hugetlb.c revision 31caf665e666b51fe36efd1e54031ed29e86c0b4
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/tlb.h>
28
29#include <linux/io.h>
30#include <linux/hugetlb.h>
31#include <linux/hugetlb_cgroup.h>
32#include <linux/node.h>
33#include "internal.h"
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
38
39int hugetlb_max_hstate __read_mostly;
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
43__initdata LIST_HEAD(huge_boot_pages);
44
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
48static unsigned long __initdata default_hstate_size;
49
50/*
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
53 */
54DEFINE_SPINLOCK(hugetlb_lock);
55
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60	spin_unlock(&spool->lock);
61
62	/* If no pages are used, and no other handles to the subpool
63	 * remain, free the subpool the subpool remain */
64	if (free)
65		kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70	struct hugepage_subpool *spool;
71
72	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73	if (!spool)
74		return NULL;
75
76	spin_lock_init(&spool->lock);
77	spool->count = 1;
78	spool->max_hpages = nr_blocks;
79	spool->used_hpages = 0;
80
81	return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86	spin_lock(&spool->lock);
87	BUG_ON(!spool->count);
88	spool->count--;
89	unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93				      long delta)
94{
95	int ret = 0;
96
97	if (!spool)
98		return 0;
99
100	spin_lock(&spool->lock);
101	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102		spool->used_hpages += delta;
103	} else {
104		ret = -ENOMEM;
105	}
106	spin_unlock(&spool->lock);
107
108	return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112				       long delta)
113{
114	if (!spool)
115		return;
116
117	spin_lock(&spool->lock);
118	spool->used_hpages -= delta;
119	/* If hugetlbfs_put_super couldn't free spool due to
120	* an outstanding quota reference, free it now. */
121	unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126	return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
131	return subpool_inode(file_inode(vma->vm_file));
132}
133
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 *                    across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
142 *
143 *	down_write(&mm->mmap_sem);
144 * or
145 *	down_read(&mm->mmap_sem);
146 *	mutex_lock(&hugetlb_instantiation_mutex);
147 */
148struct file_region {
149	struct list_head link;
150	long from;
151	long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156	struct file_region *rg, *nrg, *trg;
157
158	/* Locate the region we are either in or before. */
159	list_for_each_entry(rg, head, link)
160		if (f <= rg->to)
161			break;
162
163	/* Round our left edge to the current segment if it encloses us. */
164	if (f > rg->from)
165		f = rg->from;
166
167	/* Check for and consume any regions we now overlap with. */
168	nrg = rg;
169	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170		if (&rg->link == head)
171			break;
172		if (rg->from > t)
173			break;
174
175		/* If this area reaches higher then extend our area to
176		 * include it completely.  If this is not the first area
177		 * which we intend to reuse, free it. */
178		if (rg->to > t)
179			t = rg->to;
180		if (rg != nrg) {
181			list_del(&rg->link);
182			kfree(rg);
183		}
184	}
185	nrg->from = f;
186	nrg->to = t;
187	return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192	struct file_region *rg, *nrg;
193	long chg = 0;
194
195	/* Locate the region we are before or in. */
196	list_for_each_entry(rg, head, link)
197		if (f <= rg->to)
198			break;
199
200	/* If we are below the current region then a new region is required.
201	 * Subtle, allocate a new region at the position but make it zero
202	 * size such that we can guarantee to record the reservation. */
203	if (&rg->link == head || t < rg->from) {
204		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205		if (!nrg)
206			return -ENOMEM;
207		nrg->from = f;
208		nrg->to   = f;
209		INIT_LIST_HEAD(&nrg->link);
210		list_add(&nrg->link, rg->link.prev);
211
212		return t - f;
213	}
214
215	/* Round our left edge to the current segment if it encloses us. */
216	if (f > rg->from)
217		f = rg->from;
218	chg = t - f;
219
220	/* Check for and consume any regions we now overlap with. */
221	list_for_each_entry(rg, rg->link.prev, link) {
222		if (&rg->link == head)
223			break;
224		if (rg->from > t)
225			return chg;
226
227		/* We overlap with this area, if it extends further than
228		 * us then we must extend ourselves.  Account for its
229		 * existing reservation. */
230		if (rg->to > t) {
231			chg += rg->to - t;
232			t = rg->to;
233		}
234		chg -= rg->to - rg->from;
235	}
236	return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241	struct file_region *rg, *trg;
242	long chg = 0;
243
244	/* Locate the region we are either in or before. */
245	list_for_each_entry(rg, head, link)
246		if (end <= rg->to)
247			break;
248	if (&rg->link == head)
249		return 0;
250
251	/* If we are in the middle of a region then adjust it. */
252	if (end > rg->from) {
253		chg = rg->to - end;
254		rg->to = end;
255		rg = list_entry(rg->link.next, typeof(*rg), link);
256	}
257
258	/* Drop any remaining regions. */
259	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260		if (&rg->link == head)
261			break;
262		chg += rg->to - rg->from;
263		list_del(&rg->link);
264		kfree(rg);
265	}
266	return chg;
267}
268
269static long region_count(struct list_head *head, long f, long t)
270{
271	struct file_region *rg;
272	long chg = 0;
273
274	/* Locate each segment we overlap with, and count that overlap. */
275	list_for_each_entry(rg, head, link) {
276		long seg_from;
277		long seg_to;
278
279		if (rg->to <= f)
280			continue;
281		if (rg->from >= t)
282			break;
283
284		seg_from = max(rg->from, f);
285		seg_to = min(rg->to, t);
286
287		chg += seg_to - seg_from;
288	}
289
290	return chg;
291}
292
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298			struct vm_area_struct *vma, unsigned long address)
299{
300	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301			(vma->vm_pgoff >> huge_page_order(h));
302}
303
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305				     unsigned long address)
306{
307	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316	struct hstate *hstate;
317
318	if (!is_vm_hugetlb_page(vma))
319		return PAGE_SIZE;
320
321	hstate = hstate_vma(vma);
322
323	return 1UL << huge_page_shift(hstate);
324}
325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336	return vma_kernel_pagesize(vma);
337}
338#endif
339
340/*
341 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER    (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping.  A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated.  A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370	return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374							unsigned long value)
375{
376	vma->vm_private_data = (void *)value;
377}
378
379struct resv_map {
380	struct kref refs;
381	struct list_head regions;
382};
383
384static struct resv_map *resv_map_alloc(void)
385{
386	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387	if (!resv_map)
388		return NULL;
389
390	kref_init(&resv_map->refs);
391	INIT_LIST_HEAD(&resv_map->regions);
392
393	return resv_map;
394}
395
396static void resv_map_release(struct kref *ref)
397{
398	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400	/* Clear out any active regions before we release the map. */
401	region_truncate(&resv_map->regions, 0);
402	kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406{
407	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408	if (!(vma->vm_flags & VM_MAYSHARE))
409		return (struct resv_map *)(get_vma_private_data(vma) &
410							~HPAGE_RESV_MASK);
411	return NULL;
412}
413
414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415{
416	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419	set_vma_private_data(vma, (get_vma_private_data(vma) &
420				HPAGE_RESV_MASK) | (unsigned long)map);
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
425	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435	return (get_vma_private_data(vma) & flag) != 0;
436}
437
438/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440{
441	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442	if (!(vma->vm_flags & VM_MAYSHARE))
443		vma->vm_private_data = (void *)0;
444}
445
446/* Returns true if the VMA has associated reserve pages */
447static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448{
449	if (vma->vm_flags & VM_NORESERVE) {
450		/*
451		 * This address is already reserved by other process(chg == 0),
452		 * so, we should decrement reserved count. Without decrementing,
453		 * reserve count remains after releasing inode, because this
454		 * allocated page will go into page cache and is regarded as
455		 * coming from reserved pool in releasing step.  Currently, we
456		 * don't have any other solution to deal with this situation
457		 * properly, so add work-around here.
458		 */
459		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460			return 1;
461		else
462			return 0;
463	}
464
465	/* Shared mappings always use reserves */
466	if (vma->vm_flags & VM_MAYSHARE)
467		return 1;
468
469	/*
470	 * Only the process that called mmap() has reserves for
471	 * private mappings.
472	 */
473	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474		return 1;
475
476	return 0;
477}
478
479static void copy_gigantic_page(struct page *dst, struct page *src)
480{
481	int i;
482	struct hstate *h = page_hstate(src);
483	struct page *dst_base = dst;
484	struct page *src_base = src;
485
486	for (i = 0; i < pages_per_huge_page(h); ) {
487		cond_resched();
488		copy_highpage(dst, src);
489
490		i++;
491		dst = mem_map_next(dst, dst_base, i);
492		src = mem_map_next(src, src_base, i);
493	}
494}
495
496void copy_huge_page(struct page *dst, struct page *src)
497{
498	int i;
499	struct hstate *h = page_hstate(src);
500
501	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502		copy_gigantic_page(dst, src);
503		return;
504	}
505
506	might_sleep();
507	for (i = 0; i < pages_per_huge_page(h); i++) {
508		cond_resched();
509		copy_highpage(dst + i, src + i);
510	}
511}
512
513static void enqueue_huge_page(struct hstate *h, struct page *page)
514{
515	int nid = page_to_nid(page);
516	list_move(&page->lru, &h->hugepage_freelists[nid]);
517	h->free_huge_pages++;
518	h->free_huge_pages_node[nid]++;
519}
520
521static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522{
523	struct page *page;
524
525	if (list_empty(&h->hugepage_freelists[nid]))
526		return NULL;
527	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
528	list_move(&page->lru, &h->hugepage_activelist);
529	set_page_refcounted(page);
530	h->free_huge_pages--;
531	h->free_huge_pages_node[nid]--;
532	return page;
533}
534
535static struct page *dequeue_huge_page_vma(struct hstate *h,
536				struct vm_area_struct *vma,
537				unsigned long address, int avoid_reserve,
538				long chg)
539{
540	struct page *page = NULL;
541	struct mempolicy *mpol;
542	nodemask_t *nodemask;
543	struct zonelist *zonelist;
544	struct zone *zone;
545	struct zoneref *z;
546	unsigned int cpuset_mems_cookie;
547
548	/*
549	 * A child process with MAP_PRIVATE mappings created by their parent
550	 * have no page reserves. This check ensures that reservations are
551	 * not "stolen". The child may still get SIGKILLed
552	 */
553	if (!vma_has_reserves(vma, chg) &&
554			h->free_huge_pages - h->resv_huge_pages == 0)
555		goto err;
556
557	/* If reserves cannot be used, ensure enough pages are in the pool */
558	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
559		goto err;
560
561retry_cpuset:
562	cpuset_mems_cookie = get_mems_allowed();
563	zonelist = huge_zonelist(vma, address,
564					htlb_alloc_mask, &mpol, &nodemask);
565
566	for_each_zone_zonelist_nodemask(zone, z, zonelist,
567						MAX_NR_ZONES - 1, nodemask) {
568		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569			page = dequeue_huge_page_node(h, zone_to_nid(zone));
570			if (page) {
571				if (avoid_reserve)
572					break;
573				if (!vma_has_reserves(vma, chg))
574					break;
575
576				SetPagePrivate(page);
577				h->resv_huge_pages--;
578				break;
579			}
580		}
581	}
582
583	mpol_cond_put(mpol);
584	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
585		goto retry_cpuset;
586	return page;
587
588err:
589	return NULL;
590}
591
592static void update_and_free_page(struct hstate *h, struct page *page)
593{
594	int i;
595
596	VM_BUG_ON(h->order >= MAX_ORDER);
597
598	h->nr_huge_pages--;
599	h->nr_huge_pages_node[page_to_nid(page)]--;
600	for (i = 0; i < pages_per_huge_page(h); i++) {
601		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
602				1 << PG_referenced | 1 << PG_dirty |
603				1 << PG_active | 1 << PG_reserved |
604				1 << PG_private | 1 << PG_writeback);
605	}
606	VM_BUG_ON(hugetlb_cgroup_from_page(page));
607	set_compound_page_dtor(page, NULL);
608	set_page_refcounted(page);
609	arch_release_hugepage(page);
610	__free_pages(page, huge_page_order(h));
611}
612
613struct hstate *size_to_hstate(unsigned long size)
614{
615	struct hstate *h;
616
617	for_each_hstate(h) {
618		if (huge_page_size(h) == size)
619			return h;
620	}
621	return NULL;
622}
623
624static void free_huge_page(struct page *page)
625{
626	/*
627	 * Can't pass hstate in here because it is called from the
628	 * compound page destructor.
