hugetlb.c revision 0fe6e20b9c4c53b3e97096ee73a0857f60aad43f
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22
23#include <asm/page.h>
24#include <asm/pgtable.h>
25#include <asm/io.h>
26
27#include <linux/hugetlb.h>
28#include <linux/node.h>
29#include "internal.h"
30
31const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
32static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33unsigned long hugepages_treat_as_movable;
34
35static int max_hstate;
36unsigned int default_hstate_idx;
37struct hstate hstates[HUGE_MAX_HSTATE];
38
39__initdata LIST_HEAD(huge_boot_pages);
40
41/* for command line parsing */
42static struct hstate * __initdata parsed_hstate;
43static unsigned long __initdata default_hstate_max_huge_pages;
44static unsigned long __initdata default_hstate_size;
45
46#define for_each_hstate(h) \
47	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48
49/*
50 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
51 */
52static DEFINE_SPINLOCK(hugetlb_lock);
53
54/*
55 * Region tracking -- allows tracking of reservations and instantiated pages
56 *                    across the pages in a mapping.
57 *
58 * The region data structures are protected by a combination of the mmap_sem
59 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
60 * must either hold the mmap_sem for write, or the mmap_sem for read and
61 * the hugetlb_instantiation mutex:
62 *
63 * 	down_write(&mm->mmap_sem);
64 * or
65 * 	down_read(&mm->mmap_sem);
66 * 	mutex_lock(&hugetlb_instantiation_mutex);
67 */
68struct file_region {
69	struct list_head link;
70	long from;
71	long to;
72};
73
74static long region_add(struct list_head *head, long f, long t)
75{
76	struct file_region *rg, *nrg, *trg;
77
78	/* Locate the region we are either in or before. */
79	list_for_each_entry(rg, head, link)
80		if (f <= rg->to)
81			break;
82
83	/* Round our left edge to the current segment if it encloses us. */
84	if (f > rg->from)
85		f = rg->from;
86
87	/* Check for and consume any regions we now overlap with. */
88	nrg = rg;
89	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
90		if (&rg->link == head)
91			break;
92		if (rg->from > t)
93			break;
94
95		/* If this area reaches higher then extend our area to
96		 * include it completely.  If this is not the first area
97		 * which we intend to reuse, free it. */
98		if (rg->to > t)
99			t = rg->to;
100		if (rg != nrg) {
101			list_del(&rg->link);
102			kfree(rg);
103		}
104	}
105	nrg->from = f;
106	nrg->to = t;
107	return 0;
108}
109
110static long region_chg(struct list_head *head, long f, long t)
111{
112	struct file_region *rg, *nrg;
113	long chg = 0;
114
115	/* Locate the region we are before or in. */
116	list_for_each_entry(rg, head, link)
117		if (f <= rg->to)
118			break;
119
120	/* If we are below the current region then a new region is required.
121	 * Subtle, allocate a new region at the position but make it zero
122	 * size such that we can guarantee to record the reservation. */
123	if (&rg->link == head || t < rg->from) {
124		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
125		if (!nrg)
126			return -ENOMEM;
127		nrg->from = f;
128		nrg->to   = f;
129		INIT_LIST_HEAD(&nrg->link);
130		list_add(&nrg->link, rg->link.prev);
131
132		return t - f;
133	}
134
135	/* Round our left edge to the current segment if it encloses us. */
136	if (f > rg->from)
137		f = rg->from;
138	chg = t - f;
139
140	/* Check for and consume any regions we now overlap with. */
141	list_for_each_entry(rg, rg->link.prev, link) {
142		if (&rg->link == head)
143			break;
144		if (rg->from > t)
145			return chg;
146
147		/* We overlap with this area, if it extends futher than
148		 * us then we must extend ourselves.  Account for its
149		 * existing reservation. */
150		if (rg->to > t) {
151			chg += rg->to - t;
152			t = rg->to;
153		}
154		chg -= rg->to - rg->from;
155	}
156	return chg;
157}
158
159static long region_truncate(struct list_head *head, long end)
160{
161	struct file_region *rg, *trg;
162	long chg = 0;
163
164	/* Locate the region we are either in or before. */
165	list_for_each_entry(rg, head, link)
166		if (end <= rg->to)
167			break;
168	if (&rg->link == head)
169		return 0;
170
171	/* If we are in the middle of a region then adjust it. */
172	if (end > rg->from) {
173		chg = rg->to - end;
174		rg->to = end;
175		rg = list_entry(rg->link.next, typeof(*rg), link);
176	}
177
178	/* Drop any remaining regions. */
179	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
180		if (&rg->link == head)
181			break;
182		chg += rg->to - rg->from;
183		list_del(&rg->link);
184		kfree(rg);
185	}
186	return chg;
187}
188
189static long region_count(struct list_head *head, long f, long t)
190{
191	struct file_region *rg;
192	long chg = 0;
193
194	/* Locate each segment we overlap with, and count that overlap. */
195	list_for_each_entry(rg, head, link) {
196		int seg_from;
197		int seg_to;
198
199		if (rg->to <= f)
200			continue;
201		if (rg->from >= t)
202			break;
203
204		seg_from = max(rg->from, f);
205		seg_to = min(rg->to, t);
206
207		chg += seg_to - seg_from;
208	}
209
210	return chg;
211}
212
213/*
214 * Convert the address within this vma to the page offset within
215 * the mapping, in pagecache page units; huge pages here.
216 */
217static pgoff_t vma_hugecache_offset(struct hstate *h,
218			struct vm_area_struct *vma, unsigned long address)
219{
220	return ((address - vma->vm_start) >> huge_page_shift(h)) +
221			(vma->vm_pgoff >> huge_page_order(h));
222}
223
224pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
225				     unsigned long address)
226{
227	return vma_hugecache_offset(hstate_vma(vma), vma, address);
228}
229
230/*
231 * Return the size of the pages allocated when backing a VMA. In the majority
232 * cases this will be same size as used by the page table entries.
233 */
234unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
235{
236	struct hstate *hstate;
237
238	if (!is_vm_hugetlb_page(vma))
239		return PAGE_SIZE;
240
241	hstate = hstate_vma(vma);
242
243	return 1UL << (hstate->order + PAGE_SHIFT);
244}
245EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
246
247/*
248 * Return the page size being used by the MMU to back a VMA. In the majority
249 * of cases, the page size used by the kernel matches the MMU size. On
250 * architectures where it differs, an architecture-specific version of this
251 * function is required.
252 */
253#ifndef vma_mmu_pagesize
254unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
255{
256	return vma_kernel_pagesize(vma);
257}
258#endif
259
260/*
261 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
262 * bits of the reservation map pointer, which are always clear due to
263 * alignment.
264 */
265#define HPAGE_RESV_OWNER    (1UL << 0)
266#define HPAGE_RESV_UNMAPPED (1UL << 1)
267#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
268
269/*
270 * These helpers are used to track how many pages are reserved for
271 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
272 * is guaranteed to have their future faults succeed.
273 *
274 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
275 * the reserve counters are updated with the hugetlb_lock held. It is safe
276 * to reset the VMA at fork() time as it is not in use yet and there is no
277 * chance of the global counters getting corrupted as a result of the values.
278 *
279 * The private mapping reservation is represented in a subtly different
280 * manner to a shared mapping.  A shared mapping has a region map associated
281 * with the underlying file, this region map represents the backing file
282 * pages which have ever had a reservation assigned which this persists even
283 * after the page is instantiated.  A private mapping has a region map
284 * associated with the original mmap which is attached to all VMAs which
285 * reference it, this region map represents those offsets which have consumed
286 * reservation ie. where pages have been instantiated.
287 */
288static unsigned long get_vma_private_data(struct vm_area_struct *vma)
289{
290	return (unsigned long)vma->vm_private_data;
291}
292
293static void set_vma_private_data(struct vm_area_struct *vma,
294							unsigned long value)
295{
296	vma->vm_private_data = (void *)value;
297}
298
299struct resv_map {
300	struct kref refs;
301	struct list_head regions;
302};
303
304static struct resv_map *resv_map_alloc(void)
305{
306	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
307	if (!resv_map)
308		return NULL;
309
310	kref_init(&resv_map->refs);
311	INIT_LIST_HEAD(&resv_map->regions);
312
313	return resv_map;
314}
315
316static void resv_map_release(struct kref *ref)
317{
318	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
319
320	/* Clear out any active regions before we release the map. */
321	region_truncate(&resv_map->regions, 0);
322	kfree(resv_map);
323}
324
325static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
326{
327	VM_BUG_ON(!is_vm_hugetlb_page(vma));
328	if (!(vma->vm_flags & VM_MAYSHARE))
329		return (struct resv_map *)(get_vma_private_data(vma) &
330							~HPAGE_RESV_MASK);
331	return NULL;
332}
333
334static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
335{
336	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
338
339	set_vma_private_data(vma, (get_vma_private_data(vma) &
340				HPAGE_RESV_MASK) | (unsigned long)map);
341}
342
343static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
344{
345	VM_BUG_ON(!is_vm_hugetlb_page(vma));
346	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
347
348	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
349}
350
351static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
352{
353	VM_BUG_ON(!is_vm_hugetlb_page(vma));
354
355	return (get_vma_private_data(vma) & flag) != 0;
356}
357
358/* Decrement the reserved pages in the hugepage pool by one */
359static void decrement_hugepage_resv_vma(struct hstate *h,
360			struct vm_area_struct *vma)
361{
362	if (vma->vm_flags & VM_NORESERVE)
363		return;
364
365	if (vma->vm_flags & VM_MAYSHARE) {
366		/* Shared mappings always use reserves */
367		h->resv_huge_pages--;
368	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
369		/*
370		 * Only the process that called mmap() has reserves for
371		 * private mappings.
