hugetlb.c revision 81a6fcae3ff3f6af1c9d7e31499e68fda2b3f58d
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/tlb.h>
28
29#include <linux/io.h>
30#include <linux/hugetlb.h>
31#include <linux/hugetlb_cgroup.h>
32#include <linux/node.h>
33#include "internal.h"
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
38
39int hugetlb_max_hstate __read_mostly;
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
43__initdata LIST_HEAD(huge_boot_pages);
44
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
48static unsigned long __initdata default_hstate_size;
49
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
53DEFINE_SPINLOCK(hugetlb_lock);
54
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57	bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59	spin_unlock(&spool->lock);
60
61	/* If no pages are used, and no other handles to the subpool
62	 * remain, free the subpool the subpool remain */
63	if (free)
64		kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69	struct hugepage_subpool *spool;
70
71	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72	if (!spool)
73		return NULL;
74
75	spin_lock_init(&spool->lock);
76	spool->count = 1;
77	spool->max_hpages = nr_blocks;
78	spool->used_hpages = 0;
79
80	return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85	spin_lock(&spool->lock);
86	BUG_ON(!spool->count);
87	spool->count--;
88	unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92				      long delta)
93{
94	int ret = 0;
95
96	if (!spool)
97		return 0;
98
99	spin_lock(&spool->lock);
100	if ((spool->used_hpages + delta) <= spool->max_hpages) {
101		spool->used_hpages += delta;
102	} else {
103		ret = -ENOMEM;
104	}
105	spin_unlock(&spool->lock);
106
107	return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111				       long delta)
112{
113	if (!spool)
114		return;
115
116	spin_lock(&spool->lock);
117	spool->used_hpages -= delta;
118	/* If hugetlbfs_put_super couldn't free spool due to
119	* an outstanding quota reference, free it now. */
120	unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125	return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
130	return subpool_inode(file_inode(vma->vm_file));
131}
132
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 *                    across the pages in a mapping.
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation_mutex:
141 *
142 *	down_write(&mm->mmap_sem);
143 * or
144 *	down_read(&mm->mmap_sem);
145 *	mutex_lock(&hugetlb_instantiation_mutex);
146 */
147struct file_region {
148	struct list_head link;
149	long from;
150	long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155	struct file_region *rg, *nrg, *trg;
156
157	/* Locate the region we are either in or before. */
158	list_for_each_entry(rg, head, link)
159		if (f <= rg->to)
160			break;
161
162	/* Round our left edge to the current segment if it encloses us. */
163	if (f > rg->from)
164		f = rg->from;
165
166	/* Check for and consume any regions we now overlap with. */
167	nrg = rg;
168	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169		if (&rg->link == head)
170			break;
171		if (rg->from > t)
172			break;
173
174		/* If this area reaches higher then extend our area to
175		 * include it completely.  If this is not the first area
176		 * which we intend to reuse, free it. */
177		if (rg->to > t)
178			t = rg->to;
179		if (rg != nrg) {
180			list_del(&rg->link);
181			kfree(rg);
182		}
183	}
184	nrg->from = f;
185	nrg->to = t;
186	return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191	struct file_region *rg, *nrg;
192	long chg = 0;
193
194	/* Locate the region we are before or in. */
195	list_for_each_entry(rg, head, link)
196		if (f <= rg->to)
197			break;
198
199	/* If we are below the current region then a new region is required.
200	 * Subtle, allocate a new region at the position but make it zero
201	 * size such that we can guarantee to record the reservation. */
202	if (&rg->link == head || t < rg->from) {
203		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204		if (!nrg)
205			return -ENOMEM;
206		nrg->from = f;
207		nrg->to   = f;
208		INIT_LIST_HEAD(&nrg->link);
209		list_add(&nrg->link, rg->link.prev);
210
211		return t - f;
212	}
213
214	/* Round our left edge to the current segment if it encloses us. */
215	if (f > rg->from)
216		f = rg->from;
217	chg = t - f;
218
219	/* Check for and consume any regions we now overlap with. */
220	list_for_each_entry(rg, rg->link.prev, link) {
221		if (&rg->link == head)
222			break;
223		if (rg->from > t)
224			return chg;
225
226		/* We overlap with this area, if it extends further than
227		 * us then we must extend ourselves.  Account for its
228		 * existing reservation. */
229		if (rg->to > t) {
230			chg += rg->to - t;
231			t = rg->to;
232		}
233		chg -= rg->to - rg->from;
234	}
235	return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240	struct file_region *rg, *trg;
241	long chg = 0;
242
243	/* Locate the region we are either in or before. */
244	list_for_each_entry(rg, head, link)
245		if (end <= rg->to)
246			break;
247	if (&rg->link == head)
248		return 0;
249
250	/* If we are in the middle of a region then adjust it. */
251	if (end > rg->from) {
252		chg = rg->to - end;
253		rg->to = end;
254		rg = list_entry(rg->link.next, typeof(*rg), link);
255	}
256
257	/* Drop any remaining regions. */
258	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259		if (&rg->link == head)
260			break;
261		chg += rg->to - rg->from;
262		list_del(&rg->link);
263		kfree(rg);
264	}
265	return chg;
266}
267
268static long region_count(struct list_head *head, long f, long t)
269{
270	struct file_region *rg;
271	long chg = 0;
272
273	/* Locate each segment we overlap with, and count that overlap. */
274	list_for_each_entry(rg, head, link) {
275		long seg_from;
276		long seg_to;
277
278		if (rg->to <= f)
279			continue;
280		if (rg->from >= t)
281			break;
282
283		seg_from = max(rg->from, f);
284		seg_to = min(rg->to, t);
285
286		chg += seg_to - seg_from;
287	}
288
289	return chg;
290}
291
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297			struct vm_area_struct *vma, unsigned long address)
298{
299	return ((address - vma->vm_start) >> huge_page_shift(h)) +
300			(vma->vm_pgoff >> huge_page_order(h));
301}
302
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304				     unsigned long address)
305{
306	return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315	struct hstate *hstate;
316
317	if (!is_vm_hugetlb_page(vma))
318		return PAGE_SIZE;
319
320	hstate = hstate_vma(vma);
321
322	return 1UL << huge_page_shift(hstate);
323}
324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335	return vma_kernel_pagesize(vma);
336}
337#endif
338
339/*
340 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER    (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping.  A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated.  A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
366 */
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369	return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373							unsigned long value)
374{
375	vma->vm_private_data = (void *)value;
376}
377
378struct resv_map {
379	struct kref refs;
380	struct list_head regions;
381};
382
383static struct resv_map *resv_map_alloc(void)
384{
385	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386	if (!resv_map)
387		return NULL;
388
389	kref_init(&resv_map->refs);
390	INIT_LIST_HEAD(&resv_map->regions);
391
392	return resv_map;
393}
394
395static void resv_map_release(struct kref *ref)
396{
397	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399	/* Clear out any active regions before we release the map. */
400	region_truncate(&resv_map->regions, 0);
401	kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405{
406	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407	if (!(vma->vm_flags & VM_MAYSHARE))
408		return (struct resv_map *)(get_vma_private_data(vma) &
409							~HPAGE_RESV_MASK);
410	return NULL;
411}
412
413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414{
415	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418	set_vma_private_data(vma, (get_vma_private_data(vma) &
419				HPAGE_RESV_MASK) | (unsigned long)map);
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
424	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434	return (get_vma_private_data(vma) & flag) != 0;
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
438static void decrement_hugepage_resv_vma(struct hstate *h,
439			struct vm_area_struct *vma)
440{
441	if (vma->vm_flags & VM_NORESERVE)
442		return;
443
444	if (vma->vm_flags & VM_MAYSHARE) {
445		/* Shared mappings always use reserves */
446		h->resv_huge_pages--;
447	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448		/*
449		 * Only the process that called mmap() has reserves for
450		 * private mappings.
