1/*
2 *  linux/kernel/time/tick-sched.c
3 *
4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 *
8 *  No idle tick implementation for low and high resolution timers
9 *
10 *  Started by: Thomas Gleixner and Ingo Molnar
11 *
12 *  Distribute under GPLv2.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
22#include <linux/module.h>
23#include <linux/irq_work.h>
24#include <linux/posix-timers.h>
25#include <linux/perf_event.h>
26#include <linux/context_tracking.h>
27
28#include <asm/irq_regs.h>
29
30#include "tick-internal.h"
31
32#include <trace/events/timer.h>
33
34/*
35 * Per cpu nohz control structure
36 */
37DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39/*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42static ktime_t last_jiffies_update;
43
44struct tick_sched *tick_get_tick_sched(int cpu)
45{
46	return &per_cpu(tick_cpu_sched, cpu);
47}
48
49/*
50 * Must be called with interrupts disabled !
51 */
52static void tick_do_update_jiffies64(ktime_t now)
53{
54	unsigned long ticks = 0;
55	ktime_t delta;
56
57	/*
58	 * Do a quick check without holding jiffies_lock:
59	 */
60	delta = ktime_sub(now, last_jiffies_update);
61	if (delta.tv64 < tick_period.tv64)
62		return;
63
64	/* Reevalute with jiffies_lock held */
65	write_seqlock(&jiffies_lock);
66
67	delta = ktime_sub(now, last_jiffies_update);
68	if (delta.tv64 >= tick_period.tv64) {
69
70		delta = ktime_sub(delta, tick_period);
71		last_jiffies_update = ktime_add(last_jiffies_update,
72						tick_period);
73
74		/* Slow path for long timeouts */
75		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76			s64 incr = ktime_to_ns(tick_period);
77
78			ticks = ktime_divns(delta, incr);
79
80			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81							   incr * ticks);
82		}
83		do_timer(++ticks);
84
85		/* Keep the tick_next_period variable up to date */
86		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87	} else {
88		write_sequnlock(&jiffies_lock);
89		return;
90	}
91	write_sequnlock(&jiffies_lock);
92	update_wall_time();
93}
94
95/*
96 * Initialize and return retrieve the jiffies update.
97 */
98static ktime_t tick_init_jiffy_update(void)
99{
100	ktime_t period;
101
102	write_seqlock(&jiffies_lock);
103	/* Did we start the jiffies update yet ? */
104	if (last_jiffies_update.tv64 == 0)
105		last_jiffies_update = tick_next_period;
106	period = last_jiffies_update;
107	write_sequnlock(&jiffies_lock);
108	return period;
109}
110
111
112static void tick_sched_do_timer(ktime_t now)
113{
114	int cpu = smp_processor_id();
115
116#ifdef CONFIG_NO_HZ_COMMON
117	/*
118	 * Check if the do_timer duty was dropped. We don't care about
119	 * concurrency: This happens only when the cpu in charge went
120	 * into a long sleep. If two cpus happen to assign themself to
121	 * this duty, then the jiffies update is still serialized by
122	 * jiffies_lock.
123	 */
124	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125	    && !tick_nohz_full_cpu(cpu))
126		tick_do_timer_cpu = cpu;
127#endif
128
129	/* Check, if the jiffies need an update */
130	if (tick_do_timer_cpu == cpu)
131		tick_do_update_jiffies64(now);
132}
133
134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135{
136#ifdef CONFIG_NO_HZ_COMMON
137	/*
138	 * When we are idle and the tick is stopped, we have to touch
139	 * the watchdog as we might not schedule for a really long
140	 * time. This happens on complete idle SMP systems while
141	 * waiting on the login prompt. We also increment the "start of
142	 * idle" jiffy stamp so the idle accounting adjustment we do
143	 * when we go busy again does not account too much ticks.
