hugetlb.c revision 30b0a105d9f7141e4cbf72ae5511832457d89788
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/page-isolation.h>
25
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/tlb.h>
29
30#include <linux/io.h>
31#include <linux/hugetlb.h>
32#include <linux/hugetlb_cgroup.h>
33#include <linux/node.h>
34#include "internal.h"
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37unsigned long hugepages_treat_as_movable;
38
39int hugetlb_max_hstate __read_mostly;
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
43__initdata LIST_HEAD(huge_boot_pages);
44
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
48static unsigned long __initdata default_hstate_size;
49
50/*
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
53 */
54DEFINE_SPINLOCK(hugetlb_lock);
55
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60	spin_unlock(&spool->lock);
61
62	/* If no pages are used, and no other handles to the subpool
63	 * remain, free the subpool the subpool remain */
64	if (free)
65		kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70	struct hugepage_subpool *spool;
71
72	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73	if (!spool)
74		return NULL;
75
76	spin_lock_init(&spool->lock);
77	spool->count = 1;
78	spool->max_hpages = nr_blocks;
79	spool->used_hpages = 0;
80
81	return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86	spin_lock(&spool->lock);
87	BUG_ON(!spool->count);
88	spool->count--;
89	unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93				      long delta)
94{
95	int ret = 0;
96
97	if (!spool)
98		return 0;
99
100	spin_lock(&spool->lock);
101	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102		spool->used_hpages += delta;
103	} else {
104		ret = -ENOMEM;
105	}
106	spin_unlock(&spool->lock);
107
108	return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112				       long delta)
113{
114	if (!spool)
115		return;
116
117	spin_lock(&spool->lock);
118	spool->used_hpages -= delta;
119	/* If hugetlbfs_put_super couldn't free spool due to
120	* an outstanding quota reference, free it now. */
121	unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126	return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
131	return subpool_inode(file_inode(vma->vm_file));
132}
133
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 *                    across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
142 *
143 *	down_write(&mm->mmap_sem);
144 * or
145 *	down_read(&mm->mmap_sem);
146 *	mutex_lock(&hugetlb_instantiation_mutex);
147 */
148struct file_region {
149	struct list_head link;
150	long from;
151	long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156	struct file_region *rg, *nrg, *trg;
157
158	/* Locate the region we are either in or before. */
159	list_for_each_entry(rg, head, link)
160		if (f <= rg->to)
161			break;
162
163	/* Round our left edge to the current segment if it encloses us. */
164	if (f > rg->from)
165		f = rg->from;
166
167	/* Check for and consume any regions we now overlap with. */
168	nrg = rg;
169	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170		if (&rg->link == head)
171			break;
172		if (rg->from > t)
173			break;
174
175		/* If this area reaches higher then extend our area to
176		 * include it completely.  If this is not the first area
177		 * which we intend to reuse, free it. */
178		if (rg->to > t)
179			t = rg->to;
180		if (rg != nrg) {
181			list_del(&rg->link);
182			kfree(rg);
183		}
184	}
185	nrg->from = f;
186	nrg->to = t;
187	return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192	struct file_region *rg, *nrg;
193	long chg = 0;
194
195	/* Locate the region we are before or in. */
196	list_for_each_entry(rg, head, link)
197		if (f <= rg->to)
198			break;
199
200	/* If we are below the current region then a new region is required.
201	 * Subtle, allocate a new region at the position but make it zero
202	 * size such that we can guarantee to record the reservation. */
203	if (&rg->link == head || t < rg->from) {
204		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205		if (!nrg)
206			return -ENOMEM;
207		nrg->from = f;
208		nrg->to   = f;
209		INIT_LIST_HEAD(&nrg->link);
210		list_add(&nrg->link, rg->link.prev);
211
212		return t - f;
213	}
214
215	/* Round our left edge to the current segment if it encloses us. */
216	if (f > rg->from)
217		f = rg->from;
218	chg = t - f;
219
220	/* Check for and consume any regions we now overlap with. */
221	list_for_each_entry(rg, rg->link.prev, link) {
222		if (&rg->link == head)
223			break;
224		if (rg->from > t)
225			return chg;
226
227		/* We overlap with this area, if it extends further than
228		 * us then we must extend ourselves.  Account for its
229		 * existing reservation. */
230		if (rg->to > t) {
231			chg += rg->to - t;
232			t = rg->to;
233		}
234		chg -= rg->to - rg->from;
235	}
236	return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241	struct file_region *rg, *trg;
242	long chg = 0;
243
244	/* Locate the region we are either in or before. */
245	list_for_each_entry(rg, head, link)
246		if (end <= rg->to)
247			break;
248	if (&rg->link == head)
249		return 0;
250
251	/* If we are in the middle of a region then adjust it. */
252	if (end > rg->from) {
253		chg = rg->to - end;
254		rg->to = end;
255		rg = list_entry(rg->link.next, typeof(*rg), link);
256	}
257
258	/* Drop any remaining regions. */
259	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260		if (&rg->link == head)
261			break;
262		chg += rg->to - rg->from;
263		list_del(&rg->link);
264		kfree(rg);
265	}
266	return chg;
267}
268
269static long region_count(struct list_head *head, long f, long t)
270{
271	struct file_region *rg;
272	long chg = 0;
273
274	/* Locate each segment we overlap with, and count that overlap. */
275	list_for_each_entry(rg, head, link) {
276		long seg_from;
277		long seg_to;
278
279		if (rg->to <= f)
280			continue;
281		if (rg->from >= t)
282			break;
283
284		seg_from = max(rg->from, f);
285		seg_to = min(rg->to, t);
286
287		chg += seg_to - seg_from;
288	}
289
290	return chg;
291}
292
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298			struct vm_area_struct *vma, unsigned long address)
299{
300	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301			(vma->vm_pgoff >> huge_page_order(h));
302}
303
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305				     unsigned long address)
306{
307	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316	struct hstate *hstate;
317
318	if (!is_vm_hugetlb_page(vma))
319		return PAGE_SIZE;
320
321	hstate = hstate_vma(vma);
322
323	return 1UL << huge_page_shift(hstate);
324}
325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336	return vma_kernel_pagesize(vma);
337}
338#endif
339
340/*
341 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER    (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping.  A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated.  A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370	return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374							unsigned long value)
375{
376	vma->vm_private_data = (void *)value;
377}
378
379struct resv_map {
380	struct kref refs;
381	struct list_head regions;
382};
383
384static struct resv_map *resv_map_alloc(void)
385{
386	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387	if (!resv_map)
388		return NULL;
389
390	kref_init(&resv_map->refs);
391	INIT_LIST_HEAD(&resv_map->regions);
392
393	return resv_map;
394}
395
396static void resv_map_release(struct kref *ref)
397{
398	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400	/* Clear out any active regions before we release the map. */
401	region_truncate(&resv_map->regions, 0);
402	kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406{
407	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408	if (!(vma->vm_flags & VM_MAYSHARE))
409		return (struct resv_map *)(get_vma_private_data(vma) &
410							~HPAGE_RESV_MASK);
411	return NULL;
412}
413
414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415{
416	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419	set_vma_private_data(vma, (get_vma_private_data(vma) &
420				HPAGE_RESV_MASK) | (unsigned long)map);
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
425	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435	return (get_vma_private_data(vma) & flag) != 0;
436}
437
438/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440{
441	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442	if (!(vma->vm_flags & VM_MAYSHARE))
443		vma->vm_private_data = (void *)0;
444}
445
446/* Returns true if the VMA has associated reserve pages */
447static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448{
449	if (vma->vm_flags & VM_NORESERVE) {
450		/*
451		 * This address is already reserved by other process(chg == 0),
452		 * so, we should decrement reserved count. Without decrementing,
453		 * reserve count remains after releasing inode, because this
454		 * allocated page will go into page cache and is regarded as
455		 * coming from reserved pool in releasing step.  Currently, we
456		 * don't have any other solution to deal with this situation
457		 * properly, so add work-around here.
458		 */
459		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460			return 1;
461		else
462			return 0;
463	}
464
465	/* Shared mappings always use reserves */
466	if (vma->vm_flags & VM_MAYSHARE)
467		return 1;
468
469	/*
470	 * Only the process that called mmap() has reserves for
471	 * private mappings.
472	 */
473	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474		return 1;
475
476	return 0;
477}
478
479static void enqueue_huge_page(struct hstate *h, struct page *page)
480{
481	int nid = page_to_nid(page);
482	list_move(&page->lru, &h->hugepage_freelists[nid]);
483	h->free_huge_pages++;
484	h->free_huge_pages_node[nid]++;
485}
486
487static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488{
489	struct page *page;
490
491	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492		if (!is_migrate_isolate_page(page))
493			break;
494	/*
495	 * if 'non-isolated free hugepage' not found on the list,
496	 * the allocation fails.
497	 */
498	if (&h->hugepage_freelists[nid] == &page->lru)
499		return NULL;
500	list_move(&page->lru, &h->hugepage_activelist);
501	set_page_refcounted(page);
502	h->free_huge_pages--;
503	h->free_huge_pages_node[nid]--;
504	return page;
505}
506
507/* Movability of hugepages depends on migration support. */
508static inline gfp_t htlb_alloc_mask(struct hstate *h)
509{
510	if (hugepages_treat_as_movable || hugepage_migration_support(h))
511		return GFP_HIGHUSER_MOVABLE;
512	else
513		return GFP_HIGHUSER;
514}
515
516static struct page *dequeue_huge_page_vma(struct hstate *h,
517				struct vm_area_struct *vma,
518				unsigned long address, int avoid_reserve,
519				long chg)
520{
521	struct page *page = NULL;
522	struct mempolicy *mpol;
523	nodemask_t *nodemask;
524	struct zonelist *zonelist;
525	struct zone *zone;
526	struct zoneref *z;
527	unsigned int cpuset_mems_cookie;
528
529	/*
530	 * A child process with MAP_PRIVATE mappings created by their parent
531	 * have no page reserves. This check ensures that reservations are
532	 * not "stolen". The child may still get SIGKILLed
533	 */
534	if (!vma_has_reserves(vma, chg) &&
535			h->free_huge_pages - h->resv_huge_pages == 0)
536		goto err;
537
538	/* If reserves cannot be used, ensure enough pages are in the pool */
539	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540		goto err;
541
542retry_cpuset:
543	cpuset_mems_cookie = get_mems_allowed();
544	zonelist = huge_zonelist(vma, address,
545					htlb_alloc_mask(h), &mpol, &nodemask);
546
547	for_each_zone_zonelist_nodemask(zone, z, zonelist,
548						MAX_NR_ZONES - 1, nodemask) {
549		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550			page = dequeue_huge_page_node(h, zone_to_nid(zone));
551			if (page) {
552				if (avoid_reserve)
553					break;
554				if (!vma_has_reserves(vma, chg))
555					break;
556
557				SetPagePrivate(page);
558				h->resv_huge_pages--;
559				break;
560			}
561		}
562	}
563
564	mpol_cond_put(mpol);
565	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566		goto retry_cpuset;
567	return page;
568
569err:
570	return NULL;
571}
572
573static void update_and_free_page(struct hstate *h, struct page *page)
574{
575	int i;
576
577	VM_BUG_ON(h->order >= MAX_ORDER);
578
579	h->nr_huge_pages--;
580	h->nr_huge_pages_node[page_to_nid(page)]--;
581	for (i = 0; i < pages_per_huge_page(h); i++) {
582		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583				1 << PG_referenced | 1 << PG_dirty |
584				1 << PG_active | 1 << PG_reserved |
585				1 << PG_private | 1 << PG_writeback);
586	}
587	VM_BUG_ON(hugetlb_cgroup_from_page(page));
588	set_compound_page_dtor(page, NULL);
589	set_page_refcounted(page);
590	arch_release_hugepage(page);
591	__free_pages(page, huge_page_order(h));
592}
593
594struct hstate *size_to_hstate(unsigned long size)
595{
596	struct hstate *h;
597
598	for_each_hstate(h) {
599		if (huge_page_size(h) == size)
600			return h;
601	}
602	return NULL;
603}
604
605static void free_huge_page(struct page *page)
606{
607	/*
608	 * Can't pass hstate in here because it is called from the
609	 * compound page destructor.