451		 */
452		h->resv_huge_pages--;
453	}
454}
455
456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460	if (!(vma->vm_flags & VM_MAYSHARE))
461		vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
465static int vma_has_reserves(struct vm_area_struct *vma)
466{
467	if (vma->vm_flags & VM_MAYSHARE)
468		return 1;
469	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470		return 1;
471	return 0;
472}
473
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476	int i;
477	struct hstate *h = page_hstate(src);
478	struct page *dst_base = dst;
479	struct page *src_base = src;
480
481	for (i = 0; i < pages_per_huge_page(h); ) {
482		cond_resched();
483		copy_highpage(dst, src);
484
485		i++;
486		dst = mem_map_next(dst, dst_base, i);
487		src = mem_map_next(src, src_base, i);
488	}
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493	int i;
494	struct hstate *h = page_hstate(src);
495
496	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497		copy_gigantic_page(dst, src);
498		return;
499	}
500
501	might_sleep();
502	for (i = 0; i < pages_per_huge_page(h); i++) {
503		cond_resched();
504		copy_highpage(dst + i, src + i);
505	}
506}
507
508static void enqueue_huge_page(struct hstate *h, struct page *page)
509{
510	int nid = page_to_nid(page);
511	list_move(&page->lru, &h->hugepage_freelists[nid]);
512	h->free_huge_pages++;
513	h->free_huge_pages_node[nid]++;
514}
515
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518	struct page *page;
519
520	if (list_empty(&h->hugepage_freelists[nid]))
521		return NULL;
522	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523	list_move(&page->lru, &h->hugepage_activelist);
524	set_page_refcounted(page);
525	h->free_huge_pages--;
526	h->free_huge_pages_node[nid]--;
527	return page;
528}
529
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531				struct vm_area_struct *vma,
532				unsigned long address, int avoid_reserve)
533{
534	struct page *page = NULL;
535	struct mempolicy *mpol;
536	nodemask_t *nodemask;
537	struct zonelist *zonelist;
538	struct zone *zone;
539	struct zoneref *z;
540	unsigned int cpuset_mems_cookie;
541
542	/*
543	 * A child process with MAP_PRIVATE mappings created by their parent
544	 * have no page reserves. This check ensures that reservations are
545	 * not "stolen". The child may still get SIGKILLed
546	 */
547	if (!vma_has_reserves(vma) &&
548			h->free_huge_pages - h->resv_huge_pages == 0)
549		goto err;
550
551	/* If reserves cannot be used, ensure enough pages are in the pool */
552	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
553		goto err;
554
555retry_cpuset:
556	cpuset_mems_cookie = get_mems_allowed();
557	zonelist = huge_zonelist(vma, address,
558					htlb_alloc_mask, &mpol, &nodemask);
559
560	for_each_zone_zonelist_nodemask(zone, z, zonelist,
561						MAX_NR_ZONES - 1, nodemask) {
562		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563			page = dequeue_huge_page_node(h, zone_to_nid(zone));
564			if (page) {
565				if (!avoid_reserve)
566					decrement_hugepage_resv_vma(h, vma);
567				break;
568			}
569		}
570	}
571
572	mpol_cond_put(mpol);
573	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574		goto retry_cpuset;
575	return page;
576
577err:
578	return NULL;
579}
580
581static void update_and_free_page(struct hstate *h, struct page *page)
582{
583	int i;
584
585	VM_BUG_ON(h->order >= MAX_ORDER);
586
587	h->nr_huge_pages--;
588	h->nr_huge_pages_node[page_to_nid(page)]--;
589	for (i = 0; i < pages_per_huge_page(h); i++) {
590		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591				1 << PG_referenced | 1 << PG_dirty |
592				1 << PG_active | 1 << PG_reserved |
593				1 << PG_private | 1 << PG_writeback);
594	}
595	VM_BUG_ON(hugetlb_cgroup_from_page(page));
596	set_compound_page_dtor(page, NULL);
597	set_page_refcounted(page);
598	arch_release_hugepage(page);
599	__free_pages(page, huge_page_order(h));
600}
601
602struct hstate *size_to_hstate(unsigned long size)
603{
604	struct hstate *h;
605
606	for_each_hstate(h) {
607		if (huge_page_size(h) == size)
608			return h;
609	}
610	return NULL;
611}
612
613static void free_huge_page(struct page *page)
614{
615	/*
616	 * Can't pass hstate in here because it is called from the
617	 * compound page destructor.
618	 */
619	struct hstate *h = page_hstate(page);
620	int nid = page_to_nid(page);
621	struct hugepage_subpool *spool =
622		(struct hugepage_subpool *)page_private(page);
623
624	set_page_private(page, 0);
625	page->mapping = NULL;
626	BUG_ON(page_count(page));
627	BUG_ON(page_mapcount(page));
628
629	spin_lock(&hugetlb_lock);
630	hugetlb_cgroup_uncharge_page(hstate_index(h),
631				     pages_per_huge_page(h), page);
632	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633		/* remove the page from active list */
634		list_del(&page->lru);
635		update_and_free_page(h, page);
636		h->surplus_huge_pages--;
637		h->surplus_huge_pages_node[nid]--;
638	} else {
639		arch_clear_hugepage_flags(page);
640		enqueue_huge_page(h, page);
641	}
642	spin_unlock(&hugetlb_lock);
643	hugepage_subpool_put_pages(spool, 1);
644}
645
646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647{
648	INIT_LIST_HEAD(&page->lru);
649	set_compound_page_dtor(page, free_huge_page);
650	spin_lock(&hugetlb_lock);
651	set_hugetlb_cgroup(page, NULL);
652	h->nr_huge_pages++;
653	h->nr_huge_pages_node[nid]++;
654	spin_unlock(&hugetlb_lock);
655	put_page(page); /* free it into the hugepage allocator */
656}
657
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660	int i;
661	int nr_pages = 1 << order;
662	struct page *p = page + 1;
663
664	/* we rely on prep_new_huge_page to set the destructor */
665	set_compound_order(page, order);
666	__SetPageHead(page);
667	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668		__SetPageTail(p);
669		set_page_count(p, 0);
670		p->first_page = page;
671	}
672}
673
674/*
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages.  See the PageTransHuge() documentation for more
677 * details.
678 */
679int PageHuge(struct page *page)
680{
681	compound_page_dtor *dtor;
682
683	if (!PageCompound(page))
684		return 0;
685
686	page = compound_head(page);
687	dtor = get_compound_page_dtor(page);
688
689	return dtor == free_huge_page;
690}
691EXPORT_SYMBOL_GPL(PageHuge);
692
693pgoff_t __basepage_index(struct page *page)
694{
695	struct page *page_head = compound_head(page);
696	pgoff_t index = page_index(page_head);
697	unsigned long compound_idx;
698
699	if (!PageHuge(page_head))
700		return page_index(page);
701
702	if (compound_order(page_head) >= MAX_ORDER)
703		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
704	else
705		compound_idx = page - page_head;
706
707	return (index << compound_order(page_head)) + compound_idx;
708}
709
710static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
711{
712	struct page *page;
713
714	if (h->order >= MAX_ORDER)
715		return NULL;
716
717	page = alloc_pages_exact_node(nid,
718		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
719						__GFP_REPEAT|__GFP_NOWARN,
720		huge_page_order(h));
721	if (page) {
722		if (arch_prepare_hugepage(page)) {
723			__free_pages(page, huge_page_order(h));
724			return NULL;
725		}
726		prep_new_huge_page(h, page, nid);
727	}
728
729	return page;
730}
731
732/*
733 * common helper functions for hstate_next_node_to_{alloc|free}.
734 * We may have allocated or freed a huge page based on a different
735 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736 * be outside of *nodes_allowed.  Ensure that we use an allowed
737 * node for alloc or free.
738 */
739static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
740{
741	nid = next_node(nid, *nodes_allowed);
742	if (nid == MAX_NUMNODES)
743		nid = first_node(*nodes_allowed);
744	VM_BUG_ON(nid >= MAX_NUMNODES);
745
746	return nid;
747}
748
749static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
750{
751	if (!node_isset(nid, *nodes_allowed))
752		nid = next_node_allowed(nid, nodes_allowed);
753	return nid;
754}
755
756/*
757 * returns the previously saved node ["this node"] from which to
758 * allocate a persistent huge page for the pool and advance the
759 * next node from which to allocate, handling wrap at end of node
760 * mask.
