gup.c revision 9a95f3cf7b33d66fa64727cff8cd2f2a9d09f335
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
6#include <linux/hugetlb.h>
7#include <linux/mm.h>
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
13#include "internal.h"
14
15static struct page *no_page_table(struct vm_area_struct *vma,
16		unsigned int flags)
17{
18	/*
19	 * When core dumping an enormous anonymous area that nobody
20	 * has touched so far, we don't want to allocate unnecessary pages or
21	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
22	 * then get_dump_page() will return NULL to leave a hole in the dump.
23	 * But we can only make this optimization where a hole would surely
24	 * be zero-filled if handle_mm_fault() actually did handle it.
25	 */
26	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
27		return ERR_PTR(-EFAULT);
28	return NULL;
29}
30
31static struct page *follow_page_pte(struct vm_area_struct *vma,
32		unsigned long address, pmd_t *pmd, unsigned int flags)
33{
34	struct mm_struct *mm = vma->vm_mm;
35	struct page *page;
36	spinlock_t *ptl;
37	pte_t *ptep, pte;
38
39retry:
40	if (unlikely(pmd_bad(*pmd)))
41		return no_page_table(vma, flags);
42
43	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
44	pte = *ptep;
45	if (!pte_present(pte)) {
46		swp_entry_t entry;
47		/*
48		 * KSM's break_ksm() relies upon recognizing a ksm page
49		 * even while it is being migrated, so for that case we
50		 * need migration_entry_wait().
51		 */
52		if (likely(!(flags & FOLL_MIGRATION)))
53			goto no_page;
54		if (pte_none(pte) || pte_file(pte))
55			goto no_page;
56		entry = pte_to_swp_entry(pte);
57		if (!is_migration_entry(entry))
58			goto no_page;
59		pte_unmap_unlock(ptep, ptl);
60		migration_entry_wait(mm, pmd, address);
61		goto retry;
62	}
63	if ((flags & FOLL_NUMA) && pte_numa(pte))
64		goto no_page;
65	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
66		pte_unmap_unlock(ptep, ptl);
67		return NULL;
68	}
69
70	page = vm_normal_page(vma, address, pte);
71	if (unlikely(!page)) {
72		if ((flags & FOLL_DUMP) ||
73		    !is_zero_pfn(pte_pfn(pte)))
74			goto bad_page;
75		page = pte_page(pte);
76	}
77
78	if (flags & FOLL_GET)
79		get_page_foll(page);
80	if (flags & FOLL_TOUCH) {
81		if ((flags & FOLL_WRITE) &&
82		    !pte_dirty(pte) && !PageDirty(page))
83			set_page_dirty(page);
84		/*
85		 * pte_mkyoung() would be more correct here, but atomic care
86		 * is needed to avoid losing the dirty bit: it is easier to use
87		 * mark_page_accessed().
88		 */
89		mark_page_accessed(page);
90	}
91	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
92		/*
93		 * The preliminary mapping check is mainly to avoid the
94		 * pointless overhead of lock_page on the ZERO_PAGE
95		 * which might bounce very badly if there is contention.
96		 *
97		 * If the page is already locked, we don't need to
98		 * handle it now - vmscan will handle it later if and
99		 * when it attempts to reclaim the page.
100		 */
101		if (page->mapping && trylock_page(page)) {
102			lru_add_drain();  /* push cached pages to LRU */
103			/*
104			 * Because we lock page here, and migration is
105			 * blocked by the pte's page reference, and we
106			 * know the page is still mapped, we don't even
107			 * need to check for file-cache page truncation.
108			 */
109			mlock_vma_page(page);
110			unlock_page(page);
111		}
112	}
113	pte_unmap_unlock(ptep, ptl);
114	return page;
115bad_page:
116	pte_unmap_unlock(ptep, ptl);
117	return ERR_PTR(-EFAULT);
118
119no_page:
120	pte_unmap_unlock(ptep, ptl);
121	if (!pte_none(pte))
122		return NULL;
123	return no_page_table(vma, flags);
124}
125
126/**
127 * follow_page_mask - look up a page descriptor from a user-virtual address
128 * @vma: vm_area_struct mapping @address
129 * @address: virtual address to look up
130 * @flags: flags modifying lookup behaviour
131 * @page_mask: on output, *page_mask is set according to the size of the page
132 *
133 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
134 *
135 * Returns the mapped (struct page *), %NULL if no mapping exists, or
136 * an error pointer if there is a mapping to something not represented
137 * by a page descriptor (see also vm_normal_page()).
