1/*
2 * Basic general purpose allocator for managing special purpose
3 * memory, for example, memory that is not managed by the regular
4 * kmalloc/kfree interface.  Uses for this includes on-device special
5 * memory, uncached memory etc.
6 *
7 * It is safe to use the allocator in NMI handlers and other special
8 * unblockable contexts that could otherwise deadlock on locks.  This
9 * is implemented by using atomic operations and retries on any
10 * conflicts.  The disadvantage is that there may be livelocks in
11 * extreme cases.  For better scalability, one allocator can be used
12 * for each CPU.
13 *
14 * The lockless operation only works if there is enough memory
15 * available.  If new memory is added to the pool a lock has to be
16 * still taken.  So any user relying on locklessness has to ensure
17 * that sufficient memory is preallocated.
18 *
19 * The basic atomic operation of this allocator is cmpxchg on long.
20 * On architectures that don't have NMI-safe cmpxchg implementation,
21 * the allocator can NOT be used in NMI handler.  So code uses the
22 * allocator in NMI handler should depend on
23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24 *
25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26 *
27 * This source code is licensed under the GNU General Public License,
28 * Version 2.  See the file COPYING for more details.
29 */
30
31#include <linux/slab.h>
32#include <linux/export.h>
33#include <linux/bitmap.h>
34#include <linux/rculist.h>
35#include <linux/interrupt.h>
36#include <linux/genalloc.h>
37#include <linux/of_address.h>
38#include <linux/of_device.h>
39
40static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
41{
42	return chunk->end_addr - chunk->start_addr + 1;
43}
44
45static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
46{
47	unsigned long val, nval;
48
49	nval = *addr;
50	do {
51		val = nval;
52		if (val & mask_to_set)
53			return -EBUSY;
54		cpu_relax();
55	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
56
57	return 0;
58}
59
60static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
61{
62	unsigned long val, nval;
63
64	nval = *addr;
65	do {
66		val = nval;
67		if ((val & mask_to_clear) != mask_to_clear)
68			return -EBUSY;
69		cpu_relax();
70	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
71
72	return 0;
73}
74
75/*
76 * bitmap_set_ll - set the specified number of bits at the specified position
77 * @map: pointer to a bitmap
78 * @start: a bit position in @map
79 * @nr: number of bits to set
80 *
81 * Set @nr bits start from @start in @map lock-lessly. Several users
82 * can set/clear the same bitmap simultaneously without lock. If two
83 * users set the same bit, one user will return remain bits, otherwise
84 * return 0.
85 */
86static int bitmap_set_ll(unsigned long *map, int start, int nr)
87{
88	unsigned long *p = map + BIT_WORD(start);
89	const int size = start + nr;
90	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
91	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
92
93	while (nr - bits_to_set >= 0) {
94		if (set_bits_ll(p, mask_to_set))
95			return nr;
96		nr -= bits_to_set;
97		bits_to_set = BITS_PER_LONG;
98		mask_to_set = ~0UL;
99		p++;
100	}
101	if (nr) {
102		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
103		if (set_bits_ll(p, mask_to_set))
104			return nr;
105	}
106
107	return 0;
108}
109
110/*
111 * bitmap_clear_ll - clear the specified number of bits at the specified position
112 * @map: pointer to a bitmap
113 * @start: a bit position in @map
114 * @nr: number of bits to set
115 *
116 * Clear @nr bits start from @start in @map lock-lessly. Several users
117 * can set/clear the same bitmap simultaneously without lock. If two
118 * users clear the same bit, one user will return remain bits,
119 * otherwise return 0.
120 */
121static int bitmap_clear_ll(unsigned long *map, int start, int nr)
122{
123	unsigned long *p = map + BIT_WORD(start);
124	const int size = start + nr;
125	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127
128	while (nr - bits_to_clear >= 0) {
129		if (clear_bits_ll(p, mask_to_clear))
130			return nr;
131		nr -= bits_to_clear;
132		bits_to_clear = BITS_PER_LONG;
133		mask_to_clear = ~0UL;
134		p++;
135	}
136	if (nr) {
137		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138		if (clear_bits_ll(p, mask_to_clear))
139			return nr;
140	}
141
142	return 0;
143}
144
145/**
146 * gen_pool_create - create a new special memory pool
147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148 * @nid: node id of the node the pool structure should be allocated on, or -1
149 *
150 * Create a new special memory pool that can be used to manage special purpose
151 * memory not managed by the regular kmalloc/kfree interface.
