hugetlb.c revision 55f67141a8927b2be3e51840da37b8a2320143ed
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/rmap.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/page-isolation.h>
26#include <linux/jhash.h>
27
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/tlb.h>
31
32#include <linux/io.h>
33#include <linux/hugetlb.h>
34#include <linux/hugetlb_cgroup.h>
35#include <linux/node.h>
36#include "internal.h"
37
38const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39unsigned long hugepages_treat_as_movable;
40
41int hugetlb_max_hstate __read_mostly;
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
44
45__initdata LIST_HEAD(huge_boot_pages);
46
47/* for command line parsing */
48static struct hstate * __initdata parsed_hstate;
49static unsigned long __initdata default_hstate_max_huge_pages;
50static unsigned long __initdata default_hstate_size;
51
52/*
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
55 */
56DEFINE_SPINLOCK(hugetlb_lock);
57
58/*
59 * Serializes faults on the same logical page.  This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 */
62static int num_fault_mutexes;
63static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
65static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66{
67	bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69	spin_unlock(&spool->lock);
70
71	/* If no pages are used, and no other handles to the subpool
72	 * remain, free the subpool the subpool remain */
73	if (free)
74		kfree(spool);
75}
76
77struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78{
79	struct hugepage_subpool *spool;
80
81	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82	if (!spool)
83		return NULL;
84
85	spin_lock_init(&spool->lock);
86	spool->count = 1;
87	spool->max_hpages = nr_blocks;
88	spool->used_hpages = 0;
89
90	return spool;
91}
92
93void hugepage_put_subpool(struct hugepage_subpool *spool)
94{
95	spin_lock(&spool->lock);
96	BUG_ON(!spool->count);
97	spool->count--;
98	unlock_or_release_subpool(spool);
99}
100
101static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102				      long delta)
103{
104	int ret = 0;
105
106	if (!spool)
107		return 0;
108
109	spin_lock(&spool->lock);
110	if ((spool->used_hpages + delta) <= spool->max_hpages) {
111		spool->used_hpages += delta;
112	} else {
113		ret = -ENOMEM;
114	}
115	spin_unlock(&spool->lock);
116
117	return ret;
118}
119
120static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121				       long delta)
122{
123	if (!spool)
124		return;
125
126	spin_lock(&spool->lock);
127	spool->used_hpages -= delta;
128	/* If hugetlbfs_put_super couldn't free spool due to
129	* an outstanding quota reference, free it now. */
130	unlock_or_release_subpool(spool);
131}
132
133static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134{
135	return HUGETLBFS_SB(inode->i_sb)->spool;
136}
137
138static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139{
140	return subpool_inode(file_inode(vma->vm_file));
141}
142
143/*
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 *                    across the pages in a mapping.
146 *
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
149 */
150struct file_region {
151	struct list_head link;
152	long from;
153	long to;
154};
155
156static long region_add(struct resv_map *resv, long f, long t)
157{
158	struct list_head *head = &resv->regions;
159	struct file_region *rg, *nrg, *trg;
160
161	spin_lock(&resv->lock);
162	/* Locate the region we are either in or before. */
163	list_for_each_entry(rg, head, link)
164		if (f <= rg->to)
165			break;
166
167	/* Round our left edge to the current segment if it encloses us. */
168	if (f > rg->from)
169		f = rg->from;
170
171	/* Check for and consume any regions we now overlap with. */
172	nrg = rg;
173	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174		if (&rg->link == head)
175			break;
176		if (rg->from > t)
177			break;
178
179		/* If this area reaches higher then extend our area to
180		 * include it completely.  If this is not the first area
181		 * which we intend to reuse, free it. */
182		if (rg->to > t)
183			t = rg->to;
184		if (rg != nrg) {
185			list_del(&rg->link);
186			kfree(rg);
187		}
188	}
189	nrg->from = f;
190	nrg->to = t;
191	spin_unlock(&resv->lock);
192	return 0;
193}
194
195static long region_chg(struct resv_map *resv, long f, long t)
196{
197	struct list_head *head = &resv->regions;
198	struct file_region *rg, *nrg = NULL;
199	long chg = 0;
200
201retry:
202	spin_lock(&resv->lock);
203	/* Locate the region we are before or in. */
204	list_for_each_entry(rg, head, link)
205		if (f <= rg->to)
206			break;
207
208	/* If we are below the current region then a new region is required.
209	 * Subtle, allocate a new region at the position but make it zero
210	 * size such that we can guarantee to record the reservation. */
211	if (&rg->link == head || t < rg->from) {
212		if (!nrg) {
213			spin_unlock(&resv->lock);
214			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215			if (!nrg)
216				return -ENOMEM;
217
218			nrg->from = f;
219			nrg->to   = f;
220			INIT_LIST_HEAD(&nrg->link);
221			goto retry;
222		}
223
224		list_add(&nrg->link, rg->link.prev);
225		chg = t - f;
226		goto out_nrg;
227	}
228
229	/* Round our left edge to the current segment if it encloses us. */
230	if (f > rg->from)
231		f = rg->from;
232	chg = t - f;
233
234	/* Check for and consume any regions we now overlap with. */
235	list_for_each_entry(rg, rg->link.prev, link) {
236		if (&rg->link == head)
237			break;
238		if (rg->from > t)
239			goto out;
240
241		/* We overlap with this area, if it extends further than
242		 * us then we must extend ourselves.  Account for its
243		 * existing reservation. */
244		if (rg->to > t) {
245			chg += rg->to - t;
246			t = rg->to;
247		}
248		chg -= rg->to - rg->from;
249	}
250
251out:
252	spin_unlock(&resv->lock);
253	/*  We already know we raced and no longer need the new region */
254	kfree(nrg);
255	return chg;
256out_nrg:
257	spin_unlock(&resv->lock);
258	return chg;
259}
260
261static long region_truncate(struct resv_map *resv, long end)
262{
263	struct list_head *head = &resv->regions;
264	struct file_region *rg, *trg;
265	long chg = 0;
266
267	spin_lock(&resv->lock);
268	/* Locate the region we are either in or before. */
269	list_for_each_entry(rg, head, link)
270		if (end <= rg->to)
271			break;
272	if (&rg->link == head)
273		goto out;
274
275	/* If we are in the middle of a region then adjust it. */
276	if (end > rg->from) {
277		chg = rg->to - end;
278		rg->to = end;
279		rg = list_entry(rg->link.next, typeof(*rg), link);
280	}
281
282	/* Drop any remaining regions. */
283	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284		if (&rg->link == head)
285			break;
286		chg += rg->to - rg->from;
287		list_del(&rg->link);
288		kfree(rg);
289	}
290
291out:
292	spin_unlock(&resv->lock);
293	return chg;
294}
295
296static long region_count(struct resv_map *resv, long f, long t)
297{
298	struct list_head *head = &resv->regions;
299	struct file_region *rg;
300	long chg = 0;
301
302	spin_lock(&resv->lock);
303	/* Locate each segment we overlap with, and count that overlap. */
304	list_for_each_entry(rg, head, link) {
305		long seg_from;
306		long seg_to;
307
308		if (rg->to <= f)
309			continue;
310		if (rg->from >= t)
311			break;
312
313		seg_from = max(rg->from, f);
314		seg_to = min(rg->to, t);
315
316		chg += seg_to - seg_from;
317	}
318	spin_unlock(&resv->lock);
319
320	return chg;
321}
322
323/*
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
326 */
327static pgoff_t vma_hugecache_offset(struct hstate *h,
328			struct vm_area_struct *vma, unsigned long address)
329{
330	return ((address - vma->vm_start) >> huge_page_shift(h)) +
331			(vma->vm_pgoff >> huge_page_order(h));
332}
333
334pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335				     unsigned long address)
336{
337	return vma_hugecache_offset(hstate_vma(vma), vma, address);
338}
339
340/*
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
343 */
344unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345{
346	struct hstate *hstate;
347
348	if (!is_vm_hugetlb_page(vma))
349		return PAGE_SIZE;
350
351	hstate = hstate_vma(vma);
352
353	return 1UL << huge_page_shift(hstate);
354}
355EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356
357/*
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
362 */
363#ifndef vma_mmu_pagesize
364unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365{
366	return vma_kernel_pagesize(vma);
367}
368#endif
369
370/*
371 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
373 * alignment.
374 */
375#define HPAGE_RESV_OWNER    (1UL << 0)
376#define HPAGE_RESV_UNMAPPED (1UL << 1)
377#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378
379/*
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
383 *
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
388 *
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping.  A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated.  A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
397 */
398static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399{
400	return (unsigned long)vma->vm_private_data;
401}
402
403static void set_vma_private_data(struct vm_area_struct *vma,
404							unsigned long value)
405{
406	vma->vm_private_data = (void *)value;
407}
408
409struct resv_map *resv_map_alloc(void)
410{
411	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412	if (!resv_map)
413		return NULL;
414
415	kref_init(&resv_map->refs);
416	spin_lock_init(&resv_map->lock);
417	INIT_LIST_HEAD(&resv_map->regions);
418
419	return resv_map;
420}
421
422void resv_map_release(struct kref *ref)
423{
424	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426	/* Clear out any active regions before we release the map. */
427	region_truncate(resv_map, 0);
428	kfree(resv_map);
429}
430
431static inline struct resv_map *inode_resv_map(struct inode *inode)
432{
433	return inode->i_mapping->private_data;
434}
435
436static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437{
438	VM_BUG_ON(!is_vm_hugetlb_page(vma));
439	if (vma->vm_flags & VM_MAYSHARE) {
440		struct address_space *mapping = vma->vm_file->f_mapping;
441		struct inode *inode = mapping->host;
442
443		return inode_resv_map(inode);
444
445	} else {
446		return (struct resv_map *)(get_vma_private_data(vma) &
447							~HPAGE_RESV_MASK);
448	}
449}
450
451static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452{
453	VM_BUG_ON(!is_vm_hugetlb_page(vma));
454	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455
456	set_vma_private_data(vma, (get_vma_private_data(vma) &
457				HPAGE_RESV_MASK) | (unsigned long)map);
458}
459
460static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461{
462	VM_BUG_ON(!is_vm_hugetlb_page(vma));
463	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464
465	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466}
467
468static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469{
470	VM_BUG_ON(!is_vm_hugetlb_page(vma));
471
472	return (get_vma_private_data(vma) & flag) != 0;
473}
474
475/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477{
478	VM_BUG_ON(!is_vm_hugetlb_page(vma));
479	if (!(vma->vm_flags & VM_MAYSHARE))
480		vma->vm_private_data = (void *)0;
481}
482
483/* Returns true if the VMA has associated reserve pages */
484static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485{
486	if (vma->vm_flags & VM_NORESERVE) {
487		/*
488		 * This address is already reserved by other process(chg == 0),
489		 * so, we should decrement reserved count. Without decrementing,
490		 * reserve count remains after releasing inode, because this
491		 * allocated page will go into page cache and is regarded as
492		 * coming from reserved pool in releasing step.  Currently, we
493		 * don't have any other solution to deal with this situation
494		 * properly, so add work-around here.
495		 */
496		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497			return 1;
498		else
499			return 0;
500	}
501
502	/* Shared mappings always use reserves */
503	if (vma->vm_flags & VM_MAYSHARE)
504		return 1;
505
506	/*
507	 * Only the process that called mmap() has reserves for
508	 * private mappings.
509	 */
510	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511		return 1;
512
513	return 0;
514}
515
516static void enqueue_huge_page(struct hstate *h, struct page *page)
517{
518	int nid = page_to_nid(page);
519	list_move(&page->lru, &h->hugepage_freelists[nid]);
520	h->free_huge_pages++;
521	h->free_huge_pages_node[nid]++;
522}
523
524static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525{
526	struct page *page;
527
528	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529		if (!is_migrate_isolate_page(page))
530			break;
531	/*
532	 * if 'non-isolated free hugepage' not found on the list,
533	 * the allocation fails.