144	 */
145	if (ts->tick_stopped) {
146		touch_softlockup_watchdog();
147		if (is_idle_task(current))
148			ts->idle_jiffies++;
149	}
150#endif
151	update_process_times(user_mode(regs));
152	profile_tick(CPU_PROFILING);
153}
154
155#ifdef CONFIG_NO_HZ_FULL
156cpumask_var_t tick_nohz_full_mask;
157cpumask_var_t housekeeping_mask;
158bool tick_nohz_full_running;
159
160static bool can_stop_full_tick(void)
161{
162	WARN_ON_ONCE(!irqs_disabled());
163
164	if (!sched_can_stop_tick()) {
165		trace_tick_stop(0, "more than 1 task in runqueue\n");
166		return false;
167	}
168
169	if (!posix_cpu_timers_can_stop_tick(current)) {
170		trace_tick_stop(0, "posix timers running\n");
171		return false;
172	}
173
174	if (!perf_event_can_stop_tick()) {
175		trace_tick_stop(0, "perf events running\n");
176		return false;
177	}
178
179	/* sched_clock_tick() needs us? */
180#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181	/*
182	 * TODO: kick full dynticks CPUs when
183	 * sched_clock_stable is set.
184	 */
185	if (!sched_clock_stable()) {
186		trace_tick_stop(0, "unstable sched clock\n");
187		/*
188		 * Don't allow the user to think they can get
189		 * full NO_HZ with this machine.
190		 */
191		WARN_ONCE(tick_nohz_full_running,
192			  "NO_HZ FULL will not work with unstable sched clock");
193		return false;
194	}
195#endif
196
197	return true;
198}
199
200static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201
202/*
203 * Re-evaluate the need for the tick on the current CPU
204 * and restart it if necessary.
205 */
206void __tick_nohz_full_check(void)
207{
208	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
209
210	if (tick_nohz_full_cpu(smp_processor_id())) {
211		if (ts->tick_stopped && !is_idle_task(current)) {
212			if (!can_stop_full_tick())
213				tick_nohz_restart_sched_tick(ts, ktime_get());
214		}
215	}
216}
217
218static void nohz_full_kick_work_func(struct irq_work *work)
219{
220	__tick_nohz_full_check();
221}
222
223static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224	.func = nohz_full_kick_work_func,
225};
226
227/*
228 * Kick this CPU if it's full dynticks in order to force it to
229 * re-evaluate its dependency on the tick and restart it if necessary.
230 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231 * is NMI safe.
232 */
233void tick_nohz_full_kick(void)
234{
235	if (!tick_nohz_full_cpu(smp_processor_id()))
236		return;
237
238	irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
239}
240
241/*
242 * Kick the CPU if it's full dynticks in order to force it to
243 * re-evaluate its dependency on the tick and restart it if necessary.
244 */
245void tick_nohz_full_kick_cpu(int cpu)
246{
247	if (!tick_nohz_full_cpu(cpu))
248		return;
249
250	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251}
252
253static void nohz_full_kick_ipi(void *info)
254{
255	__tick_nohz_full_check();
256}
257
258/*
259 * Kick all full dynticks CPUs in order to force these to re-evaluate
260 * their dependency on the tick and restart it if necessary.
261 */
262void tick_nohz_full_kick_all(void)
263{
264	if (!tick_nohz_full_running)
265		return;
266
267	preempt_disable();
268	smp_call_function_many(tick_nohz_full_mask,
269			       nohz_full_kick_ipi, NULL, false);
270	tick_nohz_full_kick();
271	preempt_enable();
272}
273
274/*
275 * Re-evaluate the need for the tick as we switch the current task.
276 * It might need the tick due to per task/process properties:
277 * perf events, posix cpu timers, ...
278 */
279void __tick_nohz_task_switch(struct task_struct *tsk)
280{
281	unsigned long flags;
282
283	local_irq_save(flags);
284
285	if (!tick_nohz_full_cpu(smp_processor_id()))
286		goto out;
287
288	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289		tick_nohz_full_kick();
290
291out:
292	local_irq_restore(flags);
293}
294
295/* Parse the boot-time nohz CPU list from the kernel parameters. */
296static int __init tick_nohz_full_setup(char *str)
297{
298	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301		free_bootmem_cpumask_var(tick_nohz_full_mask);
302		return 1;
303	}
304	tick_nohz_full_running = true;
305
306	return 1;
307}
308__setup("nohz_full=", tick_nohz_full_setup);
309
310static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311						 unsigned long action,
312						 void *hcpu)
313{
314	unsigned int cpu = (unsigned long)hcpu;
315
316	switch (action & ~CPU_TASKS_FROZEN) {
317	case CPU_DOWN_PREPARE:
318		/*
319		 * If we handle the timekeeping duty for full dynticks CPUs,
320		 * we can't safely shutdown that CPU.
