cputime.c revision 84f9f3a15611536537d59060818a2354d5039ff3
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
6#include <linux/context_tracking.h>
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31	sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36	sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
47void irqtime_account_irq(struct task_struct *curr)
48{
49	unsigned long flags;
50	s64 delta;
51	int cpu;
52
53	if (!sched_clock_irqtime)
54		return;
55
56	local_irq_save(flags);
57
58	cpu = smp_processor_id();
59	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60	__this_cpu_add(irq_start_time, delta);
61
62	irq_time_write_begin();
63	/*
64	 * We do not account for softirq time from ksoftirqd here.
65	 * We want to continue accounting softirq time to ksoftirqd thread
66	 * in that case, so as not to confuse scheduler with a special task
67	 * that do not consume any time, but still wants to run.
68	 */
69	if (hardirq_count())
70		__this_cpu_add(cpu_hardirq_time, delta);
71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72		__this_cpu_add(cpu_softirq_time, delta);
73
74	irq_time_write_end();
75	local_irq_restore(flags);
76}
77EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79static int irqtime_account_hi_update(void)
80{
81	u64 *cpustat = kcpustat_this_cpu->cpustat;
82	unsigned long flags;
83	u64 latest_ns;
84	int ret = 0;
85
86	local_irq_save(flags);
87	latest_ns = this_cpu_read(cpu_hardirq_time);
88	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89		ret = 1;
90	local_irq_restore(flags);
91	return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96	u64 *cpustat = kcpustat_this_cpu->cpustat;
97	unsigned long flags;
98	u64 latest_ns;
99	int ret = 0;
100
101	local_irq_save(flags);
102	latest_ns = this_cpu_read(cpu_softirq_time);
103	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104		ret = 1;
105	local_irq_restore(flags);
106	return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime	(0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116					    u64 tmp)
117{
118	/*
119	 * Since all updates are sure to touch the root cgroup, we
120	 * get ourselves ahead and touch it first. If the root cgroup
121	 * is the only cgroup, then nothing else should be necessary.
122	 *
123	 */
124	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
125
126	cpuacct_account_field(p, index, tmp);
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136		       cputime_t cputime_scaled)
137{
138	int index;
139
140	/* Add user time to process. */
141	p->utime += cputime;
142	p->utimescaled += cputime_scaled;
143	account_group_user_time(p, cputime);
144
145	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147	/* Add user time to cpustat. */
148	task_group_account_field(p, index, (__force u64) cputime);
149
150	/* Account for user time used */
151	acct_account_cputime(p);
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161			       cputime_t cputime_scaled)
162{
163	u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165	/* Add guest time to process. */
166	p->utime += cputime;
167	p->utimescaled += cputime_scaled;
168	account_group_user_time(p, cputime);
169	p->gtime += cputime;
170
171	/* Add guest time to cpustat. */
172	if (TASK_NICE(p) > 0) {
173		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175	} else {
176		cpustat[CPUTIME_USER] += (__force u64) cputime;
177		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178	}
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190			cputime_t cputime_scaled, int index)
191{
192	/* Add system time to process. */
193	p->stime += cputime;
194	p->stimescaled += cputime_scaled;
195	account_group_system_time(p, cputime);
196
197	/* Add system time to cpustat. */
198	task_group_account_field(p, index, (__force u64) cputime);
199
200	/* Account for system time used */
201	acct_account_cputime(p);
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212			 cputime_t cputime, cputime_t cputime_scaled)
213{
214	int index;
215
216	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217		account_guest_time(p, cputime, cputime_scaled);
218		return;
219	}
220
221	if (hardirq_count() - hardirq_offset)
222		index = CPUTIME_IRQ;
223	else if (in_serving_softirq())
224		index = CPUTIME_SOFTIRQ;
225	else
226		index = CPUTIME_SYSTEM;
227
228	__account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237	u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248	u64 *cpustat = kcpustat_this_cpu->cpustat;
249	struct rq *rq = this_rq();
250
251	if (atomic_read(&rq->nr_iowait) > 0)
252		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253	else
254		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260	if (static_key_false(&paravirt_steal_enabled)) {
261		u64 steal, st = 0;
262
263		steal = paravirt_steal_clock(smp_processor_id());
264		steal -= this_rq()->prev_steal_time;
265
266		st = steal_ticks(steal);
267		this_rq()->prev_steal_time += st * TICK_NSEC;
268
269		account_steal_time(st);
270		return st;
271	}
272#endif
273	return false;
274}
275
276/*
277 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
278 * tasks (sum on group iteration) belonging to @tsk's group.