534	 */
535	if (&h->hugepage_freelists[nid] == &page->lru)
536		return NULL;
537	list_move(&page->lru, &h->hugepage_activelist);
538	set_page_refcounted(page);
539	h->free_huge_pages--;
540	h->free_huge_pages_node[nid]--;
541	return page;
542}
543
544/* Movability of hugepages depends on migration support. */
545static inline gfp_t htlb_alloc_mask(struct hstate *h)
546{
547	if (hugepages_treat_as_movable || hugepage_migration_support(h))
548		return GFP_HIGHUSER_MOVABLE;
549	else
550		return GFP_HIGHUSER;
551}
552
553static struct page *dequeue_huge_page_vma(struct hstate *h,
554				struct vm_area_struct *vma,
555				unsigned long address, int avoid_reserve,
556				long chg)
557{
558	struct page *page = NULL;
559	struct mempolicy *mpol;
560	nodemask_t *nodemask;
561	struct zonelist *zonelist;
562	struct zone *zone;
563	struct zoneref *z;
564	unsigned int cpuset_mems_cookie;
565
566	/*
567	 * A child process with MAP_PRIVATE mappings created by their parent
568	 * have no page reserves. This check ensures that reservations are
569	 * not "stolen". The child may still get SIGKILLed
570	 */
571	if (!vma_has_reserves(vma, chg) &&
572			h->free_huge_pages - h->resv_huge_pages == 0)
573		goto err;
574
575	/* If reserves cannot be used, ensure enough pages are in the pool */
576	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577		goto err;
578
579retry_cpuset:
580	cpuset_mems_cookie = read_mems_allowed_begin();
581	zonelist = huge_zonelist(vma, address,
582					htlb_alloc_mask(h), &mpol, &nodemask);
583
584	for_each_zone_zonelist_nodemask(zone, z, zonelist,
585						MAX_NR_ZONES - 1, nodemask) {
586		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587			page = dequeue_huge_page_node(h, zone_to_nid(zone));
588			if (page) {
589				if (avoid_reserve)
590					break;
591				if (!vma_has_reserves(vma, chg))
592					break;
593
594				SetPagePrivate(page);
595				h->resv_huge_pages--;
596				break;
597			}
598		}
599	}
600
601	mpol_cond_put(mpol);
602	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603		goto retry_cpuset;
604	return page;
605
606err:
607	return NULL;
608}
609
610static void update_and_free_page(struct hstate *h, struct page *page)
611{
612	int i;
613
614	VM_BUG_ON(h->order >= MAX_ORDER);
615
616	h->nr_huge_pages--;
617	h->nr_huge_pages_node[page_to_nid(page)]--;
618	for (i = 0; i < pages_per_huge_page(h); i++) {
619		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
620				1 << PG_referenced | 1 << PG_dirty |
621				1 << PG_active | 1 << PG_reserved |
622				1 << PG_private | 1 << PG_writeback);
623	}
624	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
625	set_compound_page_dtor(page, NULL);
626	set_page_refcounted(page);
627	arch_release_hugepage(page);
628	__free_pages(page, huge_page_order(h));
629}
630
631struct hstate *size_to_hstate(unsigned long size)
632{
633	struct hstate *h;
634
635	for_each_hstate(h) {
636		if (huge_page_size(h) == size)
637			return h;
638	}
639	return NULL;
640}
641
642static void free_huge_page(struct page *page)
643{
644	/*
645	 * Can't pass hstate in here because it is called from the
646	 * compound page destructor.
647	 */
648	struct hstate *h = page_hstate(page);
649	int nid = page_to_nid(page);
650	struct hugepage_subpool *spool =
651		(struct hugepage_subpool *)page_private(page);
652	bool restore_reserve;
653
654	set_page_private(page, 0);
655	page->mapping = NULL;
656	BUG_ON(page_count(page));
657	BUG_ON(page_mapcount(page));
658	restore_reserve = PagePrivate(page);
659	ClearPagePrivate(page);
660
661	spin_lock(&hugetlb_lock);
662	hugetlb_cgroup_uncharge_page(hstate_index(h),
663				     pages_per_huge_page(h), page);
664	if (restore_reserve)
665		h->resv_huge_pages++;
666
667	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
668		/* remove the page from active list */
669		list_del(&page->lru);
670		update_and_free_page(h, page);
671		h->surplus_huge_pages--;
672		h->surplus_huge_pages_node[nid]--;
673	} else {
674		arch_clear_hugepage_flags(page);
675		enqueue_huge_page(h, page);
676	}
677	spin_unlock(&hugetlb_lock);
678	hugepage_subpool_put_pages(spool, 1);
679}
680
681static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
682{
683	INIT_LIST_HEAD(&page->lru);
684	set_compound_page_dtor(page, free_huge_page);
685	spin_lock(&hugetlb_lock);
686	set_hugetlb_cgroup(page, NULL);
687	h->nr_huge_pages++;
688	h->nr_huge_pages_node[nid]++;
689	spin_unlock(&hugetlb_lock);
690	put_page(page); /* free it into the hugepage allocator */
691}
692
693static void __init prep_compound_gigantic_page(struct page *page,
694					       unsigned long order)
695{
696	int i;
697	int nr_pages = 1 << order;
698	struct page *p = page + 1;
699
700	/* we rely on prep_new_huge_page to set the destructor */
701	set_compound_order(page, order);
702	__SetPageHead(page);
703	__ClearPageReserved(page);
704	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
705		__SetPageTail(p);
706		/*
707		 * For gigantic hugepages allocated through bootmem at
708		 * boot, it's safer to be consistent with the not-gigantic
709		 * hugepages and clear the PG_reserved bit from all tail pages
710		 * too.  Otherwse drivers using get_user_pages() to access tail
711		 * pages may get the reference counting wrong if they see
712		 * PG_reserved set on a tail page (despite the head page not
713		 * having PG_reserved set).  Enforcing this consistency between
714		 * head and tail pages allows drivers to optimize away a check
715		 * on the head page when they need know if put_page() is needed
716		 * after get_user_pages().
717		 */
718		__ClearPageReserved(p);
719		set_page_count(p, 0);
720		p->first_page = page;
721	}
722}
723
724/*
725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
726 * transparent huge pages.  See the PageTransHuge() documentation for more
727 * details.
728 */
729int PageHuge(struct page *page)
730{
731	if (!PageCompound(page))
732		return 0;
733
734	page = compound_head(page);
735	return get_compound_page_dtor(page) == free_huge_page;
736}
737EXPORT_SYMBOL_GPL(PageHuge);
738
739/*
740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741 * normal or transparent huge pages.
742 */
743int PageHeadHuge(struct page *page_head)
744{
745	if (!PageHead(page_head))
746		return 0;
747
748	return get_compound_page_dtor(page_head) == free_huge_page;
749}
750
751pgoff_t __basepage_index(struct page *page)
752{
753	struct page *page_head = compound_head(page);
754	pgoff_t index = page_index(page_head);
755	unsigned long compound_idx;
756
757	if (!PageHuge(page_head))
758		return page_index(page);
759
760	if (compound_order(page_head) >= MAX_ORDER)
761		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
762	else
763		compound_idx = page - page_head;
764
765	return (index << compound_order(page_head)) + compound_idx;
766}
767
768static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
769{
770	struct page *page;
771
772	if (h->order >= MAX_ORDER)
773		return NULL;
774
775	page = alloc_pages_exact_node(nid,
776		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
777						__GFP_REPEAT|__GFP_NOWARN,
778		huge_page_order(h));
779	if (page) {
780		if (arch_prepare_hugepage(page)) {
781			__free_pages(page, huge_page_order(h));
782			return NULL;
783		}
784		prep_new_huge_page(h, page, nid);
785	}
786
787	return page;
788}
789
790/*
791 * common helper functions for hstate_next_node_to_{alloc|free}.
792 * We may have allocated or freed a huge page based on a different
793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
794 * be outside of *nodes_allowed.  Ensure that we use an allowed
795 * node for alloc or free.
796 */
797static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
798{
799	nid = next_node(nid, *nodes_allowed);
800	if (nid == MAX_NUMNODES)
801		nid = first_node(*nodes_allowed);
802	VM_BUG_ON(nid >= MAX_NUMNODES);
803
804	return nid;
805}
806
807static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
808{
809	if (!node_isset(nid, *nodes_allowed))
810		nid = next_node_allowed(nid, nodes_allowed);
811	return nid;
812}
813
814/*
815 * returns the previously saved node ["this node"] from which to
816 * allocate a persistent huge page for the pool and advance the
817 * next node from which to allocate, handling wrap at end of node
818 * mask.
819 */
820static int hstate_next_node_to_alloc(struct hstate *h,
821					nodemask_t *nodes_allowed)
822{
823	int nid;
824
825	VM_BUG_ON(!nodes_allowed);
826
827	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
828	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
829
830	return nid;
831}
832
833/*
834 * helper for free_pool_huge_page() - return the previously saved
835 * node ["this node"] from which to free a huge page.  Advance the
836 * next node id whether or not we find a free huge page to free so
837 * that the next attempt to free addresses the next node.
838 */
839static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
840{
841	int nid;
842
843	VM_BUG_ON(!nodes_allowed);
844
845	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
846	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
847
848	return nid;
849}
850
851#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
852	for (nr_nodes = nodes_weight(*mask);				\
853		nr_nodes > 0 &&						\
854		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
855		nr_nodes--)
856
857#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
858	for (nr_nodes = nodes_weight(*mask);				\
859		nr_nodes > 0 &&						\
860		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
861		nr_nodes--)
862
863static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
864{
865	struct page *page;
866	int nr_nodes, node;
867	int ret = 0;
868
869	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
870		page = alloc_fresh_huge_page_node(h, node);
871		if (page) {
872			ret = 1;
873			break;
874		}
875	}
876
877	if (ret)
878		count_vm_event(HTLB_BUDDY_PGALLOC);
879	else
880		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
881
882	return ret;
883}
884
885/*
886 * Free huge page from pool from next node to free.
887 * Attempt to keep persistent huge pages more or less
888 * balanced over allowed nodes.
889 * Called with hugetlb_lock locked.
890 */
891static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
892							 bool acct_surplus)
893{
894	int nr_nodes, node;
895	int ret = 0;
896
897	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
898		/*
899		 * If we're returning unused surplus pages, only examine
900		 * nodes with surplus pages.
901		 */
902		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
903		    !list_empty(&h->hugepage_freelists[node])) {
904			struct page *page =
905				list_entry(h->hugepage_freelists[node].next,
906					  struct page, lru);
907			list_del(&page->lru);
908			h->free_huge_pages--;
909			h->free_huge_pages_node[node]--;
910			if (acct_surplus) {
911				h->surplus_huge_pages--;
912				h->surplus_huge_pages_node[node]--;
913			}
914			update_and_free_page(h, page);
915			ret = 1;
916			break;
917		}
918	}
919
920	return ret;
921}
922
923/*
924 * Dissolve a given free hugepage into free buddy pages. This function does
925 * nothing for in-use (including surplus) hugepages.
926 */
927static void dissolve_free_huge_page(struct page *page)
928{
929	spin_lock(&hugetlb_lock);
930	if (PageHuge(page) && !page_count(page)) {
931		struct hstate *h = page_hstate(page);
932		int nid = page_to_nid(page);
933		list_del(&page->lru);
934		h->free_huge_pages--;
935		h->free_huge_pages_node[nid]--;
936		update_and_free_page(h, page);
937	}
938	spin_unlock(&hugetlb_lock);
939}
940
941/*
942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
943 * make specified memory blocks removable from the system.
944 * Note that start_pfn should aligned with (minimum) hugepage size.
945 */
946void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
947{
948	unsigned int order = 8 * sizeof(void *);
949	unsigned long pfn;
950	struct hstate *h;
951
952	/* Set scan step to minimum hugepage size */
953	for_each_hstate(h)
954		if (order > huge_page_order(h))
955			order = huge_page_order(h);
956	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
957	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
958		dissolve_free_huge_page(pfn_to_page(pfn));
959}
960
961static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
962{
963	struct page *page;
964	unsigned int r_nid;
965
966	if (h->order >= MAX_ORDER)
967		return NULL;
968
969	/*
970	 * Assume we will successfully allocate the surplus page to
971	 * prevent racing processes from causing the surplus to exceed
972	 * overcommit
973	 *
974	 * This however introduces a different race, where a process B
975	 * tries to grow the static hugepage pool while alloc_pages() is
976	 * called by process A. B will only examine the per-node
977	 * counters in determining if surplus huge pages can be
978	 * converted to normal huge pages in adjust_pool_surplus(). A
979	 * won't be able to increment the per-node counter, until the
980	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
981	 * no more huge pages can be converted from surplus to normal
982	 * state (and doesn't try to convert again). Thus, we have a
983	 * case where a surplus huge page exists, the pool is grown, and
984	 * the surplus huge page still exists after, even though it
985	 * should just have been converted to a normal huge page. This
986	 * does not leak memory, though, as the hugepage will be freed
987	 * once it is out of use. It also does not allow the counters to
988	 * go out of whack in adjust_pool_surplus() as we don't modify
989	 * the node values until we've gotten the hugepage and only the
990	 * per-node value is checked there.
991	 */
992	spin_lock(&hugetlb_lock);
993	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
994		spin_unlock(&hugetlb_lock);
995		return NULL;
996	} else {
997		h->nr_huge_pages++;
998		h->surplus_huge_pages++;
999	}
1000	spin_unlock(&hugetlb_lock);
1001
1002	if (nid == NUMA_NO_NODE)
1003		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004				   __GFP_REPEAT|__GFP_NOWARN,
1005				   huge_page_order(h));
1006	else
1007		page = alloc_pages_exact_node(nid,
1008			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1010
1011	if (page && arch_prepare_hugepage(page)) {
1012		__free_pages(page, huge_page_order(h));
1013		page = NULL;
1014	}
1015
1016	spin_lock(&hugetlb_lock);
1017	if (page) {
1018		INIT_LIST_HEAD(&page->lru);
1019		r_nid = page_to_nid(page);
1020		set_compound_page_dtor(page, free_huge_page);
1021		set_hugetlb_cgroup(page, NULL);
1022		/*
1023		 * We incremented the global counters already
1024		 */
1025		h->nr_huge_pages_node[r_nid]++;
1026		h->surplus_huge_pages_node[r_nid]++;
1027		__count_vm_event(HTLB_BUDDY_PGALLOC);
1028	} else {
1029		h->nr_huge_pages--;
1030		h->surplus_huge_pages--;
1031		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032	}
1033	spin_unlock(&hugetlb_lock);
1034
1035	return page;
1036}
1037
1038/*
1039 * This allocation function is useful in the context where vma is irrelevant.
1040 * E.g. soft-offlining uses this function because it only cares physical
1041 * address of error page.
