tick-broadcast.c revision b435092f70ec5ebbfb6d075d5bf3c631b49a51de
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
21
22#include "tick-internal.h"
23
24/*
25 * Broadcast support for broken x86 hardware, where the local apic
26 * timer stops in C3 state.
27 */
28
29static struct tick_device tick_broadcast_device;
30/* FIXME: Use cpumask_var_t. */
31static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
32static DECLARE_BITMAP(tmpmask, NR_CPUS);
33static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34static int tick_broadcast_force;
35
36#ifdef CONFIG_TICK_ONESHOT
37static void tick_broadcast_clear_oneshot(int cpu);
38#else
39static inline void tick_broadcast_clear_oneshot(int cpu) { }
40#endif
41
42/*
43 * Debugging: see timer_list.c
44 */
45struct tick_device *tick_get_broadcast_device(void)
46{
47	return &tick_broadcast_device;
48}
49
50struct cpumask *tick_get_broadcast_mask(void)
51{
52	return to_cpumask(tick_broadcast_mask);
53}
54
55/*
56 * Start the device in periodic mode
57 */
58static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59{
60	if (bc)
61		tick_setup_periodic(bc, 1);
62}
63
64/*
65 * Check, if the device can be utilized as broadcast device:
66 */
67int tick_check_broadcast_device(struct clock_event_device *dev)
68{
69	if ((tick_broadcast_device.evtdev &&
70	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
71	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
72		return 0;
73
74	clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
75	tick_broadcast_device.evtdev = dev;
76	if (!cpumask_empty(tick_get_broadcast_mask()))
77		tick_broadcast_start_periodic(dev);
78	return 1;
79}
80
81/*
82 * Check, if the device is the broadcast device
83 */
84int tick_is_broadcast_device(struct clock_event_device *dev)
85{
86	return (dev && tick_broadcast_device.evtdev == dev);
87}
88
89/*
90 * Check, if the device is disfunctional and a place holder, which
91 * needs to be handled by the broadcast device.
92 */
93int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
94{
95	unsigned long flags;
96	int ret = 0;
97
98	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
99
100	/*
101	 * Devices might be registered with both periodic and oneshot
102	 * mode disabled. This signals, that the device needs to be
103	 * operated from the broadcast device and is a placeholder for
104	 * the cpu local device.
105	 */
106	if (!tick_device_is_functional(dev)) {
107		dev->event_handler = tick_handle_periodic;
108		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
109		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
110		ret = 1;
111	} else {
112		/*
113		 * When the new device is not affected by the stop
114		 * feature and the cpu is marked in the broadcast mask
115		 * then clear the broadcast bit.
116		 */
117		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
118			int cpu = smp_processor_id();
119
120			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
121			tick_broadcast_clear_oneshot(cpu);
122		}
123	}
124	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
125	return ret;
126}
127
128/*
129 * Broadcast the event to the cpus, which are set in the mask (mangled).
130 */
131static void tick_do_broadcast(struct cpumask *mask)
132{
133	int cpu = smp_processor_id();
134	struct tick_device *td;
135
136	/*
137	 * Check, if the current cpu is in the mask
138	 */
139	if (cpumask_test_cpu(cpu, mask)) {
140		cpumask_clear_cpu(cpu, mask);
141		td = &per_cpu(tick_cpu_device, cpu);
142		td->evtdev->event_handler(td->evtdev);
143	}
144
145	if (!cpumask_empty(mask)) {
146		/*
147		 * It might be necessary to actually check whether the devices
148		 * have different broadcast functions. For now, just use the
149		 * one of the first device. This works as long as we have this
150		 * misfeature only on x86 (lapic)
151		 */
152		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
153		td->evtdev->broadcast(mask);
154	}
155}
156
157/*
158 * Periodic broadcast:
159 * - invoke the broadcast handlers
160 */
161static void tick_do_periodic_broadcast(void)
162{
163	raw_spin_lock(&tick_broadcast_lock);
164
165	cpumask_and(to_cpumask(tmpmask),
166		    cpu_online_mask, tick_get_broadcast_mask());
167	tick_do_broadcast(to_cpumask(tmpmask));
168
169	raw_spin_unlock(&tick_broadcast_lock);
170}
171
172/*
173 * Event handler for periodic broadcast ticks
174 */
175static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
176{
177	ktime_t next;
178
179	tick_do_periodic_broadcast();
180
181	/*
182	 * The device is in periodic mode. No reprogramming necessary:
183	 */
184	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
185		return;
186
187	/*
188	 * Setup the next period for devices, which do not have
189	 * periodic mode. We read dev->next_event first and add to it
190	 * when the event already expired. clockevents_program_event()
191	 * sets dev->next_event only when the event is really
192	 * programmed to the device.
