hugetlb.c revision 58a84aa92723d1ac3e1cc4e3b0ff49291663f7e1
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <linux/io.h>
28
29#include <linux/hugetlb.h>
30#include <linux/node.h>
31#include "internal.h"
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
41__initdata LIST_HEAD(huge_boot_pages);
42
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
46static unsigned long __initdata default_hstate_size;
47
48#define for_each_hstate(h) \
49	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
55
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 *                    across the pages in a mapping.
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 *	down_write(&mm->mmap_sem);
66 * or
67 *	down_read(&mm->mmap_sem);
68 *	mutex_lock(&hugetlb_instantiation_mutex);
69 */
70struct file_region {
71	struct list_head link;
72	long from;
73	long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78	struct file_region *rg, *nrg, *trg;
79
80	/* Locate the region we are either in or before. */
81	list_for_each_entry(rg, head, link)
82		if (f <= rg->to)
83			break;
84
85	/* Round our left edge to the current segment if it encloses us. */
86	if (f > rg->from)
87		f = rg->from;
88
89	/* Check for and consume any regions we now overlap with. */
90	nrg = rg;
91	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92		if (&rg->link == head)
93			break;
94		if (rg->from > t)
95			break;
96
97		/* If this area reaches higher then extend our area to
98		 * include it completely.  If this is not the first area
99		 * which we intend to reuse, free it. */
100		if (rg->to > t)
101			t = rg->to;
102		if (rg != nrg) {
103			list_del(&rg->link);
104			kfree(rg);
105		}
106	}
107	nrg->from = f;
108	nrg->to = t;
109	return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114	struct file_region *rg, *nrg;
115	long chg = 0;
116
117	/* Locate the region we are before or in. */
118	list_for_each_entry(rg, head, link)
119		if (f <= rg->to)
120			break;
121
122	/* If we are below the current region then a new region is required.
123	 * Subtle, allocate a new region at the position but make it zero
124	 * size such that we can guarantee to record the reservation. */
125	if (&rg->link == head || t < rg->from) {
126		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127		if (!nrg)
128			return -ENOMEM;
129		nrg->from = f;
130		nrg->to   = f;
131		INIT_LIST_HEAD(&nrg->link);
132		list_add(&nrg->link, rg->link.prev);
133
134		return t - f;
135	}
136
137	/* Round our left edge to the current segment if it encloses us. */
138	if (f > rg->from)
139		f = rg->from;
140	chg = t - f;
141
142	/* Check for and consume any regions we now overlap with. */
143	list_for_each_entry(rg, rg->link.prev, link) {
144		if (&rg->link == head)
145			break;
146		if (rg->from > t)
147			return chg;
148
149		/* We overlap with this area, if it extends further than
150		 * us then we must extend ourselves.  Account for its
151		 * existing reservation. */
152		if (rg->to > t) {
153			chg += rg->to - t;
154			t = rg->to;
155		}
156		chg -= rg->to - rg->from;
157	}
158	return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163	struct file_region *rg, *trg;
164	long chg = 0;
165
166	/* Locate the region we are either in or before. */
167	list_for_each_entry(rg, head, link)
168		if (end <= rg->to)
169			break;
170	if (&rg->link == head)
171		return 0;
172
173	/* If we are in the middle of a region then adjust it. */
174	if (end > rg->from) {
175		chg = rg->to - end;
176		rg->to = end;
177		rg = list_entry(rg->link.next, typeof(*rg), link);
178	}
179
180	/* Drop any remaining regions. */
181	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182		if (&rg->link == head)
183			break;
184		chg += rg->to - rg->from;
185		list_del(&rg->link);
186		kfree(rg);
187	}
188	return chg;
189}
190
191static long region_count(struct list_head *head, long f, long t)
192{
193	struct file_region *rg;
194	long chg = 0;
195
196	/* Locate each segment we overlap with, and count that overlap. */
197	list_for_each_entry(rg, head, link) {
198		int seg_from;
199		int seg_to;
200
201		if (rg->to <= f)
202			continue;
203		if (rg->from >= t)
204			break;
205
206		seg_from = max(rg->from, f);
207		seg_to = min(rg->to, t);
208
209		chg += seg_to - seg_from;
210	}
211
212	return chg;
213}
214
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220			struct vm_area_struct *vma, unsigned long address)
221{
222	return ((address - vma->vm_start) >> huge_page_shift(h)) +
223			(vma->vm_pgoff >> huge_page_order(h));
224}
225
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227				     unsigned long address)
228{
229	return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238	struct hstate *hstate;
239
240	if (!is_vm_hugetlb_page(vma))
241		return PAGE_SIZE;
242
243	hstate = hstate_vma(vma);
244
245	return 1UL << (hstate->order + PAGE_SHIFT);
246}
247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258	return vma_kernel_pagesize(vma);
259}
260#endif
261
262/*
263 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER    (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping.  A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated.  A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
289 */
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292	return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296							unsigned long value)
297{
298	vma->vm_private_data = (void *)value;
299}
300
301struct resv_map {
302	struct kref refs;
303	struct list_head regions;
304};
305
306static struct resv_map *resv_map_alloc(void)
307{
308	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309	if (!resv_map)
310		return NULL;
311
312	kref_init(&resv_map->refs);
313	INIT_LIST_HEAD(&resv_map->regions);
314
315	return resv_map;
316}
317
318static void resv_map_release(struct kref *ref)
319{
320	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322	/* Clear out any active regions before we release the map. */
323	region_truncate(&resv_map->regions, 0);
324	kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328{
329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330	if (!(vma->vm_flags & VM_MAYSHARE))
331		return (struct resv_map *)(get_vma_private_data(vma) &
332							~HPAGE_RESV_MASK);
333	return NULL;
334}
335
336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337{
338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341	set_vma_private_data(vma, (get_vma_private_data(vma) &
342				HPAGE_RESV_MASK) | (unsigned long)map);
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
347	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357	return (get_vma_private_data(vma) & flag) != 0;
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
361static void decrement_hugepage_resv_vma(struct hstate *h,
362			struct vm_area_struct *vma)
363{
364	if (vma->vm_flags & VM_NORESERVE)
365		return;
366
367	if (vma->vm_flags & VM_MAYSHARE) {
368		/* Shared mappings always use reserves */
369		h->resv_huge_pages--;
370	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371		/*
372		 * Only the process that called mmap() has reserves for
373		 * private mappings.
374		 */
375		h->resv_huge_pages--;
376	}
377}
378
379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383	if (!(vma->vm_flags & VM_MAYSHARE))
384		vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
388static int vma_has_reserves(struct vm_area_struct *vma)
389{
390	if (vma->vm_flags & VM_MAYSHARE)
391		return 1;
392	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393		return 1;
394	return 0;
395}
396
397static void copy_gigantic_page(struct page *dst, struct page *src)
398{
399	int i;
400	struct hstate *h = page_hstate(src);
401	struct page *dst_base = dst;
402	struct page *src_base = src;
403
404	for (i = 0; i < pages_per_huge_page(h); ) {
405		cond_resched();
406		copy_highpage(dst, src);
407
408		i++;
409		dst = mem_map_next(dst, dst_base, i);
410		src = mem_map_next(src, src_base, i);
411	}
412}
413
414void copy_huge_page(struct page *dst, struct page *src)
415{
416	int i;
417	struct hstate *h = page_hstate(src);
418
419	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420		copy_gigantic_page(dst, src);
421		return;
422	}
423
424	might_sleep();
425	for (i = 0; i < pages_per_huge_page(h); i++) {
426		cond_resched();
427		copy_highpage(dst + i, src + i);
428	}
429}
430
431static void enqueue_huge_page(struct hstate *h, struct page *page)
432{
433	int nid = page_to_nid(page);
434	list_add(&page->lru, &h->hugepage_freelists[nid]);
435	h->free_huge_pages++;
436	h->free_huge_pages_node[nid]++;
437}
438
439static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440{
441	struct page *page;
442
443	if (list_empty(&h->hugepage_freelists[nid]))
444		return NULL;
445	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446	list_del(&page->lru);
447	set_page_refcounted(page);
448	h->free_huge_pages--;
449	h->free_huge_pages_node[nid]--;
450	return page;
451}
452
453static struct page *dequeue_huge_page_vma(struct hstate *h,
454				struct vm_area_struct *vma,
455				unsigned long address, int avoid_reserve)
456{
457	struct page *page = NULL;
458	struct mempolicy *mpol;
459	nodemask_t *nodemask;
460	struct zonelist *zonelist;
461	struct zone *zone;
462	struct zoneref *z;
463
464	get_mems_allowed();
465	zonelist = huge_zonelist(vma, address,
466					htlb_alloc_mask, &mpol, &nodemask);
467	/*
468	 * A child process with MAP_PRIVATE mappings created by their parent
469	 * have no page reserves. This check ensures that reservations are
470	 * not "stolen". The child may still get SIGKILLed
471	 */
472	if (!vma_has_reserves(vma) &&
473			h->free_huge_pages - h->resv_huge_pages == 0)
474		goto err;
475
476	/* If reserves cannot be used, ensure enough pages are in the pool */
477	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478		goto err;
479
480	for_each_zone_zonelist_nodemask(zone, z, zonelist,
481						MAX_NR_ZONES - 1, nodemask) {
482		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483			page = dequeue_huge_page_node(h, zone_to_nid(zone));
484			if (page) {
485				if (!avoid_reserve)
486					decrement_hugepage_resv_vma(h, vma);
487				break;
488			}
489		}
490	}
491err:
492	mpol_cond_put(mpol);
493	put_mems_allowed();
494	return page;
495}
496
497static void update_and_free_page(struct hstate *h, struct page *page)
498{
499	int i;
500
501	VM_BUG_ON(h->order >= MAX_ORDER);
502
503	h->nr_huge_pages--;
504	h->nr_huge_pages_node[page_to_nid(page)]--;
505	for (i = 0; i < pages_per_huge_page(h); i++) {
506		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
507				1 << PG_referenced | 1 << PG_dirty |
508				1 << PG_active | 1 << PG_reserved |
509				1 << PG_private | 1 << PG_writeback);
510	}
511	set_compound_page_dtor(page, NULL);
512	set_page_refcounted(page);
513	arch_release_hugepage(page);
514	__free_pages(page, huge_page_order(h));
515}
516
517struct hstate *size_to_hstate(unsigned long size)
518{
519	struct hstate *h;
520
521	for_each_hstate(h) {
522		if (huge_page_size(h) == size)
523			return h;
524	}
525	return NULL;
526}
527
528static void free_huge_page(struct page *page)
529{
530	/*
531	 * Can't pass hstate in here because it is called from the
532	 * compound page destructor.