761 */
762static int hstate_next_node_to_alloc(struct hstate *h,
763					nodemask_t *nodes_allowed)
764{
765	int nid;
766
767	VM_BUG_ON(!nodes_allowed);
768
769	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
770	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
771
772	return nid;
773}
774
775static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
776{
777	struct page *page;
778	int start_nid;
779	int next_nid;
780	int ret = 0;
781
782	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
783	next_nid = start_nid;
784
785	do {
786		page = alloc_fresh_huge_page_node(h, next_nid);
787		if (page) {
788			ret = 1;
789			break;
790		}
791		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
792	} while (next_nid != start_nid);
793
794	if (ret)
795		count_vm_event(HTLB_BUDDY_PGALLOC);
796	else
797		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
798
799	return ret;
800}
801
802/*
803 * helper for free_pool_huge_page() - return the previously saved
804 * node ["this node"] from which to free a huge page.  Advance the
805 * next node id whether or not we find a free huge page to free so
806 * that the next attempt to free addresses the next node.
807 */
808static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
809{
810	int nid;
811
812	VM_BUG_ON(!nodes_allowed);
813
814	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
815	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
816
817	return nid;
818}
819
820/*
821 * Free huge page from pool from next node to free.
822 * Attempt to keep persistent huge pages more or less
823 * balanced over allowed nodes.
824 * Called with hugetlb_lock locked.
825 */
826static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
827							 bool acct_surplus)
828{
829	int start_nid;
830	int next_nid;
831	int ret = 0;
832
833	start_nid = hstate_next_node_to_free(h, nodes_allowed);
834	next_nid = start_nid;
835
836	do {
837		/*
838		 * If we're returning unused surplus pages, only examine
839		 * nodes with surplus pages.
840		 */
841		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
842		    !list_empty(&h->hugepage_freelists[next_nid])) {
843			struct page *page =
844				list_entry(h->hugepage_freelists[next_nid].next,
845					  struct page, lru);
846			list_del(&page->lru);
847			h->free_huge_pages--;
848			h->free_huge_pages_node[next_nid]--;
849			if (acct_surplus) {
850				h->surplus_huge_pages--;
851				h->surplus_huge_pages_node[next_nid]--;
852			}
853			update_and_free_page(h, page);
854			ret = 1;
855			break;
856		}
857		next_nid = hstate_next_node_to_free(h, nodes_allowed);
858	} while (next_nid != start_nid);
859
860	return ret;
861}
862
863static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
864{
865	struct page *page;
866	unsigned int r_nid;
867
868	if (h->order >= MAX_ORDER)
869		return NULL;
870
871	/*
872	 * Assume we will successfully allocate the surplus page to
873	 * prevent racing processes from causing the surplus to exceed
874	 * overcommit
875	 *
876	 * This however introduces a different race, where a process B
877	 * tries to grow the static hugepage pool while alloc_pages() is
878	 * called by process A. B will only examine the per-node
879	 * counters in determining if surplus huge pages can be
880	 * converted to normal huge pages in adjust_pool_surplus(). A
881	 * won't be able to increment the per-node counter, until the
882	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
883	 * no more huge pages can be converted from surplus to normal
884	 * state (and doesn't try to convert again). Thus, we have a
885	 * case where a surplus huge page exists, the pool is grown, and
886	 * the surplus huge page still exists after, even though it
887	 * should just have been converted to a normal huge page. This
888	 * does not leak memory, though, as the hugepage will be freed
889	 * once it is out of use. It also does not allow the counters to
890	 * go out of whack in adjust_pool_surplus() as we don't modify
891	 * the node values until we've gotten the hugepage and only the
892	 * per-node value is checked there.
893	 */
894	spin_lock(&hugetlb_lock);
895	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
896		spin_unlock(&hugetlb_lock);
897		return NULL;
898	} else {
899		h->nr_huge_pages++;
900		h->surplus_huge_pages++;
901	}
902	spin_unlock(&hugetlb_lock);
903
904	if (nid == NUMA_NO_NODE)
905		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
906				   __GFP_REPEAT|__GFP_NOWARN,
907				   huge_page_order(h));
908	else
909		page = alloc_pages_exact_node(nid,
910			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
911			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
912
913	if (page && arch_prepare_hugepage(page)) {
914		__free_pages(page, huge_page_order(h));
915		page = NULL;
916	}
917
918	spin_lock(&hugetlb_lock);
919	if (page) {
920		INIT_LIST_HEAD(&page->lru);
921		r_nid = page_to_nid(page);
922		set_compound_page_dtor(page, free_huge_page);
923		set_hugetlb_cgroup(page, NULL);
924		/*
925		 * We incremented the global counters already
926		 */
927		h->nr_huge_pages_node[r_nid]++;
928		h->surplus_huge_pages_node[r_nid]++;
929		__count_vm_event(HTLB_BUDDY_PGALLOC);
930	} else {
931		h->nr_huge_pages--;
932		h->surplus_huge_pages--;
933		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
934	}
935	spin_unlock(&hugetlb_lock);
936
937	return page;
938}
939
940/*
941 * This allocation function is useful in the context where vma is irrelevant.
942 * E.g. soft-offlining uses this function because it only cares physical
943 * address of error page.
944 */
945struct page *alloc_huge_page_node(struct hstate *h, int nid)
946{
947	struct page *page;
948
949	spin_lock(&hugetlb_lock);
950	page = dequeue_huge_page_node(h, nid);
951	spin_unlock(&hugetlb_lock);
952
953	if (!page)
954		page = alloc_buddy_huge_page(h, nid);
955
956	return page;
957}
958
959/*
960 * Increase the hugetlb pool such that it can accommodate a reservation
961 * of size 'delta'.
962 */
963static int gather_surplus_pages(struct hstate *h, int delta)
964{
965	struct list_head surplus_list;
966	struct page *page, *tmp;
967	int ret, i;
968	int needed, allocated;
969	bool alloc_ok = true;
970
971	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
972	if (needed <= 0) {
973		h->resv_huge_pages += delta;
974		return 0;
975	}
976
977	allocated = 0;
978	INIT_LIST_HEAD(&surplus_list);
979
980	ret = -ENOMEM;
981retry:
982	spin_unlock(&hugetlb_lock);
983	for (i = 0; i < needed; i++) {
984		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
985		if (!page) {
986			alloc_ok = false;
987			break;
988		}
989		list_add(&page->lru, &surplus_list);
990	}
991	allocated += i;
992
993	/*
994	 * After retaking hugetlb_lock, we need to recalculate 'needed'
995	 * because either resv_huge_pages or free_huge_pages may have changed.
996	 */
997	spin_lock(&hugetlb_lock);
998	needed = (h->resv_huge_pages + delta) -
999			(h->free_huge_pages + allocated);
1000	if (needed > 0) {
1001		if (alloc_ok)
1002			goto retry;
1003		/*
1004		 * We were not able to allocate enough pages to
1005		 * satisfy the entire reservation so we free what
1006		 * we've allocated so far.
1007		 */
1008		goto free;
1009	}
1010	/*
1011	 * The surplus_list now contains _at_least_ the number of extra pages
1012	 * needed to accommodate the reservation.  Add the appropriate number
1013	 * of pages to the hugetlb pool and free the extras back to the buddy
1014	 * allocator.  Commit the entire reservation here to prevent another
1015	 * process from stealing the pages as they are added to the pool but
1016	 * before they are reserved.
1017	 */
1018	needed += allocated;
1019	h->resv_huge_pages += delta;
1020	ret = 0;
1021
1022	/* Free the needed pages to the hugetlb pool */
1023	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024		if ((--needed) < 0)
1025			break;
1026		/*
1027		 * This page is now managed by the hugetlb allocator and has
1028		 * no users -- drop the buddy allocator's reference.
1029		 */
1030		put_page_testzero(page);
1031		VM_BUG_ON(page_count(page));
1032		enqueue_huge_page(h, page);
1033	}
1034free:
1035	spin_unlock(&hugetlb_lock);
1036
1037	/* Free unnecessary surplus pages to the buddy allocator */
1038	if (!list_empty(&surplus_list)) {
1039		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1040			put_page(page);
1041		}
1042	}
1043	spin_lock(&hugetlb_lock);
1044
1045	return ret;
1046}
1047
1048/*
1049 * When releasing a hugetlb pool reservation, any surplus pages that were
1050 * allocated to satisfy the reservation must be explicitly freed if they were
1051 * never used.
