick from userspace
311 * @rq: the pointer to rq
312 *
313 * Tick demultiplexing follows the order
314 * - pending hardirq update
315 * - pending softirq update
316 * - user_time
317 * - idle_time
318 * - system time
319 *   - check for guest_time
320 *   - else account as system_time
321 *
322 * Check for hardirq is done both for system and user time as there is
323 * no timer going off while we are on hardirq and hence we may never get an
324 * opportunity to update it solely in system time.
325 * p->stime and friends are only updated on system time and not on irq
326 * softirq as those do not count in task exec_runtime any more.
327 */
328static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
329					 struct rq *rq, int ticks)
330{
331	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
332	u64 cputime = (__force u64) cputime_one_jiffy;
333	u64 *cpustat = kcpustat_this_cpu->cpustat;
334
335	if (steal_account_process_tick())
336		return;
337
338	cputime *= ticks;
339	scaled *= ticks;
340
341	if (irqtime_account_hi_update()) {
342		cpustat[CPUTIME_IRQ] += cputime;
343	} else if (irqtime_account_si_update()) {
344		cpustat[CPUTIME_SOFTIRQ] += cputime;
345	} else if (this_cpu_ksoftirqd() == p) {
346		/*
347		 * ksoftirqd time do not get accounted in cpu_softirq_time.
348		 * So, we have to handle it separately here.
349		 * Also, p->stime needs to be updated for ksoftirqd.
350		 */
351		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
352	} else if (user_tick) {
353		account_user_time(p, cputime, scaled);
354	} else if (p == rq->idle) {
355		account_idle_time(cputime);
356	} else if (p->flags & PF_VCPU) { /* System time or guest time */
357		account_guest_time(p, cputime, scaled);
358	} else {
359		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
360	}
361}
362
363static void irqtime_account_idle_ticks(int ticks)
364{
365	struct rq *rq = this_rq();
366
367	irqtime_account_process_tick(current, 0, rq, ticks);
368}
369#else /* CONFIG_IRQ_TIME_ACCOUNTING */
370static inline void irqtime_account_idle_ticks(int ticks) {}
371static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
372						struct rq *rq, int nr_ticks) {}
373#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
374
375/*
376 * Use precise platform statistics if available:
377 */
378#ifdef CONFIG_VIRT_CPU_ACCOUNTING
379
380#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
381void vtime_common_task_switch(struct task_struct *prev)
382{
383	if (is_idle_task(prev))
384		vtime_account_idle(prev);
385	else
386		vtime_account_system(prev);
387
388#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
389	vtime_account_user(prev);
390#endif
391	arch_vtime_task_switch(prev);
392}
393#endif
394
395/*
396 * Archs that account the whole time spent in the idle task
397 * (outside irq) as idle time can rely on this and just implement
398 * vtime_account_system() and vtime_account_idle(). Archs that
399 * have other meaning of the idle time (s390 only includes the
400 * time spent by the CPU when it's in low power mode) must override
401 * vtime_account().
402 */
403#ifndef __ARCH_HAS_VTIME_ACCOUNT
404void vtime_common_account_irq_enter(struct task_struct *tsk)
405{
406	if (!in_interrupt()) {
407		/*
408		 * If we interrupted user, context_tracking_in_user()
409		 * is 1 because the context tracking don't hook
410		 * on irq entry/exit. This way we know if
411		 * we need to flush user time on kernel entry.
412		 */
413		if (context_tracking_in_user()) {
414			vtime_account_user(tsk);
415			return;
416		}
417
418		if (is_idle_task(tsk)) {
419			vtime_account_idle(tsk);
420			return;
421		}
422	}
423	vtime_account_system(tsk);
424}
425EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
426#endif /* __ARCH_HAS_VTIME_ACCOUNT */
427#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
428
429
430#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
431void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
432{
433	*ut = p->utime;
434	*st = p->stime;
435}
436
437void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438{
439	struct task_cputime cputime;
440
441	thread_group_cputime(p, &cputime);
442
443	*ut = cputime.utime;
444	*st = cputime.stime;
445}
446#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
447/*
448 * Account a single tick of cpu time.
