hugetlb.c revision 43131e141abdb44c487cf79af3ef1fe5164dcef9
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/io.h>
28
29#include <linux/hugetlb.h>
30#include <linux/node.h>
31#include "internal.h"
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
41__initdata LIST_HEAD(huge_boot_pages);
42
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
46static unsigned long __initdata default_hstate_size;
47
48#define for_each_hstate(h) \
49	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
55
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 *                    across the pages in a mapping.
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * 	down_write(&mm->mmap_sem);
66 * or
67 * 	down_read(&mm->mmap_sem);
68 * 	mutex_lock(&hugetlb_instantiation_mutex);
69 */
70struct file_region {
71	struct list_head link;
72	long from;
73	long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78	struct file_region *rg, *nrg, *trg;
79
80	/* Locate the region we are either in or before. */
81	list_for_each_entry(rg, head, link)
82		if (f <= rg->to)
83			break;
84
85	/* Round our left edge to the current segment if it encloses us. */
86	if (f > rg->from)
87		f = rg->from;
88
89	/* Check for and consume any regions we now overlap with. */
90	nrg = rg;
91	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92		if (&rg->link == head)
93			break;
94		if (rg->from > t)
95			break;
96
97		/* If this area reaches higher then extend our area to
98		 * include it completely.  If this is not the first area
99		 * which we intend to reuse, free it. */
100		if (rg->to > t)
101			t = rg->to;
102		if (rg != nrg) {
103			list_del(&rg->link);
104			kfree(rg);
105		}
106	}
107	nrg->from = f;
108	nrg->to = t;
109	return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114	struct file_region *rg, *nrg;
115	long chg = 0;
116
117	/* Locate the region we are before or in. */
118	list_for_each_entry(rg, head, link)
119		if (f <= rg->to)
120			break;
121
122	/* If we are below the current region then a new region is required.
123	 * Subtle, allocate a new region at the position but make it zero
124	 * size such that we can guarantee to record the reservation. */
125	if (&rg->link == head || t < rg->from) {
126		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127		if (!nrg)
128			return -ENOMEM;
129		nrg->from = f;
130		nrg->to   = f;
131		INIT_LIST_HEAD(&nrg->link);
132		list_add(&nrg->link, rg->link.prev);
133
134		return t - f;
135	}
136
137	/* Round our left edge to the current segment if it encloses us. */
138	if (f > rg->from)
139		f = rg->from;
140	chg = t - f;
141
142	/* Check for and consume any regions we now overlap with. */
143	list_for_each_entry(rg, rg->link.prev, link) {
144		if (&rg->link == head)
145			break;
146		if (rg->from > t)
147			return chg;
148
149		/* We overlap with this area, if it extends futher than
150		 * us then we must extend ourselves.  Account for its
151		 * existing reservation. */
152		if (rg->to > t) {
153			chg += rg->to - t;
154			t = rg->to;
155		}
156		chg -= rg->to - rg->from;
157	}
158	return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163	struct file_region *rg, *trg;
164	long chg = 0;
165
166	/* Locate the region we are either in or before. */
167	list_for_each_entry(rg, head, link)
168		if (end <= rg->to)
169			break;
170	if (&rg->link == head)
171		return 0;
172
173	/* If we are in the middle of a region then adjust it. */
174	if (end > rg->from) {
175		chg = rg->to - end;
176		rg->to = end;
177		rg = list_entry(rg->link.next, typeof(*rg), link);
178	}
179
180	/* Drop any remaining regions. */
181	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182		if (&rg->link == head)
183			break;
184		chg += rg->to - rg->from;
185		list_del(&rg->link);
186		kfree(rg);
187	}
188	return chg;
189}
190
191static long region_count(struct list_head *head, long f, long t)
192{
193	struct file_region *rg;
194	long chg = 0;
195
196	/* Locate each segment we overlap with, and count that overlap. */
197	list_for_each_entry(rg, head, link) {
198		int seg_from;
199		int seg_to;
200
201		if (rg->to <= f)
202			continue;
203		if (rg->from >= t)
204			break;
205
206		seg_from = max(rg->from, f);
207		seg_to = min(rg->to, t);
208
209		chg += seg_to - seg_from;
210	}
211
212	return chg;
213}
214
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220			struct vm_area_struct *vma, unsigned long address)
221{
222	return ((address - vma->vm_start) >> huge_page_shift(h)) +
223			(vma->vm_pgoff >> huge_page_order(h));
224}
225
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227				     unsigned long address)
228{
229	return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238	struct hstate *hstate;
239
240	if (!is_vm_hugetlb_page(vma))
241		return PAGE_SIZE;
242
243	hstate = hstate_vma(vma);
244
245	return 1UL << (hstate->order + PAGE_SHIFT);
246}
247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258	return vma_kernel_pagesize(vma);
259}
260#endif
261
262/*
263 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER    (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping.  A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated.  A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
289 */
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292	return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296							unsigned long value)
297{
298	vma->vm_private_data = (void *)value;
299}
300
301struct resv_map {
302	struct kref refs;
303	struct list_head regions;
304};
305
306static struct resv_map *resv_map_alloc(void)
307{
308	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309	if (!resv_map)
310		return NULL;
311
312	kref_init(&resv_map->refs);
313	INIT_LIST_HEAD(&resv_map->regions);
314
315	return resv_map;
316}
317
318static void resv_map_release(struct kref *ref)
319{
320	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322	/* Clear out any active regions before we release the map. */
323	region_truncate(&resv_map->regions, 0);
324	kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328{
329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330	if (!(vma->vm_flags & VM_MAYSHARE))
331		return (struct resv_map *)(get_vma_private_data(vma) &
332							~HPAGE_RESV_MASK);
333	return NULL;
334}
335
336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337{
338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341	set_vma_private_data(vma, (get_vma_private_data(vma) &
342				HPAGE_RESV_MASK) | (unsigned long)map);
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
347	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357	return (get_vma_private_data(vma) & flag) != 0;
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
361static void decrement_hugepage_resv_vma(struct hstate *h,
362			struct vm_area_struct *vma)
363{
364	if (vma->vm_flags & VM_NORESERVE)
365		return;
366
367	if (vma->vm_flags & VM_MAYSHARE) {
368		/* Shared mappings always use reserves */
369		h->resv_huge_pages--;
370	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371		/*
372		 * Only the process that called mmap() has reserves for
373		 * private mappings.
374		 */
375		h->resv_huge_pages--;
376	}
377}
378
379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383	if (!(vma->vm_flags & VM_MAYSHARE))
384		vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
388static int vma_has_reserves(struct vm_area_struct *vma)
389{
390	if (vma->vm_flags & VM_MAYSHARE)
391		return 1;
392	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393		return 1;
394	return 0;
395}
396
397static void clear_gigantic_page(struct page *page,
398			unsigned long addr, unsigned long sz)
399{
400	int i;
401	struct page *p = page;
402
403	might_sleep();
404	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405		cond_resched();
406		clear_user_highpage(p, addr + i * PAGE_SIZE);
407	}
408}
409static void clear_huge_page(struct page *page,
410			unsigned long addr, unsigned long sz)
411{
412	int i;
413
414	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
415		clear_gigantic_page(page, addr, sz);
416		return;
417	}
418
419	might_sleep();
420	for (i = 0; i < sz/PAGE_SIZE; i++) {
421		cond_resched();
422		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
423	}
424}
425
426static void copy_gigantic_page(struct page *dst, struct page *src,
427			   unsigned long addr, struct vm_area_struct *vma)
428{
429	int i;
430	struct hstate *h = hstate_vma(vma);
431	struct page *dst_base = dst;
432	struct page *src_base = src;
433	might_sleep();
434	for (i = 0; i < pages_per_huge_page(h); ) {
435		cond_resched();
436		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437
438		i++;
439		dst = mem_map_next(dst, dst_base, i);
440		src = mem_map_next(src, src_base, i);
441	}
442}
443static void copy_huge_page(struct page *dst, struct page *src,
444			   unsigned long addr, struct vm_area_struct *vma)
445{
446	int i;
447	struct hstate *h = hstate_vma(vma);
448
449	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
450		copy_gigantic_page(dst, src, addr, vma);
451		return;
452	}
453
454	might_sleep();
455	for (i = 0; i < pages_per_huge_page(h); i++) {
456		cond_resched();
457		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
458	}
459}
460
461static void enqueue_huge_page(struct hstate *h, struct page *page)
462{
463	int nid = page_to_nid(page);
464	list_add(&page->lru, &h->hugepage_freelists[nid]);
465	h->free_huge_pages++;
466	h->free_huge_pages_node[nid]++;
467}
468
469static struct page *dequeue_huge_page_vma(struct hstate *h,
470				struct vm_area_struct *vma,
471				unsigned long address, int avoid_reserve)
472{
473	int nid;
474	struct page *page = NULL;
475	struct mempolicy *mpol;
476	nodemask_t *nodemask;
477	struct zonelist *zonelist;
478	struct zone *zone;
479	struct zoneref *z;
480
481	get_mems_allowed();
482	zonelist = huge_zonelist(vma, address,
483					htlb_alloc_mask, &mpol, &nodemask);
484	/*
485	 * A child process with MAP_PRIVATE mappings created by their parent
486	 * have no page reserves. This check ensures that reservations are
487	 * not "stolen". The child may still get SIGKILLed
488	 */
489	if (!vma_has_reserves(vma) &&
490			h->free_huge_pages - h->resv_huge_pages == 0)
491		goto err;
492
493	/* If reserves cannot be used, ensure enough pages are in the pool */
494	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
495		goto err;;
496
497	for_each_zone_zonelist_nodemask(zone, z, zonelist,
498						MAX_NR_ZONES - 1, nodemask) {
499		nid = zone_to_nid(zone);
500		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
501		    !list_empty(&h->hugepage_freelists[nid])) {
502			page = list_entry(h->hugepage_freelists[nid].next,
503					  struct page, lru);
504			list_del(&page->lru);
505			h->free_huge_pages--;
506			h->free_huge_pages_node[nid]--;
507
508			if (!avoid_reserve)
509				decrement_hugepage_resv_vma(h, vma);
510
511			break;
512		}
513	}
514err:
515	mpol_cond_put(mpol);
516	put_mems_allowed();
517	return page;
518}
519
520static void update_and_free_page(struct hstate *h, struct page *page)
521{
522	int i;
523
524	VM_BUG_ON(h->order >= MAX_ORDER);
525
526	h->nr_huge_pages--;
527	h->nr_huge_pages_node[page_to_nid(page)]--;
528	for (i = 0; i < pages_per_huge_page(h); i++) {
529		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
530				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
531				1 << PG_private | 1<< PG_writeback);
532	}
533	set_compound_page_dtor(page, NULL);
534	set_page_refcounted(page);
535	arch_release_hugepage(page);
536	__free_pages(page, huge_page_order(h));
537}
538
539struct hstate *size_to_hstate(unsigned long size)
540{
541	struct hstate *h;
542
543	for_each_hstate(h) {
544		if (huge_page_size(h) == size)
545			return h;
546	}
547	return NULL;
548}
549
550static void free_huge_page(struct page *page)
551{
552	/*
553	 * Can't pass hstate in here because it is called from the
554	 * compound page destructor.