1042 */
1043struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044{
1045	struct page *page = NULL;
1046
1047	spin_lock(&hugetlb_lock);
1048	if (h->free_huge_pages - h->resv_huge_pages > 0)
1049		page = dequeue_huge_page_node(h, nid);
1050	spin_unlock(&hugetlb_lock);
1051
1052	if (!page)
1053		page = alloc_buddy_huge_page(h, nid);
1054
1055	return page;
1056}
1057
1058/*
1059 * Increase the hugetlb pool such that it can accommodate a reservation
1060 * of size 'delta'.
1061 */
1062static int gather_surplus_pages(struct hstate *h, int delta)
1063{
1064	struct list_head surplus_list;
1065	struct page *page, *tmp;
1066	int ret, i;
1067	int needed, allocated;
1068	bool alloc_ok = true;
1069
1070	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071	if (needed <= 0) {
1072		h->resv_huge_pages += delta;
1073		return 0;
1074	}
1075
1076	allocated = 0;
1077	INIT_LIST_HEAD(&surplus_list);
1078
1079	ret = -ENOMEM;
1080retry:
1081	spin_unlock(&hugetlb_lock);
1082	for (i = 0; i < needed; i++) {
1083		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1084		if (!page) {
1085			alloc_ok = false;
1086			break;
1087		}
1088		list_add(&page->lru, &surplus_list);
1089	}
1090	allocated += i;
1091
1092	/*
1093	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1094	 * because either resv_huge_pages or free_huge_pages may have changed.
1095	 */
1096	spin_lock(&hugetlb_lock);
1097	needed = (h->resv_huge_pages + delta) -
1098			(h->free_huge_pages + allocated);
1099	if (needed > 0) {
1100		if (alloc_ok)
1101			goto retry;
1102		/*
1103		 * We were not able to allocate enough pages to
1104		 * satisfy the entire reservation so we free what
1105		 * we've allocated so far.
1106		 */
1107		goto free;
1108	}
1109	/*
1110	 * The surplus_list now contains _at_least_ the number of extra pages
1111	 * needed to accommodate the reservation.  Add the appropriate number
1112	 * of pages to the hugetlb pool and free the extras back to the buddy
1113	 * allocator.  Commit the entire reservation here to prevent another
1114	 * process from stealing the pages as they are added to the pool but
1115	 * before they are reserved.
1116	 */
1117	needed += allocated;
1118	h->resv_huge_pages += delta;
1119	ret = 0;
1120
1121	/* Free the needed pages to the hugetlb pool */
1122	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123		if ((--needed) < 0)
1124			break;
1125		/*
1126		 * This page is now managed by the hugetlb allocator and has
1127		 * no users -- drop the buddy allocator's reference.
1128		 */
1129		put_page_testzero(page);
1130		VM_BUG_ON_PAGE(page_count(page), page);
1131		enqueue_huge_page(h, page);
1132	}
1133free:
1134	spin_unlock(&hugetlb_lock);
1135
1136	/* Free unnecessary surplus pages to the buddy allocator */
1137	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138		put_page(page);
1139	spin_lock(&hugetlb_lock);
1140
1141	return ret;
1142}
1143
1144/*
1145 * When releasing a hugetlb pool reservation, any surplus pages that were
1146 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * never used.
1148 * Called with hugetlb_lock held.
1149 */
1150static void return_unused_surplus_pages(struct hstate *h,
1151					unsigned long unused_resv_pages)
1152{
1153	unsigned long nr_pages;
1154
1155	/* Uncommit the reservation */
1156	h->resv_huge_pages -= unused_resv_pages;
1157
1158	/* Cannot return gigantic pages currently */
1159	if (h->order >= MAX_ORDER)
1160		return;
1161
1162	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164	/*
1165	 * We want to release as many surplus pages as possible, spread
1166	 * evenly across all nodes with memory. Iterate across these nodes
1167	 * until we can no longer free unreserved surplus pages. This occurs
1168	 * when the nodes with surplus pages have no free pages.
1169	 * free_pool_huge_page() will balance the the freed pages across the
1170	 * on-line nodes with memory and will handle the hstate accounting.
1171	 */
1172	while (nr_pages--) {
1173		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174			break;
1175	}
1176}
1177
1178/*
1179 * Determine if the huge page at addr within the vma has an associated
1180 * reservation.  Where it does not we will need to logically increase
1181 * reservation and actually increase subpool usage before an allocation
1182 * can occur.  Where any new reservation would be required the
1183 * reservation change is prepared, but not committed.  Once the page
1184 * has been allocated from the subpool and instantiated the change should
1185 * be committed via vma_commit_reservation.  No action is required on
1186 * failure.
1187 */
1188static long vma_needs_reservation(struct hstate *h,
1189			struct vm_area_struct *vma, unsigned long addr)
1190{
1191	struct resv_map *resv;
1192	pgoff_t idx;
1193	long chg;
1194
1195	resv = vma_resv_map(vma);
1196	if (!resv)
1197		return 1;
1198
1199	idx = vma_hugecache_offset(h, vma, addr);
1200	chg = region_chg(resv, idx, idx + 1);
1201
1202	if (vma->vm_flags & VM_MAYSHARE)
1203		return chg;
1204	else
1205		return chg < 0 ? chg : 0;
1206}
1207static void vma_commit_reservation(struct hstate *h,
1208			struct vm_area_struct *vma, unsigned long addr)
1209{
1210	struct resv_map *resv;
1211	pgoff_t idx;
1212
1213	resv = vma_resv_map(vma);
1214	if (!resv)
1215		return;
1216
1217	idx = vma_hugecache_offset(h, vma, addr);
1218	region_add(resv, idx, idx + 1);
1219}
1220
1221static struct page *alloc_huge_page(struct vm_area_struct *vma,
1222				    unsigned long addr, int avoid_reserve)
1223{
1224	struct hugepage_subpool *spool = subpool_vma(vma);
1225	struct hstate *h = hstate_vma(vma);
1226	struct page *page;
1227	long chg;
1228	int ret, idx;
1229	struct hugetlb_cgroup *h_cg;
1230
1231	idx = hstate_index(h);
1232	/*
1233	 * Processes that did not create the mapping will have no
1234	 * reserves and will not have accounted against subpool
1235	 * limit. Check that the subpool limit can be made before
1236	 * satisfying the allocation MAP_NORESERVE mappings may also
1237	 * need pages and subpool limit allocated allocated if no reserve
1238	 * mapping overlaps.
1239	 */
1240	chg = vma_needs_reservation(h, vma, addr);
1241	if (chg < 0)
1242		return ERR_PTR(-ENOMEM);
1243	if (chg || avoid_reserve)
1244		if (hugepage_subpool_get_pages(spool, 1))
1245			return ERR_PTR(-ENOSPC);
1246
1247	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1248	if (ret) {
1249		if (chg || avoid_reserve)
1250			hugepage_subpool_put_pages(spool, 1);
1251		return ERR_PTR(-ENOSPC);
1252	}
1253	spin_lock(&hugetlb_lock);
1254	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1255	if (!page) {
1256		spin_unlock(&hugetlb_lock);
1257		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1258		if (!page) {
1259			hugetlb_cgroup_uncharge_cgroup(idx,
1260						       pages_per_huge_page(h),
1261						       h_cg);
1262			if (chg || avoid_reserve)
1263				hugepage_subpool_put_pages(spool, 1);
1264			return ERR_PTR(-ENOSPC);
1265		}
1266		spin_lock(&hugetlb_lock);
1267		list_move(&page->lru, &h->hugepage_activelist);
1268		/* Fall through */
1269	}
1270	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1271	spin_unlock(&hugetlb_lock);
1272
1273	set_page_private(page, (unsigned long)spool);
1274
1275	vma_commit_reservation(h, vma, addr);
1276	return page;
1277}
1278
1279/*
1280 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1281 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1282 * where no ERR_VALUE is expected to be returned.
1283 */
1284struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1285				unsigned long addr, int avoid_reserve)
1286{
1287	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1288	if (IS_ERR(page))
1289		page = NULL;
1290	return page;
1291}
1292
1293int __weak alloc_bootmem_huge_page(struct hstate *h)
1294{
1295	struct huge_bootmem_page *m;
1296	int nr_nodes, node;
1297
1298	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1299		void *addr;
1300
1301		addr = memblock_virt_alloc_try_nid_nopanic(
1302				huge_page_size(h), huge_page_size(h),
1303				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1304		if (addr) {
1305			/*
1306			 * Use the beginning of the huge page to store the
1307			 * huge_bootmem_page struct (until gather_bootmem
1308			 * puts them into the mem_map).
1309			 */
1310			m = addr;
1311			goto found;
1312		}
1313	}
1314	return 0;
1315
1316found:
1317	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1318	/* Put them into a private list first because mem_map is not up yet */
1319	list_add(&m->list, &huge_boot_pages);
1320	m->hstate = h;
1321	return 1;
1322}
1323
1324static void __init prep_compound_huge_page(struct page *page, int order)
1325{
1326	if (unlikely(order > (MAX_ORDER - 1)))
1327		prep_compound_gigantic_page(page, order);
1328	else
1329		prep_compound_page(page, order);
1330}
1331
1332/* Put bootmem huge pages into the standard lists after mem_map is up */
1333static void __init gather_bootmem_prealloc(void)
1334{
1335	struct huge_bootmem_page *m;
1336
1337	list_for_each_entry(m, &huge_boot_pages, list) {
1338		struct hstate *h = m->hstate;
1339		struct page *page;
1340
1341#ifdef CONFIG_HIGHMEM
1342		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1343		memblock_free_late(__pa(m),
1344				   sizeof(struct huge_bootmem_page));
1345#else
1346		page = virt_to_page(m);
1347#endif
1348		WARN_ON(page_count(page) != 1);
1349		prep_compound_huge_page(page, h->order);
1350		WARN_ON(PageReserved(page));
1351		prep_new_huge_page(h, page, page_to_nid(page));
1352		/*
1353		 * If we had gigantic hugepages allocated at boot time, we need
1354		 * to restore the 'stolen' pages to totalram_pages in order to
1355		 * fix confusing memory reports from free(1) and another
1356		 * side-effects, like CommitLimit going negative.
1357		 */
1358		if (h->order > (MAX_ORDER - 1))
1359			adjust_managed_page_count(page, 1 << h->order);
1360	}
1361}
1362
1363static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1364{
1365	unsigned long i;
1366
1367	for (i = 0; i < h->max_huge_pages; ++i) {
1368		if (h->order >= MAX_ORDER) {
1369			if (!alloc_bootmem_huge_page(h))
1370				break;
1371		} else if (!alloc_fresh_huge_page(h,
1372					 &node_states[N_MEMORY]))
1373			break;
1374	}
1375	h->max_huge_pages = i;
1376}
1377
1378static void __init hugetlb_init_hstates(void)
1379{
1380	struct hstate *h;
1381
1382	for_each_hstate(h) {
1383		/* oversize hugepages were init'ed in early boot */
1384		if (h->order < MAX_ORDER)
1385			hugetlb_hstate_alloc_pages(h);
1386	}
1387}
1388
1389static char * __init memfmt(char *buf, unsigned long n)
1390{
1391	if (n >= (1UL << 30))
1392		sprintf(buf, "%lu GB", n >> 30);
1393	else if (n >= (1UL << 20))
1394		sprintf(buf, "%lu MB", n >> 20);
1395	else
1396		sprintf(buf, "%lu KB", n >> 10);
1397	return buf;
1398}
1399
1400static void __init report_hugepages(void)
1401{
1402	struct hstate *h;
1403
1404	for_each_hstate(h) {
1405		char buf[32];
1406		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1407			memfmt(buf, huge_page_size(h)),
1408			h->free_huge_pages);
1409	}
1410}
1411
1412#ifdef CONFIG_HIGHMEM
1413static void try_to_free_low(struct hstate *h, unsigned long count,
1414						nodemask_t *nodes_allowed)
1415{
1416	int i;
1417
1418	if (h->order >= MAX_ORDER)
1419		return;
1420
1421	for_each_node_mask(i, *nodes_allowed) {
1422		struct page *page, *next;
1423		struct list_head *freel = &h->hugepage_freelists[i];
1424		list_for_each_entry_safe(page, next, freel, lru) {
1425			if (count >= h->nr_huge_pages)
1426				return;
1427			if (PageHighMem(page))
1428				continue;
1429			list_del(&page->lru);
1430			update_and_free_page(h, page);
1431			h->free_huge_pages--;
1432			h->free_huge_pages_node[page_to_nid(page)]--;
1433		}
1434	}
1435}
1436#else
1437static inline void try_to_free_low(struct hstate *h, unsigned long count,
1438						nodemask_t *nodes_allowed)
1439{
1440}
1441#endif
1442
1443/*
1444 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1445 * balanced by operating on them in a round-robin fashion.
1446 * Returns 1 if an adjustment was made.