1052 * Called with hugetlb_lock held.
1053 */
1054static void return_unused_surplus_pages(struct hstate *h,
1055					unsigned long unused_resv_pages)
1056{
1057	unsigned long nr_pages;
1058
1059	/* Uncommit the reservation */
1060	h->resv_huge_pages -= unused_resv_pages;
1061
1062	/* Cannot return gigantic pages currently */
1063	if (h->order >= MAX_ORDER)
1064		return;
1065
1066	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1067
1068	/*
1069	 * We want to release as many surplus pages as possible, spread
1070	 * evenly across all nodes with memory. Iterate across these nodes
1071	 * until we can no longer free unreserved surplus pages. This occurs
1072	 * when the nodes with surplus pages have no free pages.
1073	 * free_pool_huge_page() will balance the the freed pages across the
1074	 * on-line nodes with memory and will handle the hstate accounting.
1075	 */
1076	while (nr_pages--) {
1077		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1078			break;
1079	}
1080}
1081
1082/*
1083 * Determine if the huge page at addr within the vma has an associated
1084 * reservation.  Where it does not we will need to logically increase
1085 * reservation and actually increase subpool usage before an allocation
1086 * can occur.  Where any new reservation would be required the
1087 * reservation change is prepared, but not committed.  Once the page
1088 * has been allocated from the subpool and instantiated the change should
1089 * be committed via vma_commit_reservation.  No action is required on
1090 * failure.
1091 */
1092static long vma_needs_reservation(struct hstate *h,
1093			struct vm_area_struct *vma, unsigned long addr)
1094{
1095	struct address_space *mapping = vma->vm_file->f_mapping;
1096	struct inode *inode = mapping->host;
1097
1098	if (vma->vm_flags & VM_MAYSHARE) {
1099		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1100		return region_chg(&inode->i_mapping->private_list,
1101							idx, idx + 1);
1102
1103	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1104		return 1;
1105
1106	} else  {
1107		long err;
1108		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109		struct resv_map *reservations = vma_resv_map(vma);
1110
1111		err = region_chg(&reservations->regions, idx, idx + 1);
1112		if (err < 0)
1113			return err;
1114		return 0;
1115	}
1116}
1117static void vma_commit_reservation(struct hstate *h,
1118			struct vm_area_struct *vma, unsigned long addr)
1119{
1120	struct address_space *mapping = vma->vm_file->f_mapping;
1121	struct inode *inode = mapping->host;
1122
1123	if (vma->vm_flags & VM_MAYSHARE) {
1124		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1126
1127	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1128		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1129		struct resv_map *reservations = vma_resv_map(vma);
1130
1131		/* Mark this page used in the map. */
1132		region_add(&reservations->regions, idx, idx + 1);
1133	}
1134}
1135
1136static struct page *alloc_huge_page(struct vm_area_struct *vma,
1137				    unsigned long addr, int avoid_reserve)
1138{
1139	struct hugepage_subpool *spool = subpool_vma(vma);
1140	struct hstate *h = hstate_vma(vma);
1141	struct page *page;
1142	long chg;
1143	int ret, idx;
1144	struct hugetlb_cgroup *h_cg;
1145
1146	idx = hstate_index(h);
1147	/*
1148	 * Processes that did not create the mapping will have no
1149	 * reserves and will not have accounted against subpool
1150	 * limit. Check that the subpool limit can be made before
1151	 * satisfying the allocation MAP_NORESERVE mappings may also
1152	 * need pages and subpool limit allocated allocated if no reserve
1153	 * mapping overlaps.
1154	 */
1155	chg = vma_needs_reservation(h, vma, addr);
1156	if (chg < 0)
1157		return ERR_PTR(-ENOMEM);
1158	if (chg)
1159		if (hugepage_subpool_get_pages(spool, chg))
1160			return ERR_PTR(-ENOSPC);
1161
1162	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1163	if (ret) {
1164		hugepage_subpool_put_pages(spool, chg);
1165		return ERR_PTR(-ENOSPC);
1166	}
1167	spin_lock(&hugetlb_lock);
1168	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1169	if (!page) {
1170		spin_unlock(&hugetlb_lock);
1171		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1172		if (!page) {
1173			hugetlb_cgroup_uncharge_cgroup(idx,
1174						       pages_per_huge_page(h),
1175						       h_cg);
1176			hugepage_subpool_put_pages(spool, chg);
1177			return ERR_PTR(-ENOSPC);
1178		}
1179		spin_lock(&hugetlb_lock);
1180		list_move(&page->lru, &h->hugepage_activelist);
1181		/* Fall through */
1182	}
1183	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1184	spin_unlock(&hugetlb_lock);
1185
1186	set_page_private(page, (unsigned long)spool);
1187
1188	vma_commit_reservation(h, vma, addr);
1189	return page;
1190}
1191
1192int __weak alloc_bootmem_huge_page(struct hstate *h)
1193{
1194	struct huge_bootmem_page *m;
1195	int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1196
1197	while (nr_nodes) {
1198		void *addr;
1199
1200		addr = __alloc_bootmem_node_nopanic(
1201				NODE_DATA(hstate_next_node_to_alloc(h,
1202						&node_states[N_MEMORY])),
1203				huge_page_size(h), huge_page_size(h), 0);
1204
1205		if (addr) {
1206			/*
1207			 * Use the beginning of the huge page to store the
1208			 * huge_bootmem_page struct (until gather_bootmem
1209			 * puts them into the mem_map).
1210			 */
1211			m = addr;
1212			goto found;
1213		}
1214		nr_nodes--;
1215	}
1216	return 0;
1217
1218found:
1219	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1220	/* Put them into a private list first because mem_map is not up yet */
1221	list_add(&m->list, &huge_boot_pages);
1222	m->hstate = h;
1223	return 1;
1224}
1225
1226static void prep_compound_huge_page(struct page *page, int order)
1227{
1228	if (unlikely(order > (MAX_ORDER - 1)))
1229		prep_compound_gigantic_page(page, order);
1230	else
1231		prep_compound_page(page, order);
1232}
1233
1234/* Put bootmem huge pages into the standard lists after mem_map is up */
1235static void __init gather_bootmem_prealloc(void)
1236{
1237	struct huge_bootmem_page *m;
1238
1239	list_for_each_entry(m, &huge_boot_pages, list) {
1240		struct hstate *h = m->hstate;
1241		struct page *page;
1242
1243#ifdef CONFIG_HIGHMEM
1244		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1245		free_bootmem_late((unsigned long)m,
1246				  sizeof(struct huge_bootmem_page));
1247#else
1248		page = virt_to_page(m);
1249#endif
1250		__ClearPageReserved(page);
1251		WARN_ON(page_count(page) != 1);
1252		prep_compound_huge_page(page, h->order);
1253		prep_new_huge_page(h, page, page_to_nid(page));
1254		/*
1255		 * If we had gigantic hugepages allocated at boot time, we need
1256		 * to restore the 'stolen' pages to totalram_pages in order to
1257		 * fix confusing memory reports from free(1) and another
1258		 * side-effects, like CommitLimit going negative.