372		 */
373		h->resv_huge_pages--;
374	}
375}
376
377/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
378void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
379{
380	VM_BUG_ON(!is_vm_hugetlb_page(vma));
381	if (!(vma->vm_flags & VM_MAYSHARE))
382		vma->vm_private_data = (void *)0;
383}
384
385/* Returns true if the VMA has associated reserve pages */
386static int vma_has_reserves(struct vm_area_struct *vma)
387{
388	if (vma->vm_flags & VM_MAYSHARE)
389		return 1;
390	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
391		return 1;
392	return 0;
393}
394
395static void clear_gigantic_page(struct page *page,
396			unsigned long addr, unsigned long sz)
397{
398	int i;
399	struct page *p = page;
400
401	might_sleep();
402	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
403		cond_resched();
404		clear_user_highpage(p, addr + i * PAGE_SIZE);
405	}
406}
407static void clear_huge_page(struct page *page,
408			unsigned long addr, unsigned long sz)
409{
410	int i;
411
412	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
413		clear_gigantic_page(page, addr, sz);
414		return;
415	}
416
417	might_sleep();
418	for (i = 0; i < sz/PAGE_SIZE; i++) {
419		cond_resched();
420		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
421	}
422}
423
424static void copy_gigantic_page(struct page *dst, struct page *src,
425			   unsigned long addr, struct vm_area_struct *vma)
426{
427	int i;
428	struct hstate *h = hstate_vma(vma);
429	struct page *dst_base = dst;
430	struct page *src_base = src;
431	might_sleep();
432	for (i = 0; i < pages_per_huge_page(h); ) {
433		cond_resched();
434		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
435
436		i++;
437		dst = mem_map_next(dst, dst_base, i);
438		src = mem_map_next(src, src_base, i);
439	}
440}
441static void copy_huge_page(struct page *dst, struct page *src,
442			   unsigned long addr, struct vm_area_struct *vma)
443{
444	int i;
445	struct hstate *h = hstate_vma(vma);
446
447	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
448		copy_gigantic_page(dst, src, addr, vma);
449		return;
450	}
451
452	might_sleep();
453	for (i = 0; i < pages_per_huge_page(h); i++) {
454		cond_resched();
455		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
456	}
457}
458
459static void enqueue_huge_page(struct hstate *h, struct page *page)
460{
461	int nid = page_to_nid(page);
462	list_add(&page->lru, &h->hugepage_freelists[nid]);
463	h->free_huge_pages++;
464	h->free_huge_pages_node[nid]++;
465}
466
467static struct page *dequeue_huge_page_vma(struct hstate *h,
468				struct vm_area_struct *vma,
469				unsigned long address, int avoid_reserve)
470{
471	int nid;
472	struct page *page = NULL;
473	struct mempolicy *mpol;
474	nodemask_t *nodemask;
475	struct zonelist *zonelist;
476	struct zone *zone;
477	struct zoneref *z;
478
479	get_mems_allowed();
480	zonelist = huge_zonelist(vma, address,
481					htlb_alloc_mask, &mpol, &nodemask);
482	/*
483	 * A child process with MAP_PRIVATE mappings created by their parent
484	 * have no page reserves. This check ensures that reservations are
485	 * not "stolen". The child may still get SIGKILLed
486	 */
487	if (!vma_has_reserves(vma) &&
488			h->free_huge_pages - h->resv_huge_pages == 0)
489		goto err;
490
491	/* If reserves cannot be used, ensure enough pages are in the pool */
492	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
493		goto err;;
494
495	for_each_zone_zonelist_nodemask(zone, z, zonelist,
496						MAX_NR_ZONES - 1, nodemask) {
497		nid = zone_to_nid(zone);
498		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
499		    !list_empty(&h->hugepage_freelists[nid])) {
500			page = list_entry(h->hugepage_freelists[nid].next,
501					  struct page, lru);
502			list_del(&page->lru);
503			h->free_huge_pages--;
504			h->free_huge_pages_node[nid]--;
505
506			if (!avoid_reserve)
507				decrement_hugepage_resv_vma(h, vma);
508
509			break;
510		}
511	}
512err:
513	mpol_cond_put(mpol);
514	put_mems_allowed();
515	return page;
516}
517
518static void update_and_free_page(struct hstate *h, struct page *page)
519{
520	int i;
521
522	VM_BUG_ON(h->order >= MAX_ORDER);
523
524	h->nr_huge_pages--;
525	h->nr_huge_pages_node[page_to_nid(page)]--;
526	for (i = 0; i < pages_per_huge_page(h); i++) {
527		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
528				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
529				1 << PG_private | 1<< PG_writeback);
530	}
531	set_compound_page_dtor(page, NULL);
532	set_page_refcounted(page);
533	arch_release_hugepage(page);
534	__free_pages(page, huge_page_order(h));
535}
536
537struct hstate *size_to_hstate(unsigned long size)
538{
539	struct hstate *h;
540
541	for_each_hstate(h) {
542		if (huge_page_size(h) == size)
543			return h;
544	}
545	return NULL;
546}
547
548static void free_huge_page(struct page *page)
549{
550	/*
551	 * Can't pass hstate in here because it is called from the
552	 * compound page destructor.
553	 */
554	struct hstate *h = page_hstate(page);
555	int nid = page_to_nid(page);
556	struct address_space *mapping;
557
558	mapping = (struct address_space *) page_private(page);
559	set_page_private(page, 0);
560	page->mapping = NULL;
561	BUG_ON(page_count(page));
562	BUG_ON(page_mapcount(page));
563	INIT_LIST_HEAD(&page->lru);
564
565	spin_lock(&hugetlb_lock);
566	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
567		update_and_free_page(h, page);
568		h->surplus_huge_pages--;
569		h->surplus_huge_pages_node[nid]--;
570	} else {
571		enqueue_huge_page(h, page);
572	}
573	spin_unlock(&hugetlb_lock);
574	if (mapping)
575		hugetlb_put_quota(mapping, 1);
576}
577
578static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
579{
580	set_compound_page_dtor(page, free_huge_page);
581	spin_lock(&hugetlb_lock);
582	h->nr_huge_pages++;
583	h->nr_huge_pages_node[nid]++;
584	spin_unlock(&hugetlb_lock);
585	put_page(page); /* free it into the hugepage allocator */
586}
587
588static void prep_compound_gigantic_page(struct page *page, unsigned long order)
589{
590	int i;
591	int nr_pages = 1 << order;
592	struct page *p = page + 1;
593
594	/* we rely on prep_new_huge_page to set the destructor */
595	set_compound_order(page, order);
596	__SetPageHead(page);
597	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
598		__SetPageTail(p);
599		p->first_page = page;
600	}
601}
602
603int PageHuge(struct page *page)
604{
605	compound_page_dtor *dtor;
606
607	if (!PageCompound(page))
608		return 0;
609
610	page = compound_head(page);
611	dtor = get_compound_page_dtor(page);
612
613	return dtor == free_huge_page;
614}
615
616static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
617{
618	struct page *page;
619
620	if (h->order >= MAX_ORDER)
621		return NULL;
622
623	page = alloc_pages_exact_node(nid,
624		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
625						__GFP_REPEAT|__GFP_NOWARN,
626		huge_page_order(h));
627	if (page) {
628		if (arch_prepare_hugepage(page)) {
629			__free_pages(page, huge_page_order(h));
630			return NULL;
631		}
632		prep_new_huge_page(h, page, nid);
633	}
634
635	return page;
636}
637
638/*
639 * common helper functions for hstate_next_node_to_{alloc|free}.
640 * We may have allocated or freed a huge page based on a different
641 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
642 * be outside of *nodes_allowed.  Ensure that we use an allowed
643 * node for alloc or free.
644 */
645static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
646{
647	nid = next_node(nid, *nodes_allowed);
648	if (nid == MAX_NUMNODES)
649		nid = first_node(*nodes_allowed);
650	VM_BUG_ON(nid >= MAX_NUMNODES);
651
652	return nid;
653}
654
655static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
656{
657	if (!node_isset(nid, *nodes_allowed))
658		nid = next_node_allowed(nid, nodes_allowed);
659	return nid;
660}
661
662/*
663 * returns the previously saved node ["this node"] from which to
664 * allocate a persistent huge page for the pool and advance the
665 * next node from which to allocate, handling wrap at end of node
666 * mask.
667 */
668static int hstate_next_node_to_alloc(struct hstate *h,
669					nodemask_t *nodes_allowed)
670{
671	int nid;
672
673	VM_BUG_ON(!nodes_allowed);
674
675	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
676	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
677
678	return nid;
679}
680
681static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
682{
683	struct page *page;
684	int start_nid;
685	int next_nid;
686	int ret = 0;
687
688	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
689	next_nid = start_nid;
690
691	do {
692		page = alloc_fresh_huge_page_node(h, next_nid);
693		if (page) {
694			ret = 1;
695			break;
696		}
697		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
698	} while (next_nid != start_nid);
699
700	if (ret)
701		count_vm_event(HTLB_BUDDY_PGALLOC);
702	else
703		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
704
705	return ret;
706}
707
708/*
709 * helper for free_pool_huge_page() - return the previously saved
710 * node ["this node"] from which to free a huge page.  Advance the
711 * next node id whether or not we find a free huge page to free so
712 * that the next attempt to free addresses the next node.
713 */
714static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
715{
716	int nid;
717
718	VM_BUG_ON(!nodes_allowed);
719
720	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
721	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
722
723	return nid;
724}
725
726/*
727 * Free huge page from pool from next node to free.
728 * Attempt to keep persistent huge pages more or less
729 * balanced over allowed nodes.
730 * Called with hugetlb_lock locked.
731 */
732static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
733							 bool acct_surplus)
734{
735	int start_nid;
736	int next_nid;
737	int ret = 0;
738
739	start_nid = hstate_next_node_to_free(h, nodes_allowed);
740	next_nid = start_nid;
741
742	do {
743		/*
744		 * If we're returning unused surplus pages, only examine
745		 * nodes with surplus pages.
746		 */
747		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
748		    !list_empty(&h->hugepage_freelists[next_nid])) {
749			struct page *page =
750				list_entry(h->hugepage_freelists[next_nid].next,
751					  struct page, lru);
752			list_del(&page->lru);
753			h->free_huge_pages--;
754			h->free_huge_pages_node[next_nid]--;
755			if (acct_surplus) {
756				h->surplus_huge_pages--;
757				h->surplus_huge_pages_node[next_nid]--;
758			}
759			update_and_free_page(h, page);
760			ret = 1;
761			break;
762		}
763		next_nid = hstate_next_node_to_free(h, nodes_allowed);
764	} while (next_nid != start_nid);
765
766	return ret;
767}
768
769static struct page *alloc_buddy_huge_page(struct hstate *h,
770			struct vm_area_struct *vma, unsigned long address)
771{
772	struct page *page;
773	unsigned int nid;
774
775	if (h->order >= MAX_ORDER)
776		return NULL;
777
778	/*
779	 * Assume we will successfully allocate the surplus page to
780	 * prevent racing processes from causing the surplus to exceed
781	 * overcommit
782	 *
783	 * This however introduces a different race, where a process B
784	 * tries to grow the static hugepage pool while alloc_pages() is
785	 * called by process A. B will only examine the per-node
786	 * counters in determining if surplus huge pages can be
787	 * converted to normal huge pages in adjust_pool_surplus(). A
788	 * won't be able to increment the per-node counter, until the
789	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
790	 * no more huge pages can be converted from surplus to normal
791	 * state (and doesn't try to convert again). Thus, we have a
792	 * case where a surplus huge page exists, the pool is grown, and
793	 * the surplus huge page still exists after, even though it
794	 * should just have been converted to a normal huge page. This
795	 * does not leak memory, though, as the hugepage will be freed
796	 * once it is out of use. It also does not allow the counters to
797	 * go out of whack in adjust_pool_surplus() as we don't modify
798	 * the node values until we've gotten the hugepage and only the
799	 * per-node value is checked there.