533	 */
534	struct hstate *h = page_hstate(page);
535	int nid = page_to_nid(page);
536	struct address_space *mapping;
537
538	mapping = (struct address_space *) page_private(page);
539	set_page_private(page, 0);
540	page->mapping = NULL;
541	BUG_ON(page_count(page));
542	BUG_ON(page_mapcount(page));
543	INIT_LIST_HEAD(&page->lru);
544
545	spin_lock(&hugetlb_lock);
546	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
547		update_and_free_page(h, page);
548		h->surplus_huge_pages--;
549		h->surplus_huge_pages_node[nid]--;
550	} else {
551		enqueue_huge_page(h, page);
552	}
553	spin_unlock(&hugetlb_lock);
554	if (mapping)
555		hugetlb_put_quota(mapping, 1);
556}
557
558static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559{
560	set_compound_page_dtor(page, free_huge_page);
561	spin_lock(&hugetlb_lock);
562	h->nr_huge_pages++;
563	h->nr_huge_pages_node[nid]++;
564	spin_unlock(&hugetlb_lock);
565	put_page(page); /* free it into the hugepage allocator */
566}
567
568static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569{
570	int i;
571	int nr_pages = 1 << order;
572	struct page *p = page + 1;
573
574	/* we rely on prep_new_huge_page to set the destructor */
575	set_compound_order(page, order);
576	__SetPageHead(page);
577	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
578		__SetPageTail(p);
579		set_page_count(p, 0);
580		p->first_page = page;
581	}
582}
583
584int PageHuge(struct page *page)
585{
586	compound_page_dtor *dtor;
587
588	if (!PageCompound(page))
589		return 0;
590
591	page = compound_head(page);
592	dtor = get_compound_page_dtor(page);
593
594	return dtor == free_huge_page;
595}
596EXPORT_SYMBOL_GPL(PageHuge);
597
598static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
599{
600	struct page *page;
601
602	if (h->order >= MAX_ORDER)
603		return NULL;
604
605	page = alloc_pages_exact_node(nid,
606		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
607						__GFP_REPEAT|__GFP_NOWARN,
608		huge_page_order(h));
609	if (page) {
610		if (arch_prepare_hugepage(page)) {
611			__free_pages(page, huge_page_order(h));
612			return NULL;
613		}
614		prep_new_huge_page(h, page, nid);
615	}
616
617	return page;
618}
619
620/*
621 * common helper functions for hstate_next_node_to_{alloc|free}.
622 * We may have allocated or freed a huge page based on a different
623 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
624 * be outside of *nodes_allowed.  Ensure that we use an allowed
625 * node for alloc or free.
626 */
627static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
628{
629	nid = next_node(nid, *nodes_allowed);
630	if (nid == MAX_NUMNODES)
631		nid = first_node(*nodes_allowed);
632	VM_BUG_ON(nid >= MAX_NUMNODES);
633
634	return nid;
635}
636
637static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
638{
639	if (!node_isset(nid, *nodes_allowed))
640		nid = next_node_allowed(nid, nodes_allowed);
641	return nid;
642}
643
644/*
645 * returns the previously saved node ["this node"] from which to
646 * allocate a persistent huge page for the pool and advance the
647 * next node from which to allocate, handling wrap at end of node
648 * mask.
649 */
650static int hstate_next_node_to_alloc(struct hstate *h,
651					nodemask_t *nodes_allowed)
652{
653	int nid;
654
655	VM_BUG_ON(!nodes_allowed);
656
657	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
658	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
659
660	return nid;
661}
662
663static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
664{
665	struct page *page;
666	int start_nid;
667	int next_nid;
668	int ret = 0;
669
670	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
671	next_nid = start_nid;
672
673	do {
674		page = alloc_fresh_huge_page_node(h, next_nid);
675		if (page) {
676			ret = 1;
677			break;
678		}
679		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
680	} while (next_nid != start_nid);
681
682	if (ret)
683		count_vm_event(HTLB_BUDDY_PGALLOC);
684	else
685		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686
687	return ret;
688}
689
690/*
691 * helper for free_pool_huge_page() - return the previously saved
692 * node ["this node"] from which to free a huge page.  Advance the
693 * next node id whether or not we find a free huge page to free so
694 * that the next attempt to free addresses the next node.
695 */
696static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
697{
698	int nid;
699
700	VM_BUG_ON(!nodes_allowed);
701
702	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
703	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
704
705	return nid;
706}
707
708/*
709 * Free huge page from pool from next node to free.
710 * Attempt to keep persistent huge pages more or less
711 * balanced over allowed nodes.
712 * Called with hugetlb_lock locked.
713 */
714static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
715							 bool acct_surplus)
716{
717	int start_nid;
718	int next_nid;
719	int ret = 0;
720
721	start_nid = hstate_next_node_to_free(h, nodes_allowed);
722	next_nid = start_nid;
723
724	do {
725		/*
726		 * If we're returning unused surplus pages, only examine
727		 * nodes with surplus pages.
728		 */
729		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
730		    !list_empty(&h->hugepage_freelists[next_nid])) {
731			struct page *page =
732				list_entry(h->hugepage_freelists[next_nid].next,
733					  struct page, lru);
734			list_del(&page->lru);
735			h->free_huge_pages--;
736			h->free_huge_pages_node[next_nid]--;
737			if (acct_surplus) {
738				h->surplus_huge_pages--;
739				h->surplus_huge_pages_node[next_nid]--;
740			}
741			update_and_free_page(h, page);
742			ret = 1;
743			break;
744		}
745		next_nid = hstate_next_node_to_free(h, nodes_allowed);
746	} while (next_nid != start_nid);
747
748	return ret;
749}
750
751static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
752{
753	struct page *page;
754	unsigned int r_nid;
755
756	if (h->order >= MAX_ORDER)
757		return NULL;
758
759	/*
760	 * Assume we will successfully allocate the surplus page to
761	 * prevent racing processes from causing the surplus to exceed
762	 * overcommit
763	 *
764	 * This however introduces a different race, where a process B
765	 * tries to grow the static hugepage pool while alloc_pages() is
766	 * called by process A. B will only examine the per-node
767	 * counters in determining if surplus huge pages can be
768	 * converted to normal huge pages in adjust_pool_surplus(). A
769	 * won't be able to increment the per-node counter, until the
770	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
771	 * no more huge pages can be converted from surplus to normal
772	 * state (and doesn't try to convert again). Thus, we have a
773	 * case where a surplus huge page exists, the pool is grown, and
774	 * the surplus huge page still exists after, even though it
775	 * should just have been converted to a normal huge page. This
776	 * does not leak memory, though, as the hugepage will be freed
777	 * once it is out of use. It also does not allow the counters to
778	 * go out of whack in adjust_pool_surplus() as we don't modify
779	 * the node values until we've gotten the hugepage and only the
780	 * per-node value is checked there.
781	 */
782	spin_lock(&hugetlb_lock);
783	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
784		spin_unlock(&hugetlb_lock);
785		return NULL;
786	} else {
787		h->nr_huge_pages++;
788		h->surplus_huge_pages++;
789	}
790	spin_unlock(&hugetlb_lock);
791
792	if (nid == NUMA_NO_NODE)
793		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
794				   __GFP_REPEAT|__GFP_NOWARN,
795				   huge_page_order(h));
796	else
797		page = alloc_pages_exact_node(nid,
798			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
799			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
800
801	if (page && arch_prepare_hugepage(page)) {
802		__free_pages(page, huge_page_order(h));
803		return NULL;
804	}
805
806	spin_lock(&hugetlb_lock);
807	if (page) {
808		r_nid = page_to_nid(page);
809		set_compound_page_dtor(page, free_huge_page);
810		/*
811		 * We incremented the global counters already
812		 */
813		h->nr_huge_pages_node[r_nid]++;
814		h->surplus_huge_pages_node[r_nid]++;
815		__count_vm_event(HTLB_BUDDY_PGALLOC);
816	} else {
817		h->nr_huge_pages--;
818		h->surplus_huge_pages--;
819		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
820	}
821	spin_unlock(&hugetlb_lock);
822
823	return page;
824}
825
826/*
827 * This allocation function is useful in the context where vma is irrelevant.
828 * E.g. soft-offlining uses this function because it only cares physical
829 * address of error page.
830 */
831struct page *alloc_huge_page_node(struct hstate *h, int nid)
832{
833	struct page *page;
834
835	spin_lock(&hugetlb_lock);
836	page = dequeue_huge_page_node(h, nid);
837	spin_unlock(&hugetlb_lock);
838
839	if (!page)
840		page = alloc_buddy_huge_page(h, nid);
841
842	return page;
843}
844
845/*
846 * Increase the hugetlb pool such that it can accommodate a reservation
847 * of size 'delta'.
848 */
849static int gather_surplus_pages(struct hstate *h, int delta)
850{
851	struct list_head surplus_list;
852	struct page *page, *tmp;
853	int ret, i;
854	int needed, allocated;
855
856	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
857	if (needed <= 0) {
858		h->resv_huge_pages += delta;
859		return 0;
860	}
861
862	allocated = 0;
863	INIT_LIST_HEAD(&surplus_list);
864
865	ret = -ENOMEM;
866retry:
867	spin_unlock(&hugetlb_lock);
868	for (i = 0; i < needed; i++) {
869		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
870		if (!page)
871			/*
872			 * We were not able to allocate enough pages to
873			 * satisfy the entire reservation so we free what
874			 * we've allocated so far.
875			 */
876			goto free;
877
878		list_add(&page->lru, &surplus_list);
879	}
880	allocated += needed;
881
882	/*
883	 * After retaking hugetlb_lock, we need to recalculate 'needed'
884	 * because either resv_huge_pages or free_huge_pages may have changed.
885	 */
886	spin_lock(&hugetlb_lock);
887	needed = (h->resv_huge_pages + delta) -
888			(h->free_huge_pages + allocated);
889	if (needed > 0)
890		goto retry;
891
892	/*
893	 * The surplus_list now contains _at_least_ the number of extra pages
894	 * needed to accommodate the reservation.  Add the appropriate number
895	 * of pages to the hugetlb pool and free the extras back to the buddy
896	 * allocator.  Commit the entire reservation here to prevent another
897	 * process from stealing the pages as they are added to the pool but
898	 * before they are reserved.
899	 */
900	needed += allocated;
901	h->resv_huge_pages += delta;
902	ret = 0;
903
904	spin_unlock(&hugetlb_lock);
905	/* Free the needed pages to the hugetlb pool */
906	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
907		if ((--needed) < 0)
908			break;
909		list_del(&page->lru);
910		/*
911		 * This page is now managed by the hugetlb allocator and has
912		 * no users -- drop the buddy allocator's reference.