629	 */
630	struct hstate *h = page_hstate(page);
631	int nid = page_to_nid(page);
632	struct hugepage_subpool *spool =
633		(struct hugepage_subpool *)page_private(page);
634	bool restore_reserve;
635
636	set_page_private(page, 0);
637	page->mapping = NULL;
638	BUG_ON(page_count(page));
639	BUG_ON(page_mapcount(page));
640	restore_reserve = PagePrivate(page);
641
642	spin_lock(&hugetlb_lock);
643	hugetlb_cgroup_uncharge_page(hstate_index(h),
644				     pages_per_huge_page(h), page);
645	if (restore_reserve)
646		h->resv_huge_pages++;
647
648	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
649		/* remove the page from active list */
650		list_del(&page->lru);
651		update_and_free_page(h, page);
652		h->surplus_huge_pages--;
653		h->surplus_huge_pages_node[nid]--;
654	} else {
655		arch_clear_hugepage_flags(page);
656		enqueue_huge_page(h, page);
657	}
658	spin_unlock(&hugetlb_lock);
659	hugepage_subpool_put_pages(spool, 1);
660}
661
662static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
663{
664	INIT_LIST_HEAD(&page->lru);
665	set_compound_page_dtor(page, free_huge_page);
666	spin_lock(&hugetlb_lock);
667	set_hugetlb_cgroup(page, NULL);
668	h->nr_huge_pages++;
669	h->nr_huge_pages_node[nid]++;
670	spin_unlock(&hugetlb_lock);
671	put_page(page); /* free it into the hugepage allocator */
672}
673
674static void prep_compound_gigantic_page(struct page *page, unsigned long order)
675{
676	int i;
677	int nr_pages = 1 << order;
678	struct page *p = page + 1;
679
680	/* we rely on prep_new_huge_page to set the destructor */
681	set_compound_order(page, order);
682	__SetPageHead(page);
683	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
684		__SetPageTail(p);
685		set_page_count(p, 0);
686		p->first_page = page;
687	}
688}
689
690/*
691 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
692 * transparent huge pages.  See the PageTransHuge() documentation for more
693 * details.
694 */
695int PageHuge(struct page *page)
696{
697	compound_page_dtor *dtor;
698
699	if (!PageCompound(page))
700		return 0;
701
702	page = compound_head(page);
703	dtor = get_compound_page_dtor(page);
704
705	return dtor == free_huge_page;
706}
707EXPORT_SYMBOL_GPL(PageHuge);
708
709pgoff_t __basepage_index(struct page *page)
710{
711	struct page *page_head = compound_head(page);
712	pgoff_t index = page_index(page_head);
713	unsigned long compound_idx;
714
715	if (!PageHuge(page_head))
716		return page_index(page);
717
718	if (compound_order(page_head) >= MAX_ORDER)
719		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
720	else
721		compound_idx = page - page_head;
722
723	return (index << compound_order(page_head)) + compound_idx;
724}
725
726static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
727{
728	struct page *page;
729
730	if (h->order >= MAX_ORDER)
731		return NULL;
732
733	page = alloc_pages_exact_node(nid,
734		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
735						__GFP_REPEAT|__GFP_NOWARN,
736		huge_page_order(h));
737	if (page) {
738		if (arch_prepare_hugepage(page)) {
739			__free_pages(page, huge_page_order(h));
740			return NULL;
741		}
742		prep_new_huge_page(h, page, nid);
743	}
744
745	return page;
746}
747
748/*
749 * common helper functions for hstate_next_node_to_{alloc|free}.
750 * We may have allocated or freed a huge page based on a different
751 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
752 * be outside of *nodes_allowed.  Ensure that we use an allowed
753 * node for alloc or free.
754 */
755static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
756{
757	nid = next_node(nid, *nodes_allowed);
758	if (nid == MAX_NUMNODES)
759		nid = first_node(*nodes_allowed);
760	VM_BUG_ON(nid >= MAX_NUMNODES);
761
762	return nid;
763}
764
765static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
766{
767	if (!node_isset(nid, *nodes_allowed))
768		nid = next_node_allowed(nid, nodes_allowed);
769	return nid;
770}
771
772/*
773 * returns the previously saved node ["this node"] from which to
774 * allocate a persistent huge page for the pool and advance the
775 * next node from which to allocate, handling wrap at end of node
776 * mask.
777 */
778static int hstate_next_node_to_alloc(struct hstate *h,
779					nodemask_t *nodes_allowed)
780{
781	int nid;
782
783	VM_BUG_ON(!nodes_allowed);
784
785	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
786	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
787
788	return nid;
789}
790
791/*
792 * helper for free_pool_huge_page() - return the previously saved
793 * node ["this node"] from which to free a huge page.  Advance the
794 * next node id whether or not we find a free huge page to free so
795 * that the next attempt to free addresses the next node.
796 */
797static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
798{
799	int nid;
800
801	VM_BUG_ON(!nodes_allowed);
802
803	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
804	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
805
806	return nid;
807}
808
809#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
810	for (nr_nodes = nodes_weight(*mask);				\
811		nr_nodes > 0 &&						\
812		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
813		nr_nodes--)
814
815#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
816	for (nr_nodes = nodes_weight(*mask);				\
817		nr_nodes > 0 &&						\
818		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
819		nr_nodes--)
820
821static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
822{
823	struct page *page;
824	int nr_nodes, node;
825	int ret = 0;
826
827	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
828		page = alloc_fresh_huge_page_node(h, node);
829		if (page) {
830			ret = 1;
831			break;
832		}
833	}
834
835	if (ret)
836		count_vm_event(HTLB_BUDDY_PGALLOC);
837	else
838		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
839
840	return ret;
841}
842
843/*
844 * Free huge page from pool from next node to free.
845 * Attempt to keep persistent huge pages more or less
846 * balanced over allowed nodes.
847 * Called with hugetlb_lock locked.
848 */
849static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
850							 bool acct_surplus)
851{
852	int nr_nodes, node;
853	int ret = 0;
854
855	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
856		/*
857		 * If we're returning unused surplus pages, only examine
858		 * nodes with surplus pages.
859		 */
860		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
861		    !list_empty(&h->hugepage_freelists[node])) {
862			struct page *page =
863				list_entry(h->hugepage_freelists[node].next,
864					  struct page, lru);
865			list_del(&page->lru);
866			h->free_huge_pages--;
867			h->free_huge_pages_node[node]--;
868			if (acct_surplus) {
869				h->surplus_huge_pages--;
870				h->surplus_huge_pages_node[node]--;
871			}
872			update_and_free_page(h, page);
873			ret = 1;
874			break;
875		}
876	}
877
878	return ret;
879}
880
881static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
882{
883	struct page *page;
884	unsigned int r_nid;
885
886	if (h->order >= MAX_ORDER)
887		return NULL;
888
889	/*
890	 * Assume we will successfully allocate the surplus page to
891	 * prevent racing processes from causing the surplus to exceed
892	 * overcommit
893	 *
894	 * This however introduces a different race, where a process B
895	 * tries to grow the static hugepage pool while alloc_pages() is
896	 * called by process A. B will only examine the per-node
897	 * counters in determining if surplus huge pages can be
898	 * converted to normal huge pages in adjust_pool_surplus(). A
899	 * won't be able to increment the per-node counter, until the
900	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
901	 * no more huge pages can be converted from surplus to normal
902	 * state (and doesn't try to convert again). Thus, we have a
903	 * case where a surplus huge page exists, the pool is grown, and
904	 * the surplus huge page still exists after, even though it
905	 * should just have been converted to a normal huge page. This
906	 * does not leak memory, though, as the hugepage will be freed
907	 * once it is out of use. It also does not allow the counters to
908	 * go out of whack in adjust_pool_surplus() as we don't modify
909	 * the node values until we've gotten the hugepage and only the
910	 * per-node value is checked there.
911	 */
912	spin_lock(&hugetlb_lock);
913	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
914		spin_unlock(&hugetlb_lock);
915		return NULL;
916	} else {
917		h->nr_huge_pages++;
918		h->surplus_huge_pages++;
919	}
920	spin_unlock(&hugetlb_lock);
921
922	if (nid == NUMA_NO_NODE)
923		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
924				   __GFP_REPEAT|__GFP_NOWARN,
925				   huge_page_order(h));
926	else
927		page = alloc_pages_exact_node(nid,
928			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
929			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
930
931	if (page && arch_prepare_hugepage(page)) {
932		__free_pages(page, huge_page_order(h));
933		page = NULL;
934	}
935
936	spin_lock(&hugetlb_lock);
937	if (page) {
938		INIT_LIST_HEAD(&page->lru);
939		r_nid = page_to_nid(page);
940		set_compound_page_dtor(page, free_huge_page);
941		set_hugetlb_cgroup(page, NULL);
942		/*
943		 * We incremented the global counters already
944		 */
945		h->nr_huge_pages_node[r_nid]++;
946		h->surplus_huge_pages_node[r_nid]++;
947		__count_vm_event(HTLB_BUDDY_PGALLOC);
948	} else {
949		h->nr_huge_pages--;
950		h->surplus_huge_pages--;
951		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
952	}
953	spin_unlock(&hugetlb_lock);
954
955	return page;
956}
957
958/*
959 * This allocation function is useful in the context where vma is irrelevant.
960 * E.g. soft-offlining uses this function because it only cares physical
961 * address of error page.
962 */
963struct page *alloc_huge_page_node(struct hstate *h, int nid)
964{
965	struct page *page = NULL;
966
967	spin_lock(&hugetlb_lock);
968	if (h->free_huge_pages - h->resv_huge_pages > 0)
969		page = dequeue_huge_page_node(h, nid);
970	spin_unlock(&hugetlb_lock);
971
972	if (!page)
973		page = alloc_buddy_huge_page(h, nid);
974
975	return page;
976}
977
978/*
979 * Increase the hugetlb pool such that it can accommodate a reservation
980 * of size 'delta'.
981 */
982static int gather_surplus_pages(struct hstate *h, int delta)
983{
984	struct list_head surplus_list;
985	struct page *page, *tmp;
986	int ret, i;
987	int needed, allocated;
988	bool alloc_ok = true;
989
990	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
991	if (needed <= 0) {
992		h->resv_huge_pages += delta;
993		return 0;
994	}
995
996	allocated = 0;
997	INIT_LIST_HEAD(&surplus_list);
998
999	ret = -ENOMEM;
1000retry:
1001	spin_unlock(&hugetlb_lock);
1002	for (i = 0; i < needed; i++) {
1003		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1004		if (!page) {
1005			alloc_ok = false;
1006			break;
1007		}
1008		list_add(&page->lru, &surplus_list);
1009	}
1010	allocated += i;
1011
1012	/*
1013	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1014	 * because either resv_huge_pages or free_huge_pages may have changed.
1015	 */
1016	spin_lock(&hugetlb_lock);
1017	needed = (h->resv_huge_pages + delta) -
1018			(h->free_huge_pages + allocated);
1019	if (needed > 0) {
1020		if (alloc_ok)
1021			goto retry;
1022		/*
1023		 * We were not able to allocate enough pages to
1024		 * satisfy the entire reservation so we free what
1025		 * we've allocated so far.
1026		 */
1027		goto free;
1028	}
1029	/*
1030	 * The surplus_list now contains _at_least_ the number of extra pages
1031	 * needed to accommodate the reservation.  Add the appropriate number
1032	 * of pages to the hugetlb pool and free the extras back to the buddy
1033	 * allocator.  Commit the entire reservation here to prevent another
1034	 * process from stealing the pages as they are added to the pool but
1035	 * before they are reserved.
1036	 */
1037	needed += allocated;
1038	h->resv_huge_pages += delta;
1039	ret = 0;
1040
1041	/* Free the needed pages to the hugetlb pool */
1042	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1043		if ((--needed) < 0)
1044			break;
1045		/*
1046		 * This page is now managed by the hugetlb allocator and has
1047		 * no users -- drop the buddy allocator's reference.
1048		 */
1049		put_page_testzero(page);
1050		VM_BUG_ON(page_count(page));
1051		enqueue_huge_page(h, page);
1052	}
1053free:
1054	spin_unlock(&hugetlb_lock);
1055
1056	/* Free unnecessary surplus pages to the buddy allocator */
1057	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1058		put_page(page);
1059	spin_lock(&hugetlb_lock);
1060
1061	return ret;
1062}
1063
1064/*
1065 * When releasing a hugetlb pool reservation, any surplus pages that were
1066 * allocated to satisfy the reservation must be explicitly freed if they were
1067 * never used.
