tick-broadcast.c revision 07bd1172902e782f288e4d44b1fde7dec0f08b6f
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
21#include <linux/smp.h>
22#include <linux/module.h>
23
24#include "tick-internal.h"
25
26/*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31static struct tick_device tick_broadcast_device;
32static cpumask_var_t tick_broadcast_mask;
33static cpumask_var_t tick_broadcast_on;
34static cpumask_var_t tmpmask;
35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36static int tick_broadcast_force;
37
38#ifdef CONFIG_TICK_ONESHOT
39static void tick_broadcast_clear_oneshot(int cpu);
40#else
41static inline void tick_broadcast_clear_oneshot(int cpu) { }
42#endif
43
44/*
45 * Debugging: see timer_list.c
46 */
47struct tick_device *tick_get_broadcast_device(void)
48{
49	return &tick_broadcast_device;
50}
51
52struct cpumask *tick_get_broadcast_mask(void)
53{
54	return tick_broadcast_mask;
55}
56
57/*
58 * Start the device in periodic mode
59 */
60static void tick_broadcast_start_periodic(struct clock_event_device *bc)
61{
62	if (bc)
63		tick_setup_periodic(bc, 1);
64}
65
66/*
67 * Check, if the device can be utilized as broadcast device:
68 */
69static bool tick_check_broadcast_device(struct clock_event_device *curdev,
70					struct clock_event_device *newdev)
71{
72	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
73	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
74		return false;
75
76	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
77	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
78		return false;
79
80	return !curdev || newdev->rating > curdev->rating;
81}
82
83/*
84 * Conditionally install/replace broadcast device
85 */
86void tick_install_broadcast_device(struct clock_event_device *dev)
87{
88	struct clock_event_device *cur = tick_broadcast_device.evtdev;
89
90	if (!tick_check_broadcast_device(cur, dev))
91		return;
92
93	if (!try_module_get(dev->owner))
94		return;
95
96	clockevents_exchange_device(cur, dev);
97	if (cur)
98		cur->event_handler = clockevents_handle_noop;
99	tick_broadcast_device.evtdev = dev;
100	if (!cpumask_empty(tick_broadcast_mask))
101		tick_broadcast_start_periodic(dev);
102	/*
103	 * Inform all cpus about this. We might be in a situation
104	 * where we did not switch to oneshot mode because the per cpu
105	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
106	 * of a oneshot capable broadcast device. Without that
107	 * notification the systems stays stuck in periodic mode
108	 * forever.
109	 */
110	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
111		tick_clock_notify();
112}
113
114/*
115 * Check, if the device is the broadcast device
116 */
117int tick_is_broadcast_device(struct clock_event_device *dev)
118{
119	return (dev && tick_broadcast_device.evtdev == dev);
120}
121
122static void err_broadcast(const struct cpumask *mask)
123{
124	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
125}
126
127static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
128{
129	if (!dev->broadcast)
130		dev->broadcast = tick_broadcast;
131	if (!dev->broadcast) {
132		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
133			     dev->name);
134		dev->broadcast = err_broadcast;
135	}
136}
137
138/*
139 * Check, if the device is disfunctional and a place holder, which
140 * needs to be handled by the broadcast device.
141 */
142int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
143{
144	struct clock_event_device *bc = tick_broadcast_device.evtdev;
145	unsigned long flags;
146	int ret;
147
148	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
149
150	/*
151	 * Devices might be registered with both periodic and oneshot
152	 * mode disabled. This signals, that the device needs to be
153	 * operated from the broadcast device and is a placeholder for
154	 * the cpu local device.
155	 */
156	if (!tick_device_is_functional(dev)) {
157		dev->event_handler = tick_handle_periodic;
158		tick_device_setup_broadcast_func(dev);
159		cpumask_set_cpu(cpu, tick_broadcast_mask);
160		tick_broadcast_start_periodic(bc);
161		ret = 1;
162	} else {
163		/*
164		 * Clear the broadcast bit for this cpu if the
165		 * device is not power state affected.
