hugetlb.c revision 74dbdd239bb1348ad86d28b18574d9c1f28b62ca
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/seq_file.h>
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
13#include <linux/mmu_notifier.h>
14#include <linux/nodemask.h>
15#include <linux/pagemap.h>
16#include <linux/mempolicy.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/io.h>
25
26#include <linux/hugetlb.h>
27#include <linux/node.h>
28#include "internal.h"
29
30const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32unsigned long hugepages_treat_as_movable;
33
34static int max_hstate;
35unsigned int default_hstate_idx;
36struct hstate hstates[HUGE_MAX_HSTATE];
37
38__initdata LIST_HEAD(huge_boot_pages);
39
40/* for command line parsing */
41static struct hstate * __initdata parsed_hstate;
42static unsigned long __initdata default_hstate_max_huge_pages;
43static unsigned long __initdata default_hstate_size;
44
45#define for_each_hstate(h) \
46	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47
48/*
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 */
51static DEFINE_SPINLOCK(hugetlb_lock);
52
53/*
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 *                    across the pages in a mapping.
56 *
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
61 *
62 * 	down_write(&mm->mmap_sem);
63 * or
64 * 	down_read(&mm->mmap_sem);
65 * 	mutex_lock(&hugetlb_instantiation_mutex);
66 */
67struct file_region {
68	struct list_head link;
69	long from;
70	long to;
71};
72
73static long region_add(struct list_head *head, long f, long t)
74{
75	struct file_region *rg, *nrg, *trg;
76
77	/* Locate the region we are either in or before. */
78	list_for_each_entry(rg, head, link)
79		if (f <= rg->to)
80			break;
81
82	/* Round our left edge to the current segment if it encloses us. */
83	if (f > rg->from)
84		f = rg->from;
85
86	/* Check for and consume any regions we now overlap with. */
87	nrg = rg;
88	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89		if (&rg->link == head)
90			break;
91		if (rg->from > t)
92			break;
93
94		/* If this area reaches higher then extend our area to
95		 * include it completely.  If this is not the first area
96		 * which we intend to reuse, free it. */
97		if (rg->to > t)
98			t = rg->to;
99		if (rg != nrg) {
100			list_del(&rg->link);
101			kfree(rg);
102		}
103	}
104	nrg->from = f;
105	nrg->to = t;
106	return 0;
107}
108
109static long region_chg(struct list_head *head, long f, long t)
110{
111	struct file_region *rg, *nrg;
112	long chg = 0;
113
114	/* Locate the region we are before or in. */
115	list_for_each_entry(rg, head, link)
116		if (f <= rg->to)
117			break;
118
119	/* If we are below the current region then a new region is required.
120	 * Subtle, allocate a new region at the position but make it zero
121	 * size such that we can guarantee to record the reservation. */
122	if (&rg->link == head || t < rg->from) {
123		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124		if (!nrg)
125			return -ENOMEM;
126		nrg->from = f;
127		nrg->to   = f;
128		INIT_LIST_HEAD(&nrg->link);
129		list_add(&nrg->link, rg->link.prev);
130
131		return t - f;
132	}
133
134	/* Round our left edge to the current segment if it encloses us. */
135	if (f > rg->from)
136		f = rg->from;
137	chg = t - f;
138
139	/* Check for and consume any regions we now overlap with. */
140	list_for_each_entry(rg, rg->link.prev, link) {
141		if (&rg->link == head)
142			break;
143		if (rg->from > t)
144			return chg;
145
146		/* We overlap with this area, if it extends futher than
147		 * us then we must extend ourselves.  Account for its
148		 * existing reservation. */
149		if (rg->to > t) {
150			chg += rg->to - t;
151			t = rg->to;
152		}
153		chg -= rg->to - rg->from;
154	}
155	return chg;
156}
157
158static long region_truncate(struct list_head *head, long end)
159{
160	struct file_region *rg, *trg;
161	long chg = 0;
162
163	/* Locate the region we are either in or before. */
164	list_for_each_entry(rg, head, link)
165		if (end <= rg->to)
166			break;
167	if (&rg->link == head)
168		return 0;
169
170	/* If we are in the middle of a region then adjust it. */
171	if (end > rg->from) {
172		chg = rg->to - end;
173		rg->to = end;
174		rg = list_entry(rg->link.next, typeof(*rg), link);
175	}
176
177	/* Drop any remaining regions. */
178	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179		if (&rg->link == head)
180			break;
181		chg += rg->to - rg->from;
182		list_del(&rg->link);
183		kfree(rg);
184	}
185	return chg;
186}
187
188static long region_count(struct list_head *head, long f, long t)
189{
190	struct file_region *rg;
191	long chg = 0;
192
193	/* Locate each segment we overlap with, and count that overlap. */
194	list_for_each_entry(rg, head, link) {
195		int seg_from;
196		int seg_to;
197
198		if (rg->to <= f)
199			continue;
200		if (rg->from >= t)
201			break;
202
203		seg_from = max(rg->from, f);
204		seg_to = min(rg->to, t);
205
206		chg += seg_to - seg_from;
207	}
208
209	return chg;
210}
211
212/*
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
215 */
216static pgoff_t vma_hugecache_offset(struct hstate *h,
217			struct vm_area_struct *vma, unsigned long address)
218{
219	return ((address - vma->vm_start) >> huge_page_shift(h)) +
220			(vma->vm_pgoff >> huge_page_order(h));
221}
222
223/*
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
226 */
227unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228{
229	struct hstate *hstate;
230
231	if (!is_vm_hugetlb_page(vma))
232		return PAGE_SIZE;
233
234	hstate = hstate_vma(vma);
235
236	return 1UL << (hstate->order + PAGE_SHIFT);
237}
238EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
239
240/*
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
245 */
246#ifndef vma_mmu_pagesize
247unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248{
249	return vma_kernel_pagesize(vma);
250}
251#endif
252
253/*
254 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
256 * alignment.
257 */
258#define HPAGE_RESV_OWNER    (1UL << 0)
259#define HPAGE_RESV_UNMAPPED (1UL << 1)
260#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261
262/*
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
266 *
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
271 *
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping.  A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated.  A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
280 */
281static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282{
283	return (unsigned long)vma->vm_private_data;
284}
285
286static void set_vma_private_data(struct vm_area_struct *vma,
287							unsigned long value)
288{
289	vma->vm_private_data = (void *)value;
290}
291
292struct resv_map {
293	struct kref refs;
294	struct list_head regions;
295};
296
297static struct resv_map *resv_map_alloc(void)
298{
299	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300	if (!resv_map)
301		return NULL;
302
303	kref_init(&resv_map->refs);
304	INIT_LIST_HEAD(&resv_map->regions);
305
306	return resv_map;
307}
308
309static void resv_map_release(struct kref *ref)
310{
311	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312
313	/* Clear out any active regions before we release the map. */
314	region_truncate(&resv_map->regions, 0);
315	kfree(resv_map);
316}
317
318static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319{
320	VM_BUG_ON(!is_vm_hugetlb_page(vma));
321	if (!(vma->vm_flags & VM_MAYSHARE))
322		return (struct resv_map *)(get_vma_private_data(vma) &
323							~HPAGE_RESV_MASK);
324	return NULL;
325}
326
327static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328{
329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331
332	set_vma_private_data(vma, (get_vma_private_data(vma) &
333				HPAGE_RESV_MASK) | (unsigned long)map);
334}
335
336static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337{
338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342}
343
344static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345{
346	VM_BUG_ON(!is_vm_hugetlb_page(vma));
347
348	return (get_vma_private_data(vma) & flag) != 0;
349}
350
351/* Decrement the reserved pages in the hugepage pool by one */
352static void decrement_hugepage_resv_vma(struct hstate *h,
353			struct vm_area_struct *vma)
354{
355	if (vma->vm_flags & VM_NORESERVE)
356		return;
357
358	if (vma->vm_flags & VM_MAYSHARE) {
359		/* Shared mappings always use reserves */
360		h->resv_huge_pages--;
361	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362		/*
363		 * Only the process that called mmap() has reserves for
364		 * private mappings.