321		 */
322		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323			return NOTIFY_BAD;
324		break;
325	}
326	return NOTIFY_OK;
327}
328
329/*
330 * Worst case string length in chunks of CPU range seems 2 steps
331 * separations: 0,2,4,6,...
332 * This is NR_CPUS + sizeof('\0')
333 */
334static char __initdata nohz_full_buf[NR_CPUS + 1];
335
336static int tick_nohz_init_all(void)
337{
338	int err = -1;
339
340#ifdef CONFIG_NO_HZ_FULL_ALL
341	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
342		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
343		return err;
344	}
345	err = 0;
346	cpumask_setall(tick_nohz_full_mask);
347	tick_nohz_full_running = true;
348#endif
349	return err;
350}
351
352void __init tick_nohz_init(void)
353{
354	int cpu;
355
356	if (!tick_nohz_full_running) {
357		if (tick_nohz_init_all() < 0)
358			return;
359	}
360
361	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
362		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
363		cpumask_clear(tick_nohz_full_mask);
364		tick_nohz_full_running = false;
365		return;
366	}
367
368	/*
369	 * Full dynticks uses irq work to drive the tick rescheduling on safe
370	 * locking contexts. But then we need irq work to raise its own
371	 * interrupts to avoid circular dependency on the tick
372	 */
373	if (!arch_irq_work_has_interrupt()) {
374		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
375			   "support irq work self-IPIs\n");
376		cpumask_clear(tick_nohz_full_mask);
377		cpumask_copy(housekeeping_mask, cpu_possible_mask);
378		tick_nohz_full_running = false;
379		return;
380	}
381
382	cpu = smp_processor_id();
383
384	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
385		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
386		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
387	}
388
389	cpumask_andnot(housekeeping_mask,
390		       cpu_possible_mask, tick_nohz_full_mask);
391
392	for_each_cpu(cpu, tick_nohz_full_mask)
393		context_tracking_cpu_set(cpu);
394
395	cpu_notifier(tick_nohz_cpu_down_callback, 0);
396	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
397	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
398}
399#endif
400
401/*
402 * NOHZ - aka dynamic tick functionality
403 */
404#ifdef CONFIG_NO_HZ_COMMON
405/*
406 * NO HZ enabled ?
407 */
408static int tick_nohz_enabled __read_mostly  = 1;
409int tick_nohz_active  __read_mostly;
410/*
411 * Enable / Disable tickless mode
412 */
413static int __init setup_tick_nohz(char *str)
414{
415	if (!strcmp(str, "off"))
416		tick_nohz_enabled = 0;
417	else if (!strcmp(str, "on"))
418		tick_nohz_enabled = 1;
419	else
420		return 0;
421	return 1;
422}
423
424__setup("nohz=", setup_tick_nohz);
425
426/**
427 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
428 *
429 * Called from interrupt entry when the CPU was idle
430 *
431 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
432 * must be updated. Otherwise an interrupt handler could use a stale jiffy
433 * value. We do this unconditionally on any cpu, as we don't know whether the
434 * cpu, which has the update task assigned is in a long sleep.
435 */
436static void tick_nohz_update_jiffies(ktime_t now)
437{
438	unsigned long flags;
439
440	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
441
442	local_irq_save(flags);
443	tick_do_update_jiffies64(now);
444	local_irq_restore(flags);
445
446	touch_softlockup_watchdog();
447}
448
449/*
450 * Updates the per cpu time idle statistics counters
451 */
452static void
453update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
454{
455	ktime_t delta;
456
457	if (ts->idle_active) {
458		delta = ktime_sub(now, ts->idle_entrytime);
459		if (nr_iowait_cpu(cpu) > 0)
460			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
461		else
462			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
463		ts->idle_entrytime = now;
464	}
465
466	if (last_update_time)
467		*last_update_time = ktime_to_us(now);
468
469}
470
471static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
472{
473	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
474	ts->idle_active = 0;
475
476	sched_clock_idle_wakeup_event(0);
477}
478
479static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
480{
481	ktime_t now = ktime_get();
482
483	ts->idle_entrytime = now;
484	ts->idle_active = 1;
485	sched_clock_idle_sleep_event();
486	return now;
487}
488
489/**
490 * get_cpu_idle_time_us - get the total idle time of a cpu
491 * @cpu: CPU number to query
492 * @last_update_time: variable to store update time in. Do not update
493 * counters if NULL.
494 *
495 * Return the cummulative idle time (since boot) for a given
496 * CPU, in microseconds.
