hugetlb.c revision 52cd3b074050dd664380b5e8cfc85d4a6ed8ad48
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26static unsigned long surplus_huge_pages;
27static unsigned long nr_overcommit_huge_pages;
28unsigned long max_huge_pages;
29unsigned long sysctl_overcommit_huge_pages;
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36static int hugetlb_next_nid;
37
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
42
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45	int i;
46
47	might_sleep();
48	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49		cond_resched();
50		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51	}
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
55			   unsigned long addr, struct vm_area_struct *vma)
56{
57	int i;
58
59	might_sleep();
60	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61		cond_resched();
62		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63	}
64}
65
66static void enqueue_huge_page(struct page *page)
67{
68	int nid = page_to_nid(page);
69	list_add(&page->lru, &hugepage_freelists[nid]);
70	free_huge_pages++;
71	free_huge_pages_node[nid]++;
72}
73
74static struct page *dequeue_huge_page(void)
75{
76	int nid;
77	struct page *page = NULL;
78
79	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80		if (!list_empty(&hugepage_freelists[nid])) {
81			page = list_entry(hugepage_freelists[nid].next,
82					  struct page, lru);
83			list_del(&page->lru);
84			free_huge_pages--;
85			free_huge_pages_node[nid]--;
86			break;
87		}
88	}
89	return page;
90}
91
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93				unsigned long address)
94{
95	int nid;
96	struct page *page = NULL;
97	struct mempolicy *mpol;
98	nodemask_t *nodemask;
99	struct zonelist *zonelist = huge_zonelist(vma, address,
100					htlb_alloc_mask, &mpol, &nodemask);
101	struct zone *zone;
102	struct zoneref *z;
103
104	for_each_zone_zonelist_nodemask(zone, z, zonelist,
105						MAX_NR_ZONES - 1, nodemask) {
106		nid = zone_to_nid(zone);
107		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108		    !list_empty(&hugepage_freelists[nid])) {
109			page = list_entry(hugepage_freelists[nid].next,
110					  struct page, lru);
111			list_del(&page->lru);
112			free_huge_pages--;
113			free_huge_pages_node[nid]--;
114			if (vma && vma->vm_flags & VM_MAYSHARE)
115				resv_huge_pages--;
116			break;
117		}
118	}
119	mpol_cond_put(mpol);
120	return page;
121}
122
123static void update_and_free_page(struct page *page)
124{
125	int i;
126	nr_huge_pages--;
127	nr_huge_pages_node[page_to_nid(page)]--;
128	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131				1 << PG_private | 1<< PG_writeback);
132	}
133	set_compound_page_dtor(page, NULL);
134	set_page_refcounted(page);
135	__free_pages(page, HUGETLB_PAGE_ORDER);
136}
137
138static void free_huge_page(struct page *page)
139{
140	int nid = page_to_nid(page);
141	struct address_space *mapping;
142
143	mapping = (struct address_space *) page_private(page);
144	set_page_private(page, 0);
145	BUG_ON(page_count(page));
146	INIT_LIST_HEAD(&page->lru);
147
148	spin_lock(&hugetlb_lock);
149	if (surplus_huge_pages_node[nid]) {
150		update_and_free_page(page);
151		surplus_huge_pages--;
152		surplus_huge_pages_node[nid]--;
153	} else {
154		enqueue_huge_page(page);
155	}
156	spin_unlock(&hugetlb_lock);
157	if (mapping)
158		hugetlb_put_quota(mapping, 1);
159}
160
161/*
162 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
163 * balanced by operating on them in a round-robin fashion.
164 * Returns 1 if an adjustment was made.
165 */
166static int adjust_pool_surplus(int delta)
167{
168	static int prev_nid;
169	int nid = prev_nid;
170	int ret = 0;
171
172	VM_BUG_ON(delta != -1 && delta != 1);
173	do {
174		nid = next_node(nid, node_online_map);
175		if (nid == MAX_NUMNODES)
176			nid = first_node(node_online_map);
177
178		/* To shrink on this node, there must be a surplus page */
179		if (delta < 0 && !surplus_huge_pages_node[nid])
180			continue;
181		/* Surplus cannot exceed the total number of pages */
182		if (delta > 0 && surplus_huge_pages_node[nid] >=
183						nr_huge_pages_node[nid])
184			continue;
185
186		surplus_huge_pages += delta;
187		surplus_huge_pages_node[nid] += delta;
188		ret = 1;
189		break;
190	} while (nid != prev_nid);
191
192	prev_nid = nid;
193	return ret;
194}
195
196static struct page *alloc_fresh_huge_page_node(int nid)
197{
198	struct page *page;
199
200	page = alloc_pages_node(nid,
201		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
202		HUGETLB_PAGE_ORDER);
203	if (page) {
204		set_compound_page_dtor(page, free_huge_page);
205		spin_lock(&hugetlb_lock);
206		nr_huge_pages++;
207		nr_huge_pages_node[nid]++;
208		spin_unlock(&hugetlb_lock);
209		put_page(page); /* free it into the hugepage allocator */
210	}
211
212	return page;
213}
214
215static int alloc_fresh_huge_page(void)
216{
217	struct page *page;
218	int start_nid;
219	int next_nid;
220	int ret = 0;
221
222	start_nid = hugetlb_next_nid;
223
224	do {
225		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
226		if (page)
227			ret = 1;
228		/*
229		 * Use a helper variable to find the next node and then
230		 * copy it back to hugetlb_next_nid afterwards:
231		 * otherwise there's a window in which a racer might
232		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
233		 * But we don't need to use a spin_lock here: it really
234		 * doesn't matter if occasionally a racer chooses the
235		 * same nid as we do.  Move nid forward in the mask even
236		 * if we just successfully allocated a hugepage so that
237		 * the next caller gets hugepages on the next node.
