tick-broadcast.c revision 07454bfff151d2465ada809bbaddf3548cc1097c
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
21#include <linux/tick.h>
22
23#include "tick-internal.h"
24
25/*
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
28 */
29
30struct tick_device tick_broadcast_device;
31static cpumask_t tick_broadcast_mask;
32static DEFINE_SPINLOCK(tick_broadcast_lock);
33static int tick_broadcast_force;
34
35#ifdef CONFIG_TICK_ONESHOT
36static void tick_broadcast_clear_oneshot(int cpu);
37#else
38static inline void tick_broadcast_clear_oneshot(int cpu) { }
39#endif
40
41/*
42 * Debugging: see timer_list.c
43 */
44struct tick_device *tick_get_broadcast_device(void)
45{
46	return &tick_broadcast_device;
47}
48
49cpumask_t *tick_get_broadcast_mask(void)
50{
51	return &tick_broadcast_mask;
52}
53
54/*
55 * Start the device in periodic mode
56 */
57static void tick_broadcast_start_periodic(struct clock_event_device *bc)
58{
59	if (bc)
60		tick_setup_periodic(bc, 1);
61}
62
63/*
64 * Check, if the device can be utilized as broadcast device:
65 */
66int tick_check_broadcast_device(struct clock_event_device *dev)
67{
68	if ((tick_broadcast_device.evtdev &&
69	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
70	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
71		return 0;
72
73	clockevents_exchange_device(NULL, dev);
74	tick_broadcast_device.evtdev = dev;
75	if (!cpus_empty(tick_broadcast_mask))
76		tick_broadcast_start_periodic(dev);
77	return 1;
78}
79
80/*
81 * Check, if the device is the broadcast device
82 */
83int tick_is_broadcast_device(struct clock_event_device *dev)
84{
85	return (dev && tick_broadcast_device.evtdev == dev);
86}
87
88/*
89 * Check, if the device is disfunctional and a place holder, which
90 * needs to be handled by the broadcast device.
91 */
92int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
93{
94	unsigned long flags;
95	int ret = 0;
96
97	spin_lock_irqsave(&tick_broadcast_lock, flags);
98
99	/*
100	 * Devices might be registered with both periodic and oneshot
101	 * mode disabled. This signals, that the device needs to be
102	 * operated from the broadcast device and is a placeholder for
103	 * the cpu local device.
104	 */
105	if (!tick_device_is_functional(dev)) {
106		dev->event_handler = tick_handle_periodic;
107		cpu_set(cpu, tick_broadcast_mask);
108		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
109		ret = 1;
110	} else {
111		/*
112		 * When the new device is not affected by the stop
113		 * feature and the cpu is marked in the broadcast mask
114		 * then clear the broadcast bit.
115		 */
116		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
117			int cpu = smp_processor_id();
118
119			cpu_clear(cpu, tick_broadcast_mask);
120			tick_broadcast_clear_oneshot(cpu);
121		}
122	}
123	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
124	return ret;
125}
126
127/*
128 * Broadcast the event to the cpus, which are set in the mask
129 */
130static void tick_do_broadcast(cpumask_t mask)
131{
132	int cpu = smp_processor_id();
133	struct tick_device *td;
134
135	/*
136	 * Check, if the current cpu is in the mask
137	 */
138	if (cpu_isset(cpu, mask)) {
139		cpu_clear(cpu, mask);
140		td = &per_cpu(tick_cpu_device, cpu);
141		td->evtdev->event_handler(td->evtdev);
142	}
143
144	if (!cpus_empty(mask)) {
145		/*
146		 * It might be necessary to actually check whether the devices
147		 * have different broadcast functions. For now, just use the
148		 * one of the first device. This works as long as we have this
149		 * misfeature only on x86 (lapic)
150		 */
151		cpu = first_cpu(mask);
152		td = &per_cpu(tick_cpu_device, cpu);
153		td->evtdev->broadcast(mask);
154	}
155}
156
157/*
158 * Periodic broadcast:
159 * - invoke the broadcast handlers
160 */
161static void tick_do_periodic_broadcast(void)
162{
163	cpumask_t mask;
164
165	spin_lock(&tick_broadcast_lock);
166
167	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
168	tick_do_broadcast(mask);
169
170	spin_unlock(&tick_broadcast_lock);
171}
172
173/*
174 * Event handler for periodic broadcast ticks
175 */
176static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
177{
178	ktime_t next;
179
180	tick_do_periodic_broadcast();
181
182	/*
183	 * The device is in periodic mode. No reprogramming necessary:
184	 */
185	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186		return;
187
188	/*
189	 * Setup the next period for devices, which do not have
190	 * periodic mode. We read dev->next_event first and add to it
191	 * when the event alrady expired. clockevents_program_event()
192	 * sets dev->next_event only when the event is really
193	 * programmed to the device.