497 *
498 * This time is measured via accounting rather than sampling,
499 * and is as accurate as ktime_get() is.
500 *
501 * This function returns -1 if NOHZ is not enabled.
502 */
503u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
504{
505	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
506	ktime_t now, idle;
507
508	if (!tick_nohz_active)
509		return -1;
510
511	now = ktime_get();
512	if (last_update_time) {
513		update_ts_time_stats(cpu, ts, now, last_update_time);
514		idle = ts->idle_sleeptime;
515	} else {
516		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
517			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
518
519			idle = ktime_add(ts->idle_sleeptime, delta);
520		} else {
521			idle = ts->idle_sleeptime;
522		}
523	}
524
525	return ktime_to_us(idle);
526
527}
528EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
529
530/**
531 * get_cpu_iowait_time_us - get the total iowait time of a cpu
532 * @cpu: CPU number to query
533 * @last_update_time: variable to store update time in. Do not update
534 * counters if NULL.
535 *
536 * Return the cummulative iowait time (since boot) for a given
537 * CPU, in microseconds.
538 *
539 * This time is measured via accounting rather than sampling,
540 * and is as accurate as ktime_get() is.
541 *
542 * This function returns -1 if NOHZ is not enabled.
543 */
544u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
545{
546	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
547	ktime_t now, iowait;
548
549	if (!tick_nohz_active)
550		return -1;
551
552	now = ktime_get();
553	if (last_update_time) {
554		update_ts_time_stats(cpu, ts, now, last_update_time);
555		iowait = ts->iowait_sleeptime;
556	} else {
557		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
558			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
559
560			iowait = ktime_add(ts->iowait_sleeptime, delta);
561		} else {
562			iowait = ts->iowait_sleeptime;
563		}
564	}
565
566	return ktime_to_us(iowait);
567}
568EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
569
570static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
571					 ktime_t now, int cpu)
572{
573	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
574	ktime_t last_update, expires, ret = { .tv64 = 0 };
575	unsigned long rcu_delta_jiffies;
576	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
577	u64 time_delta;
578
579	time_delta = timekeeping_max_deferment();
580
581	/* Read jiffies and the time when jiffies were updated last */
582	do {
583		seq = read_seqbegin(&jiffies_lock);
584		last_update = last_jiffies_update;
585		last_jiffies = jiffies;
586	} while (read_seqretry(&jiffies_lock, seq));
587
588	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
589	    arch_needs_cpu() || irq_work_needs_cpu()) {
590		next_jiffies = last_jiffies + 1;
591		delta_jiffies = 1;
592	} else {
593		/* Get the next timer wheel timer */
594		next_jiffies = get_next_timer_interrupt(last_jiffies);
595		delta_jiffies = next_jiffies - last_jiffies;
596		if (rcu_delta_jiffies < delta_jiffies) {
597			next_jiffies = last_jiffies + rcu_delta_jiffies;
598			delta_jiffies = rcu_delta_jiffies;
599		}
600	}
601
602	/*
603	 * Do not stop the tick, if we are only one off (or less)
604	 * or if the cpu is required for RCU:
605	 */
606	if (!ts->tick_stopped && delta_jiffies <= 1)
607		goto out;
608
609	/* Schedule the tick, if we are at least one jiffie off */
610	if ((long)delta_jiffies >= 1) {
611
612		/*
613		 * If this cpu is the one which updates jiffies, then
614		 * give up the assignment and let it be taken by the
615		 * cpu which runs the tick timer next, which might be
616		 * this cpu as well. If we don't drop this here the
617		 * jiffies might be stale and do_timer() never
618		 * invoked. Keep track of the fact that it was the one
619		 * which had the do_timer() duty last. If this cpu is
620		 * the one which had the do_timer() duty last, we
621		 * limit the sleep time to the timekeeping
622		 * max_deferement value which we retrieved
623		 * above. Otherwise we can sleep as long as we want.
624		 */
625		if (cpu == tick_do_timer_cpu) {
626			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
627			ts->do_timer_last = 1;
628		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
629			time_delta = KTIME_MAX;
630			ts->do_timer_last = 0;
631		} else if (!ts->do_timer_last) {
632			time_delta = KTIME_MAX;
633		}
634
635#ifdef CONFIG_NO_HZ_FULL
636		if (!ts->inidle) {
637			time_delta = min(time_delta,
638					 scheduler_tick_max_deferment());
639		}
640#endif
641
642		/*
643		 * calculate the expiry time for the next timer wheel
644		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
645		 * that there is no timer pending or at least extremely
646		 * far into the future (12 days for HZ=1000). In this
647		 * case we set the expiry to the end of time.