138 */
139struct page *follow_page_mask(struct vm_area_struct *vma,
140			      unsigned long address, unsigned int flags,
141			      unsigned int *page_mask)
142{
143	pgd_t *pgd;
144	pud_t *pud;
145	pmd_t *pmd;
146	spinlock_t *ptl;
147	struct page *page;
148	struct mm_struct *mm = vma->vm_mm;
149
150	*page_mask = 0;
151
152	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
153	if (!IS_ERR(page)) {
154		BUG_ON(flags & FOLL_GET);
155		return page;
156	}
157
158	pgd = pgd_offset(mm, address);
159	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
160		return no_page_table(vma, flags);
161
162	pud = pud_offset(pgd, address);
163	if (pud_none(*pud))
164		return no_page_table(vma, flags);
165	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
166		if (flags & FOLL_GET)
167			return NULL;
168		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
169		return page;
170	}
171	if (unlikely(pud_bad(*pud)))
172		return no_page_table(vma, flags);
173
174	pmd = pmd_offset(pud, address);
175	if (pmd_none(*pmd))
176		return no_page_table(vma, flags);
177	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
178		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
179		if (flags & FOLL_GET) {
180			/*
181			 * Refcount on tail pages are not well-defined and
182			 * shouldn't be taken. The caller should handle a NULL
183			 * return when trying to follow tail pages.
184			 */
185			if (PageHead(page))
186				get_page(page);
187			else
188				page = NULL;
189		}
190		return page;
191	}
192	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
193		return no_page_table(vma, flags);
194	if (pmd_trans_huge(*pmd)) {
195		if (flags & FOLL_SPLIT) {
196			split_huge_page_pmd(vma, address, pmd);
197			return follow_page_pte(vma, address, pmd, flags);
198		}
199		ptl = pmd_lock(mm, pmd);
200		if (likely(pmd_trans_huge(*pmd))) {
201			if (unlikely(pmd_trans_splitting(*pmd))) {
202				spin_unlock(ptl);
203				wait_split_huge_page(vma->anon_vma, pmd);
204			} else {
205				page = follow_trans_huge_pmd(vma, address,
206							     pmd, flags);
207				spin_unlock(ptl);
208				*page_mask = HPAGE_PMD_NR - 1;
209				return page;
210			}
211		} else
212			spin_unlock(ptl);
213	}
214	return follow_page_pte(vma, address, pmd, flags);
215}
216
217static int get_gate_page(struct mm_struct *mm, unsigned long address,
218		unsigned int gup_flags, struct vm_area_struct **vma,
219		struct page **page)
220{
221	pgd_t *pgd;
222	pud_t *pud;
223	pmd_t *pmd;
224	pte_t *pte;
225	int ret = -EFAULT;
226
227	/* user gate pages are read-only */
228	if (gup_flags & FOLL_WRITE)
229		return -EFAULT;
230	if (address > TASK_SIZE)
231		pgd = pgd_offset_k(address);
232	else
233		pgd = pgd_offset_gate(mm, address);
234	BUG_ON(pgd_none(*pgd));
235	pud = pud_offset(pgd, address);
236	BUG_ON(pud_none(*pud));
237	pmd = pmd_offset(pud, address);
238	if (pmd_none(*pmd))
239		return -EFAULT;
240	VM_BUG_ON(pmd_trans_huge(*pmd));
241	pte = pte_offset_map(pmd, address);
242	if (pte_none(*pte))
243		goto unmap;
244	*vma = get_gate_vma(mm);
245	if (!page)
246		goto out;
247	*page = vm_normal_page(*vma, address, *pte);
248	if (!*page) {
249		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
250			goto unmap;
251		*page = pte_page(*pte);
252	}
253	get_page(*page);
254out:
255	ret = 0;
256unmap:
257	pte_unmap(pte);
258	return ret;
259}
260
261/*
262 * mmap_sem must be held on entry.  If @nonblocking != NULL and
263 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
264 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
265 */
266static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
267		unsigned long address, unsigned int *flags, int *nonblocking)
268{
269	struct mm_struct *mm = vma->vm_mm;
270	unsigned int fault_flags = 0;
271	int ret;
272
273	/* For mlock, just skip the stack guard page. */
274	if ((*flags & FOLL_MLOCK) &&
275			(stack_guard_page_start(vma, address) ||
276			 stack_guard_page_end(vma, address + PAGE_SIZE)))
277		return -ENOENT;
278	if (*flags & FOLL_WRITE)
279		fault_flags |= FAULT_FLAG_WRITE;
280	if (nonblocking)
281		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
282	if (*flags & FOLL_NOWAIT)
283		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
284
285	ret = handle_mm_fault(mm, vma, address, fault_flags);
286	if (ret & VM_FAULT_ERROR) {
287		if (ret & VM_FAULT_OOM)
288			return -ENOMEM;
289		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
290			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
291		if (ret & VM_FAULT_SIGBUS)
292			return -EFAULT;
293		BUG();
294	}
295
296	if (tsk) {
297		if (ret & VM_FAULT_MAJOR)
298			tsk->maj_flt++;
299		else
300			tsk->min_flt++;
301	}
302
303	if (ret & VM_FAULT_RETRY) {
304		if (nonblocking)
305			*nonblocking = 0;
306		return -EBUSY;
307	}
308
309	/*
310	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
311	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
312	 * can thus safely do subsequent page lookups as if they were reads.