193	 */
194	for (next = dev->next_event; ;) {
195		next = ktime_add(next, tick_period);
196
197		if (!clockevents_program_event(dev, next, false))
198			return;
199		tick_do_periodic_broadcast();
200	}
201}
202
203/*
204 * Powerstate information: The system enters/leaves a state, where
205 * affected devices might stop
206 */
207static void tick_do_broadcast_on_off(unsigned long *reason)
208{
209	struct clock_event_device *bc, *dev;
210	struct tick_device *td;
211	unsigned long flags;
212	int cpu, bc_stopped;
213
214	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
215
216	cpu = smp_processor_id();
217	td = &per_cpu(tick_cpu_device, cpu);
218	dev = td->evtdev;
219	bc = tick_broadcast_device.evtdev;
220
221	/*
222	 * Is the device not affected by the powerstate ?
223	 */
224	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
225		goto out;
226
227	if (!tick_device_is_functional(dev))
228		goto out;
229
230	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
231
232	switch (*reason) {
233	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
234	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
235		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
236			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
237			if (tick_broadcast_device.mode ==
238			    TICKDEV_MODE_PERIODIC)
239				clockevents_shutdown(dev);
240		}
241		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
242			tick_broadcast_force = 1;
243		break;
244	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
245		if (!tick_broadcast_force &&
246		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
247			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
248			if (tick_broadcast_device.mode ==
249			    TICKDEV_MODE_PERIODIC)
250				tick_setup_periodic(dev, 0);
251		}
252		break;
253	}
254
255	if (cpumask_empty(tick_get_broadcast_mask())) {
256		if (!bc_stopped)
257			clockevents_shutdown(bc);
258	} else if (bc_stopped) {
259		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
260			tick_broadcast_start_periodic(bc);
261		else
262			tick_broadcast_setup_oneshot(bc);
263	}
264out:
265	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
266}
267
268/*
269 * Powerstate information: The system enters/leaves a state, where
270 * affected devices might stop.