279 */
280void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
281{
282	struct signal_struct *sig = tsk->signal;
283	cputime_t utime, stime;
284	struct task_struct *t;
285
286	times->utime = sig->utime;
287	times->stime = sig->stime;
288	times->sum_exec_runtime = sig->sum_sched_runtime;
289
290	rcu_read_lock();
291	/* make sure we can trust tsk->thread_group list */
292	if (!likely(pid_alive(tsk)))
293		goto out;
294
295	t = tsk;
296	do {
297		task_cputime(t, &utime, &stime);
298		times->utime += utime;
299		times->stime += stime;
300		times->sum_exec_runtime += task_sched_runtime(t);
301	} while_each_thread(tsk, t);
302out:
303	rcu_read_unlock();
304}
305
306#ifdef CONFIG_IRQ_TIME_ACCOUNTING
307/*
308 * Account a tick to a process and cpustat
309 * @p: the process that the cpu time gets accounted to
310 * @user_tick: is the tick from userspace
311 * @rq: the pointer to rq
312 *
313 * Tick demultiplexing follows the order
314 * - pending hardirq update
315 * - pending softirq update
316 * - user_time
317 * - idle_time
318 * - system time
319 *   - check for guest_time
320 *   - else account as system_time
321 *
322 * Check for hardirq is done both for system and user time as there is
323 * no timer going off while we are on hardirq and hence we may never get an
324 * opportunity to update it solely in system time.
325 * p->stime and friends are only updated on system time and not on irq
326 * softirq as those do not count in task exec_runtime any more.
327 */
328static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
329						struct rq *rq)
330{
331	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
332	u64 *cpustat = kcpustat_this_cpu->cpustat;
333
334	if (steal_account_process_tick())
335		return;
336
337	if (irqtime_account_hi_update()) {
338		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
339	} else if (irqtime_account_si_update()) {
340		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
341	} else if (this_cpu_ksoftirqd() == p) {
342		/*
343		 * ksoftirqd time do not get accounted in cpu_softirq_time.
344		 * So, we have to handle it separately here.
345		 * Also, p->stime needs to be updated for ksoftirqd.
346		 */
347		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
348					CPUTIME_SOFTIRQ);
349	} else if (user_tick) {
350		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
351	} else if (p == rq->idle) {
352		account_idle_time(cputime_one_jiffy);
353	} else if (p->flags & PF_VCPU) { /* System time or guest time */
354		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
355	} else {
356		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
357					CPUTIME_SYSTEM);
358	}
359}
360
361static void irqtime_account_idle_ticks(int ticks)
362{
363	int i;
364	struct rq *rq = this_rq();
365
366	for (i = 0; i < ticks; i++)
367		irqtime_account_process_tick(current, 0, rq);
368}
369#else /* CONFIG_IRQ_TIME_ACCOUNTING */
370static inline void irqtime_account_idle_ticks(int ticks) {}
371static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
372						struct rq *rq) {}
373#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
374
375/*
376 * Use precise platform statistics if available:
377 */
378#ifdef CONFIG_VIRT_CPU_ACCOUNTING
379
380#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
381void vtime_task_switch(struct task_struct *prev)
382{
383	if (!vtime_accounting_enabled())
384		return;
385
386	if (is_idle_task(prev))
387		vtime_account_idle(prev);
388	else
389		vtime_account_system(prev);
390
391#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
392	vtime_account_user(prev);
393#endif
394	arch_vtime_task_switch(prev);
395}
396#endif
397
398/*
399 * Archs that account the whole time spent in the idle task
400 * (outside irq) as idle time can rely on this and just implement
401 * vtime_account_system() and vtime_account_idle(). Archs that
402 * have other meaning of the idle time (s390 only includes the
403 * time spent by the CPU when it's in low power mode) must override
404 * vtime_account().