365		 */
366		h->resv_huge_pages--;
367	}
368}
369
370/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372{
373	VM_BUG_ON(!is_vm_hugetlb_page(vma));
374	if (!(vma->vm_flags & VM_MAYSHARE))
375		vma->vm_private_data = (void *)0;
376}
377
378/* Returns true if the VMA has associated reserve pages */
379static int vma_has_reserves(struct vm_area_struct *vma)
380{
381	if (vma->vm_flags & VM_MAYSHARE)
382		return 1;
383	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384		return 1;
385	return 0;
386}
387
388static void clear_gigantic_page(struct page *page,
389			unsigned long addr, unsigned long sz)
390{
391	int i;
392	struct page *p = page;
393
394	might_sleep();
395	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396		cond_resched();
397		clear_user_highpage(p, addr + i * PAGE_SIZE);
398	}
399}
400static void clear_huge_page(struct page *page,
401			unsigned long addr, unsigned long sz)
402{
403	int i;
404
405	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
406		clear_gigantic_page(page, addr, sz);
407		return;
408	}
409
410	might_sleep();
411	for (i = 0; i < sz/PAGE_SIZE; i++) {
412		cond_resched();
413		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
414	}
415}
416
417static void copy_gigantic_page(struct page *dst, struct page *src,
418			   unsigned long addr, struct vm_area_struct *vma)
419{
420	int i;
421	struct hstate *h = hstate_vma(vma);
422	struct page *dst_base = dst;
423	struct page *src_base = src;
424	might_sleep();
425	for (i = 0; i < pages_per_huge_page(h); ) {
426		cond_resched();
427		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428
429		i++;
430		dst = mem_map_next(dst, dst_base, i);
431		src = mem_map_next(src, src_base, i);
432	}
433}
434static void copy_huge_page(struct page *dst, struct page *src,
435			   unsigned long addr, struct vm_area_struct *vma)
436{
437	int i;
438	struct hstate *h = hstate_vma(vma);
439
440	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441		copy_gigantic_page(dst, src, addr, vma);
442		return;
443	}
444
445	might_sleep();
446	for (i = 0; i < pages_per_huge_page(h); i++) {
447		cond_resched();
448		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
449	}
450}
451
452static void enqueue_huge_page(struct hstate *h, struct page *page)
453{
454	int nid = page_to_nid(page);
455	list_add(&page->lru, &h->hugepage_freelists[nid]);
456	h->free_huge_pages++;
457	h->free_huge_pages_node[nid]++;
458}
459
460static struct page *dequeue_huge_page_vma(struct hstate *h,
461				struct vm_area_struct *vma,
462				unsigned long address, int avoid_reserve)
463{
464	int nid;
465	struct page *page = NULL;
466	struct mempolicy *mpol;
467	nodemask_t *nodemask;
468	struct zonelist *zonelist = huge_zonelist(vma, address,
469					htlb_alloc_mask, &mpol, &nodemask);
470	struct zone *zone;
471	struct zoneref *z;
472
473	/*
474	 * A child process with MAP_PRIVATE mappings created by their parent
475	 * have no page reserves. This check ensures that reservations are
476	 * not "stolen". The child may still get SIGKILLed
477	 */
478	if (!vma_has_reserves(vma) &&
479			h->free_huge_pages - h->resv_huge_pages == 0)
480		return NULL;
481
482	/* If reserves cannot be used, ensure enough pages are in the pool */
483	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
484		return NULL;
485
486	for_each_zone_zonelist_nodemask(zone, z, zonelist,
487						MAX_NR_ZONES - 1, nodemask) {
488		nid = zone_to_nid(zone);
489		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
490		    !list_empty(&h->hugepage_freelists[nid])) {
491			page = list_entry(h->hugepage_freelists[nid].next,
492					  struct page, lru);
493			list_del(&page->lru);
494			h->free_huge_pages--;
495			h->free_huge_pages_node[nid]--;
496
497			if (!avoid_reserve)
498				decrement_hugepage_resv_vma(h, vma);
499
500			break;
501		}
502	}
503	mpol_cond_put(mpol);
504	return page;
505}
506
507static void update_and_free_page(struct hstate *h, struct page *page)
508{
509	int i;
510
511	VM_BUG_ON(h->order >= MAX_ORDER);
512
513	h->nr_huge_pages--;
514	h->nr_huge_pages_node[page_to_nid(page)]--;
515	for (i = 0; i < pages_per_huge_page(h); i++) {
516		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
517				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
518				1 << PG_private | 1<< PG_writeback);
519	}
520	set_compound_page_dtor(page, NULL);
521	set_page_refcounted(page);
522	arch_release_hugepage(page);
523	__free_pages(page, huge_page_order(h));
524}
525
526struct hstate *size_to_hstate(unsigned long size)
527{
528	struct hstate *h;
529
530	for_each_hstate(h) {
531		if (huge_page_size(h) == size)
532			return h;
533	}
534	return NULL;
535}
536
537static void free_huge_page(struct page *page)
538{
539	/*
540	 * Can't pass hstate in here because it is called from the
541	 * compound page destructor.
542	 */
543	struct hstate *h = page_hstate(page);
544	int nid = page_to_nid(page);
545	struct address_space *mapping;
546
547	mapping = (struct address_space *) page_private(page);
548	set_page_private(page, 0);
549	BUG_ON(page_count(page));
550	INIT_LIST_HEAD(&page->lru);
551
552	spin_lock(&hugetlb_lock);
553	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554		update_and_free_page(h, page);
555		h->surplus_huge_pages--;
556		h->surplus_huge_pages_node[nid]--;
557	} else {
558		enqueue_huge_page(h, page);
559	}
560	spin_unlock(&hugetlb_lock);
561	if (mapping)
562		hugetlb_put_quota(mapping, 1);
563}
564
565static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566{
567	set_compound_page_dtor(page, free_huge_page);
568	spin_lock(&hugetlb_lock);
569	h->nr_huge_pages++;
570	h->nr_huge_pages_node[nid]++;
571	spin_unlock(&hugetlb_lock);
572	put_page(page); /* free it into the hugepage allocator */
573}
574
575static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576{
577	int i;
578	int nr_pages = 1 << order;
579	struct page *p = page + 1;
580
581	/* we rely on prep_new_huge_page to set the destructor */
582	set_compound_order(page, order);
583	__SetPageHead(page);
584	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585		__SetPageTail(p);
586		p->first_page = page;
587	}
588}
589
590int PageHuge(struct page *page)
591{
592	compound_page_dtor *dtor;
593
594	if (!PageCompound(page))
595		return 0;
596
597	page = compound_head(page);
598	dtor = get_compound_page_dtor(page);
599
600	return dtor == free_huge_page;
601}
602
603static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
604{
605	struct page *page;
606
607	if (h->order >= MAX_ORDER)
608		return NULL;
609
610	page = alloc_pages_exact_node(nid,
611		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
612						__GFP_REPEAT|__GFP_NOWARN,
613		huge_page_order(h));
614	if (page) {
615		if (arch_prepare_hugepage(page)) {
616			__free_pages(page, huge_page_order(h));
617			return NULL;
618		}
619		prep_new_huge_page(h, page, nid);
620	}
621
622	return page;
623}
624
625/*
626 * common helper functions for hstate_next_node_to_{alloc|free}.
627 * We may have allocated or freed a huge page based on a different
628 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
629 * be outside of *nodes_allowed.  Ensure that we use an allowed
630 * node for alloc or free.
631 */
632static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
633{
634	nid = next_node(nid, *nodes_allowed);
635	if (nid == MAX_NUMNODES)
636		nid = first_node(*nodes_allowed);
637	VM_BUG_ON(nid >= MAX_NUMNODES);
638
639	return nid;
640}
641
642static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
643{
644	if (!node_isset(nid, *nodes_allowed))
645		nid = next_node_allowed(nid, nodes_allowed);
646	return nid;
647}
648
649/*
650 * returns the previously saved node ["this node"] from which to
651 * allocate a persistent huge page for the pool and advance the
652 * next node from which to allocate, handling wrap at end of node
653 * mask.
654 */
655static int hstate_next_node_to_alloc(struct hstate *h,
656					nodemask_t *nodes_allowed)
657{
658	int nid;
659
660	VM_BUG_ON(!nodes_allowed);
661
662	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
663	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
664
665	return nid;
666}
667
668static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
669{
670	struct page *page;
671	int start_nid;
672	int next_nid;
673	int ret = 0;
674
675	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
676	next_nid = start_nid;
677
678	do {
679		page = alloc_fresh_huge_page_node(h, next_nid);
680		if (page) {
681			ret = 1;
682			break;
683		}
684		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
685	} while (next_nid != start_nid);
686
687	if (ret)
688		count_vm_event(HTLB_BUDDY_PGALLOC);
689	else
690		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
691
692	return ret;
693}
694
695/*
696 * helper for free_pool_huge_page() - return the previously saved
697 * node ["this node"] from which to free a huge page.  Advance the
698 * next node id whether or not we find a free huge page to free so
699 * that the next attempt to free addresses the next node.
700 */
701static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
702{
703	int nid;
704
705	VM_BUG_ON(!nodes_allowed);
706
707	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
708	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
709
710	return nid;
711}
712
713/*
714 * Free huge page from pool from next node to free.
715 * Attempt to keep persistent huge pages more or less
716 * balanced over allowed nodes.
717 * Called with hugetlb_lock locked.
718 */
719static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
720							 bool acct_surplus)
721{
722	int start_nid;
723	int next_nid;
724	int ret = 0;
725
726	start_nid = hstate_next_node_to_free(h, nodes_allowed);
727	next_nid = start_nid;
728
729	do {
730		/*
731		 * If we're returning unused surplus pages, only examine
732		 * nodes with surplus pages.
733		 */
734		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
735		    !list_empty(&h->hugepage_freelists[next_nid])) {
736			struct page *page =
737				list_entry(h->hugepage_freelists[next_nid].next,
738					  struct page, lru);
739			list_del(&page->lru);
740			h->free_huge_pages--;
741			h->free_huge_pages_node[next_nid]--;
742			if (acct_surplus) {
743				h->surplus_huge_pages--;
744				h->surplus_huge_pages_node[next_nid]--;
745			}
746			update_and_free_page(h, page);
747			ret = 1;
748			break;
749		}
750		next_nid = hstate_next_node_to_free(h, nodes_allowed);
751	} while (next_nid != start_nid);
752
753	return ret;
754}
755
756static struct page *alloc_buddy_huge_page(struct hstate *h,
757			struct vm_area_struct *vma, unsigned long address)
758{
759	struct page *page;
760	unsigned int nid;
761
762	if (h->order >= MAX_ORDER)
763		return NULL;
764
765	/*
766	 * Assume we will successfully allocate the surplus page to
767	 * prevent racing processes from causing the surplus to exceed
768	 * overcommit
769	 *
770	 * This however introduces a different race, where a process B
771	 * tries to grow the static hugepage pool while alloc_pages() is
772	 * called by process A. B will only examine the per-node
773	 * counters in determining if surplus huge pages can be
774	 * converted to normal huge pages in adjust_pool_surplus(). A
775	 * won't be able to increment the per-node counter, until the
776	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
777	 * no more huge pages can be converted from surplus to normal
778	 * state (and doesn't try to convert again). Thus, we have a
779	 * case where a surplus huge page exists, the pool is grown, and
780	 * the surplus huge page still exists after, even though it
781	 * should just have been converted to a normal huge page. This
782	 * does not leak memory, though, as the hugepage will be freed
783	 * once it is out of use. It also does not allow the counters to
784	 * go out of whack in adjust_pool_surplus() as we don't modify
785	 * the node values until we've gotten the hugepage and only the
786	 * per-node value is checked there.
787	 */
788	spin_lock(&hugetlb_lock);
789	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
790		spin_unlock(&hugetlb_lock);
791		return NULL;
792	} else {
793		h->nr_huge_pages++;
794		h->surplus_huge_pages++;
795	}
796	spin_unlock(&hugetlb_lock);
797
798	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
799					__GFP_REPEAT|__GFP_NOWARN,
800					huge_page_order(h));
801
802	if (page && arch_prepare_hugepage(page)) {
803		__free_pages(page, huge_page_order(h));
804		return NULL;
805	}
806
807	spin_lock(&hugetlb_lock);
808	if (page) {
809		/*
810		 * This page is now managed by the hugetlb allocator and has
811		 * no users -- drop the buddy allocator's reference.