152 */
153struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
154{
155	struct gen_pool *pool;
156
157	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158	if (pool != NULL) {
159		spin_lock_init(&pool->lock);
160		INIT_LIST_HEAD(&pool->chunks);
161		pool->min_alloc_order = min_alloc_order;
162		pool->algo = gen_pool_first_fit;
163		pool->data = NULL;
164	}
165	return pool;
166}
167EXPORT_SYMBOL(gen_pool_create);
168
169/**
170 * gen_pool_add_virt - add a new chunk of special memory to the pool
171 * @pool: pool to add new memory chunk to
172 * @virt: virtual starting address of memory chunk to add to pool
173 * @phys: physical starting address of memory chunk to add to pool
174 * @size: size in bytes of the memory chunk to add to pool
175 * @nid: node id of the node the chunk structure and bitmap should be
176 *       allocated on, or -1
177 *
178 * Add a new chunk of special memory to the specified pool.
179 *
180 * Returns 0 on success or a -ve errno on failure.
181 */
182int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
183		 size_t size, int nid)
184{
185	struct gen_pool_chunk *chunk;
186	int nbits = size >> pool->min_alloc_order;
187	int nbytes = sizeof(struct gen_pool_chunk) +
188				BITS_TO_LONGS(nbits) * sizeof(long);
189
190	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
191	if (unlikely(chunk == NULL))
192		return -ENOMEM;
193
194	chunk->phys_addr = phys;
195	chunk->start_addr = virt;
196	chunk->end_addr = virt + size - 1;
197	atomic_set(&chunk->avail, size);
198
199	spin_lock(&pool->lock);
200	list_add_rcu(&chunk->next_chunk, &pool->chunks);
201	spin_unlock(&pool->lock);
202
203	return 0;
204}
205EXPORT_SYMBOL(gen_pool_add_virt);
206
207/**
208 * gen_pool_virt_to_phys - return the physical address of memory
209 * @pool: pool to allocate from
210 * @addr: starting address of memory
211 *
212 * Returns the physical address on success, or -1 on error.
213 */
214phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
215{
216	struct gen_pool_chunk *chunk;
217	phys_addr_t paddr = -1;
218
219	rcu_read_lock();
220	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
221		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
222			paddr = chunk->phys_addr + (addr - chunk->start_addr);
223			break;
224		}
225	}
226	rcu_read_unlock();
227
228	return paddr;
229}
230EXPORT_SYMBOL(gen_pool_virt_to_phys);
231
232/**
233 * gen_pool_destroy - destroy a special memory pool
234 * @pool: pool to destroy
235 *
236 * Destroy the specified special memory pool. Verifies that there are no
237 * outstanding allocations.
238 */
239void gen_pool_destroy(struct gen_pool *pool)
240{
241	struct list_head *_chunk, *_next_chunk;
242	struct gen_pool_chunk *chunk;
243	int order = pool->min_alloc_order;
244	int bit, end_bit;
245
246	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
247		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
248		list_del(&chunk->next_chunk);
249
250		end_bit = chunk_size(chunk) >> order;
251		bit = find_next_bit(chunk->bits, end_bit, 0);
252		BUG_ON(bit < end_bit);
253
254		kfree(chunk);
255	}
256	kfree(pool);
257	return;
258}
259EXPORT_SYMBOL(gen_pool_destroy);
260
261/**
262 * gen_pool_alloc - allocate special memory from the pool
263 * @pool: pool to allocate from
264 * @size: number of bytes to allocate from the pool
265 *
266 * Allocate the requested number of bytes from the specified pool.
267 * Uses the pool allocation function (with first-fit algorithm by default).
268 * Can not be used in NMI handler on architectures without
269 * NMI-safe cmpxchg implementation.
270 */
271unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
272{
273	struct gen_pool_chunk *chunk;
274	unsigned long addr = 0;
275	int order = pool->min_alloc_order;
276	int nbits, start_bit = 0, end_bit, remain;
277
278#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
279	BUG_ON(in_nmi());
280#endif
281
282	if (size == 0)
283		return 0;
284
285	nbits = (size + (1UL << order) - 1) >> order;
286	rcu_read_lock();
287	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
288		if (size > atomic_read(&chunk->avail))
289			continue;
290
291		end_bit = chunk_size(chunk) >> order;
292retry:
293		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
294				pool->data);
295		if (start_bit >= end_bit)
296			continue;
297		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
298		if (remain) {
299			remain = bitmap_clear_ll(chunk->bits, start_bit,
300						 nbits - remain);
301			BUG_ON(remain);
302			goto retry;
303		}
304
305		addr = chunk->start_addr + ((unsigned long)start_bit << order);
306		size = nbits << order;
307		atomic_sub(size, &chunk->avail);
308		break;
309	}
310	rcu_read_unlock();
311	return addr;
312}
313EXPORT_SYMBOL(gen_pool_alloc);
314
315/**
316 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
317 * @pool: pool to allocate from
318 * @size: number of bytes to allocate from the pool
319 * @dma: dma-view physical address return value.  Use NULL if unneeded.