913		 */
914		put_page_testzero(page);
915		VM_BUG_ON(page_count(page));
916		enqueue_huge_page(h, page);
917	}
918
919	/* Free unnecessary surplus pages to the buddy allocator */
920free:
921	if (!list_empty(&surplus_list)) {
922		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
923			list_del(&page->lru);
924			put_page(page);
925		}
926	}
927	spin_lock(&hugetlb_lock);
928
929	return ret;
930}
931
932/*
933 * When releasing a hugetlb pool reservation, any surplus pages that were
934 * allocated to satisfy the reservation must be explicitly freed if they were
935 * never used.
936 * Called with hugetlb_lock held.
937 */
938static void return_unused_surplus_pages(struct hstate *h,
939					unsigned long unused_resv_pages)
940{
941	unsigned long nr_pages;
942
943	/* Uncommit the reservation */
944	h->resv_huge_pages -= unused_resv_pages;
945
946	/* Cannot return gigantic pages currently */
947	if (h->order >= MAX_ORDER)
948		return;
949
950	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
951
952	/*
953	 * We want to release as many surplus pages as possible, spread
954	 * evenly across all nodes with memory. Iterate across these nodes
955	 * until we can no longer free unreserved surplus pages. This occurs
956	 * when the nodes with surplus pages have no free pages.
957	 * free_pool_huge_page() will balance the the freed pages across the
958	 * on-line nodes with memory and will handle the hstate accounting.
959	 */
960	while (nr_pages--) {
961		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
962			break;
963	}
964}
965
966/*
967 * Determine if the huge page at addr within the vma has an associated
968 * reservation.  Where it does not we will need to logically increase
969 * reservation and actually increase quota before an allocation can occur.
970 * Where any new reservation would be required the reservation change is
971 * prepared, but not committed.  Once the page has been quota'd allocated
972 * an instantiated the change should be committed via vma_commit_reservation.
973 * No action is required on failure.
974 */
975static long vma_needs_reservation(struct hstate *h,
976			struct vm_area_struct *vma, unsigned long addr)
977{
978	struct address_space *mapping = vma->vm_file->f_mapping;
979	struct inode *inode = mapping->host;
980
981	if (vma->vm_flags & VM_MAYSHARE) {
982		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
983		return region_chg(&inode->i_mapping->private_list,
984							idx, idx + 1);
985
986	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
987		return 1;
988
989	} else  {
990		long err;
991		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
992		struct resv_map *reservations = vma_resv_map(vma);
993
994		err = region_chg(&reservations->regions, idx, idx + 1);
995		if (err < 0)
996			return err;
997		return 0;
998	}
999}
1000static void vma_commit_reservation(struct hstate *h,
1001			struct vm_area_struct *vma, unsigned long addr)
1002{
1003	struct address_space *mapping = vma->vm_file->f_mapping;
1004	struct inode *inode = mapping->host;
1005
1006	if (vma->vm_flags & VM_MAYSHARE) {
1007		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1008		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1009
1010	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1011		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012		struct resv_map *reservations = vma_resv_map(vma);
1013
1014		/* Mark this page used in the map. */
1015		region_add(&reservations->regions, idx, idx + 1);
1016	}
1017}
1018
1019static struct page *alloc_huge_page(struct vm_area_struct *vma,
1020				    unsigned long addr, int avoid_reserve)
1021{
1022	struct hstate *h = hstate_vma(vma);
1023	struct page *page;
1024	struct address_space *mapping = vma->vm_file->f_mapping;
1025	struct inode *inode = mapping->host;
1026	long chg;
1027
1028	/*
1029	 * Processes that did not create the mapping will have no reserves and
1030	 * will not have accounted against quota. Check that the quota can be
1031	 * made before satisfying the allocation
1032	 * MAP_NORESERVE mappings may also need pages and quota allocated
1033	 * if no reserve mapping overlaps.
1034	 */
1035	chg = vma_needs_reservation(h, vma, addr);
1036	if (chg < 0)
1037		return ERR_PTR(-VM_FAULT_OOM);
1038	if (chg)
1039		if (hugetlb_get_quota(inode->i_mapping, chg))
1040			return ERR_PTR(-VM_FAULT_SIGBUS);
1041
1042	spin_lock(&hugetlb_lock);
1043	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1044	spin_unlock(&hugetlb_lock);
1045
1046	if (!page) {
1047		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1048		if (!page) {
1049			hugetlb_put_quota(inode->i_mapping, chg);
1050			return ERR_PTR(-VM_FAULT_SIGBUS);
1051		}
1052	}
1053
1054	set_page_private(page, (unsigned long) mapping);
1055
1056	vma_commit_reservation(h, vma, addr);
1057
1058	return page;
1059}
1060
1061int __weak alloc_bootmem_huge_page(struct hstate *h)
1062{
1063	struct huge_bootmem_page *m;
1064	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1065
1066	while (nr_nodes) {
1067		void *addr;
1068
1069		addr = __alloc_bootmem_node_nopanic(
1070				NODE_DATA(hstate_next_node_to_alloc(h,
1071						&node_states[N_HIGH_MEMORY])),
1072				huge_page_size(h), huge_page_size(h), 0);
1073
1074		if (addr) {
1075			/*
1076			 * Use the beginning of the huge page to store the
1077			 * huge_bootmem_page struct (until gather_bootmem
1078			 * puts them into the mem_map).
1079			 */
1080			m = addr;
1081			goto found;
1082		}
1083		nr_nodes--;
1084	}
1085	return 0;
1086
1087found:
1088	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1089	/* Put them into a private list first because mem_map is not up yet */
1090	list_add(&m->list, &huge_boot_pages);
1091	m->hstate = h;
1092	return 1;
1093}
1094
1095static void prep_compound_huge_page(struct page *page, int order)
1096{
1097	if (unlikely(order > (MAX_ORDER - 1)))
1098		prep_compound_gigantic_page(page, order);
1099	else
1100		prep_compound_page(page, order);
1101}
1102
1103/* Put bootmem huge pages into the standard lists after mem_map is up */
1104static void __init gather_bootmem_prealloc(void)
1105{
1106	struct huge_bootmem_page *m;
1107
1108	list_for_each_entry(m, &huge_boot_pages, list) {
1109		struct hstate *h = m->hstate;
1110		struct page *page;
1111
1112#ifdef CONFIG_HIGHMEM
1113		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1114		free_bootmem_late((unsigned long)m,
1115				  sizeof(struct huge_bootmem_page));
1116#else
1117		page = virt_to_page(m);
1118#endif
1119		__ClearPageReserved(page);
1120		WARN_ON(page_count(page) != 1);
1121		prep_compound_huge_page(page, h->order);
1122		prep_new_huge_page(h, page, page_to_nid(page));
1123		/*
1124		 * If we had gigantic hugepages allocated at boot time, we need
1125		 * to restore the 'stolen' pages to totalram_pages in order to
1126		 * fix confusing memory reports from free(1) and another
1127		 * side-effects, like CommitLimit going negative.
1128		 */
1129		if (h->order > (MAX_ORDER - 1))
1130			totalram_pages += 1 << h->order;
1131	}
1132}
1133
1134static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1135{
1136	unsigned long i;
1137
1138	for (i = 0; i < h->max_huge_pages; ++i) {
1139		if (h->order >= MAX_ORDER) {
1140			if (!alloc_bootmem_huge_page(h))
1141				break;
1142		} else if (!alloc_fresh_huge_page(h,
1143					 &node_states[N_HIGH_MEMORY]))
1144			break;
1145	}
1146	h->max_huge_pages = i;
1147}
1148
1149static void __init hugetlb_init_hstates(void)
1150{
1151	struct hstate *h;
1152
1153	for_each_hstate(h) {
1154		/* oversize hugepages were init'ed in early boot */
1155		if (h->order < MAX_ORDER)
1156			hugetlb_hstate_alloc_pages(h);
1157	}
1158}
1159
1160static char * __init memfmt(char *buf, unsigned long n)
1161{
1162	if (n >= (1UL << 30))
1163		sprintf(buf, "%lu GB", n >> 30);
1164	else if (n >= (1UL << 20))
1165		sprintf(buf, "%lu MB", n >> 20);
1166	else
1167		sprintf(buf, "%lu KB", n >> 10);
1168	return buf;
1169}
1170
1171static void __init report_hugepages(void)
1172{
1173	struct hstate *h;
1174
1175	for_each_hstate(h) {
1176		char buf[32];
1177		printk(KERN_INFO "HugeTLB registered %s page size, "
1178				 "pre-allocated %ld pages\n",
1179			memfmt(buf, huge_page_size(h)),
1180			h->free_huge_pages);
1181	}
1182}
1183
1184#ifdef CONFIG_HIGHMEM
1185static void try_to_free_low(struct hstate *h, unsigned long count,
1186						nodemask_t *nodes_allowed)
1187{
1188	int i;
1189
1190	if (h->order >= MAX_ORDER)
1191		return;
1192
1193	for_each_node_mask(i, *nodes_allowed) {
1194		struct page *page, *next;
1195		struct list_head *freel = &h->hugepage_freelists[i];
1196		list_for_each_entry_safe(page, next, freel, lru) {
1197			if (count >= h->nr_huge_pages)
1198				return;
1199			if (PageHighMem(page))
1200				continue;
1201			list_del(&page->lru);
1202			update_and_free_page(h, page);
1203			h->free_huge_pages--;
1204			h->free_huge_pages_node[page_to_nid(page)]--;
1205		}
1206	}
1207}
1208#else
1209static inline void try_to_free_low(struct hstate *h, unsigned long count,
1210						nodemask_t *nodes_allowed)
1211{
1212}
1213#endif
1214
1215/*
1216 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1217 * balanced by operating on them in a round-robin fashion.
1218 * Returns 1 if an adjustment was made.
1219 */
1220static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1221				int delta)
1222{
1223	int start_nid, next_nid;
1224	int ret = 0;
1225
1226	VM_BUG_ON(delta != -1 && delta != 1);
1227
1228	if (delta < 0)
1229		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1230	else
1231		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1232	next_nid = start_nid;
1233
1234	do {
1235		int nid = next_nid;
1236		if (delta < 0)  {
1237			/*
1238			 * To shrink on this node, there must be a surplus page
1239			 */
1240			if (!h->surplus_huge_pages_node[nid]) {
1241				next_nid = hstate_next_node_to_alloc(h,
1242								nodes_allowed);
1243				continue;
1244			}
1245		}
1246		if (delta > 0) {
1247			/*
1248			 * Surplus cannot exceed the total number of pages
1249			 */
1250			if (h->surplus_huge_pages_node[nid] >=
1251						h->nr_huge_pages_node[nid]) {
1252				next_nid = hstate_next_node_to_free(h,
1253								nodes_allowed);
1254				continue;
1255			}
1256		}
1257
1258		h->surplus_huge_pages += delta;
1259		h->surplus_huge_pages_node[nid] += delta;
1260		ret = 1;
1261		break;
1262	} while (next_nid != start_nid);
1263
1264	return ret;
1265}
1266
1267#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1268static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1269						nodemask_t *nodes_allowed)
1270{
1271	unsigned long min_count, ret;
1272
1273	if (h->order >= MAX_ORDER)
1274		return h->max_huge_pages;
1275
1276	/*
1277	 * Increase the pool size
1278	 * First take pages out of surplus state.  Then make up the
1279	 * remaining difference by allocating fresh huge pages.