812		 */
813		put_page_testzero(page);
814		VM_BUG_ON(page_count(page));
815		nid = page_to_nid(page);
816		set_compound_page_dtor(page, free_huge_page);
817		/*
818		 * We incremented the global counters already
819		 */
820		h->nr_huge_pages_node[nid]++;
821		h->surplus_huge_pages_node[nid]++;
822		__count_vm_event(HTLB_BUDDY_PGALLOC);
823	} else {
824		h->nr_huge_pages--;
825		h->surplus_huge_pages--;
826		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
827	}
828	spin_unlock(&hugetlb_lock);
829
830	return page;
831}
832
833/*
834 * Increase the hugetlb pool such that it can accomodate a reservation
835 * of size 'delta'.
836 */
837static int gather_surplus_pages(struct hstate *h, int delta)
838{
839	struct list_head surplus_list;
840	struct page *page, *tmp;
841	int ret, i;
842	int needed, allocated;
843
844	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
845	if (needed <= 0) {
846		h->resv_huge_pages += delta;
847		return 0;
848	}
849
850	allocated = 0;
851	INIT_LIST_HEAD(&surplus_list);
852
853	ret = -ENOMEM;
854retry:
855	spin_unlock(&hugetlb_lock);
856	for (i = 0; i < needed; i++) {
857		page = alloc_buddy_huge_page(h, NULL, 0);
858		if (!page) {
859			/*
860			 * We were not able to allocate enough pages to
861			 * satisfy the entire reservation so we free what
862			 * we've allocated so far.
863			 */
864			spin_lock(&hugetlb_lock);
865			needed = 0;
866			goto free;
867		}
868
869		list_add(&page->lru, &surplus_list);
870	}
871	allocated += needed;
872
873	/*
874	 * After retaking hugetlb_lock, we need to recalculate 'needed'
875	 * because either resv_huge_pages or free_huge_pages may have changed.
876	 */
877	spin_lock(&hugetlb_lock);
878	needed = (h->resv_huge_pages + delta) -
879			(h->free_huge_pages + allocated);
880	if (needed > 0)
881		goto retry;
882
883	/*
884	 * The surplus_list now contains _at_least_ the number of extra pages
885	 * needed to accomodate the reservation.  Add the appropriate number
886	 * of pages to the hugetlb pool and free the extras back to the buddy
887	 * allocator.  Commit the entire reservation here to prevent another
888	 * process from stealing the pages as they are added to the pool but
889	 * before they are reserved.
890	 */
891	needed += allocated;
892	h->resv_huge_pages += delta;
893	ret = 0;
894free:
895	/* Free the needed pages to the hugetlb pool */
896	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
897		if ((--needed) < 0)
898			break;
899		list_del(&page->lru);
900		enqueue_huge_page(h, page);
901	}
902
903	/* Free unnecessary surplus pages to the buddy allocator */
904	if (!list_empty(&surplus_list)) {
905		spin_unlock(&hugetlb_lock);
906		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
907			list_del(&page->lru);
908			/*
909			 * The page has a reference count of zero already, so
910			 * call free_huge_page directly instead of using
911			 * put_page.  This must be done with hugetlb_lock
912			 * unlocked which is safe because free_huge_page takes
913			 * hugetlb_lock before deciding how to free the page.
914			 */
915			free_huge_page(page);
916		}
917		spin_lock(&hugetlb_lock);
918	}
919
920	return ret;
921}
922
923/*
924 * When releasing a hugetlb pool reservation, any surplus pages that were
925 * allocated to satisfy the reservation must be explicitly freed if they were
926 * never used.
927 * Called with hugetlb_lock held.
928 */
929static void return_unused_surplus_pages(struct hstate *h,
930					unsigned long unused_resv_pages)
931{
932	unsigned long nr_pages;
933
934	/* Uncommit the reservation */
935	h->resv_huge_pages -= unused_resv_pages;
936
937	/* Cannot return gigantic pages currently */
938	if (h->order >= MAX_ORDER)
939		return;
940
941	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
942
943	/*
944	 * We want to release as many surplus pages as possible, spread
945	 * evenly across all nodes with memory. Iterate across these nodes
946	 * until we can no longer free unreserved surplus pages. This occurs
947	 * when the nodes with surplus pages have no free pages.
948	 * free_pool_huge_page() will balance the the freed pages across the
949	 * on-line nodes with memory and will handle the hstate accounting.
950	 */
951	while (nr_pages--) {
952		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
953			break;
954	}
955}
956
957/*
958 * Determine if the huge page at addr within the vma has an associated
959 * reservation.  Where it does not we will need to logically increase
960 * reservation and actually increase quota before an allocation can occur.
961 * Where any new reservation would be required the reservation change is
962 * prepared, but not committed.  Once the page has been quota'd allocated
963 * an instantiated the change should be committed via vma_commit_reservation.
964 * No action is required on failure.
965 */
966static long vma_needs_reservation(struct hstate *h,
967			struct vm_area_struct *vma, unsigned long addr)
968{
969	struct address_space *mapping = vma->vm_file->f_mapping;
970	struct inode *inode = mapping->host;
971
972	if (vma->vm_flags & VM_MAYSHARE) {
973		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
974		return region_chg(&inode->i_mapping->private_list,
975							idx, idx + 1);
976
977	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
978		return 1;
979
980	} else  {
981		long err;
982		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
983		struct resv_map *reservations = vma_resv_map(vma);
984
985		err = region_chg(&reservations->regions, idx, idx + 1);
986		if (err < 0)
987			return err;
988		return 0;
989	}
990}
991static void vma_commit_reservation(struct hstate *h,
992			struct vm_area_struct *vma, unsigned long addr)
993{
994	struct address_space *mapping = vma->vm_file->f_mapping;
995	struct inode *inode = mapping->host;
996
997	if (vma->vm_flags & VM_MAYSHARE) {
998		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
999		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1000
1001	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1003		struct resv_map *reservations = vma_resv_map(vma);
1004
1005		/* Mark this page used in the map. */
1006		region_add(&reservations->regions, idx, idx + 1);
1007	}
1008}
1009
1010static struct page *alloc_huge_page(struct vm_area_struct *vma,
1011				    unsigned long addr, int avoid_reserve)
1012{
1013	struct hstate *h = hstate_vma(vma);
1014	struct page *page;
1015	struct address_space *mapping = vma->vm_file->f_mapping;
1016	struct inode *inode = mapping->host;
1017	long chg;
1018
1019	/*
1020	 * Processes that did not create the mapping will have no reserves and
1021	 * will not have accounted against quota. Check that the quota can be
1022	 * made before satisfying the allocation
1023	 * MAP_NORESERVE mappings may also need pages and quota allocated
1024	 * if no reserve mapping overlaps.
1025	 */
1026	chg = vma_needs_reservation(h, vma, addr);
1027	if (chg < 0)
1028		return ERR_PTR(chg);
1029	if (chg)
1030		if (hugetlb_get_quota(inode->i_mapping, chg))
1031			return ERR_PTR(-ENOSPC);
1032
1033	spin_lock(&hugetlb_lock);
1034	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1035	spin_unlock(&hugetlb_lock);
1036
1037	if (!page) {
1038		page = alloc_buddy_huge_page(h, vma, addr);
1039		if (!page) {
1040			hugetlb_put_quota(inode->i_mapping, chg);
1041			return ERR_PTR(-VM_FAULT_OOM);
1042		}
1043	}
1044
1045	set_page_refcounted(page);
1046	set_page_private(page, (unsigned long) mapping);
1047
1048	vma_commit_reservation(h, vma, addr);
1049
1050	return page;
1051}
1052
1053int __weak alloc_bootmem_huge_page(struct hstate *h)
1054{
1055	struct huge_bootmem_page *m;
1056	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1057
1058	while (nr_nodes) {
1059		void *addr;
1060
1061		addr = __alloc_bootmem_node_nopanic(
1062				NODE_DATA(hstate_next_node_to_alloc(h,
1063						&node_states[N_HIGH_MEMORY])),
1064				huge_page_size(h), huge_page_size(h), 0);
1065
1066		if (addr) {
1067			/*
1068			 * Use the beginning of the huge page to store the
1069			 * huge_bootmem_page struct (until gather_bootmem
1070			 * puts them into the mem_map).
1071			 */
1072			m = addr;
1073			goto found;
1074		}
1075		nr_nodes--;
1076	}
1077	return 0;
1078
1079found:
1080	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1081	/* Put them into a private list first because mem_map is not up yet */
1082	list_add(&m->list, &huge_boot_pages);
1083	m->hstate = h;
1084	return 1;
1085}
1086
1087static void prep_compound_huge_page(struct page *page, int order)
1088{
1089	if (unlikely(order > (MAX_ORDER - 1)))
1090		prep_compound_gigantic_page(page, order);
1091	else
1092		prep_compound_page(page, order);
1093}
1094
1095/* Put bootmem huge pages into the standard lists after mem_map is up */
1096static void __init gather_bootmem_prealloc(void)
1097{
1098	struct huge_bootmem_page *m;
1099
1100	list_for_each_entry(m, &huge_boot_pages, list) {
1101		struct page *page = virt_to_page(m);
1102		struct hstate *h = m->hstate;
1103		__ClearPageReserved(page);
1104		WARN_ON(page_count(page) != 1);
1105		prep_compound_huge_page(page, h->order);
1106		prep_new_huge_page(h, page, page_to_nid(page));
1107	}
1108}
1109
1110static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1111{
1112	unsigned long i;
1113
1114	for (i = 0; i < h->max_huge_pages; ++i) {
1115		if (h->order >= MAX_ORDER) {
1116			if (!alloc_bootmem_huge_page(h))
1117				break;
1118		} else if (!alloc_fresh_huge_page(h,
1119					 &node_states[N_HIGH_MEMORY]))
1120			break;
1121	}
1122	h->max_huge_pages = i;
1123}
1124
1125static void __init hugetlb_init_hstates(void)
1126{
1127	struct hstate *h;
1128
1129	for_each_hstate(h) {
1130		/* oversize hugepages were init'ed in early boot */
1131		if (h->order < MAX_ORDER)
1132			hugetlb_hstate_alloc_pages(h);
1133	}
1134}
1135
1136static char * __init memfmt(char *buf, unsigned long n)
1137{
1138	if (n >= (1UL << 30))
1139		sprintf(buf, "%lu GB", n >> 30);
1140	else if (n >= (1UL << 20))
1141		sprintf(buf, "%lu MB", n >> 20);
1142	else
1143		sprintf(buf, "%lu KB", n >> 10);
1144	return buf;
1145}
1146
1147static void __init report_hugepages(void)
1148{
1149	struct hstate *h;
1150
1151	for_each_hstate(h) {
1152		char buf[32];
1153		printk(KERN_INFO "HugeTLB registered %s page size, "
1154				 "pre-allocated %ld pages\n",
1155			memfmt(buf, huge_page_size(h)),
1156			h->free_huge_pages);
1157	}
1158}
1159
1160#ifdef CONFIG_HIGHMEM
1161static void try_to_free_low(struct hstate *h, unsigned long count,
1162						nodemask_t *nodes_allowed)
1163{
1164	int i;
1165
1166	if (h->order >= MAX_ORDER)
1167		return;
1168
1169	for_each_node_mask(i, *nodes_allowed) {
1170		struct page *page, *next;
1171		struct list_head *freel = &h->hugepage_freelists[i];
1172		list_for_each_entry_safe(page, next, freel, lru) {
1173			if (count >= h->nr_huge_pages)
1174				return;
1175			if (PageHighMem(page))
1176				continue;
1177			list_del(&page->lru);
1178			update_and_free_page(h, page);
1179			h->free_huge_pages--;
1180			h->free_huge_pages_node[page_to_nid(page)]--;
1181		}
1182	}
1183}
1184#else
1185static inline void try_to_free_low(struct hstate *h, unsigned long count,
1186						nodemask_t *nodes_allowed)
1187{
1188}
1189#endif
1190
1191/*
1192 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1193 * balanced by operating on them in a round-robin fashion.
