hugetlb.c revision 6b2dbba8b6ac4df26f72eda1e5ea7bab9f950e08
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/tlb.h>
28
29#include <linux/io.h>
30#include <linux/hugetlb.h>
31#include <linux/hugetlb_cgroup.h>
32#include <linux/node.h>
33#include <linux/hugetlb_cgroup.h>
34#include "internal.h"
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38unsigned long hugepages_treat_as_movable;
39
40int hugetlb_max_hstate __read_mostly;
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
44__initdata LIST_HEAD(huge_boot_pages);
45
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
49static unsigned long __initdata default_hstate_size;
50
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54DEFINE_SPINLOCK(hugetlb_lock);
55
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60	spin_unlock(&spool->lock);
61
62	/* If no pages are used, and no other handles to the subpool
63	 * remain, free the subpool the subpool remain */
64	if (free)
65		kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70	struct hugepage_subpool *spool;
71
72	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73	if (!spool)
74		return NULL;
75
76	spin_lock_init(&spool->lock);
77	spool->count = 1;
78	spool->max_hpages = nr_blocks;
79	spool->used_hpages = 0;
80
81	return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86	spin_lock(&spool->lock);
87	BUG_ON(!spool->count);
88	spool->count--;
89	unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93				      long delta)
94{
95	int ret = 0;
96
97	if (!spool)
98		return 0;
99
100	spin_lock(&spool->lock);
101	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102		spool->used_hpages += delta;
103	} else {
104		ret = -ENOMEM;
105	}
106	spin_unlock(&spool->lock);
107
108	return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112				       long delta)
113{
114	if (!spool)
115		return;
116
117	spin_lock(&spool->lock);
118	spool->used_hpages -= delta;
119	/* If hugetlbfs_put_super couldn't free spool due to
120	* an outstanding quota reference, free it now. */
121	unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126	return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
131	return subpool_inode(vma->vm_file->f_dentry->d_inode);
132}
133
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 *                    across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 *	down_write(&mm->mmap_sem);
144 * or
145 *	down_read(&mm->mmap_sem);
146 *	mutex_lock(&hugetlb_instantiation_mutex);
147 */
148struct file_region {
149	struct list_head link;
150	long from;
151	long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156	struct file_region *rg, *nrg, *trg;
157
158	/* Locate the region we are either in or before. */
159	list_for_each_entry(rg, head, link)
160		if (f <= rg->to)
161			break;
162
163	/* Round our left edge to the current segment if it encloses us. */
164	if (f > rg->from)
165		f = rg->from;
166
167	/* Check for and consume any regions we now overlap with. */
168	nrg = rg;
169	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170		if (&rg->link == head)
171			break;
172		if (rg->from > t)
173			break;
174
175		/* If this area reaches higher then extend our area to
176		 * include it completely.  If this is not the first area
177		 * which we intend to reuse, free it. */
178		if (rg->to > t)
179			t = rg->to;
180		if (rg != nrg) {
181			list_del(&rg->link);
182			kfree(rg);
183		}
184	}
185	nrg->from = f;
186	nrg->to = t;
187	return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192	struct file_region *rg, *nrg;
193	long chg = 0;
194
195	/* Locate the region we are before or in. */
196	list_for_each_entry(rg, head, link)
197		if (f <= rg->to)
198			break;
199
200	/* If we are below the current region then a new region is required.
201	 * Subtle, allocate a new region at the position but make it zero
202	 * size such that we can guarantee to record the reservation. */
203	if (&rg->link == head || t < rg->from) {
204		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205		if (!nrg)
206			return -ENOMEM;
207		nrg->from = f;
208		nrg->to   = f;
209		INIT_LIST_HEAD(&nrg->link);
210		list_add(&nrg->link, rg->link.prev);
211
212		return t - f;
213	}
214
215	/* Round our left edge to the current segment if it encloses us. */
216	if (f > rg->from)
217		f = rg->from;
218	chg = t - f;
219
220	/* Check for and consume any regions we now overlap with. */
221	list_for_each_entry(rg, rg->link.prev, link) {
222		if (&rg->link == head)
223			break;
224		if (rg->from > t)
225			return chg;
226
227		/* We overlap with this area, if it extends further than
228		 * us then we must extend ourselves.  Account for its
229		 * existing reservation. */
230		if (rg->to > t) {
231			chg += rg->to - t;
232			t = rg->to;
233		}
234		chg -= rg->to - rg->from;
235	}
236	return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241	struct file_region *rg, *trg;
242	long chg = 0;
243
244	/* Locate the region we are either in or before. */
245	list_for_each_entry(rg, head, link)
246		if (end <= rg->to)
247			break;
248	if (&rg->link == head)
249		return 0;
250
251	/* If we are in the middle of a region then adjust it. */
252	if (end > rg->from) {
253		chg = rg->to - end;
254		rg->to = end;
255		rg = list_entry(rg->link.next, typeof(*rg), link);
256	}
257
258	/* Drop any remaining regions. */
259	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260		if (&rg->link == head)
261			break;
262		chg += rg->to - rg->from;
263		list_del(&rg->link);
264		kfree(rg);
265	}
266	return chg;
267}
268
269static long region_count(struct list_head *head, long f, long t)
270{
271	struct file_region *rg;
272	long chg = 0;
273
274	/* Locate each segment we overlap with, and count that overlap. */
275	list_for_each_entry(rg, head, link) {
276		long seg_from;
277		long seg_to;
278
279		if (rg->to <= f)
280			continue;
281		if (rg->from >= t)
282			break;
283
284		seg_from = max(rg->from, f);
285		seg_to = min(rg->to, t);
286
287		chg += seg_to - seg_from;
288	}
289
290	return chg;
291}
292
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298			struct vm_area_struct *vma, unsigned long address)
299{
300	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301			(vma->vm_pgoff >> huge_page_order(h));
302}
303
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305				     unsigned long address)
306{
307	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316	struct hstate *hstate;
317
318	if (!is_vm_hugetlb_page(vma))
319		return PAGE_SIZE;
320
321	hstate = hstate_vma(vma);
322
323	return 1UL << (hstate->order + PAGE_SHIFT);
324}
325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336	return vma_kernel_pagesize(vma);
337}
338#endif
339
340/*
341 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER    (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping.  A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated.  A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370	return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374							unsigned long value)
375{
376	vma->vm_private_data = (void *)value;
377}
378
379struct resv_map {
380	struct kref refs;
381	struct list_head regions;
382};
383
384static struct resv_map *resv_map_alloc(void)
385{
386	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387	if (!resv_map)
388		return NULL;
389
390	kref_init(&resv_map->refs);
391	INIT_LIST_HEAD(&resv_map->regions);
392
393	return resv_map;
394}
395
396static void resv_map_release(struct kref *ref)
397{
398	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400	/* Clear out any active regions before we release the map. */
401	region_truncate(&resv_map->regions, 0);
402	kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406{
407	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408	if (!(vma->vm_flags & VM_MAYSHARE))
409		return (struct resv_map *)(get_vma_private_data(vma) &
410							~HPAGE_RESV_MASK);
411	return NULL;
412}
413
414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415{
416	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419	set_vma_private_data(vma, (get_vma_private_data(vma) &
420				HPAGE_RESV_MASK) | (unsigned long)map);
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
425	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435	return (get_vma_private_data(vma) & flag) != 0;
436}
437
438/* Decrement the reserved pages in the hugepage pool by one */
439static void decrement_hugepage_resv_vma(struct hstate *h,
440			struct vm_area_struct *vma)
441{
442	if (vma->vm_flags & VM_NORESERVE)
443		return;
444
445	if (vma->vm_flags & VM_MAYSHARE) {
446		/* Shared mappings always use reserves */
447		h->resv_huge_pages--;
448	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449		/*
450		 * Only the process that called mmap() has reserves for
451		 * private mappings.
452		 */
453		h->resv_huge_pages--;
454	}
455}
456
457/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459{
460	VM_BUG_ON(!is_vm_hugetlb_page(vma));
461	if (!(vma->vm_flags & VM_MAYSHARE))
462		vma->vm_private_data = (void *)0;
463}
464
465/* Returns true if the VMA has associated reserve pages */
466static int vma_has_reserves(struct vm_area_struct *vma)
467{
468	if (vma->vm_flags & VM_MAYSHARE)
469		return 1;
470	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471		return 1;
472	return 0;
473}
474
475static void copy_gigantic_page(struct page *dst, struct page *src)
476{
477	int i;
478	struct hstate *h = page_hstate(src);
479	struct page *dst_base = dst;
480	struct page *src_base = src;
481
482	for (i = 0; i < pages_per_huge_page(h); ) {
483		cond_resched();
484		copy_highpage(dst, src);
485
486		i++;
487		dst = mem_map_next(dst, dst_base, i);
488		src = mem_map_next(src, src_base, i);
489	}
490}
491
492void copy_huge_page(struct page *dst, struct page *src)
493{
494	int i;
495	struct hstate *h = page_hstate(src);
496
497	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498		copy_gigantic_page(dst, src);
499		return;
500	}
501
502	might_sleep();
503	for (i = 0; i < pages_per_huge_page(h); i++) {
504		cond_resched();
505		copy_highpage(dst + i, src + i);
506	}
507}
508
509static void enqueue_huge_page(struct hstate *h, struct page *page)
510{
511	int nid = page_to_nid(page);
512	list_move(&page->lru, &h->hugepage_freelists[nid]);
513	h->free_huge_pages++;
514	h->free_huge_pages_node[nid]++;
515}
516
517static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518{
519	struct page *page;
520
521	if (list_empty(&h->hugepage_freelists[nid]))
522		return NULL;
523	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524	list_move(&page->lru, &h->hugepage_activelist);
525	set_page_refcounted(page);
526	h->free_huge_pages--;
527	h->free_huge_pages_node[nid]--;
528	return page;
529}
530
531static struct page *dequeue_huge_page_vma(struct hstate *h,
532				struct vm_area_struct *vma,
533				unsigned long address, int avoid_reserve)
534{
535	struct page *page = NULL;
536	struct mempolicy *mpol;
537	nodemask_t *nodemask;
538	struct zonelist *zonelist;
539	struct zone *zone;
540	struct zoneref *z;
541	unsigned int cpuset_mems_cookie;
542
543retry_cpuset:
544	cpuset_mems_cookie = get_mems_allowed();
545	zonelist = huge_zonelist(vma, address,
546					htlb_alloc_mask, &mpol, &nodemask);
547	/*
548	 * A child process with MAP_PRIVATE mappings created by their parent
549	 * have no page reserves. This check ensures that reservations are
550	 * not "stolen". The child may still get SIGKILLed
551	 */
552	if (!vma_has_reserves(vma) &&
553			h->free_huge_pages - h->resv_huge_pages == 0)
554		goto err;
555
556	/* If reserves cannot be used, ensure enough pages are in the pool */
557	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558		goto err;
559
560	for_each_zone_zonelist_nodemask(zone, z, zonelist,
561						MAX_NR_ZONES - 1, nodemask) {
562		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563			page = dequeue_huge_page_node(h, zone_to_nid(zone));
564			if (page) {
565				if (!avoid_reserve)
566					decrement_hugepage_resv_vma(h, vma);
567				break;
568			}
569		}
570	}
571
572	mpol_cond_put(mpol);
573	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574		goto retry_cpuset;
575	return page;
576
577err:
578	mpol_cond_put(mpol);
579	return NULL;
580}
581
582static void update_and_free_page(struct hstate *h, struct page *page)
583{
584	int i;
585
586	VM_BUG_ON(h->order >= MAX_ORDER);
587
588	h->nr_huge_pages--;
589	h->nr_huge_pages_node[page_to_nid(page)]--;
590	for (i = 0; i < pages_per_huge_page(h); i++) {
591		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592				1 << PG_referenced | 1 << PG_dirty |
593				1 << PG_active | 1 << PG_reserved |
594				1 << PG_private | 1 << PG_writeback);
595	}
596	VM_BUG_ON(hugetlb_cgroup_from_page(page));
597	set_compound_page_dtor(page, NULL);
598	set_page_refcounted(page);
599	arch_release_hugepage(page);
600	__free_pages(page, huge_page_order(h));
601}
602
603struct hstate *size_to_hstate(unsigned long size)
604{
605	struct hstate *h;
606
607	for_each_hstate(h) {
608		if (huge_page_size(h) == size)
609			return h;
610	}
611	return NULL;
612}
613
614static void free_huge_page(struct page *page)
615{
616	/*
617	 * Can't pass hstate in here because it is called from the
618	 * compound page destructor.