166		 */
167		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
168			cpumask_clear_cpu(cpu, tick_broadcast_mask);
169		else
170			tick_device_setup_broadcast_func(dev);
171
172		/*
173		 * Clear the broadcast bit if the CPU is not in
174		 * periodic broadcast on state.
175		 */
176		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
177			cpumask_clear_cpu(cpu, tick_broadcast_mask);
178
179		switch (tick_broadcast_device.mode) {
180		case TICKDEV_MODE_ONESHOT:
181			/*
182			 * If the system is in oneshot mode we can
183			 * unconditionally clear the oneshot mask bit,
184			 * because the CPU is running and therefore
185			 * not in an idle state which causes the power
186			 * state affected device to stop. Let the
187			 * caller initialize the device.
188			 */
189			tick_broadcast_clear_oneshot(cpu);
190			ret = 0;
191			break;
192
193		case TICKDEV_MODE_PERIODIC:
194			/*
195			 * If the system is in periodic mode, check
196			 * whether the broadcast device can be
197			 * switched off now.
198			 */
199			if (cpumask_empty(tick_broadcast_mask) && bc)
200				clockevents_shutdown(bc);
201			/*
202			 * If we kept the cpu in the broadcast mask,
203			 * tell the caller to leave the per cpu device
204			 * in shutdown state. The periodic interrupt
205			 * is delivered by the broadcast device.
206			 */
207			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
208			break;
209		default:
210			/* Nothing to do */
211			ret = 0;
212			break;
213		}
214	}
215	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
216	return ret;
217}
218
219#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
220int tick_receive_broadcast(void)
221{
222	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
223	struct clock_event_device *evt = td->evtdev;
224
225	if (!evt)
226		return -ENODEV;
227
228	if (!evt->event_handler)
229		return -EINVAL;
230
231	evt->event_handler(evt);
232	return 0;
233}
234#endif
235
236/*
237 * Broadcast the event to the cpus, which are set in the mask (mangled).
238 */
239static void tick_do_broadcast(struct cpumask *mask)
240{
241	int cpu = smp_processor_id();
242	struct tick_device *td;
243
244	/*
245	 * Check, if the current cpu is in the mask
246	 */
247	if (cpumask_test_cpu(cpu, mask)) {
248		cpumask_clear_cpu(cpu, mask);
249		td = &per_cpu(tick_cpu_device, cpu);
250		td->evtdev->event_handler(td->evtdev);
251	}
252
253	if (!cpumask_empty(mask)) {
254		/*
255		 * It might be necessary to actually check whether the devices
256		 * have different broadcast functions. For now, just use the
257		 * one of the first device. This works as long as we have this
258		 * misfeature only on x86 (lapic)
259		 */
260		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
261		td->evtdev->broadcast(mask);
262	}
263}
264
265/*
266 * Periodic broadcast:
267 * - invoke the broadcast handlers
268 */
269static void tick_do_periodic_broadcast(void)
270{
271	raw_spin_lock(&tick_broadcast_lock);
272
273	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
274	tick_do_broadcast(tmpmask);
275
276	raw_spin_unlock(&tick_broadcast_lock);
277}
278
279/*
280 * Event handler for periodic broadcast ticks
281 */
282static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
283{
284	ktime_t next;
285
286	tick_do_periodic_broadcast();
287
288	/*
289	 * The device is in periodic mode. No reprogramming necessary:
290	 */
291	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
292		return;
293
294	/*
295	 * Setup the next period for devices, which do not have
296	 * periodic mode. We read dev->next_event first and add to it
297	 * when the event already expired. clockevents_program_event()
298	 * sets dev->next_event only when the event is really
299	 * programmed to the device.