194	 */
195	for (next = dev->next_event; ;) {
196		next = ktime_add(next, tick_period);
197
198		if (!clockevents_program_event(dev, next, ktime_get()))
199			return;
200		tick_do_periodic_broadcast();
201	}
202}
203
204/*
205 * Powerstate information: The system enters/leaves a state, where
206 * affected devices might stop
207 */
208static void tick_do_broadcast_on_off(void *why)
209{
210	struct clock_event_device *bc, *dev;
211	struct tick_device *td;
212	unsigned long flags, *reason = why;
213	int cpu, bc_stopped;
214
215	spin_lock_irqsave(&tick_broadcast_lock, flags);
216
217	cpu = smp_processor_id();
218	td = &per_cpu(tick_cpu_device, cpu);
219	dev = td->evtdev;
220	bc = tick_broadcast_device.evtdev;
221
222	/*
223	 * Is the device not affected by the powerstate ?
224	 */
225	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226		goto out;
227
228	if (!tick_device_is_functional(dev))
229		goto out;
230
231	bc_stopped = cpus_empty(tick_broadcast_mask);
232
233	switch (*reason) {
234	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
235	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236		if (!cpu_isset(cpu, tick_broadcast_mask)) {
237			cpu_set(cpu, tick_broadcast_mask);
238			if (tick_broadcast_device.mode ==
239			    TICKDEV_MODE_PERIODIC)
240				clockevents_shutdown(dev);
241		}
242		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243			tick_broadcast_force = 1;
244		break;
245	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246		if (!tick_broadcast_force &&
247		    cpu_isset(cpu, tick_broadcast_mask)) {
248			cpu_clear(cpu, tick_broadcast_mask);
249			if (tick_broadcast_device.mode ==
250			    TICKDEV_MODE_PERIODIC)
251				tick_setup_periodic(dev, 0);
252		}
253		break;
254	}
255
256	if (cpus_empty(tick_broadcast_mask)) {
257		if (!bc_stopped)
258			clockevents_shutdown(bc);
259	} else if (bc_stopped) {
260		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
261			tick_broadcast_start_periodic(bc);
262		else
263			tick_broadcast_setup_oneshot(bc);
264	}
265out:
266	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
267}
268
269/*
270 * Powerstate information: The system enters/leaves a state, where
271 * affected devices might stop.