1194 * Returns 1 if an adjustment was made.
1195 */
1196static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1197				int delta)
1198{
1199	int start_nid, next_nid;
1200	int ret = 0;
1201
1202	VM_BUG_ON(delta != -1 && delta != 1);
1203
1204	if (delta < 0)
1205		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1206	else
1207		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1208	next_nid = start_nid;
1209
1210	do {
1211		int nid = next_nid;
1212		if (delta < 0)  {
1213			/*
1214			 * To shrink on this node, there must be a surplus page
1215			 */
1216			if (!h->surplus_huge_pages_node[nid]) {
1217				next_nid = hstate_next_node_to_alloc(h,
1218								nodes_allowed);
1219				continue;
1220			}
1221		}
1222		if (delta > 0) {
1223			/*
1224			 * Surplus cannot exceed the total number of pages
1225			 */
1226			if (h->surplus_huge_pages_node[nid] >=
1227						h->nr_huge_pages_node[nid]) {
1228				next_nid = hstate_next_node_to_free(h,
1229								nodes_allowed);
1230				continue;
1231			}
1232		}
1233
1234		h->surplus_huge_pages += delta;
1235		h->surplus_huge_pages_node[nid] += delta;
1236		ret = 1;
1237		break;
1238	} while (next_nid != start_nid);
1239
1240	return ret;
1241}
1242
1243#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1244static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1245						nodemask_t *nodes_allowed)
1246{
1247	unsigned long min_count, ret;
1248
1249	if (h->order >= MAX_ORDER)
1250		return h->max_huge_pages;
1251
1252	/*
1253	 * Increase the pool size
1254	 * First take pages out of surplus state.  Then make up the
1255	 * remaining difference by allocating fresh huge pages.
1256	 *
1257	 * We might race with alloc_buddy_huge_page() here and be unable
1258	 * to convert a surplus huge page to a normal huge page. That is
1259	 * not critical, though, it just means the overall size of the
1260	 * pool might be one hugepage larger than it needs to be, but
1261	 * within all the constraints specified by the sysctls.
1262	 */
1263	spin_lock(&hugetlb_lock);
1264	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1265		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1266			break;
1267	}
1268
1269	while (count > persistent_huge_pages(h)) {
1270		/*
1271		 * If this allocation races such that we no longer need the
1272		 * page, free_huge_page will handle it by freeing the page
1273		 * and reducing the surplus.
1274		 */
1275		spin_unlock(&hugetlb_lock);
1276		ret = alloc_fresh_huge_page(h, nodes_allowed);
1277		spin_lock(&hugetlb_lock);
1278		if (!ret)
1279			goto out;
1280
1281		/* Bail for signals. Probably ctrl-c from user */
1282		if (signal_pending(current))
1283			goto out;
1284	}
1285
1286	/*
1287	 * Decrease the pool size
1288	 * First return free pages to the buddy allocator (being careful
1289	 * to keep enough around to satisfy reservations).  Then place
1290	 * pages into surplus state as needed so the pool will shrink
1291	 * to the desired size as pages become free.
1292	 *
1293	 * By placing pages into the surplus state independent of the
1294	 * overcommit value, we are allowing the surplus pool size to
1295	 * exceed overcommit. There are few sane options here. Since
1296	 * alloc_buddy_huge_page() is checking the global counter,
1297	 * though, we'll note that we're not allowed to exceed surplus
1298	 * and won't grow the pool anywhere else. Not until one of the
1299	 * sysctls are changed, or the surplus pages go out of use.
1300	 */
1301	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1302	min_count = max(count, min_count);
1303	try_to_free_low(h, min_count, nodes_allowed);
1304	while (min_count < persistent_huge_pages(h)) {
1305		if (!free_pool_huge_page(h, nodes_allowed, 0))
1306			break;
1307	}
1308	while (count < persistent_huge_pages(h)) {
1309		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1310			break;
1311	}
1312out:
1313	ret = persistent_huge_pages(h);
1314	spin_unlock(&hugetlb_lock);
1315	return ret;
1316}
1317
1318#define HSTATE_ATTR_RO(_name) \
1319	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1320
1321#define HSTATE_ATTR(_name) \
1322	static struct kobj_attribute _name##_attr = \
1323		__ATTR(_name, 0644, _name##_show, _name##_store)
1324
1325static struct kobject *hugepages_kobj;
1326static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1327
1328static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1329
1330static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1331{
1332	int i;
1333
1334	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1335		if (hstate_kobjs[i] == kobj) {
1336			if (nidp)
1337				*nidp = NUMA_NO_NODE;
1338			return &hstates[i];
1339		}
1340
1341	return kobj_to_node_hstate(kobj, nidp);
1342}
1343
1344static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1345					struct kobj_attribute *attr, char *buf)
1346{
1347	struct hstate *h;
1348	unsigned long nr_huge_pages;
1349	int nid;
1350
1351	h = kobj_to_hstate(kobj, &nid);
1352	if (nid == NUMA_NO_NODE)
1353		nr_huge_pages = h->nr_huge_pages;
1354	else
1355		nr_huge_pages = h->nr_huge_pages_node[nid];
1356
1357	return sprintf(buf, "%lu\n", nr_huge_pages);
1358}
1359static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1360			struct kobject *kobj, struct kobj_attribute *attr,
1361			const char *buf, size_t len)
1362{
1363	int err;
1364	int nid;
1365	unsigned long count;
1366	struct hstate *h;
1367	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1368
1369	err = strict_strtoul(buf, 10, &count);
1370	if (err)
1371		return 0;
1372
1373	h = kobj_to_hstate(kobj, &nid);
1374	if (nid == NUMA_NO_NODE) {
1375		/*
1376		 * global hstate attribute
1377		 */
1378		if (!(obey_mempolicy &&
1379				init_nodemask_of_mempolicy(nodes_allowed))) {
1380			NODEMASK_FREE(nodes_allowed);
1381			nodes_allowed = &node_states[N_HIGH_MEMORY];
1382		}
1383	} else if (nodes_allowed) {
1384		/*
1385		 * per node hstate attribute: adjust count to global,
1386		 * but restrict alloc/free to the specified node.
1387		 */
1388		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1389		init_nodemask_of_node(nodes_allowed, nid);
1390	} else
1391		nodes_allowed = &node_states[N_HIGH_MEMORY];
1392
1393	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1394
1395	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1396		NODEMASK_FREE(nodes_allowed);
1397
1398	return len;
1399}
1400
1401static ssize_t nr_hugepages_show(struct kobject *kobj,
1402				       struct kobj_attribute *attr, char *buf)
1403{
1404	return nr_hugepages_show_common(kobj, attr, buf);
1405}
1406
1407static ssize_t nr_hugepages_store(struct kobject *kobj,
1408	       struct kobj_attribute *attr, const char *buf, size_t len)
1409{
1410	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1411}
1412HSTATE_ATTR(nr_hugepages);
1413
1414#ifdef CONFIG_NUMA
1415
1416/*
1417 * hstate attribute for optionally mempolicy-based constraint on persistent
1418 * huge page alloc/free.