1280	 *
1281	 * We might race with alloc_buddy_huge_page() here and be unable
1282	 * to convert a surplus huge page to a normal huge page. That is
1283	 * not critical, though, it just means the overall size of the
1284	 * pool might be one hugepage larger than it needs to be, but
1285	 * within all the constraints specified by the sysctls.
1286	 */
1287	spin_lock(&hugetlb_lock);
1288	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1289		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1290			break;
1291	}
1292
1293	while (count > persistent_huge_pages(h)) {
1294		/*
1295		 * If this allocation races such that we no longer need the
1296		 * page, free_huge_page will handle it by freeing the page
1297		 * and reducing the surplus.
1298		 */
1299		spin_unlock(&hugetlb_lock);
1300		ret = alloc_fresh_huge_page(h, nodes_allowed);
1301		spin_lock(&hugetlb_lock);
1302		if (!ret)
1303			goto out;
1304
1305		/* Bail for signals. Probably ctrl-c from user */
1306		if (signal_pending(current))
1307			goto out;
1308	}
1309
1310	/*
1311	 * Decrease the pool size
1312	 * First return free pages to the buddy allocator (being careful
1313	 * to keep enough around to satisfy reservations).  Then place
1314	 * pages into surplus state as needed so the pool will shrink
1315	 * to the desired size as pages become free.
1316	 *
1317	 * By placing pages into the surplus state independent of the
1318	 * overcommit value, we are allowing the surplus pool size to
1319	 * exceed overcommit. There are few sane options here. Since
1320	 * alloc_buddy_huge_page() is checking the global counter,
1321	 * though, we'll note that we're not allowed to exceed surplus
1322	 * and won't grow the pool anywhere else. Not until one of the
1323	 * sysctls are changed, or the surplus pages go out of use.
1324	 */
1325	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1326	min_count = max(count, min_count);
1327	try_to_free_low(h, min_count, nodes_allowed);
1328	while (min_count < persistent_huge_pages(h)) {
1329		if (!free_pool_huge_page(h, nodes_allowed, 0))
1330			break;
1331	}
1332	while (count < persistent_huge_pages(h)) {
1333		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1334			break;
1335	}
1336out:
1337	ret = persistent_huge_pages(h);
1338	spin_unlock(&hugetlb_lock);
1339	return ret;
1340}
1341
1342#define HSTATE_ATTR_RO(_name) \
1343	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1344
1345#define HSTATE_ATTR(_name) \
1346	static struct kobj_attribute _name##_attr = \
1347		__ATTR(_name, 0644, _name##_show, _name##_store)
1348
1349static struct kobject *hugepages_kobj;
1350static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1351
1352static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1353
1354static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1355{
1356	int i;
1357
1358	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1359		if (hstate_kobjs[i] == kobj) {
1360			if (nidp)
1361				*nidp = NUMA_NO_NODE;
1362			return &hstates[i];
1363		}
1364
1365	return kobj_to_node_hstate(kobj, nidp);
1366}
1367
1368static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1369					struct kobj_attribute *attr, char *buf)
1370{
1371	struct hstate *h;
1372	unsigned long nr_huge_pages;
1373	int nid;
1374
1375	h = kobj_to_hstate(kobj, &nid);
1376	if (nid == NUMA_NO_NODE)
1377		nr_huge_pages = h->nr_huge_pages;
1378	else
1379		nr_huge_pages = h->nr_huge_pages_node[nid];
1380
1381	return sprintf(buf, "%lu\n", nr_huge_pages);
1382}
1383
1384static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1385			struct kobject *kobj, struct kobj_attribute *attr,
1386			const char *buf, size_t len)
1387{
1388	int err;
1389	int nid;
1390	unsigned long count;
1391	struct hstate *h;
1392	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1393
1394	err = strict_strtoul(buf, 10, &count);
1395	if (err)
1396		goto out;
1397
1398	h = kobj_to_hstate(kobj, &nid);
1399	if (h->order >= MAX_ORDER) {
1400		err = -EINVAL;
1401		goto out;
1402	}
1403
1404	if (nid == NUMA_NO_NODE) {
1405		/*
1406		 * global hstate attribute
1407		 */
1408		if (!(obey_mempolicy &&
1409				init_nodemask_of_mempolicy(nodes_allowed))) {
1410			NODEMASK_FREE(nodes_allowed);
1411			nodes_allowed = &node_states[N_HIGH_MEMORY];
1412		}
1413	} else if (nodes_allowed) {
1414		/*
1415		 * per node hstate attribute: adjust count to global,
1416		 * but restrict alloc/free to the specified node.
1417		 */
1418		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1419		init_nodemask_of_node(nodes_allowed, nid);
1420	} else
1421		nodes_allowed = &node_states[N_HIGH_MEMORY];
1422
1423	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1424
1425	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1426		NODEMASK_FREE(nodes_allowed);
1427
1428	return len;
1429out:
1430	NODEMASK_FREE(nodes_allowed);
1431	return err;
1432}
1433
1434static ssize_t nr_hugepages_show(struct kobject *kobj,
1435				       struct kobj_attribute *attr, char *buf)
1436{
1437	return nr_hugepages_show_common(kobj, attr, buf);
1438}
1439
1440static ssize_t nr_hugepages_store(struct kobject *kobj,
1441	       struct kobj_attribute *attr, const char *buf, size_t len)
1442{
1443	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1444}
1445HSTATE_ATTR(nr_hugepages);
1446
1447#ifdef CONFIG_NUMA
1448
1449/*
1450 * hstate attribute for optionally mempolicy-based constraint on persistent
1451 * huge page alloc/free.
1452 */
1453static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1454				       struct kobj_attribute *attr, char *buf)
1455{
1456	return nr_hugepages_show_common(kobj, attr, buf);
1457}
1458
1459static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1460	       struct kobj_attribute *attr, const char *buf, size_t len)
1461{
1462	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1463}
1464HSTATE_ATTR(nr_hugepages_mempolicy);
1465#endif
1466
1467
1468static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1469					struct kobj_attribute *attr, char *buf)
1470{
1471	struct hstate *h = kobj_to_hstate(kobj, NULL);
1472	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1473}
1474
1475static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1476		struct kobj_attribute *attr, const char *buf, size_t count)
1477{
1478	int err;
1479	unsigned long input;
1480	struct hstate *h = kobj_to_hstate(kobj, NULL);
1481
1482	if (h->order >= MAX_ORDER)
1483		return -EINVAL;
1484
1485	err = strict_strtoul(buf, 10, &input);
1486	if (err)
1487		return err;
1488
1489	spin_lock(&hugetlb_lock);
1490	h->nr_overcommit_huge_pages = input;
1491	spin_unlock(&hugetlb_lock);
1492
1493	return count;
1494}
1495HSTATE_ATTR(nr_overcommit_hugepages);
1496
1497static ssize_t free_hugepages_show(struct kobject *kobj,
1498					struct kobj_attribute *attr, char *buf)
1499{
1500	struct hstate *h;
1501	unsigned long free_huge_pages;
1502	int nid;
1503
1504	h = kobj_to_hstate(kobj, &nid);
1505	if (nid == NUMA_NO_NODE)
1506		free_huge_pages = h->free_huge_pages;
1507	else
1508		free_huge_pages = h->free_huge_pages_node[nid];
1509
1510	return sprintf(buf, "%lu\n", free_huge_pages);
1511}
1512HSTATE_ATTR_RO(free_hugepages);
1513
1514static ssize_t resv_hugepages_show(struct kobject *kobj,
1515					struct kobj_attribute *attr, char *buf)
1516{
1517	struct hstate *h = kobj_to_hstate(kobj, NULL);
1518	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1519}
1520HSTATE_ATTR_RO(resv_hugepages);
1521
1522static ssize_t surplus_hugepages_show(struct kobject *kobj,
1523					struct kobj_attribute *attr, char *buf)
1524{
1525	struct hstate *h;
1526	unsigned long surplus_huge_pages;
1527	int nid;
1528
1529	h = kobj_to_hstate(kobj, &nid);
1530	if (nid == NUMA_NO_NODE)
1531		surplus_huge_pages = h->surplus_huge_pages;
1532	else
1533		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1534
1535	return sprintf(buf, "%lu\n", surplus_huge_pages);
1536}
1537HSTATE_ATTR_RO(surplus_hugepages);
1538
1539static struct attribute *hstate_attrs[] = {
1540	&nr_hugepages_attr.attr,
1541	&nr_overcommit_hugepages_attr.attr,
1542	&free_hugepages_attr.attr,
1543	&resv_hugepages_attr.attr,
1544	&surplus_hugepages_attr.attr,
1545#ifdef CONFIG_NUMA
1546	&nr_hugepages_mempolicy_attr.attr,
1547#endif
1548	NULL,
1549};
1550
1551static struct attribute_group hstate_attr_group = {
1552	.attrs = hstate_attrs,
1553};
1554
1555static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1556				    struct kobject **hstate_kobjs,
1557				    struct attribute_group *hstate_attr_group)
1558{
1559	int retval;
1560	int hi = h - hstates;
1561
1562	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1563	if (!hstate_kobjs[hi])
1564		return -ENOMEM;
1565
1566	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1567	if (retval)
1568		kobject_put(hstate_kobjs[hi]);
1569
1570	return retval;
1571}
1572
1573static void __init hugetlb_sysfs_init(void)
1574{
1575	struct hstate *h;
1576	int err;
1577
1578	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1579	if (!hugepages_kobj)
1580		return;
1581
1582	for_each_hstate(h) {
1583		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1584					 hstate_kobjs, &hstate_attr_group);
1585		if (err)
1586			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1587								h->name);
1588	}
1589}
1590
1591#ifdef CONFIG_NUMA
1592
1593/*
1594 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1595 * with node sysdevs in node_devices[] using a parallel array.  The array
1596 * index of a node sysdev or _hstate == node id.
1597 * This is here to avoid any static dependency of the node sysdev driver, in
1598 * the base kernel, on the hugetlb module.