1447 */
1448static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1449				int delta)
1450{
1451	int nr_nodes, node;
1452
1453	VM_BUG_ON(delta != -1 && delta != 1);
1454
1455	if (delta < 0) {
1456		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1457			if (h->surplus_huge_pages_node[node])
1458				goto found;
1459		}
1460	} else {
1461		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1462			if (h->surplus_huge_pages_node[node] <
1463					h->nr_huge_pages_node[node])
1464				goto found;
1465		}
1466	}
1467	return 0;
1468
1469found:
1470	h->surplus_huge_pages += delta;
1471	h->surplus_huge_pages_node[node] += delta;
1472	return 1;
1473}
1474
1475#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1476static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1477						nodemask_t *nodes_allowed)
1478{
1479	unsigned long min_count, ret;
1480
1481	if (h->order >= MAX_ORDER)
1482		return h->max_huge_pages;
1483
1484	/*
1485	 * Increase the pool size
1486	 * First take pages out of surplus state.  Then make up the
1487	 * remaining difference by allocating fresh huge pages.
1488	 *
1489	 * We might race with alloc_buddy_huge_page() here and be unable
1490	 * to convert a surplus huge page to a normal huge page. That is
1491	 * not critical, though, it just means the overall size of the
1492	 * pool might be one hugepage larger than it needs to be, but
1493	 * within all the constraints specified by the sysctls.
1494	 */
1495	spin_lock(&hugetlb_lock);
1496	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1497		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1498			break;
1499	}
1500
1501	while (count > persistent_huge_pages(h)) {
1502		/*
1503		 * If this allocation races such that we no longer need the
1504		 * page, free_huge_page will handle it by freeing the page
1505		 * and reducing the surplus.
1506		 */
1507		spin_unlock(&hugetlb_lock);
1508		ret = alloc_fresh_huge_page(h, nodes_allowed);
1509		spin_lock(&hugetlb_lock);
1510		if (!ret)
1511			goto out;
1512
1513		/* Bail for signals. Probably ctrl-c from user */
1514		if (signal_pending(current))
1515			goto out;
1516	}
1517
1518	/*
1519	 * Decrease the pool size
1520	 * First return free pages to the buddy allocator (being careful
1521	 * to keep enough around to satisfy reservations).  Then place
1522	 * pages into surplus state as needed so the pool will shrink
1523	 * to the desired size as pages become free.
1524	 *
1525	 * By placing pages into the surplus state independent of the
1526	 * overcommit value, we are allowing the surplus pool size to
1527	 * exceed overcommit. There are few sane options here. Since
1528	 * alloc_buddy_huge_page() is checking the global counter,
1529	 * though, we'll note that we're not allowed to exceed surplus
1530	 * and won't grow the pool anywhere else. Not until one of the
1531	 * sysctls are changed, or the surplus pages go out of use.
1532	 */
1533	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1534	min_count = max(count, min_count);
1535	try_to_free_low(h, min_count, nodes_allowed);
1536	while (min_count < persistent_huge_pages(h)) {
1537		if (!free_pool_huge_page(h, nodes_allowed, 0))
1538			break;
1539		cond_resched_lock(&hugetlb_lock);
1540	}
1541	while (count < persistent_huge_pages(h)) {
1542		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1543			break;
1544	}
1545out:
1546	ret = persistent_huge_pages(h);
1547	spin_unlock(&hugetlb_lock);
1548	return ret;
1549}
1550
1551#define HSTATE_ATTR_RO(_name) \
1552	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1553
1554#define HSTATE_ATTR(_name) \
1555	static struct kobj_attribute _name##_attr = \
1556		__ATTR(_name, 0644, _name##_show, _name##_store)
1557
1558static struct kobject *hugepages_kobj;
1559static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1560
1561static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1562
1563static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1564{
1565	int i;
1566
1567	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1568		if (hstate_kobjs[i] == kobj) {
1569			if (nidp)
1570				*nidp = NUMA_NO_NODE;
1571			return &hstates[i];
1572		}
1573
1574	return kobj_to_node_hstate(kobj, nidp);
1575}
1576
1577static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1578					struct kobj_attribute *attr, char *buf)
1579{
1580	struct hstate *h;
1581	unsigned long nr_huge_pages;
1582	int nid;
1583
1584	h = kobj_to_hstate(kobj, &nid);
1585	if (nid == NUMA_NO_NODE)
1586		nr_huge_pages = h->nr_huge_pages;
1587	else
1588		nr_huge_pages = h->nr_huge_pages_node[nid];
1589
1590	return sprintf(buf, "%lu\n", nr_huge_pages);
1591}
1592
1593static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1594			struct kobject *kobj, struct kobj_attribute *attr,
1595			const char *buf, size_t len)
1596{
1597	int err;
1598	int nid;
1599	unsigned long count;
1600	struct hstate *h;
1601	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1602
1603	err = kstrtoul(buf, 10, &count);
1604	if (err)
1605		goto out;
1606
1607	h = kobj_to_hstate(kobj, &nid);
1608	if (h->order >= MAX_ORDER) {
1609		err = -EINVAL;
1610		goto out;
1611	}
1612
1613	if (nid == NUMA_NO_NODE) {
1614		/*
1615		 * global hstate attribute
1616		 */
1617		if (!(obey_mempolicy &&
1618				init_nodemask_of_mempolicy(nodes_allowed))) {
1619			NODEMASK_FREE(nodes_allowed);
1620			nodes_allowed = &node_states[N_MEMORY];
1621		}
1622	} else if (nodes_allowed) {
1623		/*
1624		 * per node hstate attribute: adjust count to global,
1625		 * but restrict alloc/free to the specified node.
1626		 */
1627		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1628		init_nodemask_of_node(nodes_allowed, nid);
1629	} else
1630		nodes_allowed = &node_states[N_MEMORY];
1631
1632	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1633
1634	if (nodes_allowed != &node_states[N_MEMORY])
1635		NODEMASK_FREE(nodes_allowed);
1636
1637	return len;
1638out:
1639	NODEMASK_FREE(nodes_allowed);
1640	return err;
1641}
1642
1643static ssize_t nr_hugepages_show(struct kobject *kobj,
1644				       struct kobj_attribute *attr, char *buf)
1645{
1646	return nr_hugepages_show_common(kobj, attr, buf);
1647}
1648
1649static ssize_t nr_hugepages_store(struct kobject *kobj,
1650	       struct kobj_attribute *attr, const char *buf, size_t len)
1651{
1652	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1653}
1654HSTATE_ATTR(nr_hugepages);
1655
1656#ifdef CONFIG_NUMA
1657
1658/*
1659 * hstate attribute for optionally mempolicy-based constraint on persistent
1660 * huge page alloc/free.
1661 */
1662static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1663				       struct kobj_attribute *attr, char *buf)
1664{
1665	return nr_hugepages_show_common(kobj, attr, buf);
1666}
1667
1668static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1669	       struct kobj_attribute *attr, const char *buf, size_t len)
1670{
1671	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1672}
1673HSTATE_ATTR(nr_hugepages_mempolicy);
1674#endif
1675
1676
1677static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1678					struct kobj_attribute *attr, char *buf)
1679{
1680	struct hstate *h = kobj_to_hstate(kobj, NULL);
1681	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1682}
1683
1684static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1685		struct kobj_attribute *attr, const char *buf, size_t count)
1686{
1687	int err;
1688	unsigned long input;
1689	struct hstate *h = kobj_to_hstate(kobj, NULL);
1690
1691	if (h->order >= MAX_ORDER)
1692		return -EINVAL;
1693
1694	err = kstrtoul(buf, 10, &input);
1695	if (err)
1696		return err;
1697
1698	spin_lock(&hugetlb_lock);
1699	h->nr_overcommit_huge_pages = input;
1700	spin_unlock(&hugetlb_lock);
1701
1702	return count;
1703}
1704HSTATE_ATTR(nr_overcommit_hugepages);
1705
1706static ssize_t free_hugepages_show(struct kobject *kobj,
1707					struct kobj_attribute *attr, char *buf)
1708{
1709	struct hstate *h;
1710	unsigned long free_huge_pages;
1711	int nid;
1712
1713	h = kobj_to_hstate(kobj, &nid);
1714	if (nid == NUMA_NO_NODE)
1715		free_huge_pages = h->free_huge_pages;
1716	else
1717		free_huge_pages = h->free_huge_pages_node[nid];
1718
1719	return sprintf(buf, "%lu\n", free_huge_pages);
1720}
1721HSTATE_ATTR_RO(free_hugepages);
1722
1723static ssize_t resv_hugepages_show(struct kobject *kobj,
1724					struct kobj_attribute *attr, char *buf)
1725{
1726	struct hstate *h = kobj_to_hstate(kobj, NULL);
1727	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1728}
1729HSTATE_ATTR_RO(resv_hugepages);
1730
1731static ssize_t surplus_hugepages_show(struct kobject *kobj,
1732					struct kobj_attribute *attr, char *buf)
1733{
1734	struct hstate *h;
1735	unsigned long surplus_huge_pages;
1736	int nid;
1737
1738	h = kobj_to_hstate(kobj, &nid);
1739	if (nid == NUMA_NO_NODE)
1740		surplus_huge_pages = h->surplus_huge_pages;
1741	else
1742		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1743
1744	return sprintf(buf, "%lu\n", surplus_huge_pages);
1745}
1746HSTATE_ATTR_RO(surplus_hugepages);
1747
1748static struct attribute *hstate_attrs[] = {
1749	&nr_hugepages_attr.attr,
1750	&nr_overcommit_hugepages_attr.attr,
1751	&free_hugepages_attr.attr,
1752	&resv_hugepages_attr.attr,
1753	&surplus_hugepages_attr.attr,
1754#ifdef CONFIG_NUMA
1755	&nr_hugepages_mempolicy_attr.attr,
1756#endif
1757	NULL,
1758};
1759
1760static struct attribute_group hstate_attr_group = {
1761	.attrs = hstate_attrs,
1762};
1763
1764static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1765				    struct kobject **hstate_kobjs,
1766				    struct attribute_group *hstate_attr_group)
1767{
1768	int retval;
1769	int hi = hstate_index(h);
1770
1771	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1772	if (!hstate_kobjs[hi])
1773		return -ENOMEM;
1774
1775	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1776	if (retval)
1777		kobject_put(hstate_kobjs[hi]);
1778
1779	return retval;
1780}
1781
1782static void __init hugetlb_sysfs_init(void)
1783{
1784	struct hstate *h;
1785	int err;
1786
1787	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1788	if (!hugepages_kobj)
1789		return;
1790
1791	for_each_hstate(h) {
1792		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1793					 hstate_kobjs, &hstate_attr_group);
1794		if (err)
1795			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1796	}
1797}
1798
1799#ifdef CONFIG_NUMA
1800
1801/*
1802 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1803 * with node devices in node_devices[] using a parallel array.  The array
1804 * index of a node device or _hstate == node id.
1805 * This is here to avoid any static dependency of the node device driver, in
1806 * the base kernel, on the hugetlb module.
1807 */
1808struct node_hstate {
1809	struct kobject		*hugepages_kobj;
1810	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1811};
1812struct node_hstate node_hstates[MAX_NUMNODES];
1813
1814/*
1815 * A subset of global hstate attributes for node devices
1816 */
1817static struct attribute *per_node_hstate_attrs[] = {
1818	&nr_hugepages_attr.attr,
1819	&free_hugepages_attr.attr,
1820	&surplus_hugepages_attr.attr,
1821	NULL,
1822};
1823
1824static struct attribute_group per_node_hstate_attr_group = {
1825	.attrs = per_node_hstate_attrs,
1826};
1827
1828/*
1829 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1830 * Returns node id via non-NULL nidp.
1831 */
1832static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1833{
1834	int nid;
1835
1836	for (nid = 0; nid < nr_node_ids; nid++) {
1837		struct node_hstate *nhs = &node_hstates[nid];
1838		int i;
1839		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1840			if (nhs->hstate_kobjs[i] == kobj) {
1841				if (nidp)
1842					*nidp = nid;
1843				return &hstates[i];
1844			}
1845	}
1846
1847	BUG();
1848	return NULL;
1849}
1850
1851/*
1852 * Unregister hstate attributes from a single node device.
1853 * No-op if no hstate attributes attached.
1854 */
1855static void hugetlb_unregister_node(struct node *node)
1856{
1857	struct hstate *h;
1858	struct node_hstate *nhs = &node_hstates[node->dev.id];
1859
1860	if (!nhs->hugepages_kobj)
1861		return;		/* no hstate attributes */
1862
1863	for_each_hstate(h) {
1864		int idx = hstate_index(h);
1865		if (nhs->hstate_kobjs[idx]) {
1866			kobject_put(nhs->hstate_kobjs[idx]);
1867			nhs->hstate_kobjs[idx] = NULL;
1868		}
1869	}
1870
1871	kobject_put(nhs->hugepages_kobj);
1872	nhs->hugepages_kobj = NULL;
1873}
1874
1875/*
1876 * hugetlb module exit:  unregister hstate attributes from node devices
1877 * that have them.
1878 */
1879static void hugetlb_unregister_all_nodes(void)
1880{
1881	int nid;
1882
1883	/*
1884	 * disable node device registrations.
1885	 */
1886	register_hugetlbfs_with_node(NULL, NULL);
1887
1888	/*
1889	 * remove hstate attributes from any nodes that have them.
1890	 */
1891	for (nid = 0; nid < nr_node_ids; nid++)
1892		hugetlb_unregister_node(node_devices[nid]);
1893}
1894
1895/*
1896 * Register hstate attributes for a single node device.
1897 * No-op if attributes already registered.
