hugetlb.c revision 496ad9aa8ef448058e36ca7a787c61f2e63f0f54
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/tlb.h>
28
29#include <linux/io.h>
30#include <linux/hugetlb.h>
31#include <linux/hugetlb_cgroup.h>
32#include <linux/node.h>
33#include "internal.h"
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
38
39int hugetlb_max_hstate __read_mostly;
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
43__initdata LIST_HEAD(huge_boot_pages);
44
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
48static unsigned long __initdata default_hstate_size;
49
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
53DEFINE_SPINLOCK(hugetlb_lock);
54
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57	bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59	spin_unlock(&spool->lock);
60
61	/* If no pages are used, and no other handles to the subpool
62	 * remain, free the subpool the subpool remain */
63	if (free)
64		kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69	struct hugepage_subpool *spool;
70
71	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72	if (!spool)
73		return NULL;
74
75	spin_lock_init(&spool->lock);
76	spool->count = 1;
77	spool->max_hpages = nr_blocks;
78	spool->used_hpages = 0;
79
80	return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85	spin_lock(&spool->lock);
86	BUG_ON(!spool->count);
87	spool->count--;
88	unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92				      long delta)
93{
94	int ret = 0;
95
96	if (!spool)
97		return 0;
98
99	spin_lock(&spool->lock);
100	if ((spool->used_hpages + delta) <= spool->max_hpages) {
101		spool->used_hpages += delta;
102	} else {
103		ret = -ENOMEM;
104	}
105	spin_unlock(&spool->lock);
106
107	return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111				       long delta)
112{
113	if (!spool)
114		return;
115
116	spin_lock(&spool->lock);
117	spool->used_hpages -= delta;
118	/* If hugetlbfs_put_super couldn't free spool due to
119	* an outstanding quota reference, free it now. */
120	unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125	return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
130	return subpool_inode(file_inode(vma->vm_file));
131}
132
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 *                    across the pages in a mapping.
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation mutex:
141 *
142 *	down_write(&mm->mmap_sem);
143 * or
144 *	down_read(&mm->mmap_sem);
145 *	mutex_lock(&hugetlb_instantiation_mutex);
146 */
147struct file_region {
148	struct list_head link;
149	long from;
150	long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155	struct file_region *rg, *nrg, *trg;
156
157	/* Locate the region we are either in or before. */
158	list_for_each_entry(rg, head, link)
159		if (f <= rg->to)
160			break;
161
162	/* Round our left edge to the current segment if it encloses us. */
163	if (f > rg->from)
164		f = rg->from;
165
166	/* Check for and consume any regions we now overlap with. */
167	nrg = rg;
168	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169		if (&rg->link == head)
170			break;
171		if (rg->from > t)
172			break;
173
174		/* If this area reaches higher then extend our area to
175		 * include it completely.  If this is not the first area
176		 * which we intend to reuse, free it. */
177		if (rg->to > t)
178			t = rg->to;
179		if (rg != nrg) {
180			list_del(&rg->link);
181			kfree(rg);
182		}
183	}
184	nrg->from = f;
185	nrg->to = t;
186	return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191	struct file_region *rg, *nrg;
192	long chg = 0;
193
194	/* Locate the region we are before or in. */
195	list_for_each_entry(rg, head, link)
196		if (f <= rg->to)
197			break;
198
199	/* If we are below the current region then a new region is required.
200	 * Subtle, allocate a new region at the position but make it zero
201	 * size such that we can guarantee to record the reservation. */
202	if (&rg->link == head || t < rg->from) {
203		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204		if (!nrg)
205			return -ENOMEM;
206		nrg->from = f;
207		nrg->to   = f;
208		INIT_LIST_HEAD(&nrg->link);
209		list_add(&nrg->link, rg->link.prev);
210
211		return t - f;
212	}
213
214	/* Round our left edge to the current segment if it encloses us. */
215	if (f > rg->from)
216		f = rg->from;
217	chg = t - f;
218
219	/* Check for and consume any regions we now overlap with. */
220	list_for_each_entry(rg, rg->link.prev, link) {
221		if (&rg->link == head)
222			break;
223		if (rg->from > t)
224			return chg;
225
226		/* We overlap with this area, if it extends further than
227		 * us then we must extend ourselves.  Account for its
228		 * existing reservation. */
229		if (rg->to > t) {
230			chg += rg->to - t;
231			t = rg->to;
232		}
233		chg -= rg->to - rg->from;
234	}
235	return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240	struct file_region *rg, *trg;
241	long chg = 0;
242
243	/* Locate the region we are either in or before. */
244	list_for_each_entry(rg, head, link)
245		if (end <= rg->to)
246			break;
247	if (&rg->link == head)
248		return 0;
249
250	/* If we are in the middle of a region then adjust it. */
251	if (end > rg->from) {
252		chg = rg->to - end;
253		rg->to = end;
254		rg = list_entry(rg->link.next, typeof(*rg), link);
255	}
256
257	/* Drop any remaining regions. */
258	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259		if (&rg->link == head)
260			break;
261		chg += rg->to - rg->from;
262		list_del(&rg->link);
263		kfree(rg);
264	}
265	return chg;
266}
267
268static long region_count(struct list_head *head, long f, long t)
269{
270	struct file_region *rg;
271	long chg = 0;
272
273	/* Locate each segment we overlap with, and count that overlap. */
274	list_for_each_entry(rg, head, link) {
275		long seg_from;
276		long seg_to;
277
278		if (rg->to <= f)
279			continue;
280		if (rg->from >= t)
281			break;
282
283		seg_from = max(rg->from, f);
284		seg_to = min(rg->to, t);
285
286		chg += seg_to - seg_from;
287	}
288
289	return chg;
290}
291
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297			struct vm_area_struct *vma, unsigned long address)
298{
299	return ((address - vma->vm_start) >> huge_page_shift(h)) +
300			(vma->vm_pgoff >> huge_page_order(h));
301}
302
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304				     unsigned long address)
305{
306	return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315	struct hstate *hstate;
316
317	if (!is_vm_hugetlb_page(vma))
318		return PAGE_SIZE;
319
320	hstate = hstate_vma(vma);
321
322	return 1UL << (hstate->order + PAGE_SHIFT);
323}
324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335	return vma_kernel_pagesize(vma);
336}
337#endif
338
339/*
340 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER    (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping.  A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated.  A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
366 */
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369	return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373							unsigned long value)
374{
375	vma->vm_private_data = (void *)value;
376}
377
378struct resv_map {
379	struct kref refs;
380	struct list_head regions;
381};
382
383static struct resv_map *resv_map_alloc(void)
384{
385	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386	if (!resv_map)
387		return NULL;
388
389	kref_init(&resv_map->refs);
390	INIT_LIST_HEAD(&resv_map->regions);
391
392	return resv_map;
393}
394
395static void resv_map_release(struct kref *ref)
396{
397	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399	/* Clear out any active regions before we release the map. */
400	region_truncate(&resv_map->regions, 0);
401	kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405{
406	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407	if (!(vma->vm_flags & VM_MAYSHARE))
408		return (struct resv_map *)(get_vma_private_data(vma) &
409							~HPAGE_RESV_MASK);
410	return NULL;
411}
412
413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414{
415	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418	set_vma_private_data(vma, (get_vma_private_data(vma) &
419				HPAGE_RESV_MASK) | (unsigned long)map);
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
424	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434	return (get_vma_private_data(vma) & flag) != 0;
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
438static void decrement_hugepage_resv_vma(struct hstate *h,
439			struct vm_area_struct *vma)
440{
441	if (vma->vm_flags & VM_NORESERVE)
442		return;
443
444	if (vma->vm_flags & VM_MAYSHARE) {
445		/* Shared mappings always use reserves */
446		h->resv_huge_pages--;
447	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448		/*
449		 * Only the process that called mmap() has reserves for
450		 * private mappings.
451		 */
452		h->resv_huge_pages--;
453	}
454}
455
456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460	if (!(vma->vm_flags & VM_MAYSHARE))
461		vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
465static int vma_has_reserves(struct vm_area_struct *vma)
466{
467	if (vma->vm_flags & VM_MAYSHARE)
468		return 1;
469	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470		return 1;
471	return 0;
472}
473
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476	int i;
477	struct hstate *h = page_hstate(src);
478	struct page *dst_base = dst;
479	struct page *src_base = src;
480
481	for (i = 0; i < pages_per_huge_page(h); ) {
482		cond_resched();
483		copy_highpage(dst, src);
484
485		i++;
486		dst = mem_map_next(dst, dst_base, i);
487		src = mem_map_next(src, src_base, i);
488	}
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493	int i;
494	struct hstate *h = page_hstate(src);
495
496	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497		copy_gigantic_page(dst, src);
498		return;
499	}
500
501	might_sleep();
502	for (i = 0; i < pages_per_huge_page(h); i++) {
503		cond_resched();
504		copy_highpage(dst + i, src + i);
505	}
506}
507
508static void enqueue_huge_page(struct hstate *h, struct page *page)
509{
510	int nid = page_to_nid(page);
511	list_move(&page->lru, &h->hugepage_freelists[nid]);
512	h->free_huge_pages++;
513	h->free_huge_pages_node[nid]++;
514}
515
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518	struct page *page;
519
520	if (list_empty(&h->hugepage_freelists[nid]))
521		return NULL;
522	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523	list_move(&page->lru, &h->hugepage_activelist);
524	set_page_refcounted(page);
525	h->free_huge_pages--;
526	h->free_huge_pages_node[nid]--;
527	return page;
528}
529
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531				struct vm_area_struct *vma,
532				unsigned long address, int avoid_reserve)
533{
534	struct page *page = NULL;
535	struct mempolicy *mpol;
536	nodemask_t *nodemask;
537	struct zonelist *zonelist;
538	struct zone *zone;
539	struct zoneref *z;
540	unsigned int cpuset_mems_cookie;
541
542retry_cpuset:
543	cpuset_mems_cookie = get_mems_allowed();
544	zonelist = huge_zonelist(vma, address,
545					htlb_alloc_mask, &mpol, &nodemask);
546	/*
547	 * A child process with MAP_PRIVATE mappings created by their parent
548	 * have no page reserves. This check ensures that reservations are
549	 * not "stolen". The child may still get SIGKILLed
550	 */
551	if (!vma_has_reserves(vma) &&
552			h->free_huge_pages - h->resv_huge_pages == 0)
553		goto err;
554
555	/* If reserves cannot be used, ensure enough pages are in the pool */
556	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557		goto err;
558
559	for_each_zone_zonelist_nodemask(zone, z, zonelist,
560						MAX_NR_ZONES - 1, nodemask) {
561		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562			page = dequeue_huge_page_node(h, zone_to_nid(zone));
563			if (page) {
564				if (!avoid_reserve)
565					decrement_hugepage_resv_vma(h, vma);
566				break;
567			}
568		}
569	}
570
571	mpol_cond_put(mpol);
572	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573		goto retry_cpuset;
574	return page;
575
576err:
577	mpol_cond_put(mpol);
578	return NULL;
579}
580
581static void update_and_free_page(struct hstate *h, struct page *page)
582{
583	int i;
584
585	VM_BUG_ON(h->order >= MAX_ORDER);
586
587	h->nr_huge_pages--;
588	h->nr_huge_pages_node[page_to_nid(page)]--;
589	for (i = 0; i < pages_per_huge_page(h); i++) {
590		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591				1 << PG_referenced | 1 << PG_dirty |
592				1 << PG_active | 1 << PG_reserved |
593				1 << PG_private | 1 << PG_writeback);
594	}
595	VM_BUG_ON(hugetlb_cgroup_from_page(page));
596	set_compound_page_dtor(page, NULL);
597	set_page_refcounted(page);
598	arch_release_hugepage(page);
599	__free_pages(page, huge_page_order(h));
600}
601
602struct hstate *size_to_hstate(unsigned long size)
603{
604	struct hstate *h;
605
606	for_each_hstate(h) {
607		if (huge_page_size(h) == size)
608			return h;
609	}
610	return NULL;
611}
612
613static void free_huge_page(struct page *page)
614{
615	/*
616	 * Can't pass hstate in here because it is called from the
617	 * compound page destructor.