555	 */
556	struct hstate *h = page_hstate(page);
557	int nid = page_to_nid(page);
558	struct address_space *mapping;
559
560	mapping = (struct address_space *) page_private(page);
561	set_page_private(page, 0);
562	page->mapping = NULL;
563	BUG_ON(page_count(page));
564	BUG_ON(page_mapcount(page));
565	INIT_LIST_HEAD(&page->lru);
566
567	spin_lock(&hugetlb_lock);
568	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
569		update_and_free_page(h, page);
570		h->surplus_huge_pages--;
571		h->surplus_huge_pages_node[nid]--;
572	} else {
573		enqueue_huge_page(h, page);
574	}
575	spin_unlock(&hugetlb_lock);
576	if (mapping)
577		hugetlb_put_quota(mapping, 1);
578}
579
580static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
581{
582	set_compound_page_dtor(page, free_huge_page);
583	spin_lock(&hugetlb_lock);
584	h->nr_huge_pages++;
585	h->nr_huge_pages_node[nid]++;
586	spin_unlock(&hugetlb_lock);
587	put_page(page); /* free it into the hugepage allocator */
588}
589
590static void prep_compound_gigantic_page(struct page *page, unsigned long order)
591{
592	int i;
593	int nr_pages = 1 << order;
594	struct page *p = page + 1;
595
596	/* we rely on prep_new_huge_page to set the destructor */
597	set_compound_order(page, order);
598	__SetPageHead(page);
599	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
600		__SetPageTail(p);
601		p->first_page = page;
602	}
603}
604
605int PageHuge(struct page *page)
606{
607	compound_page_dtor *dtor;
608
609	if (!PageCompound(page))
610		return 0;
611
612	page = compound_head(page);
613	dtor = get_compound_page_dtor(page);
614
615	return dtor == free_huge_page;
616}
617
618EXPORT_SYMBOL_GPL(PageHuge);
619
620static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
621{
622	struct page *page;
623
624	if (h->order >= MAX_ORDER)
625		return NULL;
626
627	page = alloc_pages_exact_node(nid,
628		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
629						__GFP_REPEAT|__GFP_NOWARN,
630		huge_page_order(h));
631	if (page) {
632		if (arch_prepare_hugepage(page)) {
633			__free_pages(page, huge_page_order(h));
634			return NULL;
635		}
636		prep_new_huge_page(h, page, nid);
637	}
638
639	return page;
640}
641
642/*
643 * common helper functions for hstate_next_node_to_{alloc|free}.
644 * We may have allocated or freed a huge page based on a different
645 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
646 * be outside of *nodes_allowed.  Ensure that we use an allowed
647 * node for alloc or free.
648 */
649static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
650{
651	nid = next_node(nid, *nodes_allowed);
652	if (nid == MAX_NUMNODES)
653		nid = first_node(*nodes_allowed);
654	VM_BUG_ON(nid >= MAX_NUMNODES);
655
656	return nid;
657}
658
659static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
660{
661	if (!node_isset(nid, *nodes_allowed))
662		nid = next_node_allowed(nid, nodes_allowed);
663	return nid;
664}
665
666/*
667 * returns the previously saved node ["this node"] from which to
668 * allocate a persistent huge page for the pool and advance the
669 * next node from which to allocate, handling wrap at end of node
670 * mask.
671 */
672static int hstate_next_node_to_alloc(struct hstate *h,
673					nodemask_t *nodes_allowed)
674{
675	int nid;
676
677	VM_BUG_ON(!nodes_allowed);
678
679	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
680	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
681
682	return nid;
683}
684
685static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
686{
687	struct page *page;
688	int start_nid;
689	int next_nid;
690	int ret = 0;
691
692	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
693	next_nid = start_nid;
694
695	do {
696		page = alloc_fresh_huge_page_node(h, next_nid);
697		if (page) {
698			ret = 1;
699			break;
700		}
701		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
702	} while (next_nid != start_nid);
703
704	if (ret)
705		count_vm_event(HTLB_BUDDY_PGALLOC);
706	else
707		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
708
709	return ret;
710}
711
712/*
713 * helper for free_pool_huge_page() - return the previously saved
714 * node ["this node"] from which to free a huge page.  Advance the
715 * next node id whether or not we find a free huge page to free so
716 * that the next attempt to free addresses the next node.
717 */
718static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
719{
720	int nid;
721
722	VM_BUG_ON(!nodes_allowed);
723
724	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
725	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
726
727	return nid;
728}
729
730/*
731 * Free huge page from pool from next node to free.
732 * Attempt to keep persistent huge pages more or less
733 * balanced over allowed nodes.
734 * Called with hugetlb_lock locked.
735 */
736static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
737							 bool acct_surplus)
738{
739	int start_nid;
740	int next_nid;
741	int ret = 0;
742
743	start_nid = hstate_next_node_to_free(h, nodes_allowed);
744	next_nid = start_nid;
745
746	do {
747		/*
748		 * If we're returning unused surplus pages, only examine
749		 * nodes with surplus pages.
750		 */
751		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
752		    !list_empty(&h->hugepage_freelists[next_nid])) {
753			struct page *page =
754				list_entry(h->hugepage_freelists[next_nid].next,
755					  struct page, lru);
756			list_del(&page->lru);
757			h->free_huge_pages--;
758			h->free_huge_pages_node[next_nid]--;
759			if (acct_surplus) {
760				h->surplus_huge_pages--;
761				h->surplus_huge_pages_node[next_nid]--;
762			}
763			update_and_free_page(h, page);
764			ret = 1;
765			break;
766		}
767		next_nid = hstate_next_node_to_free(h, nodes_allowed);
768	} while (next_nid != start_nid);
769
770	return ret;
771}
772
773static struct page *alloc_buddy_huge_page(struct hstate *h,
774			struct vm_area_struct *vma, unsigned long address)
775{
776	struct page *page;
777	unsigned int nid;
778
779	if (h->order >= MAX_ORDER)
780		return NULL;
781
782	/*
783	 * Assume we will successfully allocate the surplus page to
784	 * prevent racing processes from causing the surplus to exceed
785	 * overcommit
786	 *
787	 * This however introduces a different race, where a process B
788	 * tries to grow the static hugepage pool while alloc_pages() is
789	 * called by process A. B will only examine the per-node
790	 * counters in determining if surplus huge pages can be
791	 * converted to normal huge pages in adjust_pool_surplus(). A
792	 * won't be able to increment the per-node counter, until the
793	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
794	 * no more huge pages can be converted from surplus to normal
795	 * state (and doesn't try to convert again). Thus, we have a
796	 * case where a surplus huge page exists, the pool is grown, and
797	 * the surplus huge page still exists after, even though it
798	 * should just have been converted to a normal huge page. This
799	 * does not leak memory, though, as the hugepage will be freed
800	 * once it is out of use. It also does not allow the counters to
801	 * go out of whack in adjust_pool_surplus() as we don't modify
802	 * the node values until we've gotten the hugepage and only the
803	 * per-node value is checked there.
804	 */
805	spin_lock(&hugetlb_lock);
806	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
807		spin_unlock(&hugetlb_lock);
808		return NULL;
809	} else {
810		h->nr_huge_pages++;
811		h->surplus_huge_pages++;
812	}
813	spin_unlock(&hugetlb_lock);
814
815	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
816					__GFP_REPEAT|__GFP_NOWARN,
817					huge_page_order(h));
818
819	if (page && arch_prepare_hugepage(page)) {
820		__free_pages(page, huge_page_order(h));
821		return NULL;
822	}
823
824	spin_lock(&hugetlb_lock);
825	if (page) {
826		/*
827		 * This page is now managed by the hugetlb allocator and has
828		 * no users -- drop the buddy allocator's reference.
829		 */
830		put_page_testzero(page);
831		VM_BUG_ON(page_count(page));
832		nid = page_to_nid(page);
833		set_compound_page_dtor(page, free_huge_page);
834		/*
835		 * We incremented the global counters already
836		 */
837		h->nr_huge_pages_node[nid]++;
838		h->surplus_huge_pages_node[nid]++;
839		__count_vm_event(HTLB_BUDDY_PGALLOC);
840	} else {
841		h->nr_huge_pages--;
842		h->surplus_huge_pages--;
843		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
844	}
845	spin_unlock(&hugetlb_lock);
846
847	return page;
848}
849
850/*
851 * Increase the hugetlb pool such that it can accomodate a reservation
852 * of size 'delta'.
853 */
854static int gather_surplus_pages(struct hstate *h, int delta)
855{
856	struct list_head surplus_list;
857	struct page *page, *tmp;
858	int ret, i;
859	int needed, allocated;
860
861	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
862	if (needed <= 0) {
863		h->resv_huge_pages += delta;
864		return 0;
865	}
866
867	allocated = 0;
868	INIT_LIST_HEAD(&surplus_list);
869
870	ret = -ENOMEM;
871retry:
872	spin_unlock(&hugetlb_lock);
873	for (i = 0; i < needed; i++) {
874		page = alloc_buddy_huge_page(h, NULL, 0);
875		if (!page) {
876			/*
877			 * We were not able to allocate enough pages to
878			 * satisfy the entire reservation so we free what
879			 * we've allocated so far.
880			 */
881			spin_lock(&hugetlb_lock);
882			needed = 0;
883			goto free;
884		}
885
886		list_add(&page->lru, &surplus_list);
887	}
888	allocated += needed;
889
890	/*
891	 * After retaking hugetlb_lock, we need to recalculate 'needed'
892	 * because either resv_huge_pages or free_huge_pages may have changed.