610	 */
611	struct hstate *h = page_hstate(page);
612	int nid = page_to_nid(page);
613	struct hugepage_subpool *spool =
614		(struct hugepage_subpool *)page_private(page);
615	bool restore_reserve;
616
617	set_page_private(page, 0);
618	page->mapping = NULL;
619	BUG_ON(page_count(page));
620	BUG_ON(page_mapcount(page));
621	restore_reserve = PagePrivate(page);
622	ClearPagePrivate(page);
623
624	spin_lock(&hugetlb_lock);
625	hugetlb_cgroup_uncharge_page(hstate_index(h),
626				     pages_per_huge_page(h), page);
627	if (restore_reserve)
628		h->resv_huge_pages++;
629
630	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631		/* remove the page from active list */
632		list_del(&page->lru);
633		update_and_free_page(h, page);
634		h->surplus_huge_pages--;
635		h->surplus_huge_pages_node[nid]--;
636	} else {
637		arch_clear_hugepage_flags(page);
638		enqueue_huge_page(h, page);
639	}
640	spin_unlock(&hugetlb_lock);
641	hugepage_subpool_put_pages(spool, 1);
642}
643
644static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645{
646	INIT_LIST_HEAD(&page->lru);
647	set_compound_page_dtor(page, free_huge_page);
648	spin_lock(&hugetlb_lock);
649	set_hugetlb_cgroup(page, NULL);
650	h->nr_huge_pages++;
651	h->nr_huge_pages_node[nid]++;
652	spin_unlock(&hugetlb_lock);
653	put_page(page); /* free it into the hugepage allocator */
654}
655
656static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657{
658	int i;
659	int nr_pages = 1 << order;
660	struct page *p = page + 1;
661
662	/* we rely on prep_new_huge_page to set the destructor */
663	set_compound_order(page, order);
664	__SetPageHead(page);
665	__ClearPageReserved(page);
666	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667		__SetPageTail(p);
668		/*
669		 * For gigantic hugepages allocated through bootmem at
670		 * boot, it's safer to be consistent with the not-gigantic
671		 * hugepages and clear the PG_reserved bit from all tail pages
672		 * too.  Otherwse drivers using get_user_pages() to access tail
673		 * pages may get the reference counting wrong if they see
674		 * PG_reserved set on a tail page (despite the head page not
675		 * having PG_reserved set).  Enforcing this consistency between
676		 * head and tail pages allows drivers to optimize away a check
677		 * on the head page when they need know if put_page() is needed
678		 * after get_user_pages().
679		 */
680		__ClearPageReserved(p);
681		set_page_count(p, 0);
682		p->first_page = page;
683	}
684}
685
686/*
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages.  See the PageTransHuge() documentation for more
689 * details.
690 */
691int PageHuge(struct page *page)
692{
693	compound_page_dtor *dtor;
694
695	if (!PageCompound(page))
696		return 0;
697
698	page = compound_head(page);
699	dtor = get_compound_page_dtor(page);
700
701	return dtor == free_huge_page;
702}
703EXPORT_SYMBOL_GPL(PageHuge);
704
705pgoff_t __basepage_index(struct page *page)
706{
707	struct page *page_head = compound_head(page);
708	pgoff_t index = page_index(page_head);
709	unsigned long compound_idx;
710
711	if (!PageHuge(page_head))
712		return page_index(page);
713
714	if (compound_order(page_head) >= MAX_ORDER)
715		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
716	else
717		compound_idx = page - page_head;
718
719	return (index << compound_order(page_head)) + compound_idx;
720}
721
722static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
723{
724	struct page *page;
725
726	if (h->order >= MAX_ORDER)
727		return NULL;
728
729	page = alloc_pages_exact_node(nid,
730		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
731						__GFP_REPEAT|__GFP_NOWARN,
732		huge_page_order(h));
733	if (page) {
734		if (arch_prepare_hugepage(page)) {
735			__free_pages(page, huge_page_order(h));
736			return NULL;
737		}
738		prep_new_huge_page(h, page, nid);
739	}
740
741	return page;
742}
743
744/*
745 * common helper functions for hstate_next_node_to_{alloc|free}.
746 * We may have allocated or freed a huge page based on a different
747 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
748 * be outside of *nodes_allowed.  Ensure that we use an allowed
749 * node for alloc or free.
750 */
751static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
752{
753	nid = next_node(nid, *nodes_allowed);
754	if (nid == MAX_NUMNODES)
755		nid = first_node(*nodes_allowed);
756	VM_BUG_ON(nid >= MAX_NUMNODES);
757
758	return nid;
759}
760
761static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
762{
763	if (!node_isset(nid, *nodes_allowed))
764		nid = next_node_allowed(nid, nodes_allowed);
765	return nid;
766}
767
768/*
769 * returns the previously saved node ["this node"] from which to
770 * allocate a persistent huge page for the pool and advance the
771 * next node from which to allocate, handling wrap at end of node
772 * mask.
773 */
774static int hstate_next_node_to_alloc(struct hstate *h,
775					nodemask_t *nodes_allowed)
776{
777	int nid;
778
779	VM_BUG_ON(!nodes_allowed);
780
781	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
782	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
783
784	return nid;
785}
786
787/*
788 * helper for free_pool_huge_page() - return the previously saved
789 * node ["this node"] from which to free a huge page.  Advance the
790 * next node id whether or not we find a free huge page to free so
791 * that the next attempt to free addresses the next node.
792 */
793static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
794{
795	int nid;
796
797	VM_BUG_ON(!nodes_allowed);
798
799	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
800	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
801
802	return nid;
803}
804
805#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
806	for (nr_nodes = nodes_weight(*mask);				\
807		nr_nodes > 0 &&						\
808		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
809		nr_nodes--)
810
811#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
812	for (nr_nodes = nodes_weight(*mask);				\
813		nr_nodes > 0 &&						\
814		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
815		nr_nodes--)
816
817static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
818{
819	struct page *page;
820	int nr_nodes, node;
821	int ret = 0;
822
823	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
824		page = alloc_fresh_huge_page_node(h, node);
825		if (page) {
826			ret = 1;
827			break;
828		}
829	}
830
831	if (ret)
832		count_vm_event(HTLB_BUDDY_PGALLOC);
833	else
834		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
835
836	return ret;
837}
838
839/*
840 * Free huge page from pool from next node to free.
841 * Attempt to keep persistent huge pages more or less
842 * balanced over allowed nodes.
843 * Called with hugetlb_lock locked.
844 */
845static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
846							 bool acct_surplus)
847{
848	int nr_nodes, node;
849	int ret = 0;
850
851	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
852		/*
853		 * If we're returning unused surplus pages, only examine
854		 * nodes with surplus pages.
855		 */
856		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
857		    !list_empty(&h->hugepage_freelists[node])) {
858			struct page *page =
859				list_entry(h->hugepage_freelists[node].next,
860					  struct page, lru);
861			list_del(&page->lru);
862			h->free_huge_pages--;
863			h->free_huge_pages_node[node]--;
864			if (acct_surplus) {
865				h->surplus_huge_pages--;
866				h->surplus_huge_pages_node[node]--;
867			}
868			update_and_free_page(h, page);
869			ret = 1;
870			break;
871		}
872	}
873
874	return ret;
875}
876
877/*
878 * Dissolve a given free hugepage into free buddy pages. This function does
879 * nothing for in-use (including surplus) hugepages.
880 */
881static void dissolve_free_huge_page(struct page *page)
882{
883	spin_lock(&hugetlb_lock);
884	if (PageHuge(page) && !page_count(page)) {
885		struct hstate *h = page_hstate(page);
886		int nid = page_to_nid(page);
887		list_del(&page->lru);
888		h->free_huge_pages--;
889		h->free_huge_pages_node[nid]--;
890		update_and_free_page(h, page);
891	}
892	spin_unlock(&hugetlb_lock);
893}
894
895/*
896 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
897 * make specified memory blocks removable from the system.
898 * Note that start_pfn should aligned with (minimum) hugepage size.
899 */
900void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
901{
902	unsigned int order = 8 * sizeof(void *);
903	unsigned long pfn;
904	struct hstate *h;
905
906	/* Set scan step to minimum hugepage size */
907	for_each_hstate(h)
908		if (order > huge_page_order(h))
909			order = huge_page_order(h);
910	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
911	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
912		dissolve_free_huge_page(pfn_to_page(pfn));
913}
914
915static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
916{
917	struct page *page;
918	unsigned int r_nid;
919
920	if (h->order >= MAX_ORDER)
921		return NULL;
922
923	/*
924	 * Assume we will successfully allocate the surplus page to
925	 * prevent racing processes from causing the surplus to exceed
926	 * overcommit
927	 *
928	 * This however introduces a different race, where a process B
929	 * tries to grow the static hugepage pool while alloc_pages() is
930	 * called by process A. B will only examine the per-node
931	 * counters in determining if surplus huge pages can be
932	 * converted to normal huge pages in adjust_pool_surplus(). A
933	 * won't be able to increment the per-node counter, until the
934	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
935	 * no more huge pages can be converted from surplus to normal
936	 * state (and doesn't try to convert again). Thus, we have a
937	 * case where a surplus huge page exists, the pool is grown, and
938	 * the surplus huge page still exists after, even though it
939	 * should just have been converted to a normal huge page. This
940	 * does not leak memory, though, as the hugepage will be freed
941	 * once it is out of use. It also does not allow the counters to
942	 * go out of whack in adjust_pool_surplus() as we don't modify
943	 * the node values until we've gotten the hugepage and only the
944	 * per-node value is checked there.
945	 */
946	spin_lock(&hugetlb_lock);
947	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
948		spin_unlock(&hugetlb_lock);
949		return NULL;
950	} else {
951		h->nr_huge_pages++;
952		h->surplus_huge_pages++;
953	}
954	spin_unlock(&hugetlb_lock);
955
956	if (nid == NUMA_NO_NODE)
957		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
958				   __GFP_REPEAT|__GFP_NOWARN,
959				   huge_page_order(h));
960	else
961		page = alloc_pages_exact_node(nid,
962			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
963			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
964
965	if (page && arch_prepare_hugepage(page)) {
966		__free_pages(page, huge_page_order(h));
967		page = NULL;
968	}
969
970	spin_lock(&hugetlb_lock);
971	if (page) {
972		INIT_LIST_HEAD(&page->lru);
973		r_nid = page_to_nid(page);
974		set_compound_page_dtor(page, free_huge_page);
975		set_hugetlb_cgroup(page, NULL);
976		/*
977		 * We incremented the global counters already
978		 */
979		h->nr_huge_pages_node[r_nid]++;
980		h->surplus_huge_pages_node[r_nid]++;
981		__count_vm_event(HTLB_BUDDY_PGALLOC);
982	} else {
983		h->nr_huge_pages--;
984		h->surplus_huge_pages--;
985		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
986	}
987	spin_unlock(&hugetlb_lock);
988
989	return page;
990}
991
992/*
993 * This allocation function is useful in the context where vma is irrelevant.
994 * E.g. soft-offlining uses this function because it only cares physical
995 * address of error page.
996 */
997struct page *alloc_huge_page_node(struct hstate *h, int nid)
998{
999	struct page *page = NULL;
1000
1001	spin_lock(&hugetlb_lock);
1002	if (h->free_huge_pages - h->resv_huge_pages > 0)
1003		page = dequeue_huge_page_node(h, nid);
1004	spin_unlock(&hugetlb_lock);
1005
1006	if (!page)
1007		page = alloc_buddy_huge_page(h, nid);
1008
1009	return page;
1010}
1011
1012/*
1013 * Increase the hugetlb pool such that it can accommodate a reservation
1014 * of size 'delta'.
1015 */
1016static int gather_surplus_pages(struct hstate *h, int delta)
1017{
1018	struct list_head surplus_list;
1019	struct page *page, *tmp;
1020	int ret, i;
1021	int needed, allocated;
1022	bool alloc_ok = true;
1023
1024	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1025	if (needed <= 0) {
1026		h->resv_huge_pages += delta;
1027		return 0;
1028	}
1029
1030	allocated = 0;
1031	INIT_LIST_HEAD(&surplus_list);
1032
1033	ret = -ENOMEM;
1034retry:
1035	spin_unlock(&hugetlb_lock);
1036	for (i = 0; i < needed; i++) {
1037		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1038		if (!page) {
1039			alloc_ok = false;
1040			break;
1041		}
1042		list_add(&page->lru, &surplus_list);
1043	}
1044	allocated += i;
1045
1046	/*
1047	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1048	 * because either resv_huge_pages or free_huge_pages may have changed.
1049	 */
1050	spin_lock(&hugetlb_lock);
1051	needed = (h->resv_huge_pages + delta) -
1052			(h->free_huge_pages + allocated);
1053	if (needed > 0) {
1054		if (alloc_ok)
1055			goto retry;
1056		/*
1057		 * We were not able to allocate enough pages to
1058		 * satisfy the entire reservation so we free what
1059		 * we've allocated so far.
1060		 */
1061		goto free;
1062	}
1063	/*
1064	 * The surplus_list now contains _at_least_ the number of extra pages
1065	 * needed to accommodate the reservation.  Add the appropriate number
1066	 * of pages to the hugetlb pool and free the extras back to the buddy
1067	 * allocator.  Commit the entire reservation here to prevent another
1068	 * process from stealing the pages as they are added to the pool but
1069	 * before they are reserved.