1599 */
1600struct node_hstate {
1601	struct kobject		*hugepages_kobj;
1602	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1603};
1604struct node_hstate node_hstates[MAX_NUMNODES];
1605
1606/*
1607 * A subset of global hstate attributes for node sysdevs
1608 */
1609static struct attribute *per_node_hstate_attrs[] = {
1610	&nr_hugepages_attr.attr,
1611	&free_hugepages_attr.attr,
1612	&surplus_hugepages_attr.attr,
1613	NULL,
1614};
1615
1616static struct attribute_group per_node_hstate_attr_group = {
1617	.attrs = per_node_hstate_attrs,
1618};
1619
1620/*
1621 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1622 * Returns node id via non-NULL nidp.
1623 */
1624static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1625{
1626	int nid;
1627
1628	for (nid = 0; nid < nr_node_ids; nid++) {
1629		struct node_hstate *nhs = &node_hstates[nid];
1630		int i;
1631		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1632			if (nhs->hstate_kobjs[i] == kobj) {
1633				if (nidp)
1634					*nidp = nid;
1635				return &hstates[i];
1636			}
1637	}
1638
1639	BUG();
1640	return NULL;
1641}
1642
1643/*
1644 * Unregister hstate attributes from a single node sysdev.
1645 * No-op if no hstate attributes attached.
1646 */
1647void hugetlb_unregister_node(struct node *node)
1648{
1649	struct hstate *h;
1650	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1651
1652	if (!nhs->hugepages_kobj)
1653		return;		/* no hstate attributes */
1654
1655	for_each_hstate(h)
1656		if (nhs->hstate_kobjs[h - hstates]) {
1657			kobject_put(nhs->hstate_kobjs[h - hstates]);
1658			nhs->hstate_kobjs[h - hstates] = NULL;
1659		}
1660
1661	kobject_put(nhs->hugepages_kobj);
1662	nhs->hugepages_kobj = NULL;
1663}
1664
1665/*
1666 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1667 * that have them.
1668 */
1669static void hugetlb_unregister_all_nodes(void)
1670{
1671	int nid;
1672
1673	/*
1674	 * disable node sysdev registrations.
1675	 */
1676	register_hugetlbfs_with_node(NULL, NULL);
1677
1678	/*
1679	 * remove hstate attributes from any nodes that have them.
1680	 */
1681	for (nid = 0; nid < nr_node_ids; nid++)
1682		hugetlb_unregister_node(&node_devices[nid]);
1683}
1684
1685/*
1686 * Register hstate attributes for a single node sysdev.
1687 * No-op if attributes already registered.
1688 */
1689void hugetlb_register_node(struct node *node)
1690{
1691	struct hstate *h;
1692	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1693	int err;
1694
1695	if (nhs->hugepages_kobj)
1696		return;		/* already allocated */
1697
1698	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1699							&node->sysdev.kobj);
1700	if (!nhs->hugepages_kobj)
1701		return;
1702
1703	for_each_hstate(h) {
1704		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1705						nhs->hstate_kobjs,
1706						&per_node_hstate_attr_group);
1707		if (err) {
1708			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1709					" for node %d\n",
1710						h->name, node->sysdev.id);
1711			hugetlb_unregister_node(node);
1712			break;
1713		}
1714	}
1715}
1716
1717/*
1718 * hugetlb init time:  register hstate attributes for all registered node
1719 * sysdevs of nodes that have memory.  All on-line nodes should have
1720 * registered their associated sysdev by this time.
1721 */
1722static void hugetlb_register_all_nodes(void)
1723{
1724	int nid;
1725
1726	for_each_node_state(nid, N_HIGH_MEMORY) {
1727		struct node *node = &node_devices[nid];
1728		if (node->sysdev.id == nid)
1729			hugetlb_register_node(node);
1730	}
1731
1732	/*
1733	 * Let the node sysdev driver know we're here so it can
1734	 * [un]register hstate attributes on node hotplug.
1735	 */
1736	register_hugetlbfs_with_node(hugetlb_register_node,
1737				     hugetlb_unregister_node);
1738}
1739#else	/* !CONFIG_NUMA */
1740
1741static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1742{
1743	BUG();
1744	if (nidp)
1745		*nidp = -1;
1746	return NULL;
1747}
1748
1749static void hugetlb_unregister_all_nodes(void) { }
1750
1751static void hugetlb_register_all_nodes(void) { }
1752
1753#endif
1754
1755static void __exit hugetlb_exit(void)
1756{
1757	struct hstate *h;
1758
1759	hugetlb_unregister_all_nodes();
1760
1761	for_each_hstate(h) {
1762		kobject_put(hstate_kobjs[h - hstates]);
1763	}
1764
1765	kobject_put(hugepages_kobj);
1766}
1767module_exit(hugetlb_exit);
1768
1769static int __init hugetlb_init(void)
1770{
1771	/* Some platform decide whether they support huge pages at boot
1772	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1773	 * there is no such support
1774	 */
1775	if (HPAGE_SHIFT == 0)
1776		return 0;
1777
1778	if (!size_to_hstate(default_hstate_size)) {
1779		default_hstate_size = HPAGE_SIZE;
1780		if (!size_to_hstate(default_hstate_size))
1781			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1782	}
1783	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1784	if (default_hstate_max_huge_pages)
1785		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1786
1787	hugetlb_init_hstates();
1788
1789	gather_bootmem_prealloc();
1790
1791	report_hugepages();
1792
1793	hugetlb_sysfs_init();
1794
1795	hugetlb_register_all_nodes();
1796
1797	return 0;
1798}
1799module_init(hugetlb_init);
1800
1801/* Should be called on processing a hugepagesz=... option */
1802void __init hugetlb_add_hstate(unsigned order)
1803{
1804	struct hstate *h;
1805	unsigned long i;
1806
1807	if (size_to_hstate(PAGE_SIZE << order)) {
1808		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1809		return;
1810	}
1811	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1812	BUG_ON(order == 0);
1813	h = &hstates[max_hstate++];
1814	h->order = order;
1815	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1816	h->nr_huge_pages = 0;
1817	h->free_huge_pages = 0;
1818	for (i = 0; i < MAX_NUMNODES; ++i)
1819		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1820	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1821	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1822	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1823					huge_page_size(h)/1024);
1824
1825	parsed_hstate = h;
1826}
1827
1828static int __init hugetlb_nrpages_setup(char *s)
1829{
1830	unsigned long *mhp;
1831	static unsigned long *last_mhp;
1832
1833	/*
1834	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1835	 * so this hugepages= parameter goes to the "default hstate".
1836	 */
1837	if (!max_hstate)
1838		mhp = &default_hstate_max_huge_pages;
1839	else
1840		mhp = &parsed_hstate->max_huge_pages;
1841
1842	if (mhp == last_mhp) {
1843		printk(KERN_WARNING "hugepages= specified twice without "
1844			"interleaving hugepagesz=, ignoring\n");
1845		return 1;
1846	}
1847
1848	if (sscanf(s, "%lu", mhp) <= 0)
1849		*mhp = 0;
1850
1851	/*
1852	 * Global state is always initialized later in hugetlb_init.
1853	 * But we need to allocate >= MAX_ORDER hstates here early to still
1854	 * use the bootmem allocator.
1855	 */
1856	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1857		hugetlb_hstate_alloc_pages(parsed_hstate);
1858
1859	last_mhp = mhp;
1860
1861	return 1;
1862}
1863__setup("hugepages=", hugetlb_nrpages_setup);
1864
1865static int __init hugetlb_default_setup(char *s)
1866{
1867	default_hstate_size = memparse(s, &s);
1868	return 1;
1869}
1870__setup("default_hugepagesz=", hugetlb_default_setup);
1871
1872static unsigned int cpuset_mems_nr(unsigned int *array)
1873{
1874	int node;
1875	unsigned int nr = 0;
1876
1877	for_each_node_mask(node, cpuset_current_mems_allowed)
1878		nr += array[node];
1879
1880	return nr;
1881}
1882
1883#ifdef CONFIG_SYSCTL
1884static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1885			 struct ctl_table *table, int write,
1886			 void __user *buffer, size_t *length, loff_t *ppos)
1887{
1888	struct hstate *h = &default_hstate;
1889	unsigned long tmp;
1890	int ret;
1891
1892	tmp = h->max_huge_pages;
1893
1894	if (write && h->order >= MAX_ORDER)
1895		return -EINVAL;
1896
1897	table->data = &tmp;
1898	table->maxlen = sizeof(unsigned long);
1899	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1900	if (ret)
1901		goto out;
1902
1903	if (write) {
1904		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1905						GFP_KERNEL | __GFP_NORETRY);
1906		if (!(obey_mempolicy &&
1907			       init_nodemask_of_mempolicy(nodes_allowed))) {
1908			NODEMASK_FREE(nodes_allowed);
1909			nodes_allowed = &node_states[N_HIGH_MEMORY];
1910		}
1911		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1912
1913		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1914			NODEMASK_FREE(nodes_allowed);
1915	}
1916out:
1917	return ret;
1918}
1919
1920int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1921			  void __user *buffer, size_t *length, loff_t *ppos)
1922{
1923
1924	return hugetlb_sysctl_handler_common(false, table, write,
1925							buffer, length, ppos);
1926}
1927
1928#ifdef CONFIG_NUMA
1929int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1930			  void __user *buffer, size_t *length, loff_t *ppos)
1931{
1932	return hugetlb_sysctl_handler_common(true, table, write,
1933							buffer, length, ppos);
1934}
1935#endif /* CONFIG_NUMA */
1936
1937int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1938			void __user *buffer,
1939			size_t *length, loff_t *ppos)
1940{
1941	proc_dointvec(table, write, buffer, length, ppos);
1942	if (hugepages_treat_as_movable)
1943		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1944	else
1945		htlb_alloc_mask = GFP_HIGHUSER;
1946	return 0;
1947}
1948
1949int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1950			void __user *buffer,
1951			size_t *length, loff_t *ppos)
1952{
1953	struct hstate *h = &default_hstate;
1954	unsigned long tmp;
1955	int ret;
1956
1957	tmp = h->nr_overcommit_huge_pages;
1958
1959	if (write && h->order >= MAX_ORDER)
1960		return -EINVAL;
1961
1962	table->data = &tmp;
1963	table->maxlen = sizeof(unsigned long);
1964	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1965	if (ret)
1966		goto out;
1967
1968	if (write) {
1969		spin_lock(&hugetlb_lock);
1970		h->nr_overcommit_huge_pages = tmp;
1971		spin_unlock(&hugetlb_lock);
1972	}
1973out:
1974	return ret;
1975}
1976
1977#endif /* CONFIG_SYSCTL */
1978
1979void hugetlb_report_meminfo(struct seq_file *m)
1980{
1981	struct hstate *h = &default_hstate;
1982	seq_printf(m,
1983			"HugePages_Total:   %5lu\n"
1984			"HugePages_Free:    %5lu\n"
1985			"HugePages_Rsvd:    %5lu\n"
1986			"HugePages_Surp:    %5lu\n"
1987			"Hugepagesize:   %8lu kB\n",
1988			h->nr_huge_pages,
1989			h->free_huge_pages,
1990			h->resv_huge_pages,
1991			h->surplus_huge_pages,
1992			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1993}
1994
1995int hugetlb_report_node_meminfo(int nid, char *buf)
1996{
1997	struct hstate *h = &default_hstate;
1998	return sprintf(buf,
1999		"Node %d HugePages_Total: %5u\n"
2000		"Node %d HugePages_Free:  %5u\n"
2001		"Node %d HugePages_Surp:  %5u\n",
2002		nid, h->nr_huge_pages_node[nid],
2003		nid, h->free_huge_pages_node[nid],
2004		nid, h->surplus_huge_pages_node[nid]);
2005}
2006
2007/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2008unsigned long hugetlb_total_pages(void)
2009{
2010	struct hstate *h = &default_hstate;
2011	return h->nr_huge_pages * pages_per_huge_page(h);
2012}
2013
2014static int hugetlb_acct_memory(struct hstate *h, long delta)
2015{
2016	int ret = -ENOMEM;
2017
2018	spin_lock(&hugetlb_lock);
2019	/*
2020	 * When cpuset is configured, it breaks the strict hugetlb page
2021	 * reservation as the accounting is done on a global variable. Such
2022	 * reservation is completely rubbish in the presence of cpuset because
2023	 * the reservation is not checked against page availability for the
2024	 * current cpuset. Application can still potentially OOM'ed by kernel
2025	 * with lack of free htlb page in cpuset that the task is in.