1898 */
1899static void hugetlb_register_node(struct node *node)
1900{
1901	struct hstate *h;
1902	struct node_hstate *nhs = &node_hstates[node->dev.id];
1903	int err;
1904
1905	if (nhs->hugepages_kobj)
1906		return;		/* already allocated */
1907
1908	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1909							&node->dev.kobj);
1910	if (!nhs->hugepages_kobj)
1911		return;
1912
1913	for_each_hstate(h) {
1914		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1915						nhs->hstate_kobjs,
1916						&per_node_hstate_attr_group);
1917		if (err) {
1918			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1919				h->name, node->dev.id);
1920			hugetlb_unregister_node(node);
1921			break;
1922		}
1923	}
1924}
1925
1926/*
1927 * hugetlb init time:  register hstate attributes for all registered node
1928 * devices of nodes that have memory.  All on-line nodes should have
1929 * registered their associated device by this time.
1930 */
1931static void hugetlb_register_all_nodes(void)
1932{
1933	int nid;
1934
1935	for_each_node_state(nid, N_MEMORY) {
1936		struct node *node = node_devices[nid];
1937		if (node->dev.id == nid)
1938			hugetlb_register_node(node);
1939	}
1940
1941	/*
1942	 * Let the node device driver know we're here so it can
1943	 * [un]register hstate attributes on node hotplug.
1944	 */
1945	register_hugetlbfs_with_node(hugetlb_register_node,
1946				     hugetlb_unregister_node);
1947}
1948#else	/* !CONFIG_NUMA */
1949
1950static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1951{
1952	BUG();
1953	if (nidp)
1954		*nidp = -1;
1955	return NULL;
1956}
1957
1958static void hugetlb_unregister_all_nodes(void) { }
1959
1960static void hugetlb_register_all_nodes(void) { }
1961
1962#endif
1963
1964static void __exit hugetlb_exit(void)
1965{
1966	struct hstate *h;
1967
1968	hugetlb_unregister_all_nodes();
1969
1970	for_each_hstate(h) {
1971		kobject_put(hstate_kobjs[hstate_index(h)]);
1972	}
1973
1974	kobject_put(hugepages_kobj);
1975	kfree(htlb_fault_mutex_table);
1976}
1977module_exit(hugetlb_exit);
1978
1979static int __init hugetlb_init(void)
1980{
1981	int i;
1982
1983	/* Some platform decide whether they support huge pages at boot
1984	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1985	 * there is no such support
1986	 */
1987	if (HPAGE_SHIFT == 0)
1988		return 0;
1989
1990	if (!size_to_hstate(default_hstate_size)) {
1991		default_hstate_size = HPAGE_SIZE;
1992		if (!size_to_hstate(default_hstate_size))
1993			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1994	}
1995	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1996	if (default_hstate_max_huge_pages)
1997		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1998
1999	hugetlb_init_hstates();
2000	gather_bootmem_prealloc();
2001	report_hugepages();
2002
2003	hugetlb_sysfs_init();
2004	hugetlb_register_all_nodes();
2005	hugetlb_cgroup_file_init();
2006
2007#ifdef CONFIG_SMP
2008	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2009#else
2010	num_fault_mutexes = 1;
2011#endif
2012	htlb_fault_mutex_table =
2013		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2014	BUG_ON(!htlb_fault_mutex_table);
2015
2016	for (i = 0; i < num_fault_mutexes; i++)
2017		mutex_init(&htlb_fault_mutex_table[i]);
2018	return 0;
2019}
2020module_init(hugetlb_init);
2021
2022/* Should be called on processing a hugepagesz=... option */
2023void __init hugetlb_add_hstate(unsigned order)
2024{
2025	struct hstate *h;
2026	unsigned long i;
2027
2028	if (size_to_hstate(PAGE_SIZE << order)) {
2029		pr_warning("hugepagesz= specified twice, ignoring\n");
2030		return;
2031	}
2032	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2033	BUG_ON(order == 0);
2034	h = &hstates[hugetlb_max_hstate++];
2035	h->order = order;
2036	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2037	h->nr_huge_pages = 0;
2038	h->free_huge_pages = 0;
2039	for (i = 0; i < MAX_NUMNODES; ++i)
2040		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2041	INIT_LIST_HEAD(&h->hugepage_activelist);
2042	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2043	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2044	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2045					huge_page_size(h)/1024);
2046
2047	parsed_hstate = h;
2048}
2049
2050static int __init hugetlb_nrpages_setup(char *s)
2051{
2052	unsigned long *mhp;
2053	static unsigned long *last_mhp;
2054
2055	/*
2056	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2057	 * so this hugepages= parameter goes to the "default hstate".
2058	 */
2059	if (!hugetlb_max_hstate)
2060		mhp = &default_hstate_max_huge_pages;
2061	else
2062		mhp = &parsed_hstate->max_huge_pages;
2063
2064	if (mhp == last_mhp) {
2065		pr_warning("hugepages= specified twice without "
2066			   "interleaving hugepagesz=, ignoring\n");
2067		return 1;
2068	}
2069
2070	if (sscanf(s, "%lu", mhp) <= 0)
2071		*mhp = 0;
2072
2073	/*
2074	 * Global state is always initialized later in hugetlb_init.
2075	 * But we need to allocate >= MAX_ORDER hstates here early to still
2076	 * use the bootmem allocator.
2077	 */
2078	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2079		hugetlb_hstate_alloc_pages(parsed_hstate);
2080
2081	last_mhp = mhp;
2082
2083	return 1;
2084}
2085__setup("hugepages=", hugetlb_nrpages_setup);
2086
2087static int __init hugetlb_default_setup(char *s)
2088{
2089	default_hstate_size = memparse(s, &s);
2090	return 1;
2091}
2092__setup("default_hugepagesz=", hugetlb_default_setup);
2093
2094static unsigned int cpuset_mems_nr(unsigned int *array)
2095{
2096	int node;
2097	unsigned int nr = 0;
2098
2099	for_each_node_mask(node, cpuset_current_mems_allowed)
2100		nr += array[node];
2101
2102	return nr;
2103}
2104
2105#ifdef CONFIG_SYSCTL
2106static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2107			 struct ctl_table *table, int write,
2108			 void __user *buffer, size_t *length, loff_t *ppos)
2109{
2110	struct hstate *h = &default_hstate;
2111	unsigned long tmp;
2112	int ret;
2113
2114	tmp = h->max_huge_pages;
2115
2116	if (write && h->order >= MAX_ORDER)
2117		return -EINVAL;
2118
2119	table->data = &tmp;
2120	table->maxlen = sizeof(unsigned long);
2121	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2122	if (ret)
2123		goto out;
2124
2125	if (write) {
2126		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2127						GFP_KERNEL | __GFP_NORETRY);
2128		if (!(obey_mempolicy &&
2129			       init_nodemask_of_mempolicy(nodes_allowed))) {
2130			NODEMASK_FREE(nodes_allowed);
2131			nodes_allowed = &node_states[N_MEMORY];
2132		}
2133		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2134
2135		if (nodes_allowed != &node_states[N_MEMORY])
2136			NODEMASK_FREE(nodes_allowed);
2137	}
2138out:
2139	return ret;
2140}
2141
2142int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2143			  void __user *buffer, size_t *length, loff_t *ppos)
2144{
2145
2146	return hugetlb_sysctl_handler_common(false, table, write,
2147							buffer, length, ppos);
2148}
2149
2150#ifdef CONFIG_NUMA
2151int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2152			  void __user *buffer, size_t *length, loff_t *ppos)
2153{
2154	return hugetlb_sysctl_handler_common(true, table, write,
2155							buffer, length, ppos);
2156}
2157#endif /* CONFIG_NUMA */
2158
2159int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2160			void __user *buffer,
2161			size_t *length, loff_t *ppos)
2162{
2163	struct hstate *h = &default_hstate;
2164	unsigned long tmp;
2165	int ret;
2166
2167	tmp = h->nr_overcommit_huge_pages;
2168
2169	if (write && h->order >= MAX_ORDER)
2170		return -EINVAL;
2171
2172	table->data = &tmp;
2173	table->maxlen = sizeof(unsigned long);
2174	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2175	if (ret)
2176		goto out;
2177
2178	if (write) {
2179		spin_lock(&hugetlb_lock);
2180		h->nr_overcommit_huge_pages = tmp;
2181		spin_unlock(&hugetlb_lock);
2182	}
2183out:
2184	return ret;
2185}
2186
2187#endif /* CONFIG_SYSCTL */
2188
2189void hugetlb_report_meminfo(struct seq_file *m)
2190{
2191	struct hstate *h = &default_hstate;
2192	seq_printf(m,
2193			"HugePages_Total:   %5lu\n"
2194			"HugePages_Free:    %5lu\n"
2195			"HugePages_Rsvd:    %5lu\n"
2196			"HugePages_Surp:    %5lu\n"
2197			"Hugepagesize:   %8lu kB\n",
2198			h->nr_huge_pages,
2199			h->free_huge_pages,
2200			h->resv_huge_pages,
2201			h->surplus_huge_pages,
2202			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2203}
2204
2205int hugetlb_report_node_meminfo(int nid, char *buf)
2206{
2207	struct hstate *h = &default_hstate;
2208	return sprintf(buf,
2209		"Node %d HugePages_Total: %5u\n"
2210		"Node %d HugePages_Free:  %5u\n"
2211		"Node %d HugePages_Surp:  %5u\n",
2212		nid, h->nr_huge_pages_node[nid],
2213		nid, h->free_huge_pages_node[nid],
2214		nid, h->surplus_huge_pages_node[nid]);
2215}
2216
2217void hugetlb_show_meminfo(void)
2218{
2219	struct hstate *h;
2220	int nid;
2221
2222	for_each_node_state(nid, N_MEMORY)
2223		for_each_hstate(h)
2224			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2225				nid,
2226				h->nr_huge_pages_node[nid],
2227				h->free_huge_pages_node[nid],
2228				h->surplus_huge_pages_node[nid],
2229				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2230}
2231
2232/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2233unsigned long hugetlb_total_pages(void)
2234{
2235	struct hstate *h;
2236	unsigned long nr_total_pages = 0;
2237
2238	for_each_hstate(h)
2239		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2240	return nr_total_pages;
2241}
2242
2243static int hugetlb_acct_memory(struct hstate *h, long delta)
2244{
2245	int ret = -ENOMEM;
2246
2247	spin_lock(&hugetlb_lock);
2248	/*
2249	 * When cpuset is configured, it breaks the strict hugetlb page
2250	 * reservation as the accounting is done on a global variable. Such
2251	 * reservation is completely rubbish in the presence of cpuset because
2252	 * the reservation is not checked against page availability for the
2253	 * current cpuset. Application can still potentially OOM'ed by kernel
2254	 * with lack of free htlb page in cpuset that the task is in.
2255	 * Attempt to enforce strict accounting with cpuset is almost
2256	 * impossible (or too ugly) because cpuset is too fluid that
2257	 * task or memory node can be dynamically moved between cpusets.
2258	 *
2259	 * The change of semantics for shared hugetlb mapping with cpuset is
2260	 * undesirable. However, in order to preserve some of the semantics,
2261	 * we fall back to check against current free page availability as
2262	 * a best attempt and hopefully to minimize the impact of changing
2263	 * semantics that cpuset has.
2264	 */
2265	if (delta > 0) {
2266		if (gather_surplus_pages(h, delta) < 0)
2267			goto out;
2268
2269		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2270			return_unused_surplus_pages(h, delta);
2271			goto out;
2272		}
2273	}
2274
2275	ret = 0;
2276	if (delta < 0)
2277		return_unused_surplus_pages(h, (unsigned long) -delta);
2278
2279out:
2280	spin_unlock(&hugetlb_lock);
2281	return ret;
2282}
2283
2284static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2285{
2286	struct resv_map *resv = vma_resv_map(vma);
2287
2288	/*
2289	 * This new VMA should share its siblings reservation map if present.
2290	 * The VMA will only ever have a valid reservation map pointer where
2291	 * it is being copied for another still existing VMA.  As that VMA
2292	 * has a reference to the reservation map it cannot disappear until
2293	 * after this open call completes.  It is therefore safe to take a
2294	 * new reference here without additional locking.
2295	 */
2296	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2297		kref_get(&resv->refs);
2298}
2299
2300static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2301{
2302	struct hstate *h = hstate_vma(vma);
2303	struct resv_map *resv = vma_resv_map(vma);
2304	struct hugepage_subpool *spool = subpool_vma(vma);
2305	unsigned long reserve, start, end;
2306
2307	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2308		return;
2309
2310	start = vma_hugecache_offset(h, vma, vma->vm_start);
2311	end = vma_hugecache_offset(h, vma, vma->vm_end);
2312
2313	reserve = (end - start) - region_count(resv, start, end);
2314
2315	kref_put(&resv->refs, resv_map_release);
2316
2317	if (reserve) {
2318		hugetlb_acct_memory(h, -reserve);
2319		hugepage_subpool_put_pages(spool, reserve);
2320	}
2321}
2322
2323/*
2324 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2325 * handle_mm_fault() to try to instantiate regular-sized pages in the
2326 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2327 * this far.