300	 */
301	for (next = dev->next_event; ;) {
302		next = ktime_add(next, tick_period);
303
304		if (!clockevents_program_event(dev, next, false))
305			return;
306		tick_do_periodic_broadcast();
307	}
308}
309
310/*
311 * Powerstate information: The system enters/leaves a state, where
312 * affected devices might stop
313 */
314static void tick_do_broadcast_on_off(unsigned long *reason)
315{
316	struct clock_event_device *bc, *dev;
317	struct tick_device *td;
318	unsigned long flags;
319	int cpu, bc_stopped;
320
321	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
322
323	cpu = smp_processor_id();
324	td = &per_cpu(tick_cpu_device, cpu);
325	dev = td->evtdev;
326	bc = tick_broadcast_device.evtdev;
327
328	/*
329	 * Is the device not affected by the powerstate ?
330	 */
331	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
332		goto out;
333
334	if (!tick_device_is_functional(dev))
335		goto out;
336
337	bc_stopped = cpumask_empty(tick_broadcast_mask);
338
339	switch (*reason) {
340	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
341	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
342		cpumask_set_cpu(cpu, tick_broadcast_on);
343		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
344			if (tick_broadcast_device.mode ==
345			    TICKDEV_MODE_PERIODIC)
346				clockevents_shutdown(dev);
347		}
348		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
349			tick_broadcast_force = 1;
350		break;
351	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
352		if (tick_broadcast_force)
353			break;
354		cpumask_clear_cpu(cpu, tick_broadcast_on);
355		if (!tick_device_is_functional(dev))
356			break;
357		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
358			if (tick_broadcast_device.mode ==
359			    TICKDEV_MODE_PERIODIC)
360				tick_setup_periodic(dev, 0);
361		}
362		break;
363	}
364
365	if (cpumask_empty(tick_broadcast_mask)) {
366		if (!bc_stopped)
367			clockevents_shutdown(bc);
368	} else if (bc_stopped) {
369		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
370			tick_broadcast_start_periodic(bc);
371		else
372			tick_broadcast_setup_oneshot(bc);
373	}
374out:
375	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
376}
377
378/*
379 * Powerstate information: The system enters/leaves a state, where
380 * affected devices might stop.
381 */
382void tick_broadcast_on_off(unsigned long reason, int *oncpu)
383{
384	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
385		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
386		       "offline CPU #%d\n", *oncpu);
387	else
388		tick_do_broadcast_on_off(&reason);
389}
390
391/*
392 * Set the periodic handler depending on broadcast on/off
393 */
394void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
395{
396	if (!broadcast)
397		dev->event_handler = tick_handle_periodic;
398	else
399		dev->event_handler = tick_handle_periodic_broadcast;
400}
401
402/*
403 * Remove a CPU from broadcasting
404 */
405void tick_shutdown_broadcast(unsigned int *cpup)
406{
407	struct clock_event_device *bc;
408	unsigned long flags;
409	unsigned int cpu = *cpup;
410
411	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
412
413	bc = tick_broadcast_device.evtdev;
414	cpumask_clear_cpu(cpu, tick_broadcast_mask);
415	cpumask_clear_cpu(cpu, tick_broadcast_on);
416
417	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
418		if (bc && cpumask_empty(tick_broadcast_mask))
419			clockevents_shutdown(bc);
420	}
421
422	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
423}
424
425void tick_suspend_broadcast(void)
426{
427	struct clock_event_device *bc;
428	unsigned long flags;
429
430	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
431
432	bc = tick_broadcast_device.evtdev;
433	if (bc)
434		clockevents_shutdown(bc);
435
436	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
437}
438
439int tick_resume_broadcast(void)
440{
441	struct clock_event_device *bc;
442	unsigned long flags;
443	int broadcast = 0;
444
445	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
446
447	bc = tick_broadcast_device.evtdev;
448
449	if (bc) {
450		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