313	 * But only do so when looping for pte_write is futile: in some cases
314	 * userspace may also be wanting to write to the gotten user page,
315	 * which a read fault here might prevent (a readonly page might get
316	 * reCOWed by userspace write).
317	 */
318	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
319		*flags &= ~FOLL_WRITE;
320	return 0;
321}
322
323static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
324{
325	vm_flags_t vm_flags = vma->vm_flags;
326
327	if (vm_flags & (VM_IO | VM_PFNMAP))
328		return -EFAULT;
329
330	if (gup_flags & FOLL_WRITE) {
331		if (!(vm_flags & VM_WRITE)) {
332			if (!(gup_flags & FOLL_FORCE))
333				return -EFAULT;
334			/*
335			 * We used to let the write,force case do COW in a
336			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
337			 * set a breakpoint in a read-only mapping of an
338			 * executable, without corrupting the file (yet only
339			 * when that file had been opened for writing!).
340			 * Anon pages in shared mappings are surprising: now
341			 * just reject it.
342			 */
343			if (!is_cow_mapping(vm_flags)) {
344				WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
345				return -EFAULT;
346			}
347		}
348	} else if (!(vm_flags & VM_READ)) {
349		if (!(gup_flags & FOLL_FORCE))
350			return -EFAULT;
351		/*
352		 * Is there actually any vma we can reach here which does not
353		 * have VM_MAYREAD set?
354		 */
355		if (!(vm_flags & VM_MAYREAD))
356			return -EFAULT;
357	}
358	return 0;
359}
360
361/**
362 * __get_user_pages() - pin user pages in memory
363 * @tsk:	task_struct of target task
364 * @mm:		mm_struct of target mm
365 * @start:	starting user address
366 * @nr_pages:	number of pages from start to pin
367 * @gup_flags:	flags modifying pin behaviour
368 * @pages:	array that receives pointers to the pages pinned.
369 *		Should be at least nr_pages long. Or NULL, if caller
370 *		only intends to ensure the pages are faulted in.
371 * @vmas:	array of pointers to vmas corresponding to each page.
372 *		Or NULL if the caller does not require them.
373 * @nonblocking: whether waiting for disk IO or mmap_sem contention
374 *
375 * Returns number of pages pinned. This may be fewer than the number
376 * requested. If nr_pages is 0 or negative, returns 0. If no pages
377 * were pinned, returns -errno. Each page returned must be released
378 * with a put_page() call when it is finished with. vmas will only
379 * remain valid while mmap_sem is held.
380 *
381 * Must be called with mmap_sem held.  It may be released.  See below.
382 *
383 * __get_user_pages walks a process's page tables and takes a reference to
384 * each struct page that each user address corresponds to at a given
385 * instant. That is, it takes the page that would be accessed if a user
386 * thread accesses the given user virtual address at that instant.
387 *
388 * This does not guarantee that the page exists in the user mappings when
389 * __get_user_pages returns, and there may even be a completely different
390 * page there in some cases (eg. if mmapped pagecache has been invalidated
391 * and subsequently re faulted). However it does guarantee that the page
392 * won't be freed completely. And mostly callers simply care that the page
393 * contains data that was valid *at some point in time*. Typically, an IO
394 * or similar operation cannot guarantee anything stronger anyway because
395 * locks can't be held over the syscall boundary.
396 *
397 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
398 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
399 * appropriate) must be called after the page is finished with, and
400 * before put_page is called.
401 *
402 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
403 * or mmap_sem contention, and if waiting is needed to pin all pages,
404 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
405 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
406 * this case.
407 *
408 * A caller using such a combination of @nonblocking and @gup_flags
409 * must therefore hold the mmap_sem for reading only, and recognize
410 * when it's been released.  Otherwise, it must be held for either
411 * reading or writing and will not be released.