1068 * Called with hugetlb_lock held.
1069 */
1070static void return_unused_surplus_pages(struct hstate *h,
1071					unsigned long unused_resv_pages)
1072{
1073	unsigned long nr_pages;
1074
1075	/* Uncommit the reservation */
1076	h->resv_huge_pages -= unused_resv_pages;
1077
1078	/* Cannot return gigantic pages currently */
1079	if (h->order >= MAX_ORDER)
1080		return;
1081
1082	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1083
1084	/*
1085	 * We want to release as many surplus pages as possible, spread
1086	 * evenly across all nodes with memory. Iterate across these nodes
1087	 * until we can no longer free unreserved surplus pages. This occurs
1088	 * when the nodes with surplus pages have no free pages.
1089	 * free_pool_huge_page() will balance the the freed pages across the
1090	 * on-line nodes with memory and will handle the hstate accounting.
1091	 */
1092	while (nr_pages--) {
1093		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1094			break;
1095	}
1096}
1097
1098/*
1099 * Determine if the huge page at addr within the vma has an associated
1100 * reservation.  Where it does not we will need to logically increase
1101 * reservation and actually increase subpool usage before an allocation
1102 * can occur.  Where any new reservation would be required the
1103 * reservation change is prepared, but not committed.  Once the page
1104 * has been allocated from the subpool and instantiated the change should
1105 * be committed via vma_commit_reservation.  No action is required on
1106 * failure.
1107 */
1108static long vma_needs_reservation(struct hstate *h,
1109			struct vm_area_struct *vma, unsigned long addr)
1110{
1111	struct address_space *mapping = vma->vm_file->f_mapping;
1112	struct inode *inode = mapping->host;
1113
1114	if (vma->vm_flags & VM_MAYSHARE) {
1115		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1116		return region_chg(&inode->i_mapping->private_list,
1117							idx, idx + 1);
1118
1119	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1120		return 1;
1121
1122	} else  {
1123		long err;
1124		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125		struct resv_map *resv = vma_resv_map(vma);
1126
1127		err = region_chg(&resv->regions, idx, idx + 1);
1128		if (err < 0)
1129			return err;
1130		return 0;
1131	}
1132}
1133static void vma_commit_reservation(struct hstate *h,
1134			struct vm_area_struct *vma, unsigned long addr)
1135{
1136	struct address_space *mapping = vma->vm_file->f_mapping;
1137	struct inode *inode = mapping->host;
1138
1139	if (vma->vm_flags & VM_MAYSHARE) {
1140		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1141		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1142
1143	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1144		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1145		struct resv_map *resv = vma_resv_map(vma);
1146
1147		/* Mark this page used in the map. */
1148		region_add(&resv->regions, idx, idx + 1);
1149	}
1150}
1151
1152static struct page *alloc_huge_page(struct vm_area_struct *vma,
1153				    unsigned long addr, int avoid_reserve)
1154{
1155	struct hugepage_subpool *spool = subpool_vma(vma);
1156	struct hstate *h = hstate_vma(vma);
1157	struct page *page;
1158	long chg;
1159	int ret, idx;
1160	struct hugetlb_cgroup *h_cg;
1161
1162	idx = hstate_index(h);
1163	/*
1164	 * Processes that did not create the mapping will have no
1165	 * reserves and will not have accounted against subpool
1166	 * limit. Check that the subpool limit can be made before
1167	 * satisfying the allocation MAP_NORESERVE mappings may also
1168	 * need pages and subpool limit allocated allocated if no reserve
1169	 * mapping overlaps.
1170	 */
1171	chg = vma_needs_reservation(h, vma, addr);
1172	if (chg < 0)
1173		return ERR_PTR(-ENOMEM);
1174	if (chg || avoid_reserve)
1175		if (hugepage_subpool_get_pages(spool, 1))
1176			return ERR_PTR(-ENOSPC);
1177
1178	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1179	if (ret) {
1180		if (chg || avoid_reserve)
1181			hugepage_subpool_put_pages(spool, 1);
1182		return ERR_PTR(-ENOSPC);
1183	}
1184	spin_lock(&hugetlb_lock);
1185	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1186	if (!page) {
1187		spin_unlock(&hugetlb_lock);
1188		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1189		if (!page) {
1190			hugetlb_cgroup_uncharge_cgroup(idx,
1191						       pages_per_huge_page(h),
1192						       h_cg);
1193			if (chg || avoid_reserve)
1194				hugepage_subpool_put_pages(spool, 1);
1195			return ERR_PTR(-ENOSPC);
1196		}
1197		spin_lock(&hugetlb_lock);
1198		list_move(&page->lru, &h->hugepage_activelist);
1199		/* Fall through */
1200	}
1201	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1202	spin_unlock(&hugetlb_lock);
1203
1204	set_page_private(page, (unsigned long)spool);
1205
1206	vma_commit_reservation(h, vma, addr);
1207	return page;
1208}
1209
1210int __weak alloc_bootmem_huge_page(struct hstate *h)
1211{
1212	struct huge_bootmem_page *m;
1213	int nr_nodes, node;
1214
1215	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1216		void *addr;
1217
1218		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1219				huge_page_size(h), huge_page_size(h), 0);
1220
1221		if (addr) {
1222			/*
1223			 * Use the beginning of the huge page to store the
1224			 * huge_bootmem_page struct (until gather_bootmem
1225			 * puts them into the mem_map).
1226			 */
1227			m = addr;
1228			goto found;
1229		}
1230	}
1231	return 0;
1232
1233found:
1234	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1235	/* Put them into a private list first because mem_map is not up yet */
1236	list_add(&m->list, &huge_boot_pages);
1237	m->hstate = h;
1238	return 1;
1239}
1240
1241static void prep_compound_huge_page(struct page *page, int order)
1242{
1243	if (unlikely(order > (MAX_ORDER - 1)))
1244		prep_compound_gigantic_page(page, order);
1245	else
1246		prep_compound_page(page, order);
1247}
1248
1249/* Put bootmem huge pages into the standard lists after mem_map is up */
1250static void __init gather_bootmem_prealloc(void)
1251{
1252	struct huge_bootmem_page *m;
1253
1254	list_for_each_entry(m, &huge_boot_pages, list) {
1255		struct hstate *h = m->hstate;
1256		struct page *page;
1257
1258#ifdef CONFIG_HIGHMEM
1259		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1260		free_bootmem_late((unsigned long)m,
1261				  sizeof(struct huge_bootmem_page));
1262#else
1263		page = virt_to_page(m);
1264#endif
1265		__ClearPageReserved(page);
1266		WARN_ON(page_count(page) != 1);
1267		prep_compound_huge_page(page, h->order);
1268		prep_new_huge_page(h, page, page_to_nid(page));
1269		/*
1270		 * If we had gigantic hugepages allocated at boot time, we need
1271		 * to restore the 'stolen' pages to totalram_pages in order to
1272		 * fix confusing memory reports from free(1) and another
1273		 * side-effects, like CommitLimit going negative.
1274		 */
1275		if (h->order > (MAX_ORDER - 1))
1276			adjust_managed_page_count(page, 1 << h->order);
1277	}
1278}
1279
1280static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1281{
1282	unsigned long i;
1283
1284	for (i = 0; i < h->max_huge_pages; ++i) {
1285		if (h->order >= MAX_ORDER) {
1286			if (!alloc_bootmem_huge_page(h))
1287				break;
1288		} else if (!alloc_fresh_huge_page(h,
1289					 &node_states[N_MEMORY]))
1290			break;
1291	}
1292	h->max_huge_pages = i;
1293}
1294
1295static void __init hugetlb_init_hstates(void)
1296{
1297	struct hstate *h;
1298
1299	for_each_hstate(h) {
1300		/* oversize hugepages were init'ed in early boot */
1301		if (h->order < MAX_ORDER)
1302			hugetlb_hstate_alloc_pages(h);
1303	}
1304}
1305
1306static char * __init memfmt(char *buf, unsigned long n)
1307{
1308	if (n >= (1UL << 30))
1309		sprintf(buf, "%lu GB", n >> 30);
1310	else if (n >= (1UL << 20))
1311		sprintf(buf, "%lu MB", n >> 20);
1312	else
1313		sprintf(buf, "%lu KB", n >> 10);
1314	return buf;
1315}
1316
1317static void __init report_hugepages(void)
1318{
1319	struct hstate *h;
1320
1321	for_each_hstate(h) {
1322		char buf[32];
1323		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1324			memfmt(buf, huge_page_size(h)),
1325			h->free_huge_pages);
1326	}
1327}
1328
1329#ifdef CONFIG_HIGHMEM
1330static void try_to_free_low(struct hstate *h, unsigned long count,
1331						nodemask_t *nodes_allowed)
1332{
1333	int i;
1334
1335	if (h->order >= MAX_ORDER)
1336		return;
1337
1338	for_each_node_mask(i, *nodes_allowed) {
1339		struct page *page, *next;
1340		struct list_head *freel = &h->hugepage_freelists[i];
1341		list_for_each_entry_safe(page, next, freel, lru) {
1342			if (count >= h->nr_huge_pages)
1343				return;
1344			if (PageHighMem(page))
1345				continue;
1346			list_del(&page->lru);
1347			update_and_free_page(h, page);
1348			h->free_huge_pages--;
1349			h->free_huge_pages_node[page_to_nid(page)]--;
1350		}
1351	}
1352}
1353#else
1354static inline void try_to_free_low(struct hstate *h, unsigned long count,
1355						nodemask_t *nodes_allowed)
1356{
1357}
1358#endif
1359
1360/*
1361 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1362 * balanced by operating on them in a round-robin fashion.
1363 * Returns 1 if an adjustment was made.
1364 */
1365static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1366				int delta)
1367{
1368	int nr_nodes, node;
1369
1370	VM_BUG_ON(delta != -1 && delta != 1);
1371
1372	if (delta < 0) {
1373		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1374			if (h->surplus_huge_pages_node[node])
1375				goto found;
1376		}
1377	} else {
1378		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1379			if (h->surplus_huge_pages_node[node] <
1380					h->nr_huge_pages_node[node])
1381				goto found;
1382		}
1383	}
1384	return 0;
1385
1386found:
1387	h->surplus_huge_pages += delta;
1388	h->surplus_huge_pages_node[node] += delta;
1389	return 1;
1390}
1391
1392#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1393static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1394						nodemask_t *nodes_allowed)
1395{
1396	unsigned long min_count, ret;
1397
1398	if (h->order >= MAX_ORDER)
1399		return h->max_huge_pages;
1400
1401	/*
1402	 * Increase the pool size
1403	 * First take pages out of surplus state.  Then make up the
1404	 * remaining difference by allocating fresh huge pages.
1405	 *
1406	 * We might race with alloc_buddy_huge_page() here and be unable
1407	 * to convert a surplus huge page to a normal huge page. That is
1408	 * not critical, though, it just means the overall size of the
1409	 * pool might be one hugepage larger than it needs to be, but
1410	 * within all the constraints specified by the sysctls.
1411	 */
1412	spin_lock(&hugetlb_lock);
1413	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1414		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1415			break;
1416	}
1417
1418	while (count > persistent_huge_pages(h)) {
1419		/*
1420		 * If this allocation races such that we no longer need the
1421		 * page, free_huge_page will handle it by freeing the page
1422		 * and reducing the surplus.
1423		 */
1424		spin_unlock(&hugetlb_lock);
1425		ret = alloc_fresh_huge_page(h, nodes_allowed);
1426		spin_lock(&hugetlb_lock);
1427		if (!ret)
1428			goto out;
1429
1430		/* Bail for signals. Probably ctrl-c from user */
1431		if (signal_pending(current))
1432			goto out;
1433	}
1434
1435	/*
1436	 * Decrease the pool size
1437	 * First return free pages to the buddy allocator (being careful
1438	 * to keep enough around to satisfy reservations).  Then place
1439	 * pages into surplus state as needed so the pool will shrink
1440	 * to the desired size as pages become free.
1441	 *
1442	 * By placing pages into the surplus state independent of the
1443	 * overcommit value, we are allowing the surplus pool size to
1444	 * exceed overcommit. There are few sane options here. Since
1445	 * alloc_buddy_huge_page() is checking the global counter,
1446	 * though, we'll note that we're not allowed to exceed surplus
1447	 * and won't grow the pool anywhere else. Not until one of the
1448	 * sysctls are changed, or the surplus pages go out of use.