619	 */
620	struct hstate *h = page_hstate(page);
621	int nid = page_to_nid(page);
622	struct hugepage_subpool *spool =
623		(struct hugepage_subpool *)page_private(page);
624
625	set_page_private(page, 0);
626	page->mapping = NULL;
627	BUG_ON(page_count(page));
628	BUG_ON(page_mapcount(page));
629
630	spin_lock(&hugetlb_lock);
631	hugetlb_cgroup_uncharge_page(hstate_index(h),
632				     pages_per_huge_page(h), page);
633	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634		/* remove the page from active list */
635		list_del(&page->lru);
636		update_and_free_page(h, page);
637		h->surplus_huge_pages--;
638		h->surplus_huge_pages_node[nid]--;
639	} else {
640		arch_clear_hugepage_flags(page);
641		enqueue_huge_page(h, page);
642	}
643	spin_unlock(&hugetlb_lock);
644	hugepage_subpool_put_pages(spool, 1);
645}
646
647static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
648{
649	INIT_LIST_HEAD(&page->lru);
650	set_compound_page_dtor(page, free_huge_page);
651	spin_lock(&hugetlb_lock);
652	set_hugetlb_cgroup(page, NULL);
653	h->nr_huge_pages++;
654	h->nr_huge_pages_node[nid]++;
655	spin_unlock(&hugetlb_lock);
656	put_page(page); /* free it into the hugepage allocator */
657}
658
659static void prep_compound_gigantic_page(struct page *page, unsigned long order)
660{
661	int i;
662	int nr_pages = 1 << order;
663	struct page *p = page + 1;
664
665	/* we rely on prep_new_huge_page to set the destructor */
666	set_compound_order(page, order);
667	__SetPageHead(page);
668	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
669		__SetPageTail(p);
670		set_page_count(p, 0);
671		p->first_page = page;
672	}
673}
674
675int PageHuge(struct page *page)
676{
677	compound_page_dtor *dtor;
678
679	if (!PageCompound(page))
680		return 0;
681
682	page = compound_head(page);
683	dtor = get_compound_page_dtor(page);
684
685	return dtor == free_huge_page;
686}
687EXPORT_SYMBOL_GPL(PageHuge);
688
689static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
690{
691	struct page *page;
692
693	if (h->order >= MAX_ORDER)
694		return NULL;
695
696	page = alloc_pages_exact_node(nid,
697		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
698						__GFP_REPEAT|__GFP_NOWARN,
699		huge_page_order(h));
700	if (page) {
701		if (arch_prepare_hugepage(page)) {
702			__free_pages(page, huge_page_order(h));
703			return NULL;
704		}
705		prep_new_huge_page(h, page, nid);
706	}
707
708	return page;
709}
710
711/*
712 * common helper functions for hstate_next_node_to_{alloc|free}.
713 * We may have allocated or freed a huge page based on a different
714 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
715 * be outside of *nodes_allowed.  Ensure that we use an allowed
716 * node for alloc or free.
717 */
718static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
719{
720	nid = next_node(nid, *nodes_allowed);
721	if (nid == MAX_NUMNODES)
722		nid = first_node(*nodes_allowed);
723	VM_BUG_ON(nid >= MAX_NUMNODES);
724
725	return nid;
726}
727
728static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
729{
730	if (!node_isset(nid, *nodes_allowed))
731		nid = next_node_allowed(nid, nodes_allowed);
732	return nid;
733}
734
735/*
736 * returns the previously saved node ["this node"] from which to
737 * allocate a persistent huge page for the pool and advance the
738 * next node from which to allocate, handling wrap at end of node
739 * mask.
740 */
741static int hstate_next_node_to_alloc(struct hstate *h,
742					nodemask_t *nodes_allowed)
743{
744	int nid;
745
746	VM_BUG_ON(!nodes_allowed);
747
748	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
749	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
750
751	return nid;
752}
753
754static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
755{
756	struct page *page;
757	int start_nid;
758	int next_nid;
759	int ret = 0;
760
761	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
762	next_nid = start_nid;
763
764	do {
765		page = alloc_fresh_huge_page_node(h, next_nid);
766		if (page) {
767			ret = 1;
768			break;
769		}
770		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
771	} while (next_nid != start_nid);
772
773	if (ret)
774		count_vm_event(HTLB_BUDDY_PGALLOC);
775	else
776		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
777
778	return ret;
779}
780
781/*
782 * helper for free_pool_huge_page() - return the previously saved
783 * node ["this node"] from which to free a huge page.  Advance the
784 * next node id whether or not we find a free huge page to free so
785 * that the next attempt to free addresses the next node.
786 */
787static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
788{
789	int nid;
790
791	VM_BUG_ON(!nodes_allowed);
792
793	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
794	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
795
796	return nid;
797}
798
799/*
800 * Free huge page from pool from next node to free.
801 * Attempt to keep persistent huge pages more or less
802 * balanced over allowed nodes.
803 * Called with hugetlb_lock locked.
804 */
805static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
806							 bool acct_surplus)
807{
808	int start_nid;
809	int next_nid;
810	int ret = 0;
811
812	start_nid = hstate_next_node_to_free(h, nodes_allowed);
813	next_nid = start_nid;
814
815	do {
816		/*
817		 * If we're returning unused surplus pages, only examine
818		 * nodes with surplus pages.
819		 */
820		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
821		    !list_empty(&h->hugepage_freelists[next_nid])) {
822			struct page *page =
823				list_entry(h->hugepage_freelists[next_nid].next,
824					  struct page, lru);
825			list_del(&page->lru);
826			h->free_huge_pages--;
827			h->free_huge_pages_node[next_nid]--;
828			if (acct_surplus) {
829				h->surplus_huge_pages--;
830				h->surplus_huge_pages_node[next_nid]--;
831			}
832			update_and_free_page(h, page);
833			ret = 1;
834			break;
835		}
836		next_nid = hstate_next_node_to_free(h, nodes_allowed);
837	} while (next_nid != start_nid);
838
839	return ret;
840}
841
842static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
843{
844	struct page *page;
845	unsigned int r_nid;
846
847	if (h->order >= MAX_ORDER)
848		return NULL;
849
850	/*
851	 * Assume we will successfully allocate the surplus page to
852	 * prevent racing processes from causing the surplus to exceed
853	 * overcommit
854	 *
855	 * This however introduces a different race, where a process B
856	 * tries to grow the static hugepage pool while alloc_pages() is
857	 * called by process A. B will only examine the per-node
858	 * counters in determining if surplus huge pages can be
859	 * converted to normal huge pages in adjust_pool_surplus(). A
860	 * won't be able to increment the per-node counter, until the
861	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
862	 * no more huge pages can be converted from surplus to normal
863	 * state (and doesn't try to convert again). Thus, we have a
864	 * case where a surplus huge page exists, the pool is grown, and
865	 * the surplus huge page still exists after, even though it
866	 * should just have been converted to a normal huge page. This
867	 * does not leak memory, though, as the hugepage will be freed
868	 * once it is out of use. It also does not allow the counters to
869	 * go out of whack in adjust_pool_surplus() as we don't modify
870	 * the node values until we've gotten the hugepage and only the
871	 * per-node value is checked there.
872	 */
873	spin_lock(&hugetlb_lock);
874	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
875		spin_unlock(&hugetlb_lock);
876		return NULL;
877	} else {
878		h->nr_huge_pages++;
879		h->surplus_huge_pages++;
880	}
881	spin_unlock(&hugetlb_lock);
882
883	if (nid == NUMA_NO_NODE)
884		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
885				   __GFP_REPEAT|__GFP_NOWARN,
886				   huge_page_order(h));
887	else
888		page = alloc_pages_exact_node(nid,
889			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
890			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
891
892	if (page && arch_prepare_hugepage(page)) {
893		__free_pages(page, huge_page_order(h));
894		page = NULL;
895	}
896
897	spin_lock(&hugetlb_lock);
898	if (page) {
899		INIT_LIST_HEAD(&page->lru);
900		r_nid = page_to_nid(page);
901		set_compound_page_dtor(page, free_huge_page);
902		set_hugetlb_cgroup(page, NULL);
903		/*
904		 * We incremented the global counters already
905		 */
906		h->nr_huge_pages_node[r_nid]++;
907		h->surplus_huge_pages_node[r_nid]++;
908		__count_vm_event(HTLB_BUDDY_PGALLOC);
909	} else {
910		h->nr_huge_pages--;
911		h->surplus_huge_pages--;
912		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
913	}
914	spin_unlock(&hugetlb_lock);
915
916	return page;
917}
918
919/*
920 * This allocation function is useful in the context where vma is irrelevant.
921 * E.g. soft-offlining uses this function because it only cares physical
922 * address of error page.
923 */
924struct page *alloc_huge_page_node(struct hstate *h, int nid)
925{
926	struct page *page;
927
928	spin_lock(&hugetlb_lock);
929	page = dequeue_huge_page_node(h, nid);
930	spin_unlock(&hugetlb_lock);
931
932	if (!page)
933		page = alloc_buddy_huge_page(h, nid);
934
935	return page;
936}
937
938/*
939 * Increase the hugetlb pool such that it can accommodate a reservation
940 * of size 'delta'.
941 */
942static int gather_surplus_pages(struct hstate *h, int delta)
943{
944	struct list_head surplus_list;
945	struct page *page, *tmp;
946	int ret, i;
947	int needed, allocated;
948	bool alloc_ok = true;
949
950	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
951	if (needed <= 0) {
952		h->resv_huge_pages += delta;
953		return 0;
954	}
955
956	allocated = 0;
957	INIT_LIST_HEAD(&surplus_list);
958
959	ret = -ENOMEM;
960retry:
961	spin_unlock(&hugetlb_lock);
962	for (i = 0; i < needed; i++) {
963		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
964		if (!page) {
965			alloc_ok = false;
966			break;
967		}
968		list_add(&page->lru, &surplus_list);
969	}
970	allocated += i;
971
972	/*
973	 * After retaking hugetlb_lock, we need to recalculate 'needed'
974	 * because either resv_huge_pages or free_huge_pages may have changed.
975	 */
976	spin_lock(&hugetlb_lock);
977	needed = (h->resv_huge_pages + delta) -
978			(h->free_huge_pages + allocated);
979	if (needed > 0) {
980		if (alloc_ok)
981			goto retry;
982		/*
983		 * We were not able to allocate enough pages to
984		 * satisfy the entire reservation so we free what
985		 * we've allocated so far.