405 */
406#ifndef __ARCH_HAS_VTIME_ACCOUNT
407void vtime_account_irq_enter(struct task_struct *tsk)
408{
409	if (!vtime_accounting_enabled())
410		return;
411
412	if (!in_interrupt()) {
413		/*
414		 * If we interrupted user, context_tracking_in_user()
415		 * is 1 because the context tracking don't hook
416		 * on irq entry/exit. This way we know if
417		 * we need to flush user time on kernel entry.
418		 */
419		if (context_tracking_in_user()) {
420			vtime_account_user(tsk);
421			return;
422		}
423
424		if (is_idle_task(tsk)) {
425			vtime_account_idle(tsk);
426			return;
427		}
428	}
429	vtime_account_system(tsk);
430}
431EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
432#endif /* __ARCH_HAS_VTIME_ACCOUNT */
433#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434
435
436#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438{
439	*ut = p->utime;
440	*st = p->stime;
441}
442
443void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444{
445	struct task_cputime cputime;
446
447	thread_group_cputime(p, &cputime);
448
449	*ut = cputime.utime;
450	*st = cputime.stime;
451}
452#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453/*
454 * Account a single tick of cpu time.
455 * @p: the process that the cpu time gets accounted to
456 * @user_tick: indicates if the tick is a user or a system tick
457 */
458void account_process_tick(struct task_struct *p, int user_tick)
459{
460	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461	struct rq *rq = this_rq();
462
463	if (vtime_accounting_enabled())
464		return;
465
466	if (sched_clock_irqtime) {
467		irqtime_account_process_tick(p, user_tick, rq);
468		return;
469	}
470
471	if (steal_account_process_tick())
472		return;
473
474	if (user_tick)
475		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478				    one_jiffy_scaled);
479	else
480		account_idle_time(cputime_one_jiffy);
481}
482
483/*
484 * Account multiple ticks of steal time.
485 * @p: the process from which the cpu time has been stolen
486 * @ticks: number of stolen ticks
487 */
488void account_steal_ticks(unsigned long ticks)
489{
490	account_steal_time(jiffies_to_cputime(ticks));
491}
492
493/*
494 * Account multiple ticks of idle time.
495 * @ticks: number of stolen ticks
496 */
497void account_idle_ticks(unsigned long ticks)
498{
499
500	if (sched_clock_irqtime) {
501		irqtime_account_idle_ticks(ticks);
502		return;
503	}
504
505	account_idle_time(jiffies_to_cputime(ticks));
506}
507
508/*
509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
510 * loosing precision when the numbers are big.
511 */
512static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
513{
514	u64 scaled;
515
516	for (;;) {
517		/* Make sure "rtime" is the bigger of stime/rtime */
518		if (stime > rtime)
519			swap(rtime, stime);
520
521		/* Make sure 'total' fits in 32 bits */
522		if (total >> 32)
523			goto drop_precision;
524
525		/* Does rtime (and thus stime) fit in 32 bits? */
526		if (!(rtime >> 32))
527			break;
528
529		/* Can we just balance rtime/stime rather than dropping bits? */
530		if (stime >> 31)
531			goto drop_precision;
532
533		/* We can grow stime and shrink rtime and try to make them both fit */
534		stime <<= 1;
535		rtime >>= 1;
536		continue;
537
538drop_precision:
539		/* We drop from rtime, it has more bits than stime */
540		rtime >>= 1;
541		total >>= 1;
542	}
543
544	/*
545	 * Make sure gcc understands that this is a 32x32->64 multiply,
546	 * followed by a 64/32->64 divide.
547	 */
548	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
549	return (__force cputime_t) scaled;
550}
551
552/*
553 * Adjust tick based cputime random precision against scheduler
554 * runtime accounting.
555 */
556static void cputime_adjust(struct task_cputime *curr,
557			   struct cputime *prev,
558			   cputime_t *ut, cputime_t *st)
559{
560	cputime_t rtime, stime, utime, total;
561
562	if (vtime_accounting_enabled()) {
563		*ut = curr->utime;
564		*st = curr->stime;
565		return;
566	}
567
568	stime = curr->stime;
569	total = stime + curr->utime;
570
571	/*
572	 * Tick based cputime accounting depend on random scheduling
573	 * timeslices of a task to be interrupted or not by the timer.