1419 */
1420static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1421				       struct kobj_attribute *attr, char *buf)
1422{
1423	return nr_hugepages_show_common(kobj, attr, buf);
1424}
1425
1426static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1427	       struct kobj_attribute *attr, const char *buf, size_t len)
1428{
1429	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1430}
1431HSTATE_ATTR(nr_hugepages_mempolicy);
1432#endif
1433
1434
1435static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1436					struct kobj_attribute *attr, char *buf)
1437{
1438	struct hstate *h = kobj_to_hstate(kobj, NULL);
1439	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1440}
1441static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1442		struct kobj_attribute *attr, const char *buf, size_t count)
1443{
1444	int err;
1445	unsigned long input;
1446	struct hstate *h = kobj_to_hstate(kobj, NULL);
1447
1448	err = strict_strtoul(buf, 10, &input);
1449	if (err)
1450		return 0;
1451
1452	spin_lock(&hugetlb_lock);
1453	h->nr_overcommit_huge_pages = input;
1454	spin_unlock(&hugetlb_lock);
1455
1456	return count;
1457}
1458HSTATE_ATTR(nr_overcommit_hugepages);
1459
1460static ssize_t free_hugepages_show(struct kobject *kobj,
1461					struct kobj_attribute *attr, char *buf)
1462{
1463	struct hstate *h;
1464	unsigned long free_huge_pages;
1465	int nid;
1466
1467	h = kobj_to_hstate(kobj, &nid);
1468	if (nid == NUMA_NO_NODE)
1469		free_huge_pages = h->free_huge_pages;
1470	else
1471		free_huge_pages = h->free_huge_pages_node[nid];
1472
1473	return sprintf(buf, "%lu\n", free_huge_pages);
1474}
1475HSTATE_ATTR_RO(free_hugepages);
1476
1477static ssize_t resv_hugepages_show(struct kobject *kobj,
1478					struct kobj_attribute *attr, char *buf)
1479{
1480	struct hstate *h = kobj_to_hstate(kobj, NULL);
1481	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1482}
1483HSTATE_ATTR_RO(resv_hugepages);
1484
1485static ssize_t surplus_hugepages_show(struct kobject *kobj,
1486					struct kobj_attribute *attr, char *buf)
1487{
1488	struct hstate *h;
1489	unsigned long surplus_huge_pages;
1490	int nid;
1491
1492	h = kobj_to_hstate(kobj, &nid);
1493	if (nid == NUMA_NO_NODE)
1494		surplus_huge_pages = h->surplus_huge_pages;
1495	else
1496		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1497
1498	return sprintf(buf, "%lu\n", surplus_huge_pages);
1499}
1500HSTATE_ATTR_RO(surplus_hugepages);
1501
1502static struct attribute *hstate_attrs[] = {
1503	&nr_hugepages_attr.attr,
1504	&nr_overcommit_hugepages_attr.attr,
1505	&free_hugepages_attr.attr,
1506	&resv_hugepages_attr.attr,
1507	&surplus_hugepages_attr.attr,
1508#ifdef CONFIG_NUMA
1509	&nr_hugepages_mempolicy_attr.attr,
1510#endif
1511	NULL,
1512};
1513
1514static struct attribute_group hstate_attr_group = {
1515	.attrs = hstate_attrs,
1516};
1517
1518static int __init hugetlb_sysfs_add_hstate(struct hstate *h,
1519				struct kobject *parent,
1520				struct kobject **hstate_kobjs,
1521				struct attribute_group *hstate_attr_group)
1522{
1523	int retval;
1524	int hi = h - hstates;
1525
1526	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1527	if (!hstate_kobjs[hi])
1528		return -ENOMEM;
1529
1530	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1531	if (retval)
1532		kobject_put(hstate_kobjs[hi]);
1533
1534	return retval;
1535}
1536
1537static void __init hugetlb_sysfs_init(void)
1538{
1539	struct hstate *h;
1540	int err;
1541
1542	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1543	if (!hugepages_kobj)
1544		return;
1545
1546	for_each_hstate(h) {
1547		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1548					 hstate_kobjs, &hstate_attr_group);
1549		if (err)
1550			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1551								h->name);
1552	}
1553}
1554
1555#ifdef CONFIG_NUMA
1556
1557/*
1558 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1559 * with node sysdevs in node_devices[] using a parallel array.  The array
1560 * index of a node sysdev or _hstate == node id.
1561 * This is here to avoid any static dependency of the node sysdev driver, in
1562 * the base kernel, on the hugetlb module.
1563 */
1564struct node_hstate {
1565	struct kobject		*hugepages_kobj;
1566	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1567};
1568struct node_hstate node_hstates[MAX_NUMNODES];
1569
1570/*
1571 * A subset of global hstate attributes for node sysdevs
1572 */
1573static struct attribute *per_node_hstate_attrs[] = {
1574	&nr_hugepages_attr.attr,
1575	&free_hugepages_attr.attr,
1576	&surplus_hugepages_attr.attr,
1577	NULL,
1578};
1579
1580static struct attribute_group per_node_hstate_attr_group = {
1581	.attrs = per_node_hstate_attrs,
1582};
1583
1584/*
1585 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1586 * Returns node id via non-NULL nidp.
1587 */
1588static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1589{
1590	int nid;
1591
1592	for (nid = 0; nid < nr_node_ids; nid++) {
1593		struct node_hstate *nhs = &node_hstates[nid];
1594		int i;
1595		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1596			if (nhs->hstate_kobjs[i] == kobj) {
1597				if (nidp)
1598					*nidp = nid;
1599				return &hstates[i];
1600			}
1601	}
1602
1603	BUG();
1604	return NULL;
1605}
1606
1607/*
1608 * Unregister hstate attributes from a single node sysdev.
1609 * No-op if no hstate attributes attached.
1610 */
1611void hugetlb_unregister_node(struct node *node)
1612{
1613	struct hstate *h;
1614	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1615
1616	if (!nhs->hugepages_kobj)
1617		return;		/* no hstate attributes */
1618
1619	for_each_hstate(h)
1620		if (nhs->hstate_kobjs[h - hstates]) {
1621			kobject_put(nhs->hstate_kobjs[h - hstates]);
1622			nhs->hstate_kobjs[h - hstates] = NULL;
1623		}
1624
1625	kobject_put(nhs->hugepages_kobj);
1626	nhs->hugepages_kobj = NULL;
1627}
1628
1629/*
1630 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1631 * that have them.
1632 */
1633static void hugetlb_unregister_all_nodes(void)
1634{
1635	int nid;
1636
1637	/*
1638	 * disable node sysdev registrations.
1639	 */
1640	register_hugetlbfs_with_node(NULL, NULL);
1641
1642	/*
1643	 * remove hstate attributes from any nodes that have them.
1644	 */
1645	for (nid = 0; nid < nr_node_ids; nid++)
1646		hugetlb_unregister_node(&node_devices[nid]);
1647}
1648
1649/*
1650 * Register hstate attributes for a single node sysdev.
1651 * No-op if attributes already registered.
1652 */
1653void hugetlb_register_node(struct node *node)
1654{
1655	struct hstate *h;
1656	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1657	int err;
1658
1659	if (nhs->hugepages_kobj)
1660		return;		/* already allocated */
1661
1662	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1663							&node->sysdev.kobj);
1664	if (!nhs->hugepages_kobj)
1665		return;
1666
1667	for_each_hstate(h) {
1668		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1669						nhs->hstate_kobjs,
1670						&per_node_hstate_attr_group);
1671		if (err) {
1672			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1673					" for node %d\n",
1674						h->name, node->sysdev.id);
1675			hugetlb_unregister_node(node);
1676			break;
1677		}
1678	}
1679}
1680
1681/*
1682 * hugetlb init time:  register hstate attributes for all registered node
1683 * sysdevs of nodes that have memory.  All on-line nodes should have
1684 * registered their associated sysdev by this time.
1685 */
1686static void hugetlb_register_all_nodes(void)
1687{
1688	int nid;
1689
1690	for_each_node_state(nid, N_HIGH_MEMORY) {
1691		struct node *node = &node_devices[nid];
1692		if (node->sysdev.id == nid)
1693			hugetlb_register_node(node);
1694	}
1695
1696	/*
1697	 * Let the node sysdev driver know we're here so it can
1698	 * [un]register hstate attributes on node hotplug.
1699	 */
1700	register_hugetlbfs_with_node(hugetlb_register_node,
1701				     hugetlb_unregister_node);
1702}
1703#else	/* !CONFIG_NUMA */
1704
1705static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1706{
1707	BUG();
1708	if (nidp)
1709		*nidp = -1;
1710	return NULL;
1711}
1712
1713static void hugetlb_unregister_all_nodes(void) { }
1714
1715static void hugetlb_register_all_nodes(void) { }
1716
1717#endif
1718
1719static void __exit hugetlb_exit(void)
1720{
1721	struct hstate *h;
1722
1723	hugetlb_unregister_all_nodes();
1724
1725	for_each_hstate(h) {
1726		kobject_put(hstate_kobjs[h - hstates]);
1727	}
1728
1729	kobject_put(hugepages_kobj);
1730}
1731module_exit(hugetlb_exit);
1732
1733static int __init hugetlb_init(void)
1734{
1735	/* Some platform decide whether they support huge pages at boot
1736	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1737	 * there is no such support
1738	 */
1739	if (HPAGE_SHIFT == 0)
1740		return 0;
1741
1742	if (!size_to_hstate(default_hstate_size)) {
1743		default_hstate_size = HPAGE_SIZE;
1744		if (!size_to_hstate(default_hstate_size))
1745			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1746	}
1747	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1748	if (default_hstate_max_huge_pages)
1749		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1750
1751	hugetlb_init_hstates();
1752
1753	gather_bootmem_prealloc();
1754
1755	report_hugepages();
1756
1757	hugetlb_sysfs_init();
1758
1759	hugetlb_register_all_nodes();
1760
1761	return 0;
1762}
1763module_init(hugetlb_init);
1764
1765/* Should be called on processing a hugepagesz=... option */
1766void __init hugetlb_add_hstate(unsigned order)
1767{
1768	struct hstate *h;
1769	unsigned long i;
1770
1771	if (size_to_hstate(PAGE_SIZE << order)) {
1772		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1773		return;
1774	}
1775	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1776	BUG_ON(order == 0);
1777	h = &hstates[max_hstate++];
1778	h->order = order;
1779	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1780	h->nr_huge_pages = 0;
1781	h->free_huge_pages = 0;
1782	for (i = 0; i < MAX_NUMNODES; ++i)
1783		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1784	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1785	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1786	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1787					huge_page_size(h)/1024);
1788
1789	parsed_hstate = h;
1790}
1791
1792static int __init hugetlb_nrpages_setup(char *s)
1793{
1794	unsigned long *mhp;
1795	static unsigned long *last_mhp;
1796
1797	/*
1798	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1799	 * so this hugepages= parameter goes to the "default hstate".
1800	 */
1801	if (!max_hstate)
1802		mhp = &default_hstate_max_huge_pages;
1803	else
1804		mhp = &parsed_hstate->max_huge_pages;
1805
1806	if (mhp == last_mhp) {
1807		printk(KERN_WARNING "hugepages= specified twice without "
1808			"interleaving hugepagesz=, ignoring\n");
1809		return 1;
1810	}
1811
1812	if (sscanf(s, "%lu", mhp) <= 0)
1813		*mhp = 0;
1814
1815	/*
1816	 * Global state is always initialized later in hugetlb_init.
1817	 * But we need to allocate >= MAX_ORDER hstates here early to still
1818	 * use the bootmem allocator.