986		 */
987		goto free;
988	}
989	/*
990	 * The surplus_list now contains _at_least_ the number of extra pages
991	 * needed to accommodate the reservation.  Add the appropriate number
992	 * of pages to the hugetlb pool and free the extras back to the buddy
993	 * allocator.  Commit the entire reservation here to prevent another
994	 * process from stealing the pages as they are added to the pool but
995	 * before they are reserved.
996	 */
997	needed += allocated;
998	h->resv_huge_pages += delta;
999	ret = 0;
1000
1001	/* Free the needed pages to the hugetlb pool */
1002	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1003		if ((--needed) < 0)
1004			break;
1005		/*
1006		 * This page is now managed by the hugetlb allocator and has
1007		 * no users -- drop the buddy allocator's reference.
1008		 */
1009		put_page_testzero(page);
1010		VM_BUG_ON(page_count(page));
1011		enqueue_huge_page(h, page);
1012	}
1013free:
1014	spin_unlock(&hugetlb_lock);
1015
1016	/* Free unnecessary surplus pages to the buddy allocator */
1017	if (!list_empty(&surplus_list)) {
1018		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1019			put_page(page);
1020		}
1021	}
1022	spin_lock(&hugetlb_lock);
1023
1024	return ret;
1025}
1026
1027/*
1028 * When releasing a hugetlb pool reservation, any surplus pages that were
1029 * allocated to satisfy the reservation must be explicitly freed if they were
1030 * never used.
1031 * Called with hugetlb_lock held.
1032 */
1033static void return_unused_surplus_pages(struct hstate *h,
1034					unsigned long unused_resv_pages)
1035{
1036	unsigned long nr_pages;
1037
1038	/* Uncommit the reservation */
1039	h->resv_huge_pages -= unused_resv_pages;
1040
1041	/* Cannot return gigantic pages currently */
1042	if (h->order >= MAX_ORDER)
1043		return;
1044
1045	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1046
1047	/*
1048	 * We want to release as many surplus pages as possible, spread
1049	 * evenly across all nodes with memory. Iterate across these nodes
1050	 * until we can no longer free unreserved surplus pages. This occurs
1051	 * when the nodes with surplus pages have no free pages.
1052	 * free_pool_huge_page() will balance the the freed pages across the
1053	 * on-line nodes with memory and will handle the hstate accounting.
1054	 */
1055	while (nr_pages--) {
1056		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1057			break;
1058	}
1059}
1060
1061/*
1062 * Determine if the huge page at addr within the vma has an associated
1063 * reservation.  Where it does not we will need to logically increase
1064 * reservation and actually increase subpool usage before an allocation
1065 * can occur.  Where any new reservation would be required the
1066 * reservation change is prepared, but not committed.  Once the page
1067 * has been allocated from the subpool and instantiated the change should
1068 * be committed via vma_commit_reservation.  No action is required on
1069 * failure.
1070 */
1071static long vma_needs_reservation(struct hstate *h,
1072			struct vm_area_struct *vma, unsigned long addr)
1073{
1074	struct address_space *mapping = vma->vm_file->f_mapping;
1075	struct inode *inode = mapping->host;
1076
1077	if (vma->vm_flags & VM_MAYSHARE) {
1078		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1079		return region_chg(&inode->i_mapping->private_list,
1080							idx, idx + 1);
1081
1082	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1083		return 1;
1084
1085	} else  {
1086		long err;
1087		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1088		struct resv_map *reservations = vma_resv_map(vma);
1089
1090		err = region_chg(&reservations->regions, idx, idx + 1);
1091		if (err < 0)
1092			return err;
1093		return 0;
1094	}
1095}
1096static void vma_commit_reservation(struct hstate *h,
1097			struct vm_area_struct *vma, unsigned long addr)
1098{
1099	struct address_space *mapping = vma->vm_file->f_mapping;
1100	struct inode *inode = mapping->host;
1101
1102	if (vma->vm_flags & VM_MAYSHARE) {
1103		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1104		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1105
1106	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108		struct resv_map *reservations = vma_resv_map(vma);
1109
1110		/* Mark this page used in the map. */
1111		region_add(&reservations->regions, idx, idx + 1);
1112	}
1113}
1114
1115static struct page *alloc_huge_page(struct vm_area_struct *vma,
1116				    unsigned long addr, int avoid_reserve)
1117{
1118	struct hugepage_subpool *spool = subpool_vma(vma);
1119	struct hstate *h = hstate_vma(vma);
1120	struct page *page;
1121	long chg;
1122	int ret, idx;
1123	struct hugetlb_cgroup *h_cg;
1124
1125	idx = hstate_index(h);
1126	/*
1127	 * Processes that did not create the mapping will have no
1128	 * reserves and will not have accounted against subpool
1129	 * limit. Check that the subpool limit can be made before
1130	 * satisfying the allocation MAP_NORESERVE mappings may also
1131	 * need pages and subpool limit allocated allocated if no reserve
1132	 * mapping overlaps.
1133	 */
1134	chg = vma_needs_reservation(h, vma, addr);
1135	if (chg < 0)
1136		return ERR_PTR(-ENOMEM);
1137	if (chg)
1138		if (hugepage_subpool_get_pages(spool, chg))
1139			return ERR_PTR(-ENOSPC);
1140
1141	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1142	if (ret) {
1143		hugepage_subpool_put_pages(spool, chg);
1144		return ERR_PTR(-ENOSPC);
1145	}
1146	spin_lock(&hugetlb_lock);
1147	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1148	if (page) {
1149		/* update page cgroup details */
1150		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1151					     h_cg, page);
1152		spin_unlock(&hugetlb_lock);
1153	} else {
1154		spin_unlock(&hugetlb_lock);
1155		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1156		if (!page) {
1157			hugetlb_cgroup_uncharge_cgroup(idx,
1158						       pages_per_huge_page(h),
1159						       h_cg);
1160			hugepage_subpool_put_pages(spool, chg);
1161			return ERR_PTR(-ENOSPC);
1162		}
1163		spin_lock(&hugetlb_lock);
1164		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1165					     h_cg, page);
1166		list_move(&page->lru, &h->hugepage_activelist);
1167		spin_unlock(&hugetlb_lock);
1168	}
1169
1170	set_page_private(page, (unsigned long)spool);
1171
1172	vma_commit_reservation(h, vma, addr);
1173	return page;
1174}
1175
1176int __weak alloc_bootmem_huge_page(struct hstate *h)
1177{
1178	struct huge_bootmem_page *m;
1179	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1180
1181	while (nr_nodes) {
1182		void *addr;
1183
1184		addr = __alloc_bootmem_node_nopanic(
1185				NODE_DATA(hstate_next_node_to_alloc(h,
1186						&node_states[N_HIGH_MEMORY])),
1187				huge_page_size(h), huge_page_size(h), 0);
1188
1189		if (addr) {
1190			/*
1191			 * Use the beginning of the huge page to store the
1192			 * huge_bootmem_page struct (until gather_bootmem
1193			 * puts them into the mem_map).
1194			 */
1195			m = addr;
1196			goto found;
1197		}
1198		nr_nodes--;
1199	}
1200	return 0;
1201
1202found:
1203	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1204	/* Put them into a private list first because mem_map is not up yet */
1205	list_add(&m->list, &huge_boot_pages);
1206	m->hstate = h;
1207	return 1;
1208}
1209
1210static void prep_compound_huge_page(struct page *page, int order)
1211{
1212	if (unlikely(order > (MAX_ORDER - 1)))
1213		prep_compound_gigantic_page(page, order);
1214	else
1215		prep_compound_page(page, order);
1216}
1217
1218/* Put bootmem huge pages into the standard lists after mem_map is up */
1219static void __init gather_bootmem_prealloc(void)
1220{
1221	struct huge_bootmem_page *m;
1222
1223	list_for_each_entry(m, &huge_boot_pages, list) {
1224		struct hstate *h = m->hstate;
1225		struct page *page;
1226
1227#ifdef CONFIG_HIGHMEM
1228		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1229		free_bootmem_late((unsigned long)m,
1230				  sizeof(struct huge_bootmem_page));
1231#else
1232		page = virt_to_page(m);
1233#endif
1234		__ClearPageReserved(page);
1235		WARN_ON(page_count(page) != 1);
1236		prep_compound_huge_page(page, h->order);
1237		prep_new_huge_page(h, page, page_to_nid(page));
1238		/*
1239		 * If we had gigantic hugepages allocated at boot time, we need
1240		 * to restore the 'stolen' pages to totalram_pages in order to
1241		 * fix confusing memory reports from free(1) and another
1242		 * side-effects, like CommitLimit going negative.
1243		 */
1244		if (h->order > (MAX_ORDER - 1))
1245			totalram_pages += 1 << h->order;
1246	}
1247}
1248
1249static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1250{
1251	unsigned long i;
1252
1253	for (i = 0; i < h->max_huge_pages; ++i) {
1254		if (h->order >= MAX_ORDER) {
1255			if (!alloc_bootmem_huge_page(h))
1256				break;
1257		} else if (!alloc_fresh_huge_page(h,
1258					 &node_states[N_HIGH_MEMORY]))
1259			break;
1260	}
1261	h->max_huge_pages = i;
1262}
1263
1264static void __init hugetlb_init_hstates(void)
1265{
1266	struct hstate *h;
1267
1268	for_each_hstate(h) {
1269		/* oversize hugepages were init'ed in early boot */
1270		if (h->order < MAX_ORDER)
1271			hugetlb_hstate_alloc_pages(h);
1272	}
1273}
1274
1275static char * __init memfmt(char *buf, unsigned long n)
1276{
1277	if (n >= (1UL << 30))
1278		sprintf(buf, "%lu GB", n >> 30);
1279	else if (n >= (1UL << 20))
1280		sprintf(buf, "%lu MB", n >> 20);
1281	else
1282		sprintf(buf, "%lu KB", n >> 10);
1283	return buf;
1284}
1285
1286static void __init report_hugepages(void)
1287{
1288	struct hstate *h;
1289
1290	for_each_hstate(h) {
1291		char buf[32];
1292		printk(KERN_INFO "HugeTLB registered %s page size, "
1293				 "pre-allocated %ld pages\n",
1294			memfmt(buf, huge_page_size(h)),
1295			h->free_huge_pages);
1296	}
1297}
1298
1299#ifdef CONFIG_HIGHMEM
1300static void try_to_free_low(struct hstate *h, unsigned long count,
1301						nodemask_t *nodes_allowed)
1302{
1303	int i;
1304
1305	if (h->order >= MAX_ORDER)
1306		return;
1307
1308	for_each_node_mask(i, *nodes_allowed) {
1309		struct page *page, *next;
1310		struct list_head *freel = &h->hugepage_freelists[i];
1311		list_for_each_entry_safe(page, next, freel, lru) {
1312			if (count >= h->nr_huge_pages)
1313				return;
1314			if (PageHighMem(page))
1315				continue;
1316			list_del(&page->lru);
1317			update_and_free_page(h, page);
1318			h->free_huge_pages--;
1319			h->free_huge_pages_node[page_to_nid(page)]--;
1320		}
1321	}
1322}
1323#else
1324static inline void try_to_free_low(struct hstate *h, unsigned long count,
1325						nodemask_t *nodes_allowed)
1326{
1327}
1328#endif
1329
1330/*
1331 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1332 * balanced by operating on them in a round-robin fashion.
1333 * Returns 1 if an adjustment was made.