574	 * Depending on these circumstances, the number of these interrupts
575	 * may be over or under-optimistic, matching the real user and system
576	 * cputime with a variable precision.
577	 *
578	 * Fix this by scaling these tick based values against the total
579	 * runtime accounted by the CFS scheduler.
580	 */
581	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
582
583	/*
584	 * Update userspace visible utime/stime values only if actual execution
585	 * time is bigger than already exported. Note that can happen, that we
586	 * provided bigger values due to scaling inaccuracy on big numbers.
587	 */
588	if (prev->stime + prev->utime >= rtime)
589		goto out;
590
591	if (total) {
592		stime = scale_stime((__force u64)stime,
593				    (__force u64)rtime, (__force u64)total);
594		utime = rtime - stime;
595	} else {
596		stime = rtime;
597		utime = 0;
598	}
599
600	/*
601	 * If the tick based count grows faster than the scheduler one,
602	 * the result of the scaling may go backward.
603	 * Let's enforce monotonicity.
604	 */
605	prev->stime = max(prev->stime, stime);
606	prev->utime = max(prev->utime, utime);
607
608out:
609	*ut = prev->utime;
610	*st = prev->stime;
611}
612
613void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
614{
615	struct task_cputime cputime = {
616		.sum_exec_runtime = p->se.sum_exec_runtime,
617	};
618
619	task_cputime(p, &cputime.utime, &cputime.stime);
620	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
621}
622
623/*
624 * Must be called with siglock held.
625 */
626void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
627{
628	struct task_cputime cputime;
629
630	thread_group_cputime(p, &cputime);
631	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
632}
633#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
634
635#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
636static unsigned long long vtime_delta(struct task_struct *tsk)
637{
638	unsigned long long clock;
639
640	clock = local_clock();
641	if (clock < tsk->vtime_snap)
642		return 0;
643
644	return clock - tsk->vtime_snap;
645}
646
647static cputime_t get_vtime_delta(struct task_struct *tsk)
648{
649	unsigned long long delta = vtime_delta(tsk);
650
651	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
652	tsk->vtime_snap += delta;
653
654	/* CHECKME: always safe to convert nsecs to cputime? */
655	return nsecs_to_cputime(delta);
656}
657
658static void __vtime_account_system(struct task_struct *tsk)
659{
660	cputime_t delta_cpu = get_vtime_delta(tsk);
661
662	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
663}
664
665void vtime_account_system(struct task_struct *tsk)
666{
667	if (!vtime_accounting_enabled())
668		return;
669
670	write_seqlock(&tsk->vtime_seqlock);
671	__vtime_account_system(tsk);
672	write_sequnlock(&tsk->vtime_seqlock);
673}
674
675void vtime_account_irq_exit(struct task_struct *tsk)
676{
677	if (!vtime_accounting_enabled())
678		return;
679
680	write_seqlock(&tsk->vtime_seqlock);
681	if (context_tracking_in_user())
682		tsk->vtime_snap_whence = VTIME_USER;
683	__vtime_account_system(tsk);
684	write_sequnlock(&tsk->vtime_seqlock);
685}
686
687void vtime_account_user(struct task_struct *tsk)
688{
689	cputime_t delta_cpu;
690
691	if (!vtime_accounting_enabled())
692		return;
693
694	delta_cpu = get_vtime_delta(tsk);
695
696	write_seqlock(&tsk->vtime_seqlock);
697	tsk->vtime_snap_whence = VTIME_SYS;
698	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
699	write_sequnlock(&tsk->vtime_seqlock);
700}
701
702void vtime_user_enter(struct task_struct *tsk)
703{
704	if (!vtime_accounting_enabled())
705		return;
706
707	write_seqlock(&tsk->vtime_seqlock);