238		 */
239		next_nid = next_node(hugetlb_next_nid, node_online_map);
240		if (next_nid == MAX_NUMNODES)
241			next_nid = first_node(node_online_map);
242		hugetlb_next_nid = next_nid;
243	} while (!page && hugetlb_next_nid != start_nid);
244
245	if (ret)
246		count_vm_event(HTLB_BUDDY_PGALLOC);
247	else
248		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
249
250	return ret;
251}
252
253static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
254						unsigned long address)
255{
256	struct page *page;
257	unsigned int nid;
258
259	/*
260	 * Assume we will successfully allocate the surplus page to
261	 * prevent racing processes from causing the surplus to exceed
262	 * overcommit
263	 *
264	 * This however introduces a different race, where a process B
265	 * tries to grow the static hugepage pool while alloc_pages() is
266	 * called by process A. B will only examine the per-node
267	 * counters in determining if surplus huge pages can be
268	 * converted to normal huge pages in adjust_pool_surplus(). A
269	 * won't be able to increment the per-node counter, until the
270	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
271	 * no more huge pages can be converted from surplus to normal
272	 * state (and doesn't try to convert again). Thus, we have a
273	 * case where a surplus huge page exists, the pool is grown, and
274	 * the surplus huge page still exists after, even though it
275	 * should just have been converted to a normal huge page. This
276	 * does not leak memory, though, as the hugepage will be freed
277	 * once it is out of use. It also does not allow the counters to
278	 * go out of whack in adjust_pool_surplus() as we don't modify
279	 * the node values until we've gotten the hugepage and only the
280	 * per-node value is checked there.
281	 */
282	spin_lock(&hugetlb_lock);
283	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
284		spin_unlock(&hugetlb_lock);
285		return NULL;
286	} else {
287		nr_huge_pages++;
288		surplus_huge_pages++;
289	}
290	spin_unlock(&hugetlb_lock);
291
292	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
293					HUGETLB_PAGE_ORDER);
294
295	spin_lock(&hugetlb_lock);
296	if (page) {
297		/*
298		 * This page is now managed by the hugetlb allocator and has
299		 * no users -- drop the buddy allocator's reference.
300		 */
301		put_page_testzero(page);
302		VM_BUG_ON(page_count(page));
303		nid = page_to_nid(page);
304		set_compound_page_dtor(page, free_huge_page);
305		/*
306		 * We incremented the global counters already
307		 */
308		nr_huge_pages_node[nid]++;
309		surplus_huge_pages_node[nid]++;
310		__count_vm_event(HTLB_BUDDY_PGALLOC);
311	} else {
312		nr_huge_pages--;
313		surplus_huge_pages--;
314		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
315	}
316	spin_unlock(&hugetlb_lock);
317
318	return page;
319}
320
321/*
322 * Increase the hugetlb pool such that it can accomodate a reservation
323 * of size 'delta'.
324 */
325static int gather_surplus_pages(int delta)
326{
327	struct list_head surplus_list;
328	struct page *page, *tmp;
329	int ret, i;
330	int needed, allocated;
331
332	needed = (resv_huge_pages + delta) - free_huge_pages;
333	if (needed <= 0) {
334		resv_huge_pages += delta;
335		return 0;
336	}
337
338	allocated = 0;
339	INIT_LIST_HEAD(&surplus_list);
340
341	ret = -ENOMEM;
342retry:
343	spin_unlock(&hugetlb_lock);
344	for (i = 0; i < needed; i++) {
345		page = alloc_buddy_huge_page(NULL, 0);
346		if (!page) {
347			/*
348			 * We were not able to allocate enough pages to
349			 * satisfy the entire reservation so we free what
350			 * we've allocated so far.