800	 */
801	spin_lock(&hugetlb_lock);
802	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
803		spin_unlock(&hugetlb_lock);
804		return NULL;
805	} else {
806		h->nr_huge_pages++;
807		h->surplus_huge_pages++;
808	}
809	spin_unlock(&hugetlb_lock);
810
811	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
812					__GFP_REPEAT|__GFP_NOWARN,
813					huge_page_order(h));
814
815	if (page && arch_prepare_hugepage(page)) {
816		__free_pages(page, huge_page_order(h));
817		return NULL;
818	}
819
820	spin_lock(&hugetlb_lock);
821	if (page) {
822		/*
823		 * This page is now managed by the hugetlb allocator and has
824		 * no users -- drop the buddy allocator's reference.
825		 */
826		put_page_testzero(page);
827		VM_BUG_ON(page_count(page));
828		nid = page_to_nid(page);
829		set_compound_page_dtor(page, free_huge_page);
830		/*
831		 * We incremented the global counters already
832		 */
833		h->nr_huge_pages_node[nid]++;
834		h->surplus_huge_pages_node[nid]++;
835		__count_vm_event(HTLB_BUDDY_PGALLOC);
836	} else {
837		h->nr_huge_pages--;
838		h->surplus_huge_pages--;
839		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
840	}
841	spin_unlock(&hugetlb_lock);
842
843	return page;
844}
845
846/*
847 * Increase the hugetlb pool such that it can accomodate a reservation
848 * of size 'delta'.
849 */
850static int gather_surplus_pages(struct hstate *h, int delta)
851{
852	struct list_head surplus_list;
853	struct page *page, *tmp;
854	int ret, i;
855	int needed, allocated;
856
857	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
858	if (needed <= 0) {
859		h->resv_huge_pages += delta;
860		return 0;
861	}
862
863	allocated = 0;
864	INIT_LIST_HEAD(&surplus_list);
865
866	ret = -ENOMEM;
867retry:
868	spin_unlock(&hugetlb_lock);
869	for (i = 0; i < needed; i++) {
870		page = alloc_buddy_huge_page(h, NULL, 0);
871		if (!page) {
872			/*
873			 * We were not able to allocate enough pages to
874			 * satisfy the entire reservation so we free what
875			 * we've allocated so far.
876			 */
877			spin_lock(&hugetlb_lock);
878			needed = 0;
879			goto free;
880		}
881
882		list_add(&page->lru, &surplus_list);
883	}
884	allocated += needed;
885
886	/*
887	 * After retaking hugetlb_lock, we need to recalculate 'needed'
888	 * because either resv_huge_pages or free_huge_pages may have changed.
889	 */
890	spin_lock(&hugetlb_lock);
891	needed = (h->resv_huge_pages + delta) -
892			(h->free_huge_pages + allocated);
893	if (needed > 0)
894		goto retry;
895
896	/*
897	 * The surplus_list now contains _at_least_ the number of extra pages
898	 * needed to accomodate the reservation.  Add the appropriate number
899	 * of pages to the hugetlb pool and free the extras back to the buddy
900	 * allocator.  Commit the entire reservation here to prevent another
901	 * process from stealing the pages as they are added to the pool but
902	 * before they are reserved.
903	 */
904	needed += allocated;
905	h->resv_huge_pages += delta;
906	ret = 0;
907free:
908	/* Free the needed pages to the hugetlb pool */
909	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
910		if ((--needed) < 0)
911			break;
912		list_del(&page->lru);
913		enqueue_huge_page(h, page);
914	}
915
916	/* Free unnecessary surplus pages to the buddy allocator */
917	if (!list_empty(&surplus_list)) {
918		spin_unlock(&hugetlb_lock);
919		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
920			list_del(&page->lru);
921			/*
922			 * The page has a reference count of zero already, so
923			 * call free_huge_page directly instead of using
924			 * put_page.  This must be done with hugetlb_lock
925			 * unlocked which is safe because free_huge_page takes
926			 * hugetlb_lock before deciding how to free the page.
927			 */
928			free_huge_page(page);
929		}
930		spin_lock(&hugetlb_lock);
931	}
932
933	return ret;
934}
935
936/*
937 * When releasing a hugetlb pool reservation, any surplus pages that were
938 * allocated to satisfy the reservation must be explicitly freed if they were
939 * never used.
940 * Called with hugetlb_lock held.
941 */
942static void return_unused_surplus_pages(struct hstate *h,
943					unsigned long unused_resv_pages)
944{
945	unsigned long nr_pages;
946
947	/* Uncommit the reservation */
948	h->resv_huge_pages -= unused_resv_pages;
949
950	/* Cannot return gigantic pages currently */
951	if (h->order >= MAX_ORDER)
952		return;
953
954	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
955
956	/*
957	 * We want to release as many surplus pages as possible, spread
958	 * evenly across all nodes with memory. Iterate across these nodes
959	 * until we can no longer free unreserved surplus pages. This occurs
960	 * when the nodes with surplus pages have no free pages.
961	 * free_pool_huge_page() will balance the the freed pages across the
962	 * on-line nodes with memory and will handle the hstate accounting.
963	 */
964	while (nr_pages--) {
965		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
966			break;
967	}
968}
969
970/*
971 * Determine if the huge page at addr within the vma has an associated
972 * reservation.  Where it does not we will need to logically increase
973 * reservation and actually increase quota before an allocation can occur.
974 * Where any new reservation would be required the reservation change is
975 * prepared, but not committed.  Once the page has been quota'd allocated
976 * an instantiated the change should be committed via vma_commit_reservation.
977 * No action is required on failure.
978 */
979static long vma_needs_reservation(struct hstate *h,
980			struct vm_area_struct *vma, unsigned long addr)
981{
982	struct address_space *mapping = vma->vm_file->f_mapping;
983	struct inode *inode = mapping->host;
984
985	if (vma->vm_flags & VM_MAYSHARE) {
986		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
987		return region_chg(&inode->i_mapping->private_list,
988							idx, idx + 1);
989
990	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
991		return 1;
992
993	} else  {
994		long err;
995		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
996		struct resv_map *reservations = vma_resv_map(vma);
997
998		err = region_chg(&reservations->regions, idx, idx + 1);
999		if (err < 0)
1000			return err;
1001		return 0;
1002	}
1003}
1004static void vma_commit_reservation(struct hstate *h,
1005			struct vm_area_struct *vma, unsigned long addr)
1006{
1007	struct address_space *mapping = vma->vm_file->f_mapping;
1008	struct inode *inode = mapping->host;
1009
1010	if (vma->vm_flags & VM_MAYSHARE) {
1011		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1013
1014	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1015		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016		struct resv_map *reservations = vma_resv_map(vma);
1017
1018		/* Mark this page used in the map. */
1019		region_add(&reservations->regions, idx, idx + 1);
1020	}
1021}
1022
1023static struct page *alloc_huge_page(struct vm_area_struct *vma,
1024				    unsigned long addr, int avoid_reserve)
1025{
1026	struct hstate *h = hstate_vma(vma);
1027	struct page *page;
1028	struct address_space *mapping = vma->vm_file->f_mapping;
1029	struct inode *inode = mapping->host;
1030	long chg;
1031
1032	/*
1033	 * Processes that did not create the mapping will have no reserves and
1034	 * will not have accounted against quota. Check that the quota can be
1035	 * made before satisfying the allocation
1036	 * MAP_NORESERVE mappings may also need pages and quota allocated
1037	 * if no reserve mapping overlaps.
1038	 */
1039	chg = vma_needs_reservation(h, vma, addr);
1040	if (chg < 0)
1041		return ERR_PTR(chg);
1042	if (chg)
1043		if (hugetlb_get_quota(inode->i_mapping, chg))
1044			return ERR_PTR(-ENOSPC);
1045
1046	spin_lock(&hugetlb_lock);
1047	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1048	spin_unlock(&hugetlb_lock);
1049
1050	if (!page) {
1051		page = alloc_buddy_huge_page(h, vma, addr);
1052		if (!page) {
1053			hugetlb_put_quota(inode->i_mapping, chg);
1054			return ERR_PTR(-VM_FAULT_SIGBUS);
1055		}
1056	}
1057
1058	set_page_refcounted(page);
1059	set_page_private(page, (unsigned long) mapping);
1060
1061	vma_commit_reservation(h, vma, addr);
1062
1063	return page;
1064}
1065
1066int __weak alloc_bootmem_huge_page(struct hstate *h)
1067{
1068	struct huge_bootmem_page *m;
1069	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1070
1071	while (nr_nodes) {
1072		void *addr;
1073
1074		addr = __alloc_bootmem_node_nopanic(
1075				NODE_DATA(hstate_next_node_to_alloc(h,
1076						&node_states[N_HIGH_MEMORY])),
1077				huge_page_size(h), huge_page_size(h), 0);
1078
1079		if (addr) {
1080			/*
1081			 * Use the beginning of the huge page to store the
1082			 * huge_bootmem_page struct (until gather_bootmem
1083			 * puts them into the mem_map).