1334 */
1335static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1336				int delta)
1337{
1338	int start_nid, next_nid;
1339	int ret = 0;
1340
1341	VM_BUG_ON(delta != -1 && delta != 1);
1342
1343	if (delta < 0)
1344		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1345	else
1346		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1347	next_nid = start_nid;
1348
1349	do {
1350		int nid = next_nid;
1351		if (delta < 0)  {
1352			/*
1353			 * To shrink on this node, there must be a surplus page
1354			 */
1355			if (!h->surplus_huge_pages_node[nid]) {
1356				next_nid = hstate_next_node_to_alloc(h,
1357								nodes_allowed);
1358				continue;
1359			}
1360		}
1361		if (delta > 0) {
1362			/*
1363			 * Surplus cannot exceed the total number of pages
1364			 */
1365			if (h->surplus_huge_pages_node[nid] >=
1366						h->nr_huge_pages_node[nid]) {
1367				next_nid = hstate_next_node_to_free(h,
1368								nodes_allowed);
1369				continue;
1370			}
1371		}
1372
1373		h->surplus_huge_pages += delta;
1374		h->surplus_huge_pages_node[nid] += delta;
1375		ret = 1;
1376		break;
1377	} while (next_nid != start_nid);
1378
1379	return ret;
1380}
1381
1382#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1383static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1384						nodemask_t *nodes_allowed)
1385{
1386	unsigned long min_count, ret;
1387
1388	if (h->order >= MAX_ORDER)
1389		return h->max_huge_pages;
1390
1391	/*
1392	 * Increase the pool size
1393	 * First take pages out of surplus state.  Then make up the
1394	 * remaining difference by allocating fresh huge pages.
1395	 *
1396	 * We might race with alloc_buddy_huge_page() here and be unable
1397	 * to convert a surplus huge page to a normal huge page. That is
1398	 * not critical, though, it just means the overall size of the
1399	 * pool might be one hugepage larger than it needs to be, but
1400	 * within all the constraints specified by the sysctls.
1401	 */
1402	spin_lock(&hugetlb_lock);
1403	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1404		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1405			break;
1406	}
1407
1408	while (count > persistent_huge_pages(h)) {
1409		/*
1410		 * If this allocation races such that we no longer need the
1411		 * page, free_huge_page will handle it by freeing the page
1412		 * and reducing the surplus.
1413		 */
1414		spin_unlock(&hugetlb_lock);
1415		ret = alloc_fresh_huge_page(h, nodes_allowed);
1416		spin_lock(&hugetlb_lock);
1417		if (!ret)
1418			goto out;
1419
1420		/* Bail for signals. Probably ctrl-c from user */
1421		if (signal_pending(current))
1422			goto out;
1423	}
1424
1425	/*
1426	 * Decrease the pool size
1427	 * First return free pages to the buddy allocator (being careful
1428	 * to keep enough around to satisfy reservations).  Then place
1429	 * pages into surplus state as needed so the pool will shrink
1430	 * to the desired size as pages become free.
1431	 *
1432	 * By placing pages into the surplus state independent of the
1433	 * overcommit value, we are allowing the surplus pool size to
1434	 * exceed overcommit. There are few sane options here. Since
1435	 * alloc_buddy_huge_page() is checking the global counter,
1436	 * though, we'll note that we're not allowed to exceed surplus
1437	 * and won't grow the pool anywhere else. Not until one of the
1438	 * sysctls are changed, or the surplus pages go out of use.
1439	 */
1440	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1441	min_count = max(count, min_count);
1442	try_to_free_low(h, min_count, nodes_allowed);
1443	while (min_count < persistent_huge_pages(h)) {
1444		if (!free_pool_huge_page(h, nodes_allowed, 0))
1445			break;
1446	}
1447	while (count < persistent_huge_pages(h)) {
1448		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1449			break;
1450	}
1451out:
1452	ret = persistent_huge_pages(h);
1453	spin_unlock(&hugetlb_lock);
1454	return ret;
1455}
1456
1457#define HSTATE_ATTR_RO(_name) \
1458	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1459
1460#define HSTATE_ATTR(_name) \
1461	static struct kobj_attribute _name##_attr = \
1462		__ATTR(_name, 0644, _name##_show, _name##_store)
1463
1464static struct kobject *hugepages_kobj;
1465static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1466
1467static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1468
1469static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1470{
1471	int i;
1472
1473	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1474		if (hstate_kobjs[i] == kobj) {
1475			if (nidp)
1476				*nidp = NUMA_NO_NODE;
1477			return &hstates[i];
1478		}
1479
1480	return kobj_to_node_hstate(kobj, nidp);
1481}
1482
1483static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1484					struct kobj_attribute *attr, char *buf)
1485{
1486	struct hstate *h;
1487	unsigned long nr_huge_pages;
1488	int nid;
1489
1490	h = kobj_to_hstate(kobj, &nid);
1491	if (nid == NUMA_NO_NODE)
1492		nr_huge_pages = h->nr_huge_pages;
1493	else
1494		nr_huge_pages = h->nr_huge_pages_node[nid];
1495
1496	return sprintf(buf, "%lu\n", nr_huge_pages);
1497}
1498
1499static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1500			struct kobject *kobj, struct kobj_attribute *attr,
1501			const char *buf, size_t len)
1502{
1503	int err;
1504	int nid;
1505	unsigned long count;
1506	struct hstate *h;
1507	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1508
1509	err = strict_strtoul(buf, 10, &count);
1510	if (err)
1511		goto out;
1512
1513	h = kobj_to_hstate(kobj, &nid);
1514	if (h->order >= MAX_ORDER) {
1515		err = -EINVAL;
1516		goto out;
1517	}
1518
1519	if (nid == NUMA_NO_NODE) {
1520		/*
1521		 * global hstate attribute
1522		 */
1523		if (!(obey_mempolicy &&
1524				init_nodemask_of_mempolicy(nodes_allowed))) {
1525			NODEMASK_FREE(nodes_allowed);
1526			nodes_allowed = &node_states[N_HIGH_MEMORY];
1527		}
1528	} else if (nodes_allowed) {
1529		/*
1530		 * per node hstate attribute: adjust count to global,
1531		 * but restrict alloc/free to the specified node.
1532		 */
1533		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1534		init_nodemask_of_node(nodes_allowed, nid);
1535	} else
1536		nodes_allowed = &node_states[N_HIGH_MEMORY];
1537
1538	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1539
1540	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1541		NODEMASK_FREE(nodes_allowed);
1542
1543	return len;
1544out:
1545	NODEMASK_FREE(nodes_allowed);
1546	return err;
1547}
1548
1549static ssize_t nr_hugepages_show(struct kobject *kobj,
1550				       struct kobj_attribute *attr, char *buf)
1551{
1552	return nr_hugepages_show_common(kobj, attr, buf);
1553}
1554
1555static ssize_t nr_hugepages_store(struct kobject *kobj,
1556	       struct kobj_attribute *attr, const char *buf, size_t len)
1557{
1558	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1559}
1560HSTATE_ATTR(nr_hugepages);
1561
1562#ifdef CONFIG_NUMA
1563
1564/*
1565 * hstate attribute for optionally mempolicy-based constraint on persistent
1566 * huge page alloc/free.
1567 */
1568static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1569				       struct kobj_attribute *attr, char *buf)
1570{
1571	return nr_hugepages_show_common(kobj, attr, buf);
1572}
1573
1574static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1575	       struct kobj_attribute *attr, const char *buf, size_t len)
1576{
1577	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1578}
1579HSTATE_ATTR(nr_hugepages_mempolicy);
1580#endif
1581
1582
1583static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1584					struct kobj_attribute *attr, char *buf)
1585{
1586	struct hstate *h = kobj_to_hstate(kobj, NULL);
1587	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1588}
1589
1590static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1591		struct kobj_attribute *attr, const char *buf, size_t count)
1592{
1593	int err;
1594	unsigned long input;
1595	struct hstate *h = kobj_to_hstate(kobj, NULL);
1596
1597	if (h->order >= MAX_ORDER)
1598		return -EINVAL;
1599
1600	err = strict_strtoul(buf, 10, &input);
1601	if (err)
1602		return err;
1603
1604	spin_lock(&hugetlb_lock);
1605	h->nr_overcommit_huge_pages = input;
1606	spin_unlock(&hugetlb_lock);
1607
1608	return count;
1609}
1610HSTATE_ATTR(nr_overcommit_hugepages);
1611
1612static ssize_t free_hugepages_show(struct kobject *kobj,
1613					struct kobj_attribute *attr, char *buf)
1614{
1615	struct hstate *h;
1616	unsigned long free_huge_pages;
1617	int nid;
1618
1619	h = kobj_to_hstate(kobj, &nid);
1620	if (nid == NUMA_NO_NODE)
1621		free_huge_pages = h->free_huge_pages;
1622	else
1623		free_huge_pages = h->free_huge_pages_node[nid];
1624
1625	return sprintf(buf, "%lu\n", free_huge_pages);
1626}
1627HSTATE_ATTR_RO(free_hugepages);
1628
1629static ssize_t resv_hugepages_show(struct kobject *kobj,
1630					struct kobj_attribute *attr, char *buf)
1631{
1632	struct hstate *h = kobj_to_hstate(kobj, NULL);
1633	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1634}
1635HSTATE_ATTR_RO(resv_hugepages);
1636
1637static ssize_t surplus_hugepages_show(struct kobject *kobj,
1638					struct kobj_attribute *attr, char *buf)
1639{
1640	struct hstate *h;
1641	unsigned long surplus_huge_pages;
1642	int nid;
1643
1644	h = kobj_to_hstate(kobj, &nid);
1645	if (nid == NUMA_NO_NODE)
1646		surplus_huge_pages = h->surplus_huge_pages;
1647	else
1648		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1649
1650	return sprintf(buf, "%lu\n", surplus_huge_pages);
1651}
1652HSTATE_ATTR_RO(surplus_hugepages);
1653
1654static struct attribute *hstate_attrs[] = {
1655	&nr_hugepages_attr.attr,
1656	&nr_overcommit_hugepages_attr.attr,
1657	&free_hugepages_attr.attr,
1658	&resv_hugepages_attr.attr,
1659	&surplus_hugepages_attr.attr,
1660#ifdef CONFIG_NUMA
1661	&nr_hugepages_mempolicy_attr.attr,
1662#endif
1663	NULL,
1664};
1665
1666static struct attribute_group hstate_attr_group = {
1667	.attrs = hstate_attrs,
1668};
1669
1670static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1671				    struct kobject **hstate_kobjs,
1672				    struct attribute_group *hstate_attr_group)
1673{
1674	int retval;
1675	int hi = hstate_index(h);
1676
1677	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1678	if (!hstate_kobjs[hi])
1679		return -ENOMEM;
1680
1681	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1682	if (retval)
1683		kobject_put(hstate_kobjs[hi]);
1684
1685	return retval;
1686}
1687
1688static void __init hugetlb_sysfs_init(void)
1689{
1690	struct hstate *h;
1691	int err;
1692
1693	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1694	if (!hugepages_kobj)
1695		return;
1696
1697	for_each_hstate(h) {
1698		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1699					 hstate_kobjs, &hstate_attr_group);
1700		if (err)
1701			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1702								h->name);
1703	}
1704}
1705
1706#ifdef CONFIG_NUMA
1707
1708/*
1709 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1710 * with node devices in node_devices[] using a parallel array.  The array
1711 * index of a node device or _hstate == node id.
1712 * This is here to avoid any static dependency of the node device driver, in
1713 * the base kernel, on the hugetlb module.