2026	 * Attempt to enforce strict accounting with cpuset is almost
2027	 * impossible (or too ugly) because cpuset is too fluid that
2028	 * task or memory node can be dynamically moved between cpusets.
2029	 *
2030	 * The change of semantics for shared hugetlb mapping with cpuset is
2031	 * undesirable. However, in order to preserve some of the semantics,
2032	 * we fall back to check against current free page availability as
2033	 * a best attempt and hopefully to minimize the impact of changing
2034	 * semantics that cpuset has.
2035	 */
2036	if (delta > 0) {
2037		if (gather_surplus_pages(h, delta) < 0)
2038			goto out;
2039
2040		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2041			return_unused_surplus_pages(h, delta);
2042			goto out;
2043		}
2044	}
2045
2046	ret = 0;
2047	if (delta < 0)
2048		return_unused_surplus_pages(h, (unsigned long) -delta);
2049
2050out:
2051	spin_unlock(&hugetlb_lock);
2052	return ret;
2053}
2054
2055static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2056{
2057	struct resv_map *reservations = vma_resv_map(vma);
2058
2059	/*
2060	 * This new VMA should share its siblings reservation map if present.
2061	 * The VMA will only ever have a valid reservation map pointer where
2062	 * it is being copied for another still existing VMA.  As that VMA
2063	 * has a reference to the reservation map it cannot disappear until
2064	 * after this open call completes.  It is therefore safe to take a
2065	 * new reference here without additional locking.
2066	 */
2067	if (reservations)
2068		kref_get(&reservations->refs);
2069}
2070
2071static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2072{
2073	struct hstate *h = hstate_vma(vma);
2074	struct resv_map *reservations = vma_resv_map(vma);
2075	unsigned long reserve;
2076	unsigned long start;
2077	unsigned long end;
2078
2079	if (reservations) {
2080		start = vma_hugecache_offset(h, vma, vma->vm_start);
2081		end = vma_hugecache_offset(h, vma, vma->vm_end);
2082
2083		reserve = (end - start) -
2084			region_count(&reservations->regions, start, end);
2085
2086		kref_put(&reservations->refs, resv_map_release);
2087
2088		if (reserve) {
2089			hugetlb_acct_memory(h, -reserve);
2090			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2091		}
2092	}
2093}
2094
2095/*
2096 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2097 * handle_mm_fault() to try to instantiate regular-sized pages in the
2098 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2099 * this far.
2100 */
2101static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2102{
2103	BUG();
2104	return 0;
2105}
2106
2107const struct vm_operations_struct hugetlb_vm_ops = {
2108	.fault = hugetlb_vm_op_fault,
2109	.open = hugetlb_vm_op_open,
2110	.close = hugetlb_vm_op_close,
2111};
2112
2113static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2114				int writable)
2115{
2116	pte_t entry;
2117
2118	if (writable) {
2119		entry =
2120		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2121	} else {
2122		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2123	}
2124	entry = pte_mkyoung(entry);
2125	entry = pte_mkhuge(entry);
2126
2127	return entry;
2128}
2129
2130static void set_huge_ptep_writable(struct vm_area_struct *vma,
2131				   unsigned long address, pte_t *ptep)
2132{
2133	pte_t entry;
2134
2135	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2136	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2137		update_mmu_cache(vma, address, ptep);
2138}
2139
2140
2141int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2142			    struct vm_area_struct *vma)
2143{
2144	pte_t *src_pte, *dst_pte, entry;
2145	struct page *ptepage;
2146	unsigned long addr;
2147	int cow;
2148	struct hstate *h = hstate_vma(vma);
2149	unsigned long sz = huge_page_size(h);
2150
2151	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2152
2153	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2154		src_pte = huge_pte_offset(src, addr);
2155		if (!src_pte)
2156			continue;
2157		dst_pte = huge_pte_alloc(dst, addr, sz);
2158		if (!dst_pte)
2159			goto nomem;
2160
2161		/* If the pagetables are shared don't copy or take references */
2162		if (dst_pte == src_pte)
2163			continue;
2164
2165		spin_lock(&dst->page_table_lock);
2166		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2167		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2168			if (cow)
2169				huge_ptep_set_wrprotect(src, addr, src_pte);
2170			entry = huge_ptep_get(src_pte);
2171			ptepage = pte_page(entry);
2172			get_page(ptepage);
2173			page_dup_rmap(ptepage);
2174			set_huge_pte_at(dst, addr, dst_pte, entry);
2175		}
2176		spin_unlock(&src->page_table_lock);
2177		spin_unlock(&dst->page_table_lock);
2178	}
2179	return 0;
2180
2181nomem:
2182	return -ENOMEM;
2183}
2184
2185static int is_hugetlb_entry_migration(pte_t pte)
2186{
2187	swp_entry_t swp;
2188
2189	if (huge_pte_none(pte) || pte_present(pte))
2190		return 0;
2191	swp = pte_to_swp_entry(pte);
2192	if (non_swap_entry(swp) && is_migration_entry(swp))
2193		return 1;
2194	else
2195		return 0;
2196}
2197
2198static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2199{
2200	swp_entry_t swp;
2201
2202	if (huge_pte_none(pte) || pte_present(pte))
2203		return 0;
2204	swp = pte_to_swp_entry(pte);
2205	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2206		return 1;
2207	else
2208		return 0;
2209}
2210
2211void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2212			    unsigned long end, struct page *ref_page)
2213{
2214	struct mm_struct *mm = vma->vm_mm;
2215	unsigned long address;
2216	pte_t *ptep;
2217	pte_t pte;
2218	struct page *page;
2219	struct page *tmp;
2220	struct hstate *h = hstate_vma(vma);
2221	unsigned long sz = huge_page_size(h);
2222
2223	/*
2224	 * A page gathering list, protected by per file i_mmap_mutex. The
2225	 * lock is used to avoid list corruption from multiple unmapping
2226	 * of the same page since we are using page->lru.
2227	 */
2228	LIST_HEAD(page_list);
2229
2230	WARN_ON(!is_vm_hugetlb_page(vma));
2231	BUG_ON(start & ~huge_page_mask(h));
2232	BUG_ON(end & ~huge_page_mask(h));
2233
2234	mmu_notifier_invalidate_range_start(mm, start, end);
2235	spin_lock(&mm->page_table_lock);
2236	for (address = start; address < end; address += sz) {
2237		ptep = huge_pte_offset(mm, address);
2238		if (!ptep)
2239			continue;
2240
2241		if (huge_pmd_unshare(mm, &address, ptep))
2242			continue;
2243
2244		/*
2245		 * If a reference page is supplied, it is because a specific
2246		 * page is being unmapped, not a range. Ensure the page we
2247		 * are about to unmap is the actual page of interest.
2248		 */
2249		if (ref_page) {
2250			pte = huge_ptep_get(ptep);
2251			if (huge_pte_none(pte))
2252				continue;
2253			page = pte_page(pte);
2254			if (page != ref_page)
2255				continue;
2256
2257			/*
2258			 * Mark the VMA as having unmapped its page so that
2259			 * future faults in this VMA will fail rather than
2260			 * looking like data was lost
2261			 */
2262			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2263		}
2264
2265		pte = huge_ptep_get_and_clear(mm, address, ptep);
2266		if (huge_pte_none(pte))
2267			continue;
2268
2269		/*
2270		 * HWPoisoned hugepage is already unmapped and dropped reference
2271		 */
2272		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2273			continue;
2274
2275		page = pte_page(pte);
2276		if (pte_dirty(pte))
2277			set_page_dirty(page);
2278		list_add(&page->lru, &page_list);
2279	}
2280	spin_unlock(&mm->page_table_lock);
2281	flush_tlb_range(vma, start, end);
2282	mmu_notifier_invalidate_range_end(mm, start, end);
2283	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2284		page_remove_rmap(page);
2285		list_del(&page->lru);
2286		put_page(page);
2287	}
2288}
2289
2290void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2291			  unsigned long end, struct page *ref_page)
2292{
2293	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2294	__unmap_hugepage_range(vma, start, end, ref_page);
2295	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2296}
2297
2298/*
2299 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2300 * mappping it owns the reserve page for. The intention is to unmap the page
2301 * from other VMAs and let the children be SIGKILLed if they are faulting the
2302 * same region.
2303 */
2304static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2305				struct page *page, unsigned long address)
2306{
2307	struct hstate *h = hstate_vma(vma);
2308	struct vm_area_struct *iter_vma;
2309	struct address_space *mapping;
2310	struct prio_tree_iter iter;
2311	pgoff_t pgoff;
2312
2313	/*
2314	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2315	 * from page cache lookup which is in HPAGE_SIZE units.
2316	 */
2317	address = address & huge_page_mask(h);
2318	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2319		+ (vma->vm_pgoff >> PAGE_SHIFT);
2320	mapping = (struct address_space *)page_private(page);
2321
2322	/*
2323	 * Take the mapping lock for the duration of the table walk. As
2324	 * this mapping should be shared between all the VMAs,
2325	 * __unmap_hugepage_range() is called as the lock is already held
2326	 */
2327	mutex_lock(&mapping->i_mmap_mutex);
2328	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2329		/* Do not unmap the current VMA */
2330		if (iter_vma == vma)
2331			continue;
2332
2333		/*
2334		 * Unmap the page from other VMAs without their own reserves.