1084			 */
1085			m = addr;
1086			goto found;
1087		}
1088		nr_nodes--;
1089	}
1090	return 0;
1091
1092found:
1093	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1094	/* Put them into a private list first because mem_map is not up yet */
1095	list_add(&m->list, &huge_boot_pages);
1096	m->hstate = h;
1097	return 1;
1098}
1099
1100static void prep_compound_huge_page(struct page *page, int order)
1101{
1102	if (unlikely(order > (MAX_ORDER - 1)))
1103		prep_compound_gigantic_page(page, order);
1104	else
1105		prep_compound_page(page, order);
1106}
1107
1108/* Put bootmem huge pages into the standard lists after mem_map is up */
1109static void __init gather_bootmem_prealloc(void)
1110{
1111	struct huge_bootmem_page *m;
1112
1113	list_for_each_entry(m, &huge_boot_pages, list) {
1114		struct page *page = virt_to_page(m);
1115		struct hstate *h = m->hstate;
1116		__ClearPageReserved(page);
1117		WARN_ON(page_count(page) != 1);
1118		prep_compound_huge_page(page, h->order);
1119		prep_new_huge_page(h, page, page_to_nid(page));
1120	}
1121}
1122
1123static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1124{
1125	unsigned long i;
1126
1127	for (i = 0; i < h->max_huge_pages; ++i) {
1128		if (h->order >= MAX_ORDER) {
1129			if (!alloc_bootmem_huge_page(h))
1130				break;
1131		} else if (!alloc_fresh_huge_page(h,
1132					 &node_states[N_HIGH_MEMORY]))
1133			break;
1134	}
1135	h->max_huge_pages = i;
1136}
1137
1138static void __init hugetlb_init_hstates(void)
1139{
1140	struct hstate *h;
1141
1142	for_each_hstate(h) {
1143		/* oversize hugepages were init'ed in early boot */
1144		if (h->order < MAX_ORDER)
1145			hugetlb_hstate_alloc_pages(h);
1146	}
1147}
1148
1149static char * __init memfmt(char *buf, unsigned long n)
1150{
1151	if (n >= (1UL << 30))
1152		sprintf(buf, "%lu GB", n >> 30);
1153	else if (n >= (1UL << 20))
1154		sprintf(buf, "%lu MB", n >> 20);
1155	else
1156		sprintf(buf, "%lu KB", n >> 10);
1157	return buf;
1158}
1159
1160static void __init report_hugepages(void)
1161{
1162	struct hstate *h;
1163
1164	for_each_hstate(h) {
1165		char buf[32];
1166		printk(KERN_INFO "HugeTLB registered %s page size, "
1167				 "pre-allocated %ld pages\n",
1168			memfmt(buf, huge_page_size(h)),
1169			h->free_huge_pages);
1170	}
1171}
1172
1173#ifdef CONFIG_HIGHMEM
1174static void try_to_free_low(struct hstate *h, unsigned long count,
1175						nodemask_t *nodes_allowed)
1176{
1177	int i;
1178
1179	if (h->order >= MAX_ORDER)
1180		return;
1181
1182	for_each_node_mask(i, *nodes_allowed) {
1183		struct page *page, *next;
1184		struct list_head *freel = &h->hugepage_freelists[i];
1185		list_for_each_entry_safe(page, next, freel, lru) {
1186			if (count >= h->nr_huge_pages)
1187				return;
1188			if (PageHighMem(page))
1189				continue;
1190			list_del(&page->lru);
1191			update_and_free_page(h, page);
1192			h->free_huge_pages--;
1193			h->free_huge_pages_node[page_to_nid(page)]--;
1194		}
1195	}
1196}
1197#else
1198static inline void try_to_free_low(struct hstate *h, unsigned long count,
1199						nodemask_t *nodes_allowed)
1200{
1201}
1202#endif
1203
1204/*
1205 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1206 * balanced by operating on them in a round-robin fashion.
1207 * Returns 1 if an adjustment was made.
1208 */
1209static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1210				int delta)
1211{
1212	int start_nid, next_nid;
1213	int ret = 0;
1214
1215	VM_BUG_ON(delta != -1 && delta != 1);
1216
1217	if (delta < 0)
1218		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1219	else
1220		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1221	next_nid = start_nid;
1222
1223	do {
1224		int nid = next_nid;
1225		if (delta < 0)  {
1226			/*
1227			 * To shrink on this node, there must be a surplus page
1228			 */
1229			if (!h->surplus_huge_pages_node[nid]) {
1230				next_nid = hstate_next_node_to_alloc(h,
1231								nodes_allowed);
1232				continue;
1233			}
1234		}
1235		if (delta > 0) {
1236			/*
1237			 * Surplus cannot exceed the total number of pages
1238			 */
1239			if (h->surplus_huge_pages_node[nid] >=
1240						h->nr_huge_pages_node[nid]) {
1241				next_nid = hstate_next_node_to_free(h,
1242								nodes_allowed);
1243				continue;
1244			}
1245		}
1246
1247		h->surplus_huge_pages += delta;
1248		h->surplus_huge_pages_node[nid] += delta;
1249		ret = 1;
1250		break;
1251	} while (next_nid != start_nid);
1252
1253	return ret;
1254}
1255
1256#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1257static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1258						nodemask_t *nodes_allowed)
1259{
1260	unsigned long min_count, ret;
1261
1262	if (h->order >= MAX_ORDER)
1263		return h->max_huge_pages;
1264
1265	/*
1266	 * Increase the pool size
1267	 * First take pages out of surplus state.  Then make up the
1268	 * remaining difference by allocating fresh huge pages.
1269	 *
1270	 * We might race with alloc_buddy_huge_page() here and be unable
1271	 * to convert a surplus huge page to a normal huge page. That is
1272	 * not critical, though, it just means the overall size of the
1273	 * pool might be one hugepage larger than it needs to be, but
1274	 * within all the constraints specified by the sysctls.
1275	 */
1276	spin_lock(&hugetlb_lock);
1277	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1278		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1279			break;
1280	}
1281
1282	while (count > persistent_huge_pages(h)) {
1283		/*
1284		 * If this allocation races such that we no longer need the
1285		 * page, free_huge_page will handle it by freeing the page
1286		 * and reducing the surplus.
1287		 */
1288		spin_unlock(&hugetlb_lock);
1289		ret = alloc_fresh_huge_page(h, nodes_allowed);
1290		spin_lock(&hugetlb_lock);
1291		if (!ret)
1292			goto out;
1293
1294		/* Bail for signals. Probably ctrl-c from user */
1295		if (signal_pending(current))
1296			goto out;
1297	}
1298
1299	/*
1300	 * Decrease the pool size
1301	 * First return free pages to the buddy allocator (being careful
1302	 * to keep enough around to satisfy reservations).  Then place
1303	 * pages into surplus state as needed so the pool will shrink
1304	 * to the desired size as pages become free.
1305	 *
1306	 * By placing pages into the surplus state independent of the
1307	 * overcommit value, we are allowing the surplus pool size to
1308	 * exceed overcommit. There are few sane options here. Since
1309	 * alloc_buddy_huge_page() is checking the global counter,
1310	 * though, we'll note that we're not allowed to exceed surplus
1311	 * and won't grow the pool anywhere else. Not until one of the
1312	 * sysctls are changed, or the surplus pages go out of use.
1313	 */
1314	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1315	min_count = max(count, min_count);
1316	try_to_free_low(h, min_count, nodes_allowed);
1317	while (min_count < persistent_huge_pages(h)) {
1318		if (!free_pool_huge_page(h, nodes_allowed, 0))
1319			break;
1320	}
1321	while (count < persistent_huge_pages(h)) {
1322		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1323			break;
1324	}
1325out:
1326	ret = persistent_huge_pages(h);
1327	spin_unlock(&hugetlb_lock);
1328	return ret;
1329}
1330
1331#define HSTATE_ATTR_RO(_name) \
1332	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1333
1334#define HSTATE_ATTR(_name) \
1335	static struct kobj_attribute _name##_attr = \
1336		__ATTR(_name, 0644, _name##_show, _name##_store)
1337
1338static struct kobject *hugepages_kobj;
1339static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1340
1341static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1342
1343static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1344{
1345	int i;
1346
1347	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1348		if (hstate_kobjs[i] == kobj) {
1349			if (nidp)
1350				*nidp = NUMA_NO_NODE;
1351			return &hstates[i];
1352		}
1353
1354	return kobj_to_node_hstate(kobj, nidp);
1355}
1356
1357static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1358					struct kobj_attribute *attr, char *buf)
1359{
1360	struct hstate *h;
1361	unsigned long nr_huge_pages;
1362	int nid;
1363
1364	h = kobj_to_hstate(kobj, &nid);
1365	if (nid == NUMA_NO_NODE)
1366		nr_huge_pages = h->nr_huge_pages;
1367	else
1368		nr_huge_pages = h->nr_huge_pages_node[nid];
1369
1370	return sprintf(buf, "%lu\n", nr_huge_pages);
1371}
1372static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1373			struct kobject *kobj, struct kobj_attribute *attr,
1374			const char *buf, size_t len)
1375{
1376	int err;
1377	int nid;
1378	unsigned long count;
1379	struct hstate *h;
1380	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1381
1382	err = strict_strtoul(buf, 10, &count);
1383	if (err)
1384		return 0;
1385
1386	h = kobj_to_hstate(kobj, &nid);
1387	if (nid == NUMA_NO_NODE) {
1388		/*
1389		 * global hstate attribute
1390		 */
1391		if (!(obey_mempolicy &&
1392				init_nodemask_of_mempolicy(nodes_allowed))) {
1393			NODEMASK_FREE(nodes_allowed);
1394			nodes_allowed = &node_states[N_HIGH_MEMORY];
1395		}
1396	} else if (nodes_allowed) {
1397		/*
1398		 * per node hstate attribute: adjust count to global,
1399		 * but restrict alloc/free to the specified node.
1400		 */
1401		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1402		init_nodemask_of_node(nodes_allowed, nid);
1403	} else
1404		nodes_allowed = &node_states[N_HIGH_MEMORY];
1405
1406	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1407
1408	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1409		NODEMASK_FREE(nodes_allowed);
1410
1411	return len;
1412}
1413
1414static ssize_t nr_hugepages_show(struct kobject *kobj,
1415				       struct kobj_attribute *attr, char *buf)
1416{
1417	return nr_hugepages_show_common(kobj, attr, buf);
1418}
1419
1420static ssize_t nr_hugepages_store(struct kobject *kobj,
1421	       struct kobj_attribute *attr, const char *buf, size_t len)
1422{
1423	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1424}
1425HSTATE_ATTR(nr_hugepages);
1426
1427#ifdef CONFIG_NUMA
1428
1429/*
1430 * hstate attribute for optionally mempolicy-based constraint on persistent
1431 * huge page alloc/free.