2328 */
2329static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2330{
2331	BUG();
2332	return 0;
2333}
2334
2335const struct vm_operations_struct hugetlb_vm_ops = {
2336	.fault = hugetlb_vm_op_fault,
2337	.open = hugetlb_vm_op_open,
2338	.close = hugetlb_vm_op_close,
2339};
2340
2341static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2342				int writable)
2343{
2344	pte_t entry;
2345
2346	if (writable) {
2347		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2348					 vma->vm_page_prot)));
2349	} else {
2350		entry = huge_pte_wrprotect(mk_huge_pte(page,
2351					   vma->vm_page_prot));
2352	}
2353	entry = pte_mkyoung(entry);
2354	entry = pte_mkhuge(entry);
2355	entry = arch_make_huge_pte(entry, vma, page, writable);
2356
2357	return entry;
2358}
2359
2360static void set_huge_ptep_writable(struct vm_area_struct *vma,
2361				   unsigned long address, pte_t *ptep)
2362{
2363	pte_t entry;
2364
2365	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2366	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2367		update_mmu_cache(vma, address, ptep);
2368}
2369
2370
2371int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2372			    struct vm_area_struct *vma)
2373{
2374	pte_t *src_pte, *dst_pte, entry;
2375	struct page *ptepage;
2376	unsigned long addr;
2377	int cow;
2378	struct hstate *h = hstate_vma(vma);
2379	unsigned long sz = huge_page_size(h);
2380	unsigned long mmun_start;	/* For mmu_notifiers */
2381	unsigned long mmun_end;		/* For mmu_notifiers */
2382	int ret = 0;
2383
2384	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2385
2386	mmun_start = vma->vm_start;
2387	mmun_end = vma->vm_end;
2388	if (cow)
2389		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2390
2391	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2392		spinlock_t *src_ptl, *dst_ptl;
2393		src_pte = huge_pte_offset(src, addr);
2394		if (!src_pte)
2395			continue;
2396		dst_pte = huge_pte_alloc(dst, addr, sz);
2397		if (!dst_pte) {
2398			ret = -ENOMEM;
2399			break;
2400		}
2401
2402		/* If the pagetables are shared don't copy or take references */
2403		if (dst_pte == src_pte)
2404			continue;
2405
2406		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2407		src_ptl = huge_pte_lockptr(h, src, src_pte);
2408		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2409		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2410			if (cow)
2411				huge_ptep_set_wrprotect(src, addr, src_pte);
2412			entry = huge_ptep_get(src_pte);
2413			ptepage = pte_page(entry);
2414			get_page(ptepage);
2415			page_dup_rmap(ptepage);
2416			set_huge_pte_at(dst, addr, dst_pte, entry);
2417		}
2418		spin_unlock(src_ptl);
2419		spin_unlock(dst_ptl);
2420	}
2421
2422	if (cow)
2423		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2424
2425	return ret;
2426}
2427
2428static int is_hugetlb_entry_migration(pte_t pte)
2429{
2430	swp_entry_t swp;
2431
2432	if (huge_pte_none(pte) || pte_present(pte))
2433		return 0;
2434	swp = pte_to_swp_entry(pte);
2435	if (non_swap_entry(swp) && is_migration_entry(swp))
2436		return 1;
2437	else
2438		return 0;
2439}
2440
2441static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2442{
2443	swp_entry_t swp;
2444
2445	if (huge_pte_none(pte) || pte_present(pte))
2446		return 0;
2447	swp = pte_to_swp_entry(pte);
2448	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2449		return 1;
2450	else
2451		return 0;
2452}
2453
2454void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2455			    unsigned long start, unsigned long end,
2456			    struct page *ref_page)
2457{
2458	int force_flush = 0;
2459	struct mm_struct *mm = vma->vm_mm;
2460	unsigned long address;
2461	pte_t *ptep;
2462	pte_t pte;
2463	spinlock_t *ptl;
2464	struct page *page;
2465	struct hstate *h = hstate_vma(vma);
2466	unsigned long sz = huge_page_size(h);
2467	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2468	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2469
2470	WARN_ON(!is_vm_hugetlb_page(vma));
2471	BUG_ON(start & ~huge_page_mask(h));
2472	BUG_ON(end & ~huge_page_mask(h));
2473
2474	tlb_start_vma(tlb, vma);
2475	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2476again:
2477	for (address = start; address < end; address += sz) {
2478		ptep = huge_pte_offset(mm, address);
2479		if (!ptep)
2480			continue;
2481
2482		ptl = huge_pte_lock(h, mm, ptep);
2483		if (huge_pmd_unshare(mm, &address, ptep))
2484			goto unlock;
2485
2486		pte = huge_ptep_get(ptep);
2487		if (huge_pte_none(pte))
2488			goto unlock;
2489
2490		/*
2491		 * HWPoisoned hugepage is already unmapped and dropped reference
2492		 */
2493		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2494			huge_pte_clear(mm, address, ptep);
2495			goto unlock;
2496		}
2497
2498		page = pte_page(pte);
2499		/*
2500		 * If a reference page is supplied, it is because a specific
2501		 * page is being unmapped, not a range. Ensure the page we
2502		 * are about to unmap is the actual page of interest.
2503		 */
2504		if (ref_page) {
2505			if (page != ref_page)
2506				goto unlock;
2507
2508			/*
2509			 * Mark the VMA as having unmapped its page so that
2510			 * future faults in this VMA will fail rather than
2511			 * looking like data was lost
2512			 */
2513			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2514		}
2515
2516		pte = huge_ptep_get_and_clear(mm, address, ptep);
2517		tlb_remove_tlb_entry(tlb, ptep, address);
2518		if (huge_pte_dirty(pte))
2519			set_page_dirty(page);
2520
2521		page_remove_rmap(page);
2522		force_flush = !__tlb_remove_page(tlb, page);
2523		if (force_flush) {
2524			spin_unlock(ptl);
2525			break;
2526		}
2527		/* Bail out after unmapping reference page if supplied */
2528		if (ref_page) {
2529			spin_unlock(ptl);
2530			break;
2531		}
2532unlock:
2533		spin_unlock(ptl);
2534	}
2535	/*
2536	 * mmu_gather ran out of room to batch pages, we break out of
2537	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2538	 * and page-free while holding it.
2539	 */
2540	if (force_flush) {
2541		force_flush = 0;
2542		tlb_flush_mmu(tlb);
2543		if (address < end && !ref_page)
2544			goto again;
2545	}
2546	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2547	tlb_end_vma(tlb, vma);
2548}
2549
2550void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2551			  struct vm_area_struct *vma, unsigned long start,
2552			  unsigned long end, struct page *ref_page)
2553{
2554	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2555
2556	/*
2557	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2558	 * test will fail on a vma being torn down, and not grab a page table
2559	 * on its way out.  We're lucky that the flag has such an appropriate
2560	 * name, and can in fact be safely cleared here. We could clear it
2561	 * before the __unmap_hugepage_range above, but all that's necessary
2562	 * is to clear it before releasing the i_mmap_mutex. This works
2563	 * because in the context this is called, the VMA is about to be
2564	 * destroyed and the i_mmap_mutex is held.
2565	 */
2566	vma->vm_flags &= ~VM_MAYSHARE;
2567}
2568
2569void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2570			  unsigned long end, struct page *ref_page)
2571{
2572	struct mm_struct *mm;
2573	struct mmu_gather tlb;
2574
2575	mm = vma->vm_mm;
2576
2577	tlb_gather_mmu(&tlb, mm, start, end);
2578	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2579	tlb_finish_mmu(&tlb, start, end);
2580}
2581
2582/*
2583 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2584 * mappping it owns the reserve page for. The intention is to unmap the page
2585 * from other VMAs and let the children be SIGKILLed if they are faulting the
2586 * same region.
2587 */
2588static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2589				struct page *page, unsigned long address)
2590{
2591	struct hstate *h = hstate_vma(vma);
2592	struct vm_area_struct *iter_vma;
2593	struct address_space *mapping;
2594	pgoff_t pgoff;
2595
2596	/*
2597	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2598	 * from page cache lookup which is in HPAGE_SIZE units.
2599	 */
2600	address = address & huge_page_mask(h);
2601	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2602			vma->vm_pgoff;
2603	mapping = file_inode(vma->vm_file)->i_mapping;
2604
2605	/*
2606	 * Take the mapping lock for the duration of the table walk. As
2607	 * this mapping should be shared between all the VMAs,
2608	 * __unmap_hugepage_range() is called as the lock is already held
2609	 */
2610	mutex_lock(&mapping->i_mmap_mutex);
2611	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2612		/* Do not unmap the current VMA */
2613		if (iter_vma == vma)
2614			continue;
2615
2616		/*
2617		 * Unmap the page from other VMAs without their own reserves.
2618		 * They get marked to be SIGKILLed if they fault in these
2619		 * areas. This is because a future no-page fault on this VMA
2620		 * could insert a zeroed page instead of the data existing
2621		 * from the time of fork. This would look like data corruption
2622		 */
2623		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2624			unmap_hugepage_range(iter_vma, address,
2625					     address + huge_page_size(h), page);
2626	}
2627	mutex_unlock(&mapping->i_mmap_mutex);
2628
2629	return 1;
2630}
2631
2632/*
2633 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2634 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2635 * cannot race with other handlers or page migration.
2636 * Keep the pte_same checks anyway to make transition from the mutex easier.
2637 */
2638static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2639			unsigned long address, pte_t *ptep, pte_t pte,
2640			struct page *pagecache_page, spinlock_t *ptl)
2641{
2642	struct hstate *h = hstate_vma(vma);
2643	struct page *old_page, *new_page;
2644	int outside_reserve = 0;
2645	unsigned long mmun_start;	/* For mmu_notifiers */
2646	unsigned long mmun_end;		/* For mmu_notifiers */
2647
2648	old_page = pte_page(pte);
2649
2650retry_avoidcopy:
2651	/* If no-one else is actually using this page, avoid the copy
2652	 * and just make the page writable */
2653	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2654		page_move_anon_rmap(old_page, vma, address);
2655		set_huge_ptep_writable(vma, address, ptep);
2656		return 0;
2657	}
2658
2659	/*
2660	 * If the process that created a MAP_PRIVATE mapping is about to
2661	 * perform a COW due to a shared page count, attempt to satisfy
2662	 * the allocation without using the existing reserves. The pagecache
2663	 * page is used to determine if the reserve at this address was
2664	 * consumed or not. If reserves were used, a partial faulted mapping
2665	 * at the time of fork() could consume its reserves on COW instead
2666	 * of the full address range.
2667	 */
2668	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2669			old_page != pagecache_page)
2670		outside_reserve = 1;
2671
2672	page_cache_get(old_page);
2673
2674	/* Drop page table lock as buddy allocator may be called */
2675	spin_unlock(ptl);
2676	new_page = alloc_huge_page(vma, address, outside_reserve);
2677
2678	if (IS_ERR(new_page)) {
2679		long err = PTR_ERR(new_page);
2680		page_cache_release(old_page);
2681
2682		/*
2683		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2684		 * it is due to references held by a child and an insufficient
2685		 * huge page pool. To guarantee the original mappers
2686		 * reliability, unmap the page from child processes. The child
2687		 * may get SIGKILLed if it later faults.
2688		 */
2689		if (outside_reserve) {
2690			BUG_ON(huge_pte_none(pte));
2691			if (unmap_ref_private(mm, vma, old_page, address)) {
2692				BUG_ON(huge_pte_none(pte));
2693				spin_lock(ptl);
2694				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2695				if (likely(ptep &&
2696					   pte_same(huge_ptep_get(ptep), pte)))
2697					goto retry_avoidcopy;
2698				/*
2699				 * race occurs while re-acquiring page table
2700				 * lock, and our job is done.
2701				 */
2702				return 0;
2703			}
2704			WARN_ON_ONCE(1);
2705		}
2706
2707		/* Caller expects lock to be held */
2708		spin_lock(ptl);
2709		if (err == -ENOMEM)
2710			return VM_FAULT_OOM;
2711		else
2712			return VM_FAULT_SIGBUS;
2713	}
2714
2715	/*
2716	 * When the original hugepage is shared one, it does not have
2717	 * anon_vma prepared.
2718	 */
2719	if (unlikely(anon_vma_prepare(vma))) {
2720		page_cache_release(new_page);
2721		page_cache_release(old_page);
2722		/* Caller expects lock to be held */
2723		spin_lock(ptl);
2724		return VM_FAULT_OOM;
2725	}
2726
2727	copy_user_huge_page(new_page, old_page, address, vma,
2728			    pages_per_huge_page(h));
2729	__SetPageUptodate(new_page);
2730
2731	mmun_start = address & huge_page_mask(h);
2732	mmun_end = mmun_start + huge_page_size(h);
2733	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2734	/*
2735	 * Retake the page table lock to check for racing updates
2736	 * before the page tables are altered
2737	 */
2738	spin_lock(ptl);
2739	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2740	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2741		ClearPagePrivate(new_page);
2742
2743		/* Break COW */
2744		huge_ptep_clear_flush(vma, address, ptep);
2745		set_huge_pte_at(mm, address, ptep,
2746				make_huge_pte(vma, new_page, 1));
2747		page_remove_rmap(old_page);
2748		hugepage_add_new_anon_rmap(new_page, vma, address);
2749		/* Make the old page be freed below */
2750		new_page = old_page;
2751	}
2752	spin_unlock(ptl);
2753	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2754	page_cache_release(new_page);
2755	page_cache_release(old_page);
2756
2757	/* Caller expects lock to be held */
2758	spin_lock(ptl);
2759	return 0;
2760}
2761
2762/* Return the pagecache page at a given address within a VMA */
2763static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2764			struct vm_area_struct *vma, unsigned long address)
2765{
2766	struct address_space *mapping;
2767	pgoff_t idx;
2768
2769	mapping = vma->vm_file->f_mapping;
2770	idx = vma_hugecache_offset(h, vma, address);
2771
2772	return find_lock_page(mapping, idx);
2773}
2774
2775/*
2776 * Return whether there is a pagecache page to back given address within VMA.