351			 */
352			spin_lock(&hugetlb_lock);
353			needed = 0;
354			goto free;
355		}
356
357		list_add(&page->lru, &surplus_list);
358	}
359	allocated += needed;
360
361	/*
362	 * After retaking hugetlb_lock, we need to recalculate 'needed'
363	 * because either resv_huge_pages or free_huge_pages may have changed.
364	 */
365	spin_lock(&hugetlb_lock);
366	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
367	if (needed > 0)
368		goto retry;
369
370	/*
371	 * The surplus_list now contains _at_least_ the number of extra pages
372	 * needed to accomodate the reservation.  Add the appropriate number
373	 * of pages to the hugetlb pool and free the extras back to the buddy
374	 * allocator.  Commit the entire reservation here to prevent another
375	 * process from stealing the pages as they are added to the pool but
376	 * before they are reserved.
377	 */
378	needed += allocated;
379	resv_huge_pages += delta;
380	ret = 0;
381free:
382	/* Free the needed pages to the hugetlb pool */
383	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
384		if ((--needed) < 0)
385			break;
386		list_del(&page->lru);
387		enqueue_huge_page(page);
388	}
389
390	/* Free unnecessary surplus pages to the buddy allocator */
391	if (!list_empty(&surplus_list)) {
392		spin_unlock(&hugetlb_lock);
393		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
394			list_del(&page->lru);
395			/*
396			 * The page has a reference count of zero already, so
397			 * call free_huge_page directly instead of using
398			 * put_page.  This must be done with hugetlb_lock
399			 * unlocked which is safe because free_huge_page takes
400			 * hugetlb_lock before deciding how to free the page.
401			 */
402			free_huge_page(page);
403		}
404		spin_lock(&hugetlb_lock);
405	}
406
407	return ret;
408}
409
410/*
411 * When releasing a hugetlb pool reservation, any surplus pages that were
412 * allocated to satisfy the reservation must be explicitly freed if they were
413 * never used.
414 */
415static void return_unused_surplus_pages(unsigned long unused_resv_pages)
416{
417	static int nid = -1;
418	struct page *page;
419	unsigned long nr_pages;
420
421	/*
422	 * We want to release as many surplus pages as possible, spread
423	 * evenly across all nodes. Iterate across all nodes until we
424	 * can no longer free unreserved surplus pages. This occurs when
425	 * the nodes with surplus pages have no free pages.
426	 */
427	unsigned long remaining_iterations = num_online_nodes();
428
429	/* Uncommit the reservation */
430	resv_huge_pages -= unused_resv_pages;
431
432	nr_pages = min(unused_resv_pages, surplus_huge_pages);
433
434	while (remaining_iterations-- && nr_pages) {
435		nid = next_node(nid, node_online_map);
436		if (nid == MAX_NUMNODES)
437			nid = first_node(node_online_map);
438
439		if (!surplus_huge_pages_node[nid])
440			continue;
441
442		if (!list_empty(&hugepage_freelists[nid])) {
443			page = list_entry(hugepage_freelists[nid].next,
444					  struct page, lru);
445			list_del(&page->lru);
446			update_and_free_page(page);
447			free_huge_pages--;
448			free_huge_pages_node[nid]--;
449			surplus_huge_pages--;
450			surplus_huge_pages_node[nid]--;
451			nr_pages--;
452			remaining_iterations = num_online_nodes();
453		}
454	}
455}
456
457
458static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
459						unsigned long addr)
460{
461	struct page *page;
462
463	spin_lock(&hugetlb_lock);
464	page = dequeue_huge_page_vma(vma, addr);
465	spin_unlock(&hugetlb_lock);
466	return page ? page : ERR_PTR(-VM_FAULT_OOM);
467}
468
469static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
470						unsigned long addr)
471{
472	struct page *page = NULL;
473
474	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
475		return ERR_PTR(-VM_FAULT_SIGBUS);
476
477	spin_lock(&hugetlb_lock);
478	if (free_huge_pages > resv_huge_pages)
479		page = dequeue_huge_page_vma(vma, addr);
480	spin_unlock(&hugetlb_lock);
481	if (!page) {
482		page = alloc_buddy_huge_page(vma, addr);
483		if (!page) {
484			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