1432 */
1433static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1434				       struct kobj_attribute *attr, char *buf)
1435{
1436	return nr_hugepages_show_common(kobj, attr, buf);
1437}
1438
1439static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1440	       struct kobj_attribute *attr, const char *buf, size_t len)
1441{
1442	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1443}
1444HSTATE_ATTR(nr_hugepages_mempolicy);
1445#endif
1446
1447
1448static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1449					struct kobj_attribute *attr, char *buf)
1450{
1451	struct hstate *h = kobj_to_hstate(kobj, NULL);
1452	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1453}
1454static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1455		struct kobj_attribute *attr, const char *buf, size_t count)
1456{
1457	int err;
1458	unsigned long input;
1459	struct hstate *h = kobj_to_hstate(kobj, NULL);
1460
1461	err = strict_strtoul(buf, 10, &input);
1462	if (err)
1463		return 0;
1464
1465	spin_lock(&hugetlb_lock);
1466	h->nr_overcommit_huge_pages = input;
1467	spin_unlock(&hugetlb_lock);
1468
1469	return count;
1470}
1471HSTATE_ATTR(nr_overcommit_hugepages);
1472
1473static ssize_t free_hugepages_show(struct kobject *kobj,
1474					struct kobj_attribute *attr, char *buf)
1475{
1476	struct hstate *h;
1477	unsigned long free_huge_pages;
1478	int nid;
1479
1480	h = kobj_to_hstate(kobj, &nid);
1481	if (nid == NUMA_NO_NODE)
1482		free_huge_pages = h->free_huge_pages;
1483	else
1484		free_huge_pages = h->free_huge_pages_node[nid];
1485
1486	return sprintf(buf, "%lu\n", free_huge_pages);
1487}
1488HSTATE_ATTR_RO(free_hugepages);
1489
1490static ssize_t resv_hugepages_show(struct kobject *kobj,
1491					struct kobj_attribute *attr, char *buf)
1492{
1493	struct hstate *h = kobj_to_hstate(kobj, NULL);
1494	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1495}
1496HSTATE_ATTR_RO(resv_hugepages);
1497
1498static ssize_t surplus_hugepages_show(struct kobject *kobj,
1499					struct kobj_attribute *attr, char *buf)
1500{
1501	struct hstate *h;
1502	unsigned long surplus_huge_pages;
1503	int nid;
1504
1505	h = kobj_to_hstate(kobj, &nid);
1506	if (nid == NUMA_NO_NODE)
1507		surplus_huge_pages = h->surplus_huge_pages;
1508	else
1509		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1510
1511	return sprintf(buf, "%lu\n", surplus_huge_pages);
1512}
1513HSTATE_ATTR_RO(surplus_hugepages);
1514
1515static struct attribute *hstate_attrs[] = {
1516	&nr_hugepages_attr.attr,
1517	&nr_overcommit_hugepages_attr.attr,
1518	&free_hugepages_attr.attr,
1519	&resv_hugepages_attr.attr,
1520	&surplus_hugepages_attr.attr,
1521#ifdef CONFIG_NUMA
1522	&nr_hugepages_mempolicy_attr.attr,
1523#endif
1524	NULL,
1525};
1526
1527static struct attribute_group hstate_attr_group = {
1528	.attrs = hstate_attrs,
1529};
1530
1531static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1532				    struct kobject **hstate_kobjs,
1533				    struct attribute_group *hstate_attr_group)
1534{
1535	int retval;
1536	int hi = h - hstates;
1537
1538	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1539	if (!hstate_kobjs[hi])
1540		return -ENOMEM;
1541
1542	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1543	if (retval)
1544		kobject_put(hstate_kobjs[hi]);
1545
1546	return retval;
1547}
1548
1549static void __init hugetlb_sysfs_init(void)
1550{
1551	struct hstate *h;
1552	int err;
1553
1554	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1555	if (!hugepages_kobj)
1556		return;
1557
1558	for_each_hstate(h) {
1559		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1560					 hstate_kobjs, &hstate_attr_group);
1561		if (err)
1562			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1563								h->name);
1564	}
1565}
1566
1567#ifdef CONFIG_NUMA
1568
1569/*
1570 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1571 * with node sysdevs in node_devices[] using a parallel array.  The array
1572 * index of a node sysdev or _hstate == node id.
1573 * This is here to avoid any static dependency of the node sysdev driver, in
1574 * the base kernel, on the hugetlb module.
1575 */
1576struct node_hstate {
1577	struct kobject		*hugepages_kobj;
1578	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1579};
1580struct node_hstate node_hstates[MAX_NUMNODES];
1581
1582/*
1583 * A subset of global hstate attributes for node sysdevs
1584 */
1585static struct attribute *per_node_hstate_attrs[] = {
1586	&nr_hugepages_attr.attr,
1587	&free_hugepages_attr.attr,
1588	&surplus_hugepages_attr.attr,
1589	NULL,
1590};
1591
1592static struct attribute_group per_node_hstate_attr_group = {
1593	.attrs = per_node_hstate_attrs,
1594};
1595
1596/*
1597 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1598 * Returns node id via non-NULL nidp.
1599 */
1600static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1601{
1602	int nid;
1603
1604	for (nid = 0; nid < nr_node_ids; nid++) {
1605		struct node_hstate *nhs = &node_hstates[nid];
1606		int i;
1607		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1608			if (nhs->hstate_kobjs[i] == kobj) {
1609				if (nidp)
1610					*nidp = nid;
1611				return &hstates[i];
1612			}
1613	}
1614
1615	BUG();
1616	return NULL;
1617}
1618
1619/*
1620 * Unregister hstate attributes from a single node sysdev.
1621 * No-op if no hstate attributes attached.
1622 */
1623void hugetlb_unregister_node(struct node *node)
1624{
1625	struct hstate *h;
1626	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1627
1628	if (!nhs->hugepages_kobj)
1629		return;		/* no hstate attributes */
1630
1631	for_each_hstate(h)
1632		if (nhs->hstate_kobjs[h - hstates]) {
1633			kobject_put(nhs->hstate_kobjs[h - hstates]);
1634			nhs->hstate_kobjs[h - hstates] = NULL;
1635		}
1636
1637	kobject_put(nhs->hugepages_kobj);
1638	nhs->hugepages_kobj = NULL;
1639}
1640
1641/*
1642 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1643 * that have them.
1644 */
1645static void hugetlb_unregister_all_nodes(void)
1646{
1647	int nid;
1648
1649	/*
1650	 * disable node sysdev registrations.
1651	 */
1652	register_hugetlbfs_with_node(NULL, NULL);
1653
1654	/*
1655	 * remove hstate attributes from any nodes that have them.
1656	 */
1657	for (nid = 0; nid < nr_node_ids; nid++)
1658		hugetlb_unregister_node(&node_devices[nid]);
1659}
1660
1661/*
1662 * Register hstate attributes for a single node sysdev.
1663 * No-op if attributes already registered.
1664 */
1665void hugetlb_register_node(struct node *node)
1666{
1667	struct hstate *h;
1668	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1669	int err;
1670
1671	if (nhs->hugepages_kobj)
1672		return;		/* already allocated */
1673
1674	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1675							&node->sysdev.kobj);
1676	if (!nhs->hugepages_kobj)
1677		return;
1678
1679	for_each_hstate(h) {
1680		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1681						nhs->hstate_kobjs,
1682						&per_node_hstate_attr_group);
1683		if (err) {
1684			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1685					" for node %d\n",
1686						h->name, node->sysdev.id);
1687			hugetlb_unregister_node(node);
1688			break;
1689		}
1690	}
1691}
1692
1693/*
1694 * hugetlb init time:  register hstate attributes for all registered node
1695 * sysdevs of nodes that have memory.  All on-line nodes should have
1696 * registered their associated sysdev by this time.
1697 */
1698static void hugetlb_register_all_nodes(void)
1699{
1700	int nid;
1701
1702	for_each_node_state(nid, N_HIGH_MEMORY) {
1703		struct node *node = &node_devices[nid];
1704		if (node->sysdev.id == nid)
1705			hugetlb_register_node(node);
1706	}
1707
1708	/*
1709	 * Let the node sysdev driver know we're here so it can
1710	 * [un]register hstate attributes on node hotplug.
1711	 */
1712	register_hugetlbfs_with_node(hugetlb_register_node,
1713				     hugetlb_unregister_node);
1714}
1715#else	/* !CONFIG_NUMA */
1716
1717static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1718{
1719	BUG();
1720	if (nidp)
1721		*nidp = -1;
1722	return NULL;
1723}
1724
1725static void hugetlb_unregister_all_nodes(void) { }
1726
1727static void hugetlb_register_all_nodes(void) { }
1728
1729#endif
1730
1731static void __exit hugetlb_exit(void)
1732{
1733	struct hstate *h;
1734
1735	hugetlb_unregister_all_nodes();
1736
1737	for_each_hstate(h) {
1738		kobject_put(hstate_kobjs[h - hstates]);
1739	}
1740
1741	kobject_put(hugepages_kobj);
1742}
1743module_exit(hugetlb_exit);
1744
1745static int __init hugetlb_init(void)
1746{
1747	/* Some platform decide whether they support huge pages at boot
1748	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1749	 * there is no such support
1750	 */
1751	if (HPAGE_SHIFT == 0)
1752		return 0;
1753
1754	if (!size_to_hstate(default_hstate_size)) {
1755		default_hstate_size = HPAGE_SIZE;
1756		if (!size_to_hstate(default_hstate_size))
1757			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1758	}
1759	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1760	if (default_hstate_max_huge_pages)
1761		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1762
1763	hugetlb_init_hstates();
1764
1765	gather_bootmem_prealloc();
1766
1767	report_hugepages();
1768
1769	hugetlb_sysfs_init();
1770
1771	hugetlb_register_all_nodes();
1772
1773	return 0;
1774}
1775module_init(hugetlb_init);
1776
1777/* Should be called on processing a hugepagesz=... option */
1778void __init hugetlb_add_hstate(unsigned order)
1779{
1780	struct hstate *h;
1781	unsigned long i;
1782
1783	if (size_to_hstate(PAGE_SIZE << order)) {
1784		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1785		return;
1786	}
1787	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1788	BUG_ON(order == 0);
1789	h = &hstates[max_hstate++];
1790	h->order = order;
1791	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1792	h->nr_huge_pages = 0;
1793	h->free_huge_pages = 0;
1794	for (i = 0; i < MAX_NUMNODES; ++i)
1795		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1796	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1797	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1798	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1799					huge_page_size(h)/1024);
1800
1801	parsed_hstate = h;
1802}
1803
1804static int __init hugetlb_nrpages_setup(char *s)
1805{
1806	unsigned long *mhp;
1807	static unsigned long *last_mhp;
1808
1809	/*
1810	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1811	 * so this hugepages= parameter goes to the "default hstate".
1812	 */
1813	if (!max_hstate)
1814		mhp = &default_hstate_max_huge_pages;
1815	else
1816		mhp = &parsed_hstate->max_huge_pages;
1817
1818	if (mhp == last_mhp) {
1819		printk(KERN_WARNING "hugepages= specified twice without "
1820			"interleaving hugepagesz=, ignoring\n");
1821		return 1;
1822	}
1823
1824	if (sscanf(s, "%lu", mhp) <= 0)
1825		*mhp = 0;
1826
1827	/*
1828	 * Global state is always initialized later in hugetlb_init.
1829	 * But we need to allocate >= MAX_ORDER hstates here early to still
1830	 * use the bootmem allocator.