1714 */
1715struct node_hstate {
1716	struct kobject		*hugepages_kobj;
1717	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1718};
1719struct node_hstate node_hstates[MAX_NUMNODES];
1720
1721/*
1722 * A subset of global hstate attributes for node devices
1723 */
1724static struct attribute *per_node_hstate_attrs[] = {
1725	&nr_hugepages_attr.attr,
1726	&free_hugepages_attr.attr,
1727	&surplus_hugepages_attr.attr,
1728	NULL,
1729};
1730
1731static struct attribute_group per_node_hstate_attr_group = {
1732	.attrs = per_node_hstate_attrs,
1733};
1734
1735/*
1736 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1737 * Returns node id via non-NULL nidp.
1738 */
1739static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1740{
1741	int nid;
1742
1743	for (nid = 0; nid < nr_node_ids; nid++) {
1744		struct node_hstate *nhs = &node_hstates[nid];
1745		int i;
1746		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1747			if (nhs->hstate_kobjs[i] == kobj) {
1748				if (nidp)
1749					*nidp = nid;
1750				return &hstates[i];
1751			}
1752	}
1753
1754	BUG();
1755	return NULL;
1756}
1757
1758/*
1759 * Unregister hstate attributes from a single node device.
1760 * No-op if no hstate attributes attached.
1761 */
1762void hugetlb_unregister_node(struct node *node)
1763{
1764	struct hstate *h;
1765	struct node_hstate *nhs = &node_hstates[node->dev.id];
1766
1767	if (!nhs->hugepages_kobj)
1768		return;		/* no hstate attributes */
1769
1770	for_each_hstate(h) {
1771		int idx = hstate_index(h);
1772		if (nhs->hstate_kobjs[idx]) {
1773			kobject_put(nhs->hstate_kobjs[idx]);
1774			nhs->hstate_kobjs[idx] = NULL;
1775		}
1776	}
1777
1778	kobject_put(nhs->hugepages_kobj);
1779	nhs->hugepages_kobj = NULL;
1780}
1781
1782/*
1783 * hugetlb module exit:  unregister hstate attributes from node devices
1784 * that have them.
1785 */
1786static void hugetlb_unregister_all_nodes(void)
1787{
1788	int nid;
1789
1790	/*
1791	 * disable node device registrations.
1792	 */
1793	register_hugetlbfs_with_node(NULL, NULL);
1794
1795	/*
1796	 * remove hstate attributes from any nodes that have them.
1797	 */
1798	for (nid = 0; nid < nr_node_ids; nid++)
1799		hugetlb_unregister_node(&node_devices[nid]);
1800}
1801
1802/*
1803 * Register hstate attributes for a single node device.
1804 * No-op if attributes already registered.
1805 */
1806void hugetlb_register_node(struct node *node)
1807{
1808	struct hstate *h;
1809	struct node_hstate *nhs = &node_hstates[node->dev.id];
1810	int err;
1811
1812	if (nhs->hugepages_kobj)
1813		return;		/* already allocated */
1814
1815	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1816							&node->dev.kobj);
1817	if (!nhs->hugepages_kobj)
1818		return;
1819
1820	for_each_hstate(h) {
1821		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1822						nhs->hstate_kobjs,
1823						&per_node_hstate_attr_group);
1824		if (err) {
1825			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1826					" for node %d\n",
1827						h->name, node->dev.id);
1828			hugetlb_unregister_node(node);
1829			break;
1830		}
1831	}
1832}
1833
1834/*
1835 * hugetlb init time:  register hstate attributes for all registered node
1836 * devices of nodes that have memory.  All on-line nodes should have
1837 * registered their associated device by this time.
1838 */
1839static void hugetlb_register_all_nodes(void)
1840{
1841	int nid;
1842
1843	for_each_node_state(nid, N_HIGH_MEMORY) {
1844		struct node *node = &node_devices[nid];
1845		if (node->dev.id == nid)
1846			hugetlb_register_node(node);
1847	}
1848
1849	/*
1850	 * Let the node device driver know we're here so it can
1851	 * [un]register hstate attributes on node hotplug.
1852	 */
1853	register_hugetlbfs_with_node(hugetlb_register_node,
1854				     hugetlb_unregister_node);
1855}
1856#else	/* !CONFIG_NUMA */
1857
1858static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1859{
1860	BUG();
1861	if (nidp)
1862		*nidp = -1;
1863	return NULL;
1864}
1865
1866static void hugetlb_unregister_all_nodes(void) { }
1867
1868static void hugetlb_register_all_nodes(void) { }
1869
1870#endif
1871
1872static void __exit hugetlb_exit(void)
1873{
1874	struct hstate *h;
1875
1876	hugetlb_unregister_all_nodes();
1877
1878	for_each_hstate(h) {
1879		kobject_put(hstate_kobjs[hstate_index(h)]);
1880	}
1881
1882	kobject_put(hugepages_kobj);
1883}
1884module_exit(hugetlb_exit);
1885
1886static int __init hugetlb_init(void)
1887{
1888	/* Some platform decide whether they support huge pages at boot
1889	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1890	 * there is no such support
1891	 */
1892	if (HPAGE_SHIFT == 0)
1893		return 0;
1894
1895	if (!size_to_hstate(default_hstate_size)) {
1896		default_hstate_size = HPAGE_SIZE;
1897		if (!size_to_hstate(default_hstate_size))
1898			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1899	}
1900	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1901	if (default_hstate_max_huge_pages)
1902		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1903
1904	hugetlb_init_hstates();
1905
1906	gather_bootmem_prealloc();
1907
1908	report_hugepages();
1909
1910	hugetlb_sysfs_init();
1911
1912	hugetlb_register_all_nodes();
1913
1914	return 0;
1915}
1916module_init(hugetlb_init);
1917
1918/* Should be called on processing a hugepagesz=... option */
1919void __init hugetlb_add_hstate(unsigned order)
1920{
1921	struct hstate *h;
1922	unsigned long i;
1923
1924	if (size_to_hstate(PAGE_SIZE << order)) {
1925		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1926		return;
1927	}
1928	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1929	BUG_ON(order == 0);
1930	h = &hstates[hugetlb_max_hstate++];
1931	h->order = order;
1932	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1933	h->nr_huge_pages = 0;
1934	h->free_huge_pages = 0;
1935	for (i = 0; i < MAX_NUMNODES; ++i)
1936		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1937	INIT_LIST_HEAD(&h->hugepage_activelist);
1938	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1939	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1940	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1941					huge_page_size(h)/1024);
1942	/*
1943	 * Add cgroup control files only if the huge page consists
1944	 * of more than two normal pages. This is because we use
1945	 * page[2].lru.next for storing cgoup details.
1946	 */
1947	if (order >= HUGETLB_CGROUP_MIN_ORDER)
1948		hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1949
1950	parsed_hstate = h;
1951}
1952
1953static int __init hugetlb_nrpages_setup(char *s)
1954{
1955	unsigned long *mhp;
1956	static unsigned long *last_mhp;
1957
1958	/*
1959	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1960	 * so this hugepages= parameter goes to the "default hstate".
1961	 */
1962	if (!hugetlb_max_hstate)
1963		mhp = &default_hstate_max_huge_pages;
1964	else
1965		mhp = &parsed_hstate->max_huge_pages;
1966
1967	if (mhp == last_mhp) {
1968		printk(KERN_WARNING "hugepages= specified twice without "
1969			"interleaving hugepagesz=, ignoring\n");
1970		return 1;
1971	}
1972
1973	if (sscanf(s, "%lu", mhp) <= 0)
1974		*mhp = 0;
1975
1976	/*
1977	 * Global state is always initialized later in hugetlb_init.
1978	 * But we need to allocate >= MAX_ORDER hstates here early to still
1979	 * use the bootmem allocator.
1980	 */
1981	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1982		hugetlb_hstate_alloc_pages(parsed_hstate);
1983
1984	last_mhp = mhp;
1985
1986	return 1;
1987}
1988__setup("hugepages=", hugetlb_nrpages_setup);
1989
1990static int __init hugetlb_default_setup(char *s)
1991{
1992	default_hstate_size = memparse(s, &s);
1993	return 1;
1994}
1995__setup("default_hugepagesz=", hugetlb_default_setup);
1996
1997static unsigned int cpuset_mems_nr(unsigned int *array)
1998{
1999	int node;
2000	unsigned int nr = 0;
2001
2002	for_each_node_mask(node, cpuset_current_mems_allowed)
2003		nr += array[node];
2004
2005	return nr;
2006}
2007
2008#ifdef CONFIG_SYSCTL
2009static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2010			 struct ctl_table *table, int write,
2011			 void __user *buffer, size_t *length, loff_t *ppos)
2012{
2013	struct hstate *h = &default_hstate;
2014	unsigned long tmp;
2015	int ret;
2016
2017	tmp = h->max_huge_pages;
2018
2019	if (write && h->order >= MAX_ORDER)
2020		return -EINVAL;
2021
2022	table->data = &tmp;
2023	table->maxlen = sizeof(unsigned long);
2024	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2025	if (ret)
2026		goto out;
2027
2028	if (write) {
2029		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2030						GFP_KERNEL | __GFP_NORETRY);
2031		if (!(obey_mempolicy &&
2032			       init_nodemask_of_mempolicy(nodes_allowed))) {
2033			NODEMASK_FREE(nodes_allowed);
2034			nodes_allowed = &node_states[N_HIGH_MEMORY];
2035		}
2036		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2037
2038		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2039			NODEMASK_FREE(nodes_allowed);
2040	}
2041out:
2042	return ret;
2043}
2044
2045int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2046			  void __user *buffer, size_t *length, loff_t *ppos)
2047{
2048
2049	return hugetlb_sysctl_handler_common(false, table, write,
2050							buffer, length, ppos);
2051}
2052
2053#ifdef CONFIG_NUMA
2054int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2055			  void __user *buffer, size_t *length, loff_t *ppos)
2056{
2057	return hugetlb_sysctl_handler_common(true, table, write,
2058							buffer, length, ppos);
2059}
2060#endif /* CONFIG_NUMA */
2061
2062int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2063			void __user *buffer,
2064			size_t *length, loff_t *ppos)
2065{
2066	proc_dointvec(table, write, buffer, length, ppos);
2067	if (hugepages_treat_as_movable)
2068		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2069	else
2070		htlb_alloc_mask = GFP_HIGHUSER;
2071	return 0;
2072}
2073
2074int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2075			void __user *buffer,
2076			size_t *length, loff_t *ppos)
2077{
2078	struct hstate *h = &default_hstate;
2079	unsigned long tmp;
2080	int ret;
2081
2082	tmp = h->nr_overcommit_huge_pages;
2083
2084	if (write && h->order >= MAX_ORDER)
2085		return -EINVAL;
2086
2087	table->data = &tmp;
2088	table->maxlen = sizeof(unsigned long);
2089	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2090	if (ret)
2091		goto out;
2092
2093	if (write) {
2094		spin_lock(&hugetlb_lock);
2095		h->nr_overcommit_huge_pages = tmp;
2096		spin_unlock(&hugetlb_lock);
2097	}
2098out:
2099	return ret;
2100}
2101
2102#endif /* CONFIG_SYSCTL */
2103
2104void hugetlb_report_meminfo(struct seq_file *m)
2105{
2106	struct hstate *h = &default_hstate;
2107	seq_printf(m,
2108			"HugePages_Total:   %5lu\n"
2109			"HugePages_Free:    %5lu\n"
2110			"HugePages_Rsvd:    %5lu\n"
2111			"HugePages_Surp:    %5lu\n"
2112			"Hugepagesize:   %8lu kB\n",
2113			h->nr_huge_pages,
2114			h->free_huge_pages,
2115			h->resv_huge_pages,
2116			h->surplus_huge_pages,
2117			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2118}
2119
2120int hugetlb_report_node_meminfo(int nid, char *buf)
2121{
2122	struct hstate *h = &default_hstate;
2123	return sprintf(buf,
2124		"Node %d HugePages_Total: %5u\n"
2125		"Node %d HugePages_Free:  %5u\n"
2126		"Node %d HugePages_Surp:  %5u\n",
2127		nid, h->nr_huge_pages_node[nid],
2128		nid, h->free_huge_pages_node[nid],
2129		nid, h->surplus_huge_pages_node[nid]);
2130}
2131
2132/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2133unsigned long hugetlb_total_pages(void)
2134{
2135	struct hstate *h = &default_hstate;
2136	return h->nr_huge_pages * pages_per_huge_page(h);
2137}
2138
2139static int hugetlb_acct_memory(struct hstate *h, long delta)
2140{
2141	int ret = -ENOMEM;
2142
2143	spin_lock(&hugetlb_lock);
2144	/*
2145	 * When cpuset is configured, it breaks the strict hugetlb page
2146	 * reservation as the accounting is done on a global variable. Such
2147	 * reservation is completely rubbish in the presence of cpuset because
2148	 * the reservation is not checked against page availability for the
2149	 * current cpuset. Application can still potentially OOM'ed by kernel
2150	 * with lack of free htlb page in cpuset that the task is in.