449 * @p: the process that the cpu time gets accounted to
450 * @user_tick: indicates if the tick is a user or a system tick
451 */
452void account_process_tick(struct task_struct *p, int user_tick)
453{
454	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
455	struct rq *rq = this_rq();
456
457	if (vtime_accounting_enabled())
458		return;
459
460	if (sched_clock_irqtime) {
461		irqtime_account_process_tick(p, user_tick, rq, 1);
462		return;
463	}
464
465	if (steal_account_process_tick())
466		return;
467
468	if (user_tick)
469		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
470	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
471		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
472				    one_jiffy_scaled);
473	else
474		account_idle_time(cputime_one_jiffy);
475}
476
477/*
478 * Account multiple ticks of steal time.
479 * @p: the process from which the cpu time has been stolen
480 * @ticks: number of stolen ticks
481 */
482void account_steal_ticks(unsigned long ticks)
483{
484	account_steal_time(jiffies_to_cputime(ticks));
485}
486
487/*
488 * Account multiple ticks of idle time.
489 * @ticks: number of stolen ticks
490 */
491void account_idle_ticks(unsigned long ticks)
492{
493
494	if (sched_clock_irqtime) {
495		irqtime_account_idle_ticks(ticks);
496		return;
497	}
498
499	account_idle_time(jiffies_to_cputime(ticks));
500}
501
502/*
503 * Perform (stime * rtime) / total, but avoid multiplication overflow by
504 * loosing precision when the numbers are big.
505 */
506static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
507{
508	u64 scaled;
509
510	for (;;) {
511		/* Make sure "rtime" is the bigger of stime/rtime */
512		if (stime > rtime)
513			swap(rtime, stime);
514
515		/* Make sure 'total' fits in 32 bits */
516		if (total >> 32)
517			goto drop_precision;
518
519		/* Does rtime (and thus stime) fit in 32 bits? */
520		if (!(rtime >> 32))
521			break;
522
523		/* Can we just balance rtime/stime rather than dropping bits? */
524		if (stime >> 31)
525			goto drop_precision;
526
527		/* We can grow stime and shrink rtime and try to make them both fit */
528		stime <<= 1;
529		rtime >>= 1;
530		continue;
531
532drop_precision:
533		/* We drop from rtime, it has more bits than stime */
534		rtime >>= 1;
535		total >>= 1;
536	}
537
538	/*
539	 * Make sure gcc understands that this is a 32x32->64 multiply,
540	 * followed by a 64/32->64 divide.
541	 */
542	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
543	return (__force cputime_t) scaled;
544}
545
546/*
547 * Adjust tick based cputime random precision against scheduler
548 * runtime accounting.
549 */
550static void cputime_adjust(struct task_cputime *curr,
551			   struct cputime *prev,
552			   cputime_t *ut, cputime_t *st)
553{
554	cputime_t rtime, stime, utime;
555
556	/*
557	 * Tick based cputime accounting depend on random scheduling
558	 * timeslices of a task to be interrupted or not by the timer.
559	 * Depending on these circumstances, the number of these interrupts
560	 * may be over or under-optimistic, matching the real user and system
561	 * cputime with a variable precision.
562	 *
563	 * Fix this by scaling these tick based values against the total
564	 * runtime accounted by the CFS scheduler.
565	 */
566	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
567
568	/*
569	 * Update userspace visible utime/stime values only if actual execution
570	 * time is bigger than already exported. Note that can happen, that we
571	 * provided bigger values due to scaling inaccuracy on big numbers.