618	 */
619	struct hstate *h = page_hstate(page);
620	int nid = page_to_nid(page);
621	struct hugepage_subpool *spool =
622		(struct hugepage_subpool *)page_private(page);
623
624	set_page_private(page, 0);
625	page->mapping = NULL;
626	BUG_ON(page_count(page));
627	BUG_ON(page_mapcount(page));
628
629	spin_lock(&hugetlb_lock);
630	hugetlb_cgroup_uncharge_page(hstate_index(h),
631				     pages_per_huge_page(h), page);
632	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633		/* remove the page from active list */
634		list_del(&page->lru);
635		update_and_free_page(h, page);
636		h->surplus_huge_pages--;
637		h->surplus_huge_pages_node[nid]--;
638	} else {
639		arch_clear_hugepage_flags(page);
640		enqueue_huge_page(h, page);
641	}
642	spin_unlock(&hugetlb_lock);
643	hugepage_subpool_put_pages(spool, 1);
644}
645
646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647{
648	INIT_LIST_HEAD(&page->lru);
649	set_compound_page_dtor(page, free_huge_page);
650	spin_lock(&hugetlb_lock);
651	set_hugetlb_cgroup(page, NULL);
652	h->nr_huge_pages++;
653	h->nr_huge_pages_node[nid]++;
654	spin_unlock(&hugetlb_lock);
655	put_page(page); /* free it into the hugepage allocator */
656}
657
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660	int i;
661	int nr_pages = 1 << order;
662	struct page *p = page + 1;
663
664	/* we rely on prep_new_huge_page to set the destructor */
665	set_compound_order(page, order);
666	__SetPageHead(page);
667	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668		__SetPageTail(p);
669		set_page_count(p, 0);
670		p->first_page = page;
671	}
672}
673
674/*
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages.  See the PageTransHuge() documentation for more
677 * details.
678 */
679int PageHuge(struct page *page)
680{
681	compound_page_dtor *dtor;
682
683	if (!PageCompound(page))
684		return 0;
685
686	page = compound_head(page);
687	dtor = get_compound_page_dtor(page);
688
689	return dtor == free_huge_page;
690}
691EXPORT_SYMBOL_GPL(PageHuge);
692
693static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
694{
695	struct page *page;
696
697	if (h->order >= MAX_ORDER)
698		return NULL;
699
700	page = alloc_pages_exact_node(nid,
701		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
702						__GFP_REPEAT|__GFP_NOWARN,
703		huge_page_order(h));
704	if (page) {
705		if (arch_prepare_hugepage(page)) {
706			__free_pages(page, huge_page_order(h));
707			return NULL;
708		}
709		prep_new_huge_page(h, page, nid);
710	}
711
712	return page;
713}
714
715/*
716 * common helper functions for hstate_next_node_to_{alloc|free}.
717 * We may have allocated or freed a huge page based on a different
718 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
719 * be outside of *nodes_allowed.  Ensure that we use an allowed
720 * node for alloc or free.
721 */
722static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
723{
724	nid = next_node(nid, *nodes_allowed);
725	if (nid == MAX_NUMNODES)
726		nid = first_node(*nodes_allowed);
727	VM_BUG_ON(nid >= MAX_NUMNODES);
728
729	return nid;
730}
731
732static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
733{
734	if (!node_isset(nid, *nodes_allowed))
735		nid = next_node_allowed(nid, nodes_allowed);
736	return nid;
737}
738
739/*
740 * returns the previously saved node ["this node"] from which to
741 * allocate a persistent huge page for the pool and advance the
742 * next node from which to allocate, handling wrap at end of node
743 * mask.
744 */
745static int hstate_next_node_to_alloc(struct hstate *h,
746					nodemask_t *nodes_allowed)
747{
748	int nid;
749
750	VM_BUG_ON(!nodes_allowed);
751
752	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
753	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
754
755	return nid;
756}
757
758static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
759{
760	struct page *page;
761	int start_nid;
762	int next_nid;
763	int ret = 0;
764
765	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
766	next_nid = start_nid;
767
768	do {
769		page = alloc_fresh_huge_page_node(h, next_nid);
770		if (page) {
771			ret = 1;
772			break;
773		}
774		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
775	} while (next_nid != start_nid);
776
777	if (ret)
778		count_vm_event(HTLB_BUDDY_PGALLOC);
779	else
780		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
781
782	return ret;
783}
784
785/*
786 * helper for free_pool_huge_page() - return the previously saved
787 * node ["this node"] from which to free a huge page.  Advance the
788 * next node id whether or not we find a free huge page to free so
789 * that the next attempt to free addresses the next node.
790 */
791static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
792{
793	int nid;
794
795	VM_BUG_ON(!nodes_allowed);
796
797	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
798	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
799
800	return nid;
801}
802
803/*
804 * Free huge page from pool from next node to free.
805 * Attempt to keep persistent huge pages more or less
806 * balanced over allowed nodes.
807 * Called with hugetlb_lock locked.
808 */
809static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
810							 bool acct_surplus)
811{
812	int start_nid;
813	int next_nid;
814	int ret = 0;
815
816	start_nid = hstate_next_node_to_free(h, nodes_allowed);
817	next_nid = start_nid;
818
819	do {
820		/*
821		 * If we're returning unused surplus pages, only examine
822		 * nodes with surplus pages.
823		 */
824		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
825		    !list_empty(&h->hugepage_freelists[next_nid])) {
826			struct page *page =
827				list_entry(h->hugepage_freelists[next_nid].next,
828					  struct page, lru);
829			list_del(&page->lru);
830			h->free_huge_pages--;
831			h->free_huge_pages_node[next_nid]--;
832			if (acct_surplus) {
833				h->surplus_huge_pages--;
834				h->surplus_huge_pages_node[next_nid]--;
835			}
836			update_and_free_page(h, page);
837			ret = 1;
838			break;
839		}
840		next_nid = hstate_next_node_to_free(h, nodes_allowed);
841	} while (next_nid != start_nid);
842
843	return ret;
844}
845
846static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
847{
848	struct page *page;
849	unsigned int r_nid;
850
851	if (h->order >= MAX_ORDER)
852		return NULL;
853
854	/*
855	 * Assume we will successfully allocate the surplus page to
856	 * prevent racing processes from causing the surplus to exceed
857	 * overcommit
858	 *
859	 * This however introduces a different race, where a process B
860	 * tries to grow the static hugepage pool while alloc_pages() is
861	 * called by process A. B will only examine the per-node
862	 * counters in determining if surplus huge pages can be
863	 * converted to normal huge pages in adjust_pool_surplus(). A
864	 * won't be able to increment the per-node counter, until the
865	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
866	 * no more huge pages can be converted from surplus to normal
867	 * state (and doesn't try to convert again). Thus, we have a
868	 * case where a surplus huge page exists, the pool is grown, and
869	 * the surplus huge page still exists after, even though it
870	 * should just have been converted to a normal huge page. This
871	 * does not leak memory, though, as the hugepage will be freed
872	 * once it is out of use. It also does not allow the counters to
873	 * go out of whack in adjust_pool_surplus() as we don't modify
874	 * the node values until we've gotten the hugepage and only the
875	 * per-node value is checked there.
876	 */
877	spin_lock(&hugetlb_lock);
878	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
879		spin_unlock(&hugetlb_lock);
880		return NULL;
881	} else {
882		h->nr_huge_pages++;
883		h->surplus_huge_pages++;
884	}
885	spin_unlock(&hugetlb_lock);
886
887	if (nid == NUMA_NO_NODE)
888		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
889				   __GFP_REPEAT|__GFP_NOWARN,
890				   huge_page_order(h));
891	else
892		page = alloc_pages_exact_node(nid,
893			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
894			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
895
896	if (page && arch_prepare_hugepage(page)) {
897		__free_pages(page, huge_page_order(h));
898		page = NULL;
899	}
900
901	spin_lock(&hugetlb_lock);
902	if (page) {
903		INIT_LIST_HEAD(&page->lru);
904		r_nid = page_to_nid(page);
905		set_compound_page_dtor(page, free_huge_page);
906		set_hugetlb_cgroup(page, NULL);
907		/*
908		 * We incremented the global counters already
909		 */
910		h->nr_huge_pages_node[r_nid]++;
911		h->surplus_huge_pages_node[r_nid]++;
912		__count_vm_event(HTLB_BUDDY_PGALLOC);
913	} else {
914		h->nr_huge_pages--;
915		h->surplus_huge_pages--;
916		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
917	}
918	spin_unlock(&hugetlb_lock);
919
920	return page;
921}
922
923/*
924 * This allocation function is useful in the context where vma is irrelevant.
925 * E.g. soft-offlining uses this function because it only cares physical
926 * address of error page.
927 */
928struct page *alloc_huge_page_node(struct hstate *h, int nid)
929{
930	struct page *page;
931
932	spin_lock(&hugetlb_lock);
933	page = dequeue_huge_page_node(h, nid);
934	spin_unlock(&hugetlb_lock);
935
936	if (!page)
937		page = alloc_buddy_huge_page(h, nid);
938
939	return page;
940}
941
942/*
943 * Increase the hugetlb pool such that it can accommodate a reservation
944 * of size 'delta'.
945 */
946static int gather_surplus_pages(struct hstate *h, int delta)
947{
948	struct list_head surplus_list;
949	struct page *page, *tmp;
950	int ret, i;
951	int needed, allocated;
952	bool alloc_ok = true;
953
954	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
955	if (needed <= 0) {
956		h->resv_huge_pages += delta;
957		return 0;
958	}
959
960	allocated = 0;
961	INIT_LIST_HEAD(&surplus_list);
962
963	ret = -ENOMEM;
964retry:
965	spin_unlock(&hugetlb_lock);
966	for (i = 0; i < needed; i++) {
967		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
968		if (!page) {
969			alloc_ok = false;
970			break;
971		}
972		list_add(&page->lru, &surplus_list);
973	}
974	allocated += i;
975
976	/*
977	 * After retaking hugetlb_lock, we need to recalculate 'needed'
978	 * because either resv_huge_pages or free_huge_pages may have changed.
979	 */
980	spin_lock(&hugetlb_lock);
981	needed = (h->resv_huge_pages + delta) -
982			(h->free_huge_pages + allocated);
983	if (needed > 0) {
984		if (alloc_ok)
985			goto retry;
986		/*
987		 * We were not able to allocate enough pages to
988		 * satisfy the entire reservation so we free what
989		 * we've allocated so far.
990		 */
991		goto free;
992	}
993	/*
994	 * The surplus_list now contains _at_least_ the number of extra pages
995	 * needed to accommodate the reservation.  Add the appropriate number
996	 * of pages to the hugetlb pool and free the extras back to the buddy
997	 * allocator.  Commit the entire reservation here to prevent another
998	 * process from stealing the pages as they are added to the pool but
999	 * before they are reserved.