1449	 */
1450	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1451	min_count = max(count, min_count);
1452	try_to_free_low(h, min_count, nodes_allowed);
1453	while (min_count < persistent_huge_pages(h)) {
1454		if (!free_pool_huge_page(h, nodes_allowed, 0))
1455			break;
1456	}
1457	while (count < persistent_huge_pages(h)) {
1458		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1459			break;
1460	}
1461out:
1462	ret = persistent_huge_pages(h);
1463	spin_unlock(&hugetlb_lock);
1464	return ret;
1465}
1466
1467#define HSTATE_ATTR_RO(_name) \
1468	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1469
1470#define HSTATE_ATTR(_name) \
1471	static struct kobj_attribute _name##_attr = \
1472		__ATTR(_name, 0644, _name##_show, _name##_store)
1473
1474static struct kobject *hugepages_kobj;
1475static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1476
1477static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1478
1479static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1480{
1481	int i;
1482
1483	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1484		if (hstate_kobjs[i] == kobj) {
1485			if (nidp)
1486				*nidp = NUMA_NO_NODE;
1487			return &hstates[i];
1488		}
1489
1490	return kobj_to_node_hstate(kobj, nidp);
1491}
1492
1493static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1494					struct kobj_attribute *attr, char *buf)
1495{
1496	struct hstate *h;
1497	unsigned long nr_huge_pages;
1498	int nid;
1499
1500	h = kobj_to_hstate(kobj, &nid);
1501	if (nid == NUMA_NO_NODE)
1502		nr_huge_pages = h->nr_huge_pages;
1503	else
1504		nr_huge_pages = h->nr_huge_pages_node[nid];
1505
1506	return sprintf(buf, "%lu\n", nr_huge_pages);
1507}
1508
1509static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1510			struct kobject *kobj, struct kobj_attribute *attr,
1511			const char *buf, size_t len)
1512{
1513	int err;
1514	int nid;
1515	unsigned long count;
1516	struct hstate *h;
1517	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1518
1519	err = kstrtoul(buf, 10, &count);
1520	if (err)
1521		goto out;
1522
1523	h = kobj_to_hstate(kobj, &nid);
1524	if (h->order >= MAX_ORDER) {
1525		err = -EINVAL;
1526		goto out;
1527	}
1528
1529	if (nid == NUMA_NO_NODE) {
1530		/*
1531		 * global hstate attribute
1532		 */
1533		if (!(obey_mempolicy &&
1534				init_nodemask_of_mempolicy(nodes_allowed))) {
1535			NODEMASK_FREE(nodes_allowed);
1536			nodes_allowed = &node_states[N_MEMORY];
1537		}
1538	} else if (nodes_allowed) {
1539		/*
1540		 * per node hstate attribute: adjust count to global,
1541		 * but restrict alloc/free to the specified node.
1542		 */
1543		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1544		init_nodemask_of_node(nodes_allowed, nid);
1545	} else
1546		nodes_allowed = &node_states[N_MEMORY];
1547
1548	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1549
1550	if (nodes_allowed != &node_states[N_MEMORY])
1551		NODEMASK_FREE(nodes_allowed);
1552
1553	return len;
1554out:
1555	NODEMASK_FREE(nodes_allowed);
1556	return err;
1557}
1558
1559static ssize_t nr_hugepages_show(struct kobject *kobj,
1560				       struct kobj_attribute *attr, char *buf)
1561{
1562	return nr_hugepages_show_common(kobj, attr, buf);
1563}
1564
1565static ssize_t nr_hugepages_store(struct kobject *kobj,
1566	       struct kobj_attribute *attr, const char *buf, size_t len)
1567{
1568	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1569}
1570HSTATE_ATTR(nr_hugepages);
1571
1572#ifdef CONFIG_NUMA
1573
1574/*
1575 * hstate attribute for optionally mempolicy-based constraint on persistent
1576 * huge page alloc/free.
1577 */
1578static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1579				       struct kobj_attribute *attr, char *buf)
1580{
1581	return nr_hugepages_show_common(kobj, attr, buf);
1582}
1583
1584static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1585	       struct kobj_attribute *attr, const char *buf, size_t len)
1586{
1587	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1588}
1589HSTATE_ATTR(nr_hugepages_mempolicy);
1590#endif
1591
1592
1593static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1594					struct kobj_attribute *attr, char *buf)
1595{
1596	struct hstate *h = kobj_to_hstate(kobj, NULL);
1597	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1598}
1599
1600static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1601		struct kobj_attribute *attr, const char *buf, size_t count)
1602{
1603	int err;
1604	unsigned long input;
1605	struct hstate *h = kobj_to_hstate(kobj, NULL);
1606
1607	if (h->order >= MAX_ORDER)
1608		return -EINVAL;
1609
1610	err = kstrtoul(buf, 10, &input);
1611	if (err)
1612		return err;
1613
1614	spin_lock(&hugetlb_lock);
1615	h->nr_overcommit_huge_pages = input;
1616	spin_unlock(&hugetlb_lock);
1617
1618	return count;
1619}
1620HSTATE_ATTR(nr_overcommit_hugepages);
1621
1622static ssize_t free_hugepages_show(struct kobject *kobj,
1623					struct kobj_attribute *attr, char *buf)
1624{
1625	struct hstate *h;
1626	unsigned long free_huge_pages;
1627	int nid;
1628
1629	h = kobj_to_hstate(kobj, &nid);
1630	if (nid == NUMA_NO_NODE)
1631		free_huge_pages = h->free_huge_pages;
1632	else
1633		free_huge_pages = h->free_huge_pages_node[nid];
1634
1635	return sprintf(buf, "%lu\n", free_huge_pages);
1636}
1637HSTATE_ATTR_RO(free_hugepages);
1638
1639static ssize_t resv_hugepages_show(struct kobject *kobj,
1640					struct kobj_attribute *attr, char *buf)
1641{
1642	struct hstate *h = kobj_to_hstate(kobj, NULL);
1643	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1644}
1645HSTATE_ATTR_RO(resv_hugepages);
1646
1647static ssize_t surplus_hugepages_show(struct kobject *kobj,
1648					struct kobj_attribute *attr, char *buf)
1649{
1650	struct hstate *h;
1651	unsigned long surplus_huge_pages;
1652	int nid;
1653
1654	h = kobj_to_hstate(kobj, &nid);
1655	if (nid == NUMA_NO_NODE)
1656		surplus_huge_pages = h->surplus_huge_pages;
1657	else
1658		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1659
1660	return sprintf(buf, "%lu\n", surplus_huge_pages);
1661}
1662HSTATE_ATTR_RO(surplus_hugepages);
1663
1664static struct attribute *hstate_attrs[] = {
1665	&nr_hugepages_attr.attr,
1666	&nr_overcommit_hugepages_attr.attr,
1667	&free_hugepages_attr.attr,
1668	&resv_hugepages_attr.attr,
1669	&surplus_hugepages_attr.attr,
1670#ifdef CONFIG_NUMA
1671	&nr_hugepages_mempolicy_attr.attr,
1672#endif
1673	NULL,
1674};
1675
1676static struct attribute_group hstate_attr_group = {
1677	.attrs = hstate_attrs,
1678};
1679
1680static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1681				    struct kobject **hstate_kobjs,
1682				    struct attribute_group *hstate_attr_group)
1683{
1684	int retval;
1685	int hi = hstate_index(h);
1686
1687	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1688	if (!hstate_kobjs[hi])
1689		return -ENOMEM;
1690
1691	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1692	if (retval)
1693		kobject_put(hstate_kobjs[hi]);
1694
1695	return retval;
1696}
1697
1698static void __init hugetlb_sysfs_init(void)
1699{
1700	struct hstate *h;
1701	int err;
1702
1703	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1704	if (!hugepages_kobj)
1705		return;
1706
1707	for_each_hstate(h) {
1708		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1709					 hstate_kobjs, &hstate_attr_group);
1710		if (err)
1711			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1712	}
1713}
1714
1715#ifdef CONFIG_NUMA
1716
1717/*
1718 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1719 * with node devices in node_devices[] using a parallel array.  The array
1720 * index of a node device or _hstate == node id.
1721 * This is here to avoid any static dependency of the node device driver, in
1722 * the base kernel, on the hugetlb module.
1723 */
1724struct node_hstate {
1725	struct kobject		*hugepages_kobj;
1726	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1727};
1728struct node_hstate node_hstates[MAX_NUMNODES];
1729
1730/*
1731 * A subset of global hstate attributes for node devices
1732 */
1733static struct attribute *per_node_hstate_attrs[] = {
1734	&nr_hugepages_attr.attr,
1735	&free_hugepages_attr.attr,
1736	&surplus_hugepages_attr.attr,
1737	NULL,
1738};
1739
1740static struct attribute_group per_node_hstate_attr_group = {
1741	.attrs = per_node_hstate_attrs,
1742};
1743
1744/*
1745 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1746 * Returns node id via non-NULL nidp.
1747 */
1748static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1749{
1750	int nid;
1751
1752	for (nid = 0; nid < nr_node_ids; nid++) {
1753		struct node_hstate *nhs = &node_hstates[nid];
1754		int i;
1755		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1756			if (nhs->hstate_kobjs[i] == kobj) {
1757				if (nidp)
1758					*nidp = nid;
1759				return &hstates[i];
1760			}
1761	}
1762
1763	BUG();
1764	return NULL;
1765}
1766
1767/*
1768 * Unregister hstate attributes from a single node device.
1769 * No-op if no hstate attributes attached.
1770 */
1771static void hugetlb_unregister_node(struct node *node)
1772{
1773	struct hstate *h;
1774	struct node_hstate *nhs = &node_hstates[node->dev.id];
1775
1776	if (!nhs->hugepages_kobj)
1777		return;		/* no hstate attributes */
1778
1779	for_each_hstate(h) {
1780		int idx = hstate_index(h);
1781		if (nhs->hstate_kobjs[idx]) {
1782			kobject_put(nhs->hstate_kobjs[idx]);
1783			nhs->hstate_kobjs[idx] = NULL;
1784		}
1785	}
1786
1787	kobject_put(nhs->hugepages_kobj);
1788	nhs->hugepages_kobj = NULL;
1789}
1790
1791/*
1792 * hugetlb module exit:  unregister hstate attributes from node devices
1793 * that have them.
1794 */
1795static void hugetlb_unregister_all_nodes(void)
1796{
1797	int nid;
1798
1799	/*
1800	 * disable node device registrations.
1801	 */
1802	register_hugetlbfs_with_node(NULL, NULL);
1803
1804	/*
1805	 * remove hstate attributes from any nodes that have them.
1806	 */
1807	for (nid = 0; nid < nr_node_ids; nid++)
1808		hugetlb_unregister_node(node_devices[nid]);
1809}
1810
1811/*
1812 * Register hstate attributes for a single node device.
1813 * No-op if attributes already registered.
1814 */
1815static void hugetlb_register_node(struct node *node)
1816{
1817	struct hstate *h;
1818	struct node_hstate *nhs = &node_hstates[node->dev.id];
1819	int err;
1820
1821	if (nhs->hugepages_kobj)
1822		return;		/* already allocated */
1823
1824	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1825							&node->dev.kobj);
1826	if (!nhs->hugepages_kobj)
1827		return;
1828
1829	for_each_hstate(h) {
1830		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1831						nhs->hstate_kobjs,
1832						&per_node_hstate_attr_group);
1833		if (err) {
1834			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1835				h->name, node->dev.id);
1836			hugetlb_unregister_node(node);
1837			break;
1838		}
1839	}
1840}
1841
1842/*
1843 * hugetlb init time:  register hstate attributes for all registered node
1844 * devices of nodes that have memory.  All on-line nodes should have
1845 * registered their associated device by this time.
1846 */
1847static void hugetlb_register_all_nodes(void)
1848{
1849	int nid;
1850
1851	for_each_node_state(nid, N_MEMORY) {
1852		struct node *node = node_devices[nid];
1853		if (node->dev.id == nid)
1854			hugetlb_register_node(node);
1855	}
1856
1857	/*
1858	 * Let the node device driver know we're here so it can
1859	 * [un]register hstate attributes on node hotplug.