572	 */
573	if (prev->stime + prev->utime >= rtime)
574		goto out;
575
576	stime = curr->stime;
577	utime = curr->utime;
578
579	if (utime == 0) {
580		stime = rtime;
581	} else if (stime == 0) {
582		utime = rtime;
583	} else {
584		cputime_t total = stime + utime;
585
586		stime = scale_stime((__force u64)stime,
587				    (__force u64)rtime, (__force u64)total);
588		utime = rtime - stime;
589	}
590
591	/*
592	 * If the tick based count grows faster than the scheduler one,
593	 * the result of the scaling may go backward.
594	 * Let's enforce monotonicity.
595	 */
596	prev->stime = max(prev->stime, stime);
597	prev->utime = max(prev->utime, utime);
598
599out:
600	*ut = prev->utime;
601	*st = prev->stime;
602}
603
604void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
605{
606	struct task_cputime cputime = {
607		.sum_exec_runtime = p->se.sum_exec_runtime,
608	};
609
610	task_cputime(p, &cputime.utime, &cputime.stime);
611	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
612}
613
614/*
615 * Must be called with siglock held.
616 */
617void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
618{
619	struct task_cputime cputime;
620
621	thread_group_cputime(p, &cputime);
622	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
623}
624#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
625
626#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
627static unsigned long long vtime_delta(struct task_struct *tsk)
628{
629	unsigned long long clock;
630
631	clock = local_clock();
632	if (clock < tsk->vtime_snap)
633		return 0;
634
635	return clock - tsk->vtime_snap;
636}
637
638static cputime_t get_vtime_delta(struct task_struct *tsk)
639{
640	unsigned long long delta = vtime_delta(tsk);
641
642	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
643	tsk->vtime_snap += delta;
644
645	/* CHECKME: always safe to convert nsecs to cputime? */
646	return nsecs_to_cputime(delta);
647}
648
649static void __vtime_account_system(struct task_struct *tsk)
650{
651	cputime_t delta_cpu = get_vtime_delta(tsk);
652
653	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
654}
655
656void vtime_account_system(struct task_struct *tsk)
657{
658	write_seqlock(&tsk->vtime_seqlock);
659	__vtime_account_system(tsk);
660	write_sequnlock(&tsk->vtime_seqlock);
661}
662
663void vtime_gen_account_irq_exit(struct task_struct *tsk)
664{
665	write_seqlock(&tsk->vtime_seqlock);
666	__vtime_account_system(tsk);
667	if (context_tracking_in_user())
668		tsk->vtime_snap_whence = VTIME_USER;
669	write_sequnlock(&tsk->vtime_seqlock);
670}
671
672void vtime_account_user(struct task_struct *tsk)
673{
674	cputime_t delta_cpu;
675
676	write_seqlock(&tsk->vtime_seqlock);
677	delta_cpu = get_vtime_delta(tsk);
678	tsk->vtime_snap_whence = VTIME_SYS;
679	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
680	write_sequnlock(&tsk->vtime_seqlock);
681}
682
683void vtime_user_enter(struct task_struct *tsk)
684{
685	write_seqlock(&tsk->vtime_seqlock);
686	__vtime_account_system(tsk);
687	tsk->vtime_snap_whence = VTIME_USER;
688	write_sequnlock(&tsk->vtime_seqlock);
689}
690
691void vtime_guest_enter(struct task_struct *tsk)
692{
693	/*
694	 * The flags must be updated under the lock with
695	 * the vtime_snap flush and update.
696	 * That enforces a right ordering and update sequence
697	 * synchronization against the reader (task_gtime())
698	 * that can thus safely catch up with a tickless delta.