893	 */
894	spin_lock(&hugetlb_lock);
895	needed = (h->resv_huge_pages + delta) -
896			(h->free_huge_pages + allocated);
897	if (needed > 0)
898		goto retry;
899
900	/*
901	 * The surplus_list now contains _at_least_ the number of extra pages
902	 * needed to accomodate the reservation.  Add the appropriate number
903	 * of pages to the hugetlb pool and free the extras back to the buddy
904	 * allocator.  Commit the entire reservation here to prevent another
905	 * process from stealing the pages as they are added to the pool but
906	 * before they are reserved.
907	 */
908	needed += allocated;
909	h->resv_huge_pages += delta;
910	ret = 0;
911free:
912	/* Free the needed pages to the hugetlb pool */
913	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
914		if ((--needed) < 0)
915			break;
916		list_del(&page->lru);
917		enqueue_huge_page(h, page);
918	}
919
920	/* Free unnecessary surplus pages to the buddy allocator */
921	if (!list_empty(&surplus_list)) {
922		spin_unlock(&hugetlb_lock);
923		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
924			list_del(&page->lru);
925			/*
926			 * The page has a reference count of zero already, so
927			 * call free_huge_page directly instead of using
928			 * put_page.  This must be done with hugetlb_lock
929			 * unlocked which is safe because free_huge_page takes
930			 * hugetlb_lock before deciding how to free the page.
931			 */
932			free_huge_page(page);
933		}
934		spin_lock(&hugetlb_lock);
935	}
936
937	return ret;
938}
939
940/*
941 * When releasing a hugetlb pool reservation, any surplus pages that were
942 * allocated to satisfy the reservation must be explicitly freed if they were
943 * never used.
944 * Called with hugetlb_lock held.
945 */
946static void return_unused_surplus_pages(struct hstate *h,
947					unsigned long unused_resv_pages)
948{
949	unsigned long nr_pages;
950
951	/* Uncommit the reservation */
952	h->resv_huge_pages -= unused_resv_pages;
953
954	/* Cannot return gigantic pages currently */
955	if (h->order >= MAX_ORDER)
956		return;
957
958	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
959
960	/*
961	 * We want to release as many surplus pages as possible, spread
962	 * evenly across all nodes with memory. Iterate across these nodes
963	 * until we can no longer free unreserved surplus pages. This occurs
964	 * when the nodes with surplus pages have no free pages.
965	 * free_pool_huge_page() will balance the the freed pages across the
966	 * on-line nodes with memory and will handle the hstate accounting.
967	 */
968	while (nr_pages--) {
969		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
970			break;
971	}
972}
973
974/*
975 * Determine if the huge page at addr within the vma has an associated
976 * reservation.  Where it does not we will need to logically increase
977 * reservation and actually increase quota before an allocation can occur.
978 * Where any new reservation would be required the reservation change is
979 * prepared, but not committed.  Once the page has been quota'd allocated
980 * an instantiated the change should be committed via vma_commit_reservation.
981 * No action is required on failure.
982 */
983static long vma_needs_reservation(struct hstate *h,
984			struct vm_area_struct *vma, unsigned long addr)
985{
986	struct address_space *mapping = vma->vm_file->f_mapping;
987	struct inode *inode = mapping->host;
988
989	if (vma->vm_flags & VM_MAYSHARE) {
990		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991		return region_chg(&inode->i_mapping->private_list,
992							idx, idx + 1);
993
994	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
995		return 1;
996
997	} else  {
998		long err;
999		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1000		struct resv_map *reservations = vma_resv_map(vma);
1001
1002		err = region_chg(&reservations->regions, idx, idx + 1);
1003		if (err < 0)
1004			return err;
1005		return 0;
1006	}
1007}
1008static void vma_commit_reservation(struct hstate *h,
1009			struct vm_area_struct *vma, unsigned long addr)
1010{
1011	struct address_space *mapping = vma->vm_file->f_mapping;
1012	struct inode *inode = mapping->host;
1013
1014	if (vma->vm_flags & VM_MAYSHARE) {
1015		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1017
1018	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1019		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1020		struct resv_map *reservations = vma_resv_map(vma);
1021
1022		/* Mark this page used in the map. */
1023		region_add(&reservations->regions, idx, idx + 1);
1024	}
1025}
1026
1027static struct page *alloc_huge_page(struct vm_area_struct *vma,
1028				    unsigned long addr, int avoid_reserve)
1029{
1030	struct hstate *h = hstate_vma(vma);
1031	struct page *page;
1032	struct address_space *mapping = vma->vm_file->f_mapping;
1033	struct inode *inode = mapping->host;
1034	long chg;
1035
1036	/*
1037	 * Processes that did not create the mapping will have no reserves and
1038	 * will not have accounted against quota. Check that the quota can be
1039	 * made before satisfying the allocation
1040	 * MAP_NORESERVE mappings may also need pages and quota allocated
1041	 * if no reserve mapping overlaps.
1042	 */
1043	chg = vma_needs_reservation(h, vma, addr);
1044	if (chg < 0)
1045		return ERR_PTR(chg);
1046	if (chg)
1047		if (hugetlb_get_quota(inode->i_mapping, chg))
1048			return ERR_PTR(-ENOSPC);
1049
1050	spin_lock(&hugetlb_lock);
1051	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1052	spin_unlock(&hugetlb_lock);
1053
1054	if (!page) {
1055		page = alloc_buddy_huge_page(h, vma, addr);
1056		if (!page) {
1057			hugetlb_put_quota(inode->i_mapping, chg);
1058			return ERR_PTR(-VM_FAULT_SIGBUS);
1059		}
1060	}
1061
1062	set_page_refcounted(page);
1063	set_page_private(page, (unsigned long) mapping);
1064
1065	vma_commit_reservation(h, vma, addr);
1066
1067	return page;
1068}
1069
1070int __weak alloc_bootmem_huge_page(struct hstate *h)
1071{
1072	struct huge_bootmem_page *m;
1073	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1074
1075	while (nr_nodes) {
1076		void *addr;
1077
1078		addr = __alloc_bootmem_node_nopanic(
1079				NODE_DATA(hstate_next_node_to_alloc(h,
1080						&node_states[N_HIGH_MEMORY])),
1081				huge_page_size(h), huge_page_size(h), 0);
1082
1083		if (addr) {
1084			/*
1085			 * Use the beginning of the huge page to store the
1086			 * huge_bootmem_page struct (until gather_bootmem
1087			 * puts them into the mem_map).
1088			 */
1089			m = addr;
1090			goto found;
1091		}
1092		nr_nodes--;
1093	}
1094	return 0;
1095
1096found:
1097	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1098	/* Put them into a private list first because mem_map is not up yet */
1099	list_add(&m->list, &huge_boot_pages);
1100	m->hstate = h;
1101	return 1;
1102}
1103
1104static void prep_compound_huge_page(struct page *page, int order)
1105{
1106	if (unlikely(order > (MAX_ORDER - 1)))
1107		prep_compound_gigantic_page(page, order);
1108	else
1109		prep_compound_page(page, order);
1110}
1111
1112/* Put bootmem huge pages into the standard lists after mem_map is up */
1113static void __init gather_bootmem_prealloc(void)
1114{
1115	struct huge_bootmem_page *m;
1116
1117	list_for_each_entry(m, &huge_boot_pages, list) {
1118		struct page *page = virt_to_page(m);
1119		struct hstate *h = m->hstate;
1120		__ClearPageReserved(page);
1121		WARN_ON(page_count(page) != 1);
1122		prep_compound_huge_page(page, h->order);
1123		prep_new_huge_page(h, page, page_to_nid(page));
1124	}
1125}
1126
1127static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1128{
1129	unsigned long i;
1130
1131	for (i = 0; i < h->max_huge_pages; ++i) {
1132		if (h->order >= MAX_ORDER) {
1133			if (!alloc_bootmem_huge_page(h))
1134				break;
1135		} else if (!alloc_fresh_huge_page(h,
1136					 &node_states[N_HIGH_MEMORY]))
1137			break;
1138	}
1139	h->max_huge_pages = i;
1140}
1141
1142static void __init hugetlb_init_hstates(void)
1143{
1144	struct hstate *h;
1145
1146	for_each_hstate(h) {
1147		/* oversize hugepages were init'ed in early boot */
1148		if (h->order < MAX_ORDER)
1149			hugetlb_hstate_alloc_pages(h);
1150	}
1151}
1152
1153static char * __init memfmt(char *buf, unsigned long n)
1154{
1155	if (n >= (1UL << 30))
1156		sprintf(buf, "%lu GB", n >> 30);
1157	else if (n >= (1UL << 20))
1158		sprintf(buf, "%lu MB", n >> 20);
1159	else
1160		sprintf(buf, "%lu KB", n >> 10);
1161	return buf;
1162}
1163
1164static void __init report_hugepages(void)
1165{
1166	struct hstate *h;
1167
1168	for_each_hstate(h) {
1169		char buf[32];
1170		printk(KERN_INFO "HugeTLB registered %s page size, "
1171				 "pre-allocated %ld pages\n",
1172			memfmt(buf, huge_page_size(h)),
1173			h->free_huge_pages);
1174	}
1175}
1176
1177#ifdef CONFIG_HIGHMEM
1178static void try_to_free_low(struct hstate *h, unsigned long count,
1179						nodemask_t *nodes_allowed)
1180{
1181	int i;
1182
1183	if (h->order >= MAX_ORDER)
1184		return;
1185
1186	for_each_node_mask(i, *nodes_allowed) {
1187		struct page *page, *next;
1188		struct list_head *freel = &h->hugepage_freelists[i];
1189		list_for_each_entry_safe(page, next, freel, lru) {
1190			if (count >= h->nr_huge_pages)
1191				return;
1192			if (PageHighMem(page))
1193				continue;
1194			list_del(&page->lru);
1195			update_and_free_page(h, page);
1196			h->free_huge_pages--;
1197			h->free_huge_pages_node[page_to_nid(page)]--;
1198		}
1199	}
1200}
1201#else
1202static inline void try_to_free_low(struct hstate *h, unsigned long count,
1203						nodemask_t *nodes_allowed)
1204{
1205}
1206#endif
1207
1208/*
1209 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1210 * balanced by operating on them in a round-robin fashion.
1211 * Returns 1 if an adjustment was made.