648		 */
649		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
650			/*
651			 * Calculate the time delta for the next timer event.
652			 * If the time delta exceeds the maximum time delta
653			 * permitted by the current clocksource then adjust
654			 * the time delta accordingly to ensure the
655			 * clocksource does not wrap.
656			 */
657			time_delta = min_t(u64, time_delta,
658					   tick_period.tv64 * delta_jiffies);
659		}
660
661		if (time_delta < KTIME_MAX)
662			expires = ktime_add_ns(last_update, time_delta);
663		else
664			expires.tv64 = KTIME_MAX;
665
666		/* Skip reprogram of event if its not changed */
667		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
668			goto out;
669
670		ret = expires;
671
672		/*
673		 * nohz_stop_sched_tick can be called several times before
674		 * the nohz_restart_sched_tick is called. This happens when
675		 * interrupts arrive which do not cause a reschedule. In the
676		 * first call we save the current tick time, so we can restart
677		 * the scheduler tick in nohz_restart_sched_tick.
678		 */
679		if (!ts->tick_stopped) {
680			nohz_balance_enter_idle(cpu);
681			calc_load_enter_idle();
682
683			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
684			ts->tick_stopped = 1;
685			trace_tick_stop(1, " ");
686		}
687
688		/*
689		 * If the expiration time == KTIME_MAX, then
690		 * in this case we simply stop the tick timer.
691		 */
692		 if (unlikely(expires.tv64 == KTIME_MAX)) {
693			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
694				hrtimer_cancel(&ts->sched_timer);
695			goto out;
696		}
697
698		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
699			hrtimer_start(&ts->sched_timer, expires,
700				      HRTIMER_MODE_ABS_PINNED);
701			/* Check, if the timer was already in the past */
702			if (hrtimer_active(&ts->sched_timer))
703				goto out;
704		} else if (!tick_program_event(expires, 0))
705				goto out;
706		/*
707		 * We are past the event already. So we crossed a
708		 * jiffie boundary. Update jiffies and raise the
709		 * softirq.
710		 */
711		tick_do_update_jiffies64(ktime_get());
712	}
713	raise_softirq_irqoff(TIMER_SOFTIRQ);
714out:
715	ts->next_jiffies = next_jiffies;
716	ts->last_jiffies = last_jiffies;
717	ts->sleep_length = ktime_sub(dev->next_event, now);
718
719	return ret;
720}
721
722static void tick_nohz_full_stop_tick(struct tick_sched *ts)
723{
724#ifdef CONFIG_NO_HZ_FULL
725	int cpu = smp_processor_id();
726
727	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
728		return;
729
730	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
731		return;
732
733	if (!can_stop_full_tick())
734		return;
735
736	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
737#endif
738}
739
740static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
741{
742	/*
743	 * If this cpu is offline and it is the one which updates
744	 * jiffies, then give up the assignment and let it be taken by
745	 * the cpu which runs the tick timer next. If we don't drop
746	 * this here the jiffies might be stale and do_timer() never
747	 * invoked.
748	 */
749	if (unlikely(!cpu_online(cpu))) {
750		if (cpu == tick_do_timer_cpu)
751			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
752		return false;
753	}
754
755	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
756		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
757		return false;
758	}
759
760	if (need_resched())
761		return false;
762
763	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
764		static int ratelimit;
765
766		if (ratelimit < 10 &&
767		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
768			pr_warn("NOHZ: local_softirq_pending %02x\n",
769				(unsigned int) local_softirq_pending());
770			ratelimit++;
771		}
772		return false;
773	}
774
775	if (tick_nohz_full_enabled()) {
776		/*
777		 * Keep the tick alive to guarantee timekeeping progression
778		 * if there are full dynticks CPUs around
779		 */
780		if (tick_do_timer_cpu == cpu)
781			return false;
782		/*
783		 * Boot safety: make sure the timekeeping duty has been
784		 * assigned before entering dyntick-idle mode,
785		 */
786		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
787			return false;
788	}
789
790	return true;
791}
792
793static void __tick_nohz_idle_enter(struct tick_sched *ts)
794{
795	ktime_t now, expires;
796	int cpu = smp_processor_id();
797
798	now = tick_nohz_start_idle(ts);
799
800	if (can_stop_idle_tick(cpu, ts)) {
801		int was_stopped = ts->tick_stopped;
802
803		ts->idle_calls++;
804
805		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
806		if (expires.tv64 > 0LL) {
807			ts->idle_sleeps++;
808			ts->idle_expires = expires;
809		}
810
811		if (!was_stopped && ts->tick_stopped)
812			ts->idle_jiffies = ts->last_jiffies;
813	}
814}
815
816/**
817 * tick_nohz_idle_enter - stop the idle tick from the idle task
818 *
819 * When the next event is more than a tick into the future, stop the idle tick
820 * Called when we start the idle loop.