485			return ERR_PTR(-VM_FAULT_OOM);
486		}
487	}
488	return page;
489}
490
491static struct page *alloc_huge_page(struct vm_area_struct *vma,
492				    unsigned long addr)
493{
494	struct page *page;
495	struct address_space *mapping = vma->vm_file->f_mapping;
496
497	if (vma->vm_flags & VM_MAYSHARE)
498		page = alloc_huge_page_shared(vma, addr);
499	else
500		page = alloc_huge_page_private(vma, addr);
501
502	if (!IS_ERR(page)) {
503		set_page_refcounted(page);
504		set_page_private(page, (unsigned long) mapping);
505	}
506	return page;
507}
508
509static int __init hugetlb_init(void)
510{
511	unsigned long i;
512
513	if (HPAGE_SHIFT == 0)
514		return 0;
515
516	for (i = 0; i < MAX_NUMNODES; ++i)
517		INIT_LIST_HEAD(&hugepage_freelists[i]);
518
519	hugetlb_next_nid = first_node(node_online_map);
520
521	for (i = 0; i < max_huge_pages; ++i) {
522		if (!alloc_fresh_huge_page())
523			break;
524	}
525	max_huge_pages = free_huge_pages = nr_huge_pages = i;
526	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
527	return 0;
528}
529module_init(hugetlb_init);
530
531static int __init hugetlb_setup(char *s)
532{
533	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
534		max_huge_pages = 0;
535	return 1;
536}
537__setup("hugepages=", hugetlb_setup);
538
539static unsigned int cpuset_mems_nr(unsigned int *array)
540{
541	int node;
542	unsigned int nr = 0;
543
544	for_each_node_mask(node, cpuset_current_mems_allowed)
545		nr += array[node];
546
547	return nr;
548}
549
550#ifdef CONFIG_SYSCTL
551#ifdef CONFIG_HIGHMEM
552static void try_to_free_low(unsigned long count)
553{
554	int i;
555
556	for (i = 0; i < MAX_NUMNODES; ++i) {
557		struct page *page, *next;
558		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
559			if (count >= nr_huge_pages)
560				return;
561			if (PageHighMem(page))
562				continue;
563			list_del(&page->lru);
564			update_and_free_page(page);
565			free_huge_pages--;
566			free_huge_pages_node[page_to_nid(page)]--;
567		}
568	}
569}
570#else
571static inline void try_to_free_low(unsigned long count)
572{
573}
574#endif
575
576#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
577static unsigned long set_max_huge_pages(unsigned long count)
578{
579	unsigned long min_count, ret;
580
581	/*
582	 * Increase the pool size
583	 * First take pages out of surplus state.  Then make up the
584	 * remaining difference by allocating fresh huge pages.
585	 *
586	 * We might race with alloc_buddy_huge_page() here and be unable
587	 * to convert a surplus huge page to a normal huge page. That is
588	 * not critical, though, it just means the overall size of the
589	 * pool might be one hugepage larger than it needs to be, but
590	 * within all the constraints specified by the sysctls.
591	 */
592	spin_lock(&hugetlb_lock);
593	while (surplus_huge_pages && count > persistent_huge_pages) {
594		if (!adjust_pool_surplus(-1))
595			break;
596	}
597
598	while (count > persistent_huge_pages) {
599		int ret;
600		/*
601		 * If this allocation races such that we no longer need the
602		 * page, free_huge_page will handle it by freeing the page
603		 * and reducing the surplus.
604		 */
605		spin_unlock(&hugetlb_lock);
606		ret = alloc_fresh_huge_page();
607		spin_lock(&hugetlb_lock);
608		if (!ret)
609			goto out;
610
611	}
612
613	/*
614	 * Decrease the pool size
615	 * First return free pages to the buddy allocator (being careful
616	 * to keep enough around to satisfy reservations).  Then place
617	 * pages into surplus state as needed so the pool will shrink
618	 * to the desired size as pages become free.
619	 *
620	 * By placing pages into the surplus state independent of the
621	 * overcommit value, we are allowing the surplus pool size to
622	 * exceed overcommit. There are few sane options here. Since
623	 * alloc_buddy_huge_page() is checking the global counter,
624	 * though, we'll note that we're not allowed to exceed surplus
625	 * and won't grow the pool anywhere else. Not until one of the
626	 * sysctls are changed, or the surplus pages go out of use.