1212 */
1213static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1214				int delta)
1215{
1216	int start_nid, next_nid;
1217	int ret = 0;
1218
1219	VM_BUG_ON(delta != -1 && delta != 1);
1220
1221	if (delta < 0)
1222		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1223	else
1224		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1225	next_nid = start_nid;
1226
1227	do {
1228		int nid = next_nid;
1229		if (delta < 0)  {
1230			/*
1231			 * To shrink on this node, there must be a surplus page
1232			 */
1233			if (!h->surplus_huge_pages_node[nid]) {
1234				next_nid = hstate_next_node_to_alloc(h,
1235								nodes_allowed);
1236				continue;
1237			}
1238		}
1239		if (delta > 0) {
1240			/*
1241			 * Surplus cannot exceed the total number of pages
1242			 */
1243			if (h->surplus_huge_pages_node[nid] >=
1244						h->nr_huge_pages_node[nid]) {
1245				next_nid = hstate_next_node_to_free(h,
1246								nodes_allowed);
1247				continue;
1248			}
1249		}
1250
1251		h->surplus_huge_pages += delta;
1252		h->surplus_huge_pages_node[nid] += delta;
1253		ret = 1;
1254		break;
1255	} while (next_nid != start_nid);
1256
1257	return ret;
1258}
1259
1260#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1261static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1262						nodemask_t *nodes_allowed)
1263{
1264	unsigned long min_count, ret;
1265
1266	if (h->order >= MAX_ORDER)
1267		return h->max_huge_pages;
1268
1269	/*
1270	 * Increase the pool size
1271	 * First take pages out of surplus state.  Then make up the
1272	 * remaining difference by allocating fresh huge pages.
1273	 *
1274	 * We might race with alloc_buddy_huge_page() here and be unable
1275	 * to convert a surplus huge page to a normal huge page. That is
1276	 * not critical, though, it just means the overall size of the
1277	 * pool might be one hugepage larger than it needs to be, but
1278	 * within all the constraints specified by the sysctls.
1279	 */
1280	spin_lock(&hugetlb_lock);
1281	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1282		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1283			break;
1284	}
1285
1286	while (count > persistent_huge_pages(h)) {
1287		/*
1288		 * If this allocation races such that we no longer need the
1289		 * page, free_huge_page will handle it by freeing the page
1290		 * and reducing the surplus.
1291		 */
1292		spin_unlock(&hugetlb_lock);
1293		ret = alloc_fresh_huge_page(h, nodes_allowed);
1294		spin_lock(&hugetlb_lock);
1295		if (!ret)
1296			goto out;
1297
1298		/* Bail for signals. Probably ctrl-c from user */
1299		if (signal_pending(current))
1300			goto out;
1301	}
1302
1303	/*
1304	 * Decrease the pool size
1305	 * First return free pages to the buddy allocator (being careful
1306	 * to keep enough around to satisfy reservations).  Then place
1307	 * pages into surplus state as needed so the pool will shrink
1308	 * to the desired size as pages become free.
1309	 *
1310	 * By placing pages into the surplus state independent of the
1311	 * overcommit value, we are allowing the surplus pool size to
1312	 * exceed overcommit. There are few sane options here. Since
1313	 * alloc_buddy_huge_page() is checking the global counter,
1314	 * though, we'll note that we're not allowed to exceed surplus
1315	 * and won't grow the pool anywhere else. Not until one of the
1316	 * sysctls are changed, or the surplus pages go out of use.
1317	 */
1318	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1319	min_count = max(count, min_count);
1320	try_to_free_low(h, min_count, nodes_allowed);
1321	while (min_count < persistent_huge_pages(h)) {
1322		if (!free_pool_huge_page(h, nodes_allowed, 0))
1323			break;
1324	}
1325	while (count < persistent_huge_pages(h)) {
1326		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1327			break;
1328	}
1329out:
1330	ret = persistent_huge_pages(h);
1331	spin_unlock(&hugetlb_lock);
1332	return ret;
1333}
1334
1335#define HSTATE_ATTR_RO(_name) \
1336	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1337
1338#define HSTATE_ATTR(_name) \
1339	static struct kobj_attribute _name##_attr = \
1340		__ATTR(_name, 0644, _name##_show, _name##_store)
1341
1342static struct kobject *hugepages_kobj;
1343static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1344
1345static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1346
1347static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1348{
1349	int i;
1350
1351	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1352		if (hstate_kobjs[i] == kobj) {
1353			if (nidp)
1354				*nidp = NUMA_NO_NODE;
1355			return &hstates[i];
1356		}
1357
1358	return kobj_to_node_hstate(kobj, nidp);
1359}
1360
1361static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1362					struct kobj_attribute *attr, char *buf)
1363{
1364	struct hstate *h;
1365	unsigned long nr_huge_pages;
1366	int nid;
1367
1368	h = kobj_to_hstate(kobj, &nid);
1369	if (nid == NUMA_NO_NODE)
1370		nr_huge_pages = h->nr_huge_pages;
1371	else
1372		nr_huge_pages = h->nr_huge_pages_node[nid];
1373
1374	return sprintf(buf, "%lu\n", nr_huge_pages);
1375}
1376static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1377			struct kobject *kobj, struct kobj_attribute *attr,
1378			const char *buf, size_t len)
1379{
1380	int err;
1381	int nid;
1382	unsigned long count;
1383	struct hstate *h;
1384	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1385
1386	err = strict_strtoul(buf, 10, &count);
1387	if (err)
1388		return 0;
1389
1390	h = kobj_to_hstate(kobj, &nid);
1391	if (nid == NUMA_NO_NODE) {
1392		/*
1393		 * global hstate attribute
1394		 */
1395		if (!(obey_mempolicy &&
1396				init_nodemask_of_mempolicy(nodes_allowed))) {
1397			NODEMASK_FREE(nodes_allowed);
1398			nodes_allowed = &node_states[N_HIGH_MEMORY];
1399		}
1400	} else if (nodes_allowed) {
1401		/*
1402		 * per node hstate attribute: adjust count to global,
1403		 * but restrict alloc/free to the specified node.
1404		 */
1405		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1406		init_nodemask_of_node(nodes_allowed, nid);
1407	} else
1408		nodes_allowed = &node_states[N_HIGH_MEMORY];
1409
1410	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1411
1412	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1413		NODEMASK_FREE(nodes_allowed);
1414
1415	return len;
1416}
1417
1418static ssize_t nr_hugepages_show(struct kobject *kobj,
1419				       struct kobj_attribute *attr, char *buf)
1420{
1421	return nr_hugepages_show_common(kobj, attr, buf);
1422}
1423
1424static ssize_t nr_hugepages_store(struct kobject *kobj,
1425	       struct kobj_attribute *attr, const char *buf, size_t len)
1426{
1427	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1428}
1429HSTATE_ATTR(nr_hugepages);
1430
1431#ifdef CONFIG_NUMA
1432
1433/*
1434 * hstate attribute for optionally mempolicy-based constraint on persistent
1435 * huge page alloc/free.
1436 */
1437static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1438				       struct kobj_attribute *attr, char *buf)
1439{
1440	return nr_hugepages_show_common(kobj, attr, buf);
1441}
1442
1443static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1444	       struct kobj_attribute *attr, const char *buf, size_t len)
1445{
1446	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1447}
1448HSTATE_ATTR(nr_hugepages_mempolicy);
1449#endif
1450
1451
1452static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1453					struct kobj_attribute *attr, char *buf)
1454{
1455	struct hstate *h = kobj_to_hstate(kobj, NULL);
1456	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1457}
1458static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1459		struct kobj_attribute *attr, const char *buf, size_t count)
1460{
1461	int err;
1462	unsigned long input;
1463	struct hstate *h = kobj_to_hstate(kobj, NULL);
1464
1465	err = strict_strtoul(buf, 10, &input);
1466	if (err)
1467		return 0;
1468
1469	spin_lock(&hugetlb_lock);
1470	h->nr_overcommit_huge_pages = input;
1471	spin_unlock(&hugetlb_lock);
1472
1473	return count;
1474}
1475HSTATE_ATTR(nr_overcommit_hugepages);
1476
1477static ssize_t free_hugepages_show(struct kobject *kobj,
1478					struct kobj_attribute *attr, char *buf)
1479{
1480	struct hstate *h;
1481	unsigned long free_huge_pages;
1482	int nid;
1483
1484	h = kobj_to_hstate(kobj, &nid);
1485	if (nid == NUMA_NO_NODE)
1486		free_huge_pages = h->free_huge_pages;
1487	else
1488		free_huge_pages = h->free_huge_pages_node[nid];
1489
1490	return sprintf(buf, "%lu\n", free_huge_pages);
1491}
1492HSTATE_ATTR_RO(free_hugepages);
1493
1494static ssize_t resv_hugepages_show(struct kobject *kobj,
1495					struct kobj_attribute *attr, char *buf)
1496{
1497	struct hstate *h = kobj_to_hstate(kobj, NULL);
1498	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1499}
1500HSTATE_ATTR_RO(resv_hugepages);
1501
1502static ssize_t surplus_hugepages_show(struct kobject *kobj,
1503					struct kobj_attribute *attr, char *buf)
1504{
1505	struct hstate *h;
1506	unsigned long surplus_huge_pages;
1507	int nid;
1508
1509	h = kobj_to_hstate(kobj, &nid);
1510	if (nid == NUMA_NO_NODE)
1511		surplus_huge_pages = h->surplus_huge_pages;
1512	else
1513		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1514
1515	return sprintf(buf, "%lu\n", surplus_huge_pages);
1516}
1517HSTATE_ATTR_RO(surplus_hugepages);
1518
1519static struct attribute *hstate_attrs[] = {
1520	&nr_hugepages_attr.attr,
1521	&nr_overcommit_hugepages_attr.attr,
1522	&free_hugepages_attr.attr,
1523	&resv_hugepages_attr.attr,
1524	&surplus_hugepages_attr.attr,
1525#ifdef CONFIG_NUMA
1526	&nr_hugepages_mempolicy_attr.attr,
1527#endif
1528	NULL,
1529};
1530
1531static struct attribute_group hstate_attr_group = {
1532	.attrs = hstate_attrs,
1533};
1534
1535static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1536				    struct kobject **hstate_kobjs,
1537				    struct attribute_group *hstate_attr_group)
1538{
1539	int retval;
1540	int hi = h - hstates;
1541
1542	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1543	if (!hstate_kobjs[hi])
1544		return -ENOMEM;
1545
1546	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1547	if (retval)
1548		kobject_put(hstate_kobjs[hi]);
1549
1550	return retval;
1551}
1552
1553static void __init hugetlb_sysfs_init(void)
1554{
1555	struct hstate *h;
1556	int err;
1557
1558	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1559	if (!hugepages_kobj)
1560		return;
1561
1562	for_each_hstate(h) {
1563		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1564					 hstate_kobjs, &hstate_attr_group);
1565		if (err)
1566			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1567								h->name);
1568	}
1569}
1570
1571#ifdef CONFIG_NUMA
1572
1573/*
1574 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1575 * with node sysdevs in node_devices[] using a parallel array.  The array
1576 * index of a node sysdev or _hstate == node id.