271 */
272void tick_broadcast_on_off(unsigned long reason, int *oncpu)
273{
274	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
275		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
276		       "offline CPU #%d\n", *oncpu);
277	else
278		tick_do_broadcast_on_off(&reason);
279}
280
281/*
282 * Set the periodic handler depending on broadcast on/off
283 */
284void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
285{
286	if (!broadcast)
287		dev->event_handler = tick_handle_periodic;
288	else
289		dev->event_handler = tick_handle_periodic_broadcast;
290}
291
292/*
293 * Remove a CPU from broadcasting
294 */
295void tick_shutdown_broadcast(unsigned int *cpup)
296{
297	struct clock_event_device *bc;
298	unsigned long flags;
299	unsigned int cpu = *cpup;
300
301	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
302
303	bc = tick_broadcast_device.evtdev;
304	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
305
306	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
307		if (bc && cpumask_empty(tick_get_broadcast_mask()))
308			clockevents_shutdown(bc);
309	}
310
311	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
312}
313
314void tick_suspend_broadcast(void)
315{
316	struct clock_event_device *bc;
317	unsigned long flags;
318
319	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
320
321	bc = tick_broadcast_device.evtdev;
322	if (bc)
323		clockevents_shutdown(bc);
324
325	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
326}
327
328int tick_resume_broadcast(void)
329{
330	struct clock_event_device *bc;
331	unsigned long flags;
332	int broadcast = 0;
333
334	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
335
336	bc = tick_broadcast_device.evtdev;
337
338	if (bc) {
339		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
340
341		switch (tick_broadcast_device.mode) {
342		case TICKDEV_MODE_PERIODIC:
343			if (!cpumask_empty(tick_get_broadcast_mask()))
344				tick_broadcast_start_periodic(bc);
345			broadcast = cpumask_test_cpu(smp_processor_id(),
346						     tick_get_broadcast_mask());
347			break;
348		case TICKDEV_MODE_ONESHOT:
349			broadcast = tick_resume_broadcast_oneshot(bc);
350			break;
351		}
352	}
353	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
354
355	return broadcast;
356}
357
358
359#ifdef CONFIG_TICK_ONESHOT
360
361/* FIXME: use cpumask_var_t. */
362static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
363
364/*
365 * Exposed for debugging: see timer_list.c
366 */
367struct cpumask *tick_get_broadcast_oneshot_mask(void)
368{
369	return to_cpumask(tick_broadcast_oneshot_mask);
370}
371
372static int tick_broadcast_set_event(ktime_t expires, int force)
373{
374	struct clock_event_device *bc = tick_broadcast_device.evtdev;
375
376	return clockevents_program_event(bc, expires, force);
377}
378
379int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
380{
381	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
382	return 0;
383}
384
385/*
386 * Called from irq_enter() when idle was interrupted to reenable the
387 * per cpu device.
388 */
389void tick_check_oneshot_broadcast(int cpu)
390{
391	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
392		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
393
394		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
395	}
396}
397
398/*
399 * Handle oneshot mode broadcasting
400 */
401static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
402{
403	struct tick_device *td;
404	ktime_t now, next_event;
405	int cpu;
406
407	raw_spin_lock(&tick_broadcast_lock);
408again:
409	dev->next_event.tv64 = KTIME_MAX;
410	next_event.tv64 = KTIME_MAX;
411	cpumask_clear(to_cpumask(tmpmask));
412	now = ktime_get();
413	/* Find all expired events */
414	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
415		td = &per_cpu(tick_cpu_device, cpu);
416		if (td->evtdev->next_event.tv64 <= now.tv64)
417			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
418		else if (td->evtdev->next_event.tv64 < next_event.tv64)
419			next_event.tv64 = td->evtdev->next_event.tv64;
420	}
421
422	/*
423	 * Wakeup the cpus which have an expired event.
424	 */
425	tick_do_broadcast(to_cpumask(tmpmask));
426
427	/*
428	 * Two reasons for reprogram:
429	 *
430	 * - The global event did not expire any CPU local
431	 * events. This happens in dyntick mode, as the maximum PIT
432	 * delta is quite small.
433	 *
434	 * - There are pending events on sleeping CPUs which were not
435	 * in the event mask
436	 */
437	if (next_event.tv64 != KTIME_MAX) {
438		/*
439		 * Rearm the broadcast device. If event expired,
440		 * repeat the above
441		 */
442		if (tick_broadcast_set_event(next_event, 0))
443			goto again;
444	}
445	raw_spin_unlock(&tick_broadcast_lock);
446}
447
448/*
449 * Powerstate information: The system enters/leaves a state, where
450 * affected devices might stop
451 */
452void tick_broadcast_oneshot_control(unsigned long reason)
453{
454	struct clock_event_device *bc, *dev;
455	struct tick_device *td;
456	unsigned long flags;
457	int cpu;
458
459	/*
460	 * Periodic mode does not care about the enter/exit of power
461	 * states
462	 */
463	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
464		return;
465
466	/*
467	 * We are called with preemtion disabled from the depth of the
468	 * idle code, so we can't be moved away.