1000	 */
1001	needed += allocated;
1002	h->resv_huge_pages += delta;
1003	ret = 0;
1004
1005	/* Free the needed pages to the hugetlb pool */
1006	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1007		if ((--needed) < 0)
1008			break;
1009		/*
1010		 * This page is now managed by the hugetlb allocator and has
1011		 * no users -- drop the buddy allocator's reference.
1012		 */
1013		put_page_testzero(page);
1014		VM_BUG_ON(page_count(page));
1015		enqueue_huge_page(h, page);
1016	}
1017free:
1018	spin_unlock(&hugetlb_lock);
1019
1020	/* Free unnecessary surplus pages to the buddy allocator */
1021	if (!list_empty(&surplus_list)) {
1022		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1023			put_page(page);
1024		}
1025	}
1026	spin_lock(&hugetlb_lock);
1027
1028	return ret;
1029}
1030
1031/*
1032 * When releasing a hugetlb pool reservation, any surplus pages that were
1033 * allocated to satisfy the reservation must be explicitly freed if they were
1034 * never used.
1035 * Called with hugetlb_lock held.
1036 */
1037static void return_unused_surplus_pages(struct hstate *h,
1038					unsigned long unused_resv_pages)
1039{
1040	unsigned long nr_pages;
1041
1042	/* Uncommit the reservation */
1043	h->resv_huge_pages -= unused_resv_pages;
1044
1045	/* Cannot return gigantic pages currently */
1046	if (h->order >= MAX_ORDER)
1047		return;
1048
1049	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1050
1051	/*
1052	 * We want to release as many surplus pages as possible, spread
1053	 * evenly across all nodes with memory. Iterate across these nodes
1054	 * until we can no longer free unreserved surplus pages. This occurs
1055	 * when the nodes with surplus pages have no free pages.
1056	 * free_pool_huge_page() will balance the the freed pages across the
1057	 * on-line nodes with memory and will handle the hstate accounting.
1058	 */
1059	while (nr_pages--) {
1060		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1061			break;
1062	}
1063}
1064
1065/*
1066 * Determine if the huge page at addr within the vma has an associated
1067 * reservation.  Where it does not we will need to logically increase
1068 * reservation and actually increase subpool usage before an allocation
1069 * can occur.  Where any new reservation would be required the
1070 * reservation change is prepared, but not committed.  Once the page
1071 * has been allocated from the subpool and instantiated the change should
1072 * be committed via vma_commit_reservation.  No action is required on
1073 * failure.
1074 */
1075static long vma_needs_reservation(struct hstate *h,
1076			struct vm_area_struct *vma, unsigned long addr)
1077{
1078	struct address_space *mapping = vma->vm_file->f_mapping;
1079	struct inode *inode = mapping->host;
1080
1081	if (vma->vm_flags & VM_MAYSHARE) {
1082		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1083		return region_chg(&inode->i_mapping->private_list,
1084							idx, idx + 1);
1085
1086	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087		return 1;
1088
1089	} else  {
1090		long err;
1091		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1092		struct resv_map *reservations = vma_resv_map(vma);
1093
1094		err = region_chg(&reservations->regions, idx, idx + 1);
1095		if (err < 0)
1096			return err;
1097		return 0;
1098	}
1099}
1100static void vma_commit_reservation(struct hstate *h,
1101			struct vm_area_struct *vma, unsigned long addr)
1102{
1103	struct address_space *mapping = vma->vm_file->f_mapping;
1104	struct inode *inode = mapping->host;
1105
1106	if (vma->vm_flags & VM_MAYSHARE) {
1107		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1109
1110	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1111		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1112		struct resv_map *reservations = vma_resv_map(vma);
1113
1114		/* Mark this page used in the map. */
1115		region_add(&reservations->regions, idx, idx + 1);
1116	}
1117}
1118
1119static struct page *alloc_huge_page(struct vm_area_struct *vma,
1120				    unsigned long addr, int avoid_reserve)
1121{
1122	struct hugepage_subpool *spool = subpool_vma(vma);
1123	struct hstate *h = hstate_vma(vma);
1124	struct page *page;
1125	long chg;
1126	int ret, idx;
1127	struct hugetlb_cgroup *h_cg;
1128
1129	idx = hstate_index(h);
1130	/*
1131	 * Processes that did not create the mapping will have no
1132	 * reserves and will not have accounted against subpool
1133	 * limit. Check that the subpool limit can be made before
1134	 * satisfying the allocation MAP_NORESERVE mappings may also
1135	 * need pages and subpool limit allocated allocated if no reserve
1136	 * mapping overlaps.
1137	 */
1138	chg = vma_needs_reservation(h, vma, addr);
1139	if (chg < 0)
1140		return ERR_PTR(-ENOMEM);
1141	if (chg)
1142		if (hugepage_subpool_get_pages(spool, chg))
1143			return ERR_PTR(-ENOSPC);
1144
1145	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1146	if (ret) {
1147		hugepage_subpool_put_pages(spool, chg);
1148		return ERR_PTR(-ENOSPC);
1149	}
1150	spin_lock(&hugetlb_lock);
1151	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1152	if (page) {
1153		/* update page cgroup details */
1154		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1155					     h_cg, page);
1156		spin_unlock(&hugetlb_lock);
1157	} else {
1158		spin_unlock(&hugetlb_lock);
1159		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1160		if (!page) {
1161			hugetlb_cgroup_uncharge_cgroup(idx,
1162						       pages_per_huge_page(h),
1163						       h_cg);
1164			hugepage_subpool_put_pages(spool, chg);
1165			return ERR_PTR(-ENOSPC);
1166		}
1167		spin_lock(&hugetlb_lock);
1168		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1169					     h_cg, page);
1170		list_move(&page->lru, &h->hugepage_activelist);
1171		spin_unlock(&hugetlb_lock);
1172	}
1173
1174	set_page_private(page, (unsigned long)spool);
1175
1176	vma_commit_reservation(h, vma, addr);
1177	return page;
1178}
1179
1180int __weak alloc_bootmem_huge_page(struct hstate *h)
1181{
1182	struct huge_bootmem_page *m;
1183	int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1184
1185	while (nr_nodes) {
1186		void *addr;
1187
1188		addr = __alloc_bootmem_node_nopanic(
1189				NODE_DATA(hstate_next_node_to_alloc(h,
1190						&node_states[N_MEMORY])),
1191				huge_page_size(h), huge_page_size(h), 0);
1192
1193		if (addr) {
1194			/*
1195			 * Use the beginning of the huge page to store the
1196			 * huge_bootmem_page struct (until gather_bootmem
1197			 * puts them into the mem_map).
1198			 */
1199			m = addr;
1200			goto found;
1201		}
1202		nr_nodes--;
1203	}
1204	return 0;
1205
1206found:
1207	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1208	/* Put them into a private list first because mem_map is not up yet */
1209	list_add(&m->list, &huge_boot_pages);
1210	m->hstate = h;
1211	return 1;
1212}
1213
1214static void prep_compound_huge_page(struct page *page, int order)
1215{
1216	if (unlikely(order > (MAX_ORDER - 1)))
1217		prep_compound_gigantic_page(page, order);
1218	else
1219		prep_compound_page(page, order);
1220}
1221
1222/* Put bootmem huge pages into the standard lists after mem_map is up */
1223static void __init gather_bootmem_prealloc(void)
1224{
1225	struct huge_bootmem_page *m;
1226
1227	list_for_each_entry(m, &huge_boot_pages, list) {
1228		struct hstate *h = m->hstate;
1229		struct page *page;
1230
1231#ifdef CONFIG_HIGHMEM
1232		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1233		free_bootmem_late((unsigned long)m,
1234				  sizeof(struct huge_bootmem_page));
1235#else
1236		page = virt_to_page(m);
1237#endif
1238		__ClearPageReserved(page);
1239		WARN_ON(page_count(page) != 1);
1240		prep_compound_huge_page(page, h->order);
1241		prep_new_huge_page(h, page, page_to_nid(page));
1242		/*
1243		 * If we had gigantic hugepages allocated at boot time, we need
1244		 * to restore the 'stolen' pages to totalram_pages in order to
1245		 * fix confusing memory reports from free(1) and another
1246		 * side-effects, like CommitLimit going negative.
1247		 */
1248		if (h->order > (MAX_ORDER - 1))
1249			totalram_pages += 1 << h->order;
1250	}
1251}
1252
1253static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1254{
1255	unsigned long i;
1256
1257	for (i = 0; i < h->max_huge_pages; ++i) {
1258		if (h->order >= MAX_ORDER) {
1259			if (!alloc_bootmem_huge_page(h))
1260				break;
1261		} else if (!alloc_fresh_huge_page(h,
1262					 &node_states[N_MEMORY]))
1263			break;
1264	}
1265	h->max_huge_pages = i;
1266}
1267
1268static void __init hugetlb_init_hstates(void)
1269{
1270	struct hstate *h;
1271
1272	for_each_hstate(h) {
1273		/* oversize hugepages were init'ed in early boot */
1274		if (h->order < MAX_ORDER)
1275			hugetlb_hstate_alloc_pages(h);
1276	}
1277}
1278
1279static char * __init memfmt(char *buf, unsigned long n)
1280{
1281	if (n >= (1UL << 30))
1282		sprintf(buf, "%lu GB", n >> 30);
1283	else if (n >= (1UL << 20))
1284		sprintf(buf, "%lu MB", n >> 20);
1285	else
1286		sprintf(buf, "%lu KB", n >> 10);
1287	return buf;
1288}
1289
1290static void __init report_hugepages(void)
1291{
1292	struct hstate *h;
1293
1294	for_each_hstate(h) {
1295		char buf[32];
1296		printk(KERN_INFO "HugeTLB registered %s page size, "
1297				 "pre-allocated %ld pages\n",
1298			memfmt(buf, huge_page_size(h)),
1299			h->free_huge_pages);
1300	}
1301}
1302
1303#ifdef CONFIG_HIGHMEM
1304static void try_to_free_low(struct hstate *h, unsigned long count,
1305						nodemask_t *nodes_allowed)
1306{
1307	int i;
1308
1309	if (h->order >= MAX_ORDER)
1310		return;
1311
1312	for_each_node_mask(i, *nodes_allowed) {
1313		struct page *page, *next;
1314		struct list_head *freel = &h->hugepage_freelists[i];
1315		list_for_each_entry_safe(page, next, freel, lru) {
1316			if (count >= h->nr_huge_pages)
1317				return;
1318			if (PageHighMem(page))
1319				continue;
1320			list_del(&page->lru);
1321			update_and_free_page(h, page);
1322			h->free_huge_pages--;
1323			h->free_huge_pages_node[page_to_nid(page)]--;
1324		}
1325	}
1326}
1327#else
1328static inline void try_to_free_low(struct hstate *h, unsigned long count,
1329						nodemask_t *nodes_allowed)
1330{
1331}
1332#endif
1333
1334/*
1335 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1336 * balanced by operating on them in a round-robin fashion.
1337 * Returns 1 if an adjustment was made.