412 *
413 * In most cases, get_user_pages or get_user_pages_fast should be used
414 * instead of __get_user_pages. __get_user_pages should be used only if
415 * you need some special @gup_flags.
416 */
417long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
418		unsigned long start, unsigned long nr_pages,
419		unsigned int gup_flags, struct page **pages,
420		struct vm_area_struct **vmas, int *nonblocking)
421{
422	long i = 0;
423	unsigned int page_mask;
424	struct vm_area_struct *vma = NULL;
425
426	if (!nr_pages)
427		return 0;
428
429	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
430
431	/*
432	 * If FOLL_FORCE is set then do not force a full fault as the hinting
433	 * fault information is unrelated to the reference behaviour of a task
434	 * using the address space
435	 */
436	if (!(gup_flags & FOLL_FORCE))
437		gup_flags |= FOLL_NUMA;
438
439	do {
440		struct page *page;
441		unsigned int foll_flags = gup_flags;
442		unsigned int page_increm;
443
444		/* first iteration or cross vma bound */
445		if (!vma || start >= vma->vm_end) {
446			vma = find_extend_vma(mm, start);
447			if (!vma && in_gate_area(mm, start)) {
448				int ret;
449				ret = get_gate_page(mm, start & PAGE_MASK,
450						gup_flags, &vma,
451						pages ? &pages[i] : NULL);
452				if (ret)
453					return i ? : ret;
454				page_mask = 0;
455				goto next_page;
456			}
457
458			if (!vma || check_vma_flags(vma, gup_flags))
459				return i ? : -EFAULT;
460			if (is_vm_hugetlb_page(vma)) {
461				i = follow_hugetlb_page(mm, vma, pages, vmas,
462						&start, &nr_pages, i,
463						gup_flags);
464				continue;
465			}
466		}
467retry:
468		/*
469		 * If we have a pending SIGKILL, don't keep faulting pages and
470		 * potentially allocating memory.
471		 */
472		if (unlikely(fatal_signal_pending(current)))
473			return i ? i : -ERESTARTSYS;
474		cond_resched();
475		page = follow_page_mask(vma, start, foll_flags, &page_mask);
476		if (!page) {
477			int ret;
478			ret = faultin_page(tsk, vma, start, &foll_flags,
479					nonblocking);
480			switch (ret) {
481			case 0:
482				goto retry;
483			case -EFAULT:
484			case -ENOMEM:
485			case -EHWPOISON:
486				return i ? i : ret;
487			case -EBUSY:
488				return i;
489			case -ENOENT:
490				goto next_page;
491			}
492			BUG();
493		}
494		if (IS_ERR(page))
495			return i ? i : PTR_ERR(page);
496		if (pages) {
497			pages[i] = page;
498			flush_anon_page(vma, page, start);
499			flush_dcache_page(page);
500			page_mask = 0;
501		}
502next_page:
503		if (vmas) {
504			vmas[i] = vma;
505			page_mask = 0;
506		}
507		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
508		if (page_increm > nr_pages)
509			page_increm = nr_pages;
510		i += page_increm;
511		start += page_increm * PAGE_SIZE;
512		nr_pages -= page_increm;
513	} while (nr_pages);
514	return i;
515}
516EXPORT_SYMBOL(__get_user_pages);
517
518/*
519 * fixup_user_fault() - manually resolve a user page fault
520 * @tsk:	the task_struct to use for page fault accounting, or
521 *		NULL if faults are not to be recorded.
522 * @mm:		mm_struct of target mm
523 * @address:	user address
524 * @fault_flags:flags to pass down to handle_mm_fault()
525 *
526 * This is meant to be called in the specific scenario where for locking reasons
527 * we try to access user memory in atomic context (within a pagefault_disable()
528 * section), this returns -EFAULT, and we want to resolve the user fault before
529 * trying again.
530 *
531 * Typically this is meant to be used by the futex code.
532 *
533 * The main difference with get_user_pages() is that this function will
534 * unconditionally call handle_mm_fault() which will in turn perform all the
535 * necessary SW fixup of the dirty and young bits in the PTE, while
536 * handle_mm_fault() only guarantees to update these in the struct page.
537 *
538 * This is important for some architectures where those bits also gate the
539 * access permission to the page because they are maintained in software.  On
540 * such architectures, gup() will not be enough to make a subsequent access
541 * succeed.