1860	 */
1861	register_hugetlbfs_with_node(hugetlb_register_node,
1862				     hugetlb_unregister_node);
1863}
1864#else	/* !CONFIG_NUMA */
1865
1866static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1867{
1868	BUG();
1869	if (nidp)
1870		*nidp = -1;
1871	return NULL;
1872}
1873
1874static void hugetlb_unregister_all_nodes(void) { }
1875
1876static void hugetlb_register_all_nodes(void) { }
1877
1878#endif
1879
1880static void __exit hugetlb_exit(void)
1881{
1882	struct hstate *h;
1883
1884	hugetlb_unregister_all_nodes();
1885
1886	for_each_hstate(h) {
1887		kobject_put(hstate_kobjs[hstate_index(h)]);
1888	}
1889
1890	kobject_put(hugepages_kobj);
1891}
1892module_exit(hugetlb_exit);
1893
1894static int __init hugetlb_init(void)
1895{
1896	/* Some platform decide whether they support huge pages at boot
1897	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1898	 * there is no such support
1899	 */
1900	if (HPAGE_SHIFT == 0)
1901		return 0;
1902
1903	if (!size_to_hstate(default_hstate_size)) {
1904		default_hstate_size = HPAGE_SIZE;
1905		if (!size_to_hstate(default_hstate_size))
1906			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1907	}
1908	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1909	if (default_hstate_max_huge_pages)
1910		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1911
1912	hugetlb_init_hstates();
1913	gather_bootmem_prealloc();
1914	report_hugepages();
1915
1916	hugetlb_sysfs_init();
1917	hugetlb_register_all_nodes();
1918	hugetlb_cgroup_file_init();
1919
1920	return 0;
1921}
1922module_init(hugetlb_init);
1923
1924/* Should be called on processing a hugepagesz=... option */
1925void __init hugetlb_add_hstate(unsigned order)
1926{
1927	struct hstate *h;
1928	unsigned long i;
1929
1930	if (size_to_hstate(PAGE_SIZE << order)) {
1931		pr_warning("hugepagesz= specified twice, ignoring\n");
1932		return;
1933	}
1934	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1935	BUG_ON(order == 0);
1936	h = &hstates[hugetlb_max_hstate++];
1937	h->order = order;
1938	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1939	h->nr_huge_pages = 0;
1940	h->free_huge_pages = 0;
1941	for (i = 0; i < MAX_NUMNODES; ++i)
1942		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1943	INIT_LIST_HEAD(&h->hugepage_activelist);
1944	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1945	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1946	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1947					huge_page_size(h)/1024);
1948
1949	parsed_hstate = h;
1950}
1951
1952static int __init hugetlb_nrpages_setup(char *s)
1953{
1954	unsigned long *mhp;
1955	static unsigned long *last_mhp;
1956
1957	/*
1958	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1959	 * so this hugepages= parameter goes to the "default hstate".
1960	 */
1961	if (!hugetlb_max_hstate)
1962		mhp = &default_hstate_max_huge_pages;
1963	else
1964		mhp = &parsed_hstate->max_huge_pages;
1965
1966	if (mhp == last_mhp) {
1967		pr_warning("hugepages= specified twice without "
1968			   "interleaving hugepagesz=, ignoring\n");
1969		return 1;
1970	}
1971
1972	if (sscanf(s, "%lu", mhp) <= 0)
1973		*mhp = 0;
1974
1975	/*
1976	 * Global state is always initialized later in hugetlb_init.
1977	 * But we need to allocate >= MAX_ORDER hstates here early to still
1978	 * use the bootmem allocator.
1979	 */
1980	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1981		hugetlb_hstate_alloc_pages(parsed_hstate);
1982
1983	last_mhp = mhp;
1984
1985	return 1;
1986}
1987__setup("hugepages=", hugetlb_nrpages_setup);
1988
1989static int __init hugetlb_default_setup(char *s)
1990{
1991	default_hstate_size = memparse(s, &s);
1992	return 1;
1993}
1994__setup("default_hugepagesz=", hugetlb_default_setup);
1995
1996static unsigned int cpuset_mems_nr(unsigned int *array)
1997{
1998	int node;
1999	unsigned int nr = 0;
2000
2001	for_each_node_mask(node, cpuset_current_mems_allowed)
2002		nr += array[node];
2003
2004	return nr;
2005}
2006
2007#ifdef CONFIG_SYSCTL
2008static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2009			 struct ctl_table *table, int write,
2010			 void __user *buffer, size_t *length, loff_t *ppos)
2011{
2012	struct hstate *h = &default_hstate;
2013	unsigned long tmp;
2014	int ret;
2015
2016	tmp = h->max_huge_pages;
2017
2018	if (write && h->order >= MAX_ORDER)
2019		return -EINVAL;
2020
2021	table->data = &tmp;
2022	table->maxlen = sizeof(unsigned long);
2023	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2024	if (ret)
2025		goto out;
2026
2027	if (write) {
2028		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2029						GFP_KERNEL | __GFP_NORETRY);
2030		if (!(obey_mempolicy &&
2031			       init_nodemask_of_mempolicy(nodes_allowed))) {
2032			NODEMASK_FREE(nodes_allowed);
2033			nodes_allowed = &node_states[N_MEMORY];
2034		}
2035		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2036
2037		if (nodes_allowed != &node_states[N_MEMORY])
2038			NODEMASK_FREE(nodes_allowed);
2039	}
2040out:
2041	return ret;
2042}
2043
2044int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2045			  void __user *buffer, size_t *length, loff_t *ppos)
2046{
2047
2048	return hugetlb_sysctl_handler_common(false, table, write,
2049							buffer, length, ppos);
2050}
2051
2052#ifdef CONFIG_NUMA
2053int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2054			  void __user *buffer, size_t *length, loff_t *ppos)
2055{
2056	return hugetlb_sysctl_handler_common(true, table, write,
2057							buffer, length, ppos);
2058}
2059#endif /* CONFIG_NUMA */
2060
2061int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2062			void __user *buffer,
2063			size_t *length, loff_t *ppos)
2064{
2065	proc_dointvec(table, write, buffer, length, ppos);
2066	if (hugepages_treat_as_movable)
2067		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2068	else
2069		htlb_alloc_mask = GFP_HIGHUSER;
2070	return 0;
2071}
2072
2073int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2074			void __user *buffer,
2075			size_t *length, loff_t *ppos)
2076{
2077	struct hstate *h = &default_hstate;
2078	unsigned long tmp;
2079	int ret;
2080
2081	tmp = h->nr_overcommit_huge_pages;
2082
2083	if (write && h->order >= MAX_ORDER)
2084		return -EINVAL;
2085
2086	table->data = &tmp;
2087	table->maxlen = sizeof(unsigned long);
2088	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2089	if (ret)
2090		goto out;
2091
2092	if (write) {
2093		spin_lock(&hugetlb_lock);
2094		h->nr_overcommit_huge_pages = tmp;
2095		spin_unlock(&hugetlb_lock);
2096	}
2097out:
2098	return ret;
2099}
2100
2101#endif /* CONFIG_SYSCTL */
2102
2103void hugetlb_report_meminfo(struct seq_file *m)
2104{
2105	struct hstate *h = &default_hstate;
2106	seq_printf(m,
2107			"HugePages_Total:   %5lu\n"
2108			"HugePages_Free:    %5lu\n"
2109			"HugePages_Rsvd:    %5lu\n"
2110			"HugePages_Surp:    %5lu\n"
2111			"Hugepagesize:   %8lu kB\n",
2112			h->nr_huge_pages,
2113			h->free_huge_pages,
2114			h->resv_huge_pages,
2115			h->surplus_huge_pages,
2116			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2117}
2118
2119int hugetlb_report_node_meminfo(int nid, char *buf)
2120{
2121	struct hstate *h = &default_hstate;
2122	return sprintf(buf,
2123		"Node %d HugePages_Total: %5u\n"
2124		"Node %d HugePages_Free:  %5u\n"
2125		"Node %d HugePages_Surp:  %5u\n",
2126		nid, h->nr_huge_pages_node[nid],
2127		nid, h->free_huge_pages_node[nid],
2128		nid, h->surplus_huge_pages_node[nid]);
2129}
2130
2131void hugetlb_show_meminfo(void)
2132{
2133	struct hstate *h;
2134	int nid;
2135
2136	for_each_node_state(nid, N_MEMORY)
2137		for_each_hstate(h)
2138			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2139				nid,
2140				h->nr_huge_pages_node[nid],
2141				h->free_huge_pages_node[nid],
2142				h->surplus_huge_pages_node[nid],
2143				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2144}
2145
2146/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2147unsigned long hugetlb_total_pages(void)
2148{
2149	struct hstate *h;
2150	unsigned long nr_total_pages = 0;
2151
2152	for_each_hstate(h)
2153		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2154	return nr_total_pages;
2155}
2156
2157static int hugetlb_acct_memory(struct hstate *h, long delta)
2158{
2159	int ret = -ENOMEM;
2160
2161	spin_lock(&hugetlb_lock);
2162	/*
2163	 * When cpuset is configured, it breaks the strict hugetlb page
2164	 * reservation as the accounting is done on a global variable. Such
2165	 * reservation is completely rubbish in the presence of cpuset because
2166	 * the reservation is not checked against page availability for the
2167	 * current cpuset. Application can still potentially OOM'ed by kernel
2168	 * with lack of free htlb page in cpuset that the task is in.
2169	 * Attempt to enforce strict accounting with cpuset is almost
2170	 * impossible (or too ugly) because cpuset is too fluid that
2171	 * task or memory node can be dynamically moved between cpusets.
2172	 *
2173	 * The change of semantics for shared hugetlb mapping with cpuset is
2174	 * undesirable. However, in order to preserve some of the semantics,
2175	 * we fall back to check against current free page availability as
2176	 * a best attempt and hopefully to minimize the impact of changing
2177	 * semantics that cpuset has.
2178	 */
2179	if (delta > 0) {
2180		if (gather_surplus_pages(h, delta) < 0)
2181			goto out;
2182
2183		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2184			return_unused_surplus_pages(h, delta);
2185			goto out;
2186		}
2187	}
2188
2189	ret = 0;
2190	if (delta < 0)
2191		return_unused_surplus_pages(h, (unsigned long) -delta);
2192
2193out:
2194	spin_unlock(&hugetlb_lock);
2195	return ret;
2196}
2197
2198static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2199{
2200	struct resv_map *resv = vma_resv_map(vma);
2201
2202	/*
2203	 * This new VMA should share its siblings reservation map if present.
2204	 * The VMA will only ever have a valid reservation map pointer where
2205	 * it is being copied for another still existing VMA.  As that VMA
2206	 * has a reference to the reservation map it cannot disappear until
2207	 * after this open call completes.  It is therefore safe to take a
2208	 * new reference here without additional locking.
2209	 */
2210	if (resv)
2211		kref_get(&resv->refs);
2212}
2213
2214static void resv_map_put(struct vm_area_struct *vma)
2215{
2216	struct resv_map *resv = vma_resv_map(vma);
2217
2218	if (!resv)
2219		return;
2220	kref_put(&resv->refs, resv_map_release);
2221}
2222
2223static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2224{
2225	struct hstate *h = hstate_vma(vma);
2226	struct resv_map *resv = vma_resv_map(vma);
2227	struct hugepage_subpool *spool = subpool_vma(vma);
2228	unsigned long reserve;
2229	unsigned long start;
2230	unsigned long end;
2231
2232	if (resv) {
2233		start = vma_hugecache_offset(h, vma, vma->vm_start);
2234		end = vma_hugecache_offset(h, vma, vma->vm_end);
2235
2236		reserve = (end - start) -
2237			region_count(&resv->regions, start, end);
2238
2239		resv_map_put(vma);
2240
2241		if (reserve) {
2242			hugetlb_acct_memory(h, -reserve);
2243			hugepage_subpool_put_pages(spool, reserve);
2244		}
2245	}
2246}
2247
2248/*
2249 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2250 * handle_mm_fault() to try to instantiate regular-sized pages in the
2251 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2252 * this far.