1338 */
1339static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1340				int delta)
1341{
1342	int start_nid, next_nid;
1343	int ret = 0;
1344
1345	VM_BUG_ON(delta != -1 && delta != 1);
1346
1347	if (delta < 0)
1348		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1349	else
1350		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1351	next_nid = start_nid;
1352
1353	do {
1354		int nid = next_nid;
1355		if (delta < 0)  {
1356			/*
1357			 * To shrink on this node, there must be a surplus page
1358			 */
1359			if (!h->surplus_huge_pages_node[nid]) {
1360				next_nid = hstate_next_node_to_alloc(h,
1361								nodes_allowed);
1362				continue;
1363			}
1364		}
1365		if (delta > 0) {
1366			/*
1367			 * Surplus cannot exceed the total number of pages
1368			 */
1369			if (h->surplus_huge_pages_node[nid] >=
1370						h->nr_huge_pages_node[nid]) {
1371				next_nid = hstate_next_node_to_free(h,
1372								nodes_allowed);
1373				continue;
1374			}
1375		}
1376
1377		h->surplus_huge_pages += delta;
1378		h->surplus_huge_pages_node[nid] += delta;
1379		ret = 1;
1380		break;
1381	} while (next_nid != start_nid);
1382
1383	return ret;
1384}
1385
1386#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1387static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1388						nodemask_t *nodes_allowed)
1389{
1390	unsigned long min_count, ret;
1391
1392	if (h->order >= MAX_ORDER)
1393		return h->max_huge_pages;
1394
1395	/*
1396	 * Increase the pool size
1397	 * First take pages out of surplus state.  Then make up the
1398	 * remaining difference by allocating fresh huge pages.
1399	 *
1400	 * We might race with alloc_buddy_huge_page() here and be unable
1401	 * to convert a surplus huge page to a normal huge page. That is
1402	 * not critical, though, it just means the overall size of the
1403	 * pool might be one hugepage larger than it needs to be, but
1404	 * within all the constraints specified by the sysctls.
1405	 */
1406	spin_lock(&hugetlb_lock);
1407	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1408		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1409			break;
1410	}
1411
1412	while (count > persistent_huge_pages(h)) {
1413		/*
1414		 * If this allocation races such that we no longer need the
1415		 * page, free_huge_page will handle it by freeing the page
1416		 * and reducing the surplus.
1417		 */
1418		spin_unlock(&hugetlb_lock);
1419		ret = alloc_fresh_huge_page(h, nodes_allowed);
1420		spin_lock(&hugetlb_lock);
1421		if (!ret)
1422			goto out;
1423
1424		/* Bail for signals. Probably ctrl-c from user */
1425		if (signal_pending(current))
1426			goto out;
1427	}
1428
1429	/*
1430	 * Decrease the pool size
1431	 * First return free pages to the buddy allocator (being careful
1432	 * to keep enough around to satisfy reservations).  Then place
1433	 * pages into surplus state as needed so the pool will shrink
1434	 * to the desired size as pages become free.
1435	 *
1436	 * By placing pages into the surplus state independent of the
1437	 * overcommit value, we are allowing the surplus pool size to
1438	 * exceed overcommit. There are few sane options here. Since
1439	 * alloc_buddy_huge_page() is checking the global counter,
1440	 * though, we'll note that we're not allowed to exceed surplus
1441	 * and won't grow the pool anywhere else. Not until one of the
1442	 * sysctls are changed, or the surplus pages go out of use.
1443	 */
1444	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1445	min_count = max(count, min_count);
1446	try_to_free_low(h, min_count, nodes_allowed);
1447	while (min_count < persistent_huge_pages(h)) {
1448		if (!free_pool_huge_page(h, nodes_allowed, 0))
1449			break;
1450	}
1451	while (count < persistent_huge_pages(h)) {
1452		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1453			break;
1454	}
1455out:
1456	ret = persistent_huge_pages(h);
1457	spin_unlock(&hugetlb_lock);
1458	return ret;
1459}
1460
1461#define HSTATE_ATTR_RO(_name) \
1462	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1463
1464#define HSTATE_ATTR(_name) \
1465	static struct kobj_attribute _name##_attr = \
1466		__ATTR(_name, 0644, _name##_show, _name##_store)
1467
1468static struct kobject *hugepages_kobj;
1469static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1470
1471static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1472
1473static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1474{
1475	int i;
1476
1477	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1478		if (hstate_kobjs[i] == kobj) {
1479			if (nidp)
1480				*nidp = NUMA_NO_NODE;
1481			return &hstates[i];
1482		}
1483
1484	return kobj_to_node_hstate(kobj, nidp);
1485}
1486
1487static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1488					struct kobj_attribute *attr, char *buf)
1489{
1490	struct hstate *h;
1491	unsigned long nr_huge_pages;
1492	int nid;
1493
1494	h = kobj_to_hstate(kobj, &nid);
1495	if (nid == NUMA_NO_NODE)
1496		nr_huge_pages = h->nr_huge_pages;
1497	else
1498		nr_huge_pages = h->nr_huge_pages_node[nid];
1499
1500	return sprintf(buf, "%lu\n", nr_huge_pages);
1501}
1502
1503static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1504			struct kobject *kobj, struct kobj_attribute *attr,
1505			const char *buf, size_t len)
1506{
1507	int err;
1508	int nid;
1509	unsigned long count;
1510	struct hstate *h;
1511	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1512
1513	err = strict_strtoul(buf, 10, &count);
1514	if (err)
1515		goto out;
1516
1517	h = kobj_to_hstate(kobj, &nid);
1518	if (h->order >= MAX_ORDER) {
1519		err = -EINVAL;
1520		goto out;
1521	}
1522
1523	if (nid == NUMA_NO_NODE) {
1524		/*
1525		 * global hstate attribute
1526		 */
1527		if (!(obey_mempolicy &&
1528				init_nodemask_of_mempolicy(nodes_allowed))) {
1529			NODEMASK_FREE(nodes_allowed);
1530			nodes_allowed = &node_states[N_MEMORY];
1531		}
1532	} else if (nodes_allowed) {
1533		/*
1534		 * per node hstate attribute: adjust count to global,
1535		 * but restrict alloc/free to the specified node.
1536		 */
1537		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1538		init_nodemask_of_node(nodes_allowed, nid);
1539	} else
1540		nodes_allowed = &node_states[N_MEMORY];
1541
1542	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1543
1544	if (nodes_allowed != &node_states[N_MEMORY])
1545		NODEMASK_FREE(nodes_allowed);
1546
1547	return len;
1548out:
1549	NODEMASK_FREE(nodes_allowed);
1550	return err;
1551}
1552
1553static ssize_t nr_hugepages_show(struct kobject *kobj,
1554				       struct kobj_attribute *attr, char *buf)
1555{
1556	return nr_hugepages_show_common(kobj, attr, buf);
1557}
1558
1559static ssize_t nr_hugepages_store(struct kobject *kobj,
1560	       struct kobj_attribute *attr, const char *buf, size_t len)
1561{
1562	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1563}
1564HSTATE_ATTR(nr_hugepages);
1565
1566#ifdef CONFIG_NUMA
1567
1568/*
1569 * hstate attribute for optionally mempolicy-based constraint on persistent
1570 * huge page alloc/free.
1571 */
1572static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1573				       struct kobj_attribute *attr, char *buf)
1574{
1575	return nr_hugepages_show_common(kobj, attr, buf);
1576}
1577
1578static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1579	       struct kobj_attribute *attr, const char *buf, size_t len)
1580{
1581	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1582}
1583HSTATE_ATTR(nr_hugepages_mempolicy);
1584#endif
1585
1586
1587static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1588					struct kobj_attribute *attr, char *buf)
1589{
1590	struct hstate *h = kobj_to_hstate(kobj, NULL);
1591	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1592}
1593
1594static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1595		struct kobj_attribute *attr, const char *buf, size_t count)
1596{
1597	int err;
1598	unsigned long input;
1599	struct hstate *h = kobj_to_hstate(kobj, NULL);
1600
1601	if (h->order >= MAX_ORDER)
1602		return -EINVAL;
1603
1604	err = strict_strtoul(buf, 10, &input);
1605	if (err)
1606		return err;
1607
1608	spin_lock(&hugetlb_lock);
1609	h->nr_overcommit_huge_pages = input;
1610	spin_unlock(&hugetlb_lock);
1611
1612	return count;
1613}
1614HSTATE_ATTR(nr_overcommit_hugepages);
1615
1616static ssize_t free_hugepages_show(struct kobject *kobj,
1617					struct kobj_attribute *attr, char *buf)
1618{
1619	struct hstate *h;
1620	unsigned long free_huge_pages;
1621	int nid;
1622
1623	h = kobj_to_hstate(kobj, &nid);
1624	if (nid == NUMA_NO_NODE)
1625		free_huge_pages = h->free_huge_pages;
1626	else
1627		free_huge_pages = h->free_huge_pages_node[nid];
1628
1629	return sprintf(buf, "%lu\n", free_huge_pages);
1630}
1631HSTATE_ATTR_RO(free_hugepages);
1632
1633static ssize_t resv_hugepages_show(struct kobject *kobj,
1634					struct kobj_attribute *attr, char *buf)
1635{
1636	struct hstate *h = kobj_to_hstate(kobj, NULL);
1637	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1638}
1639HSTATE_ATTR_RO(resv_hugepages);
1640
1641static ssize_t surplus_hugepages_show(struct kobject *kobj,
1642					struct kobj_attribute *attr, char *buf)
1643{
1644	struct hstate *h;
1645	unsigned long surplus_huge_pages;
1646	int nid;
1647
1648	h = kobj_to_hstate(kobj, &nid);
1649	if (nid == NUMA_NO_NODE)
1650		surplus_huge_pages = h->surplus_huge_pages;
1651	else
1652		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1653
1654	return sprintf(buf, "%lu\n", surplus_huge_pages);
1655}
1656HSTATE_ATTR_RO(surplus_hugepages);
1657
1658static struct attribute *hstate_attrs[] = {
1659	&nr_hugepages_attr.attr,
1660	&nr_overcommit_hugepages_attr.attr,
1661	&free_hugepages_attr.attr,
1662	&resv_hugepages_attr.attr,
1663	&surplus_hugepages_attr.attr,
1664#ifdef CONFIG_NUMA
1665	&nr_hugepages_mempolicy_attr.attr,
1666#endif
1667	NULL,
1668};
1669
1670static struct attribute_group hstate_attr_group = {
1671	.attrs = hstate_attrs,
1672};
1673
1674static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1675				    struct kobject **hstate_kobjs,
1676				    struct attribute_group *hstate_attr_group)
1677{
1678	int retval;
1679	int hi = hstate_index(h);
1680
1681	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1682	if (!hstate_kobjs[hi])
1683		return -ENOMEM;
1684
1685	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1686	if (retval)
1687		kobject_put(hstate_kobjs[hi]);
1688
1689	return retval;
1690}
1691
1692static void __init hugetlb_sysfs_init(void)
1693{
1694	struct hstate *h;
1695	int err;
1696
1697	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1698	if (!hugepages_kobj)
1699		return;
1700
1701	for_each_hstate(h) {
1702		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1703					 hstate_kobjs, &hstate_attr_group);
1704		if (err)
1705			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1706								h->name);
1707	}
1708}
1709
1710#ifdef CONFIG_NUMA
1711
1712/*
1713 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1714 * with node devices in node_devices[] using a parallel array.  The array
1715 * index of a node device or _hstate == node id.
1716 * This is here to avoid any static dependency of the node device driver, in
1717 * the base kernel, on the hugetlb module.
1718 */
1719struct node_hstate {
1720	struct kobject		*hugepages_kobj;
1721	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1722};
1723struct node_hstate node_hstates[MAX_NUMNODES];
1724
1725/*
1726 * A subset of global hstate attributes for node devices
1727 */
1728static struct attribute *per_node_hstate_attrs[] = {
1729	&nr_hugepages_attr.attr,
1730	&free_hugepages_attr.attr,
1731	&surplus_hugepages_attr.attr,
1732	NULL,
1733};
1734
1735static struct attribute_group per_node_hstate_attr_group = {
1736	.attrs = per_node_hstate_attrs,
1737};
1738
1739/*
1740 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1741 * Returns node id via non-NULL nidp.