2777 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2778 */
2779static bool hugetlbfs_pagecache_present(struct hstate *h,
2780			struct vm_area_struct *vma, unsigned long address)
2781{
2782	struct address_space *mapping;
2783	pgoff_t idx;
2784	struct page *page;
2785
2786	mapping = vma->vm_file->f_mapping;
2787	idx = vma_hugecache_offset(h, vma, address);
2788
2789	page = find_get_page(mapping, idx);
2790	if (page)
2791		put_page(page);
2792	return page != NULL;
2793}
2794
2795static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2796			   struct address_space *mapping, pgoff_t idx,
2797			   unsigned long address, pte_t *ptep, unsigned int flags)
2798{
2799	struct hstate *h = hstate_vma(vma);
2800	int ret = VM_FAULT_SIGBUS;
2801	int anon_rmap = 0;
2802	unsigned long size;
2803	struct page *page;
2804	pte_t new_pte;
2805	spinlock_t *ptl;
2806
2807	/*
2808	 * Currently, we are forced to kill the process in the event the
2809	 * original mapper has unmapped pages from the child due to a failed
2810	 * COW. Warn that such a situation has occurred as it may not be obvious
2811	 */
2812	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2813		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2814			   current->pid);
2815		return ret;
2816	}
2817
2818	/*
2819	 * Use page lock to guard against racing truncation
2820	 * before we get page_table_lock.
2821	 */
2822retry:
2823	page = find_lock_page(mapping, idx);
2824	if (!page) {
2825		size = i_size_read(mapping->host) >> huge_page_shift(h);
2826		if (idx >= size)
2827			goto out;
2828		page = alloc_huge_page(vma, address, 0);
2829		if (IS_ERR(page)) {
2830			ret = PTR_ERR(page);
2831			if (ret == -ENOMEM)
2832				ret = VM_FAULT_OOM;
2833			else
2834				ret = VM_FAULT_SIGBUS;
2835			goto out;
2836		}
2837		clear_huge_page(page, address, pages_per_huge_page(h));
2838		__SetPageUptodate(page);
2839
2840		if (vma->vm_flags & VM_MAYSHARE) {
2841			int err;
2842			struct inode *inode = mapping->host;
2843
2844			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2845			if (err) {
2846				put_page(page);
2847				if (err == -EEXIST)
2848					goto retry;
2849				goto out;
2850			}
2851			ClearPagePrivate(page);
2852
2853			spin_lock(&inode->i_lock);
2854			inode->i_blocks += blocks_per_huge_page(h);
2855			spin_unlock(&inode->i_lock);
2856		} else {
2857			lock_page(page);
2858			if (unlikely(anon_vma_prepare(vma))) {
2859				ret = VM_FAULT_OOM;
2860				goto backout_unlocked;
2861			}
2862			anon_rmap = 1;
2863		}
2864	} else {
2865		/*
2866		 * If memory error occurs between mmap() and fault, some process
2867		 * don't have hwpoisoned swap entry for errored virtual address.
2868		 * So we need to block hugepage fault by PG_hwpoison bit check.
2869		 */
2870		if (unlikely(PageHWPoison(page))) {
2871			ret = VM_FAULT_HWPOISON |
2872				VM_FAULT_SET_HINDEX(hstate_index(h));
2873			goto backout_unlocked;
2874		}
2875	}
2876
2877	/*
2878	 * If we are going to COW a private mapping later, we examine the
2879	 * pending reservations for this page now. This will ensure that
2880	 * any allocations necessary to record that reservation occur outside
2881	 * the spinlock.
2882	 */
2883	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2884		if (vma_needs_reservation(h, vma, address) < 0) {
2885			ret = VM_FAULT_OOM;
2886			goto backout_unlocked;
2887		}
2888
2889	ptl = huge_pte_lockptr(h, mm, ptep);
2890	spin_lock(ptl);
2891	size = i_size_read(mapping->host) >> huge_page_shift(h);
2892	if (idx >= size)
2893		goto backout;
2894
2895	ret = 0;
2896	if (!huge_pte_none(huge_ptep_get(ptep)))
2897		goto backout;
2898
2899	if (anon_rmap) {
2900		ClearPagePrivate(page);
2901		hugepage_add_new_anon_rmap(page, vma, address);
2902	} else
2903		page_dup_rmap(page);
2904	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2905				&& (vma->vm_flags & VM_SHARED)));
2906	set_huge_pte_at(mm, address, ptep, new_pte);
2907
2908	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2909		/* Optimization, do the COW without a second fault */
2910		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2911	}
2912
2913	spin_unlock(ptl);
2914	unlock_page(page);
2915out:
2916	return ret;
2917
2918backout:
2919	spin_unlock(ptl);
2920backout_unlocked:
2921	unlock_page(page);
2922	put_page(page);
2923	goto out;
2924}
2925
2926#ifdef CONFIG_SMP
2927static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2928			    struct vm_area_struct *vma,
2929			    struct address_space *mapping,
2930			    pgoff_t idx, unsigned long address)
2931{
2932	unsigned long key[2];
2933	u32 hash;
2934
2935	if (vma->vm_flags & VM_SHARED) {
2936		key[0] = (unsigned long) mapping;
2937		key[1] = idx;
2938	} else {
2939		key[0] = (unsigned long) mm;
2940		key[1] = address >> huge_page_shift(h);
2941	}
2942
2943	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2944
2945	return hash & (num_fault_mutexes - 1);
2946}
2947#else
2948/*
2949 * For uniprocesor systems we always use a single mutex, so just
2950 * return 0 and avoid the hashing overhead.
2951 */
2952static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2953			    struct vm_area_struct *vma,
2954			    struct address_space *mapping,
2955			    pgoff_t idx, unsigned long address)
2956{
2957	return 0;
2958}
2959#endif
2960
2961int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2962			unsigned long address, unsigned int flags)
2963{
2964	pte_t *ptep, entry;
2965	spinlock_t *ptl;
2966	int ret;
2967	u32 hash;
2968	pgoff_t idx;
2969	struct page *page = NULL;
2970	struct page *pagecache_page = NULL;
2971	struct hstate *h = hstate_vma(vma);
2972	struct address_space *mapping;
2973
2974	address &= huge_page_mask(h);
2975
2976	ptep = huge_pte_offset(mm, address);
2977	if (ptep) {
2978		entry = huge_ptep_get(ptep);
2979		if (unlikely(is_hugetlb_entry_migration(entry))) {
2980			migration_entry_wait_huge(vma, mm, ptep);
2981			return 0;
2982		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2983			return VM_FAULT_HWPOISON_LARGE |
2984				VM_FAULT_SET_HINDEX(hstate_index(h));
2985	}
2986
2987	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2988	if (!ptep)
2989		return VM_FAULT_OOM;
2990
2991	mapping = vma->vm_file->f_mapping;
2992	idx = vma_hugecache_offset(h, vma, address);
2993
2994	/*
2995	 * Serialize hugepage allocation and instantiation, so that we don't
2996	 * get spurious allocation failures if two CPUs race to instantiate
2997	 * the same page in the page cache.
2998	 */
2999	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3000	mutex_lock(&htlb_fault_mutex_table[hash]);
3001
3002	entry = huge_ptep_get(ptep);
3003	if (huge_pte_none(entry)) {
3004		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3005		goto out_mutex;
3006	}
3007
3008	ret = 0;
3009
3010	/*
3011	 * If we are going to COW the mapping later, we examine the pending
3012	 * reservations for this page now. This will ensure that any
3013	 * allocations necessary to record that reservation occur outside the
3014	 * spinlock. For private mappings, we also lookup the pagecache
3015	 * page now as it is used to determine if a reservation has been
3016	 * consumed.
3017	 */
3018	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3019		if (vma_needs_reservation(h, vma, address) < 0) {
3020			ret = VM_FAULT_OOM;
3021			goto out_mutex;
3022		}
3023
3024		if (!(vma->vm_flags & VM_MAYSHARE))
3025			pagecache_page = hugetlbfs_pagecache_page(h,
3026								vma, address);
3027	}
3028
3029	/*
3030	 * hugetlb_cow() requires page locks of pte_page(entry) and
3031	 * pagecache_page, so here we need take the former one
3032	 * when page != pagecache_page or !pagecache_page.
3033	 * Note that locking order is always pagecache_page -> page,
3034	 * so no worry about deadlock.
3035	 */
3036	page = pte_page(entry);
3037	get_page(page);
3038	if (page != pagecache_page)
3039		lock_page(page);
3040
3041	ptl = huge_pte_lockptr(h, mm, ptep);
3042	spin_lock(ptl);
3043	/* Check for a racing update before calling hugetlb_cow */
3044	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3045		goto out_ptl;
3046
3047
3048	if (flags & FAULT_FLAG_WRITE) {
3049		if (!huge_pte_write(entry)) {
3050			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3051					pagecache_page, ptl);
3052			goto out_ptl;
3053		}
3054		entry = huge_pte_mkdirty(entry);
3055	}
3056	entry = pte_mkyoung(entry);
3057	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3058						flags & FAULT_FLAG_WRITE))
3059		update_mmu_cache(vma, address, ptep);
3060
3061out_ptl:
3062	spin_unlock(ptl);
3063
3064	if (pagecache_page) {
3065		unlock_page(pagecache_page);
3066		put_page(pagecache_page);
3067	}
3068	if (page != pagecache_page)
3069		unlock_page(page);
3070	put_page(page);
3071
3072out_mutex:
3073	mutex_unlock(&htlb_fault_mutex_table[hash]);
3074	return ret;
3075}
3076
3077long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3078			 struct page **pages, struct vm_area_struct **vmas,
3079			 unsigned long *position, unsigned long *nr_pages,
3080			 long i, unsigned int flags)
3081{
3082	unsigned long pfn_offset;
3083	unsigned long vaddr = *position;
3084	unsigned long remainder = *nr_pages;
3085	struct hstate *h = hstate_vma(vma);
3086
3087	while (vaddr < vma->vm_end && remainder) {
3088		pte_t *pte;
3089		spinlock_t *ptl = NULL;
3090		int absent;
3091		struct page *page;
3092
3093		/*
3094		 * Some archs (sparc64, sh*) have multiple pte_ts to
3095		 * each hugepage.  We have to make sure we get the
3096		 * first, for the page indexing below to work.
3097		 *
3098		 * Note that page table lock is not held when pte is null.
3099		 */
3100		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3101		if (pte)
3102			ptl = huge_pte_lock(h, mm, pte);
3103		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3104
3105		/*
3106		 * When coredumping, it suits get_dump_page if we just return
3107		 * an error where there's an empty slot with no huge pagecache
3108		 * to back it.  This way, we avoid allocating a hugepage, and
3109		 * the sparse dumpfile avoids allocating disk blocks, but its
3110		 * huge holes still show up with zeroes where they need to be.
3111		 */
3112		if (absent && (flags & FOLL_DUMP) &&
3113		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3114			if (pte)
3115				spin_unlock(ptl);
3116			remainder = 0;
3117			break;
3118		}
3119
3120		/*
3121		 * We need call hugetlb_fault for both hugepages under migration
3122		 * (in which case hugetlb_fault waits for the migration,) and
3123		 * hwpoisoned hugepages (in which case we need to prevent the
3124		 * caller from accessing to them.) In order to do this, we use
3125		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3126		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3127		 * both cases, and because we can't follow correct pages
3128		 * directly from any kind of swap entries.
3129		 */
3130		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3131		    ((flags & FOLL_WRITE) &&
3132		      !huge_pte_write(huge_ptep_get(pte)))) {
3133			int ret;
3134
3135			if (pte)
3136				spin_unlock(ptl);
3137			ret = hugetlb_fault(mm, vma, vaddr,
3138				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3139			if (!(ret & VM_FAULT_ERROR))
3140				continue;
3141
3142			remainder = 0;
3143			break;
3144		}
3145
3146		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3147		page = pte_page(huge_ptep_get(pte));
3148same_page:
3149		if (pages) {
3150			pages[i] = mem_map_offset(page, pfn_offset);
3151			get_page_foll(pages[i]);
3152		}
3153
3154		if (vmas)
3155			vmas[i] = vma;
3156
3157		vaddr += PAGE_SIZE;
3158		++pfn_offset;
3159		--remainder;
3160		++i;
3161		if (vaddr < vma->vm_end && remainder &&
3162				pfn_offset < pages_per_huge_page(h)) {
3163			/*
3164			 * We use pfn_offset to avoid touching the pageframes
3165			 * of this compound page.