708	tsk->vtime_snap_whence = VTIME_USER;
709	__vtime_account_system(tsk);
710	write_sequnlock(&tsk->vtime_seqlock);
711}
712
713void vtime_guest_enter(struct task_struct *tsk)
714{
715	write_seqlock(&tsk->vtime_seqlock);
716	__vtime_account_system(tsk);
717	current->flags |= PF_VCPU;
718	write_sequnlock(&tsk->vtime_seqlock);
719}
720
721void vtime_guest_exit(struct task_struct *tsk)
722{
723	write_seqlock(&tsk->vtime_seqlock);
724	__vtime_account_system(tsk);
725	current->flags &= ~PF_VCPU;
726	write_sequnlock(&tsk->vtime_seqlock);
727}
728
729void vtime_account_idle(struct task_struct *tsk)
730{
731	cputime_t delta_cpu = get_vtime_delta(tsk);
732
733	account_idle_time(delta_cpu);
734}
735
736bool vtime_accounting_enabled(void)
737{
738	return context_tracking_active();
739}
740
741void arch_vtime_task_switch(struct task_struct *prev)
742{
743	write_seqlock(&prev->vtime_seqlock);
744	prev->vtime_snap_whence = VTIME_SLEEPING;
745	write_sequnlock(&prev->vtime_seqlock);
746
747	write_seqlock(&current->vtime_seqlock);
748	current->vtime_snap_whence = VTIME_SYS;
749	current->vtime_snap = sched_clock();
750	write_sequnlock(&current->vtime_seqlock);
751}
752
753void vtime_init_idle(struct task_struct *t)
754{
755	unsigned long flags;
756
757	write_seqlock_irqsave(&t->vtime_seqlock, flags);
758	t->vtime_snap_whence = VTIME_SYS;
759	t->vtime_snap = sched_clock();
760	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
761}
762
763cputime_t task_gtime(struct task_struct *t)
764{
765	unsigned int seq;
766	cputime_t gtime;
767
768	do {
769		seq = read_seqbegin(&t->vtime_seqlock);
770
771		gtime = t->gtime;
772		if (t->flags & PF_VCPU)
773			gtime += vtime_delta(t);
774
775	} while (read_seqretry(&t->vtime_seqlock, seq));
776
777	return gtime;
778}
779
780/*
781 * Fetch cputime raw values from fields of task_struct and
782 * add up the pending nohz execution time since the last
783 * cputime snapshot.
784 */
785static void
786fetch_task_cputime(struct task_struct *t,
787		   cputime_t *u_dst, cputime_t *s_dst,
788		   cputime_t *u_src, cputime_t *s_src,
789		   cputime_t *udelta, cputime_t *sdelta)
790{
791	unsigned int seq;
792	unsigned long long delta;
793
794	do {
795		*udelta = 0;
796		*sdelta = 0;
797
798		seq = read_seqbegin(&t->vtime_seqlock);
799
800		if (u_dst)
801			*u_dst = *u_src;
802		if (s_dst)
803			*s_dst = *s_src;
804
805		/* Task is sleeping, nothing to add */
806		if (t->vtime_snap_whence == VTIME_SLEEPING ||
807		    is_idle_task(t))
808			continue;
809
810		delta = vtime_delta(t);
811
812		/*
813		 * Task runs either in user or kernel space, add pending nohz time to
814		 * the right place.
815		 */
816		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
817			*udelta = delta;
818		} else {
819			if (t->vtime_snap_whence == VTIME_SYS)
820				*sdelta = delta;
821		}
822	} while (read_seqretry(&t->vtime_seqlock, seq));
823}
824
825
826void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
827{
828	cputime_t udelta, sdelta;
829
830	fetch_task_cputime(t, utime, stime, &t->utime,
831			   &t->stime, &udelta, &sdelta);
832	if (utime)
833		*utime += udelta;
834	if (stime)
835		*stime += sdelta;
836}
837
838void task_cputime_scaled(struct task_struct *t,
839			 cputime_t *utimescaled, cputime_t *stimescaled)
840{
841	cputime_t udelta, sdelta;
842
843	fetch_task_cputime(t, utimescaled, stimescaled,
844			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
845	if (utimescaled)
846		*utimescaled += cputime_to_scaled(udelta);
847	if (stimescaled)
848		*stimescaled += cputime_to_scaled(sdelta);
849}
850#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
851