320 *
321 * Allocate the requested number of bytes from the specified pool.
322 * Uses the pool allocation function (with first-fit algorithm by default).
323 * Can not be used in NMI handler on architectures without
324 * NMI-safe cmpxchg implementation.
325 */
326void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
327{
328	unsigned long vaddr;
329
330	if (!pool)
331		return NULL;
332
333	vaddr = gen_pool_alloc(pool, size);
334	if (!vaddr)
335		return NULL;
336
337	if (dma)
338		*dma = gen_pool_virt_to_phys(pool, vaddr);
339
340	return (void *)vaddr;
341}
342EXPORT_SYMBOL(gen_pool_dma_alloc);
343
344/**
345 * gen_pool_free - free allocated special memory back to the pool
346 * @pool: pool to free to
347 * @addr: starting address of memory to free back to pool
348 * @size: size in bytes of memory to free
349 *
350 * Free previously allocated special memory back to the specified
351 * pool.  Can not be used in NMI handler on architectures without
352 * NMI-safe cmpxchg implementation.
353 */
354void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
355{
356	struct gen_pool_chunk *chunk;
357	int order = pool->min_alloc_order;
358	int start_bit, nbits, remain;
359
360#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
361	BUG_ON(in_nmi());
362#endif
363
364	nbits = (size + (1UL << order) - 1) >> order;
365	rcu_read_lock();
366	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
367		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
368			BUG_ON(addr + size - 1 > chunk->end_addr);
369			start_bit = (addr - chunk->start_addr) >> order;
370			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
371			BUG_ON(remain);
372			size = nbits << order;
373			atomic_add(size, &chunk->avail);
374			rcu_read_unlock();
375			return;
376		}
377	}
378	rcu_read_unlock();
379	BUG();
380}
381EXPORT_SYMBOL(gen_pool_free);
382
383/**
384 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
385 * @pool:	the generic memory pool
386 * @func:	func to call
387 * @data:	additional data used by @func
388 *
389 * Call @func for every chunk of generic memory pool.  The @func is
390 * called with rcu_read_lock held.
391 */
392void gen_pool_for_each_chunk(struct gen_pool *pool,
393	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
394	void *data)
395{
396	struct gen_pool_chunk *chunk;
397
398	rcu_read_lock();
399	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
400		func(pool, chunk, data);
401	rcu_read_unlock();
402}
403EXPORT_SYMBOL(gen_pool_for_each_chunk);
404
405/**
406 * addr_in_gen_pool - checks if an address falls within the range of a pool
407 * @pool:	the generic memory pool
408 * @start:	start address
409 * @size:	size of the region
410 *
411 * Check if the range of addresses falls within the specified pool. Returns
412 * true if the entire range is contained in the pool and false otherwise.
413 */
414bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
415			size_t size)
416{
417	bool found = false;
418	unsigned long end = start + size;
419	struct gen_pool_chunk *chunk;
420
421	rcu_read_lock();
422	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
423		if (start >= chunk->start_addr && start <= chunk->end_addr) {
424			if (end <= chunk->end_addr) {
425				found = true;
426				break;
427			}
428		}
429	}
430	rcu_read_unlock();
431	return found;
432}
433
434/**
435 * gen_pool_avail - get available free space of the pool
436 * @pool: pool to get available free space
437 *
438 * Return available free space of the specified pool.
439 */
440size_t gen_pool_avail(struct gen_pool *pool)
441{
442	struct gen_pool_chunk *chunk;
443	size_t avail = 0;
444
445	rcu_read_lock();
446	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
447		avail += atomic_read(&chunk->avail);
448	rcu_read_unlock();
449	return avail;
450}
451EXPORT_SYMBOL_GPL(gen_pool_avail);
452
453/**
454 * gen_pool_size - get size in bytes of memory managed by the pool
455 * @pool: pool to get size
456 *
457 * Return size in bytes of memory managed by the pool.
458 */
459size_t gen_pool_size(struct gen_pool *pool)
460{
461	struct gen_pool_chunk *chunk;
462	size_t size = 0;
463
464	rcu_read_lock();
465	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
466		size += chunk_size(chunk);
467	rcu_read_unlock();
468	return size;
469}
470EXPORT_SYMBOL_GPL(gen_pool_size);
471
472/**
473 * gen_pool_set_algo - set the allocation algorithm
474 * @pool: pool to change allocation algorithm
475 * @algo: custom algorithm function
476 * @data: additional data used by @algo
477 *
478 * Call @algo for each memory allocation in the pool.
479 * If @algo is NULL use gen_pool_first_fit as default
480 * memory allocation function.