1070	 */
1071	needed += allocated;
1072	h->resv_huge_pages += delta;
1073	ret = 0;
1074
1075	/* Free the needed pages to the hugetlb pool */
1076	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1077		if ((--needed) < 0)
1078			break;
1079		/*
1080		 * This page is now managed by the hugetlb allocator and has
1081		 * no users -- drop the buddy allocator's reference.
1082		 */
1083		put_page_testzero(page);
1084		VM_BUG_ON(page_count(page));
1085		enqueue_huge_page(h, page);
1086	}
1087free:
1088	spin_unlock(&hugetlb_lock);
1089
1090	/* Free unnecessary surplus pages to the buddy allocator */
1091	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1092		put_page(page);
1093	spin_lock(&hugetlb_lock);
1094
1095	return ret;
1096}
1097
1098/*
1099 * When releasing a hugetlb pool reservation, any surplus pages that were
1100 * allocated to satisfy the reservation must be explicitly freed if they were
1101 * never used.
1102 * Called with hugetlb_lock held.
1103 */
1104static void return_unused_surplus_pages(struct hstate *h,
1105					unsigned long unused_resv_pages)
1106{
1107	unsigned long nr_pages;
1108
1109	/* Uncommit the reservation */
1110	h->resv_huge_pages -= unused_resv_pages;
1111
1112	/* Cannot return gigantic pages currently */
1113	if (h->order >= MAX_ORDER)
1114		return;
1115
1116	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1117
1118	/*
1119	 * We want to release as many surplus pages as possible, spread
1120	 * evenly across all nodes with memory. Iterate across these nodes
1121	 * until we can no longer free unreserved surplus pages. This occurs
1122	 * when the nodes with surplus pages have no free pages.
1123	 * free_pool_huge_page() will balance the the freed pages across the
1124	 * on-line nodes with memory and will handle the hstate accounting.
1125	 */
1126	while (nr_pages--) {
1127		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1128			break;
1129	}
1130}
1131
1132/*
1133 * Determine if the huge page at addr within the vma has an associated
1134 * reservation.  Where it does not we will need to logically increase
1135 * reservation and actually increase subpool usage before an allocation
1136 * can occur.  Where any new reservation would be required the
1137 * reservation change is prepared, but not committed.  Once the page
1138 * has been allocated from the subpool and instantiated the change should
1139 * be committed via vma_commit_reservation.  No action is required on
1140 * failure.
1141 */
1142static long vma_needs_reservation(struct hstate *h,
1143			struct vm_area_struct *vma, unsigned long addr)
1144{
1145	struct address_space *mapping = vma->vm_file->f_mapping;
1146	struct inode *inode = mapping->host;
1147
1148	if (vma->vm_flags & VM_MAYSHARE) {
1149		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1150		return region_chg(&inode->i_mapping->private_list,
1151							idx, idx + 1);
1152
1153	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1154		return 1;
1155
1156	} else  {
1157		long err;
1158		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1159		struct resv_map *resv = vma_resv_map(vma);
1160
1161		err = region_chg(&resv->regions, idx, idx + 1);
1162		if (err < 0)
1163			return err;
1164		return 0;
1165	}
1166}
1167static void vma_commit_reservation(struct hstate *h,
1168			struct vm_area_struct *vma, unsigned long addr)
1169{
1170	struct address_space *mapping = vma->vm_file->f_mapping;
1171	struct inode *inode = mapping->host;
1172
1173	if (vma->vm_flags & VM_MAYSHARE) {
1174		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1175		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1176
1177	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1178		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1179		struct resv_map *resv = vma_resv_map(vma);
1180
1181		/* Mark this page used in the map. */
1182		region_add(&resv->regions, idx, idx + 1);
1183	}
1184}
1185
1186static struct page *alloc_huge_page(struct vm_area_struct *vma,
1187				    unsigned long addr, int avoid_reserve)
1188{
1189	struct hugepage_subpool *spool = subpool_vma(vma);
1190	struct hstate *h = hstate_vma(vma);
1191	struct page *page;
1192	long chg;
1193	int ret, idx;
1194	struct hugetlb_cgroup *h_cg;
1195
1196	idx = hstate_index(h);
1197	/*
1198	 * Processes that did not create the mapping will have no
1199	 * reserves and will not have accounted against subpool
1200	 * limit. Check that the subpool limit can be made before
1201	 * satisfying the allocation MAP_NORESERVE mappings may also
1202	 * need pages and subpool limit allocated allocated if no reserve
1203	 * mapping overlaps.
1204	 */
1205	chg = vma_needs_reservation(h, vma, addr);
1206	if (chg < 0)
1207		return ERR_PTR(-ENOMEM);
1208	if (chg || avoid_reserve)
1209		if (hugepage_subpool_get_pages(spool, 1))
1210			return ERR_PTR(-ENOSPC);
1211
1212	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1213	if (ret) {
1214		if (chg || avoid_reserve)
1215			hugepage_subpool_put_pages(spool, 1);
1216		return ERR_PTR(-ENOSPC);
1217	}
1218	spin_lock(&hugetlb_lock);
1219	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1220	if (!page) {
1221		spin_unlock(&hugetlb_lock);
1222		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1223		if (!page) {
1224			hugetlb_cgroup_uncharge_cgroup(idx,
1225						       pages_per_huge_page(h),
1226						       h_cg);
1227			if (chg || avoid_reserve)
1228				hugepage_subpool_put_pages(spool, 1);
1229			return ERR_PTR(-ENOSPC);
1230		}
1231		spin_lock(&hugetlb_lock);
1232		list_move(&page->lru, &h->hugepage_activelist);
1233		/* Fall through */
1234	}
1235	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1236	spin_unlock(&hugetlb_lock);
1237
1238	set_page_private(page, (unsigned long)spool);
1239
1240	vma_commit_reservation(h, vma, addr);
1241	return page;
1242}
1243
1244/*
1245 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1246 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1247 * where no ERR_VALUE is expected to be returned.
1248 */
1249struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1250				unsigned long addr, int avoid_reserve)
1251{
1252	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1253	if (IS_ERR(page))
1254		page = NULL;
1255	return page;
1256}
1257
1258int __weak alloc_bootmem_huge_page(struct hstate *h)
1259{
1260	struct huge_bootmem_page *m;
1261	int nr_nodes, node;
1262
1263	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1264		void *addr;
1265
1266		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1267				huge_page_size(h), huge_page_size(h), 0);
1268
1269		if (addr) {
1270			/*
1271			 * Use the beginning of the huge page to store the
1272			 * huge_bootmem_page struct (until gather_bootmem
1273			 * puts them into the mem_map).
1274			 */
1275			m = addr;
1276			goto found;
1277		}
1278	}
1279	return 0;
1280
1281found:
1282	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1283	/* Put them into a private list first because mem_map is not up yet */
1284	list_add(&m->list, &huge_boot_pages);
1285	m->hstate = h;
1286	return 1;
1287}
1288
1289static void prep_compound_huge_page(struct page *page, int order)
1290{
1291	if (unlikely(order > (MAX_ORDER - 1)))
1292		prep_compound_gigantic_page(page, order);
1293	else
1294		prep_compound_page(page, order);
1295}
1296
1297/* Put bootmem huge pages into the standard lists after mem_map is up */
1298static void __init gather_bootmem_prealloc(void)
1299{
1300	struct huge_bootmem_page *m;
1301
1302	list_for_each_entry(m, &huge_boot_pages, list) {
1303		struct hstate *h = m->hstate;
1304		struct page *page;
1305
1306#ifdef CONFIG_HIGHMEM
1307		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1308		free_bootmem_late((unsigned long)m,
1309				  sizeof(struct huge_bootmem_page));
1310#else
1311		page = virt_to_page(m);
1312#endif
1313		WARN_ON(page_count(page) != 1);
1314		prep_compound_huge_page(page, h->order);
1315		WARN_ON(PageReserved(page));
1316		prep_new_huge_page(h, page, page_to_nid(page));
1317		/*
1318		 * If we had gigantic hugepages allocated at boot time, we need
1319		 * to restore the 'stolen' pages to totalram_pages in order to
1320		 * fix confusing memory reports from free(1) and another
1321		 * side-effects, like CommitLimit going negative.
1322		 */
1323		if (h->order > (MAX_ORDER - 1))
1324			adjust_managed_page_count(page, 1 << h->order);
1325	}
1326}
1327
1328static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1329{
1330	unsigned long i;
1331
1332	for (i = 0; i < h->max_huge_pages; ++i) {
1333		if (h->order >= MAX_ORDER) {
1334			if (!alloc_bootmem_huge_page(h))
1335				break;
1336		} else if (!alloc_fresh_huge_page(h,
1337					 &node_states[N_MEMORY]))
1338			break;
1339	}
1340	h->max_huge_pages = i;
1341}
1342
1343static void __init hugetlb_init_hstates(void)
1344{
1345	struct hstate *h;
1346
1347	for_each_hstate(h) {
1348		/* oversize hugepages were init'ed in early boot */
1349		if (h->order < MAX_ORDER)
1350			hugetlb_hstate_alloc_pages(h);
1351	}
1352}
1353
1354static char * __init memfmt(char *buf, unsigned long n)
1355{
1356	if (n >= (1UL << 30))
1357		sprintf(buf, "%lu GB", n >> 30);
1358	else if (n >= (1UL << 20))
1359		sprintf(buf, "%lu MB", n >> 20);
1360	else
1361		sprintf(buf, "%lu KB", n >> 10);
1362	return buf;
1363}
1364
1365static void __init report_hugepages(void)
1366{
1367	struct hstate *h;
1368
1369	for_each_hstate(h) {
1370		char buf[32];
1371		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1372			memfmt(buf, huge_page_size(h)),
1373			h->free_huge_pages);
1374	}
1375}
1376
1377#ifdef CONFIG_HIGHMEM
1378static void try_to_free_low(struct hstate *h, unsigned long count,
1379						nodemask_t *nodes_allowed)
1380{
1381	int i;
1382
1383	if (h->order >= MAX_ORDER)
1384		return;
1385
1386	for_each_node_mask(i, *nodes_allowed) {
1387		struct page *page, *next;
1388		struct list_head *freel = &h->hugepage_freelists[i];
1389		list_for_each_entry_safe(page, next, freel, lru) {
1390			if (count >= h->nr_huge_pages)
1391				return;
1392			if (PageHighMem(page))
1393				continue;
1394			list_del(&page->lru);
1395			update_and_free_page(h, page);
1396			h->free_huge_pages--;
1397			h->free_huge_pages_node[page_to_nid(page)]--;
1398		}
1399	}
1400}
1401#else
1402static inline void try_to_free_low(struct hstate *h, unsigned long count,
1403						nodemask_t *nodes_allowed)
1404{
1405}
1406#endif
1407
1408/*
1409 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1410 * balanced by operating on them in a round-robin fashion.
1411 * Returns 1 if an adjustment was made.
1412 */
1413static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1414				int delta)
1415{
1416	int nr_nodes, node;
1417
1418	VM_BUG_ON(delta != -1 && delta != 1);
1419
1420	if (delta < 0) {
1421		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1422			if (h->surplus_huge_pages_node[node])
1423				goto found;
1424		}
1425	} else {
1426		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1427			if (h->surplus_huge_pages_node[node] <
1428					h->nr_huge_pages_node[node])
1429				goto found;
1430		}
1431	}
1432	return 0;
1433
1434found:
1435	h->surplus_huge_pages += delta;
1436	h->surplus_huge_pages_node[node] += delta;
1437	return 1;
1438}
1439
1440#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1441static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1442						nodemask_t *nodes_allowed)
1443{
1444	unsigned long min_count, ret;
1445
1446	if (h->order >= MAX_ORDER)
1447		return h->max_huge_pages;
1448
1449	/*
1450	 * Increase the pool size
1451	 * First take pages out of surplus state.  Then make up the
1452	 * remaining difference by allocating fresh huge pages.
1453	 *
1454	 * We might race with alloc_buddy_huge_page() here and be unable
1455	 * to convert a surplus huge page to a normal huge page. That is
1456	 * not critical, though, it just means the overall size of the
1457	 * pool might be one hugepage larger than it needs to be, but
1458	 * within all the constraints specified by the sysctls.
1459	 */
1460	spin_lock(&hugetlb_lock);
1461	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1462		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1463			break;
1464	}
1465
1466	while (count > persistent_huge_pages(h)) {
1467		/*
1468		 * If this allocation races such that we no longer need the
1469		 * page, free_huge_page will handle it by freeing the page
1470		 * and reducing the surplus.