821 *
822 * The arch is responsible of calling:
823 *
824 * - rcu_idle_enter() after its last use of RCU before the CPU is put
825 *  to sleep.
826 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
827 */
828void tick_nohz_idle_enter(void)
829{
830	struct tick_sched *ts;
831
832	WARN_ON_ONCE(irqs_disabled());
833
834	/*
835 	 * Update the idle state in the scheduler domain hierarchy
836 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
837 	 * State will be updated to busy during the first busy tick after
838 	 * exiting idle.
839 	 */
840	set_cpu_sd_state_idle();
841
842	local_irq_disable();
843
844	ts = this_cpu_ptr(&tick_cpu_sched);
845	ts->inidle = 1;
846	__tick_nohz_idle_enter(ts);
847
848	local_irq_enable();
849}
850EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
851
852/**
853 * tick_nohz_irq_exit - update next tick event from interrupt exit
854 *
855 * When an interrupt fires while we are idle and it doesn't cause
856 * a reschedule, it may still add, modify or delete a timer, enqueue
857 * an RCU callback, etc...
858 * So we need to re-calculate and reprogram the next tick event.
859 */
860void tick_nohz_irq_exit(void)
861{
862	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
863
864	if (ts->inidle)
865		__tick_nohz_idle_enter(ts);
866	else
867		tick_nohz_full_stop_tick(ts);
868}
869
870/**
871 * tick_nohz_get_sleep_length - return the length of the current sleep
872 *
873 * Called from power state control code with interrupts disabled
874 */
875ktime_t tick_nohz_get_sleep_length(void)
876{
877	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
878
879	return ts->sleep_length;
880}
881
882static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
883{
884	hrtimer_cancel(&ts->sched_timer);
885	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
886
887	while (1) {
888		/* Forward the time to expire in the future */
889		hrtimer_forward(&ts->sched_timer, now, tick_period);
890
891		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
892			hrtimer_start_expires(&ts->sched_timer,
893					      HRTIMER_MODE_ABS_PINNED);
894			/* Check, if the timer was already in the past */
895			if (hrtimer_active(&ts->sched_timer))
896				break;
897		} else {
898			if (!tick_program_event(
899				hrtimer_get_expires(&ts->sched_timer), 0))
900				break;
901		}
902		/* Reread time and update jiffies */
903		now = ktime_get();
904		tick_do_update_jiffies64(now);
905	}
906}
907
908static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
909{
910	/* Update jiffies first */
911	tick_do_update_jiffies64(now);
912	update_cpu_load_nohz();
913
914	calc_load_exit_idle();
915	touch_softlockup_watchdog();
916	/*
917	 * Cancel the scheduled timer and restore the tick
918	 */
919	ts->tick_stopped  = 0;
920	ts->idle_exittime = now;
921
922	tick_nohz_restart(ts, now);
923}
924
925static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
926{
927#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
928	unsigned long ticks;
929
930	if (vtime_accounting_enabled())
931		return;
932	/*
933	 * We stopped the tick in idle. Update process times would miss the
934	 * time we slept as update_process_times does only a 1 tick
935	 * accounting. Enforce that this is accounted to idle !
936	 */
937	ticks = jiffies - ts->idle_jiffies;
938	/*
939	 * We might be one off. Do not randomly account a huge number of ticks!
940	 */
941	if (ticks && ticks < LONG_MAX)
942		account_idle_ticks(ticks);
943#endif
944}
945
946/**
947 * tick_nohz_idle_exit - restart the idle tick from the idle task
948 *
949 * Restart the idle tick when the CPU is woken up from idle
950 * This also exit the RCU extended quiescent state. The CPU
951 * can use RCU again after this function is called.