451
452		switch (tick_broadcast_device.mode) {
453		case TICKDEV_MODE_PERIODIC:
454			if (!cpumask_empty(tick_broadcast_mask))
455				tick_broadcast_start_periodic(bc);
456			broadcast = cpumask_test_cpu(smp_processor_id(),
457						     tick_broadcast_mask);
458			break;
459		case TICKDEV_MODE_ONESHOT:
460			if (!cpumask_empty(tick_broadcast_mask))
461				broadcast = tick_resume_broadcast_oneshot(bc);
462			break;
463		}
464	}
465	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
466
467	return broadcast;
468}
469
470
471#ifdef CONFIG_TICK_ONESHOT
472
473static cpumask_var_t tick_broadcast_oneshot_mask;
474static cpumask_var_t tick_broadcast_pending_mask;
475static cpumask_var_t tick_broadcast_force_mask;
476
477/*
478 * Exposed for debugging: see timer_list.c
479 */
480struct cpumask *tick_get_broadcast_oneshot_mask(void)
481{
482	return tick_broadcast_oneshot_mask;
483}
484
485/*
486 * Called before going idle with interrupts disabled. Checks whether a
487 * broadcast event from the other core is about to happen. We detected
488 * that in tick_broadcast_oneshot_control(). The callsite can use this
489 * to avoid a deep idle transition as we are about to get the
490 * broadcast IPI right away.
491 */
492int tick_check_broadcast_expired(void)
493{
494	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
495}
496
497/*
498 * Set broadcast interrupt affinity
499 */
500static void tick_broadcast_set_affinity(struct clock_event_device *bc,
501					const struct cpumask *cpumask)
502{
503	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
504		return;
505
506	if (cpumask_equal(bc->cpumask, cpumask))
507		return;
508
509	bc->cpumask = cpumask;
510	irq_set_affinity(bc->irq, bc->cpumask);
511}
512
513static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
514				    ktime_t expires, int force)
515{
516	int ret;
517
518	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
519		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
520
521	ret = clockevents_program_event(bc, expires, force);
522	if (!ret)
523		tick_broadcast_set_affinity(bc, cpumask_of(cpu));
524	return ret;
525}
526
527int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
528{
529	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
530	return 0;
531}
532
533/*
534 * Called from irq_enter() when idle was interrupted to reenable the
535 * per cpu device.
536 */
537void tick_check_oneshot_broadcast(int cpu)
538{
539	if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
540		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
541
542		/*
543		 * We might be in the middle of switching over from
544		 * periodic to oneshot. If the CPU has not yet
545		 * switched over, leave the device alone.
546		 */
547		if (td->mode == TICKDEV_MODE_ONESHOT) {
548			clockevents_set_mode(td->evtdev,
549					     CLOCK_EVT_MODE_ONESHOT);
550		}
551	}
552}
553
554/*
555 * Handle oneshot mode broadcasting
556 */
557static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
558{
559	struct tick_device *td;
560	ktime_t now, next_event;
561	int cpu, next_cpu = 0;
562
563	raw_spin_lock(&tick_broadcast_lock);
564again:
565	dev->next_event.tv64 = KTIME_MAX;
566	next_event.tv64 = KTIME_MAX;
567	cpumask_clear(tmpmask);
568	now = ktime_get();
569	/* Find all expired events */
570	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
571		td = &per_cpu(tick_cpu_device, cpu);
572		if (td->evtdev->next_event.tv64 <= now.tv64) {
573			cpumask_set_cpu(cpu, tmpmask);
574			/*
575			 * Mark the remote cpu in the pending mask, so
576			 * it can avoid reprogramming the cpu local
577			 * timer in tick_broadcast_oneshot_control().
578			 */
579			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
580		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
581			next_event.tv64 = td->evtdev->next_event.tv64;
582			next_cpu = cpu;
583		}
584	}
585
586	/* Take care of enforced broadcast requests */
587	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
588	cpumask_clear(tick_broadcast_force_mask);
589
590	/*
591	 * Sanity check. Catch the case where we try to broadcast to
592	 * offline cpus.