1577 * This is here to avoid any static dependency of the node sysdev driver, in
1578 * the base kernel, on the hugetlb module.
1579 */
1580struct node_hstate {
1581	struct kobject		*hugepages_kobj;
1582	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1583};
1584struct node_hstate node_hstates[MAX_NUMNODES];
1585
1586/*
1587 * A subset of global hstate attributes for node sysdevs
1588 */
1589static struct attribute *per_node_hstate_attrs[] = {
1590	&nr_hugepages_attr.attr,
1591	&free_hugepages_attr.attr,
1592	&surplus_hugepages_attr.attr,
1593	NULL,
1594};
1595
1596static struct attribute_group per_node_hstate_attr_group = {
1597	.attrs = per_node_hstate_attrs,
1598};
1599
1600/*
1601 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1602 * Returns node id via non-NULL nidp.
1603 */
1604static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1605{
1606	int nid;
1607
1608	for (nid = 0; nid < nr_node_ids; nid++) {
1609		struct node_hstate *nhs = &node_hstates[nid];
1610		int i;
1611		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1612			if (nhs->hstate_kobjs[i] == kobj) {
1613				if (nidp)
1614					*nidp = nid;
1615				return &hstates[i];
1616			}
1617	}
1618
1619	BUG();
1620	return NULL;
1621}
1622
1623/*
1624 * Unregister hstate attributes from a single node sysdev.
1625 * No-op if no hstate attributes attached.
1626 */
1627void hugetlb_unregister_node(struct node *node)
1628{
1629	struct hstate *h;
1630	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1631
1632	if (!nhs->hugepages_kobj)
1633		return;		/* no hstate attributes */
1634
1635	for_each_hstate(h)
1636		if (nhs->hstate_kobjs[h - hstates]) {
1637			kobject_put(nhs->hstate_kobjs[h - hstates]);
1638			nhs->hstate_kobjs[h - hstates] = NULL;
1639		}
1640
1641	kobject_put(nhs->hugepages_kobj);
1642	nhs->hugepages_kobj = NULL;
1643}
1644
1645/*
1646 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1647 * that have them.
1648 */
1649static void hugetlb_unregister_all_nodes(void)
1650{
1651	int nid;
1652
1653	/*
1654	 * disable node sysdev registrations.
1655	 */
1656	register_hugetlbfs_with_node(NULL, NULL);
1657
1658	/*
1659	 * remove hstate attributes from any nodes that have them.
1660	 */
1661	for (nid = 0; nid < nr_node_ids; nid++)
1662		hugetlb_unregister_node(&node_devices[nid]);
1663}
1664
1665/*
1666 * Register hstate attributes for a single node sysdev.
1667 * No-op if attributes already registered.
1668 */
1669void hugetlb_register_node(struct node *node)
1670{
1671	struct hstate *h;
1672	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1673	int err;
1674
1675	if (nhs->hugepages_kobj)
1676		return;		/* already allocated */
1677
1678	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1679							&node->sysdev.kobj);
1680	if (!nhs->hugepages_kobj)
1681		return;
1682
1683	for_each_hstate(h) {
1684		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1685						nhs->hstate_kobjs,
1686						&per_node_hstate_attr_group);
1687		if (err) {
1688			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1689					" for node %d\n",
1690						h->name, node->sysdev.id);
1691			hugetlb_unregister_node(node);
1692			break;
1693		}
1694	}
1695}
1696
1697/*
1698 * hugetlb init time:  register hstate attributes for all registered node
1699 * sysdevs of nodes that have memory.  All on-line nodes should have
1700 * registered their associated sysdev by this time.
1701 */
1702static void hugetlb_register_all_nodes(void)
1703{
1704	int nid;
1705
1706	for_each_node_state(nid, N_HIGH_MEMORY) {
1707		struct node *node = &node_devices[nid];
1708		if (node->sysdev.id == nid)
1709			hugetlb_register_node(node);
1710	}
1711
1712	/*
1713	 * Let the node sysdev driver know we're here so it can
1714	 * [un]register hstate attributes on node hotplug.
1715	 */
1716	register_hugetlbfs_with_node(hugetlb_register_node,
1717				     hugetlb_unregister_node);
1718}
1719#else	/* !CONFIG_NUMA */
1720
1721static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1722{
1723	BUG();
1724	if (nidp)
1725		*nidp = -1;
1726	return NULL;
1727}
1728
1729static void hugetlb_unregister_all_nodes(void) { }
1730
1731static void hugetlb_register_all_nodes(void) { }
1732
1733#endif
1734
1735static void __exit hugetlb_exit(void)
1736{
1737	struct hstate *h;
1738
1739	hugetlb_unregister_all_nodes();
1740
1741	for_each_hstate(h) {
1742		kobject_put(hstate_kobjs[h - hstates]);
1743	}
1744
1745	kobject_put(hugepages_kobj);
1746}
1747module_exit(hugetlb_exit);
1748
1749static int __init hugetlb_init(void)
1750{
1751	/* Some platform decide whether they support huge pages at boot
1752	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1753	 * there is no such support
1754	 */
1755	if (HPAGE_SHIFT == 0)
1756		return 0;
1757
1758	if (!size_to_hstate(default_hstate_size)) {
1759		default_hstate_size = HPAGE_SIZE;
1760		if (!size_to_hstate(default_hstate_size))
1761			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1762	}
1763	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1764	if (default_hstate_max_huge_pages)
1765		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1766
1767	hugetlb_init_hstates();
1768
1769	gather_bootmem_prealloc();
1770
1771	report_hugepages();
1772
1773	hugetlb_sysfs_init();
1774
1775	hugetlb_register_all_nodes();
1776
1777	return 0;
1778}
1779module_init(hugetlb_init);
1780
1781/* Should be called on processing a hugepagesz=... option */
1782void __init hugetlb_add_hstate(unsigned order)
1783{
1784	struct hstate *h;
1785	unsigned long i;
1786
1787	if (size_to_hstate(PAGE_SIZE << order)) {
1788		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1789		return;
1790	}
1791	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1792	BUG_ON(order == 0);
1793	h = &hstates[max_hstate++];
1794	h->order = order;
1795	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1796	h->nr_huge_pages = 0;
1797	h->free_huge_pages = 0;
1798	for (i = 0; i < MAX_NUMNODES; ++i)
1799		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1800	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1801	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1802	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1803					huge_page_size(h)/1024);
1804
1805	parsed_hstate = h;
1806}
1807
1808static int __init hugetlb_nrpages_setup(char *s)
1809{
1810	unsigned long *mhp;
1811	static unsigned long *last_mhp;
1812
1813	/*
1814	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1815	 * so this hugepages= parameter goes to the "default hstate".
1816	 */
1817	if (!max_hstate)
1818		mhp = &default_hstate_max_huge_pages;
1819	else
1820		mhp = &parsed_hstate->max_huge_pages;
1821
1822	if (mhp == last_mhp) {
1823		printk(KERN_WARNING "hugepages= specified twice without "
1824			"interleaving hugepagesz=, ignoring\n");
1825		return 1;
1826	}
1827
1828	if (sscanf(s, "%lu", mhp) <= 0)
1829		*mhp = 0;
1830
1831	/*
1832	 * Global state is always initialized later in hugetlb_init.
1833	 * But we need to allocate >= MAX_ORDER hstates here early to still
1834	 * use the bootmem allocator.