1819	 */
1820	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1821		hugetlb_hstate_alloc_pages(parsed_hstate);
1822
1823	last_mhp = mhp;
1824
1825	return 1;
1826}
1827__setup("hugepages=", hugetlb_nrpages_setup);
1828
1829static int __init hugetlb_default_setup(char *s)
1830{
1831	default_hstate_size = memparse(s, &s);
1832	return 1;
1833}
1834__setup("default_hugepagesz=", hugetlb_default_setup);
1835
1836static unsigned int cpuset_mems_nr(unsigned int *array)
1837{
1838	int node;
1839	unsigned int nr = 0;
1840
1841	for_each_node_mask(node, cpuset_current_mems_allowed)
1842		nr += array[node];
1843
1844	return nr;
1845}
1846
1847#ifdef CONFIG_SYSCTL
1848static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1849			 struct ctl_table *table, int write,
1850			 void __user *buffer, size_t *length, loff_t *ppos)
1851{
1852	struct hstate *h = &default_hstate;
1853	unsigned long tmp;
1854
1855	if (!write)
1856		tmp = h->max_huge_pages;
1857
1858	table->data = &tmp;
1859	table->maxlen = sizeof(unsigned long);
1860	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1861
1862	if (write) {
1863		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1864						GFP_KERNEL | __GFP_NORETRY);
1865		if (!(obey_mempolicy &&
1866			       init_nodemask_of_mempolicy(nodes_allowed))) {
1867			NODEMASK_FREE(nodes_allowed);
1868			nodes_allowed = &node_states[N_HIGH_MEMORY];
1869		}
1870		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1871
1872		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1873			NODEMASK_FREE(nodes_allowed);
1874	}
1875
1876	return 0;
1877}
1878
1879int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1880			  void __user *buffer, size_t *length, loff_t *ppos)
1881{
1882
1883	return hugetlb_sysctl_handler_common(false, table, write,
1884							buffer, length, ppos);
1885}
1886
1887#ifdef CONFIG_NUMA
1888int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1889			  void __user *buffer, size_t *length, loff_t *ppos)
1890{
1891	return hugetlb_sysctl_handler_common(true, table, write,
1892							buffer, length, ppos);
1893}
1894#endif /* CONFIG_NUMA */
1895
1896int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1897			void __user *buffer,
1898			size_t *length, loff_t *ppos)
1899{
1900	proc_dointvec(table, write, buffer, length, ppos);
1901	if (hugepages_treat_as_movable)
1902		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1903	else
1904		htlb_alloc_mask = GFP_HIGHUSER;
1905	return 0;
1906}
1907
1908int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1909			void __user *buffer,
1910			size_t *length, loff_t *ppos)
1911{
1912	struct hstate *h = &default_hstate;
1913	unsigned long tmp;
1914
1915	if (!write)
1916		tmp = h->nr_overcommit_huge_pages;
1917
1918	table->data = &tmp;
1919	table->maxlen = sizeof(unsigned long);
1920	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1921
1922	if (write) {
1923		spin_lock(&hugetlb_lock);
1924		h->nr_overcommit_huge_pages = tmp;
1925		spin_unlock(&hugetlb_lock);
1926	}
1927
1928	return 0;
1929}
1930
1931#endif /* CONFIG_SYSCTL */
1932
1933void hugetlb_report_meminfo(struct seq_file *m)
1934{
1935	struct hstate *h = &default_hstate;
1936	seq_printf(m,
1937			"HugePages_Total:   %5lu\n"
1938			"HugePages_Free:    %5lu\n"
1939			"HugePages_Rsvd:    %5lu\n"
1940			"HugePages_Surp:    %5lu\n"
1941			"Hugepagesize:   %8lu kB\n",
1942			h->nr_huge_pages,
1943			h->free_huge_pages,
1944			h->resv_huge_pages,
1945			h->surplus_huge_pages,
1946			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1947}
1948
1949int hugetlb_report_node_meminfo(int nid, char *buf)
1950{
1951	struct hstate *h = &default_hstate;
1952	return sprintf(buf,
1953		"Node %d HugePages_Total: %5u\n"
1954		"Node %d HugePages_Free:  %5u\n"
1955		"Node %d HugePages_Surp:  %5u\n",
1956		nid, h->nr_huge_pages_node[nid],
1957		nid, h->free_huge_pages_node[nid],
1958		nid, h->surplus_huge_pages_node[nid]);
1959}
1960
1961/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1962unsigned long hugetlb_total_pages(void)
1963{
1964	struct hstate *h = &default_hstate;
1965	return h->nr_huge_pages * pages_per_huge_page(h);
1966}
1967
1968static int hugetlb_acct_memory(struct hstate *h, long delta)
1969{
1970	int ret = -ENOMEM;
1971
1972	spin_lock(&hugetlb_lock);
1973	/*
1974	 * When cpuset is configured, it breaks the strict hugetlb page
1975	 * reservation as the accounting is done on a global variable. Such
1976	 * reservation is completely rubbish in the presence of cpuset because
1977	 * the reservation is not checked against page availability for the
1978	 * current cpuset. Application can still potentially OOM'ed by kernel
1979	 * with lack of free htlb page in cpuset that the task is in.
1980	 * Attempt to enforce strict accounting with cpuset is almost
1981	 * impossible (or too ugly) because cpuset is too fluid that
1982	 * task or memory node can be dynamically moved between cpusets.
1983	 *
1984	 * The change of semantics for shared hugetlb mapping with cpuset is
1985	 * undesirable. However, in order to preserve some of the semantics,
1986	 * we fall back to check against current free page availability as
1987	 * a best attempt and hopefully to minimize the impact of changing
1988	 * semantics that cpuset has.
1989	 */
1990	if (delta > 0) {
1991		if (gather_surplus_pages(h, delta) < 0)
1992			goto out;
1993
1994		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1995			return_unused_surplus_pages(h, delta);
1996			goto out;
1997		}
1998	}
1999
2000	ret = 0;
2001	if (delta < 0)
2002		return_unused_surplus_pages(h, (unsigned long) -delta);
2003
2004out:
2005	spin_unlock(&hugetlb_lock);
2006	return ret;
2007}
2008
2009static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2010{
2011	struct resv_map *reservations = vma_resv_map(vma);
2012
2013	/*
2014	 * This new VMA should share its siblings reservation map if present.
2015	 * The VMA will only ever have a valid reservation map pointer where
2016	 * it is being copied for another still existing VMA.  As that VMA
2017	 * has a reference to the reservation map it cannot dissappear until
2018	 * after this open call completes.  It is therefore safe to take a
2019	 * new reference here without additional locking.
2020	 */
2021	if (reservations)
2022		kref_get(&reservations->refs);
2023}
2024
2025static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2026{
2027	struct hstate *h = hstate_vma(vma);
2028	struct resv_map *reservations = vma_resv_map(vma);
2029	unsigned long reserve;
2030	unsigned long start;
2031	unsigned long end;
2032
2033	if (reservations) {
2034		start = vma_hugecache_offset(h, vma, vma->vm_start);
2035		end = vma_hugecache_offset(h, vma, vma->vm_end);
2036
2037		reserve = (end - start) -
2038			region_count(&reservations->regions, start, end);
2039
2040		kref_put(&reservations->refs, resv_map_release);
2041
2042		if (reserve) {
2043			hugetlb_acct_memory(h, -reserve);
2044			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2045		}
2046	}
2047}
2048
2049/*
2050 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2051 * handle_mm_fault() to try to instantiate regular-sized pages in the
2052 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2053 * this far.
2054 */
2055static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2056{
2057	BUG();
2058	return 0;
2059}
2060
2061const struct vm_operations_struct hugetlb_vm_ops = {
2062	.fault = hugetlb_vm_op_fault,
2063	.open = hugetlb_vm_op_open,
2064	.close = hugetlb_vm_op_close,
2065};
2066
2067static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2068				int writable)
2069{
2070	pte_t entry;
2071
2072	if (writable) {
2073		entry =
2074		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2075	} else {
2076		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2077	}
2078	entry = pte_mkyoung(entry);
2079	entry = pte_mkhuge(entry);
2080
2081	return entry;
2082}
2083
2084static void set_huge_ptep_writable(struct vm_area_struct *vma,
2085				   unsigned long address, pte_t *ptep)
2086{
2087	pte_t entry;
2088
2089	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2090	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2091		update_mmu_cache(vma, address, entry);
2092	}
2093}
2094
2095
2096int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2097			    struct vm_area_struct *vma)
2098{
2099	pte_t *src_pte, *dst_pte, entry;
2100	struct page *ptepage;
2101	unsigned long addr;
2102	int cow;
2103	struct hstate *h = hstate_vma(vma);
2104	unsigned long sz = huge_page_size(h);
2105
2106	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2107
2108	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2109		src_pte = huge_pte_offset(src, addr);
2110		if (!src_pte)
2111			continue;
2112		dst_pte = huge_pte_alloc(dst, addr, sz);
2113		if (!dst_pte)
2114			goto nomem;
2115
2116		/* If the pagetables are shared don't copy or take references */
2117		if (dst_pte == src_pte)
2118			continue;
2119
2120		spin_lock(&dst->page_table_lock);
2121		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2122		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2123			if (cow)
2124				huge_ptep_set_wrprotect(src, addr, src_pte);
2125			entry = huge_ptep_get(src_pte);
2126			ptepage = pte_page(entry);
2127			get_page(ptepage);
2128			set_huge_pte_at(dst, addr, dst_pte, entry);
2129		}
2130		spin_unlock(&src->page_table_lock);
2131		spin_unlock(&dst->page_table_lock);
2132	}
2133	return 0;
2134
2135nomem:
2136	return -ENOMEM;
2137}
2138
2139void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2140			    unsigned long end, struct page *ref_page)
2141{
2142	struct mm_struct *mm = vma->vm_mm;
2143	unsigned long address;
2144	pte_t *ptep;
2145	pte_t pte;
2146	struct page *page;
2147	struct page *tmp;
2148	struct hstate *h = hstate_vma(vma);
2149	unsigned long sz = huge_page_size(h);
2150
2151	/*
2152	 * A page gathering list, protected by per file i_mmap_lock. The
2153	 * lock is used to avoid list corruption from multiple unmapping
2154	 * of the same page since we are using page->lru.