1742 */
1743static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1744{
1745	int nid;
1746
1747	for (nid = 0; nid < nr_node_ids; nid++) {
1748		struct node_hstate *nhs = &node_hstates[nid];
1749		int i;
1750		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1751			if (nhs->hstate_kobjs[i] == kobj) {
1752				if (nidp)
1753					*nidp = nid;
1754				return &hstates[i];
1755			}
1756	}
1757
1758	BUG();
1759	return NULL;
1760}
1761
1762/*
1763 * Unregister hstate attributes from a single node device.
1764 * No-op if no hstate attributes attached.
1765 */
1766void hugetlb_unregister_node(struct node *node)
1767{
1768	struct hstate *h;
1769	struct node_hstate *nhs = &node_hstates[node->dev.id];
1770
1771	if (!nhs->hugepages_kobj)
1772		return;		/* no hstate attributes */
1773
1774	for_each_hstate(h) {
1775		int idx = hstate_index(h);
1776		if (nhs->hstate_kobjs[idx]) {
1777			kobject_put(nhs->hstate_kobjs[idx]);
1778			nhs->hstate_kobjs[idx] = NULL;
1779		}
1780	}
1781
1782	kobject_put(nhs->hugepages_kobj);
1783	nhs->hugepages_kobj = NULL;
1784}
1785
1786/*
1787 * hugetlb module exit:  unregister hstate attributes from node devices
1788 * that have them.
1789 */
1790static void hugetlb_unregister_all_nodes(void)
1791{
1792	int nid;
1793
1794	/*
1795	 * disable node device registrations.
1796	 */
1797	register_hugetlbfs_with_node(NULL, NULL);
1798
1799	/*
1800	 * remove hstate attributes from any nodes that have them.
1801	 */
1802	for (nid = 0; nid < nr_node_ids; nid++)
1803		hugetlb_unregister_node(node_devices[nid]);
1804}
1805
1806/*
1807 * Register hstate attributes for a single node device.
1808 * No-op if attributes already registered.
1809 */
1810void hugetlb_register_node(struct node *node)
1811{
1812	struct hstate *h;
1813	struct node_hstate *nhs = &node_hstates[node->dev.id];
1814	int err;
1815
1816	if (nhs->hugepages_kobj)
1817		return;		/* already allocated */
1818
1819	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1820							&node->dev.kobj);
1821	if (!nhs->hugepages_kobj)
1822		return;
1823
1824	for_each_hstate(h) {
1825		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1826						nhs->hstate_kobjs,
1827						&per_node_hstate_attr_group);
1828		if (err) {
1829			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1830					" for node %d\n",
1831						h->name, node->dev.id);
1832			hugetlb_unregister_node(node);
1833			break;
1834		}
1835	}
1836}
1837
1838/*
1839 * hugetlb init time:  register hstate attributes for all registered node
1840 * devices of nodes that have memory.  All on-line nodes should have
1841 * registered their associated device by this time.
1842 */
1843static void hugetlb_register_all_nodes(void)
1844{
1845	int nid;
1846
1847	for_each_node_state(nid, N_MEMORY) {
1848		struct node *node = node_devices[nid];
1849		if (node->dev.id == nid)
1850			hugetlb_register_node(node);
1851	}
1852
1853	/*
1854	 * Let the node device driver know we're here so it can
1855	 * [un]register hstate attributes on node hotplug.
1856	 */
1857	register_hugetlbfs_with_node(hugetlb_register_node,
1858				     hugetlb_unregister_node);
1859}
1860#else	/* !CONFIG_NUMA */
1861
1862static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1863{
1864	BUG();
1865	if (nidp)
1866		*nidp = -1;
1867	return NULL;
1868}
1869
1870static void hugetlb_unregister_all_nodes(void) { }
1871
1872static void hugetlb_register_all_nodes(void) { }
1873
1874#endif
1875
1876static void __exit hugetlb_exit(void)
1877{
1878	struct hstate *h;
1879
1880	hugetlb_unregister_all_nodes();
1881
1882	for_each_hstate(h) {
1883		kobject_put(hstate_kobjs[hstate_index(h)]);
1884	}
1885
1886	kobject_put(hugepages_kobj);
1887}
1888module_exit(hugetlb_exit);
1889
1890static int __init hugetlb_init(void)
1891{
1892	/* Some platform decide whether they support huge pages at boot
1893	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1894	 * there is no such support
1895	 */
1896	if (HPAGE_SHIFT == 0)
1897		return 0;
1898
1899	if (!size_to_hstate(default_hstate_size)) {
1900		default_hstate_size = HPAGE_SIZE;
1901		if (!size_to_hstate(default_hstate_size))
1902			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1903	}
1904	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1905	if (default_hstate_max_huge_pages)
1906		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1907
1908	hugetlb_init_hstates();
1909	gather_bootmem_prealloc();
1910	report_hugepages();
1911
1912	hugetlb_sysfs_init();
1913	hugetlb_register_all_nodes();
1914	hugetlb_cgroup_file_init();
1915
1916	return 0;
1917}
1918module_init(hugetlb_init);
1919
1920/* Should be called on processing a hugepagesz=... option */
1921void __init hugetlb_add_hstate(unsigned order)
1922{
1923	struct hstate *h;
1924	unsigned long i;
1925
1926	if (size_to_hstate(PAGE_SIZE << order)) {
1927		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1928		return;
1929	}
1930	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1931	BUG_ON(order == 0);
1932	h = &hstates[hugetlb_max_hstate++];
1933	h->order = order;
1934	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1935	h->nr_huge_pages = 0;
1936	h->free_huge_pages = 0;
1937	for (i = 0; i < MAX_NUMNODES; ++i)
1938		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1939	INIT_LIST_HEAD(&h->hugepage_activelist);
1940	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1941	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1942	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1943					huge_page_size(h)/1024);
1944
1945	parsed_hstate = h;
1946}
1947
1948static int __init hugetlb_nrpages_setup(char *s)
1949{
1950	unsigned long *mhp;
1951	static unsigned long *last_mhp;
1952
1953	/*
1954	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1955	 * so this hugepages= parameter goes to the "default hstate".
1956	 */
1957	if (!hugetlb_max_hstate)
1958		mhp = &default_hstate_max_huge_pages;
1959	else
1960		mhp = &parsed_hstate->max_huge_pages;
1961
1962	if (mhp == last_mhp) {
1963		printk(KERN_WARNING "hugepages= specified twice without "
1964			"interleaving hugepagesz=, ignoring\n");
1965		return 1;
1966	}
1967
1968	if (sscanf(s, "%lu", mhp) <= 0)
1969		*mhp = 0;
1970
1971	/*
1972	 * Global state is always initialized later in hugetlb_init.
1973	 * But we need to allocate >= MAX_ORDER hstates here early to still
1974	 * use the bootmem allocator.
1975	 */
1976	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1977		hugetlb_hstate_alloc_pages(parsed_hstate);
1978
1979	last_mhp = mhp;
1980
1981	return 1;
1982}
1983__setup("hugepages=", hugetlb_nrpages_setup);
1984
1985static int __init hugetlb_default_setup(char *s)
1986{
1987	default_hstate_size = memparse(s, &s);
1988	return 1;
1989}
1990__setup("default_hugepagesz=", hugetlb_default_setup);
1991
1992static unsigned int cpuset_mems_nr(unsigned int *array)
1993{
1994	int node;
1995	unsigned int nr = 0;
1996
1997	for_each_node_mask(node, cpuset_current_mems_allowed)
1998		nr += array[node];
1999
2000	return nr;
2001}
2002
2003#ifdef CONFIG_SYSCTL
2004static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2005			 struct ctl_table *table, int write,
2006			 void __user *buffer, size_t *length, loff_t *ppos)
2007{
2008	struct hstate *h = &default_hstate;
2009	unsigned long tmp;
2010	int ret;
2011
2012	tmp = h->max_huge_pages;
2013
2014	if (write && h->order >= MAX_ORDER)
2015		return -EINVAL;
2016
2017	table->data = &tmp;
2018	table->maxlen = sizeof(unsigned long);
2019	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2020	if (ret)
2021		goto out;
2022
2023	if (write) {
2024		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2025						GFP_KERNEL | __GFP_NORETRY);
2026		if (!(obey_mempolicy &&
2027			       init_nodemask_of_mempolicy(nodes_allowed))) {
2028			NODEMASK_FREE(nodes_allowed);
2029			nodes_allowed = &node_states[N_MEMORY];
2030		}
2031		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2032
2033		if (nodes_allowed != &node_states[N_MEMORY])
2034			NODEMASK_FREE(nodes_allowed);
2035	}
2036out:
2037	return ret;
2038}
2039
2040int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2041			  void __user *buffer, size_t *length, loff_t *ppos)
2042{
2043
2044	return hugetlb_sysctl_handler_common(false, table, write,
2045							buffer, length, ppos);
2046}
2047
2048#ifdef CONFIG_NUMA
2049int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2050			  void __user *buffer, size_t *length, loff_t *ppos)
2051{
2052	return hugetlb_sysctl_handler_common(true, table, write,
2053							buffer, length, ppos);
2054}
2055#endif /* CONFIG_NUMA */
2056
2057int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2058			void __user *buffer,
2059			size_t *length, loff_t *ppos)
2060{
2061	proc_dointvec(table, write, buffer, length, ppos);
2062	if (hugepages_treat_as_movable)
2063		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2064	else
2065		htlb_alloc_mask = GFP_HIGHUSER;
2066	return 0;
2067}
2068
2069int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2070			void __user *buffer,
2071			size_t *length, loff_t *ppos)
2072{
2073	struct hstate *h = &default_hstate;
2074	unsigned long tmp;
2075	int ret;
2076
2077	tmp = h->nr_overcommit_huge_pages;
2078
2079	if (write && h->order >= MAX_ORDER)
2080		return -EINVAL;
2081
2082	table->data = &tmp;
2083	table->maxlen = sizeof(unsigned long);
2084	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2085	if (ret)
2086		goto out;
2087
2088	if (write) {
2089		spin_lock(&hugetlb_lock);
2090		h->nr_overcommit_huge_pages = tmp;
2091		spin_unlock(&hugetlb_lock);
2092	}
2093out:
2094	return ret;
2095}
2096
2097#endif /* CONFIG_SYSCTL */
2098
2099void hugetlb_report_meminfo(struct seq_file *m)
2100{
2101	struct hstate *h = &default_hstate;
2102	seq_printf(m,
2103			"HugePages_Total:   %5lu\n"
2104			"HugePages_Free:    %5lu\n"
2105			"HugePages_Rsvd:    %5lu\n"
2106			"HugePages_Surp:    %5lu\n"
2107			"Hugepagesize:   %8lu kB\n",
2108			h->nr_huge_pages,
2109			h->free_huge_pages,
2110			h->resv_huge_pages,
2111			h->surplus_huge_pages,
2112			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2113}
2114
2115int hugetlb_report_node_meminfo(int nid, char *buf)
2116{
2117	struct hstate *h = &default_hstate;
2118	return sprintf(buf,
2119		"Node %d HugePages_Total: %5u\n"
2120		"Node %d HugePages_Free:  %5u\n"
2121		"Node %d HugePages_Surp:  %5u\n",
2122		nid, h->nr_huge_pages_node[nid],
2123		nid, h->free_huge_pages_node[nid],
2124		nid, h->surplus_huge_pages_node[nid]);
2125}
2126
2127/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2128unsigned long hugetlb_total_pages(void)
2129{
2130	struct hstate *h = &default_hstate;
2131	return h->nr_huge_pages * pages_per_huge_page(h);
2132}
2133
2134static int hugetlb_acct_memory(struct hstate *h, long delta)
2135{
2136	int ret = -ENOMEM;
2137
2138	spin_lock(&hugetlb_lock);
2139	/*
2140	 * When cpuset is configured, it breaks the strict hugetlb page
2141	 * reservation as the accounting is done on a global variable. Such
2142	 * reservation is completely rubbish in the presence of cpuset because
2143	 * the reservation is not checked against page availability for the
2144	 * current cpuset. Application can still potentially OOM'ed by kernel
2145	 * with lack of free htlb page in cpuset that the task is in.