1835	 */
1836	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1837		hugetlb_hstate_alloc_pages(parsed_hstate);
1838
1839	last_mhp = mhp;
1840
1841	return 1;
1842}
1843__setup("hugepages=", hugetlb_nrpages_setup);
1844
1845static int __init hugetlb_default_setup(char *s)
1846{
1847	default_hstate_size = memparse(s, &s);
1848	return 1;
1849}
1850__setup("default_hugepagesz=", hugetlb_default_setup);
1851
1852static unsigned int cpuset_mems_nr(unsigned int *array)
1853{
1854	int node;
1855	unsigned int nr = 0;
1856
1857	for_each_node_mask(node, cpuset_current_mems_allowed)
1858		nr += array[node];
1859
1860	return nr;
1861}
1862
1863#ifdef CONFIG_SYSCTL
1864static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1865			 struct ctl_table *table, int write,
1866			 void __user *buffer, size_t *length, loff_t *ppos)
1867{
1868	struct hstate *h = &default_hstate;
1869	unsigned long tmp;
1870
1871	if (!write)
1872		tmp = h->max_huge_pages;
1873
1874	table->data = &tmp;
1875	table->maxlen = sizeof(unsigned long);
1876	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1877
1878	if (write) {
1879		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1880						GFP_KERNEL | __GFP_NORETRY);
1881		if (!(obey_mempolicy &&
1882			       init_nodemask_of_mempolicy(nodes_allowed))) {
1883			NODEMASK_FREE(nodes_allowed);
1884			nodes_allowed = &node_states[N_HIGH_MEMORY];
1885		}
1886		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1887
1888		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1889			NODEMASK_FREE(nodes_allowed);
1890	}
1891
1892	return 0;
1893}
1894
1895int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1896			  void __user *buffer, size_t *length, loff_t *ppos)
1897{
1898
1899	return hugetlb_sysctl_handler_common(false, table, write,
1900							buffer, length, ppos);
1901}
1902
1903#ifdef CONFIG_NUMA
1904int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1905			  void __user *buffer, size_t *length, loff_t *ppos)
1906{
1907	return hugetlb_sysctl_handler_common(true, table, write,
1908							buffer, length, ppos);
1909}
1910#endif /* CONFIG_NUMA */
1911
1912int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1913			void __user *buffer,
1914			size_t *length, loff_t *ppos)
1915{
1916	proc_dointvec(table, write, buffer, length, ppos);
1917	if (hugepages_treat_as_movable)
1918		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1919	else
1920		htlb_alloc_mask = GFP_HIGHUSER;
1921	return 0;
1922}
1923
1924int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1925			void __user *buffer,
1926			size_t *length, loff_t *ppos)
1927{
1928	struct hstate *h = &default_hstate;
1929	unsigned long tmp;
1930
1931	if (!write)
1932		tmp = h->nr_overcommit_huge_pages;
1933
1934	table->data = &tmp;
1935	table->maxlen = sizeof(unsigned long);
1936	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1937
1938	if (write) {
1939		spin_lock(&hugetlb_lock);
1940		h->nr_overcommit_huge_pages = tmp;
1941		spin_unlock(&hugetlb_lock);
1942	}
1943
1944	return 0;
1945}
1946
1947#endif /* CONFIG_SYSCTL */
1948
1949void hugetlb_report_meminfo(struct seq_file *m)
1950{
1951	struct hstate *h = &default_hstate;
1952	seq_printf(m,
1953			"HugePages_Total:   %5lu\n"
1954			"HugePages_Free:    %5lu\n"
1955			"HugePages_Rsvd:    %5lu\n"
1956			"HugePages_Surp:    %5lu\n"
1957			"Hugepagesize:   %8lu kB\n",
1958			h->nr_huge_pages,
1959			h->free_huge_pages,
1960			h->resv_huge_pages,
1961			h->surplus_huge_pages,
1962			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1963}
1964
1965int hugetlb_report_node_meminfo(int nid, char *buf)
1966{
1967	struct hstate *h = &default_hstate;
1968	return sprintf(buf,
1969		"Node %d HugePages_Total: %5u\n"
1970		"Node %d HugePages_Free:  %5u\n"
1971		"Node %d HugePages_Surp:  %5u\n",
1972		nid, h->nr_huge_pages_node[nid],
1973		nid, h->free_huge_pages_node[nid],
1974		nid, h->surplus_huge_pages_node[nid]);
1975}
1976
1977/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1978unsigned long hugetlb_total_pages(void)
1979{
1980	struct hstate *h = &default_hstate;
1981	return h->nr_huge_pages * pages_per_huge_page(h);
1982}
1983
1984static int hugetlb_acct_memory(struct hstate *h, long delta)
1985{
1986	int ret = -ENOMEM;
1987
1988	spin_lock(&hugetlb_lock);
1989	/*
1990	 * When cpuset is configured, it breaks the strict hugetlb page
1991	 * reservation as the accounting is done on a global variable. Such
1992	 * reservation is completely rubbish in the presence of cpuset because
1993	 * the reservation is not checked against page availability for the
1994	 * current cpuset. Application can still potentially OOM'ed by kernel
1995	 * with lack of free htlb page in cpuset that the task is in.
1996	 * Attempt to enforce strict accounting with cpuset is almost
1997	 * impossible (or too ugly) because cpuset is too fluid that
1998	 * task or memory node can be dynamically moved between cpusets.
1999	 *
2000	 * The change of semantics for shared hugetlb mapping with cpuset is
2001	 * undesirable. However, in order to preserve some of the semantics,
2002	 * we fall back to check against current free page availability as
2003	 * a best attempt and hopefully to minimize the impact of changing
2004	 * semantics that cpuset has.
2005	 */
2006	if (delta > 0) {
2007		if (gather_surplus_pages(h, delta) < 0)
2008			goto out;
2009
2010		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2011			return_unused_surplus_pages(h, delta);
2012			goto out;
2013		}
2014	}
2015
2016	ret = 0;
2017	if (delta < 0)
2018		return_unused_surplus_pages(h, (unsigned long) -delta);
2019
2020out:
2021	spin_unlock(&hugetlb_lock);
2022	return ret;
2023}
2024
2025static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2026{
2027	struct resv_map *reservations = vma_resv_map(vma);
2028
2029	/*
2030	 * This new VMA should share its siblings reservation map if present.
2031	 * The VMA will only ever have a valid reservation map pointer where
2032	 * it is being copied for another still existing VMA.  As that VMA
2033	 * has a reference to the reservation map it cannot dissappear until
2034	 * after this open call completes.  It is therefore safe to take a
2035	 * new reference here without additional locking.
2036	 */
2037	if (reservations)
2038		kref_get(&reservations->refs);
2039}
2040
2041static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2042{
2043	struct hstate *h = hstate_vma(vma);
2044	struct resv_map *reservations = vma_resv_map(vma);
2045	unsigned long reserve;
2046	unsigned long start;
2047	unsigned long end;
2048
2049	if (reservations) {
2050		start = vma_hugecache_offset(h, vma, vma->vm_start);
2051		end = vma_hugecache_offset(h, vma, vma->vm_end);
2052
2053		reserve = (end - start) -
2054			region_count(&reservations->regions, start, end);
2055
2056		kref_put(&reservations->refs, resv_map_release);
2057
2058		if (reserve) {
2059			hugetlb_acct_memory(h, -reserve);
2060			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2061		}
2062	}
2063}
2064
2065/*
2066 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2067 * handle_mm_fault() to try to instantiate regular-sized pages in the
2068 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2069 * this far.
2070 */
2071static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2072{
2073	BUG();
2074	return 0;
2075}
2076
2077const struct vm_operations_struct hugetlb_vm_ops = {
2078	.fault = hugetlb_vm_op_fault,
2079	.open = hugetlb_vm_op_open,
2080	.close = hugetlb_vm_op_close,
2081};
2082
2083static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2084				int writable)
2085{
2086	pte_t entry;
2087
2088	if (writable) {
2089		entry =
2090		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2091	} else {
2092		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2093	}
2094	entry = pte_mkyoung(entry);
2095	entry = pte_mkhuge(entry);
2096
2097	return entry;
2098}
2099
2100static void set_huge_ptep_writable(struct vm_area_struct *vma,
2101				   unsigned long address, pte_t *ptep)
2102{
2103	pte_t entry;
2104
2105	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2106	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2107		update_mmu_cache(vma, address, ptep);
2108	}
2109}
2110
2111
2112int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2113			    struct vm_area_struct *vma)
2114{
2115	pte_t *src_pte, *dst_pte, entry;
2116	struct page *ptepage;
2117	unsigned long addr;
2118	int cow;
2119	struct hstate *h = hstate_vma(vma);
2120	unsigned long sz = huge_page_size(h);
2121
2122	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2123
2124	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2125		src_pte = huge_pte_offset(src, addr);
2126		if (!src_pte)
2127			continue;
2128		dst_pte = huge_pte_alloc(dst, addr, sz);
2129		if (!dst_pte)
2130			goto nomem;
2131
2132		/* If the pagetables are shared don't copy or take references */
2133		if (dst_pte == src_pte)
2134			continue;
2135
2136		spin_lock(&dst->page_table_lock);
2137		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2138		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2139			if (cow)
2140				huge_ptep_set_wrprotect(src, addr, src_pte);
2141			entry = huge_ptep_get(src_pte);
2142			ptepage = pte_page(entry);
2143			get_page(ptepage);
2144			page_dup_rmap(ptepage);
2145			set_huge_pte_at(dst, addr, dst_pte, entry);
2146		}
2147		spin_unlock(&src->page_table_lock);
2148		spin_unlock(&dst->page_table_lock);
2149	}
2150	return 0;
2151
2152nomem:
2153	return -ENOMEM;
2154}
2155
2156static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2157{
2158	swp_entry_t swp;
2159
2160	if (huge_pte_none(pte) || pte_present(pte))
2161		return 0;
2162	swp = pte_to_swp_entry(pte);
2163	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2164		return 1;
2165	} else
2166		return 0;
2167}
2168
2169void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2170			    unsigned long end, struct page *ref_page)
2171{
2172	struct mm_struct *mm = vma->vm_mm;
2173	unsigned long address;
2174	pte_t *ptep;
2175	pte_t pte;
2176	struct page *page;
2177	struct page *tmp;
2178	struct hstate *h = hstate_vma(vma);
2179	unsigned long sz = huge_page_size(h);
2180
2181	/*
2182	 * A page gathering list, protected by per file i_mmap_lock. The
2183	 * lock is used to avoid list corruption from multiple unmapping
2184	 * of the same page since we are using page->lru.
2185	 */
2186	LIST_HEAD(page_list);
2187
2188	WARN_ON(!is_vm_hugetlb_page(vma));
2189	BUG_ON(start & ~huge_page_mask(h));
2190	BUG_ON(end & ~huge_page_mask(h));
2191
2192	mmu_notifier_invalidate_range_start(mm, start, end);
2193	spin_lock(&mm->page_table_lock);
2194	for (address = start; address < end; address += sz) {
2195		ptep = huge_pte_offset(mm, address);
2196		if (!ptep)
2197			continue;
2198
2199		if (huge_pmd_unshare(mm, &address, ptep))
2200			continue;
2201
2202		/*
2203		 * If a reference page is supplied, it is because a specific
2204		 * page is being unmapped, not a range. Ensure the page we
2205		 * are about to unmap is the actual page of interest.
2206		 */
2207		if (ref_page) {
2208			pte = huge_ptep_get(ptep);
2209			if (huge_pte_none(pte))
2210				continue;
2211			page = pte_page(pte);
2212			if (page != ref_page)
2213				continue;
2214
2215			/*
2216			 * Mark the VMA as having unmapped its page so that
2217			 * future faults in this VMA will fail rather than
2218			 * looking like data was lost
2219			 */
2220			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2221		}
2222
2223		pte = huge_ptep_get_and_clear(mm, address, ptep);
2224		if (huge_pte_none(pte))
2225			continue;
2226
2227		/*
2228		 * HWPoisoned hugepage is already unmapped and dropped reference
2229		 */
2230		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2231			continue;
2232
2233		page = pte_page(pte);
2234		if (pte_dirty(pte))
2235			set_page_dirty(page);
2236		list_add(&page->lru, &page_list);
2237	}
2238	spin_unlock(&mm->page_table_lock);
2239	flush_tlb_range(vma, start, end);
2240	mmu_notifier_invalidate_range_end(mm, start, end);
2241	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2242		page_remove_rmap(page);
2243		list_del(&page->lru);
2244		put_page(page);
2245	}
2246}
2247
2248void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2249			  unsigned long end, struct page *ref_page)
2250{
2251	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2252	__unmap_hugepage_range(vma, start, end, ref_page);
2253	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2254}
2255
2256/*
2257 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2258 * mappping it owns the reserve page for. The intention is to unmap the page
2259 * from other VMAs and let the children be SIGKILLed if they are faulting the
2260 * same region.