481 */
482void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
483{
484	rcu_read_lock();
485
486	pool->algo = algo;
487	if (!pool->algo)
488		pool->algo = gen_pool_first_fit;
489
490	pool->data = data;
491
492	rcu_read_unlock();
493}
494EXPORT_SYMBOL(gen_pool_set_algo);
495
496/**
497 * gen_pool_first_fit - find the first available region
498 * of memory matching the size requirement (no alignment constraint)
499 * @map: The address to base the search on
500 * @size: The bitmap size in bits
501 * @start: The bitnumber to start searching at
502 * @nr: The number of zeroed bits we're looking for
503 * @data: additional data - unused
504 */
505unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
506		unsigned long start, unsigned int nr, void *data)
507{
508	return bitmap_find_next_zero_area(map, size, start, nr, 0);
509}
510EXPORT_SYMBOL(gen_pool_first_fit);
511
512/**
513 * gen_pool_first_fit_order_align - find the first available region
514 * of memory matching the size requirement. The region will be aligned
515 * to the order of the size specified.
516 * @map: The address to base the search on
517 * @size: The bitmap size in bits
518 * @start: The bitnumber to start searching at
519 * @nr: The number of zeroed bits we're looking for
520 * @data: additional data - unused
521 */
522unsigned long gen_pool_first_fit_order_align(unsigned long *map,
523		unsigned long size, unsigned long start,
524		unsigned int nr, void *data)
525{
526	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
527
528	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
529}
530EXPORT_SYMBOL(gen_pool_first_fit_order_align);
531
532/**
533 * gen_pool_best_fit - find the best fitting region of memory
534 * macthing the size requirement (no alignment constraint)
535 * @map: The address to base the search on
536 * @size: The bitmap size in bits
537 * @start: The bitnumber to start searching at
538 * @nr: The number of zeroed bits we're looking for
539 * @data: additional data - unused
540 *
541 * Iterate over the bitmap to find the smallest free region
542 * which we can allocate the memory.
543 */
544unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
545		unsigned long start, unsigned int nr, void *data)
546{
547	unsigned long start_bit = size;
548	unsigned long len = size + 1;
549	unsigned long index;
550
551	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
552
553	while (index < size) {
554		int next_bit = find_next_bit(map, size, index + nr);
555		if ((next_bit - index) < len) {
556			len = next_bit - index;
557			start_bit = index;
558			if (len == nr)
559				return start_bit;
560		}
561		index = bitmap_find_next_zero_area(map, size,
562						   next_bit + 1, nr, 0);
563	}
564
565	return start_bit;
566}
567EXPORT_SYMBOL(gen_pool_best_fit);
568
569static void devm_gen_pool_release(struct device *dev, void *res)
570{
571	gen_pool_destroy(*(struct gen_pool **)res);
572}
573
574/**
575 * devm_gen_pool_create - managed gen_pool_create
576 * @dev: device that provides the gen_pool
577 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
578 * @nid: node id of the node the pool structure should be allocated on, or -1
579 *
580 * Create a new special memory pool that can be used to manage special purpose
581 * memory not managed by the regular kmalloc/kfree interface. The pool will be
582 * automatically destroyed by the device management code.
583 */
584struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
585		int nid)
586{
587	struct gen_pool **ptr, *pool;
588
589	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
590
591	pool = gen_pool_create(min_alloc_order, nid);
592	if (pool) {
593		*ptr = pool;
594		devres_add(dev, ptr);
595	} else {
596		devres_free(ptr);
597	}
598
599	return pool;
600}
601EXPORT_SYMBOL(devm_gen_pool_create);
602
603/**
604 * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
605 * @dev: device to retrieve the gen_pool from
606 *
607 * Returns the gen_pool for the device if one is present, or NULL.
608 */
609struct gen_pool *dev_get_gen_pool(struct device *dev)
610{
611	struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
612					NULL);
613
614	if (!p)
615		return NULL;
616	return *p;
617}
618EXPORT_SYMBOL_GPL(dev_get_gen_pool);
619
620#ifdef CONFIG_OF
621/**
622 * of_get_named_gen_pool - find a pool by phandle property
623 * @np: device node
624 * @propname: property name containing phandle(s)
625 * @index: index into the phandle array
626 *
627 * Returns the pool that contains the chunk starting at the physical
628 * address of the device tree node pointed at by the phandle property,
629 * or NULL if not found.
630 */
631struct gen_pool *of_get_named_gen_pool(struct device_node *np,
632	const char *propname, int index)
633{
634	struct platform_device *pdev;
635	struct device_node *np_pool;
636
637	np_pool = of_parse_phandle(np, propname, index);
638	if (!np_pool)
639		return NULL;
640	pdev = of_find_device_by_node(np_pool);
641	of_node_put(np_pool);
642	if (!pdev)
643		return NULL;
644	return dev_get_gen_pool(&pdev->dev);
645}
646EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
647#endif /* CONFIG_OF */
648