272 */
273void tick_broadcast_on_off(unsigned long reason, int *oncpu)
274{
275	if (!cpu_isset(*oncpu, cpu_online_map))
276		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277		       "offline CPU #%d\n", *oncpu);
278	else
279		smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
280					 &reason, 1);
281}
282
283/*
284 * Set the periodic handler depending on broadcast on/off
285 */
286void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
287{
288	if (!broadcast)
289		dev->event_handler = tick_handle_periodic;
290	else
291		dev->event_handler = tick_handle_periodic_broadcast;
292}
293
294/*
295 * Remove a CPU from broadcasting
296 */
297void tick_shutdown_broadcast(unsigned int *cpup)
298{
299	struct clock_event_device *bc;
300	unsigned long flags;
301	unsigned int cpu = *cpup;
302
303	spin_lock_irqsave(&tick_broadcast_lock, flags);
304
305	bc = tick_broadcast_device.evtdev;
306	cpu_clear(cpu, tick_broadcast_mask);
307
308	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
309		if (bc && cpus_empty(tick_broadcast_mask))
310			clockevents_shutdown(bc);
311	}
312
313	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
314}
315
316void tick_suspend_broadcast(void)
317{
318	struct clock_event_device *bc;
319	unsigned long flags;
320
321	spin_lock_irqsave(&tick_broadcast_lock, flags);
322
323	bc = tick_broadcast_device.evtdev;
324	if (bc)
325		clockevents_shutdown(bc);
326
327	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
328}
329
330int tick_resume_broadcast(void)
331{
332	struct clock_event_device *bc;
333	unsigned long flags;
334	int broadcast = 0;
335
336	spin_lock_irqsave(&tick_broadcast_lock, flags);
337
338	bc = tick_broadcast_device.evtdev;
339
340	if (bc) {
341		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
342
343		switch (tick_broadcast_device.mode) {
344		case TICKDEV_MODE_PERIODIC:
345			if(!cpus_empty(tick_broadcast_mask))
346				tick_broadcast_start_periodic(bc);
347			broadcast = cpu_isset(smp_processor_id(),
348					      tick_broadcast_mask);
349			break;
350		case TICKDEV_MODE_ONESHOT:
351			broadcast = tick_resume_broadcast_oneshot(bc);
352			break;
353		}
354	}
355	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
356
357	return broadcast;
358}
359
360
361#ifdef CONFIG_TICK_ONESHOT
362
363static cpumask_t tick_broadcast_oneshot_mask;
364
365/*
366 * Debugging: see timer_list.c
367 */
368cpumask_t *tick_get_broadcast_oneshot_mask(void)
369{
370	return &tick_broadcast_oneshot_mask;
371}
372
373static int tick_broadcast_set_event(ktime_t expires, int force)
374{
375	struct clock_event_device *bc = tick_broadcast_device.evtdev;
376
377	return tick_dev_program_event(bc, expires, force);
378}
379
380int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
381{
382	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
383	return 0;
384}
385
386/*
387 * Handle oneshot mode broadcasting
388 */
389static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
390{
391	struct tick_device *td;
392	cpumask_t mask;
393	ktime_t now, next_event;
394	int cpu;
395
396	spin_lock(&tick_broadcast_lock);
397again:
398	dev->next_event.tv64 = KTIME_MAX;
399	next_event.tv64 = KTIME_MAX;
400	mask = CPU_MASK_NONE;
401	now = ktime_get();
402	/* Find all expired events */
403	for_each_cpu_mask_nr(cpu, tick_broadcast_oneshot_mask) {
404		td = &per_cpu(tick_cpu_device, cpu);
405		if (td->evtdev->next_event.tv64 <= now.tv64)
406			cpu_set(cpu, mask);
407		else if (td->evtdev->next_event.tv64 < next_event.tv64)
408			next_event.tv64 = td->evtdev->next_event.tv64;
409	}
410
411	/*
412	 * Wakeup the cpus which have an expired event.
413	 */
414	tick_do_broadcast(mask);
415
416	/*
417	 * Two reasons for reprogram:
418	 *
419	 * - The global event did not expire any CPU local
420	 * events. This happens in dyntick mode, as the maximum PIT
421	 * delta is quite small.