2261 */
2262static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2263				struct page *page, unsigned long address)
2264{
2265	struct hstate *h = hstate_vma(vma);
2266	struct vm_area_struct *iter_vma;
2267	struct address_space *mapping;
2268	struct prio_tree_iter iter;
2269	pgoff_t pgoff;
2270
2271	/*
2272	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2273	 * from page cache lookup which is in HPAGE_SIZE units.
2274	 */
2275	address = address & huge_page_mask(h);
2276	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2277		+ (vma->vm_pgoff >> PAGE_SHIFT);
2278	mapping = (struct address_space *)page_private(page);
2279
2280	/*
2281	 * Take the mapping lock for the duration of the table walk. As
2282	 * this mapping should be shared between all the VMAs,
2283	 * __unmap_hugepage_range() is called as the lock is already held
2284	 */
2285	spin_lock(&mapping->i_mmap_lock);
2286	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2287		/* Do not unmap the current VMA */
2288		if (iter_vma == vma)
2289			continue;
2290
2291		/*
2292		 * Unmap the page from other VMAs without their own reserves.
2293		 * They get marked to be SIGKILLed if they fault in these
2294		 * areas. This is because a future no-page fault on this VMA
2295		 * could insert a zeroed page instead of the data existing
2296		 * from the time of fork. This would look like data corruption
2297		 */
2298		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2299			__unmap_hugepage_range(iter_vma,
2300				address, address + huge_page_size(h),
2301				page);
2302	}
2303	spin_unlock(&mapping->i_mmap_lock);
2304
2305	return 1;
2306}
2307
2308/*
2309 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2310 */
2311static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2312			unsigned long address, pte_t *ptep, pte_t pte,
2313			struct page *pagecache_page)
2314{
2315	struct hstate *h = hstate_vma(vma);
2316	struct page *old_page, *new_page;
2317	int avoidcopy;
2318	int outside_reserve = 0;
2319
2320	old_page = pte_page(pte);
2321
2322retry_avoidcopy:
2323	/* If no-one else is actually using this page, avoid the copy
2324	 * and just make the page writable */
2325	avoidcopy = (page_mapcount(old_page) == 1);
2326	if (avoidcopy) {
2327		if (!trylock_page(old_page))
2328			if (PageAnon(old_page))
2329				page_move_anon_rmap(old_page, vma, address);
2330		set_huge_ptep_writable(vma, address, ptep);
2331		return 0;
2332	}
2333
2334	/*
2335	 * If the process that created a MAP_PRIVATE mapping is about to
2336	 * perform a COW due to a shared page count, attempt to satisfy
2337	 * the allocation without using the existing reserves. The pagecache
2338	 * page is used to determine if the reserve at this address was
2339	 * consumed or not. If reserves were used, a partial faulted mapping
2340	 * at the time of fork() could consume its reserves on COW instead
2341	 * of the full address range.
2342	 */
2343	if (!(vma->vm_flags & VM_MAYSHARE) &&
2344			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2345			old_page != pagecache_page)
2346		outside_reserve = 1;
2347
2348	page_cache_get(old_page);
2349
2350	/* Drop page_table_lock as buddy allocator may be called */
2351	spin_unlock(&mm->page_table_lock);
2352	new_page = alloc_huge_page(vma, address, outside_reserve);
2353
2354	if (IS_ERR(new_page)) {
2355		page_cache_release(old_page);
2356
2357		/*
2358		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2359		 * it is due to references held by a child and an insufficient
2360		 * huge page pool. To guarantee the original mappers
2361		 * reliability, unmap the page from child processes. The child
2362		 * may get SIGKILLed if it later faults.
2363		 */
2364		if (outside_reserve) {
2365			BUG_ON(huge_pte_none(pte));
2366			if (unmap_ref_private(mm, vma, old_page, address)) {
2367				BUG_ON(page_count(old_page) != 1);
2368				BUG_ON(huge_pte_none(pte));
2369				spin_lock(&mm->page_table_lock);
2370				goto retry_avoidcopy;
2371			}
2372			WARN_ON_ONCE(1);
2373		}
2374
2375		/* Caller expects lock to be held */
2376		spin_lock(&mm->page_table_lock);
2377		return -PTR_ERR(new_page);
2378	}
2379
2380	/*
2381	 * When the original hugepage is shared one, it does not have
2382	 * anon_vma prepared.
2383	 */
2384	if (unlikely(anon_vma_prepare(vma)))
2385		return VM_FAULT_OOM;
2386
2387	copy_huge_page(new_page, old_page, address, vma);
2388	__SetPageUptodate(new_page);
2389
2390	/*
2391	 * Retake the page_table_lock to check for racing updates
2392	 * before the page tables are altered
2393	 */
2394	spin_lock(&mm->page_table_lock);
2395	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2396	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2397		/* Break COW */
2398		huge_ptep_clear_flush(vma, address, ptep);
2399		set_huge_pte_at(mm, address, ptep,
2400				make_huge_pte(vma, new_page, 1));
2401		page_remove_rmap(old_page);
2402		hugepage_add_anon_rmap(new_page, vma, address);
2403		/* Make the old page be freed below */
2404		new_page = old_page;
2405	}
2406	page_cache_release(new_page);
2407	page_cache_release(old_page);
2408	return 0;
2409}
2410
2411/* Return the pagecache page at a given address within a VMA */
2412static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2413			struct vm_area_struct *vma, unsigned long address)
2414{
2415	struct address_space *mapping;
2416	pgoff_t idx;
2417
2418	mapping = vma->vm_file->f_mapping;
2419	idx = vma_hugecache_offset(h, vma, address);
2420
2421	return find_lock_page(mapping, idx);
2422}
2423
2424/*
2425 * Return whether there is a pagecache page to back given address within VMA.
2426 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2427 */
2428static bool hugetlbfs_pagecache_present(struct hstate *h,
2429			struct vm_area_struct *vma, unsigned long address)
2430{
2431	struct address_space *mapping;
2432	pgoff_t idx;
2433	struct page *page;
2434
2435	mapping = vma->vm_file->f_mapping;
2436	idx = vma_hugecache_offset(h, vma, address);
2437
2438	page = find_get_page(mapping, idx);
2439	if (page)
2440		put_page(page);
2441	return page != NULL;
2442}
2443
2444static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2445			unsigned long address, pte_t *ptep, unsigned int flags)
2446{
2447	struct hstate *h = hstate_vma(vma);
2448	int ret = VM_FAULT_SIGBUS;
2449	pgoff_t idx;
2450	unsigned long size;
2451	struct page *page;
2452	struct address_space *mapping;
2453	pte_t new_pte;
2454
2455	/*
2456	 * Currently, we are forced to kill the process in the event the
2457	 * original mapper has unmapped pages from the child due to a failed
2458	 * COW. Warn that such a situation has occured as it may not be obvious
2459	 */
2460	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2461		printk(KERN_WARNING
2462			"PID %d killed due to inadequate hugepage pool\n",
2463			current->pid);
2464		return ret;
2465	}
2466
2467	mapping = vma->vm_file->f_mapping;
2468	idx = vma_hugecache_offset(h, vma, address);
2469
2470	/*
2471	 * Use page lock to guard against racing truncation
2472	 * before we get page_table_lock.
2473	 */
2474retry:
2475	page = find_lock_page(mapping, idx);
2476	if (!page) {
2477		size = i_size_read(mapping->host) >> huge_page_shift(h);
2478		if (idx >= size)
2479			goto out;
2480		page = alloc_huge_page(vma, address, 0);
2481		if (IS_ERR(page)) {
2482			ret = -PTR_ERR(page);
2483			goto out;
2484		}
2485		clear_huge_page(page, address, huge_page_size(h));
2486		__SetPageUptodate(page);
2487
2488		if (vma->vm_flags & VM_MAYSHARE) {
2489			int err;
2490			struct inode *inode = mapping->host;
2491
2492			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2493			if (err) {
2494				put_page(page);
2495				if (err == -EEXIST)
2496					goto retry;
2497				goto out;
2498			}
2499
2500			spin_lock(&inode->i_lock);
2501			inode->i_blocks += blocks_per_huge_page(h);
2502			spin_unlock(&inode->i_lock);
2503			page_dup_rmap(page);
2504		} else {
2505			lock_page(page);
2506			if (unlikely(anon_vma_prepare(vma))) {
2507				ret = VM_FAULT_OOM;
2508				goto backout_unlocked;
2509			}
2510			hugepage_add_new_anon_rmap(page, vma, address);
2511		}
2512	} else {
2513		page_dup_rmap(page);
2514	}
2515
2516	/*
2517	 * Since memory error handler replaces pte into hwpoison swap entry
2518	 * at the time of error handling, a process which reserved but not have
2519	 * the mapping to the error hugepage does not have hwpoison swap entry.
2520	 * So we need to block accesses from such a process by checking
2521	 * PG_hwpoison bit here.
2522	 */
2523	if (unlikely(PageHWPoison(page))) {
2524		ret = VM_FAULT_HWPOISON;
2525		goto backout_unlocked;
2526	}
2527
2528	/*
2529	 * If we are going to COW a private mapping later, we examine the
2530	 * pending reservations for this page now. This will ensure that
2531	 * any allocations necessary to record that reservation occur outside
2532	 * the spinlock.