627	 */
628	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
629	min_count = max(count, min_count);
630	try_to_free_low(min_count);
631	while (min_count < persistent_huge_pages) {
632		struct page *page = dequeue_huge_page();
633		if (!page)
634			break;
635		update_and_free_page(page);
636	}
637	while (count < persistent_huge_pages) {
638		if (!adjust_pool_surplus(1))
639			break;
640	}
641out:
642	ret = persistent_huge_pages;
643	spin_unlock(&hugetlb_lock);
644	return ret;
645}
646
647int hugetlb_sysctl_handler(struct ctl_table *table, int write,
648			   struct file *file, void __user *buffer,
649			   size_t *length, loff_t *ppos)
650{
651	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
652	max_huge_pages = set_max_huge_pages(max_huge_pages);
653	return 0;
654}
655
656int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
657			struct file *file, void __user *buffer,
658			size_t *length, loff_t *ppos)
659{
660	proc_dointvec(table, write, file, buffer, length, ppos);
661	if (hugepages_treat_as_movable)
662		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
663	else
664		htlb_alloc_mask = GFP_HIGHUSER;
665	return 0;
666}
667
668int hugetlb_overcommit_handler(struct ctl_table *table, int write,
669			struct file *file, void __user *buffer,
670			size_t *length, loff_t *ppos)
671{
672	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
673	spin_lock(&hugetlb_lock);
674	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
675	spin_unlock(&hugetlb_lock);
676	return 0;
677}
678
679#endif /* CONFIG_SYSCTL */
680
681int hugetlb_report_meminfo(char *buf)
682{
683	return sprintf(buf,
684			"HugePages_Total: %5lu\n"
685			"HugePages_Free:  %5lu\n"
686			"HugePages_Rsvd:  %5lu\n"
687			"HugePages_Surp:  %5lu\n"
688			"Hugepagesize:    %5lu kB\n",
689			nr_huge_pages,
690			free_huge_pages,
691			resv_huge_pages,
692			surplus_huge_pages,
693			HPAGE_SIZE/1024);
694}
695
696int hugetlb_report_node_meminfo(int nid, char *buf)
697{
698	return sprintf(buf,
699		"Node %d HugePages_Total: %5u\n"
700		"Node %d HugePages_Free:  %5u\n"
701		"Node %d HugePages_Surp:  %5u\n",
702		nid, nr_huge_pages_node[nid],
703		nid, free_huge_pages_node[nid],
704		nid, surplus_huge_pages_node[nid]);
705}
706
707/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
708unsigned long hugetlb_total_pages(void)
709{
710	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
711}
712
713/*
714 * We cannot handle pagefaults against hugetlb pages at all.  They cause
715 * handle_mm_fault() to try to instantiate regular-sized pages in the
716 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
717 * this far.
718 */
719static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
720{
721	BUG();
722	return 0;
723}
724
725struct vm_operations_struct hugetlb_vm_ops = {
726	.fault = hugetlb_vm_op_fault,
727};
728
729static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
730				int writable)
731{
732	pte_t entry;
733
734	if (writable) {
735		entry =
736		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
737	} else {
738		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
739	}
740	entry = pte_mkyoung(entry);
741	entry = pte_mkhuge(entry);
742
743	return entry;
744}
745
746static void set_huge_ptep_writable(struct vm_area_struct *vma,
747				   unsigned long address, pte_t *ptep)
748{
749	pte_t entry;
750
751	entry = pte_mkwrite(pte_mkdirty(*ptep));
752	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
753		update_mmu_cache(vma, address, entry);
754	}
755}
756
757
758int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
759			    struct vm_area_struct *vma)
760{
761	pte_t *src_pte, *dst_pte, entry;
762	struct page *ptepage;
763	unsigned long addr;
764	int cow;
765
766	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
767
768	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
769		src_pte = huge_pte_offset(src, addr);
770		if (!src_pte)
771			continue;
772		dst_pte = huge_pte_alloc(dst, addr);
773		if (!dst_pte)
774			goto nomem;
775
776		/* If the pagetables are shared don't copy or take references */
777		if (dst_pte == src_pte)
778			continue;
779
780		spin_lock(&dst->page_table_lock);
781		spin_lock(&src->page_table_lock);
782		if (!pte_none(*src_pte)) {
783			if (cow)
784				ptep_set_wrprotect(src, addr, src_pte);
785			entry = *src_pte;
786			ptepage = pte_page(entry);
787			get_page(ptepage);
788			set_huge_pte_at(dst, addr, dst_pte, entry);
789		}
790		spin_unlock(&src->page_table_lock);
791		spin_unlock(&dst->page_table_lock);
792	}
793	return 0;
794
795nomem:
796	return -ENOMEM;
797}
798
799void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
800			    unsigned long end)
801{
802	struct mm_struct *mm = vma->vm_mm;
803	unsigned long address;
804	pte_t *ptep;
805	pte_t pte;
806	struct page *page;
807	struct page *tmp;
808	/*
809	 * A page gathering list, protected by per file i_mmap_lock. The
810	 * lock is used to avoid list corruption from multiple unmapping
811	 * of the same page since we are using page->lru.
812	 */
813	LIST_HEAD(page_list);
814
815	WARN_ON(!is_vm_hugetlb_page(vma));
816	BUG_ON(start & ~HPAGE_MASK);
817	BUG_ON(end & ~HPAGE_MASK);
818
819	spin_lock(&mm->page_table_lock);
820	for (address = start; address < end; address += HPAGE_SIZE) {
821		ptep = huge_pte_offset(mm, address);
822		if (!ptep)
823			continue;
824
825		if (huge_pmd_unshare(mm, &address, ptep))
826			continue;
827
828		pte = huge_ptep_get_and_clear(mm, address, ptep);
829		if (pte_none(pte))
830			continue;
831
832		page = pte_page(pte);
833		if (pte_dirty(pte))
834			set_page_dirty(page);
835		list_add(&page->lru, &page_list);
836	}
837	spin_unlock(&mm->page_table_lock);
838	flush_tlb_range(vma, start, end);
839	list_for_each_entry_safe(page, tmp, &page_list, lru) {
840		list_del(&page->lru);
841		put_page(page);
842	}
843}
844
845void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
846			  unsigned long end)
847{
848	/*
849	 * It is undesirable to test vma->vm_file as it should be non-null
850	 * for valid hugetlb area. However, vm_file will be NULL in the error
851	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
852	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
853	 * to clean up. Since no pte has actually been setup, it is safe to
854	 * do nothing in this case.