1259		 */
1260		if (h->order > (MAX_ORDER - 1))
1261			adjust_managed_page_count(page, 1 << h->order);
1262	}
1263}
1264
1265static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1266{
1267	unsigned long i;
1268
1269	for (i = 0; i < h->max_huge_pages; ++i) {
1270		if (h->order >= MAX_ORDER) {
1271			if (!alloc_bootmem_huge_page(h))
1272				break;
1273		} else if (!alloc_fresh_huge_page(h,
1274					 &node_states[N_MEMORY]))
1275			break;
1276	}
1277	h->max_huge_pages = i;
1278}
1279
1280static void __init hugetlb_init_hstates(void)
1281{
1282	struct hstate *h;
1283
1284	for_each_hstate(h) {
1285		/* oversize hugepages were init'ed in early boot */
1286		if (h->order < MAX_ORDER)
1287			hugetlb_hstate_alloc_pages(h);
1288	}
1289}
1290
1291static char * __init memfmt(char *buf, unsigned long n)
1292{
1293	if (n >= (1UL << 30))
1294		sprintf(buf, "%lu GB", n >> 30);
1295	else if (n >= (1UL << 20))
1296		sprintf(buf, "%lu MB", n >> 20);
1297	else
1298		sprintf(buf, "%lu KB", n >> 10);
1299	return buf;
1300}
1301
1302static void __init report_hugepages(void)
1303{
1304	struct hstate *h;
1305
1306	for_each_hstate(h) {
1307		char buf[32];
1308		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1309			memfmt(buf, huge_page_size(h)),
1310			h->free_huge_pages);
1311	}
1312}
1313
1314#ifdef CONFIG_HIGHMEM
1315static void try_to_free_low(struct hstate *h, unsigned long count,
1316						nodemask_t *nodes_allowed)
1317{
1318	int i;
1319
1320	if (h->order >= MAX_ORDER)
1321		return;
1322
1323	for_each_node_mask(i, *nodes_allowed) {
1324		struct page *page, *next;
1325		struct list_head *freel = &h->hugepage_freelists[i];
1326		list_for_each_entry_safe(page, next, freel, lru) {
1327			if (count >= h->nr_huge_pages)
1328				return;
1329			if (PageHighMem(page))
1330				continue;
1331			list_del(&page->lru);
1332			update_and_free_page(h, page);
1333			h->free_huge_pages--;
1334			h->free_huge_pages_node[page_to_nid(page)]--;
1335		}
1336	}
1337}
1338#else
1339static inline void try_to_free_low(struct hstate *h, unsigned long count,
1340						nodemask_t *nodes_allowed)
1341{
1342}
1343#endif
1344
1345/*
1346 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1347 * balanced by operating on them in a round-robin fashion.
1348 * Returns 1 if an adjustment was made.
1349 */
1350static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1351				int delta)
1352{
1353	int start_nid, next_nid;
1354	int ret = 0;
1355
1356	VM_BUG_ON(delta != -1 && delta != 1);
1357
1358	if (delta < 0)
1359		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1360	else
1361		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1362	next_nid = start_nid;
1363
1364	do {
1365		int nid = next_nid;
1366		if (delta < 0)  {
1367			/*
1368			 * To shrink on this node, there must be a surplus page
1369			 */
1370			if (!h->surplus_huge_pages_node[nid]) {
1371				next_nid = hstate_next_node_to_alloc(h,
1372								nodes_allowed);
1373				continue;
1374			}
1375		}
1376		if (delta > 0) {
1377			/*
1378			 * Surplus cannot exceed the total number of pages
1379			 */
1380			if (h->surplus_huge_pages_node[nid] >=
1381						h->nr_huge_pages_node[nid]) {
1382				next_nid = hstate_next_node_to_free(h,
1383								nodes_allowed);
1384				continue;
1385			}
1386		}
1387
1388		h->surplus_huge_pages += delta;
1389		h->surplus_huge_pages_node[nid] += delta;
1390		ret = 1;
1391		break;
1392	} while (next_nid != start_nid);
1393
1394	return ret;
1395}
1396
1397#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1398static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1399						nodemask_t *nodes_allowed)
1400{
1401	unsigned long min_count, ret;
1402
1403	if (h->order >= MAX_ORDER)
1404		return h->max_huge_pages;
1405
1406	/*
1407	 * Increase the pool size
1408	 * First take pages out of surplus state.  Then make up the
1409	 * remaining difference by allocating fresh huge pages.
1410	 *
1411	 * We might race with alloc_buddy_huge_page() here and be unable
1412	 * to convert a surplus huge page to a normal huge page. That is
1413	 * not critical, though, it just means the overall size of the
1414	 * pool might be one hugepage larger than it needs to be, but
1415	 * within all the constraints specified by the sysctls.
1416	 */
1417	spin_lock(&hugetlb_lock);
1418	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1419		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1420			break;
1421	}
1422
1423	while (count > persistent_huge_pages(h)) {
1424		/*
1425		 * If this allocation races such that we no longer need the
1426		 * page, free_huge_page will handle it by freeing the page
1427		 * and reducing the surplus.
1428		 */
1429		spin_unlock(&hugetlb_lock);
1430		ret = alloc_fresh_huge_page(h, nodes_allowed);
1431		spin_lock(&hugetlb_lock);
1432		if (!ret)
1433			goto out;
1434
1435		/* Bail for signals. Probably ctrl-c from user */
1436		if (signal_pending(current))
1437			goto out;
1438	}
1439
1440	/*
1441	 * Decrease the pool size
1442	 * First return free pages to the buddy allocator (being careful
1443	 * to keep enough around to satisfy reservations).  Then place
1444	 * pages into surplus state as needed so the pool will shrink
1445	 * to the desired size as pages become free.
1446	 *
1447	 * By placing pages into the surplus state independent of the
1448	 * overcommit value, we are allowing the surplus pool size to
1449	 * exceed overcommit. There are few sane options here. Since
1450	 * alloc_buddy_huge_page() is checking the global counter,
1451	 * though, we'll note that we're not allowed to exceed surplus
1452	 * and won't grow the pool anywhere else. Not until one of the
1453	 * sysctls are changed, or the surplus pages go out of use.
1454	 */
1455	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1456	min_count = max(count, min_count);
1457	try_to_free_low(h, min_count, nodes_allowed);
1458	while (min_count < persistent_huge_pages(h)) {
1459		if (!free_pool_huge_page(h, nodes_allowed, 0))
1460			break;
1461	}
1462	while (count < persistent_huge_pages(h)) {
1463		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1464			break;
1465	}
1466out:
1467	ret = persistent_huge_pages(h);
1468	spin_unlock(&hugetlb_lock);
1469	return ret;
1470}
1471
1472#define HSTATE_ATTR_RO(_name) \
1473	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1474
1475#define HSTATE_ATTR(_name) \
1476	static struct kobj_attribute _name##_attr = \
1477		__ATTR(_name, 0644, _name##_show, _name##_store)
1478
1479static struct kobject *hugepages_kobj;
1480static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1481
1482static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1483
1484static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1485{
1486	int i;
1487
1488	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1489		if (hstate_kobjs[i] == kobj) {
1490			if (nidp)
1491				*nidp = NUMA_NO_NODE;
1492			return &hstates[i];
1493		}
1494
1495	return kobj_to_node_hstate(kobj, nidp);
1496}
1497
1498static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1499					struct kobj_attribute *attr, char *buf)
1500{
1501	struct hstate *h;
1502	unsigned long nr_huge_pages;
1503	int nid;
1504
1505	h = kobj_to_hstate(kobj, &nid);
1506	if (nid == NUMA_NO_NODE)
1507		nr_huge_pages = h->nr_huge_pages;
1508	else
1509		nr_huge_pages = h->nr_huge_pages_node[nid];
1510
1511	return sprintf(buf, "%lu\n", nr_huge_pages);
1512}
1513
1514static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1515			struct kobject *kobj, struct kobj_attribute *attr,
1516			const char *buf, size_t len)
1517{
1518	int err;
1519	int nid;
1520	unsigned long count;
1521	struct hstate *h;
1522	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1523
1524	err = kstrtoul(buf, 10, &count);
1525	if (err)
1526		goto out;
1527
1528	h = kobj_to_hstate(kobj, &nid);
1529	if (h->order >= MAX_ORDER) {
1530		err = -EINVAL;
1531		goto out;
1532	}
1533
1534	if (nid == NUMA_NO_NODE) {
1535		/*
1536		 * global hstate attribute
1537		 */
1538		if (!(obey_mempolicy &&
1539				init_nodemask_of_mempolicy(nodes_allowed))) {
1540			NODEMASK_FREE(nodes_allowed);
1541			nodes_allowed = &node_states[N_MEMORY];
1542		}
1543	} else if (nodes_allowed) {
1544		/*
1545		 * per node hstate attribute: adjust count to global,
1546		 * but restrict alloc/free to the specified node.