2146	 * Attempt to enforce strict accounting with cpuset is almost
2147	 * impossible (or too ugly) because cpuset is too fluid that
2148	 * task or memory node can be dynamically moved between cpusets.
2149	 *
2150	 * The change of semantics for shared hugetlb mapping with cpuset is
2151	 * undesirable. However, in order to preserve some of the semantics,
2152	 * we fall back to check against current free page availability as
2153	 * a best attempt and hopefully to minimize the impact of changing
2154	 * semantics that cpuset has.
2155	 */
2156	if (delta > 0) {
2157		if (gather_surplus_pages(h, delta) < 0)
2158			goto out;
2159
2160		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2161			return_unused_surplus_pages(h, delta);
2162			goto out;
2163		}
2164	}
2165
2166	ret = 0;
2167	if (delta < 0)
2168		return_unused_surplus_pages(h, (unsigned long) -delta);
2169
2170out:
2171	spin_unlock(&hugetlb_lock);
2172	return ret;
2173}
2174
2175static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2176{
2177	struct resv_map *reservations = vma_resv_map(vma);
2178
2179	/*
2180	 * This new VMA should share its siblings reservation map if present.
2181	 * The VMA will only ever have a valid reservation map pointer where
2182	 * it is being copied for another still existing VMA.  As that VMA
2183	 * has a reference to the reservation map it cannot disappear until
2184	 * after this open call completes.  It is therefore safe to take a
2185	 * new reference here without additional locking.
2186	 */
2187	if (reservations)
2188		kref_get(&reservations->refs);
2189}
2190
2191static void resv_map_put(struct vm_area_struct *vma)
2192{
2193	struct resv_map *reservations = vma_resv_map(vma);
2194
2195	if (!reservations)
2196		return;
2197	kref_put(&reservations->refs, resv_map_release);
2198}
2199
2200static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2201{
2202	struct hstate *h = hstate_vma(vma);
2203	struct resv_map *reservations = vma_resv_map(vma);
2204	struct hugepage_subpool *spool = subpool_vma(vma);
2205	unsigned long reserve;
2206	unsigned long start;
2207	unsigned long end;
2208
2209	if (reservations) {
2210		start = vma_hugecache_offset(h, vma, vma->vm_start);
2211		end = vma_hugecache_offset(h, vma, vma->vm_end);
2212
2213		reserve = (end - start) -
2214			region_count(&reservations->regions, start, end);
2215
2216		resv_map_put(vma);
2217
2218		if (reserve) {
2219			hugetlb_acct_memory(h, -reserve);
2220			hugepage_subpool_put_pages(spool, reserve);
2221		}
2222	}
2223}
2224
2225/*
2226 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2227 * handle_mm_fault() to try to instantiate regular-sized pages in the
2228 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2229 * this far.
2230 */
2231static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2232{
2233	BUG();
2234	return 0;
2235}
2236
2237const struct vm_operations_struct hugetlb_vm_ops = {
2238	.fault = hugetlb_vm_op_fault,
2239	.open = hugetlb_vm_op_open,
2240	.close = hugetlb_vm_op_close,
2241};
2242
2243static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2244				int writable)
2245{
2246	pte_t entry;
2247
2248	if (writable) {
2249		entry =
2250		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2251	} else {
2252		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2253	}
2254	entry = pte_mkyoung(entry);
2255	entry = pte_mkhuge(entry);
2256	entry = arch_make_huge_pte(entry, vma, page, writable);
2257
2258	return entry;
2259}
2260
2261static void set_huge_ptep_writable(struct vm_area_struct *vma,
2262				   unsigned long address, pte_t *ptep)
2263{
2264	pte_t entry;
2265
2266	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2267	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2268		update_mmu_cache(vma, address, ptep);
2269}
2270
2271
2272int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2273			    struct vm_area_struct *vma)
2274{
2275	pte_t *src_pte, *dst_pte, entry;
2276	struct page *ptepage;
2277	unsigned long addr;
2278	int cow;
2279	struct hstate *h = hstate_vma(vma);
2280	unsigned long sz = huge_page_size(h);
2281
2282	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2283
2284	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2285		src_pte = huge_pte_offset(src, addr);
2286		if (!src_pte)
2287			continue;
2288		dst_pte = huge_pte_alloc(dst, addr, sz);
2289		if (!dst_pte)
2290			goto nomem;
2291
2292		/* If the pagetables are shared don't copy or take references */
2293		if (dst_pte == src_pte)
2294			continue;
2295
2296		spin_lock(&dst->page_table_lock);
2297		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2298		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2299			if (cow)
2300				huge_ptep_set_wrprotect(src, addr, src_pte);
2301			entry = huge_ptep_get(src_pte);
2302			ptepage = pte_page(entry);
2303			get_page(ptepage);
2304			page_dup_rmap(ptepage);
2305			set_huge_pte_at(dst, addr, dst_pte, entry);
2306		}
2307		spin_unlock(&src->page_table_lock);
2308		spin_unlock(&dst->page_table_lock);
2309	}
2310	return 0;
2311
2312nomem:
2313	return -ENOMEM;
2314}
2315
2316static int is_hugetlb_entry_migration(pte_t pte)
2317{
2318	swp_entry_t swp;
2319
2320	if (huge_pte_none(pte) || pte_present(pte))
2321		return 0;
2322	swp = pte_to_swp_entry(pte);
2323	if (non_swap_entry(swp) && is_migration_entry(swp))
2324		return 1;
2325	else
2326		return 0;
2327}
2328
2329static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2330{
2331	swp_entry_t swp;
2332
2333	if (huge_pte_none(pte) || pte_present(pte))
2334		return 0;
2335	swp = pte_to_swp_entry(pte);
2336	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2337		return 1;
2338	else
2339		return 0;
2340}
2341
2342void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2343			    unsigned long start, unsigned long end,
2344			    struct page *ref_page)
2345{
2346	int force_flush = 0;
2347	struct mm_struct *mm = vma->vm_mm;
2348	unsigned long address;
2349	pte_t *ptep;
2350	pte_t pte;
2351	struct page *page;
2352	struct hstate *h = hstate_vma(vma);
2353	unsigned long sz = huge_page_size(h);
2354	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2355	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2356
2357	WARN_ON(!is_vm_hugetlb_page(vma));
2358	BUG_ON(start & ~huge_page_mask(h));
2359	BUG_ON(end & ~huge_page_mask(h));
2360
2361	tlb_start_vma(tlb, vma);
2362	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2363again:
2364	spin_lock(&mm->page_table_lock);
2365	for (address = start; address < end; address += sz) {
2366		ptep = huge_pte_offset(mm, address);
2367		if (!ptep)
2368			continue;
2369
2370		if (huge_pmd_unshare(mm, &address, ptep))
2371			continue;
2372
2373		pte = huge_ptep_get(ptep);
2374		if (huge_pte_none(pte))
2375			continue;
2376
2377		/*
2378		 * HWPoisoned hugepage is already unmapped and dropped reference
2379		 */
2380		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2381			pte_clear(mm, address, ptep);
2382			continue;
2383		}
2384
2385		page = pte_page(pte);
2386		/*
2387		 * If a reference page is supplied, it is because a specific
2388		 * page is being unmapped, not a range. Ensure the page we
2389		 * are about to unmap is the actual page of interest.
2390		 */
2391		if (ref_page) {
2392			if (page != ref_page)
2393				continue;
2394
2395			/*
2396			 * Mark the VMA as having unmapped its page so that
2397			 * future faults in this VMA will fail rather than
2398			 * looking like data was lost
2399			 */
2400			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2401		}
2402
2403		pte = huge_ptep_get_and_clear(mm, address, ptep);
2404		tlb_remove_tlb_entry(tlb, ptep, address);
2405		if (pte_dirty(pte))
2406			set_page_dirty(page);
2407
2408		page_remove_rmap(page);
2409		force_flush = !__tlb_remove_page(tlb, page);
2410		if (force_flush)
2411			break;
2412		/* Bail out after unmapping reference page if supplied */
2413		if (ref_page)
2414			break;
2415	}
2416	spin_unlock(&mm->page_table_lock);
2417	/*
2418	 * mmu_gather ran out of room to batch pages, we break out of
2419	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2420	 * and page-free while holding it.
2421	 */
2422	if (force_flush) {
2423		force_flush = 0;
2424		tlb_flush_mmu(tlb);
2425		if (address < end && !ref_page)
2426			goto again;
2427	}
2428	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2429	tlb_end_vma(tlb, vma);
2430}
2431
2432void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2433			  struct vm_area_struct *vma, unsigned long start,
2434			  unsigned long end, struct page *ref_page)
2435{
2436	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2437
2438	/*
2439	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2440	 * test will fail on a vma being torn down, and not grab a page table
2441	 * on its way out.  We're lucky that the flag has such an appropriate
2442	 * name, and can in fact be safely cleared here. We could clear it
2443	 * before the __unmap_hugepage_range above, but all that's necessary
2444	 * is to clear it before releasing the i_mmap_mutex. This works
2445	 * because in the context this is called, the VMA is about to be
2446	 * destroyed and the i_mmap_mutex is held.
2447	 */
2448	vma->vm_flags &= ~VM_MAYSHARE;
2449}
2450
2451void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2452			  unsigned long end, struct page *ref_page)
2453{
2454	struct mm_struct *mm;
2455	struct mmu_gather tlb;
2456
2457	mm = vma->vm_mm;
2458
2459	tlb_gather_mmu(&tlb, mm, 0);
2460	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2461	tlb_finish_mmu(&tlb, start, end);
2462}
2463
2464/*
2465 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2466 * mappping it owns the reserve page for. The intention is to unmap the page
2467 * from other VMAs and let the children be SIGKILLed if they are faulting the
2468 * same region.
2469 */
2470static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2471				struct page *page, unsigned long address)
2472{
2473	struct hstate *h = hstate_vma(vma);
2474	struct vm_area_struct *iter_vma;
2475	struct address_space *mapping;
2476	pgoff_t pgoff;
2477
2478	/*
2479	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2480	 * from page cache lookup which is in HPAGE_SIZE units.
2481	 */
2482	address = address & huge_page_mask(h);
2483	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2484			vma->vm_pgoff;
2485	mapping = file_inode(vma->vm_file)->i_mapping;
2486
2487	/*
2488	 * Take the mapping lock for the duration of the table walk. As
2489	 * this mapping should be shared between all the VMAs,
2490	 * __unmap_hugepage_range() is called as the lock is already held
2491	 */
2492	mutex_lock(&mapping->i_mmap_mutex);
2493	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2494		/* Do not unmap the current VMA */
2495		if (iter_vma == vma)
2496			continue;
2497
2498		/*
2499		 * Unmap the page from other VMAs without their own reserves.