699	 */
700	write_seqlock(&tsk->vtime_seqlock);
701	__vtime_account_system(tsk);
702	current->flags |= PF_VCPU;
703	write_sequnlock(&tsk->vtime_seqlock);
704}
705EXPORT_SYMBOL_GPL(vtime_guest_enter);
706
707void vtime_guest_exit(struct task_struct *tsk)
708{
709	write_seqlock(&tsk->vtime_seqlock);
710	__vtime_account_system(tsk);
711	current->flags &= ~PF_VCPU;
712	write_sequnlock(&tsk->vtime_seqlock);
713}
714EXPORT_SYMBOL_GPL(vtime_guest_exit);
715
716void vtime_account_idle(struct task_struct *tsk)
717{
718	cputime_t delta_cpu = get_vtime_delta(tsk);
719
720	account_idle_time(delta_cpu);
721}
722
723void arch_vtime_task_switch(struct task_struct *prev)
724{
725	write_seqlock(&prev->vtime_seqlock);
726	prev->vtime_snap_whence = VTIME_SLEEPING;
727	write_sequnlock(&prev->vtime_seqlock);
728
729	write_seqlock(&current->vtime_seqlock);
730	current->vtime_snap_whence = VTIME_SYS;
731	current->vtime_snap = sched_clock_cpu(smp_processor_id());
732	write_sequnlock(&current->vtime_seqlock);
733}
734
735void vtime_init_idle(struct task_struct *t, int cpu)
736{
737	unsigned long flags;
738
739	write_seqlock_irqsave(&t->vtime_seqlock, flags);
740	t->vtime_snap_whence = VTIME_SYS;
741	t->vtime_snap = sched_clock_cpu(cpu);
742	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
743}
744
745cputime_t task_gtime(struct task_struct *t)
746{
747	unsigned int seq;
748	cputime_t gtime;
749
750	do {
751		seq = read_seqbegin(&t->vtime_seqlock);
752
753		gtime = t->gtime;
754		if (t->flags & PF_VCPU)
755			gtime += vtime_delta(t);
756
757	} while (read_seqretry(&t->vtime_seqlock, seq));
758
759	return gtime;
760}
761
762/*
763 * Fetch cputime raw values from fields of task_struct and
764 * add up the pending nohz execution time since the last
765 * cputime snapshot.
766 */
767static void
768fetch_task_cputime(struct task_struct *t,
769		   cputime_t *u_dst, cputime_t *s_dst,
770		   cputime_t *u_src, cputime_t *s_src,
771		   cputime_t *udelta, cputime_t *sdelta)
772{
773	unsigned int seq;
774	unsigned long long delta;
775
776	do {
777		*udelta = 0;
778		*sdelta = 0;
779
780		seq = read_seqbegin(&t->vtime_seqlock);
781
782		if (u_dst)
783			*u_dst = *u_src;
784		if (s_dst)
785			*s_dst = *s_src;
786
787		/* Task is sleeping, nothing to add */
788		if (t->vtime_snap_whence == VTIME_SLEEPING ||
789		    is_idle_task(t))
790			continue;
791
792		delta = vtime_delta(t);
793
794		/*
795		 * Task runs either in user or kernel space, add pending nohz time to
796		 * the right place.
797		 */
798		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
799			*udelta = delta;
800		} else {
801			if (t->vtime_snap_whence == VTIME_SYS)
802				*sdelta = delta;
803		}
804	} while (read_seqretry(&t->vtime_seqlock, seq));
805}
806
807
808void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
809{
810	cputime_t udelta, sdelta;
811
812	fetch_task_cputime(t, utime, stime, &t->utime,
813			   &t->stime, &udelta, &sdelta);
814	if (utime)
815		*utime += udelta;
816	if (stime)
817		*stime += sdelta;
818}
819
820void task_cputime_scaled(struct task_struct *t,
821			 cputime_t *utimescaled, cputime_t *stimescaled)
822{
823	cputime_t udelta, sdelta;
824
825	fetch_task_cputime(t, utimescaled, stimescaled,
826			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
827	if (utimescaled)
828		*utimescaled += cputime_to_scaled(udelta);
829	if (stimescaled)
830		*stimescaled += cputime_to_scaled(sdelta);
831}
832#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
833