593	 */
594	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
595		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
596
597	/*
598	 * Wakeup the cpus which have an expired event.
599	 */
600	tick_do_broadcast(tmpmask);
601
602	/*
603	 * Two reasons for reprogram:
604	 *
605	 * - The global event did not expire any CPU local
606	 * events. This happens in dyntick mode, as the maximum PIT
607	 * delta is quite small.
608	 *
609	 * - There are pending events on sleeping CPUs which were not
610	 * in the event mask
611	 */
612	if (next_event.tv64 != KTIME_MAX) {
613		/*
614		 * Rearm the broadcast device. If event expired,
615		 * repeat the above
616		 */
617		if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
618			goto again;
619	}
620	raw_spin_unlock(&tick_broadcast_lock);
621}
622
623/*
624 * Powerstate information: The system enters/leaves a state, where
625 * affected devices might stop
626 */
627void tick_broadcast_oneshot_control(unsigned long reason)
628{
629	struct clock_event_device *bc, *dev;
630	struct tick_device *td;
631	unsigned long flags;
632	ktime_t now;
633	int cpu;
634
635	/*
636	 * Periodic mode does not care about the enter/exit of power
637	 * states
638	 */
639	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
640		return;
641
642	/*
643	 * We are called with preemtion disabled from the depth of the
644	 * idle code, so we can't be moved away.
645	 */
646	cpu = smp_processor_id();
647	td = &per_cpu(tick_cpu_device, cpu);
648	dev = td->evtdev;
649
650	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
651		return;
652
653	bc = tick_broadcast_device.evtdev;
654
655	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
656	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
657		WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
658		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
659			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
660			/*
661			 * We only reprogram the broadcast timer if we
662			 * did not mark ourself in the force mask and
663			 * if the cpu local event is earlier than the
664			 * broadcast event. If the current CPU is in
665			 * the force mask, then we are going to be
666			 * woken by the IPI right away.
667			 */
668			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
669			    dev->next_event.tv64 < bc->next_event.tv64)
670				tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
671		}
672	} else {
673		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
674			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
675			if (dev->next_event.tv64 == KTIME_MAX)
676				goto out;
677			/*
678			 * The cpu which was handling the broadcast
679			 * timer marked this cpu in the broadcast
680			 * pending mask and fired the broadcast
681			 * IPI. So we are going to handle the expired
682			 * event anyway via the broadcast IPI
683			 * handler. No need to reprogram the timer
684			 * with an already expired event.
685			 */
686			if (cpumask_test_and_clear_cpu(cpu,
687				       tick_broadcast_pending_mask))
688				goto out;
689
690			/*
691			 * If the pending bit is not set, then we are
692			 * either the CPU handling the broadcast
693			 * interrupt or we got woken by something else.
694			 *
695			 * We are not longer in the broadcast mask, so
696			 * if the cpu local expiry time is already
697			 * reached, we would reprogram the cpu local
698			 * timer with an already expired event.
699			 *
700			 * This can lead to a ping-pong when we return
701			 * to idle and therefor rearm the broadcast
702			 * timer before the cpu local timer was able
703			 * to fire. This happens because the forced
704			 * reprogramming makes sure that the event
705			 * will happen in the future and depending on
706			 * the min_delta setting this might be far
707			 * enough out that the ping-pong starts.
708			 *
709			 * If the cpu local next_event has expired
710			 * then we know that the broadcast timer
711			 * next_event has expired as well and
712			 * broadcast is about to be handled. So we
713			 * avoid reprogramming and enforce that the
714			 * broadcast handler, which did not run yet,
715			 * will invoke the cpu local handler.
716			 *
717			 * We cannot call the handler directly from
718			 * here, because we might be in a NOHZ phase
719			 * and we did not go through the irq_enter()
720			 * nohz fixups.