2533	 */
2534	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2535		if (vma_needs_reservation(h, vma, address) < 0) {
2536			ret = VM_FAULT_OOM;
2537			goto backout_unlocked;
2538		}
2539
2540	spin_lock(&mm->page_table_lock);
2541	size = i_size_read(mapping->host) >> huge_page_shift(h);
2542	if (idx >= size)
2543		goto backout;
2544
2545	ret = 0;
2546	if (!huge_pte_none(huge_ptep_get(ptep)))
2547		goto backout;
2548
2549	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2550				&& (vma->vm_flags & VM_SHARED)));
2551	set_huge_pte_at(mm, address, ptep, new_pte);
2552
2553	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2554		/* Optimization, do the COW without a second fault */
2555		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2556	}
2557
2558	spin_unlock(&mm->page_table_lock);
2559	unlock_page(page);
2560out:
2561	return ret;
2562
2563backout:
2564	spin_unlock(&mm->page_table_lock);
2565backout_unlocked:
2566	unlock_page(page);
2567	put_page(page);
2568	goto out;
2569}
2570
2571int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2572			unsigned long address, unsigned int flags)
2573{
2574	pte_t *ptep;
2575	pte_t entry;
2576	int ret;
2577	struct page *page = NULL;
2578	struct page *pagecache_page = NULL;
2579	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2580	struct hstate *h = hstate_vma(vma);
2581
2582	ptep = huge_pte_offset(mm, address);
2583	if (ptep) {
2584		entry = huge_ptep_get(ptep);
2585		if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2586			return VM_FAULT_HWPOISON;
2587	}
2588
2589	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2590	if (!ptep)
2591		return VM_FAULT_OOM;
2592
2593	/*
2594	 * Serialize hugepage allocation and instantiation, so that we don't
2595	 * get spurious allocation failures if two CPUs race to instantiate
2596	 * the same page in the page cache.
2597	 */
2598	mutex_lock(&hugetlb_instantiation_mutex);
2599	entry = huge_ptep_get(ptep);
2600	if (huge_pte_none(entry)) {
2601		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2602		goto out_mutex;
2603	}
2604
2605	ret = 0;
2606
2607	/*
2608	 * If we are going to COW the mapping later, we examine the pending
2609	 * reservations for this page now. This will ensure that any
2610	 * allocations necessary to record that reservation occur outside the
2611	 * spinlock. For private mappings, we also lookup the pagecache
2612	 * page now as it is used to determine if a reservation has been
2613	 * consumed.
2614	 */
2615	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2616		if (vma_needs_reservation(h, vma, address) < 0) {
2617			ret = VM_FAULT_OOM;
2618			goto out_mutex;
2619		}
2620
2621		if (!(vma->vm_flags & VM_MAYSHARE))
2622			pagecache_page = hugetlbfs_pagecache_page(h,
2623								vma, address);
2624	}
2625
2626	if (!pagecache_page) {
2627		page = pte_page(entry);
2628		lock_page(page);
2629	}
2630
2631	spin_lock(&mm->page_table_lock);
2632	/* Check for a racing update before calling hugetlb_cow */
2633	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2634		goto out_page_table_lock;
2635
2636
2637	if (flags & FAULT_FLAG_WRITE) {
2638		if (!pte_write(entry)) {
2639			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2640							pagecache_page);
2641			goto out_page_table_lock;
2642		}
2643		entry = pte_mkdirty(entry);
2644	}
2645	entry = pte_mkyoung(entry);
2646	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2647						flags & FAULT_FLAG_WRITE))
2648		update_mmu_cache(vma, address, ptep);
2649
2650out_page_table_lock:
2651	spin_unlock(&mm->page_table_lock);
2652
2653	if (pagecache_page) {
2654		unlock_page(pagecache_page);
2655		put_page(pagecache_page);
2656	} else {
2657		unlock_page(page);
2658	}
2659
2660out_mutex:
2661	mutex_unlock(&hugetlb_instantiation_mutex);
2662
2663	return ret;
2664}
2665
2666/* Can be overriden by architectures */
2667__attribute__((weak)) struct page *
2668follow_huge_pud(struct mm_struct *mm, unsigned long address,
2669	       pud_t *pud, int write)
2670{
2671	BUG();
2672	return NULL;
2673}
2674
2675int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2676			struct page **pages, struct vm_area_struct **vmas,
2677			unsigned long *position, int *length, int i,
2678			unsigned int flags)
2679{
2680	unsigned long pfn_offset;
2681	unsigned long vaddr = *position;
2682	int remainder = *length;
2683	struct hstate *h = hstate_vma(vma);
2684
2685	spin_lock(&mm->page_table_lock);
2686	while (vaddr < vma->vm_end && remainder) {
2687		pte_t *pte;
2688		int absent;
2689		struct page *page;
2690
2691		/*
2692		 * Some archs (sparc64, sh*) have multiple pte_ts to
2693		 * each hugepage.  We have to make sure we get the
2694		 * first, for the page indexing below to work.
2695		 */
2696		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2697		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2698
2699		/*
2700		 * When coredumping, it suits get_dump_page if we just return
2701		 * an error where there's an empty slot with no huge pagecache
2702		 * to back it.  This way, we avoid allocating a hugepage, and
2703		 * the sparse dumpfile avoids allocating disk blocks, but its
2704		 * huge holes still show up with zeroes where they need to be.
2705		 */
2706		if (absent && (flags & FOLL_DUMP) &&
2707		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2708			remainder = 0;
2709			break;
2710		}
2711
2712		if (absent ||
2713		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2714			int ret;
2715
2716			spin_unlock(&mm->page_table_lock);
2717			ret = hugetlb_fault(mm, vma, vaddr,
2718				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2719			spin_lock(&mm->page_table_lock);
2720			if (!(ret & VM_FAULT_ERROR))
2721				continue;
2722
2723			remainder = 0;
2724			break;
2725		}
2726
2727		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2728		page = pte_page(huge_ptep_get(pte));
2729same_page:
2730		if (pages) {
2731			pages[i] = mem_map_offset(page, pfn_offset);
2732			get_page(pages[i]);
2733		}
2734
2735		if (vmas)
2736			vmas[i] = vma;
2737
2738		vaddr += PAGE_SIZE;
2739		++pfn_offset;
2740		--remainder;
2741		++i;
2742		if (vaddr < vma->vm_end && remainder &&
2743				pfn_offset < pages_per_huge_page(h)) {
2744			/*
2745			 * We use pfn_offset to avoid touching the pageframes
2746			 * of this compound page.
2747			 */
2748			goto same_page;
2749		}
2750	}
2751	spin_unlock(&mm->page_table_lock);
2752	*length = remainder;
2753	*position = vaddr;
2754
2755	return i ? i : -EFAULT;
2756}
2757
2758void hugetlb_change_protection(struct vm_area_struct *vma,
2759		unsigned long address, unsigned long end, pgprot_t newprot)
2760{
2761	struct mm_struct *mm = vma->vm_mm;
2762	unsigned long start = address;
2763	pte_t *ptep;
2764	pte_t pte;
2765	struct hstate *h = hstate_vma(vma);
2766
2767	BUG_ON(address >= end);
2768	flush_cache_range(vma, address, end);
2769
2770	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2771	spin_lock(&mm->page_table_lock);
2772	for (; address < end; address += huge_page_size(h)) {
2773		ptep = huge_pte_offset(mm, address);
2774		if (!ptep)
2775			continue;
2776		if (huge_pmd_unshare(mm, &address, ptep))
2777			continue;
2778		if (!huge_pte_none(huge_ptep_get(ptep))) {
2779			pte = huge_ptep_get_and_clear(mm, address, ptep);
2780			pte = pte_mkhuge(pte_modify(pte, newprot));
2781			set_huge_pte_at(mm, address, ptep, pte);
2782		}
2783	}
2784	spin_unlock(&mm->page_table_lock);
2785	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2786
2787	flush_tlb_range(vma, start, end);
2788}
2789
2790int hugetlb_reserve_pages(struct inode *inode,
2791					long from, long to,
2792					struct vm_area_struct *vma,
2793					int acctflag)
2794{
2795	long ret, chg;
2796	struct hstate *h = hstate_inode(inode);
2797
2798	/*
2799	 * Only apply hugepage reservation if asked. At fault time, an
2800	 * attempt will be made for VM_NORESERVE to allocate a page
2801	 * and filesystem quota without using reserves
2802	 */
2803	if (acctflag & VM_NORESERVE)
2804		return 0;
2805
2806	/*
2807	 * Shared mappings base their reservation on the number of pages that
2808	 * are already allocated on behalf of the file. Private mappings need
2809	 * to reserve the full area even if read-only as mprotect() may be
2810	 * called to make the mapping read-write. Assume !vma is a shm mapping
2811	 */
2812	if (!vma || vma->vm_flags & VM_MAYSHARE)
2813		chg = region_chg(&inode->i_mapping->private_list, from, to);
2814	else {
2815		struct resv_map *resv_map = resv_map_alloc();
2816		if (!resv_map)
2817			return -ENOMEM;
2818
2819		chg = to - from;
2820
2821		set_vma_resv_map(vma, resv_map);
2822		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2823	}
2824
2825	if (chg < 0)
2826		return chg;
2827
2828	/* There must be enough filesystem quota for the mapping */
2829	if (hugetlb_get_quota(inode->i_mapping, chg))
2830		return -ENOSPC;
2831
2832	/*
2833	 * Check enough hugepages are available for the reservation.
2834	 * Hand back the quota if there are not
2835	 */
2836	ret = hugetlb_acct_memory(h, chg);
2837	if (ret < 0) {
2838		hugetlb_put_quota(inode->i_mapping, chg);
2839		return ret;
2840	}
2841
2842	/*
2843	 * Account for the reservations made. Shared mappings record regions
2844	 * that have reservations as they are shared by multiple VMAs.
2845	 * When the last VMA disappears, the region map says how much
2846	 * the reservation was and the page cache tells how much of
2847	 * the reservation was consumed. Private mappings are per-VMA and
2848	 * only the consumed reservations are tracked. When the VMA
2849	 * disappears, the original reservation is the VMA size and the
2850	 * consumed reservations are stored in the map. Hence, nothing
2851	 * else has to be done for private mappings here
2852	 */
2853	if (!vma || vma->vm_flags & VM_MAYSHARE)
2854		region_add(&inode->i_mapping->private_list, from, to);
2855	return 0;
2856}
2857
2858void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2859{
2860	struct hstate *h = hstate_inode(inode);
2861	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2862
2863	spin_lock(&inode->i_lock);
2864	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2865	spin_unlock(&inode->i_lock);
2866
2867	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2868	hugetlb_acct_memory(h, -(chg - freed));
2869}
2870
2871/*
2872 * This function is called from memory failure code.
2873 * Assume the caller holds page lock of the head page.
2874 */
2875void __isolate_hwpoisoned_huge_page(struct page *hpage)
2876{
2877	struct hstate *h = page_hstate(hpage);
2878	int nid = page_to_nid(hpage);
2879
2880	spin_lock(&hugetlb_lock);
2881	list_del(&hpage->lru);
2882	h->free_huge_pages--;
2883	h->free_huge_pages_node[nid]--;
2884	spin_unlock(&hugetlb_lock);
2885}
2886