2253 */
2254static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2255{
2256	BUG();
2257	return 0;
2258}
2259
2260const struct vm_operations_struct hugetlb_vm_ops = {
2261	.fault = hugetlb_vm_op_fault,
2262	.open = hugetlb_vm_op_open,
2263	.close = hugetlb_vm_op_close,
2264};
2265
2266static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2267				int writable)
2268{
2269	pte_t entry;
2270
2271	if (writable) {
2272		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2273					 vma->vm_page_prot)));
2274	} else {
2275		entry = huge_pte_wrprotect(mk_huge_pte(page,
2276					   vma->vm_page_prot));
2277	}
2278	entry = pte_mkyoung(entry);
2279	entry = pte_mkhuge(entry);
2280	entry = arch_make_huge_pte(entry, vma, page, writable);
2281
2282	return entry;
2283}
2284
2285static void set_huge_ptep_writable(struct vm_area_struct *vma,
2286				   unsigned long address, pte_t *ptep)
2287{
2288	pte_t entry;
2289
2290	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2291	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2292		update_mmu_cache(vma, address, ptep);
2293}
2294
2295
2296int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2297			    struct vm_area_struct *vma)
2298{
2299	pte_t *src_pte, *dst_pte, entry;
2300	struct page *ptepage;
2301	unsigned long addr;
2302	int cow;
2303	struct hstate *h = hstate_vma(vma);
2304	unsigned long sz = huge_page_size(h);
2305
2306	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2307
2308	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2309		src_pte = huge_pte_offset(src, addr);
2310		if (!src_pte)
2311			continue;
2312		dst_pte = huge_pte_alloc(dst, addr, sz);
2313		if (!dst_pte)
2314			goto nomem;
2315
2316		/* If the pagetables are shared don't copy or take references */
2317		if (dst_pte == src_pte)
2318			continue;
2319
2320		spin_lock(&dst->page_table_lock);
2321		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2322		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2323			if (cow)
2324				huge_ptep_set_wrprotect(src, addr, src_pte);
2325			entry = huge_ptep_get(src_pte);
2326			ptepage = pte_page(entry);
2327			get_page(ptepage);
2328			page_dup_rmap(ptepage);
2329			set_huge_pte_at(dst, addr, dst_pte, entry);
2330		}
2331		spin_unlock(&src->page_table_lock);
2332		spin_unlock(&dst->page_table_lock);
2333	}
2334	return 0;
2335
2336nomem:
2337	return -ENOMEM;
2338}
2339
2340static int is_hugetlb_entry_migration(pte_t pte)
2341{
2342	swp_entry_t swp;
2343
2344	if (huge_pte_none(pte) || pte_present(pte))
2345		return 0;
2346	swp = pte_to_swp_entry(pte);
2347	if (non_swap_entry(swp) && is_migration_entry(swp))
2348		return 1;
2349	else
2350		return 0;
2351}
2352
2353static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2354{
2355	swp_entry_t swp;
2356
2357	if (huge_pte_none(pte) || pte_present(pte))
2358		return 0;
2359	swp = pte_to_swp_entry(pte);
2360	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2361		return 1;
2362	else
2363		return 0;
2364}
2365
2366void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2367			    unsigned long start, unsigned long end,
2368			    struct page *ref_page)
2369{
2370	int force_flush = 0;
2371	struct mm_struct *mm = vma->vm_mm;
2372	unsigned long address;
2373	pte_t *ptep;
2374	pte_t pte;
2375	struct page *page;
2376	struct hstate *h = hstate_vma(vma);
2377	unsigned long sz = huge_page_size(h);
2378	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2379	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2380
2381	WARN_ON(!is_vm_hugetlb_page(vma));
2382	BUG_ON(start & ~huge_page_mask(h));
2383	BUG_ON(end & ~huge_page_mask(h));
2384
2385	tlb_start_vma(tlb, vma);
2386	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2387again:
2388	spin_lock(&mm->page_table_lock);
2389	for (address = start; address < end; address += sz) {
2390		ptep = huge_pte_offset(mm, address);
2391		if (!ptep)
2392			continue;
2393
2394		if (huge_pmd_unshare(mm, &address, ptep))
2395			continue;
2396
2397		pte = huge_ptep_get(ptep);
2398		if (huge_pte_none(pte))
2399			continue;
2400
2401		/*
2402		 * HWPoisoned hugepage is already unmapped and dropped reference
2403		 */
2404		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2405			huge_pte_clear(mm, address, ptep);
2406			continue;
2407		}
2408
2409		page = pte_page(pte);
2410		/*
2411		 * If a reference page is supplied, it is because a specific
2412		 * page is being unmapped, not a range. Ensure the page we
2413		 * are about to unmap is the actual page of interest.
2414		 */
2415		if (ref_page) {
2416			if (page != ref_page)
2417				continue;
2418
2419			/*
2420			 * Mark the VMA as having unmapped its page so that
2421			 * future faults in this VMA will fail rather than
2422			 * looking like data was lost
2423			 */
2424			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2425		}
2426
2427		pte = huge_ptep_get_and_clear(mm, address, ptep);
2428		tlb_remove_tlb_entry(tlb, ptep, address);
2429		if (huge_pte_dirty(pte))
2430			set_page_dirty(page);
2431
2432		page_remove_rmap(page);
2433		force_flush = !__tlb_remove_page(tlb, page);
2434		if (force_flush)
2435			break;
2436		/* Bail out after unmapping reference page if supplied */
2437		if (ref_page)
2438			break;
2439	}
2440	spin_unlock(&mm->page_table_lock);
2441	/*
2442	 * mmu_gather ran out of room to batch pages, we break out of
2443	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2444	 * and page-free while holding it.
2445	 */
2446	if (force_flush) {
2447		force_flush = 0;
2448		tlb_flush_mmu(tlb);
2449		if (address < end && !ref_page)
2450			goto again;
2451	}
2452	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2453	tlb_end_vma(tlb, vma);
2454}
2455
2456void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2457			  struct vm_area_struct *vma, unsigned long start,
2458			  unsigned long end, struct page *ref_page)
2459{
2460	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2461
2462	/*
2463	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2464	 * test will fail on a vma being torn down, and not grab a page table
2465	 * on its way out.  We're lucky that the flag has such an appropriate
2466	 * name, and can in fact be safely cleared here. We could clear it
2467	 * before the __unmap_hugepage_range above, but all that's necessary
2468	 * is to clear it before releasing the i_mmap_mutex. This works
2469	 * because in the context this is called, the VMA is about to be
2470	 * destroyed and the i_mmap_mutex is held.
2471	 */
2472	vma->vm_flags &= ~VM_MAYSHARE;
2473}
2474
2475void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2476			  unsigned long end, struct page *ref_page)
2477{
2478	struct mm_struct *mm;
2479	struct mmu_gather tlb;
2480
2481	mm = vma->vm_mm;
2482
2483	tlb_gather_mmu(&tlb, mm, start, end);
2484	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2485	tlb_finish_mmu(&tlb, start, end);
2486}
2487
2488/*
2489 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2490 * mappping it owns the reserve page for. The intention is to unmap the page
2491 * from other VMAs and let the children be SIGKILLed if they are faulting the
2492 * same region.
2493 */
2494static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2495				struct page *page, unsigned long address)
2496{
2497	struct hstate *h = hstate_vma(vma);
2498	struct vm_area_struct *iter_vma;
2499	struct address_space *mapping;
2500	pgoff_t pgoff;
2501
2502	/*
2503	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2504	 * from page cache lookup which is in HPAGE_SIZE units.
2505	 */
2506	address = address & huge_page_mask(h);
2507	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2508			vma->vm_pgoff;
2509	mapping = file_inode(vma->vm_file)->i_mapping;
2510
2511	/*
2512	 * Take the mapping lock for the duration of the table walk. As
2513	 * this mapping should be shared between all the VMAs,
2514	 * __unmap_hugepage_range() is called as the lock is already held
2515	 */
2516	mutex_lock(&mapping->i_mmap_mutex);
2517	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2518		/* Do not unmap the current VMA */
2519		if (iter_vma == vma)
2520			continue;
2521
2522		/*
2523		 * Unmap the page from other VMAs without their own reserves.
2524		 * They get marked to be SIGKILLed if they fault in these
2525		 * areas. This is because a future no-page fault on this VMA
2526		 * could insert a zeroed page instead of the data existing
2527		 * from the time of fork. This would look like data corruption
2528		 */
2529		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2530			unmap_hugepage_range(iter_vma, address,
2531					     address + huge_page_size(h), page);
2532	}
2533	mutex_unlock(&mapping->i_mmap_mutex);
2534
2535	return 1;
2536}
2537
2538/*
2539 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2540 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2541 * cannot race with other handlers or page migration.
2542 * Keep the pte_same checks anyway to make transition from the mutex easier.
2543 */
2544static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2545			unsigned long address, pte_t *ptep, pte_t pte,
2546			struct page *pagecache_page)
2547{
2548	struct hstate *h = hstate_vma(vma);
2549	struct page *old_page, *new_page;
2550	int outside_reserve = 0;
2551	unsigned long mmun_start;	/* For mmu_notifiers */
2552	unsigned long mmun_end;		/* For mmu_notifiers */
2553
2554	old_page = pte_page(pte);
2555
2556retry_avoidcopy:
2557	/* If no-one else is actually using this page, avoid the copy
2558	 * and just make the page writable */
2559	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2560		page_move_anon_rmap(old_page, vma, address);
2561		set_huge_ptep_writable(vma, address, ptep);
2562		return 0;
2563	}
2564
2565	/*
2566	 * If the process that created a MAP_PRIVATE mapping is about to
2567	 * perform a COW due to a shared page count, attempt to satisfy
2568	 * the allocation without using the existing reserves. The pagecache
2569	 * page is used to determine if the reserve at this address was
2570	 * consumed or not. If reserves were used, a partial faulted mapping
2571	 * at the time of fork() could consume its reserves on COW instead
2572	 * of the full address range.
2573	 */
2574	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2575			old_page != pagecache_page)
2576		outside_reserve = 1;
2577
2578	page_cache_get(old_page);
2579
2580	/* Drop page_table_lock as buddy allocator may be called */
2581	spin_unlock(&mm->page_table_lock);
2582	new_page = alloc_huge_page(vma, address, outside_reserve);
2583
2584	if (IS_ERR(new_page)) {
2585		long err = PTR_ERR(new_page);
2586		page_cache_release(old_page);
2587
2588		/*
2589		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2590		 * it is due to references held by a child and an insufficient
2591		 * huge page pool. To guarantee the original mappers
2592		 * reliability, unmap the page from child processes. The child
2593		 * may get SIGKILLed if it later faults.
2594		 */
2595		if (outside_reserve) {
2596			BUG_ON(huge_pte_none(pte));
2597			if (unmap_ref_private(mm, vma, old_page, address)) {
2598				BUG_ON(huge_pte_none(pte));
2599				spin_lock(&mm->page_table_lock);
2600				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2601				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2602					goto retry_avoidcopy;
2603				/*
2604				 * race occurs while re-acquiring page_table_lock, and
2605				 * our job is done.
2606				 */
2607				return 0;
2608			}
2609			WARN_ON_ONCE(1);
2610		}
2611
2612		/* Caller expects lock to be held */
2613		spin_lock(&mm->page_table_lock);
2614		if (err == -ENOMEM)
2615			return VM_FAULT_OOM;
2616		else
2617			return VM_FAULT_SIGBUS;
2618	}
2619
2620	/*
2621	 * When the original hugepage is shared one, it does not have
2622	 * anon_vma prepared.
2623	 */
2624	if (unlikely(anon_vma_prepare(vma))) {
2625		page_cache_release(new_page);
2626		page_cache_release(old_page);
2627		/* Caller expects lock to be held */
2628		spin_lock(&mm->page_table_lock);
2629		return VM_FAULT_OOM;
2630	}
2631
2632	copy_user_huge_page(new_page, old_page, address, vma,
2633			    pages_per_huge_page(h));
2634	__SetPageUptodate(new_page);
2635
2636	mmun_start = address & huge_page_mask(h);
2637	mmun_end = mmun_start + huge_page_size(h);
2638	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2639	/*
2640	 * Retake the page_table_lock to check for racing updates
2641	 * before the page tables are altered
2642	 */
2643	spin_lock(&mm->page_table_lock);
2644	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2645	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2646		ClearPagePrivate(new_page);
2647
2648		/* Break COW */
2649		huge_ptep_clear_flush(vma, address, ptep);
2650		set_huge_pte_at(mm, address, ptep,
2651				make_huge_pte(vma, new_page, 1));
2652		page_remove_rmap(old_page);
2653		hugepage_add_new_anon_rmap(new_page, vma, address);
2654		/* Make the old page be freed below */
2655		new_page = old_page;
2656	}
2657	spin_unlock(&mm->page_table_lock);
2658	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2659	page_cache_release(new_page);
2660	page_cache_release(old_page);
2661
2662	/* Caller expects lock to be held */
2663	spin_lock(&mm->page_table_lock);
2664	return 0;
2665}
2666
2667/* Return the pagecache page at a given address within a VMA */
2668static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2669			struct vm_area_struct *vma, unsigned long address)
2670{
2671	struct address_space *mapping;
2672	pgoff_t idx;
2673
2674	mapping = vma->vm_file->f_mapping;
2675	idx = vma_hugecache_offset(h, vma, address);
2676
2677	return find_lock_page(mapping, idx);
2678}
2679
2680/*
2681 * Return whether there is a pagecache page to back given address within VMA.