1471		 */
1472		spin_unlock(&hugetlb_lock);
1473		ret = alloc_fresh_huge_page(h, nodes_allowed);
1474		spin_lock(&hugetlb_lock);
1475		if (!ret)
1476			goto out;
1477
1478		/* Bail for signals. Probably ctrl-c from user */
1479		if (signal_pending(current))
1480			goto out;
1481	}
1482
1483	/*
1484	 * Decrease the pool size
1485	 * First return free pages to the buddy allocator (being careful
1486	 * to keep enough around to satisfy reservations).  Then place
1487	 * pages into surplus state as needed so the pool will shrink
1488	 * to the desired size as pages become free.
1489	 *
1490	 * By placing pages into the surplus state independent of the
1491	 * overcommit value, we are allowing the surplus pool size to
1492	 * exceed overcommit. There are few sane options here. Since
1493	 * alloc_buddy_huge_page() is checking the global counter,
1494	 * though, we'll note that we're not allowed to exceed surplus
1495	 * and won't grow the pool anywhere else. Not until one of the
1496	 * sysctls are changed, or the surplus pages go out of use.
1497	 */
1498	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1499	min_count = max(count, min_count);
1500	try_to_free_low(h, min_count, nodes_allowed);
1501	while (min_count < persistent_huge_pages(h)) {
1502		if (!free_pool_huge_page(h, nodes_allowed, 0))
1503			break;
1504	}
1505	while (count < persistent_huge_pages(h)) {
1506		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1507			break;
1508	}
1509out:
1510	ret = persistent_huge_pages(h);
1511	spin_unlock(&hugetlb_lock);
1512	return ret;
1513}
1514
1515#define HSTATE_ATTR_RO(_name) \
1516	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1517
1518#define HSTATE_ATTR(_name) \
1519	static struct kobj_attribute _name##_attr = \
1520		__ATTR(_name, 0644, _name##_show, _name##_store)
1521
1522static struct kobject *hugepages_kobj;
1523static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1524
1525static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1526
1527static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1528{
1529	int i;
1530
1531	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1532		if (hstate_kobjs[i] == kobj) {
1533			if (nidp)
1534				*nidp = NUMA_NO_NODE;
1535			return &hstates[i];
1536		}
1537
1538	return kobj_to_node_hstate(kobj, nidp);
1539}
1540
1541static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1542					struct kobj_attribute *attr, char *buf)
1543{
1544	struct hstate *h;
1545	unsigned long nr_huge_pages;
1546	int nid;
1547
1548	h = kobj_to_hstate(kobj, &nid);
1549	if (nid == NUMA_NO_NODE)
1550		nr_huge_pages = h->nr_huge_pages;
1551	else
1552		nr_huge_pages = h->nr_huge_pages_node[nid];
1553
1554	return sprintf(buf, "%lu\n", nr_huge_pages);
1555}
1556
1557static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1558			struct kobject *kobj, struct kobj_attribute *attr,
1559			const char *buf, size_t len)
1560{
1561	int err;
1562	int nid;
1563	unsigned long count;
1564	struct hstate *h;
1565	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1566
1567	err = kstrtoul(buf, 10, &count);
1568	if (err)
1569		goto out;
1570
1571	h = kobj_to_hstate(kobj, &nid);
1572	if (h->order >= MAX_ORDER) {
1573		err = -EINVAL;
1574		goto out;
1575	}
1576
1577	if (nid == NUMA_NO_NODE) {
1578		/*
1579		 * global hstate attribute
1580		 */
1581		if (!(obey_mempolicy &&
1582				init_nodemask_of_mempolicy(nodes_allowed))) {
1583			NODEMASK_FREE(nodes_allowed);
1584			nodes_allowed = &node_states[N_MEMORY];
1585		}
1586	} else if (nodes_allowed) {
1587		/*
1588		 * per node hstate attribute: adjust count to global,
1589		 * but restrict alloc/free to the specified node.
1590		 */
1591		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1592		init_nodemask_of_node(nodes_allowed, nid);
1593	} else
1594		nodes_allowed = &node_states[N_MEMORY];
1595
1596	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1597
1598	if (nodes_allowed != &node_states[N_MEMORY])
1599		NODEMASK_FREE(nodes_allowed);
1600
1601	return len;
1602out:
1603	NODEMASK_FREE(nodes_allowed);
1604	return err;
1605}
1606
1607static ssize_t nr_hugepages_show(struct kobject *kobj,
1608				       struct kobj_attribute *attr, char *buf)
1609{
1610	return nr_hugepages_show_common(kobj, attr, buf);
1611}
1612
1613static ssize_t nr_hugepages_store(struct kobject *kobj,
1614	       struct kobj_attribute *attr, const char *buf, size_t len)
1615{
1616	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1617}
1618HSTATE_ATTR(nr_hugepages);
1619
1620#ifdef CONFIG_NUMA
1621
1622/*
1623 * hstate attribute for optionally mempolicy-based constraint on persistent
1624 * huge page alloc/free.
1625 */
1626static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1627				       struct kobj_attribute *attr, char *buf)
1628{
1629	return nr_hugepages_show_common(kobj, attr, buf);
1630}
1631
1632static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1633	       struct kobj_attribute *attr, const char *buf, size_t len)
1634{
1635	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1636}
1637HSTATE_ATTR(nr_hugepages_mempolicy);
1638#endif
1639
1640
1641static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1642					struct kobj_attribute *attr, char *buf)
1643{
1644	struct hstate *h = kobj_to_hstate(kobj, NULL);
1645	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1646}
1647
1648static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1649		struct kobj_attribute *attr, const char *buf, size_t count)
1650{
1651	int err;
1652	unsigned long input;
1653	struct hstate *h = kobj_to_hstate(kobj, NULL);
1654
1655	if (h->order >= MAX_ORDER)
1656		return -EINVAL;
1657
1658	err = kstrtoul(buf, 10, &input);
1659	if (err)
1660		return err;
1661
1662	spin_lock(&hugetlb_lock);
1663	h->nr_overcommit_huge_pages = input;
1664	spin_unlock(&hugetlb_lock);
1665
1666	return count;
1667}
1668HSTATE_ATTR(nr_overcommit_hugepages);
1669
1670static ssize_t free_hugepages_show(struct kobject *kobj,
1671					struct kobj_attribute *attr, char *buf)
1672{
1673	struct hstate *h;
1674	unsigned long free_huge_pages;
1675	int nid;
1676
1677	h = kobj_to_hstate(kobj, &nid);
1678	if (nid == NUMA_NO_NODE)
1679		free_huge_pages = h->free_huge_pages;
1680	else
1681		free_huge_pages = h->free_huge_pages_node[nid];
1682
1683	return sprintf(buf, "%lu\n", free_huge_pages);
1684}
1685HSTATE_ATTR_RO(free_hugepages);
1686
1687static ssize_t resv_hugepages_show(struct kobject *kobj,
1688					struct kobj_attribute *attr, char *buf)
1689{
1690	struct hstate *h = kobj_to_hstate(kobj, NULL);
1691	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1692}
1693HSTATE_ATTR_RO(resv_hugepages);
1694
1695static ssize_t surplus_hugepages_show(struct kobject *kobj,
1696					struct kobj_attribute *attr, char *buf)
1697{
1698	struct hstate *h;
1699	unsigned long surplus_huge_pages;
1700	int nid;
1701
1702	h = kobj_to_hstate(kobj, &nid);
1703	if (nid == NUMA_NO_NODE)
1704		surplus_huge_pages = h->surplus_huge_pages;
1705	else
1706		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1707
1708	return sprintf(buf, "%lu\n", surplus_huge_pages);
1709}
1710HSTATE_ATTR_RO(surplus_hugepages);
1711
1712static struct attribute *hstate_attrs[] = {
1713	&nr_hugepages_attr.attr,
1714	&nr_overcommit_hugepages_attr.attr,
1715	&free_hugepages_attr.attr,
1716	&resv_hugepages_attr.attr,
1717	&surplus_hugepages_attr.attr,
1718#ifdef CONFIG_NUMA
1719	&nr_hugepages_mempolicy_attr.attr,
1720#endif
1721	NULL,
1722};
1723
1724static struct attribute_group hstate_attr_group = {
1725	.attrs = hstate_attrs,
1726};
1727
1728static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1729				    struct kobject **hstate_kobjs,
1730				    struct attribute_group *hstate_attr_group)
1731{
1732	int retval;
1733	int hi = hstate_index(h);
1734
1735	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1736	if (!hstate_kobjs[hi])
1737		return -ENOMEM;
1738
1739	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1740	if (retval)
1741		kobject_put(hstate_kobjs[hi]);
1742
1743	return retval;
1744}
1745
1746static void __init hugetlb_sysfs_init(void)
1747{
1748	struct hstate *h;
1749	int err;
1750
1751	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1752	if (!hugepages_kobj)
1753		return;
1754
1755	for_each_hstate(h) {
1756		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1757					 hstate_kobjs, &hstate_attr_group);
1758		if (err)
1759			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1760	}
1761}
1762
1763#ifdef CONFIG_NUMA
1764
1765/*
1766 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1767 * with node devices in node_devices[] using a parallel array.  The array
1768 * index of a node device or _hstate == node id.
1769 * This is here to avoid any static dependency of the node device driver, in
1770 * the base kernel, on the hugetlb module.
1771 */
1772struct node_hstate {
1773	struct kobject		*hugepages_kobj;
1774	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1775};
1776struct node_hstate node_hstates[MAX_NUMNODES];
1777
1778/*
1779 * A subset of global hstate attributes for node devices
1780 */
1781static struct attribute *per_node_hstate_attrs[] = {
1782	&nr_hugepages_attr.attr,
1783	&free_hugepages_attr.attr,
1784	&surplus_hugepages_attr.attr,
1785	NULL,
1786};
1787
1788static struct attribute_group per_node_hstate_attr_group = {
1789	.attrs = per_node_hstate_attrs,
1790};
1791
1792/*
1793 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1794 * Returns node id via non-NULL nidp.
1795 */
1796static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1797{
1798	int nid;
1799
1800	for (nid = 0; nid < nr_node_ids; nid++) {
1801		struct node_hstate *nhs = &node_hstates[nid];
1802		int i;
1803		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1804			if (nhs->hstate_kobjs[i] == kobj) {
1805				if (nidp)
1806					*nidp = nid;
1807				return &hstates[i];
1808			}
1809	}
1810
1811	BUG();
1812	return NULL;
1813}
1814
1815/*
1816 * Unregister hstate attributes from a single node device.
1817 * No-op if no hstate attributes attached.
1818 */
1819static void hugetlb_unregister_node(struct node *node)
1820{
1821	struct hstate *h;
1822	struct node_hstate *nhs = &node_hstates[node->dev.id];
1823
1824	if (!nhs->hugepages_kobj)
1825		return;		/* no hstate attributes */
1826
1827	for_each_hstate(h) {
1828		int idx = hstate_index(h);
1829		if (nhs->hstate_kobjs[idx]) {
1830			kobject_put(nhs->hstate_kobjs[idx]);
1831			nhs->hstate_kobjs[idx] = NULL;
1832		}
1833	}
1834
1835	kobject_put(nhs->hugepages_kobj);
1836	nhs->hugepages_kobj = NULL;
1837}
1838
1839/*
1840 * hugetlb module exit:  unregister hstate attributes from node devices
1841 * that have them.
1842 */
1843static void hugetlb_unregister_all_nodes(void)
1844{
1845	int nid;
1846
1847	/*
1848	 * disable node device registrations.
1849	 */
1850	register_hugetlbfs_with_node(NULL, NULL);
1851
1852	/*
1853	 * remove hstate attributes from any nodes that have them.
1854	 */
1855	for (nid = 0; nid < nr_node_ids; nid++)
1856		hugetlb_unregister_node(node_devices[nid]);
1857}
1858
1859/*
1860 * Register hstate attributes for a single node device.
1861 * No-op if attributes already registered.
1862 */
1863static void hugetlb_register_node(struct node *node)
1864{
1865	struct hstate *h;
1866	struct node_hstate *nhs = &node_hstates[node->dev.id];
1867	int err;
1868
1869	if (nhs->hugepages_kobj)
1870		return;		/* already allocated */
1871
1872	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1873							&node->dev.kobj);
1874	if (!nhs->hugepages_kobj)
1875		return;
1876
1877	for_each_hstate(h) {
1878		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1879						nhs->hstate_kobjs,
1880						&per_node_hstate_attr_group);
1881		if (err) {
1882			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1883				h->name, node->dev.id);
1884			hugetlb_unregister_node(node);
1885			break;
1886		}
1887	}
1888}
1889
1890/*
1891 * hugetlb init time:  register hstate attributes for all registered node
1892 * devices of nodes that have memory.  All on-line nodes should have
1893 * registered their associated device by this time.