3166			 */
3167			goto same_page;
3168		}
3169		spin_unlock(ptl);
3170	}
3171	*nr_pages = remainder;
3172	*position = vaddr;
3173
3174	return i ? i : -EFAULT;
3175}
3176
3177unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3178		unsigned long address, unsigned long end, pgprot_t newprot)
3179{
3180	struct mm_struct *mm = vma->vm_mm;
3181	unsigned long start = address;
3182	pte_t *ptep;
3183	pte_t pte;
3184	struct hstate *h = hstate_vma(vma);
3185	unsigned long pages = 0;
3186
3187	BUG_ON(address >= end);
3188	flush_cache_range(vma, address, end);
3189
3190	mmu_notifier_invalidate_range_start(mm, start, end);
3191	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3192	for (; address < end; address += huge_page_size(h)) {
3193		spinlock_t *ptl;
3194		ptep = huge_pte_offset(mm, address);
3195		if (!ptep)
3196			continue;
3197		ptl = huge_pte_lock(h, mm, ptep);
3198		if (huge_pmd_unshare(mm, &address, ptep)) {
3199			pages++;
3200			spin_unlock(ptl);
3201			continue;
3202		}
3203		if (!huge_pte_none(huge_ptep_get(ptep))) {
3204			pte = huge_ptep_get_and_clear(mm, address, ptep);
3205			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3206			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3207			set_huge_pte_at(mm, address, ptep, pte);
3208			pages++;
3209		}
3210		spin_unlock(ptl);
3211	}
3212	/*
3213	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3214	 * may have cleared our pud entry and done put_page on the page table:
3215	 * once we release i_mmap_mutex, another task can do the final put_page
3216	 * and that page table be reused and filled with junk.
3217	 */
3218	flush_tlb_range(vma, start, end);
3219	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3220	mmu_notifier_invalidate_range_end(mm, start, end);
3221
3222	return pages << h->order;
3223}
3224
3225int hugetlb_reserve_pages(struct inode *inode,
3226					long from, long to,
3227					struct vm_area_struct *vma,
3228					vm_flags_t vm_flags)
3229{
3230	long ret, chg;
3231	struct hstate *h = hstate_inode(inode);
3232	struct hugepage_subpool *spool = subpool_inode(inode);
3233	struct resv_map *resv_map;
3234
3235	/*
3236	 * Only apply hugepage reservation if asked. At fault time, an
3237	 * attempt will be made for VM_NORESERVE to allocate a page
3238	 * without using reserves
3239	 */
3240	if (vm_flags & VM_NORESERVE)
3241		return 0;
3242
3243	/*
3244	 * Shared mappings base their reservation on the number of pages that
3245	 * are already allocated on behalf of the file. Private mappings need
3246	 * to reserve the full area even if read-only as mprotect() may be
3247	 * called to make the mapping read-write. Assume !vma is a shm mapping
3248	 */
3249	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3250		resv_map = inode_resv_map(inode);
3251
3252		chg = region_chg(resv_map, from, to);
3253
3254	} else {
3255		resv_map = resv_map_alloc();
3256		if (!resv_map)
3257			return -ENOMEM;
3258
3259		chg = to - from;
3260
3261		set_vma_resv_map(vma, resv_map);
3262		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3263	}
3264
3265	if (chg < 0) {
3266		ret = chg;
3267		goto out_err;
3268	}
3269
3270	/* There must be enough pages in the subpool for the mapping */
3271	if (hugepage_subpool_get_pages(spool, chg)) {
3272		ret = -ENOSPC;
3273		goto out_err;
3274	}
3275
3276	/*
3277	 * Check enough hugepages are available for the reservation.
3278	 * Hand the pages back to the subpool if there are not
3279	 */
3280	ret = hugetlb_acct_memory(h, chg);
3281	if (ret < 0) {
3282		hugepage_subpool_put_pages(spool, chg);
3283		goto out_err;
3284	}
3285
3286	/*
3287	 * Account for the reservations made. Shared mappings record regions
3288	 * that have reservations as they are shared by multiple VMAs.
3289	 * When the last VMA disappears, the region map says how much
3290	 * the reservation was and the page cache tells how much of
3291	 * the reservation was consumed. Private mappings are per-VMA and
3292	 * only the consumed reservations are tracked. When the VMA
3293	 * disappears, the original reservation is the VMA size and the
3294	 * consumed reservations are stored in the map. Hence, nothing
3295	 * else has to be done for private mappings here
3296	 */
3297	if (!vma || vma->vm_flags & VM_MAYSHARE)
3298		region_add(resv_map, from, to);
3299	return 0;
3300out_err:
3301	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3302		kref_put(&resv_map->refs, resv_map_release);
3303	return ret;
3304}
3305
3306void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3307{
3308	struct hstate *h = hstate_inode(inode);
3309	struct resv_map *resv_map = inode_resv_map(inode);
3310	long chg = 0;
3311	struct hugepage_subpool *spool = subpool_inode(inode);
3312
3313	if (resv_map)
3314		chg = region_truncate(resv_map, offset);
3315	spin_lock(&inode->i_lock);
3316	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3317	spin_unlock(&inode->i_lock);
3318
3319	hugepage_subpool_put_pages(spool, (chg - freed));
3320	hugetlb_acct_memory(h, -(chg - freed));
3321}
3322
3323#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3324static unsigned long page_table_shareable(struct vm_area_struct *svma,
3325				struct vm_area_struct *vma,
3326				unsigned long addr, pgoff_t idx)
3327{
3328	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3329				svma->vm_start;
3330	unsigned long sbase = saddr & PUD_MASK;
3331	unsigned long s_end = sbase + PUD_SIZE;
3332
3333	/* Allow segments to share if only one is marked locked */
3334	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3335	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3336
3337	/*
3338	 * match the virtual addresses, permission and the alignment of the
3339	 * page table page.
3340	 */
3341	if (pmd_index(addr) != pmd_index(saddr) ||
3342	    vm_flags != svm_flags ||
3343	    sbase < svma->vm_start || svma->vm_end < s_end)
3344		return 0;
3345
3346	return saddr;
3347}
3348
3349static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3350{
3351	unsigned long base = addr & PUD_MASK;
3352	unsigned long end = base + PUD_SIZE;
3353
3354	/*
3355	 * check on proper vm_flags and page table alignment
3356	 */
3357	if (vma->vm_flags & VM_MAYSHARE &&
3358	    vma->vm_start <= base && end <= vma->vm_end)
3359		return 1;
3360	return 0;
3361}
3362
3363/*
3364 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3365 * and returns the corresponding pte. While this is not necessary for the
3366 * !shared pmd case because we can allocate the pmd later as well, it makes the
3367 * code much cleaner. pmd allocation is essential for the shared case because
3368 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3369 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3370 * bad pmd for sharing.
3371 */
3372pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3373{
3374	struct vm_area_struct *vma = find_vma(mm, addr);
3375	struct address_space *mapping = vma->vm_file->f_mapping;
3376	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3377			vma->vm_pgoff;
3378	struct vm_area_struct *svma;
3379	unsigned long saddr;
3380	pte_t *spte = NULL;
3381	pte_t *pte;
3382	spinlock_t *ptl;
3383
3384	if (!vma_shareable(vma, addr))
3385		return (pte_t *)pmd_alloc(mm, pud, addr);
3386
3387	mutex_lock(&mapping->i_mmap_mutex);
3388	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3389		if (svma == vma)
3390			continue;
3391
3392		saddr = page_table_shareable(svma, vma, addr, idx);
3393		if (saddr) {
3394			spte = huge_pte_offset(svma->vm_mm, saddr);
3395			if (spte) {
3396				get_page(virt_to_page(spte));
3397				break;
3398			}
3399		}
3400	}
3401
3402	if (!spte)
3403		goto out;
3404
3405	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3406	spin_lock(ptl);
3407	if (pud_none(*pud))
3408		pud_populate(mm, pud,
3409				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3410	else
3411		put_page(virt_to_page(spte));
3412	spin_unlock(ptl);
3413out:
3414	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3415	mutex_unlock(&mapping->i_mmap_mutex);
3416	return pte;
3417}
3418
3419/*
3420 * unmap huge page backed by shared pte.
3421 *
3422 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3423 * indicated by page_count > 1, unmap is achieved by clearing pud and
3424 * decrementing the ref count. If count == 1, the pte page is not shared.
3425 *
3426 * called with page table lock held.
3427 *
3428 * returns: 1 successfully unmapped a shared pte page
3429 *	    0 the underlying pte page is not shared, or it is the last user
3430 */
3431int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3432{
3433	pgd_t *pgd = pgd_offset(mm, *addr);
3434	pud_t *pud = pud_offset(pgd, *addr);
3435
3436	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3437	if (page_count(virt_to_page(ptep)) == 1)
3438		return 0;
3439
3440	pud_clear(pud);
3441	put_page(virt_to_page(ptep));
3442	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3443	return 1;
3444}
3445#define want_pmd_share()	(1)
3446#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3447pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3448{
3449	return NULL;
3450}
3451#define want_pmd_share()	(0)
3452#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3453
3454#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3455pte_t *huge_pte_alloc(struct mm_struct *mm,
3456			unsigned long addr, unsigned long sz)
3457{
3458	pgd_t *pgd;
3459	pud_t *pud;
3460	pte_t *pte = NULL;
3461
3462	pgd = pgd_offset(mm, addr);
3463	pud = pud_alloc(mm, pgd, addr);
3464	if (pud) {
3465		if (sz == PUD_SIZE) {
3466			pte = (pte_t *)pud;
3467		} else {
3468			BUG_ON(sz != PMD_SIZE);
3469			if (want_pmd_share() && pud_none(*pud))
3470				pte = huge_pmd_share(mm, addr, pud);
3471			else
3472				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3473		}
3474	}
3475	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3476
3477	return pte;
3478}
3479
3480pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3481{
3482	pgd_t *pgd;
3483	pud_t *pud;
3484	pmd_t *pmd = NULL;
3485
3486	pgd = pgd_offset(mm, addr);
3487	if (pgd_present(*pgd)) {
3488		pud = pud_offset(pgd, addr);
3489		if (pud_present(*pud)) {
3490			if (pud_huge(*pud))
3491				return (pte_t *)pud;
3492			pmd = pmd_offset(pud, addr);
3493		}
3494	}
3495	return (pte_t *) pmd;
3496}
3497
3498struct page *
3499follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3500		pmd_t *pmd, int write)
3501{
3502	struct page *page;
3503
3504	page = pte_page(*(pte_t *)pmd);
3505	if (page)
3506		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3507	return page;
3508}
3509
3510struct page *
3511follow_huge_pud(struct mm_struct *mm, unsigned long address,
3512		pud_t *pud, int write)
3513{
3514	struct page *page;
3515
3516	page = pte_page(*(pte_t *)pud);
3517	if (page)
3518		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3519	return page;
3520}
3521
3522#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3523
3524/* Can be overriden by architectures */
3525struct page * __weak
3526follow_huge_pud(struct mm_struct *mm, unsigned long address,
3527	       pud_t *pud, int write)
3528{
3529	BUG();
3530	return NULL;
3531}
3532
3533#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3534
3535#ifdef CONFIG_MEMORY_FAILURE
3536
3537/* Should be called in hugetlb_lock */
3538static int is_hugepage_on_freelist(struct page *hpage)
3539{
3540	struct page *page;
3541	struct page *tmp;
3542	struct hstate *h = page_hstate(hpage);
3543	int nid = page_to_nid(hpage);
3544
3545	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3546		if (page == hpage)
3547			return 1;
3548	return 0;
3549}
3550
3551/*
3552 * This function is called from memory failure code.
3553 * Assume the caller holds page lock of the head page.
3554 */
3555int dequeue_hwpoisoned_huge_page(struct page *hpage)
3556{
3557	struct hstate *h = page_hstate(hpage);
3558	int nid = page_to_nid(hpage);
3559	int ret = -EBUSY;
3560
3561	spin_lock(&hugetlb_lock);
3562	if (is_hugepage_on_freelist(hpage)) {
3563		/*
3564		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3565		 * but dangling hpage->lru can trigger list-debug warnings
3566		 * (this happens when we call unpoison_memory() on it),
3567		 * so let it point to itself with list_del_init().
3568		 */
3569		list_del_init(&hpage->lru);
3570		set_page_refcounted(hpage);
3571		h->free_huge_pages--;
3572		h->free_huge_pages_node[nid]--;
3573		ret = 0;
3574	}
3575	spin_unlock(&hugetlb_lock);
3576	return ret;
3577}
3578#endif
3579
3580bool isolate_huge_page(struct page *page, struct list_head *list)
3581{
3582	VM_BUG_ON_PAGE(!PageHead(page), page);
3583	if (!get_page_unless_zero(page))
3584		return false;
3585	spin_lock(&hugetlb_lock);
3586	list_move_tail(&page->lru, list);
3587	spin_unlock(&hugetlb_lock);
3588	return true;
3589}
3590
3591void putback_active_hugepage(struct page *page)
3592{
3593	VM_BUG_ON_PAGE(!PageHead(page), page);
3594	spin_lock(&hugetlb_lock);
3595	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3596	spin_unlock(&hugetlb_lock);
3597	put_page(page);
3598}
3599
3600bool is_hugepage_active(struct page *page)
3601{
3602	VM_BUG_ON_PAGE(!PageHuge(page), page);
3603	/*
3604	 * This function can be called for a tail page because the caller,
3605	 * scan_movable_pages, scans through a given pfn-range which typically
3606	 * covers one memory block. In systems using gigantic hugepage (1GB
3607	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3608	 * support migrating such large hugepages for now, so return false
3609	 * when called for tail pages.
3610	 */
3611	if (PageTail(page))
3612		return false;
3613	/*
3614	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3615	 * so we should return false for them.
3616	 */
3617	if (unlikely(PageHWPoison(page)))
3618		return false;
3619	return page_count(page) > 0;
3620}
3621