2682 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2683 */
2684static bool hugetlbfs_pagecache_present(struct hstate *h,
2685			struct vm_area_struct *vma, unsigned long address)
2686{
2687	struct address_space *mapping;
2688	pgoff_t idx;
2689	struct page *page;
2690
2691	mapping = vma->vm_file->f_mapping;
2692	idx = vma_hugecache_offset(h, vma, address);
2693
2694	page = find_get_page(mapping, idx);
2695	if (page)
2696		put_page(page);
2697	return page != NULL;
2698}
2699
2700static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2701			unsigned long address, pte_t *ptep, unsigned int flags)
2702{
2703	struct hstate *h = hstate_vma(vma);
2704	int ret = VM_FAULT_SIGBUS;
2705	int anon_rmap = 0;
2706	pgoff_t idx;
2707	unsigned long size;
2708	struct page *page;
2709	struct address_space *mapping;
2710	pte_t new_pte;
2711
2712	/*
2713	 * Currently, we are forced to kill the process in the event the
2714	 * original mapper has unmapped pages from the child due to a failed
2715	 * COW. Warn that such a situation has occurred as it may not be obvious
2716	 */
2717	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2718		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2719			   current->pid);
2720		return ret;
2721	}
2722
2723	mapping = vma->vm_file->f_mapping;
2724	idx = vma_hugecache_offset(h, vma, address);
2725
2726	/*
2727	 * Use page lock to guard against racing truncation
2728	 * before we get page_table_lock.
2729	 */
2730retry:
2731	page = find_lock_page(mapping, idx);
2732	if (!page) {
2733		size = i_size_read(mapping->host) >> huge_page_shift(h);
2734		if (idx >= size)
2735			goto out;
2736		page = alloc_huge_page(vma, address, 0);
2737		if (IS_ERR(page)) {
2738			ret = PTR_ERR(page);
2739			if (ret == -ENOMEM)
2740				ret = VM_FAULT_OOM;
2741			else
2742				ret = VM_FAULT_SIGBUS;
2743			goto out;
2744		}
2745		clear_huge_page(page, address, pages_per_huge_page(h));
2746		__SetPageUptodate(page);
2747
2748		if (vma->vm_flags & VM_MAYSHARE) {
2749			int err;
2750			struct inode *inode = mapping->host;
2751
2752			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2753			if (err) {
2754				put_page(page);
2755				if (err == -EEXIST)
2756					goto retry;
2757				goto out;
2758			}
2759			ClearPagePrivate(page);
2760
2761			spin_lock(&inode->i_lock);
2762			inode->i_blocks += blocks_per_huge_page(h);
2763			spin_unlock(&inode->i_lock);
2764		} else {
2765			lock_page(page);
2766			if (unlikely(anon_vma_prepare(vma))) {
2767				ret = VM_FAULT_OOM;
2768				goto backout_unlocked;
2769			}
2770			anon_rmap = 1;
2771		}
2772	} else {
2773		/*
2774		 * If memory error occurs between mmap() and fault, some process
2775		 * don't have hwpoisoned swap entry for errored virtual address.
2776		 * So we need to block hugepage fault by PG_hwpoison bit check.
2777		 */
2778		if (unlikely(PageHWPoison(page))) {
2779			ret = VM_FAULT_HWPOISON |
2780				VM_FAULT_SET_HINDEX(hstate_index(h));
2781			goto backout_unlocked;
2782		}
2783	}
2784
2785	/*
2786	 * If we are going to COW a private mapping later, we examine the
2787	 * pending reservations for this page now. This will ensure that
2788	 * any allocations necessary to record that reservation occur outside
2789	 * the spinlock.
2790	 */
2791	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2792		if (vma_needs_reservation(h, vma, address) < 0) {
2793			ret = VM_FAULT_OOM;
2794			goto backout_unlocked;
2795		}
2796
2797	spin_lock(&mm->page_table_lock);
2798	size = i_size_read(mapping->host) >> huge_page_shift(h);
2799	if (idx >= size)
2800		goto backout;
2801
2802	ret = 0;
2803	if (!huge_pte_none(huge_ptep_get(ptep)))
2804		goto backout;
2805
2806	if (anon_rmap) {
2807		ClearPagePrivate(page);
2808		hugepage_add_new_anon_rmap(page, vma, address);
2809	}
2810	else
2811		page_dup_rmap(page);
2812	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2813				&& (vma->vm_flags & VM_SHARED)));
2814	set_huge_pte_at(mm, address, ptep, new_pte);
2815
2816	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2817		/* Optimization, do the COW without a second fault */
2818		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2819	}
2820
2821	spin_unlock(&mm->page_table_lock);
2822	unlock_page(page);
2823out:
2824	return ret;
2825
2826backout:
2827	spin_unlock(&mm->page_table_lock);
2828backout_unlocked:
2829	unlock_page(page);
2830	put_page(page);
2831	goto out;
2832}
2833
2834int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2835			unsigned long address, unsigned int flags)
2836{
2837	pte_t *ptep;
2838	pte_t entry;
2839	int ret;
2840	struct page *page = NULL;
2841	struct page *pagecache_page = NULL;
2842	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2843	struct hstate *h = hstate_vma(vma);
2844
2845	address &= huge_page_mask(h);
2846
2847	ptep = huge_pte_offset(mm, address);
2848	if (ptep) {
2849		entry = huge_ptep_get(ptep);
2850		if (unlikely(is_hugetlb_entry_migration(entry))) {
2851			migration_entry_wait_huge(mm, ptep);
2852			return 0;
2853		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2854			return VM_FAULT_HWPOISON_LARGE |
2855				VM_FAULT_SET_HINDEX(hstate_index(h));
2856	}
2857
2858	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2859	if (!ptep)
2860		return VM_FAULT_OOM;
2861
2862	/*
2863	 * Serialize hugepage allocation and instantiation, so that we don't
2864	 * get spurious allocation failures if two CPUs race to instantiate
2865	 * the same page in the page cache.
2866	 */
2867	mutex_lock(&hugetlb_instantiation_mutex);
2868	entry = huge_ptep_get(ptep);
2869	if (huge_pte_none(entry)) {
2870		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2871		goto out_mutex;
2872	}
2873
2874	ret = 0;
2875
2876	/*
2877	 * If we are going to COW the mapping later, we examine the pending
2878	 * reservations for this page now. This will ensure that any
2879	 * allocations necessary to record that reservation occur outside the
2880	 * spinlock. For private mappings, we also lookup the pagecache
2881	 * page now as it is used to determine if a reservation has been
2882	 * consumed.
2883	 */
2884	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2885		if (vma_needs_reservation(h, vma, address) < 0) {
2886			ret = VM_FAULT_OOM;
2887			goto out_mutex;
2888		}
2889
2890		if (!(vma->vm_flags & VM_MAYSHARE))
2891			pagecache_page = hugetlbfs_pagecache_page(h,
2892								vma, address);
2893	}
2894
2895	/*
2896	 * hugetlb_cow() requires page locks of pte_page(entry) and
2897	 * pagecache_page, so here we need take the former one
2898	 * when page != pagecache_page or !pagecache_page.
2899	 * Note that locking order is always pagecache_page -> page,
2900	 * so no worry about deadlock.
2901	 */
2902	page = pte_page(entry);
2903	get_page(page);
2904	if (page != pagecache_page)
2905		lock_page(page);
2906
2907	spin_lock(&mm->page_table_lock);
2908	/* Check for a racing update before calling hugetlb_cow */
2909	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2910		goto out_page_table_lock;
2911
2912
2913	if (flags & FAULT_FLAG_WRITE) {
2914		if (!huge_pte_write(entry)) {
2915			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2916							pagecache_page);
2917			goto out_page_table_lock;
2918		}
2919		entry = huge_pte_mkdirty(entry);
2920	}
2921	entry = pte_mkyoung(entry);
2922	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2923						flags & FAULT_FLAG_WRITE))
2924		update_mmu_cache(vma, address, ptep);
2925
2926out_page_table_lock:
2927	spin_unlock(&mm->page_table_lock);
2928
2929	if (pagecache_page) {
2930		unlock_page(pagecache_page);
2931		put_page(pagecache_page);
2932	}
2933	if (page != pagecache_page)
2934		unlock_page(page);
2935	put_page(page);
2936
2937out_mutex:
2938	mutex_unlock(&hugetlb_instantiation_mutex);
2939
2940	return ret;
2941}
2942
2943long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2944			 struct page **pages, struct vm_area_struct **vmas,
2945			 unsigned long *position, unsigned long *nr_pages,
2946			 long i, unsigned int flags)
2947{
2948	unsigned long pfn_offset;
2949	unsigned long vaddr = *position;
2950	unsigned long remainder = *nr_pages;
2951	struct hstate *h = hstate_vma(vma);
2952
2953	spin_lock(&mm->page_table_lock);
2954	while (vaddr < vma->vm_end && remainder) {
2955		pte_t *pte;
2956		int absent;
2957		struct page *page;
2958
2959		/*
2960		 * Some archs (sparc64, sh*) have multiple pte_ts to
2961		 * each hugepage.  We have to make sure we get the
2962		 * first, for the page indexing below to work.
2963		 */
2964		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2965		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2966
2967		/*
2968		 * When coredumping, it suits get_dump_page if we just return
2969		 * an error where there's an empty slot with no huge pagecache
2970		 * to back it.  This way, we avoid allocating a hugepage, and
2971		 * the sparse dumpfile avoids allocating disk blocks, but its
2972		 * huge holes still show up with zeroes where they need to be.
2973		 */
2974		if (absent && (flags & FOLL_DUMP) &&
2975		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2976			remainder = 0;
2977			break;
2978		}
2979
2980		/*
2981		 * We need call hugetlb_fault for both hugepages under migration
2982		 * (in which case hugetlb_fault waits for the migration,) and
2983		 * hwpoisoned hugepages (in which case we need to prevent the
2984		 * caller from accessing to them.) In order to do this, we use
2985		 * here is_swap_pte instead of is_hugetlb_entry_migration and
2986		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2987		 * both cases, and because we can't follow correct pages
2988		 * directly from any kind of swap entries.
2989		 */
2990		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2991		    ((flags & FOLL_WRITE) &&
2992		      !huge_pte_write(huge_ptep_get(pte)))) {
2993			int ret;
2994
2995			spin_unlock(&mm->page_table_lock);
2996			ret = hugetlb_fault(mm, vma, vaddr,
2997				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2998			spin_lock(&mm->page_table_lock);
2999			if (!(ret & VM_FAULT_ERROR))
3000				continue;
3001
3002			remainder = 0;
3003			break;
3004		}
3005
3006		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3007		page = pte_page(huge_ptep_get(pte));
3008same_page:
3009		if (pages) {
3010			pages[i] = mem_map_offset(page, pfn_offset);
3011			get_page(pages[i]);
3012		}
3013
3014		if (vmas)
3015			vmas[i] = vma;
3016
3017		vaddr += PAGE_SIZE;
3018		++pfn_offset;
3019		--remainder;
3020		++i;
3021		if (vaddr < vma->vm_end && remainder &&
3022				pfn_offset < pages_per_huge_page(h)) {
3023			/*
3024			 * We use pfn_offset to avoid touching the pageframes
3025			 * of this compound page.