1894 */
1895static void hugetlb_register_all_nodes(void)
1896{
1897	int nid;
1898
1899	for_each_node_state(nid, N_MEMORY) {
1900		struct node *node = node_devices[nid];
1901		if (node->dev.id == nid)
1902			hugetlb_register_node(node);
1903	}
1904
1905	/*
1906	 * Let the node device driver know we're here so it can
1907	 * [un]register hstate attributes on node hotplug.
1908	 */
1909	register_hugetlbfs_with_node(hugetlb_register_node,
1910				     hugetlb_unregister_node);
1911}
1912#else	/* !CONFIG_NUMA */
1913
1914static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1915{
1916	BUG();
1917	if (nidp)
1918		*nidp = -1;
1919	return NULL;
1920}
1921
1922static void hugetlb_unregister_all_nodes(void) { }
1923
1924static void hugetlb_register_all_nodes(void) { }
1925
1926#endif
1927
1928static void __exit hugetlb_exit(void)
1929{
1930	struct hstate *h;
1931
1932	hugetlb_unregister_all_nodes();
1933
1934	for_each_hstate(h) {
1935		kobject_put(hstate_kobjs[hstate_index(h)]);
1936	}
1937
1938	kobject_put(hugepages_kobj);
1939}
1940module_exit(hugetlb_exit);
1941
1942static int __init hugetlb_init(void)
1943{
1944	/* Some platform decide whether they support huge pages at boot
1945	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1946	 * there is no such support
1947	 */
1948	if (HPAGE_SHIFT == 0)
1949		return 0;
1950
1951	if (!size_to_hstate(default_hstate_size)) {
1952		default_hstate_size = HPAGE_SIZE;
1953		if (!size_to_hstate(default_hstate_size))
1954			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1955	}
1956	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1957	if (default_hstate_max_huge_pages)
1958		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1959
1960	hugetlb_init_hstates();
1961	gather_bootmem_prealloc();
1962	report_hugepages();
1963
1964	hugetlb_sysfs_init();
1965	hugetlb_register_all_nodes();
1966	hugetlb_cgroup_file_init();
1967
1968	return 0;
1969}
1970module_init(hugetlb_init);
1971
1972/* Should be called on processing a hugepagesz=... option */
1973void __init hugetlb_add_hstate(unsigned order)
1974{
1975	struct hstate *h;
1976	unsigned long i;
1977
1978	if (size_to_hstate(PAGE_SIZE << order)) {
1979		pr_warning("hugepagesz= specified twice, ignoring\n");
1980		return;
1981	}
1982	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1983	BUG_ON(order == 0);
1984	h = &hstates[hugetlb_max_hstate++];
1985	h->order = order;
1986	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1987	h->nr_huge_pages = 0;
1988	h->free_huge_pages = 0;
1989	for (i = 0; i < MAX_NUMNODES; ++i)
1990		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1991	INIT_LIST_HEAD(&h->hugepage_activelist);
1992	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1993	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1994	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1995					huge_page_size(h)/1024);
1996
1997	parsed_hstate = h;
1998}
1999
2000static int __init hugetlb_nrpages_setup(char *s)
2001{
2002	unsigned long *mhp;
2003	static unsigned long *last_mhp;
2004
2005	/*
2006	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2007	 * so this hugepages= parameter goes to the "default hstate".
2008	 */
2009	if (!hugetlb_max_hstate)
2010		mhp = &default_hstate_max_huge_pages;
2011	else
2012		mhp = &parsed_hstate->max_huge_pages;
2013
2014	if (mhp == last_mhp) {
2015		pr_warning("hugepages= specified twice without "
2016			   "interleaving hugepagesz=, ignoring\n");
2017		return 1;
2018	}
2019
2020	if (sscanf(s, "%lu", mhp) <= 0)
2021		*mhp = 0;
2022
2023	/*
2024	 * Global state is always initialized later in hugetlb_init.
2025	 * But we need to allocate >= MAX_ORDER hstates here early to still
2026	 * use the bootmem allocator.
2027	 */
2028	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2029		hugetlb_hstate_alloc_pages(parsed_hstate);
2030
2031	last_mhp = mhp;
2032
2033	return 1;
2034}
2035__setup("hugepages=", hugetlb_nrpages_setup);
2036
2037static int __init hugetlb_default_setup(char *s)
2038{
2039	default_hstate_size = memparse(s, &s);
2040	return 1;
2041}
2042__setup("default_hugepagesz=", hugetlb_default_setup);
2043
2044static unsigned int cpuset_mems_nr(unsigned int *array)
2045{
2046	int node;
2047	unsigned int nr = 0;
2048
2049	for_each_node_mask(node, cpuset_current_mems_allowed)
2050		nr += array[node];
2051
2052	return nr;
2053}
2054
2055#ifdef CONFIG_SYSCTL
2056static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2057			 struct ctl_table *table, int write,
2058			 void __user *buffer, size_t *length, loff_t *ppos)
2059{
2060	struct hstate *h = &default_hstate;
2061	unsigned long tmp;
2062	int ret;
2063
2064	tmp = h->max_huge_pages;
2065
2066	if (write && h->order >= MAX_ORDER)
2067		return -EINVAL;
2068
2069	table->data = &tmp;
2070	table->maxlen = sizeof(unsigned long);
2071	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2072	if (ret)
2073		goto out;
2074
2075	if (write) {
2076		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2077						GFP_KERNEL | __GFP_NORETRY);
2078		if (!(obey_mempolicy &&
2079			       init_nodemask_of_mempolicy(nodes_allowed))) {
2080			NODEMASK_FREE(nodes_allowed);
2081			nodes_allowed = &node_states[N_MEMORY];
2082		}
2083		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2084
2085		if (nodes_allowed != &node_states[N_MEMORY])
2086			NODEMASK_FREE(nodes_allowed);
2087	}
2088out:
2089	return ret;
2090}
2091
2092int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2093			  void __user *buffer, size_t *length, loff_t *ppos)
2094{
2095
2096	return hugetlb_sysctl_handler_common(false, table, write,
2097							buffer, length, ppos);
2098}
2099
2100#ifdef CONFIG_NUMA
2101int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2102			  void __user *buffer, size_t *length, loff_t *ppos)
2103{
2104	return hugetlb_sysctl_handler_common(true, table, write,
2105							buffer, length, ppos);
2106}
2107#endif /* CONFIG_NUMA */
2108
2109int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2110			void __user *buffer,
2111			size_t *length, loff_t *ppos)
2112{
2113	struct hstate *h = &default_hstate;
2114	unsigned long tmp;
2115	int ret;
2116
2117	tmp = h->nr_overcommit_huge_pages;
2118
2119	if (write && h->order >= MAX_ORDER)
2120		return -EINVAL;
2121
2122	table->data = &tmp;
2123	table->maxlen = sizeof(unsigned long);
2124	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2125	if (ret)
2126		goto out;
2127
2128	if (write) {
2129		spin_lock(&hugetlb_lock);
2130		h->nr_overcommit_huge_pages = tmp;
2131		spin_unlock(&hugetlb_lock);
2132	}
2133out:
2134	return ret;
2135}
2136
2137#endif /* CONFIG_SYSCTL */
2138
2139void hugetlb_report_meminfo(struct seq_file *m)
2140{
2141	struct hstate *h = &default_hstate;
2142	seq_printf(m,
2143			"HugePages_Total:   %5lu\n"
2144			"HugePages_Free:    %5lu\n"
2145			"HugePages_Rsvd:    %5lu\n"
2146			"HugePages_Surp:    %5lu\n"
2147			"Hugepagesize:   %8lu kB\n",
2148			h->nr_huge_pages,
2149			h->free_huge_pages,
2150			h->resv_huge_pages,
2151			h->surplus_huge_pages,
2152			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2153}
2154
2155int hugetlb_report_node_meminfo(int nid, char *buf)
2156{
2157	struct hstate *h = &default_hstate;
2158	return sprintf(buf,
2159		"Node %d HugePages_Total: %5u\n"
2160		"Node %d HugePages_Free:  %5u\n"
2161		"Node %d HugePages_Surp:  %5u\n",
2162		nid, h->nr_huge_pages_node[nid],
2163		nid, h->free_huge_pages_node[nid],
2164		nid, h->surplus_huge_pages_node[nid]);
2165}
2166
2167void hugetlb_show_meminfo(void)
2168{
2169	struct hstate *h;
2170	int nid;
2171
2172	for_each_node_state(nid, N_MEMORY)
2173		for_each_hstate(h)
2174			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2175				nid,
2176				h->nr_huge_pages_node[nid],
2177				h->free_huge_pages_node[nid],
2178				h->surplus_huge_pages_node[nid],
2179				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2180}
2181
2182/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2183unsigned long hugetlb_total_pages(void)
2184{
2185	struct hstate *h;
2186	unsigned long nr_total_pages = 0;
2187
2188	for_each_hstate(h)
2189		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2190	return nr_total_pages;
2191}
2192
2193static int hugetlb_acct_memory(struct hstate *h, long delta)
2194{
2195	int ret = -ENOMEM;
2196
2197	spin_lock(&hugetlb_lock);
2198	/*
2199	 * When cpuset is configured, it breaks the strict hugetlb page
2200	 * reservation as the accounting is done on a global variable. Such
2201	 * reservation is completely rubbish in the presence of cpuset because
2202	 * the reservation is not checked against page availability for the
2203	 * current cpuset. Application can still potentially OOM'ed by kernel
2204	 * with lack of free htlb page in cpuset that the task is in.
2205	 * Attempt to enforce strict accounting with cpuset is almost
2206	 * impossible (or too ugly) because cpuset is too fluid that
2207	 * task or memory node can be dynamically moved between cpusets.
2208	 *
2209	 * The change of semantics for shared hugetlb mapping with cpuset is
2210	 * undesirable. However, in order to preserve some of the semantics,
2211	 * we fall back to check against current free page availability as
2212	 * a best attempt and hopefully to minimize the impact of changing
2213	 * semantics that cpuset has.
2214	 */
2215	if (delta > 0) {
2216		if (gather_surplus_pages(h, delta) < 0)
2217			goto out;
2218
2219		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2220			return_unused_surplus_pages(h, delta);
2221			goto out;
2222		}
2223	}
2224
2225	ret = 0;
2226	if (delta < 0)
2227		return_unused_surplus_pages(h, (unsigned long) -delta);
2228
2229out:
2230	spin_unlock(&hugetlb_lock);
2231	return ret;
2232}
2233
2234static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2235{
2236	struct resv_map *resv = vma_resv_map(vma);
2237
2238	/*
2239	 * This new VMA should share its siblings reservation map if present.
2240	 * The VMA will only ever have a valid reservation map pointer where
2241	 * it is being copied for another still existing VMA.  As that VMA
2242	 * has a reference to the reservation map it cannot disappear until
2243	 * after this open call completes.  It is therefore safe to take a
2244	 * new reference here without additional locking.
2245	 */
2246	if (resv)
2247		kref_get(&resv->refs);
2248}
2249
2250static void resv_map_put(struct vm_area_struct *vma)
2251{
2252	struct resv_map *resv = vma_resv_map(vma);
2253
2254	if (!resv)
2255		return;
2256	kref_put(&resv->refs, resv_map_release);
2257}
2258
2259static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2260{
2261	struct hstate *h = hstate_vma(vma);
2262	struct resv_map *resv = vma_resv_map(vma);
2263	struct hugepage_subpool *spool = subpool_vma(vma);
2264	unsigned long reserve;
2265	unsigned long start;
2266	unsigned long end;
2267
2268	if (resv) {
2269		start = vma_hugecache_offset(h, vma, vma->vm_start);
2270		end = vma_hugecache_offset(h, vma, vma->vm_end);
2271
2272		reserve = (end - start) -
2273			region_count(&resv->regions, start, end);
2274
2275		resv_map_put(vma);
2276
2277		if (reserve) {
2278			hugetlb_acct_memory(h, -reserve);
2279			hugepage_subpool_put_pages(spool, reserve);
2280		}
2281	}
2282}
2283
2284/*
2285 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2286 * handle_mm_fault() to try to instantiate regular-sized pages in the
2287 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2288 * this far.