2335		 * They get marked to be SIGKILLed if they fault in these
2336		 * areas. This is because a future no-page fault on this VMA
2337		 * could insert a zeroed page instead of the data existing
2338		 * from the time of fork. This would look like data corruption
2339		 */
2340		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2341			__unmap_hugepage_range(iter_vma,
2342				address, address + huge_page_size(h),
2343				page);
2344	}
2345	mutex_unlock(&mapping->i_mmap_mutex);
2346
2347	return 1;
2348}
2349
2350/*
2351 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2352 */
2353static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2354			unsigned long address, pte_t *ptep, pte_t pte,
2355			struct page *pagecache_page)
2356{
2357	struct hstate *h = hstate_vma(vma);
2358	struct page *old_page, *new_page;
2359	int avoidcopy;
2360	int outside_reserve = 0;
2361
2362	old_page = pte_page(pte);
2363
2364retry_avoidcopy:
2365	/* If no-one else is actually using this page, avoid the copy
2366	 * and just make the page writable */
2367	avoidcopy = (page_mapcount(old_page) == 1);
2368	if (avoidcopy) {
2369		if (PageAnon(old_page))
2370			page_move_anon_rmap(old_page, vma, address);
2371		set_huge_ptep_writable(vma, address, ptep);
2372		return 0;
2373	}
2374
2375	/*
2376	 * If the process that created a MAP_PRIVATE mapping is about to
2377	 * perform a COW due to a shared page count, attempt to satisfy
2378	 * the allocation without using the existing reserves. The pagecache
2379	 * page is used to determine if the reserve at this address was
2380	 * consumed or not. If reserves were used, a partial faulted mapping
2381	 * at the time of fork() could consume its reserves on COW instead
2382	 * of the full address range.
2383	 */
2384	if (!(vma->vm_flags & VM_MAYSHARE) &&
2385			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2386			old_page != pagecache_page)
2387		outside_reserve = 1;
2388
2389	page_cache_get(old_page);
2390
2391	/* Drop page_table_lock as buddy allocator may be called */
2392	spin_unlock(&mm->page_table_lock);
2393	new_page = alloc_huge_page(vma, address, outside_reserve);
2394
2395	if (IS_ERR(new_page)) {
2396		page_cache_release(old_page);
2397
2398		/*
2399		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2400		 * it is due to references held by a child and an insufficient
2401		 * huge page pool. To guarantee the original mappers
2402		 * reliability, unmap the page from child processes. The child
2403		 * may get SIGKILLed if it later faults.
2404		 */
2405		if (outside_reserve) {
2406			BUG_ON(huge_pte_none(pte));
2407			if (unmap_ref_private(mm, vma, old_page, address)) {
2408				BUG_ON(page_count(old_page) != 1);
2409				BUG_ON(huge_pte_none(pte));
2410				spin_lock(&mm->page_table_lock);
2411				goto retry_avoidcopy;
2412			}
2413			WARN_ON_ONCE(1);
2414		}
2415
2416		/* Caller expects lock to be held */
2417		spin_lock(&mm->page_table_lock);
2418		return -PTR_ERR(new_page);
2419	}
2420
2421	/*
2422	 * When the original hugepage is shared one, it does not have
2423	 * anon_vma prepared.
2424	 */
2425	if (unlikely(anon_vma_prepare(vma))) {
2426		page_cache_release(new_page);
2427		page_cache_release(old_page);
2428		/* Caller expects lock to be held */
2429		spin_lock(&mm->page_table_lock);
2430		return VM_FAULT_OOM;
2431	}
2432
2433	copy_user_huge_page(new_page, old_page, address, vma,
2434			    pages_per_huge_page(h));
2435	__SetPageUptodate(new_page);
2436
2437	/*
2438	 * Retake the page_table_lock to check for racing updates
2439	 * before the page tables are altered
2440	 */
2441	spin_lock(&mm->page_table_lock);
2442	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2443	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2444		/* Break COW */
2445		mmu_notifier_invalidate_range_start(mm,
2446			address & huge_page_mask(h),
2447			(address & huge_page_mask(h)) + huge_page_size(h));
2448		huge_ptep_clear_flush(vma, address, ptep);
2449		set_huge_pte_at(mm, address, ptep,
2450				make_huge_pte(vma, new_page, 1));
2451		page_remove_rmap(old_page);
2452		hugepage_add_new_anon_rmap(new_page, vma, address);
2453		/* Make the old page be freed below */
2454		new_page = old_page;
2455		mmu_notifier_invalidate_range_end(mm,
2456			address & huge_page_mask(h),
2457			(address & huge_page_mask(h)) + huge_page_size(h));
2458	}
2459	page_cache_release(new_page);
2460	page_cache_release(old_page);
2461	return 0;
2462}
2463
2464/* Return the pagecache page at a given address within a VMA */
2465static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2466			struct vm_area_struct *vma, unsigned long address)
2467{
2468	struct address_space *mapping;
2469	pgoff_t idx;
2470
2471	mapping = vma->vm_file->f_mapping;
2472	idx = vma_hugecache_offset(h, vma, address);
2473
2474	return find_lock_page(mapping, idx);
2475}
2476
2477/*
2478 * Return whether there is a pagecache page to back given address within VMA.
2479 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2480 */
2481static bool hugetlbfs_pagecache_present(struct hstate *h,
2482			struct vm_area_struct *vma, unsigned long address)
2483{
2484	struct address_space *mapping;
2485	pgoff_t idx;
2486	struct page *page;
2487
2488	mapping = vma->vm_file->f_mapping;
2489	idx = vma_hugecache_offset(h, vma, address);
2490
2491	page = find_get_page(mapping, idx);
2492	if (page)
2493		put_page(page);
2494	return page != NULL;
2495}
2496
2497static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2498			unsigned long address, pte_t *ptep, unsigned int flags)
2499{
2500	struct hstate *h = hstate_vma(vma);
2501	int ret = VM_FAULT_SIGBUS;
2502	pgoff_t idx;
2503	unsigned long size;
2504	struct page *page;
2505	struct address_space *mapping;
2506	pte_t new_pte;
2507
2508	/*
2509	 * Currently, we are forced to kill the process in the event the
2510	 * original mapper has unmapped pages from the child due to a failed
2511	 * COW. Warn that such a situation has occurred as it may not be obvious
2512	 */
2513	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2514		printk(KERN_WARNING
2515			"PID %d killed due to inadequate hugepage pool\n",
2516			current->pid);
2517		return ret;
2518	}
2519
2520	mapping = vma->vm_file->f_mapping;
2521	idx = vma_hugecache_offset(h, vma, address);
2522
2523	/*
2524	 * Use page lock to guard against racing truncation
2525	 * before we get page_table_lock.
2526	 */
2527retry:
2528	page = find_lock_page(mapping, idx);
2529	if (!page) {
2530		size = i_size_read(mapping->host) >> huge_page_shift(h);
2531		if (idx >= size)
2532			goto out;
2533		page = alloc_huge_page(vma, address, 0);
2534		if (IS_ERR(page)) {
2535			ret = -PTR_ERR(page);
2536			goto out;
2537		}
2538		clear_huge_page(page, address, pages_per_huge_page(h));
2539		__SetPageUptodate(page);
2540
2541		if (vma->vm_flags & VM_MAYSHARE) {
2542			int err;
2543			struct inode *inode = mapping->host;
2544
2545			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2546			if (err) {
2547				put_page(page);
2548				if (err == -EEXIST)
2549					goto retry;
2550				goto out;
2551			}
2552
2553			spin_lock(&inode->i_lock);
2554			inode->i_blocks += blocks_per_huge_page(h);
2555			spin_unlock(&inode->i_lock);
2556			page_dup_rmap(page);
2557		} else {
2558			lock_page(page);
2559			if (unlikely(anon_vma_prepare(vma))) {
2560				ret = VM_FAULT_OOM;
2561				goto backout_unlocked;
2562			}
2563			hugepage_add_new_anon_rmap(page, vma, address);
2564		}
2565	} else {
2566		/*
2567		 * If memory error occurs between mmap() and fault, some process
2568		 * don't have hwpoisoned swap entry for errored virtual address.
2569		 * So we need to block hugepage fault by PG_hwpoison bit check.
2570		 */
2571		if (unlikely(PageHWPoison(page))) {
2572			ret = VM_FAULT_HWPOISON |
2573			      VM_FAULT_SET_HINDEX(h - hstates);
2574			goto backout_unlocked;
2575		}
2576		page_dup_rmap(page);
2577	}
2578
2579	/*
2580	 * If we are going to COW a private mapping later, we examine the
2581	 * pending reservations for this page now. This will ensure that
2582	 * any allocations necessary to record that reservation occur outside
2583	 * the spinlock.
2584	 */
2585	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2586		if (vma_needs_reservation(h, vma, address) < 0) {
2587			ret = VM_FAULT_OOM;
2588			goto backout_unlocked;
2589		}
2590
2591	spin_lock(&mm->page_table_lock);
2592	size = i_size_read(mapping->host) >> huge_page_shift(h);
2593	if (idx >= size)
2594		goto backout;
2595
2596	ret = 0;
2597	if (!huge_pte_none(huge_ptep_get(ptep)))
2598		goto backout;
2599
2600	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2601				&& (vma->vm_flags & VM_SHARED)));
2602	set_huge_pte_at(mm, address, ptep, new_pte);
2603
2604	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2605		/* Optimization, do the COW without a second fault */
2606		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2607	}
2608
2609	spin_unlock(&mm->page_table_lock);
2610	unlock_page(page);
2611out:
2612	return ret;
2613
2614backout:
2615	spin_unlock(&mm->page_table_lock);
2616backout_unlocked:
2617	unlock_page(page);
2618	put_page(page);
2619	goto out;
2620}
2621
2622int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2623			unsigned long address, unsigned int flags)
2624{
2625	pte_t *ptep;
2626	pte_t entry;
2627	int ret;
2628	struct page *page = NULL;
2629	struct page *pagecache_page = NULL;
2630	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2631	struct hstate *h = hstate_vma(vma);
2632
2633	ptep = huge_pte_offset(mm, address);
2634	if (ptep) {
2635		entry = huge_ptep_get(ptep);
2636		if (unlikely(is_hugetlb_entry_migration(entry))) {
2637			migration_entry_wait(mm, (pmd_t *)ptep, address);
2638			return 0;
2639		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2640			return VM_FAULT_HWPOISON_LARGE |
2641			       VM_FAULT_SET_HINDEX(h - hstates);
2642	}
2643
2644	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2645	if (!ptep)
2646		return VM_FAULT_OOM;
2647
2648	/*
2649	 * Serialize hugepage allocation and instantiation, so that we don't
2650	 * get spurious allocation failures if two CPUs race to instantiate
2651	 * the same page in the page cache.