1547		 */
1548		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1549		init_nodemask_of_node(nodes_allowed, nid);
1550	} else
1551		nodes_allowed = &node_states[N_MEMORY];
1552
1553	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1554
1555	if (nodes_allowed != &node_states[N_MEMORY])
1556		NODEMASK_FREE(nodes_allowed);
1557
1558	return len;
1559out:
1560	NODEMASK_FREE(nodes_allowed);
1561	return err;
1562}
1563
1564static ssize_t nr_hugepages_show(struct kobject *kobj,
1565				       struct kobj_attribute *attr, char *buf)
1566{
1567	return nr_hugepages_show_common(kobj, attr, buf);
1568}
1569
1570static ssize_t nr_hugepages_store(struct kobject *kobj,
1571	       struct kobj_attribute *attr, const char *buf, size_t len)
1572{
1573	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1574}
1575HSTATE_ATTR(nr_hugepages);
1576
1577#ifdef CONFIG_NUMA
1578
1579/*
1580 * hstate attribute for optionally mempolicy-based constraint on persistent
1581 * huge page alloc/free.
1582 */
1583static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1584				       struct kobj_attribute *attr, char *buf)
1585{
1586	return nr_hugepages_show_common(kobj, attr, buf);
1587}
1588
1589static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1590	       struct kobj_attribute *attr, const char *buf, size_t len)
1591{
1592	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1593}
1594HSTATE_ATTR(nr_hugepages_mempolicy);
1595#endif
1596
1597
1598static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1599					struct kobj_attribute *attr, char *buf)
1600{
1601	struct hstate *h = kobj_to_hstate(kobj, NULL);
1602	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1603}
1604
1605static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1606		struct kobj_attribute *attr, const char *buf, size_t count)
1607{
1608	int err;
1609	unsigned long input;
1610	struct hstate *h = kobj_to_hstate(kobj, NULL);
1611
1612	if (h->order >= MAX_ORDER)
1613		return -EINVAL;
1614
1615	err = kstrtoul(buf, 10, &input);
1616	if (err)
1617		return err;
1618
1619	spin_lock(&hugetlb_lock);
1620	h->nr_overcommit_huge_pages = input;
1621	spin_unlock(&hugetlb_lock);
1622
1623	return count;
1624}
1625HSTATE_ATTR(nr_overcommit_hugepages);
1626
1627static ssize_t free_hugepages_show(struct kobject *kobj,
1628					struct kobj_attribute *attr, char *buf)
1629{
1630	struct hstate *h;
1631	unsigned long free_huge_pages;
1632	int nid;
1633
1634	h = kobj_to_hstate(kobj, &nid);
1635	if (nid == NUMA_NO_NODE)
1636		free_huge_pages = h->free_huge_pages;
1637	else
1638		free_huge_pages = h->free_huge_pages_node[nid];
1639
1640	return sprintf(buf, "%lu\n", free_huge_pages);
1641}
1642HSTATE_ATTR_RO(free_hugepages);
1643
1644static ssize_t resv_hugepages_show(struct kobject *kobj,
1645					struct kobj_attribute *attr, char *buf)
1646{
1647	struct hstate *h = kobj_to_hstate(kobj, NULL);
1648	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1649}
1650HSTATE_ATTR_RO(resv_hugepages);
1651
1652static ssize_t surplus_hugepages_show(struct kobject *kobj,
1653					struct kobj_attribute *attr, char *buf)
1654{
1655	struct hstate *h;
1656	unsigned long surplus_huge_pages;
1657	int nid;
1658
1659	h = kobj_to_hstate(kobj, &nid);
1660	if (nid == NUMA_NO_NODE)
1661		surplus_huge_pages = h->surplus_huge_pages;
1662	else
1663		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1664
1665	return sprintf(buf, "%lu\n", surplus_huge_pages);
1666}
1667HSTATE_ATTR_RO(surplus_hugepages);
1668
1669static struct attribute *hstate_attrs[] = {
1670	&nr_hugepages_attr.attr,
1671	&nr_overcommit_hugepages_attr.attr,
1672	&free_hugepages_attr.attr,
1673	&resv_hugepages_attr.attr,
1674	&surplus_hugepages_attr.attr,
1675#ifdef CONFIG_NUMA
1676	&nr_hugepages_mempolicy_attr.attr,
1677#endif
1678	NULL,
1679};
1680
1681static struct attribute_group hstate_attr_group = {
1682	.attrs = hstate_attrs,
1683};
1684
1685static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1686				    struct kobject **hstate_kobjs,
1687				    struct attribute_group *hstate_attr_group)
1688{
1689	int retval;
1690	int hi = hstate_index(h);
1691
1692	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1693	if (!hstate_kobjs[hi])
1694		return -ENOMEM;
1695
1696	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1697	if (retval)
1698		kobject_put(hstate_kobjs[hi]);
1699
1700	return retval;
1701}
1702
1703static void __init hugetlb_sysfs_init(void)
1704{
1705	struct hstate *h;
1706	int err;
1707
1708	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1709	if (!hugepages_kobj)
1710		return;
1711
1712	for_each_hstate(h) {
1713		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1714					 hstate_kobjs, &hstate_attr_group);
1715		if (err)
1716			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1717	}
1718}
1719
1720#ifdef CONFIG_NUMA
1721
1722/*
1723 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1724 * with node devices in node_devices[] using a parallel array.  The array
1725 * index of a node device or _hstate == node id.
1726 * This is here to avoid any static dependency of the node device driver, in
1727 * the base kernel, on the hugetlb module.
1728 */
1729struct node_hstate {
1730	struct kobject		*hugepages_kobj;
1731	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1732};
1733struct node_hstate node_hstates[MAX_NUMNODES];
1734
1735/*
1736 * A subset of global hstate attributes for node devices
1737 */
1738static struct attribute *per_node_hstate_attrs[] = {
1739	&nr_hugepages_attr.attr,
1740	&free_hugepages_attr.attr,
1741	&surplus_hugepages_attr.attr,
1742	NULL,
1743};
1744
1745static struct attribute_group per_node_hstate_attr_group = {
1746	.attrs = per_node_hstate_attrs,
1747};
1748
1749/*
1750 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1751 * Returns node id via non-NULL nidp.
1752 */
1753static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1754{
1755	int nid;
1756
1757	for (nid = 0; nid < nr_node_ids; nid++) {
1758		struct node_hstate *nhs = &node_hstates[nid];
1759		int i;
1760		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1761			if (nhs->hstate_kobjs[i] == kobj) {
1762				if (nidp)
1763					*nidp = nid;
1764				return &hstates[i];
1765			}
1766	}
1767
1768	BUG();
1769	return NULL;
1770}
1771
1772/*
1773 * Unregister hstate attributes from a single node device.
1774 * No-op if no hstate attributes attached.
1775 */
1776static void hugetlb_unregister_node(struct node *node)
1777{
1778	struct hstate *h;
1779	struct node_hstate *nhs = &node_hstates[node->dev.id];
1780
1781	if (!nhs->hugepages_kobj)
1782		return;		/* no hstate attributes */
1783
1784	for_each_hstate(h) {
1785		int idx = hstate_index(h);
1786		if (nhs->hstate_kobjs[idx]) {
1787			kobject_put(nhs->hstate_kobjs[idx]);
1788			nhs->hstate_kobjs[idx] = NULL;
1789		}
1790	}
1791
1792	kobject_put(nhs->hugepages_kobj);
1793	nhs->hugepages_kobj = NULL;
1794}
1795
1796/*
1797 * hugetlb module exit:  unregister hstate attributes from node devices
1798 * that have them.
1799 */
1800static void hugetlb_unregister_all_nodes(void)
1801{
1802	int nid;
1803
1804	/*
1805	 * disable node device registrations.
1806	 */
1807	register_hugetlbfs_with_node(NULL, NULL);
1808
1809	/*
1810	 * remove hstate attributes from any nodes that have them.
1811	 */
1812	for (nid = 0; nid < nr_node_ids; nid++)
1813		hugetlb_unregister_node(node_devices[nid]);
1814}
1815
1816/*
1817 * Register hstate attributes for a single node device.
1818 * No-op if attributes already registered.