952 */
953void tick_nohz_idle_exit(void)
954{
955	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
956	ktime_t now;
957
958	local_irq_disable();
959
960	WARN_ON_ONCE(!ts->inidle);
961
962	ts->inidle = 0;
963
964	if (ts->idle_active || ts->tick_stopped)
965		now = ktime_get();
966
967	if (ts->idle_active)
968		tick_nohz_stop_idle(ts, now);
969
970	if (ts->tick_stopped) {
971		tick_nohz_restart_sched_tick(ts, now);
972		tick_nohz_account_idle_ticks(ts);
973	}
974
975	local_irq_enable();
976}
977EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
978
979static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
980{
981	hrtimer_forward(&ts->sched_timer, now, tick_period);
982	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
983}
984
985/*
986 * The nohz low res interrupt handler
987 */
988static void tick_nohz_handler(struct clock_event_device *dev)
989{
990	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
991	struct pt_regs *regs = get_irq_regs();
992	ktime_t now = ktime_get();
993
994	dev->next_event.tv64 = KTIME_MAX;
995
996	tick_sched_do_timer(now);
997	tick_sched_handle(ts, regs);
998
999	/* No need to reprogram if we are running tickless  */
1000	if (unlikely(ts->tick_stopped))
1001		return;
1002
1003	while (tick_nohz_reprogram(ts, now)) {
1004		now = ktime_get();
1005		tick_do_update_jiffies64(now);
1006	}
1007}
1008
1009/**
1010 * tick_nohz_switch_to_nohz - switch to nohz mode
1011 */
1012static void tick_nohz_switch_to_nohz(void)
1013{
1014	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1015	ktime_t next;
1016
1017	if (!tick_nohz_enabled)
1018		return;
1019
1020	local_irq_disable();
1021	if (tick_switch_to_oneshot(tick_nohz_handler)) {
1022		local_irq_enable();
1023		return;
1024	}
1025	tick_nohz_active = 1;
1026	ts->nohz_mode = NOHZ_MODE_LOWRES;
1027
1028	/*
1029	 * Recycle the hrtimer in ts, so we can share the
1030	 * hrtimer_forward with the highres code.
1031	 */
1032	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1033	/* Get the next period */
1034	next = tick_init_jiffy_update();
1035
1036	for (;;) {
1037		hrtimer_set_expires(&ts->sched_timer, next);
1038		if (!tick_program_event(next, 0))
1039			break;
1040		next = ktime_add(next, tick_period);
1041	}
1042	local_irq_enable();
1043}
1044
1045/*
1046 * When NOHZ is enabled and the tick is stopped, we need to kick the
1047 * tick timer from irq_enter() so that the jiffies update is kept
1048 * alive during long running softirqs. That's ugly as hell, but
1049 * correctness is key even if we need to fix the offending softirq in
1050 * the first place.
1051 *
1052 * Note, this is different to tick_nohz_restart. We just kick the
1053 * timer and do not touch the other magic bits which need to be done
1054 * when idle is left.
1055 */
1056static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1057{
1058#if 0
1059	/* Switch back to 2.6.27 behaviour */
1060	ktime_t delta;
1061
1062	/*
1063	 * Do not touch the tick device, when the next expiry is either
1064	 * already reached or less/equal than the tick period.
1065	 */
1066	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1067	if (delta.tv64 <= tick_period.tv64)
1068		return;
1069
1070	tick_nohz_restart(ts, now);
1071#endif
1072}
1073
1074static inline void tick_nohz_irq_enter(void)
1075{
1076	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1077	ktime_t now;
1078
1079	if (!ts->idle_active && !ts->tick_stopped)
1080		return;
1081	now = ktime_get();
1082	if (ts->idle_active)
1083		tick_nohz_stop_idle(ts, now);
1084	if (ts->tick_stopped) {
1085		tick_nohz_update_jiffies(now);
1086		tick_nohz_kick_tick(ts, now);
1087	}
1088}
1089
1090#else
1091
1092static inline void tick_nohz_switch_to_nohz(void) { }
1093static inline void tick_nohz_irq_enter(void) { }
1094
1095#endif /* CONFIG_NO_HZ_COMMON */
1096
1097/*
1098 * Called from irq_enter to notify about the possible interruption of idle()
1099 */
1100void tick_irq_enter(void)
1101{
1102	tick_check_oneshot_broadcast_this_cpu();
1103	tick_nohz_irq_enter();
1104}
1105
1106/*
1107 * High resolution timer specific code
1108 */
1109#ifdef CONFIG_HIGH_RES_TIMERS
1110/*
1111 * We rearm the timer until we get disabled by the idle code.