2289 */
2290static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2291{
2292	BUG();
2293	return 0;
2294}
2295
2296const struct vm_operations_struct hugetlb_vm_ops = {
2297	.fault = hugetlb_vm_op_fault,
2298	.open = hugetlb_vm_op_open,
2299	.close = hugetlb_vm_op_close,
2300};
2301
2302static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2303				int writable)
2304{
2305	pte_t entry;
2306
2307	if (writable) {
2308		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2309					 vma->vm_page_prot)));
2310	} else {
2311		entry = huge_pte_wrprotect(mk_huge_pte(page,
2312					   vma->vm_page_prot));
2313	}
2314	entry = pte_mkyoung(entry);
2315	entry = pte_mkhuge(entry);
2316	entry = arch_make_huge_pte(entry, vma, page, writable);
2317
2318	return entry;
2319}
2320
2321static void set_huge_ptep_writable(struct vm_area_struct *vma,
2322				   unsigned long address, pte_t *ptep)
2323{
2324	pte_t entry;
2325
2326	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2327	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2328		update_mmu_cache(vma, address, ptep);
2329}
2330
2331
2332int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2333			    struct vm_area_struct *vma)
2334{
2335	pte_t *src_pte, *dst_pte, entry;
2336	struct page *ptepage;
2337	unsigned long addr;
2338	int cow;
2339	struct hstate *h = hstate_vma(vma);
2340	unsigned long sz = huge_page_size(h);
2341
2342	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2343
2344	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2345		spinlock_t *src_ptl, *dst_ptl;
2346		src_pte = huge_pte_offset(src, addr);
2347		if (!src_pte)
2348			continue;
2349		dst_pte = huge_pte_alloc(dst, addr, sz);
2350		if (!dst_pte)
2351			goto nomem;
2352
2353		/* If the pagetables are shared don't copy or take references */
2354		if (dst_pte == src_pte)
2355			continue;
2356
2357		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2358		src_ptl = huge_pte_lockptr(h, src, src_pte);
2359		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2360		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2361			if (cow)
2362				huge_ptep_set_wrprotect(src, addr, src_pte);
2363			entry = huge_ptep_get(src_pte);
2364			ptepage = pte_page(entry);
2365			get_page(ptepage);
2366			page_dup_rmap(ptepage);
2367			set_huge_pte_at(dst, addr, dst_pte, entry);
2368		}
2369		spin_unlock(src_ptl);
2370		spin_unlock(dst_ptl);
2371	}
2372	return 0;
2373
2374nomem:
2375	return -ENOMEM;
2376}
2377
2378static int is_hugetlb_entry_migration(pte_t pte)
2379{
2380	swp_entry_t swp;
2381
2382	if (huge_pte_none(pte) || pte_present(pte))
2383		return 0;
2384	swp = pte_to_swp_entry(pte);
2385	if (non_swap_entry(swp) && is_migration_entry(swp))
2386		return 1;
2387	else
2388		return 0;
2389}
2390
2391static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2392{
2393	swp_entry_t swp;
2394
2395	if (huge_pte_none(pte) || pte_present(pte))
2396		return 0;
2397	swp = pte_to_swp_entry(pte);
2398	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2399		return 1;
2400	else
2401		return 0;
2402}
2403
2404void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2405			    unsigned long start, unsigned long end,
2406			    struct page *ref_page)
2407{
2408	int force_flush = 0;
2409	struct mm_struct *mm = vma->vm_mm;
2410	unsigned long address;
2411	pte_t *ptep;
2412	pte_t pte;
2413	spinlock_t *ptl;
2414	struct page *page;
2415	struct hstate *h = hstate_vma(vma);
2416	unsigned long sz = huge_page_size(h);
2417	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2418	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2419
2420	WARN_ON(!is_vm_hugetlb_page(vma));
2421	BUG_ON(start & ~huge_page_mask(h));
2422	BUG_ON(end & ~huge_page_mask(h));
2423
2424	tlb_start_vma(tlb, vma);
2425	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2426again:
2427	for (address = start; address < end; address += sz) {
2428		ptep = huge_pte_offset(mm, address);
2429		if (!ptep)
2430			continue;
2431
2432		ptl = huge_pte_lock(h, mm, ptep);
2433		if (huge_pmd_unshare(mm, &address, ptep))
2434			goto unlock;
2435
2436		pte = huge_ptep_get(ptep);
2437		if (huge_pte_none(pte))
2438			goto unlock;
2439
2440		/*
2441		 * HWPoisoned hugepage is already unmapped and dropped reference
2442		 */
2443		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2444			huge_pte_clear(mm, address, ptep);
2445			goto unlock;
2446		}
2447
2448		page = pte_page(pte);
2449		/*
2450		 * If a reference page is supplied, it is because a specific
2451		 * page is being unmapped, not a range. Ensure the page we
2452		 * are about to unmap is the actual page of interest.
2453		 */
2454		if (ref_page) {
2455			if (page != ref_page)
2456				goto unlock;
2457
2458			/*
2459			 * Mark the VMA as having unmapped its page so that
2460			 * future faults in this VMA will fail rather than
2461			 * looking like data was lost
2462			 */
2463			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2464		}
2465
2466		pte = huge_ptep_get_and_clear(mm, address, ptep);
2467		tlb_remove_tlb_entry(tlb, ptep, address);
2468		if (huge_pte_dirty(pte))
2469			set_page_dirty(page);
2470
2471		page_remove_rmap(page);
2472		force_flush = !__tlb_remove_page(tlb, page);
2473		if (force_flush) {
2474			spin_unlock(ptl);
2475			break;
2476		}
2477		/* Bail out after unmapping reference page if supplied */
2478		if (ref_page) {
2479			spin_unlock(ptl);
2480			break;
2481		}
2482unlock:
2483		spin_unlock(ptl);
2484	}
2485	/*
2486	 * mmu_gather ran out of room to batch pages, we break out of
2487	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2488	 * and page-free while holding it.
2489	 */
2490	if (force_flush) {
2491		force_flush = 0;
2492		tlb_flush_mmu(tlb);
2493		if (address < end && !ref_page)
2494			goto again;
2495	}
2496	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2497	tlb_end_vma(tlb, vma);
2498}
2499
2500void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2501			  struct vm_area_struct *vma, unsigned long start,
2502			  unsigned long end, struct page *ref_page)
2503{
2504	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2505
2506	/*
2507	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2508	 * test will fail on a vma being torn down, and not grab a page table
2509	 * on its way out.  We're lucky that the flag has such an appropriate
2510	 * name, and can in fact be safely cleared here. We could clear it
2511	 * before the __unmap_hugepage_range above, but all that's necessary
2512	 * is to clear it before releasing the i_mmap_mutex. This works
2513	 * because in the context this is called, the VMA is about to be
2514	 * destroyed and the i_mmap_mutex is held.
2515	 */
2516	vma->vm_flags &= ~VM_MAYSHARE;
2517}
2518
2519void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2520			  unsigned long end, struct page *ref_page)
2521{
2522	struct mm_struct *mm;
2523	struct mmu_gather tlb;
2524
2525	mm = vma->vm_mm;
2526
2527	tlb_gather_mmu(&tlb, mm, start, end);
2528	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2529	tlb_finish_mmu(&tlb, start, end);
2530}
2531
2532/*
2533 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2534 * mappping it owns the reserve page for. The intention is to unmap the page
2535 * from other VMAs and let the children be SIGKILLed if they are faulting the
2536 * same region.
2537 */
2538static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2539				struct page *page, unsigned long address)
2540{
2541	struct hstate *h = hstate_vma(vma);
2542	struct vm_area_struct *iter_vma;
2543	struct address_space *mapping;
2544	pgoff_t pgoff;
2545
2546	/*
2547	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2548	 * from page cache lookup which is in HPAGE_SIZE units.
2549	 */
2550	address = address & huge_page_mask(h);
2551	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2552			vma->vm_pgoff;
2553	mapping = file_inode(vma->vm_file)->i_mapping;
2554
2555	/*
2556	 * Take the mapping lock for the duration of the table walk. As
2557	 * this mapping should be shared between all the VMAs,
2558	 * __unmap_hugepage_range() is called as the lock is already held
2559	 */
2560	mutex_lock(&mapping->i_mmap_mutex);
2561	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2562		/* Do not unmap the current VMA */
2563		if (iter_vma == vma)
2564			continue;
2565
2566		/*
2567		 * Unmap the page from other VMAs without their own reserves.
2568		 * They get marked to be SIGKILLed if they fault in these
2569		 * areas. This is because a future no-page fault on this VMA
2570		 * could insert a zeroed page instead of the data existing
2571		 * from the time of fork. This would look like data corruption
2572		 */
2573		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2574			unmap_hugepage_range(iter_vma, address,
2575					     address + huge_page_size(h), page);
2576	}
2577	mutex_unlock(&mapping->i_mmap_mutex);
2578
2579	return 1;
2580}
2581
2582/*
2583 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2584 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2585 * cannot race with other handlers or page migration.
2586 * Keep the pte_same checks anyway to make transition from the mutex easier.
2587 */
2588static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2589			unsigned long address, pte_t *ptep, pte_t pte,
2590			struct page *pagecache_page, spinlock_t *ptl)
2591{
2592	struct hstate *h = hstate_vma(vma);
2593	struct page *old_page, *new_page;
2594	int outside_reserve = 0;
2595	unsigned long mmun_start;	/* For mmu_notifiers */
2596	unsigned long mmun_end;		/* For mmu_notifiers */
2597
2598	old_page = pte_page(pte);
2599
2600retry_avoidcopy:
2601	/* If no-one else is actually using this page, avoid the copy
2602	 * and just make the page writable */
2603	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2604		page_move_anon_rmap(old_page, vma, address);
2605		set_huge_ptep_writable(vma, address, ptep);
2606		return 0;
2607	}
2608
2609	/*
2610	 * If the process that created a MAP_PRIVATE mapping is about to
2611	 * perform a COW due to a shared page count, attempt to satisfy
2612	 * the allocation without using the existing reserves. The pagecache
2613	 * page is used to determine if the reserve at this address was
2614	 * consumed or not. If reserves were used, a partial faulted mapping
2615	 * at the time of fork() could consume its reserves on COW instead
2616	 * of the full address range.
2617	 */
2618	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2619			old_page != pagecache_page)
2620		outside_reserve = 1;
2621
2622	page_cache_get(old_page);
2623
2624	/* Drop page table lock as buddy allocator may be called */
2625	spin_unlock(ptl);
2626	new_page = alloc_huge_page(vma, address, outside_reserve);
2627
2628	if (IS_ERR(new_page)) {
2629		long err = PTR_ERR(new_page);
2630		page_cache_release(old_page);
2631
2632		/*
2633		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2634		 * it is due to references held by a child and an insufficient
2635		 * huge page pool. To guarantee the original mappers
2636		 * reliability, unmap the page from child processes. The child
2637		 * may get SIGKILLed if it later faults.
2638		 */
2639		if (outside_reserve) {
2640			BUG_ON(huge_pte_none(pte));
2641			if (unmap_ref_private(mm, vma, old_page, address)) {
2642				BUG_ON(huge_pte_none(pte));
2643				spin_lock(ptl);
2644				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2645				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2646					goto retry_avoidcopy;
2647				/*
2648				 * race occurs while re-acquiring page table
2649				 * lock, and our job is done.
2650				 */
2651				return 0;
2652			}
2653			WARN_ON_ONCE(1);
2654		}
2655
2656		/* Caller expects lock to be held */
2657		spin_lock(ptl);
2658		if (err == -ENOMEM)
2659			return VM_FAULT_OOM;
2660		else
2661			return VM_FAULT_SIGBUS;
2662	}
2663
2664	/*
2665	 * When the original hugepage is shared one, it does not have
2666	 * anon_vma prepared.
2667	 */
2668	if (unlikely(anon_vma_prepare(vma))) {
2669		page_cache_release(new_page);
2670		page_cache_release(old_page);
2671		/* Caller expects lock to be held */
2672		spin_lock(ptl);
2673		return VM_FAULT_OOM;
2674	}
2675
2676	copy_user_huge_page(new_page, old_page, address, vma,
2677			    pages_per_huge_page(h));
2678	__SetPageUptodate(new_page);
2679
2680	mmun_start = address & huge_page_mask(h);
2681	mmun_end = mmun_start + huge_page_size(h);
2682	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2683	/*
2684	 * Retake the page table lock to check for racing updates
2685	 * before the page tables are altered
2686	 */
2687	spin_lock(ptl);
2688	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2689	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2690		ClearPagePrivate(new_page);
2691
2692		/* Break COW */
2693		huge_ptep_clear_flush(vma, address, ptep);
2694		set_huge_pte_at(mm, address, ptep,
2695				make_huge_pte(vma, new_page, 1));
2696		page_remove_rmap(old_page);
2697		hugepage_add_new_anon_rmap(new_page, vma, address);
2698		/* Make the old page be freed below */
2699		new_page = old_page;
2700	}
2701	spin_unlock(ptl);
2702	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2703	page_cache_release(new_page);
2704	page_cache_release(old_page);
2705
2706	/* Caller expects lock to be held */
2707	spin_lock(ptl);
2708	return 0;
2709}
2710
2711/* Return the pagecache page at a given address within a VMA */
2712static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2713			struct vm_area_struct *vma, unsigned long address)
2714{
2715	struct address_space *mapping;
2716	pgoff_t idx;
2717
2718	mapping = vma->vm_file->f_mapping;
2719	idx = vma_hugecache_offset(h, vma, address);
2720
2721	return find_lock_page(mapping, idx);
2722}
2723
2724/*
2725 * Return whether there is a pagecache page to back given address within VMA.