2155	 */
2156	LIST_HEAD(page_list);
2157
2158	WARN_ON(!is_vm_hugetlb_page(vma));
2159	BUG_ON(start & ~huge_page_mask(h));
2160	BUG_ON(end & ~huge_page_mask(h));
2161
2162	mmu_notifier_invalidate_range_start(mm, start, end);
2163	spin_lock(&mm->page_table_lock);
2164	for (address = start; address < end; address += sz) {
2165		ptep = huge_pte_offset(mm, address);
2166		if (!ptep)
2167			continue;
2168
2169		if (huge_pmd_unshare(mm, &address, ptep))
2170			continue;
2171
2172		/*
2173		 * If a reference page is supplied, it is because a specific
2174		 * page is being unmapped, not a range. Ensure the page we
2175		 * are about to unmap is the actual page of interest.
2176		 */
2177		if (ref_page) {
2178			pte = huge_ptep_get(ptep);
2179			if (huge_pte_none(pte))
2180				continue;
2181			page = pte_page(pte);
2182			if (page != ref_page)
2183				continue;
2184
2185			/*
2186			 * Mark the VMA as having unmapped its page so that
2187			 * future faults in this VMA will fail rather than
2188			 * looking like data was lost
2189			 */
2190			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2191		}
2192
2193		pte = huge_ptep_get_and_clear(mm, address, ptep);
2194		if (huge_pte_none(pte))
2195			continue;
2196
2197		page = pte_page(pte);
2198		if (pte_dirty(pte))
2199			set_page_dirty(page);
2200		list_add(&page->lru, &page_list);
2201	}
2202	spin_unlock(&mm->page_table_lock);
2203	flush_tlb_range(vma, start, end);
2204	mmu_notifier_invalidate_range_end(mm, start, end);
2205	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2206		list_del(&page->lru);
2207		put_page(page);
2208	}
2209}
2210
2211void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2212			  unsigned long end, struct page *ref_page)
2213{
2214	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2215	__unmap_hugepage_range(vma, start, end, ref_page);
2216	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2217}
2218
2219/*
2220 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2221 * mappping it owns the reserve page for. The intention is to unmap the page
2222 * from other VMAs and let the children be SIGKILLed if they are faulting the
2223 * same region.
2224 */
2225static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2226				struct page *page, unsigned long address)
2227{
2228	struct hstate *h = hstate_vma(vma);
2229	struct vm_area_struct *iter_vma;
2230	struct address_space *mapping;
2231	struct prio_tree_iter iter;
2232	pgoff_t pgoff;
2233
2234	/*
2235	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2236	 * from page cache lookup which is in HPAGE_SIZE units.
2237	 */
2238	address = address & huge_page_mask(h);
2239	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2240		+ (vma->vm_pgoff >> PAGE_SHIFT);
2241	mapping = (struct address_space *)page_private(page);
2242
2243	/*
2244	 * Take the mapping lock for the duration of the table walk. As
2245	 * this mapping should be shared between all the VMAs,
2246	 * __unmap_hugepage_range() is called as the lock is already held
2247	 */
2248	spin_lock(&mapping->i_mmap_lock);
2249	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2250		/* Do not unmap the current VMA */
2251		if (iter_vma == vma)
2252			continue;
2253
2254		/*
2255		 * Unmap the page from other VMAs without their own reserves.
2256		 * They get marked to be SIGKILLed if they fault in these
2257		 * areas. This is because a future no-page fault on this VMA
2258		 * could insert a zeroed page instead of the data existing
2259		 * from the time of fork. This would look like data corruption
2260		 */
2261		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2262			__unmap_hugepage_range(iter_vma,
2263				address, address + huge_page_size(h),
2264				page);
2265	}
2266	spin_unlock(&mapping->i_mmap_lock);
2267
2268	return 1;
2269}
2270
2271static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2272			unsigned long address, pte_t *ptep, pte_t pte,
2273			struct page *pagecache_page)
2274{
2275	struct hstate *h = hstate_vma(vma);
2276	struct page *old_page, *new_page;
2277	int avoidcopy;
2278	int outside_reserve = 0;
2279
2280	old_page = pte_page(pte);
2281
2282retry_avoidcopy:
2283	/* If no-one else is actually using this page, avoid the copy
2284	 * and just make the page writable */
2285	avoidcopy = (page_count(old_page) == 1);
2286	if (avoidcopy) {
2287		set_huge_ptep_writable(vma, address, ptep);
2288		return 0;
2289	}
2290
2291	/*
2292	 * If the process that created a MAP_PRIVATE mapping is about to
2293	 * perform a COW due to a shared page count, attempt to satisfy
2294	 * the allocation without using the existing reserves. The pagecache
2295	 * page is used to determine if the reserve at this address was
2296	 * consumed or not. If reserves were used, a partial faulted mapping
2297	 * at the time of fork() could consume its reserves on COW instead
2298	 * of the full address range.
2299	 */
2300	if (!(vma->vm_flags & VM_MAYSHARE) &&
2301			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2302			old_page != pagecache_page)
2303		outside_reserve = 1;
2304
2305	page_cache_get(old_page);
2306
2307	/* Drop page_table_lock as buddy allocator may be called */
2308	spin_unlock(&mm->page_table_lock);
2309	new_page = alloc_huge_page(vma, address, outside_reserve);
2310
2311	if (IS_ERR(new_page)) {
2312		page_cache_release(old_page);
2313
2314		/*
2315		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2316		 * it is due to references held by a child and an insufficient
2317		 * huge page pool. To guarantee the original mappers
2318		 * reliability, unmap the page from child processes. The child
2319		 * may get SIGKILLed if it later faults.
2320		 */
2321		if (outside_reserve) {
2322			BUG_ON(huge_pte_none(pte));
2323			if (unmap_ref_private(mm, vma, old_page, address)) {
2324				BUG_ON(page_count(old_page) != 1);
2325				BUG_ON(huge_pte_none(pte));
2326				spin_lock(&mm->page_table_lock);
2327				goto retry_avoidcopy;
2328			}
2329			WARN_ON_ONCE(1);
2330		}
2331
2332		/* Caller expects lock to be held */
2333		spin_lock(&mm->page_table_lock);
2334		return -PTR_ERR(new_page);
2335	}
2336
2337	copy_huge_page(new_page, old_page, address, vma);
2338	__SetPageUptodate(new_page);
2339
2340	/*
2341	 * Retake the page_table_lock to check for racing updates
2342	 * before the page tables are altered
2343	 */
2344	spin_lock(&mm->page_table_lock);
2345	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2346	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2347		/* Break COW */
2348		huge_ptep_clear_flush(vma, address, ptep);
2349		set_huge_pte_at(mm, address, ptep,
2350				make_huge_pte(vma, new_page, 1));
2351		/* Make the old page be freed below */
2352		new_page = old_page;
2353	}
2354	page_cache_release(new_page);
2355	page_cache_release(old_page);
2356	return 0;
2357}
2358
2359/* Return the pagecache page at a given address within a VMA */
2360static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2361			struct vm_area_struct *vma, unsigned long address)
2362{
2363	struct address_space *mapping;
2364	pgoff_t idx;
2365
2366	mapping = vma->vm_file->f_mapping;
2367	idx = vma_hugecache_offset(h, vma, address);
2368
2369	return find_lock_page(mapping, idx);
2370}
2371
2372/*
2373 * Return whether there is a pagecache page to back given address within VMA.
2374 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2375 */
2376static bool hugetlbfs_pagecache_present(struct hstate *h,
2377			struct vm_area_struct *vma, unsigned long address)
2378{
2379	struct address_space *mapping;
2380	pgoff_t idx;
2381	struct page *page;
2382
2383	mapping = vma->vm_file->f_mapping;
2384	idx = vma_hugecache_offset(h, vma, address);
2385
2386	page = find_get_page(mapping, idx);
2387	if (page)
2388		put_page(page);
2389	return page != NULL;
2390}
2391
2392static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2393			unsigned long address, pte_t *ptep, unsigned int flags)
2394{
2395	struct hstate *h = hstate_vma(vma);
2396	int ret = VM_FAULT_SIGBUS;
2397	pgoff_t idx;
2398	unsigned long size;
2399	struct page *page;
2400	struct address_space *mapping;
2401	pte_t new_pte;
2402
2403	/*
2404	 * Currently, we are forced to kill the process in the event the
2405	 * original mapper has unmapped pages from the child due to a failed
2406	 * COW. Warn that such a situation has occured as it may not be obvious
2407	 */
2408	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2409		printk(KERN_WARNING
2410			"PID %d killed due to inadequate hugepage pool\n",
2411			current->pid);
2412		return ret;
2413	}
2414
2415	mapping = vma->vm_file->f_mapping;
2416	idx = vma_hugecache_offset(h, vma, address);
2417
2418	/*
2419	 * Use page lock to guard against racing truncation
2420	 * before we get page_table_lock.
2421	 */
2422retry:
2423	page = find_lock_page(mapping, idx);
2424	if (!page) {
2425		size = i_size_read(mapping->host) >> huge_page_shift(h);
2426		if (idx >= size)
2427			goto out;
2428		page = alloc_huge_page(vma, address, 0);
2429		if (IS_ERR(page)) {
2430			ret = -PTR_ERR(page);
2431			goto out;
2432		}
2433		clear_huge_page(page, address, huge_page_size(h));
2434		__SetPageUptodate(page);
2435
2436		if (vma->vm_flags & VM_MAYSHARE) {
2437			int err;
2438			struct inode *inode = mapping->host;
2439
2440			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2441			if (err) {
2442				put_page(page);
2443				if (err == -EEXIST)
2444					goto retry;
2445				goto out;
2446			}
2447
2448			spin_lock(&inode->i_lock);
2449			inode->i_blocks += blocks_per_huge_page(h);
2450			spin_unlock(&inode->i_lock);
2451		} else
2452			lock_page(page);
2453	}
2454
2455	/*
2456	 * If we are going to COW a private mapping later, we examine the
2457	 * pending reservations for this page now. This will ensure that
2458	 * any allocations necessary to record that reservation occur outside
2459	 * the spinlock.