1112 * Called with interrupts disabled.
1113 */
1114static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1115{
1116	struct tick_sched *ts =
1117		container_of(timer, struct tick_sched, sched_timer);
1118	struct pt_regs *regs = get_irq_regs();
1119	ktime_t now = ktime_get();
1120
1121	tick_sched_do_timer(now);
1122
1123	/*
1124	 * Do not call, when we are not in irq context and have
1125	 * no valid regs pointer
1126	 */
1127	if (regs)
1128		tick_sched_handle(ts, regs);
1129
1130	/* No need to reprogram if we are in idle or full dynticks mode */
1131	if (unlikely(ts->tick_stopped))
1132		return HRTIMER_NORESTART;
1133
1134	hrtimer_forward(timer, now, tick_period);
1135
1136	return HRTIMER_RESTART;
1137}
1138
1139static int sched_skew_tick;
1140
1141static int __init skew_tick(char *str)
1142{
1143	get_option(&str, &sched_skew_tick);
1144
1145	return 0;
1146}
1147early_param("skew_tick", skew_tick);
1148
1149/**
1150 * tick_setup_sched_timer - setup the tick emulation timer
1151 */
1152void tick_setup_sched_timer(void)
1153{
1154	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1155	ktime_t now = ktime_get();
1156
1157	/*
1158	 * Emulate tick processing via per-CPU hrtimers:
1159	 */
1160	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1161	ts->sched_timer.function = tick_sched_timer;
1162
1163	/* Get the next period (per cpu) */
1164	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1165
1166	/* Offset the tick to avert jiffies_lock contention. */
1167	if (sched_skew_tick) {
1168		u64 offset = ktime_to_ns(tick_period) >> 1;
1169		do_div(offset, num_possible_cpus());
1170		offset *= smp_processor_id();
1171		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1172	}
1173
1174	for (;;) {
1175		hrtimer_forward(&ts->sched_timer, now, tick_period);
1176		hrtimer_start_expires(&ts->sched_timer,
1177				      HRTIMER_MODE_ABS_PINNED);
1178		/* Check, if the timer was already in the past */
1179		if (hrtimer_active(&ts->sched_timer))
1180			break;
1181		now = ktime_get();
1182	}
1183
1184#ifdef CONFIG_NO_HZ_COMMON
1185	if (tick_nohz_enabled) {
1186		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1187		tick_nohz_active = 1;
1188	}
1189#endif
1190}
1191#endif /* HIGH_RES_TIMERS */
1192
1193#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1194void tick_cancel_sched_timer(int cpu)
1195{
1196	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1197
1198# ifdef CONFIG_HIGH_RES_TIMERS
1199	if (ts->sched_timer.base)
1200		hrtimer_cancel(&ts->sched_timer);
1201# endif
1202
1203	memset(ts, 0, sizeof(*ts));
1204}
1205#endif
1206
1207/**
1208 * Async notification about clocksource changes
1209 */
1210void tick_clock_notify(void)
1211{
1212	int cpu;
1213
1214	for_each_possible_cpu(cpu)
1215		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1216}
1217
1218/*
1219 * Async notification about clock event changes
1220 */
1221void tick_oneshot_notify(void)
1222{
1223	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1224
1225	set_bit(0, &ts->check_clocks);
1226}
1227
1228/**
1229 * Check, if a change happened, which makes oneshot possible.
1230 *
1231 * Called cyclic from the hrtimer softirq (driven by the timer
1232 * softirq) allow_nohz signals, that we can switch into low-res nohz
1233 * mode, because high resolution timers are disabled (either compile
1234 * or runtime).
1235 */
1236int tick_check_oneshot_change(int allow_nohz)
1237{
1238	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1239
1240	if (!test_and_clear_bit(0, &ts->check_clocks))
1241		return 0;
1242
1243	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1244		return 0;
1245
1246	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1247		return 0;
1248
1249	if (!allow_nohz)
1250		return 1;
1251
1252	tick_nohz_switch_to_nohz();
1253	return 0;
1254}
1255