2500		 * They get marked to be SIGKILLed if they fault in these
2501		 * areas. This is because a future no-page fault on this VMA
2502		 * could insert a zeroed page instead of the data existing
2503		 * from the time of fork. This would look like data corruption
2504		 */
2505		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2506			unmap_hugepage_range(iter_vma, address,
2507					     address + huge_page_size(h), page);
2508	}
2509	mutex_unlock(&mapping->i_mmap_mutex);
2510
2511	return 1;
2512}
2513
2514/*
2515 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2516 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2517 * cannot race with other handlers or page migration.
2518 * Keep the pte_same checks anyway to make transition from the mutex easier.
2519 */
2520static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2521			unsigned long address, pte_t *ptep, pte_t pte,
2522			struct page *pagecache_page)
2523{
2524	struct hstate *h = hstate_vma(vma);
2525	struct page *old_page, *new_page;
2526	int avoidcopy;
2527	int outside_reserve = 0;
2528	unsigned long mmun_start;	/* For mmu_notifiers */
2529	unsigned long mmun_end;		/* For mmu_notifiers */
2530
2531	old_page = pte_page(pte);
2532
2533retry_avoidcopy:
2534	/* If no-one else is actually using this page, avoid the copy
2535	 * and just make the page writable */
2536	avoidcopy = (page_mapcount(old_page) == 1);
2537	if (avoidcopy) {
2538		if (PageAnon(old_page))
2539			page_move_anon_rmap(old_page, vma, address);
2540		set_huge_ptep_writable(vma, address, ptep);
2541		return 0;
2542	}
2543
2544	/*
2545	 * If the process that created a MAP_PRIVATE mapping is about to
2546	 * perform a COW due to a shared page count, attempt to satisfy
2547	 * the allocation without using the existing reserves. The pagecache
2548	 * page is used to determine if the reserve at this address was
2549	 * consumed or not. If reserves were used, a partial faulted mapping
2550	 * at the time of fork() could consume its reserves on COW instead
2551	 * of the full address range.
2552	 */
2553	if (!(vma->vm_flags & VM_MAYSHARE) &&
2554			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2555			old_page != pagecache_page)
2556		outside_reserve = 1;
2557
2558	page_cache_get(old_page);
2559
2560	/* Drop page_table_lock as buddy allocator may be called */
2561	spin_unlock(&mm->page_table_lock);
2562	new_page = alloc_huge_page(vma, address, outside_reserve);
2563
2564	if (IS_ERR(new_page)) {
2565		long err = PTR_ERR(new_page);
2566		page_cache_release(old_page);
2567
2568		/*
2569		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2570		 * it is due to references held by a child and an insufficient
2571		 * huge page pool. To guarantee the original mappers
2572		 * reliability, unmap the page from child processes. The child
2573		 * may get SIGKILLed if it later faults.
2574		 */
2575		if (outside_reserve) {
2576			BUG_ON(huge_pte_none(pte));
2577			if (unmap_ref_private(mm, vma, old_page, address)) {
2578				BUG_ON(huge_pte_none(pte));
2579				spin_lock(&mm->page_table_lock);
2580				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2581				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2582					goto retry_avoidcopy;
2583				/*
2584				 * race occurs while re-acquiring page_table_lock, and
2585				 * our job is done.
2586				 */
2587				return 0;
2588			}
2589			WARN_ON_ONCE(1);
2590		}
2591
2592		/* Caller expects lock to be held */
2593		spin_lock(&mm->page_table_lock);
2594		if (err == -ENOMEM)
2595			return VM_FAULT_OOM;
2596		else
2597			return VM_FAULT_SIGBUS;
2598	}
2599
2600	/*
2601	 * When the original hugepage is shared one, it does not have
2602	 * anon_vma prepared.
2603	 */
2604	if (unlikely(anon_vma_prepare(vma))) {
2605		page_cache_release(new_page);
2606		page_cache_release(old_page);
2607		/* Caller expects lock to be held */
2608		spin_lock(&mm->page_table_lock);
2609		return VM_FAULT_OOM;
2610	}
2611
2612	copy_user_huge_page(new_page, old_page, address, vma,
2613			    pages_per_huge_page(h));
2614	__SetPageUptodate(new_page);
2615
2616	mmun_start = address & huge_page_mask(h);
2617	mmun_end = mmun_start + huge_page_size(h);
2618	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2619	/*
2620	 * Retake the page_table_lock to check for racing updates
2621	 * before the page tables are altered
2622	 */
2623	spin_lock(&mm->page_table_lock);
2624	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2625	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2626		/* Break COW */
2627		huge_ptep_clear_flush(vma, address, ptep);
2628		set_huge_pte_at(mm, address, ptep,
2629				make_huge_pte(vma, new_page, 1));
2630		page_remove_rmap(old_page);
2631		hugepage_add_new_anon_rmap(new_page, vma, address);
2632		/* Make the old page be freed below */
2633		new_page = old_page;
2634	}
2635	spin_unlock(&mm->page_table_lock);
2636	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2637	/* Caller expects lock to be held */
2638	spin_lock(&mm->page_table_lock);
2639	page_cache_release(new_page);
2640	page_cache_release(old_page);
2641	return 0;
2642}
2643
2644/* Return the pagecache page at a given address within a VMA */
2645static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2646			struct vm_area_struct *vma, unsigned long address)
2647{
2648	struct address_space *mapping;
2649	pgoff_t idx;
2650
2651	mapping = vma->vm_file->f_mapping;
2652	idx = vma_hugecache_offset(h, vma, address);
2653
2654	return find_lock_page(mapping, idx);
2655}
2656
2657/*
2658 * Return whether there is a pagecache page to back given address within VMA.
2659 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2660 */
2661static bool hugetlbfs_pagecache_present(struct hstate *h,
2662			struct vm_area_struct *vma, unsigned long address)
2663{
2664	struct address_space *mapping;
2665	pgoff_t idx;
2666	struct page *page;
2667
2668	mapping = vma->vm_file->f_mapping;
2669	idx = vma_hugecache_offset(h, vma, address);
2670
2671	page = find_get_page(mapping, idx);
2672	if (page)
2673		put_page(page);
2674	return page != NULL;
2675}
2676
2677static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2678			unsigned long address, pte_t *ptep, unsigned int flags)
2679{
2680	struct hstate *h = hstate_vma(vma);
2681	int ret = VM_FAULT_SIGBUS;
2682	int anon_rmap = 0;
2683	pgoff_t idx;
2684	unsigned long size;
2685	struct page *page;
2686	struct address_space *mapping;
2687	pte_t new_pte;
2688
2689	/*
2690	 * Currently, we are forced to kill the process in the event the
2691	 * original mapper has unmapped pages from the child due to a failed
2692	 * COW. Warn that such a situation has occurred as it may not be obvious
2693	 */
2694	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2695		printk(KERN_WARNING
2696			"PID %d killed due to inadequate hugepage pool\n",
2697			current->pid);
2698		return ret;
2699	}
2700
2701	mapping = vma->vm_file->f_mapping;
2702	idx = vma_hugecache_offset(h, vma, address);
2703
2704	/*
2705	 * Use page lock to guard against racing truncation
2706	 * before we get page_table_lock.
2707	 */
2708retry:
2709	page = find_lock_page(mapping, idx);
2710	if (!page) {
2711		size = i_size_read(mapping->host) >> huge_page_shift(h);
2712		if (idx >= size)
2713			goto out;
2714		page = alloc_huge_page(vma, address, 0);
2715		if (IS_ERR(page)) {
2716			ret = PTR_ERR(page);
2717			if (ret == -ENOMEM)
2718				ret = VM_FAULT_OOM;
2719			else
2720				ret = VM_FAULT_SIGBUS;
2721			goto out;
2722		}
2723		clear_huge_page(page, address, pages_per_huge_page(h));
2724		__SetPageUptodate(page);
2725
2726		if (vma->vm_flags & VM_MAYSHARE) {
2727			int err;
2728			struct inode *inode = mapping->host;
2729
2730			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2731			if (err) {
2732				put_page(page);
2733				if (err == -EEXIST)
2734					goto retry;
2735				goto out;
2736			}
2737
2738			spin_lock(&inode->i_lock);
2739			inode->i_blocks += blocks_per_huge_page(h);
2740			spin_unlock(&inode->i_lock);
2741		} else {
2742			lock_page(page);
2743			if (unlikely(anon_vma_prepare(vma))) {
2744				ret = VM_FAULT_OOM;
2745				goto backout_unlocked;
2746			}
2747			anon_rmap = 1;
2748		}
2749	} else {
2750		/*
2751		 * If memory error occurs between mmap() and fault, some process
2752		 * don't have hwpoisoned swap entry for errored virtual address.
2753		 * So we need to block hugepage fault by PG_hwpoison bit check.
2754		 */
2755		if (unlikely(PageHWPoison(page))) {
2756			ret = VM_FAULT_HWPOISON |
2757				VM_FAULT_SET_HINDEX(hstate_index(h));
2758			goto backout_unlocked;
2759		}
2760	}
2761
2762	/*
2763	 * If we are going to COW a private mapping later, we examine the
2764	 * pending reservations for this page now. This will ensure that
2765	 * any allocations necessary to record that reservation occur outside
2766	 * the spinlock.
2767	 */
2768	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2769		if (vma_needs_reservation(h, vma, address) < 0) {
2770			ret = VM_FAULT_OOM;
2771			goto backout_unlocked;
2772		}
2773
2774	spin_lock(&mm->page_table_lock);
2775	size = i_size_read(mapping->host) >> huge_page_shift(h);
2776	if (idx >= size)
2777		goto backout;
2778
2779	ret = 0;
2780	if (!huge_pte_none(huge_ptep_get(ptep)))
2781		goto backout;
2782
2783	if (anon_rmap)
2784		hugepage_add_new_anon_rmap(page, vma, address);
2785	else
2786		page_dup_rmap(page);
2787	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2788				&& (vma->vm_flags & VM_SHARED)));
2789	set_huge_pte_at(mm, address, ptep, new_pte);
2790
2791	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2792		/* Optimization, do the COW without a second fault */
2793		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2794	}
2795
2796	spin_unlock(&mm->page_table_lock);
2797	unlock_page(page);
2798out:
2799	return ret;
2800
2801backout:
2802	spin_unlock(&mm->page_table_lock);
2803backout_unlocked:
2804	unlock_page(page);
2805	put_page(page);
2806	goto out;
2807}
2808
2809int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2810			unsigned long address, unsigned int flags)
2811{
2812	pte_t *ptep;
2813	pte_t entry;
2814	int ret;
2815	struct page *page = NULL;
2816	struct page *pagecache_page = NULL;
2817	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2818	struct hstate *h = hstate_vma(vma);
2819
2820	address &= huge_page_mask(h);
2821
2822	ptep = huge_pte_offset(mm, address);
2823	if (ptep) {
2824		entry = huge_ptep_get(ptep);
2825		if (unlikely(is_hugetlb_entry_migration(entry))) {
2826			migration_entry_wait(mm, (pmd_t *)ptep, address);
2827			return 0;
2828		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2829			return VM_FAULT_HWPOISON_LARGE |
2830				VM_FAULT_SET_HINDEX(hstate_index(h));
2831	}
2832
2833	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2834	if (!ptep)
2835		return VM_FAULT_OOM;
2836
2837	/*
2838	 * Serialize hugepage allocation and instantiation, so that we don't
2839	 * get spurious allocation failures if two CPUs race to instantiate
2840	 * the same page in the page cache.