2151	 * Attempt to enforce strict accounting with cpuset is almost
2152	 * impossible (or too ugly) because cpuset is too fluid that
2153	 * task or memory node can be dynamically moved between cpusets.
2154	 *
2155	 * The change of semantics for shared hugetlb mapping with cpuset is
2156	 * undesirable. However, in order to preserve some of the semantics,
2157	 * we fall back to check against current free page availability as
2158	 * a best attempt and hopefully to minimize the impact of changing
2159	 * semantics that cpuset has.
2160	 */
2161	if (delta > 0) {
2162		if (gather_surplus_pages(h, delta) < 0)
2163			goto out;
2164
2165		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2166			return_unused_surplus_pages(h, delta);
2167			goto out;
2168		}
2169	}
2170
2171	ret = 0;
2172	if (delta < 0)
2173		return_unused_surplus_pages(h, (unsigned long) -delta);
2174
2175out:
2176	spin_unlock(&hugetlb_lock);
2177	return ret;
2178}
2179
2180static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2181{
2182	struct resv_map *reservations = vma_resv_map(vma);
2183
2184	/*
2185	 * This new VMA should share its siblings reservation map if present.
2186	 * The VMA will only ever have a valid reservation map pointer where
2187	 * it is being copied for another still existing VMA.  As that VMA
2188	 * has a reference to the reservation map it cannot disappear until
2189	 * after this open call completes.  It is therefore safe to take a
2190	 * new reference here without additional locking.
2191	 */
2192	if (reservations)
2193		kref_get(&reservations->refs);
2194}
2195
2196static void resv_map_put(struct vm_area_struct *vma)
2197{
2198	struct resv_map *reservations = vma_resv_map(vma);
2199
2200	if (!reservations)
2201		return;
2202	kref_put(&reservations->refs, resv_map_release);
2203}
2204
2205static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2206{
2207	struct hstate *h = hstate_vma(vma);
2208	struct resv_map *reservations = vma_resv_map(vma);
2209	struct hugepage_subpool *spool = subpool_vma(vma);
2210	unsigned long reserve;
2211	unsigned long start;
2212	unsigned long end;
2213
2214	if (reservations) {
2215		start = vma_hugecache_offset(h, vma, vma->vm_start);
2216		end = vma_hugecache_offset(h, vma, vma->vm_end);
2217
2218		reserve = (end - start) -
2219			region_count(&reservations->regions, start, end);
2220
2221		resv_map_put(vma);
2222
2223		if (reserve) {
2224			hugetlb_acct_memory(h, -reserve);
2225			hugepage_subpool_put_pages(spool, reserve);
2226		}
2227	}
2228}
2229
2230/*
2231 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2232 * handle_mm_fault() to try to instantiate regular-sized pages in the
2233 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2234 * this far.
2235 */
2236static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2237{
2238	BUG();
2239	return 0;
2240}
2241
2242const struct vm_operations_struct hugetlb_vm_ops = {
2243	.fault = hugetlb_vm_op_fault,
2244	.open = hugetlb_vm_op_open,
2245	.close = hugetlb_vm_op_close,
2246};
2247
2248static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2249				int writable)
2250{
2251	pte_t entry;
2252
2253	if (writable) {
2254		entry =
2255		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2256	} else {
2257		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2258	}
2259	entry = pte_mkyoung(entry);
2260	entry = pte_mkhuge(entry);
2261	entry = arch_make_huge_pte(entry, vma, page, writable);
2262
2263	return entry;
2264}
2265
2266static void set_huge_ptep_writable(struct vm_area_struct *vma,
2267				   unsigned long address, pte_t *ptep)
2268{
2269	pte_t entry;
2270
2271	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2272	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2273		update_mmu_cache(vma, address, ptep);
2274}
2275
2276
2277int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2278			    struct vm_area_struct *vma)
2279{
2280	pte_t *src_pte, *dst_pte, entry;
2281	struct page *ptepage;
2282	unsigned long addr;
2283	int cow;
2284	struct hstate *h = hstate_vma(vma);
2285	unsigned long sz = huge_page_size(h);
2286
2287	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2288
2289	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2290		src_pte = huge_pte_offset(src, addr);
2291		if (!src_pte)
2292			continue;
2293		dst_pte = huge_pte_alloc(dst, addr, sz);
2294		if (!dst_pte)
2295			goto nomem;
2296
2297		/* If the pagetables are shared don't copy or take references */
2298		if (dst_pte == src_pte)
2299			continue;
2300
2301		spin_lock(&dst->page_table_lock);
2302		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2303		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2304			if (cow)
2305				huge_ptep_set_wrprotect(src, addr, src_pte);
2306			entry = huge_ptep_get(src_pte);
2307			ptepage = pte_page(entry);
2308			get_page(ptepage);
2309			page_dup_rmap(ptepage);
2310			set_huge_pte_at(dst, addr, dst_pte, entry);
2311		}
2312		spin_unlock(&src->page_table_lock);
2313		spin_unlock(&dst->page_table_lock);
2314	}
2315	return 0;
2316
2317nomem:
2318	return -ENOMEM;
2319}
2320
2321static int is_hugetlb_entry_migration(pte_t pte)
2322{
2323	swp_entry_t swp;
2324
2325	if (huge_pte_none(pte) || pte_present(pte))
2326		return 0;
2327	swp = pte_to_swp_entry(pte);
2328	if (non_swap_entry(swp) && is_migration_entry(swp))
2329		return 1;
2330	else
2331		return 0;
2332}
2333
2334static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2335{
2336	swp_entry_t swp;
2337
2338	if (huge_pte_none(pte) || pte_present(pte))
2339		return 0;
2340	swp = pte_to_swp_entry(pte);
2341	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2342		return 1;
2343	else
2344		return 0;
2345}
2346
2347void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2348			    unsigned long start, unsigned long end,
2349			    struct page *ref_page)
2350{
2351	int force_flush = 0;
2352	struct mm_struct *mm = vma->vm_mm;
2353	unsigned long address;
2354	pte_t *ptep;
2355	pte_t pte;
2356	struct page *page;
2357	struct hstate *h = hstate_vma(vma);
2358	unsigned long sz = huge_page_size(h);
2359
2360	WARN_ON(!is_vm_hugetlb_page(vma));
2361	BUG_ON(start & ~huge_page_mask(h));
2362	BUG_ON(end & ~huge_page_mask(h));
2363
2364	tlb_start_vma(tlb, vma);
2365	mmu_notifier_invalidate_range_start(mm, start, end);
2366again:
2367	spin_lock(&mm->page_table_lock);
2368	for (address = start; address < end; address += sz) {
2369		ptep = huge_pte_offset(mm, address);
2370		if (!ptep)
2371			continue;
2372
2373		if (huge_pmd_unshare(mm, &address, ptep))
2374			continue;
2375
2376		pte = huge_ptep_get(ptep);
2377		if (huge_pte_none(pte))
2378			continue;
2379
2380		/*
2381		 * HWPoisoned hugepage is already unmapped and dropped reference
2382		 */
2383		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2384			continue;
2385
2386		page = pte_page(pte);
2387		/*
2388		 * If a reference page is supplied, it is because a specific
2389		 * page is being unmapped, not a range. Ensure the page we
2390		 * are about to unmap is the actual page of interest.
2391		 */
2392		if (ref_page) {
2393			if (page != ref_page)
2394				continue;
2395
2396			/*
2397			 * Mark the VMA as having unmapped its page so that
2398			 * future faults in this VMA will fail rather than
2399			 * looking like data was lost
2400			 */
2401			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2402		}
2403
2404		pte = huge_ptep_get_and_clear(mm, address, ptep);
2405		tlb_remove_tlb_entry(tlb, ptep, address);
2406		if (pte_dirty(pte))
2407			set_page_dirty(page);
2408
2409		page_remove_rmap(page);
2410		force_flush = !__tlb_remove_page(tlb, page);
2411		if (force_flush)
2412			break;
2413		/* Bail out after unmapping reference page if supplied */
2414		if (ref_page)
2415			break;
2416	}
2417	spin_unlock(&mm->page_table_lock);
2418	/*
2419	 * mmu_gather ran out of room to batch pages, we break out of
2420	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2421	 * and page-free while holding it.
2422	 */
2423	if (force_flush) {
2424		force_flush = 0;
2425		tlb_flush_mmu(tlb);
2426		if (address < end && !ref_page)
2427			goto again;
2428	}
2429	mmu_notifier_invalidate_range_end(mm, start, end);
2430	tlb_end_vma(tlb, vma);
2431}
2432
2433void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2434			  struct vm_area_struct *vma, unsigned long start,
2435			  unsigned long end, struct page *ref_page)
2436{
2437	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2438
2439	/*
2440	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2441	 * test will fail on a vma being torn down, and not grab a page table
2442	 * on its way out.  We're lucky that the flag has such an appropriate
2443	 * name, and can in fact be safely cleared here. We could clear it
2444	 * before the __unmap_hugepage_range above, but all that's necessary
2445	 * is to clear it before releasing the i_mmap_mutex. This works
2446	 * because in the context this is called, the VMA is about to be
2447	 * destroyed and the i_mmap_mutex is held.
2448	 */
2449	vma->vm_flags &= ~VM_MAYSHARE;
2450}
2451
2452void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2453			  unsigned long end, struct page *ref_page)
2454{
2455	struct mm_struct *mm;
2456	struct mmu_gather tlb;
2457
2458	mm = vma->vm_mm;
2459
2460	tlb_gather_mmu(&tlb, mm, 0);
2461	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2462	tlb_finish_mmu(&tlb, start, end);
2463}
2464
2465/*
2466 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2467 * mappping it owns the reserve page for. The intention is to unmap the page
2468 * from other VMAs and let the children be SIGKILLed if they are faulting the
2469 * same region.
2470 */
2471static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2472				struct page *page, unsigned long address)
2473{
2474	struct hstate *h = hstate_vma(vma);
2475	struct vm_area_struct *iter_vma;
2476	struct address_space *mapping;
2477	pgoff_t pgoff;
2478
2479	/*
2480	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2481	 * from page cache lookup which is in HPAGE_SIZE units.