2652	 */
2653	mutex_lock(&hugetlb_instantiation_mutex);
2654	entry = huge_ptep_get(ptep);
2655	if (huge_pte_none(entry)) {
2656		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2657		goto out_mutex;
2658	}
2659
2660	ret = 0;
2661
2662	/*
2663	 * If we are going to COW the mapping later, we examine the pending
2664	 * reservations for this page now. This will ensure that any
2665	 * allocations necessary to record that reservation occur outside the
2666	 * spinlock. For private mappings, we also lookup the pagecache
2667	 * page now as it is used to determine if a reservation has been
2668	 * consumed.
2669	 */
2670	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2671		if (vma_needs_reservation(h, vma, address) < 0) {
2672			ret = VM_FAULT_OOM;
2673			goto out_mutex;
2674		}
2675
2676		if (!(vma->vm_flags & VM_MAYSHARE))
2677			pagecache_page = hugetlbfs_pagecache_page(h,
2678								vma, address);
2679	}
2680
2681	/*
2682	 * hugetlb_cow() requires page locks of pte_page(entry) and
2683	 * pagecache_page, so here we need take the former one
2684	 * when page != pagecache_page or !pagecache_page.
2685	 * Note that locking order is always pagecache_page -> page,
2686	 * so no worry about deadlock.
2687	 */
2688	page = pte_page(entry);
2689	if (page != pagecache_page)
2690		lock_page(page);
2691
2692	spin_lock(&mm->page_table_lock);
2693	/* Check for a racing update before calling hugetlb_cow */
2694	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2695		goto out_page_table_lock;
2696
2697
2698	if (flags & FAULT_FLAG_WRITE) {
2699		if (!pte_write(entry)) {
2700			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2701							pagecache_page);
2702			goto out_page_table_lock;
2703		}
2704		entry = pte_mkdirty(entry);
2705	}
2706	entry = pte_mkyoung(entry);
2707	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2708						flags & FAULT_FLAG_WRITE))
2709		update_mmu_cache(vma, address, ptep);
2710
2711out_page_table_lock:
2712	spin_unlock(&mm->page_table_lock);
2713
2714	if (pagecache_page) {
2715		unlock_page(pagecache_page);
2716		put_page(pagecache_page);
2717	}
2718	if (page != pagecache_page)
2719		unlock_page(page);
2720
2721out_mutex:
2722	mutex_unlock(&hugetlb_instantiation_mutex);
2723
2724	return ret;
2725}
2726
2727/* Can be overriden by architectures */
2728__attribute__((weak)) struct page *
2729follow_huge_pud(struct mm_struct *mm, unsigned long address,
2730	       pud_t *pud, int write)
2731{
2732	BUG();
2733	return NULL;
2734}
2735
2736int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2737			struct page **pages, struct vm_area_struct **vmas,
2738			unsigned long *position, int *length, int i,
2739			unsigned int flags)
2740{
2741	unsigned long pfn_offset;
2742	unsigned long vaddr = *position;
2743	int remainder = *length;
2744	struct hstate *h = hstate_vma(vma);
2745
2746	spin_lock(&mm->page_table_lock);
2747	while (vaddr < vma->vm_end && remainder) {
2748		pte_t *pte;
2749		int absent;
2750		struct page *page;
2751
2752		/*
2753		 * Some archs (sparc64, sh*) have multiple pte_ts to
2754		 * each hugepage.  We have to make sure we get the
2755		 * first, for the page indexing below to work.
2756		 */
2757		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2758		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2759
2760		/*
2761		 * When coredumping, it suits get_dump_page if we just return
2762		 * an error where there's an empty slot with no huge pagecache
2763		 * to back it.  This way, we avoid allocating a hugepage, and
2764		 * the sparse dumpfile avoids allocating disk blocks, but its
2765		 * huge holes still show up with zeroes where they need to be.
2766		 */
2767		if (absent && (flags & FOLL_DUMP) &&
2768		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2769			remainder = 0;
2770			break;
2771		}
2772
2773		if (absent ||
2774		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2775			int ret;
2776
2777			spin_unlock(&mm->page_table_lock);
2778			ret = hugetlb_fault(mm, vma, vaddr,
2779				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2780			spin_lock(&mm->page_table_lock);
2781			if (!(ret & VM_FAULT_ERROR))
2782				continue;
2783
2784			remainder = 0;
2785			break;
2786		}
2787
2788		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2789		page = pte_page(huge_ptep_get(pte));
2790same_page:
2791		if (pages) {
2792			pages[i] = mem_map_offset(page, pfn_offset);
2793			get_page(pages[i]);
2794		}
2795
2796		if (vmas)
2797			vmas[i] = vma;
2798
2799		vaddr += PAGE_SIZE;
2800		++pfn_offset;
2801		--remainder;
2802		++i;
2803		if (vaddr < vma->vm_end && remainder &&
2804				pfn_offset < pages_per_huge_page(h)) {
2805			/*
2806			 * We use pfn_offset to avoid touching the pageframes
2807			 * of this compound page.
2808			 */
2809			goto same_page;
2810		}
2811	}
2812	spin_unlock(&mm->page_table_lock);
2813	*length = remainder;
2814	*position = vaddr;
2815
2816	return i ? i : -EFAULT;
2817}
2818
2819void hugetlb_change_protection(struct vm_area_struct *vma,
2820		unsigned long address, unsigned long end, pgprot_t newprot)
2821{
2822	struct mm_struct *mm = vma->vm_mm;
2823	unsigned long start = address;
2824	pte_t *ptep;
2825	pte_t pte;
2826	struct hstate *h = hstate_vma(vma);
2827
2828	BUG_ON(address >= end);
2829	flush_cache_range(vma, address, end);
2830
2831	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2832	spin_lock(&mm->page_table_lock);
2833	for (; address < end; address += huge_page_size(h)) {
2834		ptep = huge_pte_offset(mm, address);
2835		if (!ptep)
2836			continue;
2837		if (huge_pmd_unshare(mm, &address, ptep))
2838			continue;
2839		if (!huge_pte_none(huge_ptep_get(ptep))) {
2840			pte = huge_ptep_get_and_clear(mm, address, ptep);
2841			pte = pte_mkhuge(pte_modify(pte, newprot));
2842			set_huge_pte_at(mm, address, ptep, pte);
2843		}
2844	}
2845	spin_unlock(&mm->page_table_lock);
2846	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2847
2848	flush_tlb_range(vma, start, end);
2849}
2850
2851int hugetlb_reserve_pages(struct inode *inode,
2852					long from, long to,
2853					struct vm_area_struct *vma,
2854					vm_flags_t vm_flags)
2855{
2856	long ret, chg;
2857	struct hstate *h = hstate_inode(inode);
2858
2859	/*
2860	 * Only apply hugepage reservation if asked. At fault time, an
2861	 * attempt will be made for VM_NORESERVE to allocate a page
2862	 * and filesystem quota without using reserves
2863	 */
2864	if (vm_flags & VM_NORESERVE)
2865		return 0;
2866
2867	/*
2868	 * Shared mappings base their reservation on the number of pages that
2869	 * are already allocated on behalf of the file. Private mappings need
2870	 * to reserve the full area even if read-only as mprotect() may be
2871	 * called to make the mapping read-write. Assume !vma is a shm mapping
2872	 */
2873	if (!vma || vma->vm_flags & VM_MAYSHARE)
2874		chg = region_chg(&inode->i_mapping->private_list, from, to);
2875	else {
2876		struct resv_map *resv_map = resv_map_alloc();
2877		if (!resv_map)
2878			return -ENOMEM;
2879
2880		chg = to - from;
2881
2882		set_vma_resv_map(vma, resv_map);
2883		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2884	}
2885
2886	if (chg < 0)
2887		return chg;
2888
2889	/* There must be enough filesystem quota for the mapping */
2890	if (hugetlb_get_quota(inode->i_mapping, chg))
2891		return -ENOSPC;
2892
2893	/*
2894	 * Check enough hugepages are available for the reservation.
2895	 * Hand back the quota if there are not
2896	 */
2897	ret = hugetlb_acct_memory(h, chg);
2898	if (ret < 0) {
2899		hugetlb_put_quota(inode->i_mapping, chg);
2900		return ret;
2901	}
2902
2903	/*
2904	 * Account for the reservations made. Shared mappings record regions
2905	 * that have reservations as they are shared by multiple VMAs.
2906	 * When the last VMA disappears, the region map says how much
2907	 * the reservation was and the page cache tells how much of
2908	 * the reservation was consumed. Private mappings are per-VMA and
2909	 * only the consumed reservations are tracked. When the VMA
2910	 * disappears, the original reservation is the VMA size and the
2911	 * consumed reservations are stored in the map. Hence, nothing
2912	 * else has to be done for private mappings here
2913	 */
2914	if (!vma || vma->vm_flags & VM_MAYSHARE)
2915		region_add(&inode->i_mapping->private_list, from, to);
2916	return 0;
2917}
2918
2919void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2920{
2921	struct hstate *h = hstate_inode(inode);
2922	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2923
2924	spin_lock(&inode->i_lock);
2925	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2926	spin_unlock(&inode->i_lock);
2927
2928	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2929	hugetlb_acct_memory(h, -(chg - freed));
2930}
2931
2932#ifdef CONFIG_MEMORY_FAILURE
2933
2934/* Should be called in hugetlb_lock */
2935static int is_hugepage_on_freelist(struct page *hpage)
2936{
2937	struct page *page;
2938	struct page *tmp;
2939	struct hstate *h = page_hstate(hpage);
2940	int nid = page_to_nid(hpage);
2941
2942	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2943		if (page == hpage)
2944			return 1;
2945	return 0;
2946}
2947
2948/*
2949 * This function is called from memory failure code.
2950 * Assume the caller holds page lock of the head page.
2951 */
2952int dequeue_hwpoisoned_huge_page(struct page *hpage)
2953{
2954	struct hstate *h = page_hstate(hpage);
2955	int nid = page_to_nid(hpage);
2956	int ret = -EBUSY;
2957
2958	spin_lock(&hugetlb_lock);
2959	if (is_hugepage_on_freelist(hpage)) {
2960		list_del(&hpage->lru);
2961		set_page_refcounted(hpage);
2962		h->free_huge_pages--;
2963		h->free_huge_pages_node[nid]--;
2964		ret = 0;
2965	}
2966	spin_unlock(&hugetlb_lock);
2967	return ret;
2968}
2969#endif
2970