855	 */
856	if (vma->vm_file) {
857		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
858		__unmap_hugepage_range(vma, start, end);
859		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
860	}
861}
862
863static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
864			unsigned long address, pte_t *ptep, pte_t pte)
865{
866	struct page *old_page, *new_page;
867	int avoidcopy;
868
869	old_page = pte_page(pte);
870
871	/* If no-one else is actually using this page, avoid the copy
872	 * and just make the page writable */
873	avoidcopy = (page_count(old_page) == 1);
874	if (avoidcopy) {
875		set_huge_ptep_writable(vma, address, ptep);
876		return 0;
877	}
878
879	page_cache_get(old_page);
880	new_page = alloc_huge_page(vma, address);
881
882	if (IS_ERR(new_page)) {
883		page_cache_release(old_page);
884		return -PTR_ERR(new_page);
885	}
886
887	spin_unlock(&mm->page_table_lock);
888	copy_huge_page(new_page, old_page, address, vma);
889	__SetPageUptodate(new_page);
890	spin_lock(&mm->page_table_lock);
891
892	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
893	if (likely(pte_same(*ptep, pte))) {
894		/* Break COW */
895		set_huge_pte_at(mm, address, ptep,
896				make_huge_pte(vma, new_page, 1));
897		/* Make the old page be freed below */
898		new_page = old_page;
899	}
900	page_cache_release(new_page);
901	page_cache_release(old_page);
902	return 0;
903}
904
905static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
906			unsigned long address, pte_t *ptep, int write_access)
907{
908	int ret = VM_FAULT_SIGBUS;
909	unsigned long idx;
910	unsigned long size;
911	struct page *page;
912	struct address_space *mapping;
913	pte_t new_pte;
914
915	mapping = vma->vm_file->f_mapping;
916	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
917		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
918
919	/*
920	 * Use page lock to guard against racing truncation
921	 * before we get page_table_lock.
922	 */
923retry:
924	page = find_lock_page(mapping, idx);
925	if (!page) {
926		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
927		if (idx >= size)
928			goto out;
929		page = alloc_huge_page(vma, address);
930		if (IS_ERR(page)) {
931			ret = -PTR_ERR(page);
932			goto out;
933		}
934		clear_huge_page(page, address);
935		__SetPageUptodate(page);
936
937		if (vma->vm_flags & VM_SHARED) {
938			int err;
939			struct inode *inode = mapping->host;
940
941			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
942			if (err) {
943				put_page(page);
944				if (err == -EEXIST)
945					goto retry;
946				goto out;
947			}
948
949			spin_lock(&inode->i_lock);
950			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
951			spin_unlock(&inode->i_lock);
952		} else
953			lock_page(page);
954	}
955
956	spin_lock(&mm->page_table_lock);
957	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
958	if (idx >= size)
959		goto backout;
960
961	ret = 0;
962	if (!pte_none(*ptep))
963		goto backout;
964
965	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
966				&& (vma->vm_flags & VM_SHARED)));
967	set_huge_pte_at(mm, address, ptep, new_pte);
968
969	if (write_access && !(vma->vm_flags & VM_SHARED)) {
970		/* Optimization, do the COW without a second fault */
971		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
972	}
973
974	spin_unlock(&mm->page_table_lock);
975	unlock_page(page);
976out:
977	return ret;
978
979backout:
980	spin_unlock(&mm->page_table_lock);
981	unlock_page(page);
982	put_page(page);
983	goto out;
984}
985
986int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
987			unsigned long address, int write_access)
988{
989	pte_t *ptep;
990	pte_t entry;
991	int ret;
992	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
993
994	ptep = huge_pte_alloc(mm, address);
995	if (!ptep)
996		return VM_FAULT_OOM;
997
998	/*
999	 * Serialize hugepage allocation and instantiation, so that we don't
1000	 * get spurious allocation failures if two CPUs race to instantiate
1001	 * the same page in the page cache.