422	 *
423	 * - There are pending events on sleeping CPUs which were not
424	 * in the event mask
425	 */
426	if (next_event.tv64 != KTIME_MAX) {
427		/*
428		 * Rearm the broadcast device. If event expired,
429		 * repeat the above
430		 */
431		if (tick_broadcast_set_event(next_event, 0))
432			goto again;
433	}
434	spin_unlock(&tick_broadcast_lock);
435}
436
437/*
438 * Powerstate information: The system enters/leaves a state, where
439 * affected devices might stop
440 */
441void tick_broadcast_oneshot_control(unsigned long reason)
442{
443	struct clock_event_device *bc, *dev;
444	struct tick_device *td;
445	unsigned long flags;
446	int cpu;
447
448	spin_lock_irqsave(&tick_broadcast_lock, flags);
449
450	/*
451	 * Periodic mode does not care about the enter/exit of power
452	 * states
453	 */
454	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
455		goto out;
456
457	bc = tick_broadcast_device.evtdev;
458	cpu = smp_processor_id();
459	td = &per_cpu(tick_cpu_device, cpu);
460	dev = td->evtdev;
461
462	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
463		goto out;
464
465	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
466		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
467			cpu_set(cpu, tick_broadcast_oneshot_mask);
468			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
469			if (dev->next_event.tv64 < bc->next_event.tv64)
470				tick_broadcast_set_event(dev->next_event, 1);
471		}
472	} else {
473		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
474			cpu_clear(cpu, tick_broadcast_oneshot_mask);
475			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
476			if (dev->next_event.tv64 != KTIME_MAX)
477				tick_program_event(dev->next_event, 1);
478		}
479	}
480
481out:
482	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
483}
484
485/*
486 * Reset the one shot broadcast for a cpu
487 *
488 * Called with tick_broadcast_lock held
489 */
490static void tick_broadcast_clear_oneshot(int cpu)
491{
492	cpu_clear(cpu, tick_broadcast_oneshot_mask);
493}
494
495static void tick_broadcast_init_next_event(cpumask_t *mask, ktime_t expires)
496{
497	struct tick_device *td;
498	int cpu;
499
500	for_each_cpu_mask_nr(cpu, *mask) {
501		td = &per_cpu(tick_cpu_device, cpu);
502		if (td->evtdev)
503			td->evtdev->next_event = expires;
504	}
505}
506
507/**
508 * tick_broadcast_setup_oneshot - setup the broadcast device
509 */
510void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
511{
512	/* Set it up only once ! */
513	if (bc->event_handler != tick_handle_oneshot_broadcast) {
514		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
515		int cpu = smp_processor_id();
516		cpumask_t mask;
517
518		bc->event_handler = tick_handle_oneshot_broadcast;
519		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
520
521		/* Take the do_timer update */
522		tick_do_timer_cpu = cpu;
523
524		/*
525		 * We must be careful here. There might be other CPUs
526		 * waiting for periodic broadcast. We need to set the
527		 * oneshot_mask bits for those and program the
528		 * broadcast device to fire.
529		 */
530		mask = tick_broadcast_mask;
531		cpu_clear(cpu, mask);
532		cpus_or(tick_broadcast_oneshot_mask,
533			tick_broadcast_oneshot_mask, mask);
534
535		if (was_periodic && !cpus_empty(mask)) {
536			tick_broadcast_init_next_event(&mask, tick_next_period);
537			tick_broadcast_set_event(tick_next_period, 1);
538		} else
539			bc->next_event.tv64 = KTIME_MAX;
540	}
541}
542
543/*
544 * Select oneshot operating mode for the broadcast device
545 */
546void tick_broadcast_switch_to_oneshot(void)
547{
548	struct clock_event_device *bc;
549	unsigned long flags;
550
551	spin_lock_irqsave(&tick_broadcast_lock, flags);
552
553	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
554	bc = tick_broadcast_device.evtdev;
555	if (bc)
556		tick_broadcast_setup_oneshot(bc);
557	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
558}
559
560
561/*
562 * Remove a dead CPU from broadcasting
563 */
564void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
565{
566	unsigned long flags;
567	unsigned int cpu = *cpup;
568
569	spin_lock_irqsave(&tick_broadcast_lock, flags);
570
571	/*
572	 * Clear the broadcast mask flag for the dead cpu, but do not
573	 * stop the broadcast device!
574	 */
575	cpu_clear(cpu, tick_broadcast_oneshot_mask);
576
577	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
578}
579
580/*
581 * Check, whether the broadcast device is in one shot mode
582 */
583int tick_broadcast_oneshot_active(void)
584{
585	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
586}
587
588#endif
589