1831	 */
1832	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1833		hugetlb_hstate_alloc_pages(parsed_hstate);
1834
1835	last_mhp = mhp;
1836
1837	return 1;
1838}
1839__setup("hugepages=", hugetlb_nrpages_setup);
1840
1841static int __init hugetlb_default_setup(char *s)
1842{
1843	default_hstate_size = memparse(s, &s);
1844	return 1;
1845}
1846__setup("default_hugepagesz=", hugetlb_default_setup);
1847
1848static unsigned int cpuset_mems_nr(unsigned int *array)
1849{
1850	int node;
1851	unsigned int nr = 0;
1852
1853	for_each_node_mask(node, cpuset_current_mems_allowed)
1854		nr += array[node];
1855
1856	return nr;
1857}
1858
1859#ifdef CONFIG_SYSCTL
1860static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1861			 struct ctl_table *table, int write,
1862			 void __user *buffer, size_t *length, loff_t *ppos)
1863{
1864	struct hstate *h = &default_hstate;
1865	unsigned long tmp;
1866
1867	if (!write)
1868		tmp = h->max_huge_pages;
1869
1870	table->data = &tmp;
1871	table->maxlen = sizeof(unsigned long);
1872	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1873
1874	if (write) {
1875		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1876						GFP_KERNEL | __GFP_NORETRY);
1877		if (!(obey_mempolicy &&
1878			       init_nodemask_of_mempolicy(nodes_allowed))) {
1879			NODEMASK_FREE(nodes_allowed);
1880			nodes_allowed = &node_states[N_HIGH_MEMORY];
1881		}
1882		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1883
1884		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1885			NODEMASK_FREE(nodes_allowed);
1886	}
1887
1888	return 0;
1889}
1890
1891int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1892			  void __user *buffer, size_t *length, loff_t *ppos)
1893{
1894
1895	return hugetlb_sysctl_handler_common(false, table, write,
1896							buffer, length, ppos);
1897}
1898
1899#ifdef CONFIG_NUMA
1900int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1901			  void __user *buffer, size_t *length, loff_t *ppos)
1902{
1903	return hugetlb_sysctl_handler_common(true, table, write,
1904							buffer, length, ppos);
1905}
1906#endif /* CONFIG_NUMA */
1907
1908int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1909			void __user *buffer,
1910			size_t *length, loff_t *ppos)
1911{
1912	proc_dointvec(table, write, buffer, length, ppos);
1913	if (hugepages_treat_as_movable)
1914		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1915	else
1916		htlb_alloc_mask = GFP_HIGHUSER;
1917	return 0;
1918}
1919
1920int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1921			void __user *buffer,
1922			size_t *length, loff_t *ppos)
1923{
1924	struct hstate *h = &default_hstate;
1925	unsigned long tmp;
1926
1927	if (!write)
1928		tmp = h->nr_overcommit_huge_pages;
1929
1930	table->data = &tmp;
1931	table->maxlen = sizeof(unsigned long);
1932	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1933
1934	if (write) {
1935		spin_lock(&hugetlb_lock);
1936		h->nr_overcommit_huge_pages = tmp;
1937		spin_unlock(&hugetlb_lock);
1938	}
1939
1940	return 0;
1941}
1942
1943#endif /* CONFIG_SYSCTL */
1944
1945void hugetlb_report_meminfo(struct seq_file *m)
1946{
1947	struct hstate *h = &default_hstate;
1948	seq_printf(m,
1949			"HugePages_Total:   %5lu\n"
1950			"HugePages_Free:    %5lu\n"
1951			"HugePages_Rsvd:    %5lu\n"
1952			"HugePages_Surp:    %5lu\n"
1953			"Hugepagesize:   %8lu kB\n",
1954			h->nr_huge_pages,
1955			h->free_huge_pages,
1956			h->resv_huge_pages,
1957			h->surplus_huge_pages,
1958			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1959}
1960
1961int hugetlb_report_node_meminfo(int nid, char *buf)
1962{
1963	struct hstate *h = &default_hstate;
1964	return sprintf(buf,
1965		"Node %d HugePages_Total: %5u\n"
1966		"Node %d HugePages_Free:  %5u\n"
1967		"Node %d HugePages_Surp:  %5u\n",
1968		nid, h->nr_huge_pages_node[nid],
1969		nid, h->free_huge_pages_node[nid],
1970		nid, h->surplus_huge_pages_node[nid]);
1971}
1972
1973/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1974unsigned long hugetlb_total_pages(void)
1975{
1976	struct hstate *h = &default_hstate;
1977	return h->nr_huge_pages * pages_per_huge_page(h);
1978}
1979
1980static int hugetlb_acct_memory(struct hstate *h, long delta)
1981{
1982	int ret = -ENOMEM;
1983
1984	spin_lock(&hugetlb_lock);
1985	/*
1986	 * When cpuset is configured, it breaks the strict hugetlb page
1987	 * reservation as the accounting is done on a global variable. Such
1988	 * reservation is completely rubbish in the presence of cpuset because
1989	 * the reservation is not checked against page availability for the
1990	 * current cpuset. Application can still potentially OOM'ed by kernel
1991	 * with lack of free htlb page in cpuset that the task is in.
1992	 * Attempt to enforce strict accounting with cpuset is almost
1993	 * impossible (or too ugly) because cpuset is too fluid that
1994	 * task or memory node can be dynamically moved between cpusets.
1995	 *
1996	 * The change of semantics for shared hugetlb mapping with cpuset is
1997	 * undesirable. However, in order to preserve some of the semantics,
1998	 * we fall back to check against current free page availability as
1999	 * a best attempt and hopefully to minimize the impact of changing
2000	 * semantics that cpuset has.
2001	 */
2002	if (delta > 0) {
2003		if (gather_surplus_pages(h, delta) < 0)
2004			goto out;
2005
2006		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2007			return_unused_surplus_pages(h, delta);
2008			goto out;
2009		}
2010	}
2011
2012	ret = 0;
2013	if (delta < 0)
2014		return_unused_surplus_pages(h, (unsigned long) -delta);
2015
2016out:
2017	spin_unlock(&hugetlb_lock);
2018	return ret;
2019}
2020
2021static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2022{
2023	struct resv_map *reservations = vma_resv_map(vma);
2024
2025	/*
2026	 * This new VMA should share its siblings reservation map if present.
2027	 * The VMA will only ever have a valid reservation map pointer where
2028	 * it is being copied for another still existing VMA.  As that VMA
2029	 * has a reference to the reservation map it cannot dissappear until
2030	 * after this open call completes.  It is therefore safe to take a
2031	 * new reference here without additional locking.
2032	 */
2033	if (reservations)
2034		kref_get(&reservations->refs);
2035}
2036
2037static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2038{
2039	struct hstate *h = hstate_vma(vma);
2040	struct resv_map *reservations = vma_resv_map(vma);
2041	unsigned long reserve;
2042	unsigned long start;
2043	unsigned long end;
2044
2045	if (reservations) {
2046		start = vma_hugecache_offset(h, vma, vma->vm_start);
2047		end = vma_hugecache_offset(h, vma, vma->vm_end);
2048
2049		reserve = (end - start) -
2050			region_count(&reservations->regions, start, end);
2051
2052		kref_put(&reservations->refs, resv_map_release);
2053
2054		if (reserve) {
2055			hugetlb_acct_memory(h, -reserve);
2056			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2057		}
2058	}
2059}
2060
2061/*
2062 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2063 * handle_mm_fault() to try to instantiate regular-sized pages in the
2064 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2065 * this far.
2066 */
2067static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2068{
2069	BUG();
2070	return 0;
2071}
2072
2073const struct vm_operations_struct hugetlb_vm_ops = {
2074	.fault = hugetlb_vm_op_fault,
2075	.open = hugetlb_vm_op_open,
2076	.close = hugetlb_vm_op_close,
2077};
2078
2079static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2080				int writable)
2081{
2082	pte_t entry;
2083
2084	if (writable) {
2085		entry =
2086		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2087	} else {
2088		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2089	}
2090	entry = pte_mkyoung(entry);
2091	entry = pte_mkhuge(entry);
2092
2093	return entry;
2094}
2095
2096static void set_huge_ptep_writable(struct vm_area_struct *vma,
2097				   unsigned long address, pte_t *ptep)
2098{
2099	pte_t entry;
2100
2101	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2102	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2103		update_mmu_cache(vma, address, ptep);
2104	}
2105}
2106
2107
2108int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2109			    struct vm_area_struct *vma)
2110{
2111	pte_t *src_pte, *dst_pte, entry;
2112	struct page *ptepage;
2113	unsigned long addr;
2114	int cow;
2115	struct hstate *h = hstate_vma(vma);
2116	unsigned long sz = huge_page_size(h);
2117
2118	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2119
2120	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2121		src_pte = huge_pte_offset(src, addr);
2122		if (!src_pte)
2123			continue;
2124		dst_pte = huge_pte_alloc(dst, addr, sz);
2125		if (!dst_pte)
2126			goto nomem;
2127
2128		/* If the pagetables are shared don't copy or take references */
2129		if (dst_pte == src_pte)
2130			continue;
2131
2132		spin_lock(&dst->page_table_lock);
2133		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2134		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2135			if (cow)
2136				huge_ptep_set_wrprotect(src, addr, src_pte);
2137			entry = huge_ptep_get(src_pte);
2138			ptepage = pte_page(entry);
2139			get_page(ptepage);
2140			page_dup_rmap(ptepage);
2141			set_huge_pte_at(dst, addr, dst_pte, entry);
2142		}
2143		spin_unlock(&src->page_table_lock);
2144		spin_unlock(&dst->page_table_lock);
2145	}
2146	return 0;
2147
2148nomem:
2149	return -ENOMEM;
2150}
2151
2152void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2153			    unsigned long end, struct page *ref_page)
2154{
2155	struct mm_struct *mm = vma->vm_mm;
2156	unsigned long address;
2157	pte_t *ptep;
2158	pte_t pte;
2159	struct page *page;
2160	struct page *tmp;
2161	struct hstate *h = hstate_vma(vma);
2162	unsigned long sz = huge_page_size(h);
2163
2164	/*
2165	 * A page gathering list, protected by per file i_mmap_lock. The
2166	 * lock is used to avoid list corruption from multiple unmapping
2167	 * of the same page since we are using page->lru.