1002	 */
1003	mutex_lock(&hugetlb_instantiation_mutex);
1004	entry = *ptep;
1005	if (pte_none(entry)) {
1006		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1007		mutex_unlock(&hugetlb_instantiation_mutex);
1008		return ret;
1009	}
1010
1011	ret = 0;
1012
1013	spin_lock(&mm->page_table_lock);
1014	/* Check for a racing update before calling hugetlb_cow */
1015	if (likely(pte_same(entry, *ptep)))
1016		if (write_access && !pte_write(entry))
1017			ret = hugetlb_cow(mm, vma, address, ptep, entry);
1018	spin_unlock(&mm->page_table_lock);
1019	mutex_unlock(&hugetlb_instantiation_mutex);
1020
1021	return ret;
1022}
1023
1024int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1025			struct page **pages, struct vm_area_struct **vmas,
1026			unsigned long *position, int *length, int i,
1027			int write)
1028{
1029	unsigned long pfn_offset;
1030	unsigned long vaddr = *position;
1031	int remainder = *length;
1032
1033	spin_lock(&mm->page_table_lock);
1034	while (vaddr < vma->vm_end && remainder) {
1035		pte_t *pte;
1036		struct page *page;
1037
1038		/*
1039		 * Some archs (sparc64, sh*) have multiple pte_ts to
1040		 * each hugepage.  We have to make * sure we get the
1041		 * first, for the page indexing below to work.
1042		 */
1043		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1044
1045		if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1046			int ret;
1047
1048			spin_unlock(&mm->page_table_lock);
1049			ret = hugetlb_fault(mm, vma, vaddr, write);
1050			spin_lock(&mm->page_table_lock);
1051			if (!(ret & VM_FAULT_ERROR))
1052				continue;
1053
1054			remainder = 0;
1055			if (!i)
1056				i = -EFAULT;
1057			break;
1058		}
1059
1060		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1061		page = pte_page(*pte);
1062same_page:
1063		if (pages) {
1064			get_page(page);
1065			pages[i] = page + pfn_offset;
1066		}
1067
1068		if (vmas)
1069			vmas[i] = vma;
1070
1071		vaddr += PAGE_SIZE;
1072		++pfn_offset;
1073		--remainder;
1074		++i;
1075		if (vaddr < vma->vm_end && remainder &&
1076				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1077			/*
1078			 * We use pfn_offset to avoid touching the pageframes
1079			 * of this compound page.
1080			 */
1081			goto same_page;
1082		}
1083	}
1084	spin_unlock(&mm->page_table_lock);
1085	*length = remainder;
1086	*position = vaddr;
1087
1088	return i;
1089}
1090
1091void hugetlb_change_protection(struct vm_area_struct *vma,
1092		unsigned long address, unsigned long end, pgprot_t newprot)
1093{
1094	struct mm_struct *mm = vma->vm_mm;
1095	unsigned long start = address;
1096	pte_t *ptep;
1097	pte_t pte;
1098
1099	BUG_ON(address >= end);
1100	flush_cache_range(vma, address, end);
1101
1102	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1103	spin_lock(&mm->page_table_lock);
1104	for (; address < end; address += HPAGE_SIZE) {
1105		ptep = huge_pte_offset(mm, address);
1106		if (!ptep)
1107			continue;
1108		if (huge_pmd_unshare(mm, &address, ptep))
1109			continue;
1110		if (!pte_none(*ptep)) {
1111			pte = huge_ptep_get_and_clear(mm, address, ptep);
1112			pte = pte_mkhuge(pte_modify(pte, newprot));
1113			set_huge_pte_at(mm, address, ptep, pte);
1114		}
1115	}
1116	spin_unlock(&mm->page_table_lock);
1117	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1118
1119	flush_tlb_range(vma, start, end);
1120}
1121
1122struct file_region {
1123	struct list_head link;
1124	long from;
1125	long to;
1126};
1127
1128static long region_add(struct list_head *head, long f, long t)
1129{
1130	struct file_region *rg, *nrg, *trg;
1131
1132	/* Locate the region we are either in or before. */
1133	list_for_each_entry(rg, head, link)
1134		if (f <= rg->to)
1135			break;
1136
1137	/* Round our left edge to the current segment if it encloses us. */
1138	if (f > rg->from)
1139		f = rg->from;
1140
1141	/* Check for and consume any regions we now overlap with. */
1142	nrg = rg;
1143	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1144		if (&rg->link == head)
1145			break;
1146		if (rg->from > t)
1147			break;
1148
1149		/* If this area reaches higher then extend our area to
1150		 * include it completely.  If this is not the first area
1151		 * which we intend to reuse, free it. */
1152		if (rg->to > t)
1153			t = rg->to;
1154		if (rg != nrg) {
1155			list_del(&rg->link);
1156			kfree(rg);
1157		}
1158	}
1159	nrg->from = f;
1160	nrg->to = t;
1161	return 0;
1162}
1163
1164static long region_chg(struct list_head *head, long f, long t)
1165{
1166	struct file_region *rg, *nrg;
1167	long chg = 0;
1168
1169	/* Locate the region we are before or in. */
1170	list_for_each_entry(rg, head, link)
1171		if (f <= rg->to)
1172			break;
1173
1174	/* If we are below the current region then a new region is required.