2482	 */
2483	address = address & huge_page_mask(h);
2484	pgoff = vma_hugecache_offset(h, vma, address);
2485	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2486
2487	/*
2488	 * Take the mapping lock for the duration of the table walk. As
2489	 * this mapping should be shared between all the VMAs,
2490	 * __unmap_hugepage_range() is called as the lock is already held
2491	 */
2492	mutex_lock(&mapping->i_mmap_mutex);
2493	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2494		/* Do not unmap the current VMA */
2495		if (iter_vma == vma)
2496			continue;
2497
2498		/*
2499		 * Unmap the page from other VMAs without their own reserves.
2500		 * They get marked to be SIGKILLed if they fault in these
2501		 * areas. This is because a future no-page fault on this VMA
2502		 * could insert a zeroed page instead of the data existing
2503		 * from the time of fork. This would look like data corruption
2504		 */
2505		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2506			unmap_hugepage_range(iter_vma, address,
2507					     address + huge_page_size(h), page);
2508	}
2509	mutex_unlock(&mapping->i_mmap_mutex);
2510
2511	return 1;
2512}
2513
2514/*
2515 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2516 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2517 * cannot race with other handlers or page migration.
2518 * Keep the pte_same checks anyway to make transition from the mutex easier.
2519 */
2520static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2521			unsigned long address, pte_t *ptep, pte_t pte,
2522			struct page *pagecache_page)
2523{
2524	struct hstate *h = hstate_vma(vma);
2525	struct page *old_page, *new_page;
2526	int avoidcopy;
2527	int outside_reserve = 0;
2528
2529	old_page = pte_page(pte);
2530
2531retry_avoidcopy:
2532	/* If no-one else is actually using this page, avoid the copy
2533	 * and just make the page writable */
2534	avoidcopy = (page_mapcount(old_page) == 1);
2535	if (avoidcopy) {
2536		if (PageAnon(old_page))
2537			page_move_anon_rmap(old_page, vma, address);
2538		set_huge_ptep_writable(vma, address, ptep);
2539		return 0;
2540	}
2541
2542	/*
2543	 * If the process that created a MAP_PRIVATE mapping is about to
2544	 * perform a COW due to a shared page count, attempt to satisfy
2545	 * the allocation without using the existing reserves. The pagecache
2546	 * page is used to determine if the reserve at this address was
2547	 * consumed or not. If reserves were used, a partial faulted mapping
2548	 * at the time of fork() could consume its reserves on COW instead
2549	 * of the full address range.
2550	 */
2551	if (!(vma->vm_flags & VM_MAYSHARE) &&
2552			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2553			old_page != pagecache_page)
2554		outside_reserve = 1;
2555
2556	page_cache_get(old_page);
2557
2558	/* Drop page_table_lock as buddy allocator may be called */
2559	spin_unlock(&mm->page_table_lock);
2560	new_page = alloc_huge_page(vma, address, outside_reserve);
2561
2562	if (IS_ERR(new_page)) {
2563		long err = PTR_ERR(new_page);
2564		page_cache_release(old_page);
2565
2566		/*
2567		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2568		 * it is due to references held by a child and an insufficient
2569		 * huge page pool. To guarantee the original mappers
2570		 * reliability, unmap the page from child processes. The child
2571		 * may get SIGKILLed if it later faults.
2572		 */
2573		if (outside_reserve) {
2574			BUG_ON(huge_pte_none(pte));
2575			if (unmap_ref_private(mm, vma, old_page, address)) {
2576				BUG_ON(huge_pte_none(pte));
2577				spin_lock(&mm->page_table_lock);
2578				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2579				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2580					goto retry_avoidcopy;
2581				/*
2582				 * race occurs while re-acquiring page_table_lock, and
2583				 * our job is done.
2584				 */
2585				return 0;
2586			}
2587			WARN_ON_ONCE(1);
2588		}
2589
2590		/* Caller expects lock to be held */
2591		spin_lock(&mm->page_table_lock);
2592		if (err == -ENOMEM)
2593			return VM_FAULT_OOM;
2594		else
2595			return VM_FAULT_SIGBUS;
2596	}
2597
2598	/*
2599	 * When the original hugepage is shared one, it does not have
2600	 * anon_vma prepared.
2601	 */
2602	if (unlikely(anon_vma_prepare(vma))) {
2603		page_cache_release(new_page);
2604		page_cache_release(old_page);
2605		/* Caller expects lock to be held */
2606		spin_lock(&mm->page_table_lock);
2607		return VM_FAULT_OOM;
2608	}
2609
2610	copy_user_huge_page(new_page, old_page, address, vma,
2611			    pages_per_huge_page(h));
2612	__SetPageUptodate(new_page);
2613
2614	/*
2615	 * Retake the page_table_lock to check for racing updates
2616	 * before the page tables are altered
2617	 */
2618	spin_lock(&mm->page_table_lock);
2619	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2620	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2621		/* Break COW */
2622		mmu_notifier_invalidate_range_start(mm,
2623			address & huge_page_mask(h),
2624			(address & huge_page_mask(h)) + huge_page_size(h));
2625		huge_ptep_clear_flush(vma, address, ptep);
2626		set_huge_pte_at(mm, address, ptep,
2627				make_huge_pte(vma, new_page, 1));
2628		page_remove_rmap(old_page);
2629		hugepage_add_new_anon_rmap(new_page, vma, address);
2630		/* Make the old page be freed below */
2631		new_page = old_page;
2632		mmu_notifier_invalidate_range_end(mm,
2633			address & huge_page_mask(h),
2634			(address & huge_page_mask(h)) + huge_page_size(h));
2635	}
2636	page_cache_release(new_page);
2637	page_cache_release(old_page);
2638	return 0;
2639}
2640
2641/* Return the pagecache page at a given address within a VMA */
2642static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2643			struct vm_area_struct *vma, unsigned long address)
2644{
2645	struct address_space *mapping;
2646	pgoff_t idx;
2647
2648	mapping = vma->vm_file->f_mapping;
2649	idx = vma_hugecache_offset(h, vma, address);
2650
2651	return find_lock_page(mapping, idx);
2652}
2653
2654/*
2655 * Return whether there is a pagecache page to back given address within VMA.
2656 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2657 */
2658static bool hugetlbfs_pagecache_present(struct hstate *h,
2659			struct vm_area_struct *vma, unsigned long address)
2660{
2661	struct address_space *mapping;
2662	pgoff_t idx;
2663	struct page *page;
2664
2665	mapping = vma->vm_file->f_mapping;
2666	idx = vma_hugecache_offset(h, vma, address);
2667
2668	page = find_get_page(mapping, idx);
2669	if (page)
2670		put_page(page);
2671	return page != NULL;
2672}
2673
2674static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2675			unsigned long address, pte_t *ptep, unsigned int flags)
2676{
2677	struct hstate *h = hstate_vma(vma);
2678	int ret = VM_FAULT_SIGBUS;
2679	int anon_rmap = 0;
2680	pgoff_t idx;
2681	unsigned long size;
2682	struct page *page;
2683	struct address_space *mapping;
2684	pte_t new_pte;
2685
2686	/*
2687	 * Currently, we are forced to kill the process in the event the
2688	 * original mapper has unmapped pages from the child due to a failed
2689	 * COW. Warn that such a situation has occurred as it may not be obvious
2690	 */
2691	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2692		printk(KERN_WARNING
2693			"PID %d killed due to inadequate hugepage pool\n",
2694			current->pid);
2695		return ret;
2696	}
2697
2698	mapping = vma->vm_file->f_mapping;
2699	idx = vma_hugecache_offset(h, vma, address);
2700
2701	/*
2702	 * Use page lock to guard against racing truncation
2703	 * before we get page_table_lock.
2704	 */
2705retry:
2706	page = find_lock_page(mapping, idx);
2707	if (!page) {
2708		size = i_size_read(mapping->host) >> huge_page_shift(h);
2709		if (idx >= size)
2710			goto out;
2711		page = alloc_huge_page(vma, address, 0);
2712		if (IS_ERR(page)) {
2713			ret = PTR_ERR(page);
2714			if (ret == -ENOMEM)
2715				ret = VM_FAULT_OOM;
2716			else
2717				ret = VM_FAULT_SIGBUS;
2718			goto out;
2719		}
2720		clear_huge_page(page, address, pages_per_huge_page(h));
2721		__SetPageUptodate(page);
2722
2723		if (vma->vm_flags & VM_MAYSHARE) {
2724			int err;
2725			struct inode *inode = mapping->host;
2726
2727			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2728			if (err) {
2729				put_page(page);
2730				if (err == -EEXIST)
2731					goto retry;
2732				goto out;
2733			}
2734
2735			spin_lock(&inode->i_lock);
2736			inode->i_blocks += blocks_per_huge_page(h);
2737			spin_unlock(&inode->i_lock);
2738		} else {
2739			lock_page(page);
2740			if (unlikely(anon_vma_prepare(vma))) {
2741				ret = VM_FAULT_OOM;
2742				goto backout_unlocked;
2743			}
2744			anon_rmap = 1;
2745		}
2746	} else {
2747		/*
2748		 * If memory error occurs between mmap() and fault, some process
2749		 * don't have hwpoisoned swap entry for errored virtual address.
2750		 * So we need to block hugepage fault by PG_hwpoison bit check.
2751		 */
2752		if (unlikely(PageHWPoison(page))) {
2753			ret = VM_FAULT_HWPOISON |
2754				VM_FAULT_SET_HINDEX(hstate_index(h));
2755			goto backout_unlocked;
2756		}
2757	}
2758
2759	/*
2760	 * If we are going to COW a private mapping later, we examine the
2761	 * pending reservations for this page now. This will ensure that
2762	 * any allocations necessary to record that reservation occur outside
2763	 * the spinlock.
2764	 */
2765	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2766		if (vma_needs_reservation(h, vma, address) < 0) {
2767			ret = VM_FAULT_OOM;
2768			goto backout_unlocked;
2769		}
2770
2771	spin_lock(&mm->page_table_lock);
2772	size = i_size_read(mapping->host) >> huge_page_shift(h);
2773	if (idx >= size)
2774		goto backout;
2775
2776	ret = 0;
2777	if (!huge_pte_none(huge_ptep_get(ptep)))
2778		goto backout;
2779
2780	if (anon_rmap)
2781		hugepage_add_new_anon_rmap(page, vma, address);
2782	else
2783		page_dup_rmap(page);
2784	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2785				&& (vma->vm_flags & VM_SHARED)));
2786	set_huge_pte_at(mm, address, ptep, new_pte);
2787
2788	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2789		/* Optimization, do the COW without a second fault */
2790		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2791	}
2792
2793	spin_unlock(&mm->page_table_lock);
2794	unlock_page(page);
2795out:
2796	return ret;
2797
2798backout:
2799	spin_unlock(&mm->page_table_lock);
2800backout_unlocked:
2801	unlock_page(page);
2802	put_page(page);
2803	goto out;
2804}
2805
2806int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2807			unsigned long address, unsigned int flags)
2808{
2809	pte_t *ptep;
2810	pte_t entry;
2811	int ret;
2812	struct page *page = NULL;
2813	struct page *pagecache_page = NULL;
2814	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2815	struct hstate *h = hstate_vma(vma);
2816
2817	address &= huge_page_mask(h);
2818
2819	ptep = huge_pte_offset(mm, address);
2820	if (ptep) {
2821		entry = huge_ptep_get(ptep);
2822		if (unlikely(is_hugetlb_entry_migration(entry))) {
2823			migration_entry_wait(mm, (pmd_t *)ptep, address);
2824			return 0;
2825		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2826			return VM_FAULT_HWPOISON_LARGE |
2827				VM_FAULT_SET_HINDEX(hstate_index(h));
2828	}
2829
2830	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2831	if (!ptep)
2832		return VM_FAULT_OOM;
2833
2834	/*
2835	 * Serialize hugepage allocation and instantiation, so that we don't
2836	 * get spurious allocation failures if two CPUs race to instantiate
2837	 * the same page in the page cache.