3026			 */
3027			goto same_page;
3028		}
3029	}
3030	spin_unlock(&mm->page_table_lock);
3031	*nr_pages = remainder;
3032	*position = vaddr;
3033
3034	return i ? i : -EFAULT;
3035}
3036
3037unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3038		unsigned long address, unsigned long end, pgprot_t newprot)
3039{
3040	struct mm_struct *mm = vma->vm_mm;
3041	unsigned long start = address;
3042	pte_t *ptep;
3043	pte_t pte;
3044	struct hstate *h = hstate_vma(vma);
3045	unsigned long pages = 0;
3046
3047	BUG_ON(address >= end);
3048	flush_cache_range(vma, address, end);
3049
3050	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3051	spin_lock(&mm->page_table_lock);
3052	for (; address < end; address += huge_page_size(h)) {
3053		ptep = huge_pte_offset(mm, address);
3054		if (!ptep)
3055			continue;
3056		if (huge_pmd_unshare(mm, &address, ptep)) {
3057			pages++;
3058			continue;
3059		}
3060		if (!huge_pte_none(huge_ptep_get(ptep))) {
3061			pte = huge_ptep_get_and_clear(mm, address, ptep);
3062			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3063			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3064			set_huge_pte_at(mm, address, ptep, pte);
3065			pages++;
3066		}
3067	}
3068	spin_unlock(&mm->page_table_lock);
3069	/*
3070	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3071	 * may have cleared our pud entry and done put_page on the page table:
3072	 * once we release i_mmap_mutex, another task can do the final put_page
3073	 * and that page table be reused and filled with junk.
3074	 */
3075	flush_tlb_range(vma, start, end);
3076	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3077
3078	return pages << h->order;
3079}
3080
3081int hugetlb_reserve_pages(struct inode *inode,
3082					long from, long to,
3083					struct vm_area_struct *vma,
3084					vm_flags_t vm_flags)
3085{
3086	long ret, chg;
3087	struct hstate *h = hstate_inode(inode);
3088	struct hugepage_subpool *spool = subpool_inode(inode);
3089
3090	/*
3091	 * Only apply hugepage reservation if asked. At fault time, an
3092	 * attempt will be made for VM_NORESERVE to allocate a page
3093	 * without using reserves
3094	 */
3095	if (vm_flags & VM_NORESERVE)
3096		return 0;
3097
3098	/*
3099	 * Shared mappings base their reservation on the number of pages that
3100	 * are already allocated on behalf of the file. Private mappings need
3101	 * to reserve the full area even if read-only as mprotect() may be
3102	 * called to make the mapping read-write. Assume !vma is a shm mapping
3103	 */
3104	if (!vma || vma->vm_flags & VM_MAYSHARE)
3105		chg = region_chg(&inode->i_mapping->private_list, from, to);
3106	else {
3107		struct resv_map *resv_map = resv_map_alloc();
3108		if (!resv_map)
3109			return -ENOMEM;
3110
3111		chg = to - from;
3112
3113		set_vma_resv_map(vma, resv_map);
3114		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3115	}
3116
3117	if (chg < 0) {
3118		ret = chg;
3119		goto out_err;
3120	}
3121
3122	/* There must be enough pages in the subpool for the mapping */
3123	if (hugepage_subpool_get_pages(spool, chg)) {
3124		ret = -ENOSPC;
3125		goto out_err;
3126	}
3127
3128	/*
3129	 * Check enough hugepages are available for the reservation.
3130	 * Hand the pages back to the subpool if there are not
3131	 */
3132	ret = hugetlb_acct_memory(h, chg);
3133	if (ret < 0) {
3134		hugepage_subpool_put_pages(spool, chg);
3135		goto out_err;
3136	}
3137
3138	/*
3139	 * Account for the reservations made. Shared mappings record regions
3140	 * that have reservations as they are shared by multiple VMAs.
3141	 * When the last VMA disappears, the region map says how much
3142	 * the reservation was and the page cache tells how much of
3143	 * the reservation was consumed. Private mappings are per-VMA and
3144	 * only the consumed reservations are tracked. When the VMA
3145	 * disappears, the original reservation is the VMA size and the
3146	 * consumed reservations are stored in the map. Hence, nothing
3147	 * else has to be done for private mappings here
3148	 */
3149	if (!vma || vma->vm_flags & VM_MAYSHARE)
3150		region_add(&inode->i_mapping->private_list, from, to);
3151	return 0;
3152out_err:
3153	if (vma)
3154		resv_map_put(vma);
3155	return ret;
3156}
3157
3158void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3159{
3160	struct hstate *h = hstate_inode(inode);
3161	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3162	struct hugepage_subpool *spool = subpool_inode(inode);
3163
3164	spin_lock(&inode->i_lock);
3165	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3166	spin_unlock(&inode->i_lock);
3167
3168	hugepage_subpool_put_pages(spool, (chg - freed));
3169	hugetlb_acct_memory(h, -(chg - freed));
3170}
3171
3172#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3173static unsigned long page_table_shareable(struct vm_area_struct *svma,
3174				struct vm_area_struct *vma,
3175				unsigned long addr, pgoff_t idx)
3176{
3177	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3178				svma->vm_start;
3179	unsigned long sbase = saddr & PUD_MASK;
3180	unsigned long s_end = sbase + PUD_SIZE;
3181
3182	/* Allow segments to share if only one is marked locked */
3183	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3184	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3185
3186	/*
3187	 * match the virtual addresses, permission and the alignment of the
3188	 * page table page.
3189	 */
3190	if (pmd_index(addr) != pmd_index(saddr) ||
3191	    vm_flags != svm_flags ||
3192	    sbase < svma->vm_start || svma->vm_end < s_end)
3193		return 0;
3194
3195	return saddr;
3196}
3197
3198static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3199{
3200	unsigned long base = addr & PUD_MASK;
3201	unsigned long end = base + PUD_SIZE;
3202
3203	/*
3204	 * check on proper vm_flags and page table alignment
3205	 */
3206	if (vma->vm_flags & VM_MAYSHARE &&
3207	    vma->vm_start <= base && end <= vma->vm_end)
3208		return 1;
3209	return 0;
3210}
3211
3212/*
3213 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3214 * and returns the corresponding pte. While this is not necessary for the
3215 * !shared pmd case because we can allocate the pmd later as well, it makes the
3216 * code much cleaner. pmd allocation is essential for the shared case because
3217 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3218 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3219 * bad pmd for sharing.
3220 */
3221pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3222{
3223	struct vm_area_struct *vma = find_vma(mm, addr);
3224	struct address_space *mapping = vma->vm_file->f_mapping;
3225	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3226			vma->vm_pgoff;
3227	struct vm_area_struct *svma;
3228	unsigned long saddr;
3229	pte_t *spte = NULL;
3230	pte_t *pte;
3231
3232	if (!vma_shareable(vma, addr))
3233		return (pte_t *)pmd_alloc(mm, pud, addr);
3234
3235	mutex_lock(&mapping->i_mmap_mutex);
3236	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3237		if (svma == vma)
3238			continue;
3239
3240		saddr = page_table_shareable(svma, vma, addr, idx);
3241		if (saddr) {
3242			spte = huge_pte_offset(svma->vm_mm, saddr);
3243			if (spte) {
3244				get_page(virt_to_page(spte));
3245				break;
3246			}
3247		}
3248	}
3249
3250	if (!spte)
3251		goto out;
3252
3253	spin_lock(&mm->page_table_lock);
3254	if (pud_none(*pud))
3255		pud_populate(mm, pud,
3256				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3257	else
3258		put_page(virt_to_page(spte));
3259	spin_unlock(&mm->page_table_lock);
3260out:
3261	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3262	mutex_unlock(&mapping->i_mmap_mutex);
3263	return pte;
3264}
3265
3266/*
3267 * unmap huge page backed by shared pte.
3268 *
3269 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3270 * indicated by page_count > 1, unmap is achieved by clearing pud and
3271 * decrementing the ref count. If count == 1, the pte page is not shared.
3272 *
3273 * called with vma->vm_mm->page_table_lock held.
3274 *
3275 * returns: 1 successfully unmapped a shared pte page
3276 *	    0 the underlying pte page is not shared, or it is the last user
3277 */
3278int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3279{
3280	pgd_t *pgd = pgd_offset(mm, *addr);
3281	pud_t *pud = pud_offset(pgd, *addr);
3282
3283	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3284	if (page_count(virt_to_page(ptep)) == 1)
3285		return 0;
3286
3287	pud_clear(pud);
3288	put_page(virt_to_page(ptep));
3289	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3290	return 1;
3291}
3292#define want_pmd_share()	(1)
3293#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3294pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3295{
3296	return NULL;
3297}
3298#define want_pmd_share()	(0)
3299#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3300
3301#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3302pte_t *huge_pte_alloc(struct mm_struct *mm,
3303			unsigned long addr, unsigned long sz)
3304{
3305	pgd_t *pgd;
3306	pud_t *pud;
3307	pte_t *pte = NULL;
3308
3309	pgd = pgd_offset(mm, addr);
3310	pud = pud_alloc(mm, pgd, addr);
3311	if (pud) {
3312		if (sz == PUD_SIZE) {
3313			pte = (pte_t *)pud;
3314		} else {
3315			BUG_ON(sz != PMD_SIZE);
3316			if (want_pmd_share() && pud_none(*pud))
3317				pte = huge_pmd_share(mm, addr, pud);
3318			else
3319				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3320		}
3321	}
3322	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3323
3324	return pte;
3325}
3326
3327pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3328{
3329	pgd_t *pgd;
3330	pud_t *pud;
3331	pmd_t *pmd = NULL;
3332
3333	pgd = pgd_offset(mm, addr);
3334	if (pgd_present(*pgd)) {
3335		pud = pud_offset(pgd, addr);
3336		if (pud_present(*pud)) {
3337			if (pud_huge(*pud))
3338				return (pte_t *)pud;
3339			pmd = pmd_offset(pud, addr);
3340		}
3341	}
3342	return (pte_t *) pmd;
3343}
3344
3345struct page *
3346follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3347		pmd_t *pmd, int write)
3348{
3349	struct page *page;
3350
3351	page = pte_page(*(pte_t *)pmd);
3352	if (page)
3353		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3354	return page;
3355}
3356
3357struct page *
3358follow_huge_pud(struct mm_struct *mm, unsigned long address,
3359		pud_t *pud, int write)
3360{
3361	struct page *page;
3362
3363	page = pte_page(*(pte_t *)pud);
3364	if (page)
3365		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3366	return page;
3367}
3368
3369#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3370
3371/* Can be overriden by architectures */
3372__attribute__((weak)) struct page *
3373follow_huge_pud(struct mm_struct *mm, unsigned long address,
3374	       pud_t *pud, int write)
3375{
3376	BUG();
3377	return NULL;
3378}
3379
3380#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3381
3382#ifdef CONFIG_MEMORY_FAILURE
3383
3384/* Should be called in hugetlb_lock */
3385static int is_hugepage_on_freelist(struct page *hpage)
3386{
3387	struct page *page;
3388	struct page *tmp;
3389	struct hstate *h = page_hstate(hpage);
3390	int nid = page_to_nid(hpage);
3391
3392	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3393		if (page == hpage)
3394			return 1;
3395	return 0;
3396}
3397
3398/*
3399 * This function is called from memory failure code.
3400 * Assume the caller holds page lock of the head page.
3401 */
3402int dequeue_hwpoisoned_huge_page(struct page *hpage)
3403{
3404	struct hstate *h = page_hstate(hpage);
3405	int nid = page_to_nid(hpage);
3406	int ret = -EBUSY;
3407
3408	spin_lock(&hugetlb_lock);
3409	if (is_hugepage_on_freelist(hpage)) {
3410		/*
3411		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3412		 * but dangling hpage->lru can trigger list-debug warnings
3413		 * (this happens when we call unpoison_memory() on it),
3414		 * so let it point to itself with list_del_init().
3415		 */
3416		list_del_init(&hpage->lru);
3417		set_page_refcounted(hpage);
3418		h->free_huge_pages--;
3419		h->free_huge_pages_node[nid]--;
3420		ret = 0;
3421	}
3422	spin_unlock(&hugetlb_lock);
3423	return ret;
3424}
3425#endif
3426
3427bool isolate_huge_page(struct page *page, struct list_head *list)
3428{
3429	VM_BUG_ON(!PageHead(page));
3430	if (!get_page_unless_zero(page))
3431		return false;
3432	spin_lock(&hugetlb_lock);
3433	list_move_tail(&page->lru, list);
3434	spin_unlock(&hugetlb_lock);
3435	return true;
3436}
3437
3438void putback_active_hugepage(struct page *page)
3439{
3440	VM_BUG_ON(!PageHead(page));
3441	spin_lock(&hugetlb_lock);
3442	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3443	spin_unlock(&hugetlb_lock);
3444	put_page(page);
3445}
3446