1819 */
1820static void hugetlb_register_node(struct node *node)
1821{
1822	struct hstate *h;
1823	struct node_hstate *nhs = &node_hstates[node->dev.id];
1824	int err;
1825
1826	if (nhs->hugepages_kobj)
1827		return;		/* already allocated */
1828
1829	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1830							&node->dev.kobj);
1831	if (!nhs->hugepages_kobj)
1832		return;
1833
1834	for_each_hstate(h) {
1835		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1836						nhs->hstate_kobjs,
1837						&per_node_hstate_attr_group);
1838		if (err) {
1839			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1840				h->name, node->dev.id);
1841			hugetlb_unregister_node(node);
1842			break;
1843		}
1844	}
1845}
1846
1847/*
1848 * hugetlb init time:  register hstate attributes for all registered node
1849 * devices of nodes that have memory.  All on-line nodes should have
1850 * registered their associated device by this time.
1851 */
1852static void hugetlb_register_all_nodes(void)
1853{
1854	int nid;
1855
1856	for_each_node_state(nid, N_MEMORY) {
1857		struct node *node = node_devices[nid];
1858		if (node->dev.id == nid)
1859			hugetlb_register_node(node);
1860	}
1861
1862	/*
1863	 * Let the node device driver know we're here so it can
1864	 * [un]register hstate attributes on node hotplug.
1865	 */
1866	register_hugetlbfs_with_node(hugetlb_register_node,
1867				     hugetlb_unregister_node);
1868}
1869#else	/* !CONFIG_NUMA */
1870
1871static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1872{
1873	BUG();
1874	if (nidp)
1875		*nidp = -1;
1876	return NULL;
1877}
1878
1879static void hugetlb_unregister_all_nodes(void) { }
1880
1881static void hugetlb_register_all_nodes(void) { }
1882
1883#endif
1884
1885static void __exit hugetlb_exit(void)
1886{
1887	struct hstate *h;
1888
1889	hugetlb_unregister_all_nodes();
1890
1891	for_each_hstate(h) {
1892		kobject_put(hstate_kobjs[hstate_index(h)]);
1893	}
1894
1895	kobject_put(hugepages_kobj);
1896}
1897module_exit(hugetlb_exit);
1898
1899static int __init hugetlb_init(void)
1900{
1901	/* Some platform decide whether they support huge pages at boot
1902	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1903	 * there is no such support
1904	 */
1905	if (HPAGE_SHIFT == 0)
1906		return 0;
1907
1908	if (!size_to_hstate(default_hstate_size)) {
1909		default_hstate_size = HPAGE_SIZE;
1910		if (!size_to_hstate(default_hstate_size))
1911			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1912	}
1913	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1914	if (default_hstate_max_huge_pages)
1915		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1916
1917	hugetlb_init_hstates();
1918	gather_bootmem_prealloc();
1919	report_hugepages();
1920
1921	hugetlb_sysfs_init();
1922	hugetlb_register_all_nodes();
1923	hugetlb_cgroup_file_init();
1924
1925	return 0;
1926}
1927module_init(hugetlb_init);
1928
1929/* Should be called on processing a hugepagesz=... option */
1930void __init hugetlb_add_hstate(unsigned order)
1931{
1932	struct hstate *h;
1933	unsigned long i;
1934
1935	if (size_to_hstate(PAGE_SIZE << order)) {
1936		pr_warning("hugepagesz= specified twice, ignoring\n");
1937		return;
1938	}
1939	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1940	BUG_ON(order == 0);
1941	h = &hstates[hugetlb_max_hstate++];
1942	h->order = order;
1943	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1944	h->nr_huge_pages = 0;
1945	h->free_huge_pages = 0;
1946	for (i = 0; i < MAX_NUMNODES; ++i)
1947		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1948	INIT_LIST_HEAD(&h->hugepage_activelist);
1949	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1950	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1951	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1952					huge_page_size(h)/1024);
1953
1954	parsed_hstate = h;
1955}
1956
1957static int __init hugetlb_nrpages_setup(char *s)
1958{
1959	unsigned long *mhp;
1960	static unsigned long *last_mhp;
1961
1962	/*
1963	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1964	 * so this hugepages= parameter goes to the "default hstate".
1965	 */
1966	if (!hugetlb_max_hstate)
1967		mhp = &default_hstate_max_huge_pages;
1968	else
1969		mhp = &parsed_hstate->max_huge_pages;
1970
1971	if (mhp == last_mhp) {
1972		pr_warning("hugepages= specified twice without "
1973			   "interleaving hugepagesz=, ignoring\n");
1974		return 1;
1975	}
1976
1977	if (sscanf(s, "%lu", mhp) <= 0)
1978		*mhp = 0;
1979
1980	/*
1981	 * Global state is always initialized later in hugetlb_init.
1982	 * But we need to allocate >= MAX_ORDER hstates here early to still
1983	 * use the bootmem allocator.
1984	 */
1985	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1986		hugetlb_hstate_alloc_pages(parsed_hstate);
1987
1988	last_mhp = mhp;
1989
1990	return 1;
1991}
1992__setup("hugepages=", hugetlb_nrpages_setup);
1993
1994static int __init hugetlb_default_setup(char *s)
1995{
1996	default_hstate_size = memparse(s, &s);
1997	return 1;
1998}
1999__setup("default_hugepagesz=", hugetlb_default_setup);
2000
2001static unsigned int cpuset_mems_nr(unsigned int *array)
2002{
2003	int node;
2004	unsigned int nr = 0;
2005
2006	for_each_node_mask(node, cpuset_current_mems_allowed)
2007		nr += array[node];
2008
2009	return nr;
2010}
2011
2012#ifdef CONFIG_SYSCTL
2013static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2014			 struct ctl_table *table, int write,
2015			 void __user *buffer, size_t *length, loff_t *ppos)
2016{
2017	struct hstate *h = &default_hstate;
2018	unsigned long tmp;
2019	int ret;
2020
2021	tmp = h->max_huge_pages;
2022
2023	if (write && h->order >= MAX_ORDER)
2024		return -EINVAL;
2025
2026	table->data = &tmp;
2027	table->maxlen = sizeof(unsigned long);
2028	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2029	if (ret)
2030		goto out;
2031
2032	if (write) {
2033		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2034						GFP_KERNEL | __GFP_NORETRY);
2035		if (!(obey_mempolicy &&
2036			       init_nodemask_of_mempolicy(nodes_allowed))) {
2037			NODEMASK_FREE(nodes_allowed);
2038			nodes_allowed = &node_states[N_MEMORY];
2039		}
2040		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2041
2042		if (nodes_allowed != &node_states[N_MEMORY])
2043			NODEMASK_FREE(nodes_allowed);
2044	}
2045out:
2046	return ret;
2047}
2048
2049int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2050			  void __user *buffer, size_t *length, loff_t *ppos)
2051{
2052
2053	return hugetlb_sysctl_handler_common(false, table, write,
2054							buffer, length, ppos);
2055}
2056
2057#ifdef CONFIG_NUMA
2058int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2059			  void __user *buffer, size_t *length, loff_t *ppos)
2060{
2061	return hugetlb_sysctl_handler_common(true, table, write,
2062							buffer, length, ppos);
2063}
2064#endif /* CONFIG_NUMA */
2065
2066int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2067			void __user *buffer,
2068			size_t *length, loff_t *ppos)
2069{
2070	proc_dointvec(table, write, buffer, length, ppos);
2071	if (hugepages_treat_as_movable)
2072		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2073	else
2074		htlb_alloc_mask = GFP_HIGHUSER;
2075	return 0;
2076}
2077
2078int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2079			void __user *buffer,
2080			size_t *length, loff_t *ppos)
2081{
2082	struct hstate *h = &default_hstate;
2083	unsigned long tmp;
2084	int ret;
2085
2086	tmp = h->nr_overcommit_huge_pages;
2087
2088	if (write && h->order >= MAX_ORDER)
2089		return -EINVAL;
2090
2091	table->data = &tmp;
2092	table->maxlen = sizeof(unsigned long);
2093	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2094	if (ret)
2095		goto out;
2096
2097	if (write) {
2098		spin_lock(&hugetlb_lock);
2099		h->nr_overcommit_huge_pages = tmp;
2100		spin_unlock(&hugetlb_lock);
2101	}
2102out:
2103	return ret;
2104}
2105
2106#endif /* CONFIG_SYSCTL */
2107
2108void hugetlb_report_meminfo(struct seq_file *m)
2109{
2110	struct hstate *h = &default_hstate;
2111	seq_printf(m,
2112			"HugePages_Total:   %5lu\n"
2113			"HugePages_Free:    %5lu\n"
2114			"HugePages_Rsvd:    %5lu\n"
2115			"HugePages_Surp:    %5lu\n"
2116			"Hugepagesize:   %8lu kB\n",
2117			h->nr_huge_pages,
2118			h->free_huge_pages,
2119			h->resv_huge_pages,
2120			h->surplus_huge_pages,
2121			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2122}
2123
2124int hugetlb_report_node_meminfo(int nid, char *buf)
2125{
2126	struct hstate *h = &default_hstate;
2127	return sprintf(buf,
2128		"Node %d HugePages_Total: %5u\n"
2129		"Node %d HugePages_Free:  %5u\n"
2130		"Node %d HugePages_Surp:  %5u\n",
2131		nid, h->nr_huge_pages_node[nid],
2132		nid, h->free_huge_pages_node[nid],
2133		nid, h->surplus_huge_pages_node[nid]);
2134}
2135
2136void hugetlb_show_meminfo(void)
2137{
2138	struct hstate *h;
2139	int nid;
2140
2141	for_each_node_state(nid, N_MEMORY)
2142		for_each_hstate(h)
2143			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2144				nid,
2145				h->nr_huge_pages_node[nid],
2146				h->free_huge_pages_node[nid],
2147				h->surplus_huge_pages_node[nid],
2148				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2149}
2150
2151/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2152unsigned long hugetlb_total_pages(void)
2153{
2154	struct hstate *h;
2155	unsigned long nr_total_pages = 0;
2156
2157	for_each_hstate(h)
2158		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2159	return nr_total_pages;
2160}
2161
2162static int hugetlb_acct_memory(struct hstate *h, long delta)
2163{
2164	int ret = -ENOMEM;
2165
2166	spin_lock(&hugetlb_lock);
2167	/*
2168	 * When cpuset is configured, it breaks the strict hugetlb page
2169	 * reservation as the accounting is done on a global variable. Such
2170	 * reservation is completely rubbish in the presence of cpuset because
2171	 * the reservation is not checked against page availability for the
2172	 * current cpuset. Application can still potentially OOM'ed by kernel
2173	 * with lack of free htlb page in cpuset that the task is in.