721			 */
722			now = ktime_get();
723			if (dev->next_event.tv64 <= now.tv64) {
724				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
725				goto out;
726			}
727			/*
728			 * We got woken by something else. Reprogram
729			 * the cpu local timer device.
730			 */
731			tick_program_event(dev->next_event, 1);
732		}
733	}
734out:
735	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
736}
737
738/*
739 * Reset the one shot broadcast for a cpu
740 *
741 * Called with tick_broadcast_lock held
742 */
743static void tick_broadcast_clear_oneshot(int cpu)
744{
745	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
746}
747
748static void tick_broadcast_init_next_event(struct cpumask *mask,
749					   ktime_t expires)
750{
751	struct tick_device *td;
752	int cpu;
753
754	for_each_cpu(cpu, mask) {
755		td = &per_cpu(tick_cpu_device, cpu);
756		if (td->evtdev)
757			td->evtdev->next_event = expires;
758	}
759}
760
761/**
762 * tick_broadcast_setup_oneshot - setup the broadcast device
763 */
764void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
765{
766	int cpu = smp_processor_id();
767
768	/* Set it up only once ! */
769	if (bc->event_handler != tick_handle_oneshot_broadcast) {
770		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
771
772		bc->event_handler = tick_handle_oneshot_broadcast;
773
774		/* Take the do_timer update */
775		if (!tick_nohz_full_cpu(cpu))
776			tick_do_timer_cpu = cpu;
777
778		/*
779		 * We must be careful here. There might be other CPUs
780		 * waiting for periodic broadcast. We need to set the
781		 * oneshot_mask bits for those and program the
782		 * broadcast device to fire.
783		 */
784		cpumask_copy(tmpmask, tick_broadcast_mask);
785		cpumask_clear_cpu(cpu, tmpmask);
786		cpumask_or(tick_broadcast_oneshot_mask,
787			   tick_broadcast_oneshot_mask, tmpmask);
788
789		if (was_periodic && !cpumask_empty(tmpmask)) {
790			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
791			tick_broadcast_init_next_event(tmpmask,
792						       tick_next_period);
793			tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
794		} else
795			bc->next_event.tv64 = KTIME_MAX;
796	} else {
797		/*
798		 * The first cpu which switches to oneshot mode sets
799		 * the bit for all other cpus which are in the general
800		 * (periodic) broadcast mask. So the bit is set and
801		 * would prevent the first broadcast enter after this
802		 * to program the bc device.
803		 */
804		tick_broadcast_clear_oneshot(cpu);
805	}
806}
807
808/*
809 * Select oneshot operating mode for the broadcast device
810 */
811void tick_broadcast_switch_to_oneshot(void)
812{
813	struct clock_event_device *bc;
814	unsigned long flags;
815
816	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
817
818	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
819	bc = tick_broadcast_device.evtdev;
820	if (bc)
821		tick_broadcast_setup_oneshot(bc);
822
823	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
824}
825
826
827/*
828 * Remove a dead CPU from broadcasting
829 */
830void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
831{
832	unsigned long flags;
833	unsigned int cpu = *cpup;
834
835	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
836
837	/*
838	 * Clear the broadcast masks for the dead cpu, but do not stop
839	 * the broadcast device!
840	 */
841	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
842	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
843	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
844
845	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
846}
847
848/*
849 * Check, whether the broadcast device is in one shot mode
850 */
851int tick_broadcast_oneshot_active(void)
852{
853	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
854}
855
856/*
857 * Check whether the broadcast device supports oneshot.
858 */
859bool tick_broadcast_oneshot_available(void)
860{
861	struct clock_event_device *bc = tick_broadcast_device.evtdev;
862
863	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
864}
865
866#endif
867
868void __init tick_broadcast_init(void)
869{
870	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
871	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
872	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
873#ifdef CONFIG_TICK_ONESHOT
874	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
875	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
876	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
877#endif
878}
879