2841	 */
2842	mutex_lock(&hugetlb_instantiation_mutex);
2843	entry = huge_ptep_get(ptep);
2844	if (huge_pte_none(entry)) {
2845		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2846		goto out_mutex;
2847	}
2848
2849	ret = 0;
2850
2851	/*
2852	 * If we are going to COW the mapping later, we examine the pending
2853	 * reservations for this page now. This will ensure that any
2854	 * allocations necessary to record that reservation occur outside the
2855	 * spinlock. For private mappings, we also lookup the pagecache
2856	 * page now as it is used to determine if a reservation has been
2857	 * consumed.
2858	 */
2859	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2860		if (vma_needs_reservation(h, vma, address) < 0) {
2861			ret = VM_FAULT_OOM;
2862			goto out_mutex;
2863		}
2864
2865		if (!(vma->vm_flags & VM_MAYSHARE))
2866			pagecache_page = hugetlbfs_pagecache_page(h,
2867								vma, address);
2868	}
2869
2870	/*
2871	 * hugetlb_cow() requires page locks of pte_page(entry) and
2872	 * pagecache_page, so here we need take the former one
2873	 * when page != pagecache_page or !pagecache_page.
2874	 * Note that locking order is always pagecache_page -> page,
2875	 * so no worry about deadlock.
2876	 */
2877	page = pte_page(entry);
2878	get_page(page);
2879	if (page != pagecache_page)
2880		lock_page(page);
2881
2882	spin_lock(&mm->page_table_lock);
2883	/* Check for a racing update before calling hugetlb_cow */
2884	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2885		goto out_page_table_lock;
2886
2887
2888	if (flags & FAULT_FLAG_WRITE) {
2889		if (!pte_write(entry)) {
2890			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2891							pagecache_page);
2892			goto out_page_table_lock;
2893		}
2894		entry = pte_mkdirty(entry);
2895	}
2896	entry = pte_mkyoung(entry);
2897	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2898						flags & FAULT_FLAG_WRITE))
2899		update_mmu_cache(vma, address, ptep);
2900
2901out_page_table_lock:
2902	spin_unlock(&mm->page_table_lock);
2903
2904	if (pagecache_page) {
2905		unlock_page(pagecache_page);
2906		put_page(pagecache_page);
2907	}
2908	if (page != pagecache_page)
2909		unlock_page(page);
2910	put_page(page);
2911
2912out_mutex:
2913	mutex_unlock(&hugetlb_instantiation_mutex);
2914
2915	return ret;
2916}
2917
2918/* Can be overriden by architectures */
2919__attribute__((weak)) struct page *
2920follow_huge_pud(struct mm_struct *mm, unsigned long address,
2921	       pud_t *pud, int write)
2922{
2923	BUG();
2924	return NULL;
2925}
2926
2927int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2928			struct page **pages, struct vm_area_struct **vmas,
2929			unsigned long *position, int *length, int i,
2930			unsigned int flags)
2931{
2932	unsigned long pfn_offset;
2933	unsigned long vaddr = *position;
2934	int remainder = *length;
2935	struct hstate *h = hstate_vma(vma);
2936
2937	spin_lock(&mm->page_table_lock);
2938	while (vaddr < vma->vm_end && remainder) {
2939		pte_t *pte;
2940		int absent;
2941		struct page *page;
2942
2943		/*
2944		 * Some archs (sparc64, sh*) have multiple pte_ts to
2945		 * each hugepage.  We have to make sure we get the
2946		 * first, for the page indexing below to work.
2947		 */
2948		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2949		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2950
2951		/*
2952		 * When coredumping, it suits get_dump_page if we just return
2953		 * an error where there's an empty slot with no huge pagecache
2954		 * to back it.  This way, we avoid allocating a hugepage, and
2955		 * the sparse dumpfile avoids allocating disk blocks, but its
2956		 * huge holes still show up with zeroes where they need to be.
2957		 */
2958		if (absent && (flags & FOLL_DUMP) &&
2959		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2960			remainder = 0;
2961			break;
2962		}
2963
2964		if (absent ||
2965		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2966			int ret;
2967
2968			spin_unlock(&mm->page_table_lock);
2969			ret = hugetlb_fault(mm, vma, vaddr,
2970				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2971			spin_lock(&mm->page_table_lock);
2972			if (!(ret & VM_FAULT_ERROR))
2973				continue;
2974
2975			remainder = 0;
2976			break;
2977		}
2978
2979		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2980		page = pte_page(huge_ptep_get(pte));
2981same_page:
2982		if (pages) {
2983			pages[i] = mem_map_offset(page, pfn_offset);
2984			get_page(pages[i]);
2985		}
2986
2987		if (vmas)
2988			vmas[i] = vma;
2989
2990		vaddr += PAGE_SIZE;
2991		++pfn_offset;
2992		--remainder;
2993		++i;
2994		if (vaddr < vma->vm_end && remainder &&
2995				pfn_offset < pages_per_huge_page(h)) {
2996			/*
2997			 * We use pfn_offset to avoid touching the pageframes
2998			 * of this compound page.
2999			 */
3000			goto same_page;
3001		}
3002	}
3003	spin_unlock(&mm->page_table_lock);
3004	*length = remainder;
3005	*position = vaddr;
3006
3007	return i ? i : -EFAULT;
3008}
3009
3010unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3011		unsigned long address, unsigned long end, pgprot_t newprot)
3012{
3013	struct mm_struct *mm = vma->vm_mm;
3014	unsigned long start = address;
3015	pte_t *ptep;
3016	pte_t pte;
3017	struct hstate *h = hstate_vma(vma);
3018	unsigned long pages = 0;
3019
3020	BUG_ON(address >= end);
3021	flush_cache_range(vma, address, end);
3022
3023	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3024	spin_lock(&mm->page_table_lock);
3025	for (; address < end; address += huge_page_size(h)) {
3026		ptep = huge_pte_offset(mm, address);
3027		if (!ptep)
3028			continue;
3029		if (huge_pmd_unshare(mm, &address, ptep)) {
3030			pages++;
3031			continue;
3032		}
3033		if (!huge_pte_none(huge_ptep_get(ptep))) {
3034			pte = huge_ptep_get_and_clear(mm, address, ptep);
3035			pte = pte_mkhuge(pte_modify(pte, newprot));
3036			set_huge_pte_at(mm, address, ptep, pte);
3037			pages++;
3038		}
3039	}
3040	spin_unlock(&mm->page_table_lock);
3041	/*
3042	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3043	 * may have cleared our pud entry and done put_page on the page table:
3044	 * once we release i_mmap_mutex, another task can do the final put_page
3045	 * and that page table be reused and filled with junk.
3046	 */
3047	flush_tlb_range(vma, start, end);
3048	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3049
3050	return pages << h->order;
3051}
3052
3053int hugetlb_reserve_pages(struct inode *inode,
3054					long from, long to,
3055					struct vm_area_struct *vma,
3056					vm_flags_t vm_flags)
3057{
3058	long ret, chg;
3059	struct hstate *h = hstate_inode(inode);
3060	struct hugepage_subpool *spool = subpool_inode(inode);
3061
3062	/*
3063	 * Only apply hugepage reservation if asked. At fault time, an
3064	 * attempt will be made for VM_NORESERVE to allocate a page
3065	 * without using reserves
3066	 */
3067	if (vm_flags & VM_NORESERVE)
3068		return 0;
3069
3070	/*
3071	 * Shared mappings base their reservation on the number of pages that
3072	 * are already allocated on behalf of the file. Private mappings need
3073	 * to reserve the full area even if read-only as mprotect() may be
3074	 * called to make the mapping read-write. Assume !vma is a shm mapping
3075	 */
3076	if (!vma || vma->vm_flags & VM_MAYSHARE)
3077		chg = region_chg(&inode->i_mapping->private_list, from, to);
3078	else {
3079		struct resv_map *resv_map = resv_map_alloc();
3080		if (!resv_map)
3081			return -ENOMEM;
3082
3083		chg = to - from;
3084
3085		set_vma_resv_map(vma, resv_map);
3086		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3087	}
3088
3089	if (chg < 0) {
3090		ret = chg;
3091		goto out_err;
3092	}
3093
3094	/* There must be enough pages in the subpool for the mapping */
3095	if (hugepage_subpool_get_pages(spool, chg)) {
3096		ret = -ENOSPC;
3097		goto out_err;
3098	}
3099
3100	/*
3101	 * Check enough hugepages are available for the reservation.
3102	 * Hand the pages back to the subpool if there are not
3103	 */
3104	ret = hugetlb_acct_memory(h, chg);
3105	if (ret < 0) {
3106		hugepage_subpool_put_pages(spool, chg);
3107		goto out_err;
3108	}
3109
3110	/*
3111	 * Account for the reservations made. Shared mappings record regions
3112	 * that have reservations as they are shared by multiple VMAs.
3113	 * When the last VMA disappears, the region map says how much
3114	 * the reservation was and the page cache tells how much of
3115	 * the reservation was consumed. Private mappings are per-VMA and
3116	 * only the consumed reservations are tracked. When the VMA
3117	 * disappears, the original reservation is the VMA size and the
3118	 * consumed reservations are stored in the map. Hence, nothing
3119	 * else has to be done for private mappings here
3120	 */
3121	if (!vma || vma->vm_flags & VM_MAYSHARE)
3122		region_add(&inode->i_mapping->private_list, from, to);
3123	return 0;
3124out_err:
3125	if (vma)
3126		resv_map_put(vma);
3127	return ret;
3128}
3129
3130void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3131{
3132	struct hstate *h = hstate_inode(inode);
3133	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3134	struct hugepage_subpool *spool = subpool_inode(inode);
3135
3136	spin_lock(&inode->i_lock);
3137	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3138	spin_unlock(&inode->i_lock);
3139
3140	hugepage_subpool_put_pages(spool, (chg - freed));
3141	hugetlb_acct_memory(h, -(chg - freed));
3142}
3143
3144#ifdef CONFIG_MEMORY_FAILURE
3145
3146/* Should be called in hugetlb_lock */
3147static int is_hugepage_on_freelist(struct page *hpage)
3148{
3149	struct page *page;
3150	struct page *tmp;
3151	struct hstate *h = page_hstate(hpage);
3152	int nid = page_to_nid(hpage);
3153
3154	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3155		if (page == hpage)
3156			return 1;
3157	return 0;
3158}
3159
3160/*
3161 * This function is called from memory failure code.
3162 * Assume the caller holds page lock of the head page.
3163 */
3164int dequeue_hwpoisoned_huge_page(struct page *hpage)
3165{
3166	struct hstate *h = page_hstate(hpage);
3167	int nid = page_to_nid(hpage);
3168	int ret = -EBUSY;
3169
3170	spin_lock(&hugetlb_lock);
3171	if (is_hugepage_on_freelist(hpage)) {
3172		/*
3173		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3174		 * but dangling hpage->lru can trigger list-debug warnings
3175		 * (this happens when we call unpoison_memory() on it),
3176		 * so let it point to itself with list_del_init().
3177		 */
3178		list_del_init(&hpage->lru);
3179		set_page_refcounted(hpage);
3180		h->free_huge_pages--;
3181		h->free_huge_pages_node[nid]--;
3182		ret = 0;
3183	}
3184	spin_unlock(&hugetlb_lock);
3185	return ret;
3186}
3187#endif
3188