2168	 */
2169	LIST_HEAD(page_list);
2170
2171	WARN_ON(!is_vm_hugetlb_page(vma));
2172	BUG_ON(start & ~huge_page_mask(h));
2173	BUG_ON(end & ~huge_page_mask(h));
2174
2175	mmu_notifier_invalidate_range_start(mm, start, end);
2176	spin_lock(&mm->page_table_lock);
2177	for (address = start; address < end; address += sz) {
2178		ptep = huge_pte_offset(mm, address);
2179		if (!ptep)
2180			continue;
2181
2182		if (huge_pmd_unshare(mm, &address, ptep))
2183			continue;
2184
2185		/*
2186		 * If a reference page is supplied, it is because a specific
2187		 * page is being unmapped, not a range. Ensure the page we
2188		 * are about to unmap is the actual page of interest.
2189		 */
2190		if (ref_page) {
2191			pte = huge_ptep_get(ptep);
2192			if (huge_pte_none(pte))
2193				continue;
2194			page = pte_page(pte);
2195			if (page != ref_page)
2196				continue;
2197
2198			/*
2199			 * Mark the VMA as having unmapped its page so that
2200			 * future faults in this VMA will fail rather than
2201			 * looking like data was lost
2202			 */
2203			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2204		}
2205
2206		pte = huge_ptep_get_and_clear(mm, address, ptep);
2207		if (huge_pte_none(pte))
2208			continue;
2209
2210		page = pte_page(pte);
2211		if (pte_dirty(pte))
2212			set_page_dirty(page);
2213		list_add(&page->lru, &page_list);
2214	}
2215	spin_unlock(&mm->page_table_lock);
2216	flush_tlb_range(vma, start, end);
2217	mmu_notifier_invalidate_range_end(mm, start, end);
2218	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2219		page_remove_rmap(page);
2220		list_del(&page->lru);
2221		put_page(page);
2222	}
2223}
2224
2225void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2226			  unsigned long end, struct page *ref_page)
2227{
2228	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2229	__unmap_hugepage_range(vma, start, end, ref_page);
2230	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2231}
2232
2233/*
2234 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2235 * mappping it owns the reserve page for. The intention is to unmap the page
2236 * from other VMAs and let the children be SIGKILLed if they are faulting the
2237 * same region.
2238 */
2239static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2240				struct page *page, unsigned long address)
2241{
2242	struct hstate *h = hstate_vma(vma);
2243	struct vm_area_struct *iter_vma;
2244	struct address_space *mapping;
2245	struct prio_tree_iter iter;
2246	pgoff_t pgoff;
2247
2248	/*
2249	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2250	 * from page cache lookup which is in HPAGE_SIZE units.
2251	 */
2252	address = address & huge_page_mask(h);
2253	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2254		+ (vma->vm_pgoff >> PAGE_SHIFT);
2255	mapping = (struct address_space *)page_private(page);
2256
2257	/*
2258	 * Take the mapping lock for the duration of the table walk. As
2259	 * this mapping should be shared between all the VMAs,
2260	 * __unmap_hugepage_range() is called as the lock is already held
2261	 */
2262	spin_lock(&mapping->i_mmap_lock);
2263	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2264		/* Do not unmap the current VMA */
2265		if (iter_vma == vma)
2266			continue;
2267
2268		/*
2269		 * Unmap the page from other VMAs without their own reserves.
2270		 * They get marked to be SIGKILLed if they fault in these
2271		 * areas. This is because a future no-page fault on this VMA
2272		 * could insert a zeroed page instead of the data existing
2273		 * from the time of fork. This would look like data corruption
2274		 */
2275		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2276			__unmap_hugepage_range(iter_vma,
2277				address, address + huge_page_size(h),
2278				page);
2279	}
2280	spin_unlock(&mapping->i_mmap_lock);
2281
2282	return 1;
2283}
2284
2285/*
2286 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2287 */
2288static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2289			unsigned long address, pte_t *ptep, pte_t pte,
2290			struct page *pagecache_page)
2291{
2292	struct hstate *h = hstate_vma(vma);
2293	struct page *old_page, *new_page;
2294	int avoidcopy;
2295	int outside_reserve = 0;
2296
2297	old_page = pte_page(pte);
2298
2299retry_avoidcopy:
2300	/* If no-one else is actually using this page, avoid the copy
2301	 * and just make the page writable */
2302	avoidcopy = (page_mapcount(old_page) == 1);
2303	if (avoidcopy) {
2304		if (!trylock_page(old_page))
2305			if (PageAnon(old_page))
2306				page_move_anon_rmap(old_page, vma, address);
2307		set_huge_ptep_writable(vma, address, ptep);
2308		return 0;
2309	}
2310
2311	/*
2312	 * If the process that created a MAP_PRIVATE mapping is about to
2313	 * perform a COW due to a shared page count, attempt to satisfy
2314	 * the allocation without using the existing reserves. The pagecache
2315	 * page is used to determine if the reserve at this address was
2316	 * consumed or not. If reserves were used, a partial faulted mapping
2317	 * at the time of fork() could consume its reserves on COW instead
2318	 * of the full address range.
2319	 */
2320	if (!(vma->vm_flags & VM_MAYSHARE) &&
2321			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2322			old_page != pagecache_page)
2323		outside_reserve = 1;
2324
2325	page_cache_get(old_page);
2326
2327	/* Drop page_table_lock as buddy allocator may be called */
2328	spin_unlock(&mm->page_table_lock);
2329	new_page = alloc_huge_page(vma, address, outside_reserve);
2330
2331	if (IS_ERR(new_page)) {
2332		page_cache_release(old_page);
2333
2334		/*
2335		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2336		 * it is due to references held by a child and an insufficient
2337		 * huge page pool. To guarantee the original mappers
2338		 * reliability, unmap the page from child processes. The child
2339		 * may get SIGKILLed if it later faults.
2340		 */
2341		if (outside_reserve) {
2342			BUG_ON(huge_pte_none(pte));
2343			if (unmap_ref_private(mm, vma, old_page, address)) {
2344				BUG_ON(page_count(old_page) != 1);
2345				BUG_ON(huge_pte_none(pte));
2346				spin_lock(&mm->page_table_lock);
2347				goto retry_avoidcopy;
2348			}
2349			WARN_ON_ONCE(1);
2350		}
2351
2352		/* Caller expects lock to be held */
2353		spin_lock(&mm->page_table_lock);
2354		return -PTR_ERR(new_page);
2355	}
2356
2357	/*
2358	 * When the original hugepage is shared one, it does not have
2359	 * anon_vma prepared.
2360	 */
2361	if (unlikely(anon_vma_prepare(vma)))
2362		return VM_FAULT_OOM;
2363
2364	copy_huge_page(new_page, old_page, address, vma);
2365	__SetPageUptodate(new_page);
2366
2367	/*
2368	 * Retake the page_table_lock to check for racing updates
2369	 * before the page tables are altered
2370	 */
2371	spin_lock(&mm->page_table_lock);
2372	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2373	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2374		/* Break COW */
2375		huge_ptep_clear_flush(vma, address, ptep);
2376		set_huge_pte_at(mm, address, ptep,
2377				make_huge_pte(vma, new_page, 1));
2378		page_remove_rmap(old_page);
2379		hugepage_add_anon_rmap(new_page, vma, address);
2380		/* Make the old page be freed below */
2381		new_page = old_page;
2382	}
2383	page_cache_release(new_page);
2384	page_cache_release(old_page);
2385	return 0;
2386}
2387
2388/* Return the pagecache page at a given address within a VMA */
2389static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2390			struct vm_area_struct *vma, unsigned long address)
2391{
2392	struct address_space *mapping;
2393	pgoff_t idx;
2394
2395	mapping = vma->vm_file->f_mapping;
2396	idx = vma_hugecache_offset(h, vma, address);
2397
2398	return find_lock_page(mapping, idx);
2399}
2400
2401/*
2402 * Return whether there is a pagecache page to back given address within VMA.
2403 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2404 */
2405static bool hugetlbfs_pagecache_present(struct hstate *h,
2406			struct vm_area_struct *vma, unsigned long address)
2407{
2408	struct address_space *mapping;
2409	pgoff_t idx;
2410	struct page *page;
2411
2412	mapping = vma->vm_file->f_mapping;
2413	idx = vma_hugecache_offset(h, vma, address);
2414
2415	page = find_get_page(mapping, idx);
2416	if (page)
2417		put_page(page);
2418	return page != NULL;
2419}
2420
2421static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2422			unsigned long address, pte_t *ptep, unsigned int flags)
2423{
2424	struct hstate *h = hstate_vma(vma);
2425	int ret = VM_FAULT_SIGBUS;
2426	pgoff_t idx;
2427	unsigned long size;
2428	struct page *page;
2429	struct address_space *mapping;
2430	pte_t new_pte;
2431
2432	/*
2433	 * Currently, we are forced to kill the process in the event the
2434	 * original mapper has unmapped pages from the child due to a failed
2435	 * COW. Warn that such a situation has occured as it may not be obvious
2436	 */
2437	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2438		printk(KERN_WARNING
2439			"PID %d killed due to inadequate hugepage pool\n",
2440			current->pid);
2441		return ret;
2442	}
2443
2444	mapping = vma->vm_file->f_mapping;
2445	idx = vma_hugecache_offset(h, vma, address);
2446
2447	/*
2448	 * Use page lock to guard against racing truncation
2449	 * before we get page_table_lock.
2450	 */
2451retry:
2452	page = find_lock_page(mapping, idx);
2453	if (!page) {
2454		size = i_size_read(mapping->host) >> huge_page_shift(h);
2455		if (idx >= size)
2456			goto out;
2457		page = alloc_huge_page(vma, address, 0);
2458		if (IS_ERR(page)) {
2459			ret = -PTR_ERR(page);
2460			goto out;
2461		}
2462		clear_huge_page(page, address, huge_page_size(h));
2463		__SetPageUptodate(page);
2464
2465		if (vma->vm_flags & VM_MAYSHARE) {
2466			int err;
2467			struct inode *inode = mapping->host;
2468
2469			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2470			if (err) {
2471				put_page(page);
2472				if (err == -EEXIST)
2473					goto retry;
2474				goto out;
2475			}
2476
2477			spin_lock(&inode->i_lock);
2478			inode->i_blocks += blocks_per_huge_page(h);
2479			spin_unlock(&inode->i_lock);
2480			page_dup_rmap(page);
2481		} else {
2482			lock_page(page);
2483			if (unlikely(anon_vma_prepare(vma))) {
2484				ret = VM_FAULT_OOM;
2485				goto backout_unlocked;
2486			}
2487			hugepage_add_new_anon_rmap(page, vma, address);
2488		}
2489	} else {
2490		page_dup_rmap(page);
2491	}
2492
2493	/*
2494	 * If we are going to COW a private mapping later, we examine the
2495	 * pending reservations for this page now. This will ensure that
2496	 * any allocations necessary to record that reservation occur outside
2497	 * the spinlock.