2460	 */
2461	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2462		if (vma_needs_reservation(h, vma, address) < 0) {
2463			ret = VM_FAULT_OOM;
2464			goto backout_unlocked;
2465		}
2466
2467	spin_lock(&mm->page_table_lock);
2468	size = i_size_read(mapping->host) >> huge_page_shift(h);
2469	if (idx >= size)
2470		goto backout;
2471
2472	ret = 0;
2473	if (!huge_pte_none(huge_ptep_get(ptep)))
2474		goto backout;
2475
2476	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2477				&& (vma->vm_flags & VM_SHARED)));
2478	set_huge_pte_at(mm, address, ptep, new_pte);
2479
2480	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2481		/* Optimization, do the COW without a second fault */
2482		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2483	}
2484
2485	spin_unlock(&mm->page_table_lock);
2486	unlock_page(page);
2487out:
2488	return ret;
2489
2490backout:
2491	spin_unlock(&mm->page_table_lock);
2492backout_unlocked:
2493	unlock_page(page);
2494	put_page(page);
2495	goto out;
2496}
2497
2498int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2499			unsigned long address, unsigned int flags)
2500{
2501	pte_t *ptep;
2502	pte_t entry;
2503	int ret;
2504	struct page *pagecache_page = NULL;
2505	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2506	struct hstate *h = hstate_vma(vma);
2507
2508	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2509	if (!ptep)
2510		return VM_FAULT_OOM;
2511
2512	/*
2513	 * Serialize hugepage allocation and instantiation, so that we don't
2514	 * get spurious allocation failures if two CPUs race to instantiate
2515	 * the same page in the page cache.
2516	 */
2517	mutex_lock(&hugetlb_instantiation_mutex);
2518	entry = huge_ptep_get(ptep);
2519	if (huge_pte_none(entry)) {
2520		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2521		goto out_mutex;
2522	}
2523
2524	ret = 0;
2525
2526	/*
2527	 * If we are going to COW the mapping later, we examine the pending
2528	 * reservations for this page now. This will ensure that any
2529	 * allocations necessary to record that reservation occur outside the
2530	 * spinlock. For private mappings, we also lookup the pagecache
2531	 * page now as it is used to determine if a reservation has been
2532	 * consumed.
2533	 */
2534	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2535		if (vma_needs_reservation(h, vma, address) < 0) {
2536			ret = VM_FAULT_OOM;
2537			goto out_mutex;
2538		}
2539
2540		if (!(vma->vm_flags & VM_MAYSHARE))
2541			pagecache_page = hugetlbfs_pagecache_page(h,
2542								vma, address);
2543	}
2544
2545	spin_lock(&mm->page_table_lock);
2546	/* Check for a racing update before calling hugetlb_cow */
2547	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2548		goto out_page_table_lock;
2549
2550
2551	if (flags & FAULT_FLAG_WRITE) {
2552		if (!pte_write(entry)) {
2553			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2554							pagecache_page);
2555			goto out_page_table_lock;
2556		}
2557		entry = pte_mkdirty(entry);
2558	}
2559	entry = pte_mkyoung(entry);
2560	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2561						flags & FAULT_FLAG_WRITE))
2562		update_mmu_cache(vma, address, entry);
2563
2564out_page_table_lock:
2565	spin_unlock(&mm->page_table_lock);
2566
2567	if (pagecache_page) {
2568		unlock_page(pagecache_page);
2569		put_page(pagecache_page);
2570	}
2571
2572out_mutex:
2573	mutex_unlock(&hugetlb_instantiation_mutex);
2574
2575	return ret;
2576}
2577
2578/* Can be overriden by architectures */
2579__attribute__((weak)) struct page *
2580follow_huge_pud(struct mm_struct *mm, unsigned long address,
2581	       pud_t *pud, int write)
2582{
2583	BUG();
2584	return NULL;
2585}
2586
2587int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2588			struct page **pages, struct vm_area_struct **vmas,
2589			unsigned long *position, int *length, int i,
2590			unsigned int flags)
2591{
2592	unsigned long pfn_offset;
2593	unsigned long vaddr = *position;
2594	int remainder = *length;
2595	struct hstate *h = hstate_vma(vma);
2596
2597	spin_lock(&mm->page_table_lock);
2598	while (vaddr < vma->vm_end && remainder) {
2599		pte_t *pte;
2600		int absent;
2601		struct page *page;
2602
2603		/*
2604		 * Some archs (sparc64, sh*) have multiple pte_ts to
2605		 * each hugepage.  We have to make sure we get the
2606		 * first, for the page indexing below to work.
2607		 */
2608		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2609		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2610
2611		/*
2612		 * When coredumping, it suits get_dump_page if we just return
2613		 * an error where there's an empty slot with no huge pagecache
2614		 * to back it.  This way, we avoid allocating a hugepage, and
2615		 * the sparse dumpfile avoids allocating disk blocks, but its
2616		 * huge holes still show up with zeroes where they need to be.
2617		 */
2618		if (absent && (flags & FOLL_DUMP) &&
2619		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2620			remainder = 0;
2621			break;
2622		}
2623
2624		if (absent ||
2625		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2626			int ret;
2627
2628			spin_unlock(&mm->page_table_lock);
2629			ret = hugetlb_fault(mm, vma, vaddr,
2630				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2631			spin_lock(&mm->page_table_lock);
2632			if (!(ret & VM_FAULT_ERROR))
2633				continue;
2634
2635			remainder = 0;
2636			break;
2637		}
2638
2639		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2640		page = pte_page(huge_ptep_get(pte));
2641same_page:
2642		if (pages) {
2643			pages[i] = mem_map_offset(page, pfn_offset);
2644			get_page(pages[i]);
2645		}
2646
2647		if (vmas)
2648			vmas[i] = vma;
2649
2650		vaddr += PAGE_SIZE;
2651		++pfn_offset;
2652		--remainder;
2653		++i;
2654		if (vaddr < vma->vm_end && remainder &&
2655				pfn_offset < pages_per_huge_page(h)) {
2656			/*
2657			 * We use pfn_offset to avoid touching the pageframes
2658			 * of this compound page.
2659			 */
2660			goto same_page;
2661		}
2662	}
2663	spin_unlock(&mm->page_table_lock);
2664	*length = remainder;
2665	*position = vaddr;
2666
2667	return i ? i : -EFAULT;
2668}
2669
2670void hugetlb_change_protection(struct vm_area_struct *vma,
2671		unsigned long address, unsigned long end, pgprot_t newprot)
2672{
2673	struct mm_struct *mm = vma->vm_mm;
2674	unsigned long start = address;
2675	pte_t *ptep;
2676	pte_t pte;
2677	struct hstate *h = hstate_vma(vma);
2678
2679	BUG_ON(address >= end);
2680	flush_cache_range(vma, address, end);
2681
2682	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2683	spin_lock(&mm->page_table_lock);
2684	for (; address < end; address += huge_page_size(h)) {
2685		ptep = huge_pte_offset(mm, address);
2686		if (!ptep)
2687			continue;
2688		if (huge_pmd_unshare(mm, &address, ptep))
2689			continue;
2690		if (!huge_pte_none(huge_ptep_get(ptep))) {
2691			pte = huge_ptep_get_and_clear(mm, address, ptep);
2692			pte = pte_mkhuge(pte_modify(pte, newprot));
2693			set_huge_pte_at(mm, address, ptep, pte);
2694		}
2695	}
2696	spin_unlock(&mm->page_table_lock);
2697	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2698
2699	flush_tlb_range(vma, start, end);
2700}
2701
2702int hugetlb_reserve_pages(struct inode *inode,
2703					long from, long to,
2704					struct vm_area_struct *vma,
2705					int acctflag)
2706{
2707	long ret, chg;
2708	struct hstate *h = hstate_inode(inode);
2709
2710	/*
2711	 * Only apply hugepage reservation if asked. At fault time, an
2712	 * attempt will be made for VM_NORESERVE to allocate a page
2713	 * and filesystem quota without using reserves
2714	 */
2715	if (acctflag & VM_NORESERVE)
2716		return 0;
2717
2718	/*
2719	 * Shared mappings base their reservation on the number of pages that
2720	 * are already allocated on behalf of the file. Private mappings need
2721	 * to reserve the full area even if read-only as mprotect() may be
2722	 * called to make the mapping read-write. Assume !vma is a shm mapping
2723	 */
2724	if (!vma || vma->vm_flags & VM_MAYSHARE)
2725		chg = region_chg(&inode->i_mapping->private_list, from, to);
2726	else {
2727		struct resv_map *resv_map = resv_map_alloc();
2728		if (!resv_map)
2729			return -ENOMEM;
2730
2731		chg = to - from;
2732
2733		set_vma_resv_map(vma, resv_map);
2734		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2735	}
2736
2737	if (chg < 0)
2738		return chg;
2739
2740	/* There must be enough filesystem quota for the mapping */
2741	if (hugetlb_get_quota(inode->i_mapping, chg))
2742		return -ENOSPC;
2743
2744	/*
2745	 * Check enough hugepages are available for the reservation.
2746	 * Hand back the quota if there are not
2747	 */
2748	ret = hugetlb_acct_memory(h, chg);
2749	if (ret < 0) {
2750		hugetlb_put_quota(inode->i_mapping, chg);
2751		return ret;
2752	}
2753
2754	/*
2755	 * Account for the reservations made. Shared mappings record regions
2756	 * that have reservations as they are shared by multiple VMAs.
2757	 * When the last VMA disappears, the region map says how much
2758	 * the reservation was and the page cache tells how much of
2759	 * the reservation was consumed. Private mappings are per-VMA and
2760	 * only the consumed reservations are tracked. When the VMA
2761	 * disappears, the original reservation is the VMA size and the
2762	 * consumed reservations are stored in the map. Hence, nothing
2763	 * else has to be done for private mappings here
2764	 */
2765	if (!vma || vma->vm_flags & VM_MAYSHARE)
2766		region_add(&inode->i_mapping->private_list, from, to);
2767	return 0;
2768}
2769
2770void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2771{
2772	struct hstate *h = hstate_inode(inode);
2773	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2774
2775	spin_lock(&inode->i_lock);
2776	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2777	spin_unlock(&inode->i_lock);
2778
2779	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2780	hugetlb_acct_memory(h, -(chg - freed));
2781}
2782