469	 */
470	cpu = smp_processor_id();
471	td = &per_cpu(tick_cpu_device, cpu);
472	dev = td->evtdev;
473
474	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
475		return;
476
477	bc = tick_broadcast_device.evtdev;
478
479	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
480	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
481		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
482			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
483			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
484			if (dev->next_event.tv64 < bc->next_event.tv64)
485				tick_broadcast_set_event(dev->next_event, 1);
486		}
487	} else {
488		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
489			cpumask_clear_cpu(cpu,
490					  tick_get_broadcast_oneshot_mask());
491			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
492			if (dev->next_event.tv64 != KTIME_MAX)
493				tick_program_event(dev->next_event, 1);
494		}
495	}
496	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
497}
498
499/*
500 * Reset the one shot broadcast for a cpu
501 *
502 * Called with tick_broadcast_lock held
503 */
504static void tick_broadcast_clear_oneshot(int cpu)
505{
506	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
507}
508
509static void tick_broadcast_init_next_event(struct cpumask *mask,
510					   ktime_t expires)
511{
512	struct tick_device *td;
513	int cpu;
514
515	for_each_cpu(cpu, mask) {
516		td = &per_cpu(tick_cpu_device, cpu);
517		if (td->evtdev)
518			td->evtdev->next_event = expires;
519	}
520}
521
522/**
523 * tick_broadcast_setup_oneshot - setup the broadcast device
524 */
525void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
526{
527	int cpu = smp_processor_id();
528
529	/* Set it up only once ! */
530	if (bc->event_handler != tick_handle_oneshot_broadcast) {
531		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
532
533		bc->event_handler = tick_handle_oneshot_broadcast;
534
535		/* Take the do_timer update */
536		tick_do_timer_cpu = cpu;
537
538		/*
539		 * We must be careful here. There might be other CPUs
540		 * waiting for periodic broadcast. We need to set the
541		 * oneshot_mask bits for those and program the
542		 * broadcast device to fire.
543		 */
544		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
545		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
546		cpumask_or(tick_get_broadcast_oneshot_mask(),
547			   tick_get_broadcast_oneshot_mask(),
548			   to_cpumask(tmpmask));
549
550		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
551			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
552			tick_broadcast_init_next_event(to_cpumask(tmpmask),
553						       tick_next_period);
554			tick_broadcast_set_event(tick_next_period, 1);
555		} else
556			bc->next_event.tv64 = KTIME_MAX;
557	} else {
558		/*
559		 * The first cpu which switches to oneshot mode sets
560		 * the bit for all other cpus which are in the general
561		 * (periodic) broadcast mask. So the bit is set and
562		 * would prevent the first broadcast enter after this
563		 * to program the bc device.
564		 */
565		tick_broadcast_clear_oneshot(cpu);
566	}
567}
568
569/*
570 * Select oneshot operating mode for the broadcast device
571 */
572void tick_broadcast_switch_to_oneshot(void)
573{
574	struct clock_event_device *bc;
575	unsigned long flags;
576
577	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
578
579	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
580	bc = tick_broadcast_device.evtdev;
581	if (bc)
582		tick_broadcast_setup_oneshot(bc);
583
584	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
585}
586
587
588/*
589 * Remove a dead CPU from broadcasting
590 */
591void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
592{
593	unsigned long flags;
594	unsigned int cpu = *cpup;
595
596	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
597
598	/*
599	 * Clear the broadcast mask flag for the dead cpu, but do not
600	 * stop the broadcast device!
601	 */
602	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
603
604	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
605}
606
607/*
608 * Check, whether the broadcast device is in one shot mode
609 */
610int tick_broadcast_oneshot_active(void)
611{
612	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
613}
614
615/*
616 * Check whether the broadcast device supports oneshot.
617 */
618bool tick_broadcast_oneshot_available(void)
619{
620	struct clock_event_device *bc = tick_broadcast_device.evtdev;
621
622	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
623}
624
625#endif
626