2498	 */
2499	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2500		if (vma_needs_reservation(h, vma, address) < 0) {
2501			ret = VM_FAULT_OOM;
2502			goto backout_unlocked;
2503		}
2504
2505	spin_lock(&mm->page_table_lock);
2506	size = i_size_read(mapping->host) >> huge_page_shift(h);
2507	if (idx >= size)
2508		goto backout;
2509
2510	ret = 0;
2511	if (!huge_pte_none(huge_ptep_get(ptep)))
2512		goto backout;
2513
2514	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2515				&& (vma->vm_flags & VM_SHARED)));
2516	set_huge_pte_at(mm, address, ptep, new_pte);
2517
2518	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2519		/* Optimization, do the COW without a second fault */
2520		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2521	}
2522
2523	spin_unlock(&mm->page_table_lock);
2524	unlock_page(page);
2525out:
2526	return ret;
2527
2528backout:
2529	spin_unlock(&mm->page_table_lock);
2530backout_unlocked:
2531	unlock_page(page);
2532	put_page(page);
2533	goto out;
2534}
2535
2536int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2537			unsigned long address, unsigned int flags)
2538{
2539	pte_t *ptep;
2540	pte_t entry;
2541	int ret;
2542	struct page *page = NULL;
2543	struct page *pagecache_page = NULL;
2544	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2545	struct hstate *h = hstate_vma(vma);
2546
2547	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2548	if (!ptep)
2549		return VM_FAULT_OOM;
2550
2551	/*
2552	 * Serialize hugepage allocation and instantiation, so that we don't
2553	 * get spurious allocation failures if two CPUs race to instantiate
2554	 * the same page in the page cache.
2555	 */
2556	mutex_lock(&hugetlb_instantiation_mutex);
2557	entry = huge_ptep_get(ptep);
2558	if (huge_pte_none(entry)) {
2559		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2560		goto out_mutex;
2561	}
2562
2563	ret = 0;
2564
2565	/*
2566	 * If we are going to COW the mapping later, we examine the pending
2567	 * reservations for this page now. This will ensure that any
2568	 * allocations necessary to record that reservation occur outside the
2569	 * spinlock. For private mappings, we also lookup the pagecache
2570	 * page now as it is used to determine if a reservation has been
2571	 * consumed.
2572	 */
2573	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2574		if (vma_needs_reservation(h, vma, address) < 0) {
2575			ret = VM_FAULT_OOM;
2576			goto out_mutex;
2577		}
2578
2579		if (!(vma->vm_flags & VM_MAYSHARE))
2580			pagecache_page = hugetlbfs_pagecache_page(h,
2581								vma, address);
2582	}
2583
2584	if (!pagecache_page) {
2585		page = pte_page(entry);
2586		lock_page(page);
2587	}
2588
2589	spin_lock(&mm->page_table_lock);
2590	/* Check for a racing update before calling hugetlb_cow */
2591	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2592		goto out_page_table_lock;
2593
2594
2595	if (flags & FAULT_FLAG_WRITE) {
2596		if (!pte_write(entry)) {
2597			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2598							pagecache_page);
2599			goto out_page_table_lock;
2600		}
2601		entry = pte_mkdirty(entry);
2602	}
2603	entry = pte_mkyoung(entry);
2604	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2605						flags & FAULT_FLAG_WRITE))
2606		update_mmu_cache(vma, address, ptep);
2607
2608out_page_table_lock:
2609	spin_unlock(&mm->page_table_lock);
2610
2611	if (pagecache_page) {
2612		unlock_page(pagecache_page);
2613		put_page(pagecache_page);
2614	} else {
2615		unlock_page(page);
2616	}
2617
2618out_mutex:
2619	mutex_unlock(&hugetlb_instantiation_mutex);
2620
2621	return ret;
2622}
2623
2624/* Can be overriden by architectures */
2625__attribute__((weak)) struct page *
2626follow_huge_pud(struct mm_struct *mm, unsigned long address,
2627	       pud_t *pud, int write)
2628{
2629	BUG();
2630	return NULL;
2631}
2632
2633int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2634			struct page **pages, struct vm_area_struct **vmas,
2635			unsigned long *position, int *length, int i,
2636			unsigned int flags)
2637{
2638	unsigned long pfn_offset;
2639	unsigned long vaddr = *position;
2640	int remainder = *length;
2641	struct hstate *h = hstate_vma(vma);
2642
2643	spin_lock(&mm->page_table_lock);
2644	while (vaddr < vma->vm_end && remainder) {
2645		pte_t *pte;
2646		int absent;
2647		struct page *page;
2648
2649		/*
2650		 * Some archs (sparc64, sh*) have multiple pte_ts to
2651		 * each hugepage.  We have to make sure we get the
2652		 * first, for the page indexing below to work.
2653		 */
2654		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2655		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2656
2657		/*
2658		 * When coredumping, it suits get_dump_page if we just return
2659		 * an error where there's an empty slot with no huge pagecache
2660		 * to back it.  This way, we avoid allocating a hugepage, and
2661		 * the sparse dumpfile avoids allocating disk blocks, but its
2662		 * huge holes still show up with zeroes where they need to be.
2663		 */
2664		if (absent && (flags & FOLL_DUMP) &&
2665		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2666			remainder = 0;
2667			break;
2668		}
2669
2670		if (absent ||
2671		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2672			int ret;
2673
2674			spin_unlock(&mm->page_table_lock);
2675			ret = hugetlb_fault(mm, vma, vaddr,
2676				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2677			spin_lock(&mm->page_table_lock);
2678			if (!(ret & VM_FAULT_ERROR))
2679				continue;
2680
2681			remainder = 0;
2682			break;
2683		}
2684
2685		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2686		page = pte_page(huge_ptep_get(pte));
2687same_page:
2688		if (pages) {
2689			pages[i] = mem_map_offset(page, pfn_offset);
2690			get_page(pages[i]);
2691		}
2692
2693		if (vmas)
2694			vmas[i] = vma;
2695
2696		vaddr += PAGE_SIZE;
2697		++pfn_offset;
2698		--remainder;
2699		++i;
2700		if (vaddr < vma->vm_end && remainder &&
2701				pfn_offset < pages_per_huge_page(h)) {
2702			/*
2703			 * We use pfn_offset to avoid touching the pageframes
2704			 * of this compound page.
2705			 */
2706			goto same_page;
2707		}
2708	}
2709	spin_unlock(&mm->page_table_lock);
2710	*length = remainder;
2711	*position = vaddr;
2712
2713	return i ? i : -EFAULT;
2714}
2715
2716void hugetlb_change_protection(struct vm_area_struct *vma,
2717		unsigned long address, unsigned long end, pgprot_t newprot)
2718{
2719	struct mm_struct *mm = vma->vm_mm;
2720	unsigned long start = address;
2721	pte_t *ptep;
2722	pte_t pte;
2723	struct hstate *h = hstate_vma(vma);
2724
2725	BUG_ON(address >= end);
2726	flush_cache_range(vma, address, end);
2727
2728	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2729	spin_lock(&mm->page_table_lock);
2730	for (; address < end; address += huge_page_size(h)) {
2731		ptep = huge_pte_offset(mm, address);
2732		if (!ptep)
2733			continue;
2734		if (huge_pmd_unshare(mm, &address, ptep))
2735			continue;
2736		if (!huge_pte_none(huge_ptep_get(ptep))) {
2737			pte = huge_ptep_get_and_clear(mm, address, ptep);
2738			pte = pte_mkhuge(pte_modify(pte, newprot));
2739			set_huge_pte_at(mm, address, ptep, pte);
2740		}
2741	}
2742	spin_unlock(&mm->page_table_lock);
2743	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2744
2745	flush_tlb_range(vma, start, end);
2746}
2747
2748int hugetlb_reserve_pages(struct inode *inode,
2749					long from, long to,
2750					struct vm_area_struct *vma,
2751					int acctflag)
2752{
2753	long ret, chg;
2754	struct hstate *h = hstate_inode(inode);
2755
2756	/*
2757	 * Only apply hugepage reservation if asked. At fault time, an
2758	 * attempt will be made for VM_NORESERVE to allocate a page
2759	 * and filesystem quota without using reserves
2760	 */
2761	if (acctflag & VM_NORESERVE)
2762		return 0;
2763
2764	/*
2765	 * Shared mappings base their reservation on the number of pages that
2766	 * are already allocated on behalf of the file. Private mappings need
2767	 * to reserve the full area even if read-only as mprotect() may be
2768	 * called to make the mapping read-write. Assume !vma is a shm mapping
2769	 */
2770	if (!vma || vma->vm_flags & VM_MAYSHARE)
2771		chg = region_chg(&inode->i_mapping->private_list, from, to);
2772	else {
2773		struct resv_map *resv_map = resv_map_alloc();
2774		if (!resv_map)
2775			return -ENOMEM;
2776
2777		chg = to - from;
2778
2779		set_vma_resv_map(vma, resv_map);
2780		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2781	}
2782
2783	if (chg < 0)
2784		return chg;
2785
2786	/* There must be enough filesystem quota for the mapping */
2787	if (hugetlb_get_quota(inode->i_mapping, chg))
2788		return -ENOSPC;
2789
2790	/*
2791	 * Check enough hugepages are available for the reservation.
2792	 * Hand back the quota if there are not
2793	 */
2794	ret = hugetlb_acct_memory(h, chg);
2795	if (ret < 0) {
2796		hugetlb_put_quota(inode->i_mapping, chg);
2797		return ret;
2798	}
2799
2800	/*
2801	 * Account for the reservations made. Shared mappings record regions
2802	 * that have reservations as they are shared by multiple VMAs.
2803	 * When the last VMA disappears, the region map says how much
2804	 * the reservation was and the page cache tells how much of
2805	 * the reservation was consumed. Private mappings are per-VMA and
2806	 * only the consumed reservations are tracked. When the VMA
2807	 * disappears, the original reservation is the VMA size and the
2808	 * consumed reservations are stored in the map. Hence, nothing
2809	 * else has to be done for private mappings here
2810	 */
2811	if (!vma || vma->vm_flags & VM_MAYSHARE)
2812		region_add(&inode->i_mapping->private_list, from, to);
2813	return 0;
2814}
2815
2816void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2817{
2818	struct hstate *h = hstate_inode(inode);
2819	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2820
2821	spin_lock(&inode->i_lock);
2822	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2823	spin_unlock(&inode->i_lock);
2824
2825	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2826	hugetlb_acct_memory(h, -(chg - freed));
2827}
2828