542 *
543 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
544 */
545int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
546		     unsigned long address, unsigned int fault_flags)
547{
548	struct vm_area_struct *vma;
549	vm_flags_t vm_flags;
550	int ret;
551
552	vma = find_extend_vma(mm, address);
553	if (!vma || address < vma->vm_start)
554		return -EFAULT;
555
556	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
557	if (!(vm_flags & vma->vm_flags))
558		return -EFAULT;
559
560	ret = handle_mm_fault(mm, vma, address, fault_flags);
561	if (ret & VM_FAULT_ERROR) {
562		if (ret & VM_FAULT_OOM)
563			return -ENOMEM;
564		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
565			return -EHWPOISON;
566		if (ret & VM_FAULT_SIGBUS)
567			return -EFAULT;
568		BUG();
569	}
570	if (tsk) {
571		if (ret & VM_FAULT_MAJOR)
572			tsk->maj_flt++;
573		else
574			tsk->min_flt++;
575	}
576	return 0;
577}
578
579/*
580 * get_user_pages() - pin user pages in memory
581 * @tsk:	the task_struct to use for page fault accounting, or
582 *		NULL if faults are not to be recorded.
583 * @mm:		mm_struct of target mm
584 * @start:	starting user address
585 * @nr_pages:	number of pages from start to pin
586 * @write:	whether pages will be written to by the caller
587 * @force:	whether to force access even when user mapping is currently
588 *		protected (but never forces write access to shared mapping).
589 * @pages:	array that receives pointers to the pages pinned.
590 *		Should be at least nr_pages long. Or NULL, if caller
591 *		only intends to ensure the pages are faulted in.
592 * @vmas:	array of pointers to vmas corresponding to each page.
593 *		Or NULL if the caller does not require them.
594 *
595 * Returns number of pages pinned. This may be fewer than the number
596 * requested. If nr_pages is 0 or negative, returns 0. If no pages
597 * were pinned, returns -errno. Each page returned must be released
598 * with a put_page() call when it is finished with. vmas will only
599 * remain valid while mmap_sem is held.
600 *
601 * Must be called with mmap_sem held for read or write.
602 *
603 * get_user_pages walks a process's page tables and takes a reference to
604 * each struct page that each user address corresponds to at a given
605 * instant. That is, it takes the page that would be accessed if a user
606 * thread accesses the given user virtual address at that instant.
607 *
608 * This does not guarantee that the page exists in the user mappings when
609 * get_user_pages returns, and there may even be a completely different
610 * page there in some cases (eg. if mmapped pagecache has been invalidated
611 * and subsequently re faulted). However it does guarantee that the page
612 * won't be freed completely. And mostly callers simply care that the page
613 * contains data that was valid *at some point in time*. Typically, an IO
614 * or similar operation cannot guarantee anything stronger anyway because
615 * locks can't be held over the syscall boundary.
616 *
617 * If write=0, the page must not be written to. If the page is written to,
618 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
619 * after the page is finished with, and before put_page is called.
620 *
621 * get_user_pages is typically used for fewer-copy IO operations, to get a
622 * handle on the memory by some means other than accesses via the user virtual
623 * addresses. The pages may be submitted for DMA to devices or accessed via
624 * their kernel linear mapping (via the kmap APIs). Care should be taken to
625 * use the correct cache flushing APIs.
626 *
627 * See also get_user_pages_fast, for performance critical applications.
628 */
629long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
630		unsigned long start, unsigned long nr_pages, int write,
631		int force, struct page **pages, struct vm_area_struct **vmas)
632{
633	int flags = FOLL_TOUCH;
634
635	if (pages)
636		flags |= FOLL_GET;
637	if (write)
638		flags |= FOLL_WRITE;
639	if (force)
640		flags |= FOLL_FORCE;
641
642	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
643				NULL);
644}
645EXPORT_SYMBOL(get_user_pages);
646
647/**
648 * get_dump_page() - pin user page in memory while writing it to core dump
649 * @addr: user address
650 *
651 * Returns struct page pointer of user page pinned for dump,
652 * to be freed afterwards by page_cache_release() or put_page().
653 *
654 * Returns NULL on any kind of failure - a hole must then be inserted into
655 * the corefile, to preserve alignment with its headers; and also returns
656 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
657 * allowing a hole to be left in the corefile to save diskspace.
658 *
659 * Called without mmap_sem, but after all other threads have been killed.
660 */
661#ifdef CONFIG_ELF_CORE
662struct page *get_dump_page(unsigned long addr)
663{
664	struct vm_area_struct *vma;
665	struct page *page;
666
667	if (__get_user_pages(current, current->mm, addr, 1,
668			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
669			     NULL) < 1)
670		return NULL;
671	flush_cache_page(vma, addr, page_to_pfn(page));
672	return page;
673}
674#endif /* CONFIG_ELF_CORE */
675