1175	 * Subtle, allocate a new region at the position but make it zero
1176	 * size such that we can guarantee to record the reservation. */
1177	if (&rg->link == head || t < rg->from) {
1178		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1179		if (!nrg)
1180			return -ENOMEM;
1181		nrg->from = f;
1182		nrg->to   = f;
1183		INIT_LIST_HEAD(&nrg->link);
1184		list_add(&nrg->link, rg->link.prev);
1185
1186		return t - f;
1187	}
1188
1189	/* Round our left edge to the current segment if it encloses us. */
1190	if (f > rg->from)
1191		f = rg->from;
1192	chg = t - f;
1193
1194	/* Check for and consume any regions we now overlap with. */
1195	list_for_each_entry(rg, rg->link.prev, link) {
1196		if (&rg->link == head)
1197			break;
1198		if (rg->from > t)
1199			return chg;
1200
1201		/* We overlap with this area, if it extends futher than
1202		 * us then we must extend ourselves.  Account for its
1203		 * existing reservation. */
1204		if (rg->to > t) {
1205			chg += rg->to - t;
1206			t = rg->to;
1207		}
1208		chg -= rg->to - rg->from;
1209	}
1210	return chg;
1211}
1212
1213static long region_truncate(struct list_head *head, long end)
1214{
1215	struct file_region *rg, *trg;
1216	long chg = 0;
1217
1218	/* Locate the region we are either in or before. */
1219	list_for_each_entry(rg, head, link)
1220		if (end <= rg->to)
1221			break;
1222	if (&rg->link == head)
1223		return 0;
1224
1225	/* If we are in the middle of a region then adjust it. */
1226	if (end > rg->from) {
1227		chg = rg->to - end;
1228		rg->to = end;
1229		rg = list_entry(rg->link.next, typeof(*rg), link);
1230	}
1231
1232	/* Drop any remaining regions. */
1233	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1234		if (&rg->link == head)
1235			break;
1236		chg += rg->to - rg->from;
1237		list_del(&rg->link);
1238		kfree(rg);
1239	}
1240	return chg;
1241}
1242
1243static int hugetlb_acct_memory(long delta)
1244{
1245	int ret = -ENOMEM;
1246
1247	spin_lock(&hugetlb_lock);
1248	/*
1249	 * When cpuset is configured, it breaks the strict hugetlb page
1250	 * reservation as the accounting is done on a global variable. Such
1251	 * reservation is completely rubbish in the presence of cpuset because
1252	 * the reservation is not checked against page availability for the
1253	 * current cpuset. Application can still potentially OOM'ed by kernel
1254	 * with lack of free htlb page in cpuset that the task is in.
1255	 * Attempt to enforce strict accounting with cpuset is almost
1256	 * impossible (or too ugly) because cpuset is too fluid that
1257	 * task or memory node can be dynamically moved between cpusets.
1258	 *
1259	 * The change of semantics for shared hugetlb mapping with cpuset is
1260	 * undesirable. However, in order to preserve some of the semantics,
1261	 * we fall back to check against current free page availability as
1262	 * a best attempt and hopefully to minimize the impact of changing
1263	 * semantics that cpuset has.
1264	 */
1265	if (delta > 0) {
1266		if (gather_surplus_pages(delta) < 0)
1267			goto out;
1268
1269		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1270			return_unused_surplus_pages(delta);
1271			goto out;
1272		}
1273	}
1274
1275	ret = 0;
1276	if (delta < 0)
1277		return_unused_surplus_pages((unsigned long) -delta);
1278
1279out:
1280	spin_unlock(&hugetlb_lock);
1281	return ret;
1282}
1283
1284int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1285{
1286	long ret, chg;
1287
1288	chg = region_chg(&inode->i_mapping->private_list, from, to);
1289	if (chg < 0)
1290		return chg;
1291
1292	if (hugetlb_get_quota(inode->i_mapping, chg))
1293		return -ENOSPC;
1294	ret = hugetlb_acct_memory(chg);
1295	if (ret < 0) {
1296		hugetlb_put_quota(inode->i_mapping, chg);
1297		return ret;
1298	}
1299	region_add(&inode->i_mapping->private_list, from, to);
1300	return 0;
1301}
1302
1303void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1304{
1305	long chg = region_truncate(&inode->i_mapping->private_list, offset);
1306
1307	spin_lock(&inode->i_lock);
1308	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1309	spin_unlock(&inode->i_lock);
1310
1311	hugetlb_put_quota(inode->i_mapping, (chg - freed));
1312	hugetlb_acct_memory(-(chg - freed));
1313}
1314