2838	 */
2839	mutex_lock(&hugetlb_instantiation_mutex);
2840	entry = huge_ptep_get(ptep);
2841	if (huge_pte_none(entry)) {
2842		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2843		goto out_mutex;
2844	}
2845
2846	ret = 0;
2847
2848	/*
2849	 * If we are going to COW the mapping later, we examine the pending
2850	 * reservations for this page now. This will ensure that any
2851	 * allocations necessary to record that reservation occur outside the
2852	 * spinlock. For private mappings, we also lookup the pagecache
2853	 * page now as it is used to determine if a reservation has been
2854	 * consumed.
2855	 */
2856	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2857		if (vma_needs_reservation(h, vma, address) < 0) {
2858			ret = VM_FAULT_OOM;
2859			goto out_mutex;
2860		}
2861
2862		if (!(vma->vm_flags & VM_MAYSHARE))
2863			pagecache_page = hugetlbfs_pagecache_page(h,
2864								vma, address);
2865	}
2866
2867	/*
2868	 * hugetlb_cow() requires page locks of pte_page(entry) and
2869	 * pagecache_page, so here we need take the former one
2870	 * when page != pagecache_page or !pagecache_page.
2871	 * Note that locking order is always pagecache_page -> page,
2872	 * so no worry about deadlock.
2873	 */
2874	page = pte_page(entry);
2875	get_page(page);
2876	if (page != pagecache_page)
2877		lock_page(page);
2878
2879	spin_lock(&mm->page_table_lock);
2880	/* Check for a racing update before calling hugetlb_cow */
2881	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2882		goto out_page_table_lock;
2883
2884
2885	if (flags & FAULT_FLAG_WRITE) {
2886		if (!pte_write(entry)) {
2887			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2888							pagecache_page);
2889			goto out_page_table_lock;
2890		}
2891		entry = pte_mkdirty(entry);
2892	}
2893	entry = pte_mkyoung(entry);
2894	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2895						flags & FAULT_FLAG_WRITE))
2896		update_mmu_cache(vma, address, ptep);
2897
2898out_page_table_lock:
2899	spin_unlock(&mm->page_table_lock);
2900
2901	if (pagecache_page) {
2902		unlock_page(pagecache_page);
2903		put_page(pagecache_page);
2904	}
2905	if (page != pagecache_page)
2906		unlock_page(page);
2907	put_page(page);
2908
2909out_mutex:
2910	mutex_unlock(&hugetlb_instantiation_mutex);
2911
2912	return ret;
2913}
2914
2915/* Can be overriden by architectures */
2916__attribute__((weak)) struct page *
2917follow_huge_pud(struct mm_struct *mm, unsigned long address,
2918	       pud_t *pud, int write)
2919{
2920	BUG();
2921	return NULL;
2922}
2923
2924int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2925			struct page **pages, struct vm_area_struct **vmas,
2926			unsigned long *position, int *length, int i,
2927			unsigned int flags)
2928{
2929	unsigned long pfn_offset;
2930	unsigned long vaddr = *position;
2931	int remainder = *length;
2932	struct hstate *h = hstate_vma(vma);
2933
2934	spin_lock(&mm->page_table_lock);
2935	while (vaddr < vma->vm_end && remainder) {
2936		pte_t *pte;
2937		int absent;
2938		struct page *page;
2939
2940		/*
2941		 * Some archs (sparc64, sh*) have multiple pte_ts to
2942		 * each hugepage.  We have to make sure we get the
2943		 * first, for the page indexing below to work.
2944		 */
2945		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2946		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2947
2948		/*
2949		 * When coredumping, it suits get_dump_page if we just return
2950		 * an error where there's an empty slot with no huge pagecache
2951		 * to back it.  This way, we avoid allocating a hugepage, and
2952		 * the sparse dumpfile avoids allocating disk blocks, but its
2953		 * huge holes still show up with zeroes where they need to be.
2954		 */
2955		if (absent && (flags & FOLL_DUMP) &&
2956		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2957			remainder = 0;
2958			break;
2959		}
2960
2961		if (absent ||
2962		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2963			int ret;
2964
2965			spin_unlock(&mm->page_table_lock);
2966			ret = hugetlb_fault(mm, vma, vaddr,
2967				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2968			spin_lock(&mm->page_table_lock);
2969			if (!(ret & VM_FAULT_ERROR))
2970				continue;
2971
2972			remainder = 0;
2973			break;
2974		}
2975
2976		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2977		page = pte_page(huge_ptep_get(pte));
2978same_page:
2979		if (pages) {
2980			pages[i] = mem_map_offset(page, pfn_offset);
2981			get_page(pages[i]);
2982		}
2983
2984		if (vmas)
2985			vmas[i] = vma;
2986
2987		vaddr += PAGE_SIZE;
2988		++pfn_offset;
2989		--remainder;
2990		++i;
2991		if (vaddr < vma->vm_end && remainder &&
2992				pfn_offset < pages_per_huge_page(h)) {
2993			/*
2994			 * We use pfn_offset to avoid touching the pageframes
2995			 * of this compound page.
2996			 */
2997			goto same_page;
2998		}
2999	}
3000	spin_unlock(&mm->page_table_lock);
3001	*length = remainder;
3002	*position = vaddr;
3003
3004	return i ? i : -EFAULT;
3005}
3006
3007void hugetlb_change_protection(struct vm_area_struct *vma,
3008		unsigned long address, unsigned long end, pgprot_t newprot)
3009{
3010	struct mm_struct *mm = vma->vm_mm;
3011	unsigned long start = address;
3012	pte_t *ptep;
3013	pte_t pte;
3014	struct hstate *h = hstate_vma(vma);
3015
3016	BUG_ON(address >= end);
3017	flush_cache_range(vma, address, end);
3018
3019	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3020	spin_lock(&mm->page_table_lock);
3021	for (; address < end; address += huge_page_size(h)) {
3022		ptep = huge_pte_offset(mm, address);
3023		if (!ptep)
3024			continue;
3025		if (huge_pmd_unshare(mm, &address, ptep))
3026			continue;
3027		if (!huge_pte_none(huge_ptep_get(ptep))) {
3028			pte = huge_ptep_get_and_clear(mm, address, ptep);
3029			pte = pte_mkhuge(pte_modify(pte, newprot));
3030			set_huge_pte_at(mm, address, ptep, pte);
3031		}
3032	}
3033	spin_unlock(&mm->page_table_lock);
3034	/*
3035	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3036	 * may have cleared our pud entry and done put_page on the page table:
3037	 * once we release i_mmap_mutex, another task can do the final put_page
3038	 * and that page table be reused and filled with junk.
3039	 */
3040	flush_tlb_range(vma, start, end);
3041	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3042}
3043
3044int hugetlb_reserve_pages(struct inode *inode,
3045					long from, long to,
3046					struct vm_area_struct *vma,
3047					vm_flags_t vm_flags)
3048{
3049	long ret, chg;
3050	struct hstate *h = hstate_inode(inode);
3051	struct hugepage_subpool *spool = subpool_inode(inode);
3052
3053	/*
3054	 * Only apply hugepage reservation if asked. At fault time, an
3055	 * attempt will be made for VM_NORESERVE to allocate a page
3056	 * without using reserves
3057	 */
3058	if (vm_flags & VM_NORESERVE)
3059		return 0;
3060
3061	/*
3062	 * Shared mappings base their reservation on the number of pages that
3063	 * are already allocated on behalf of the file. Private mappings need
3064	 * to reserve the full area even if read-only as mprotect() may be
3065	 * called to make the mapping read-write. Assume !vma is a shm mapping
3066	 */
3067	if (!vma || vma->vm_flags & VM_MAYSHARE)
3068		chg = region_chg(&inode->i_mapping->private_list, from, to);
3069	else {
3070		struct resv_map *resv_map = resv_map_alloc();
3071		if (!resv_map)
3072			return -ENOMEM;
3073
3074		chg = to - from;
3075
3076		set_vma_resv_map(vma, resv_map);
3077		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3078	}
3079
3080	if (chg < 0) {
3081		ret = chg;
3082		goto out_err;
3083	}
3084
3085	/* There must be enough pages in the subpool for the mapping */
3086	if (hugepage_subpool_get_pages(spool, chg)) {
3087		ret = -ENOSPC;
3088		goto out_err;
3089	}
3090
3091	/*
3092	 * Check enough hugepages are available for the reservation.
3093	 * Hand the pages back to the subpool if there are not
3094	 */
3095	ret = hugetlb_acct_memory(h, chg);
3096	if (ret < 0) {
3097		hugepage_subpool_put_pages(spool, chg);
3098		goto out_err;
3099	}
3100
3101	/*
3102	 * Account for the reservations made. Shared mappings record regions
3103	 * that have reservations as they are shared by multiple VMAs.
3104	 * When the last VMA disappears, the region map says how much
3105	 * the reservation was and the page cache tells how much of
3106	 * the reservation was consumed. Private mappings are per-VMA and
3107	 * only the consumed reservations are tracked. When the VMA
3108	 * disappears, the original reservation is the VMA size and the
3109	 * consumed reservations are stored in the map. Hence, nothing
3110	 * else has to be done for private mappings here
3111	 */
3112	if (!vma || vma->vm_flags & VM_MAYSHARE)
3113		region_add(&inode->i_mapping->private_list, from, to);
3114	return 0;
3115out_err:
3116	if (vma)
3117		resv_map_put(vma);
3118	return ret;
3119}
3120
3121void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3122{
3123	struct hstate *h = hstate_inode(inode);
3124	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3125	struct hugepage_subpool *spool = subpool_inode(inode);
3126
3127	spin_lock(&inode->i_lock);
3128	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3129	spin_unlock(&inode->i_lock);
3130
3131	hugepage_subpool_put_pages(spool, (chg - freed));
3132	hugetlb_acct_memory(h, -(chg - freed));
3133}
3134
3135#ifdef CONFIG_MEMORY_FAILURE
3136
3137/* Should be called in hugetlb_lock */
3138static int is_hugepage_on_freelist(struct page *hpage)
3139{
3140	struct page *page;
3141	struct page *tmp;
3142	struct hstate *h = page_hstate(hpage);
3143	int nid = page_to_nid(hpage);
3144
3145	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3146		if (page == hpage)
3147			return 1;
3148	return 0;
3149}
3150
3151/*
3152 * This function is called from memory failure code.
3153 * Assume the caller holds page lock of the head page.
3154 */
3155int dequeue_hwpoisoned_huge_page(struct page *hpage)
3156{
3157	struct hstate *h = page_hstate(hpage);
3158	int nid = page_to_nid(hpage);
3159	int ret = -EBUSY;
3160
3161	spin_lock(&hugetlb_lock);
3162	if (is_hugepage_on_freelist(hpage)) {
3163		list_del(&hpage->lru);
3164		set_page_refcounted(hpage);
3165		h->free_huge_pages--;
3166		h->free_huge_pages_node[nid]--;
3167		ret = 0;
3168	}
3169	spin_unlock(&hugetlb_lock);
3170	return ret;
3171}
3172#endif
3173