2726 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2727 */
2728static bool hugetlbfs_pagecache_present(struct hstate *h,
2729			struct vm_area_struct *vma, unsigned long address)
2730{
2731	struct address_space *mapping;
2732	pgoff_t idx;
2733	struct page *page;
2734
2735	mapping = vma->vm_file->f_mapping;
2736	idx = vma_hugecache_offset(h, vma, address);
2737
2738	page = find_get_page(mapping, idx);
2739	if (page)
2740		put_page(page);
2741	return page != NULL;
2742}
2743
2744static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2745			unsigned long address, pte_t *ptep, unsigned int flags)
2746{
2747	struct hstate *h = hstate_vma(vma);
2748	int ret = VM_FAULT_SIGBUS;
2749	int anon_rmap = 0;
2750	pgoff_t idx;
2751	unsigned long size;
2752	struct page *page;
2753	struct address_space *mapping;
2754	pte_t new_pte;
2755	spinlock_t *ptl;
2756
2757	/*
2758	 * Currently, we are forced to kill the process in the event the
2759	 * original mapper has unmapped pages from the child due to a failed
2760	 * COW. Warn that such a situation has occurred as it may not be obvious
2761	 */
2762	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2763		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2764			   current->pid);
2765		return ret;
2766	}
2767
2768	mapping = vma->vm_file->f_mapping;
2769	idx = vma_hugecache_offset(h, vma, address);
2770
2771	/*
2772	 * Use page lock to guard against racing truncation
2773	 * before we get page_table_lock.
2774	 */
2775retry:
2776	page = find_lock_page(mapping, idx);
2777	if (!page) {
2778		size = i_size_read(mapping->host) >> huge_page_shift(h);
2779		if (idx >= size)
2780			goto out;
2781		page = alloc_huge_page(vma, address, 0);
2782		if (IS_ERR(page)) {
2783			ret = PTR_ERR(page);
2784			if (ret == -ENOMEM)
2785				ret = VM_FAULT_OOM;
2786			else
2787				ret = VM_FAULT_SIGBUS;
2788			goto out;
2789		}
2790		clear_huge_page(page, address, pages_per_huge_page(h));
2791		__SetPageUptodate(page);
2792
2793		if (vma->vm_flags & VM_MAYSHARE) {
2794			int err;
2795			struct inode *inode = mapping->host;
2796
2797			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2798			if (err) {
2799				put_page(page);
2800				if (err == -EEXIST)
2801					goto retry;
2802				goto out;
2803			}
2804			ClearPagePrivate(page);
2805
2806			spin_lock(&inode->i_lock);
2807			inode->i_blocks += blocks_per_huge_page(h);
2808			spin_unlock(&inode->i_lock);
2809		} else {
2810			lock_page(page);
2811			if (unlikely(anon_vma_prepare(vma))) {
2812				ret = VM_FAULT_OOM;
2813				goto backout_unlocked;
2814			}
2815			anon_rmap = 1;
2816		}
2817	} else {
2818		/*
2819		 * If memory error occurs between mmap() and fault, some process
2820		 * don't have hwpoisoned swap entry for errored virtual address.
2821		 * So we need to block hugepage fault by PG_hwpoison bit check.
2822		 */
2823		if (unlikely(PageHWPoison(page))) {
2824			ret = VM_FAULT_HWPOISON |
2825				VM_FAULT_SET_HINDEX(hstate_index(h));
2826			goto backout_unlocked;
2827		}
2828	}
2829
2830	/*
2831	 * If we are going to COW a private mapping later, we examine the
2832	 * pending reservations for this page now. This will ensure that
2833	 * any allocations necessary to record that reservation occur outside
2834	 * the spinlock.
2835	 */
2836	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2837		if (vma_needs_reservation(h, vma, address) < 0) {
2838			ret = VM_FAULT_OOM;
2839			goto backout_unlocked;
2840		}
2841
2842	ptl = huge_pte_lockptr(h, mm, ptep);
2843	spin_lock(ptl);
2844	size = i_size_read(mapping->host) >> huge_page_shift(h);
2845	if (idx >= size)
2846		goto backout;
2847
2848	ret = 0;
2849	if (!huge_pte_none(huge_ptep_get(ptep)))
2850		goto backout;
2851
2852	if (anon_rmap) {
2853		ClearPagePrivate(page);
2854		hugepage_add_new_anon_rmap(page, vma, address);
2855	}
2856	else
2857		page_dup_rmap(page);
2858	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2859				&& (vma->vm_flags & VM_SHARED)));
2860	set_huge_pte_at(mm, address, ptep, new_pte);
2861
2862	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2863		/* Optimization, do the COW without a second fault */
2864		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2865	}
2866
2867	spin_unlock(ptl);
2868	unlock_page(page);
2869out:
2870	return ret;
2871
2872backout:
2873	spin_unlock(ptl);
2874backout_unlocked:
2875	unlock_page(page);
2876	put_page(page);
2877	goto out;
2878}
2879
2880int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2881			unsigned long address, unsigned int flags)
2882{
2883	pte_t *ptep;
2884	pte_t entry;
2885	spinlock_t *ptl;
2886	int ret;
2887	struct page *page = NULL;
2888	struct page *pagecache_page = NULL;
2889	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2890	struct hstate *h = hstate_vma(vma);
2891
2892	address &= huge_page_mask(h);
2893
2894	ptep = huge_pte_offset(mm, address);
2895	if (ptep) {
2896		entry = huge_ptep_get(ptep);
2897		if (unlikely(is_hugetlb_entry_migration(entry))) {
2898			migration_entry_wait_huge(vma, mm, ptep);
2899			return 0;
2900		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2901			return VM_FAULT_HWPOISON_LARGE |
2902				VM_FAULT_SET_HINDEX(hstate_index(h));
2903	}
2904
2905	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2906	if (!ptep)
2907		return VM_FAULT_OOM;
2908
2909	/*
2910	 * Serialize hugepage allocation and instantiation, so that we don't
2911	 * get spurious allocation failures if two CPUs race to instantiate
2912	 * the same page in the page cache.
2913	 */
2914	mutex_lock(&hugetlb_instantiation_mutex);
2915	entry = huge_ptep_get(ptep);
2916	if (huge_pte_none(entry)) {
2917		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2918		goto out_mutex;
2919	}
2920
2921	ret = 0;
2922
2923	/*
2924	 * If we are going to COW the mapping later, we examine the pending
2925	 * reservations for this page now. This will ensure that any
2926	 * allocations necessary to record that reservation occur outside the
2927	 * spinlock. For private mappings, we also lookup the pagecache
2928	 * page now as it is used to determine if a reservation has been
2929	 * consumed.
2930	 */
2931	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2932		if (vma_needs_reservation(h, vma, address) < 0) {
2933			ret = VM_FAULT_OOM;
2934			goto out_mutex;
2935		}
2936
2937		if (!(vma->vm_flags & VM_MAYSHARE))
2938			pagecache_page = hugetlbfs_pagecache_page(h,
2939								vma, address);
2940	}
2941
2942	/*
2943	 * hugetlb_cow() requires page locks of pte_page(entry) and
2944	 * pagecache_page, so here we need take the former one
2945	 * when page != pagecache_page or !pagecache_page.
2946	 * Note that locking order is always pagecache_page -> page,
2947	 * so no worry about deadlock.
2948	 */
2949	page = pte_page(entry);
2950	get_page(page);
2951	if (page != pagecache_page)
2952		lock_page(page);
2953
2954	ptl = huge_pte_lockptr(h, mm, ptep);
2955	spin_lock(ptl);
2956	/* Check for a racing update before calling hugetlb_cow */
2957	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2958		goto out_ptl;
2959
2960
2961	if (flags & FAULT_FLAG_WRITE) {
2962		if (!huge_pte_write(entry)) {
2963			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2964					pagecache_page, ptl);
2965			goto out_ptl;
2966		}
2967		entry = huge_pte_mkdirty(entry);
2968	}
2969	entry = pte_mkyoung(entry);
2970	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2971						flags & FAULT_FLAG_WRITE))
2972		update_mmu_cache(vma, address, ptep);
2973
2974out_ptl:
2975	spin_unlock(ptl);
2976
2977	if (pagecache_page) {
2978		unlock_page(pagecache_page);
2979		put_page(pagecache_page);
2980	}
2981	if (page != pagecache_page)
2982		unlock_page(page);
2983	put_page(page);
2984
2985out_mutex:
2986	mutex_unlock(&hugetlb_instantiation_mutex);
2987
2988	return ret;
2989}
2990
2991long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2992			 struct page **pages, struct vm_area_struct **vmas,
2993			 unsigned long *position, unsigned long *nr_pages,
2994			 long i, unsigned int flags)
2995{
2996	unsigned long pfn_offset;
2997	unsigned long vaddr = *position;
2998	unsigned long remainder = *nr_pages;
2999	struct hstate *h = hstate_vma(vma);
3000
3001	while (vaddr < vma->vm_end && remainder) {
3002		pte_t *pte;
3003		spinlock_t *ptl = NULL;
3004		int absent;
3005		struct page *page;
3006
3007		/*
3008		 * Some archs (sparc64, sh*) have multiple pte_ts to
3009		 * each hugepage.  We have to make sure we get the
3010		 * first, for the page indexing below to work.
3011		 *
3012		 * Note that page table lock is not held when pte is null.
3013		 */
3014		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3015		if (pte)
3016			ptl = huge_pte_lock(h, mm, pte);
3017		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3018
3019		/*
3020		 * When coredumping, it suits get_dump_page if we just return
3021		 * an error where there's an empty slot with no huge pagecache
3022		 * to back it.  This way, we avoid allocating a hugepage, and
3023		 * the sparse dumpfile avoids allocating disk blocks, but its
3024		 * huge holes still show up with zeroes where they need to be.
3025		 */
3026		if (absent && (flags & FOLL_DUMP) &&
3027		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3028			if (pte)
3029				spin_unlock(ptl);
3030			remainder = 0;
3031			break;
3032		}
3033
3034		/*
3035		 * We need call hugetlb_fault for both hugepages under migration
3036		 * (in which case hugetlb_fault waits for the migration,) and
3037		 * hwpoisoned hugepages (in which case we need to prevent the
3038		 * caller from accessing to them.) In order to do this, we use
3039		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3040		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3041		 * both cases, and because we can't follow correct pages
3042		 * directly from any kind of swap entries.
3043		 */
3044		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3045		    ((flags & FOLL_WRITE) &&
3046		      !huge_pte_write(huge_ptep_get(pte)))) {
3047			int ret;
3048
3049			if (pte)
3050				spin_unlock(ptl);
3051			ret = hugetlb_fault(mm, vma, vaddr,
3052				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3053			if (!(ret & VM_FAULT_ERROR))
3054				continue;
3055
3056			remainder = 0;
3057			break;
3058		}
3059
3060		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3061		page = pte_page(huge_ptep_get(pte));
3062same_page:
3063		if (pages) {
3064			pages[i] = mem_map_offset(page, pfn_offset);
3065			get_page(pages[i]);
3066		}
3067
3068		if (vmas)
3069			vmas[i] = vma;
3070
3071		vaddr += PAGE_SIZE;
3072		++pfn_offset;
3073		--remainder;
3074		++i;
3075		if (vaddr < vma->vm_end && remainder &&
3076				pfn_offset < pages_per_huge_page(h)) {
3077			/*
3078			 * We use pfn_offset to avoid touching the pageframes
3079			 * of this compound page.
3080			 */
3081			goto same_page;
3082		}
3083		spin_unlock(ptl);
3084	}
3085	*nr_pages = remainder;
3086	*position = vaddr;
3087
3088	return i ? i : -EFAULT;
3089}
3090
3091unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3092		unsigned long address, unsigned long end, pgprot_t newprot)
3093{
3094	struct mm_struct *mm = vma->vm_mm;
3095	unsigned long start = address;
3096	pte_t *ptep;
3097	pte_t pte;
3098	struct hstate *h = hstate_vma(vma);
3099	unsigned long pages = 0;
3100
3101	BUG_ON(address >= end);
3102	flush_cache_range(vma, address, end);
3103
3104	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3105	for (; address < end; address += huge_page_size(h)) {
3106		spinlock_t *ptl;
3107		ptep = huge_pte_offset(mm, address);
3108		if (!ptep)
3109			continue;
3110		ptl = huge_pte_lock(h, mm, ptep);
3111		if (huge_pmd_unshare(mm, &address, ptep)) {
3112			pages++;
3113			spin_unlock(ptl);
3114			continue;
3115		}
3116		if (!huge_pte_none(huge_ptep_get(ptep))) {
3117			pte = huge_ptep_get_and_clear(mm, address, ptep);
3118			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3119			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3120			set_huge_pte_at(mm, address, ptep, pte);
3121			pages++;
3122		}
3123		spin_unlock(ptl);
3124	}
3125	/*
3126	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3127	 * may have cleared our pud entry and done put_page on the page table:
3128	 * once we release i_mmap_mutex, another task can do the final put_page
3129	 * and that page table be reused and filled with junk.
3130	 */
3131	flush_tlb_range(vma, start, end);
3132	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3133
3134	return pages << h->order;
3135}
3136
3137int hugetlb_reserve_pages(struct inode *inode,
3138					long from, long to,
3139					struct vm_area_struct *vma,
3140					vm_flags_t vm_flags)
3141{
3142	long ret, chg;
3143	struct hstate *h = hstate_inode(inode);
3144	struct hugepage_subpool *spool = subpool_inode(inode);
3145
3146	/*
3147	 * Only apply hugepage reservation if asked. At fault time, an
3148	 * attempt will be made for VM_NORESERVE to allocate a page
3149	 * without using reserves
3150	 */
3151	if (vm_flags & VM_NORESERVE)
3152		return 0;
3153
3154	/*
3155	 * Shared mappings base their reservation on the number of pages that
3156	 * are already allocated on behalf of the file. Private mappings need
3157	 * to reserve the full area even if read-only as mprotect() may be
3158	 * called to make the mapping read-write. Assume !vma is a shm mapping
3159	 */
3160	if (!vma || vma->vm_flags & VM_MAYSHARE)
3161		chg = region_chg(&inode->i_mapping->private_list, from, to);
3162	else {
3163		struct resv_map *resv_map = resv_map_alloc();
3164		if (!resv_map)
3165			return -ENOMEM;
3166
3167		chg = to - from;
3168
3169		set_vma_resv_map(vma, resv_map);
3170		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3171	}
3172
3173	if (chg < 0) {
3174		ret = chg;
3175		goto out_err;
3176	}
3177
3178	/* There must be enough pages in the subpool for the mapping */
3179	if (hugepage_subpool_get_pages(spool, chg)) {
3180		ret = -ENOSPC;
3181		goto out_err;
3182	}
3183
3184	/*
3185	 * Check enough hugepages are available for the reservation.
3186	 * Hand the pages back to the subpool if there are not
3187	 */
3188	ret = hugetlb_acct_memory(h, chg);
3189	if (ret < 0) {
3190		hugepage_subpool_put_pages(spool, chg);
3191		goto out_err;
3192	}
3193
3194	/*
3195	 * Account for the reservations made. Shared mappings record regions
3196	 * that have reservations as they are shared by multiple VMAs.
3197	 * When the last VMA disappears, the region map says how much
3198	 * the reservation was and the page cache tells how much of
3199	 * the reservation was consumed. Private mappings are per-VMA and
3200	 * only the consumed reservations are tracked. When the VMA
3201	 * disappears, the original reservation is the VMA size and the
3202	 * consumed reservations are stored in the map. Hence, nothing
3203	 * else has to be done for private mappings here
3204	 */
3205	if (!vma || vma->vm_flags & VM_MAYSHARE)
3206		region_add(&inode->i_mapping->private_list, from, to);
3207	return 0;
3208out_err:
3209	if (vma)
3210		resv_map_put(vma);
3211	return ret;
3212}
3213
3214void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3215{
3216	struct hstate *h = hstate_inode(inode);
3217	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3218	struct hugepage_subpool *spool = subpool_inode(inode);
3219
3220	spin_lock(&inode->i_lock);
3221	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3222	spin_unlock(&inode->i_lock);
3223
3224	hugepage_subpool_put_pages(spool, (chg - freed));
3225	hugetlb_acct_memory(h, -(chg - freed));
3226}
3227
3228#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3229static unsigned long page_table_shareable(struct vm_area_struct *svma,
3230				struct vm_area_struct *vma,
3231				unsigned long addr, pgoff_t idx)
3232{
3233	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3234				svma->vm_start;
3235	unsigned long sbase = saddr & PUD_MASK;
3236	unsigned long s_end = sbase + PUD_SIZE;
3237
3238	/* Allow segments to share if only one is marked locked */
3239	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3240	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3241
3242	/*
3243	 * match the virtual addresses, permission and the alignment of the
3244	 * page table page.
3245	 */
3246	if (pmd_index(addr) != pmd_index(saddr) ||
3247	    vm_flags != svm_flags ||
3248	    sbase < svma->vm_start || svma->vm_end < s_end)
3249		return 0;
3250
3251	return saddr;
3252}
3253
3254static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3255{
3256	unsigned long base = addr & PUD_MASK;
3257	unsigned long end = base + PUD_SIZE;
3258
3259	/*
3260	 * check on proper vm_flags and page table alignment
3261	 */
3262	if (vma->vm_flags & VM_MAYSHARE &&
3263	    vma->vm_start <= base && end <= vma->vm_end)
3264		return 1;
3265	return 0;
3266}
3267
3268/*
3269 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3270 * and returns the corresponding pte. While this is not necessary for the
3271 * !shared pmd case because we can allocate the pmd later as well, it makes the
3272 * code much cleaner. pmd allocation is essential for the shared case because
3273 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3274 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3275 * bad pmd for sharing.
3276 */
3277pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3278{
3279	struct vm_area_struct *vma = find_vma(mm, addr);
3280	struct address_space *mapping = vma->vm_file->f_mapping;
3281	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3282			vma->vm_pgoff;
3283	struct vm_area_struct *svma;
3284	unsigned long saddr;
3285	pte_t *spte = NULL;
3286	pte_t *pte;
3287	spinlock_t *ptl;
3288
3289	if (!vma_shareable(vma, addr))
3290		return (pte_t *)pmd_alloc(mm, pud, addr);
3291
3292	mutex_lock(&mapping->i_mmap_mutex);
3293	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3294		if (svma == vma)
3295			continue;
3296
3297		saddr = page_table_shareable(svma, vma, addr, idx);
3298		if (saddr) {
3299			spte = huge_pte_offset(svma->vm_mm, saddr);
3300			if (spte) {
3301				get_page(virt_to_page(spte));
3302				break;
3303			}
3304		}
3305	}
3306
3307	if (!spte)
3308		goto out;
3309
3310	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3311	spin_lock(ptl);
3312	if (pud_none(*pud))
3313		pud_populate(mm, pud,
3314				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3315	else
3316		put_page(virt_to_page(spte));
3317	spin_unlock(ptl);
3318out:
3319	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3320	mutex_unlock(&mapping->i_mmap_mutex);
3321	return pte;
3322}
3323
3324/*
3325 * unmap huge page backed by shared pte.
3326 *
3327 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3328 * indicated by page_count > 1, unmap is achieved by clearing pud and
3329 * decrementing the ref count. If count == 1, the pte page is not shared.
3330 *
3331 * called with page table lock held.
3332 *
3333 * returns: 1 successfully unmapped a shared pte page
3334 *	    0 the underlying pte page is not shared, or it is the last user
3335 */
3336int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3337{
3338	pgd_t *pgd = pgd_offset(mm, *addr);
3339	pud_t *pud = pud_offset(pgd, *addr);
3340
3341	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3342	if (page_count(virt_to_page(ptep)) == 1)
3343		return 0;
3344
3345	pud_clear(pud);
3346	put_page(virt_to_page(ptep));
3347	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3348	return 1;
3349}
3350#define want_pmd_share()	(1)
3351#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3352pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3353{
3354	return NULL;
3355}
3356#define want_pmd_share()	(0)
3357#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3358
3359#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3360pte_t *huge_pte_alloc(struct mm_struct *mm,
3361			unsigned long addr, unsigned long sz)
3362{
3363	pgd_t *pgd;
3364	pud_t *pud;
3365	pte_t *pte = NULL;
3366
3367	pgd = pgd_offset(mm, addr);
3368	pud = pud_alloc(mm, pgd, addr);
3369	if (pud) {
3370		if (sz == PUD_SIZE) {
3371			pte = (pte_t *)pud;
3372		} else {
3373			BUG_ON(sz != PMD_SIZE);
3374			if (want_pmd_share() && pud_none(*pud))
3375				pte = huge_pmd_share(mm, addr, pud);
3376			else
3377				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3378		}
3379	}
3380	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3381
3382	return pte;
3383}
3384
3385pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3386{
3387	pgd_t *pgd;
3388	pud_t *pud;
3389	pmd_t *pmd = NULL;
3390
3391	pgd = pgd_offset(mm, addr);
3392	if (pgd_present(*pgd)) {
3393		pud = pud_offset(pgd, addr);
3394		if (pud_present(*pud)) {
3395			if (pud_huge(*pud))
3396				return (pte_t *)pud;
3397			pmd = pmd_offset(pud, addr);
3398		}
3399	}
3400	return (pte_t *) pmd;
3401}
3402
3403struct page *
3404follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3405		pmd_t *pmd, int write)
3406{
3407	struct page *page;
3408
3409	page = pte_page(*(pte_t *)pmd);
3410	if (page)
3411		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3412	return page;
3413}
3414
3415struct page *
3416follow_huge_pud(struct mm_struct *mm, unsigned long address,
3417		pud_t *pud, int write)
3418{
3419	struct page *page;
3420
3421	page = pte_page(*(pte_t *)pud);
3422	if (page)
3423		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3424	return page;
3425}
3426
3427#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3428
3429/* Can be overriden by architectures */
3430__attribute__((weak)) struct page *
3431follow_huge_pud(struct mm_struct *mm, unsigned long address,
3432	       pud_t *pud, int write)
3433{
3434	BUG();
3435	return NULL;
3436}
3437
3438#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3439
3440#ifdef CONFIG_MEMORY_FAILURE
3441
3442/* Should be called in hugetlb_lock */
3443static int is_hugepage_on_freelist(struct page *hpage)
3444{
3445	struct page *page;
3446	struct page *tmp;
3447	struct hstate *h = page_hstate(hpage);
3448	int nid = page_to_nid(hpage);
3449
3450	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3451		if (page == hpage)
3452			return 1;
3453	return 0;
3454}
3455
3456/*
3457 * This function is called from memory failure code.
3458 * Assume the caller holds page lock of the head page.
3459 */
3460int dequeue_hwpoisoned_huge_page(struct page *hpage)
3461{
3462	struct hstate *h = page_hstate(hpage);
3463	int nid = page_to_nid(hpage);
3464	int ret = -EBUSY;
3465
3466	spin_lock(&hugetlb_lock);
3467	if (is_hugepage_on_freelist(hpage)) {
3468		/*
3469		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3470		 * but dangling hpage->lru can trigger list-debug warnings
3471		 * (this happens when we call unpoison_memory() on it),
3472		 * so let it point to itself with list_del_init().
3473		 */
3474		list_del_init(&hpage->lru);
3475		set_page_refcounted(hpage);
3476		h->free_huge_pages--;
3477		h->free_huge_pages_node[nid]--;
3478		ret = 0;
3479	}
3480	spin_unlock(&hugetlb_lock);
3481	return ret;
3482}
3483#endif
3484
3485bool isolate_huge_page(struct page *page, struct list_head *list)
3486{
3487	VM_BUG_ON(!PageHead(page));
3488	if (!get_page_unless_zero(page))
3489		return false;
3490	spin_lock(&hugetlb_lock);
3491	list_move_tail(&page->lru, list);
3492	spin_unlock(&hugetlb_lock);
3493	return true;
3494}
3495
3496void putback_active_hugepage(struct page *page)
3497{
3498	VM_BUG_ON(!PageHead(page));
3499	spin_lock(&hugetlb_lock);
3500	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3501	spin_unlock(&hugetlb_lock);
3502	put_page(page);
3503}
3504
3505bool is_hugepage_active(struct page *page)
3506{
3507	VM_BUG_ON(!PageHuge(page));
3508	/*
3509	 * This function can be called for a tail page because the caller,
3510	 * scan_movable_pages, scans through a given pfn-range which typically
3511	 * covers one memory block. In systems using gigantic hugepage (1GB
3512	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3513	 * support migrating such large hugepages for now, so return false
3514	 * when called for tail pages.
3515	 */
3516	if (PageTail(page))
3517		return false;
3518	/*
3519	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3520	 * so we should return false for them.
3521	 */
3522	if (unlikely(PageHWPoison(page)))
3523		return false;
3524	return page_count(page) > 0;
3525}
3526