2174	 * Attempt to enforce strict accounting with cpuset is almost
2175	 * impossible (or too ugly) because cpuset is too fluid that
2176	 * task or memory node can be dynamically moved between cpusets.
2177	 *
2178	 * The change of semantics for shared hugetlb mapping with cpuset is
2179	 * undesirable. However, in order to preserve some of the semantics,
2180	 * we fall back to check against current free page availability as
2181	 * a best attempt and hopefully to minimize the impact of changing
2182	 * semantics that cpuset has.
2183	 */
2184	if (delta > 0) {
2185		if (gather_surplus_pages(h, delta) < 0)
2186			goto out;
2187
2188		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2189			return_unused_surplus_pages(h, delta);
2190			goto out;
2191		}
2192	}
2193
2194	ret = 0;
2195	if (delta < 0)
2196		return_unused_surplus_pages(h, (unsigned long) -delta);
2197
2198out:
2199	spin_unlock(&hugetlb_lock);
2200	return ret;
2201}
2202
2203static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2204{
2205	struct resv_map *reservations = vma_resv_map(vma);
2206
2207	/*
2208	 * This new VMA should share its siblings reservation map if present.
2209	 * The VMA will only ever have a valid reservation map pointer where
2210	 * it is being copied for another still existing VMA.  As that VMA
2211	 * has a reference to the reservation map it cannot disappear until
2212	 * after this open call completes.  It is therefore safe to take a
2213	 * new reference here without additional locking.
2214	 */
2215	if (reservations)
2216		kref_get(&reservations->refs);
2217}
2218
2219static void resv_map_put(struct vm_area_struct *vma)
2220{
2221	struct resv_map *reservations = vma_resv_map(vma);
2222
2223	if (!reservations)
2224		return;
2225	kref_put(&reservations->refs, resv_map_release);
2226}
2227
2228static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2229{
2230	struct hstate *h = hstate_vma(vma);
2231	struct resv_map *reservations = vma_resv_map(vma);
2232	struct hugepage_subpool *spool = subpool_vma(vma);
2233	unsigned long reserve;
2234	unsigned long start;
2235	unsigned long end;
2236
2237	if (reservations) {
2238		start = vma_hugecache_offset(h, vma, vma->vm_start);
2239		end = vma_hugecache_offset(h, vma, vma->vm_end);
2240
2241		reserve = (end - start) -
2242			region_count(&reservations->regions, start, end);
2243
2244		resv_map_put(vma);
2245
2246		if (reserve) {
2247			hugetlb_acct_memory(h, -reserve);
2248			hugepage_subpool_put_pages(spool, reserve);
2249		}
2250	}
2251}
2252
2253/*
2254 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2255 * handle_mm_fault() to try to instantiate regular-sized pages in the
2256 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2257 * this far.
2258 */
2259static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2260{
2261	BUG();
2262	return 0;
2263}
2264
2265const struct vm_operations_struct hugetlb_vm_ops = {
2266	.fault = hugetlb_vm_op_fault,
2267	.open = hugetlb_vm_op_open,
2268	.close = hugetlb_vm_op_close,
2269};
2270
2271static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2272				int writable)
2273{
2274	pte_t entry;
2275
2276	if (writable) {
2277		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2278					 vma->vm_page_prot)));
2279	} else {
2280		entry = huge_pte_wrprotect(mk_huge_pte(page,
2281					   vma->vm_page_prot));
2282	}
2283	entry = pte_mkyoung(entry);
2284	entry = pte_mkhuge(entry);
2285	entry = arch_make_huge_pte(entry, vma, page, writable);
2286
2287	return entry;
2288}
2289
2290static void set_huge_ptep_writable(struct vm_area_struct *vma,
2291				   unsigned long address, pte_t *ptep)
2292{
2293	pte_t entry;
2294
2295	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2296	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2297		update_mmu_cache(vma, address, ptep);
2298}
2299
2300
2301int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2302			    struct vm_area_struct *vma)
2303{
2304	pte_t *src_pte, *dst_pte, entry;
2305	struct page *ptepage;
2306	unsigned long addr;
2307	int cow;
2308	struct hstate *h = hstate_vma(vma);
2309	unsigned long sz = huge_page_size(h);
2310
2311	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2312
2313	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2314		src_pte = huge_pte_offset(src, addr);
2315		if (!src_pte)
2316			continue;
2317		dst_pte = huge_pte_alloc(dst, addr, sz);
2318		if (!dst_pte)
2319			goto nomem;
2320
2321		/* If the pagetables are shared don't copy or take references */
2322		if (dst_pte == src_pte)
2323			continue;
2324
2325		spin_lock(&dst->page_table_lock);
2326		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2327		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2328			if (cow)
2329				huge_ptep_set_wrprotect(src, addr, src_pte);
2330			entry = huge_ptep_get(src_pte);
2331			ptepage = pte_page(entry);
2332			get_page(ptepage);
2333			page_dup_rmap(ptepage);
2334			set_huge_pte_at(dst, addr, dst_pte, entry);
2335		}
2336		spin_unlock(&src->page_table_lock);
2337		spin_unlock(&dst->page_table_lock);
2338	}
2339	return 0;
2340
2341nomem:
2342	return -ENOMEM;
2343}
2344
2345static int is_hugetlb_entry_migration(pte_t pte)
2346{
2347	swp_entry_t swp;
2348
2349	if (huge_pte_none(pte) || pte_present(pte))
2350		return 0;
2351	swp = pte_to_swp_entry(pte);
2352	if (non_swap_entry(swp) && is_migration_entry(swp))
2353		return 1;
2354	else
2355		return 0;
2356}
2357
2358static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2359{
2360	swp_entry_t swp;
2361
2362	if (huge_pte_none(pte) || pte_present(pte))
2363		return 0;
2364	swp = pte_to_swp_entry(pte);
2365	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2366		return 1;
2367	else
2368		return 0;
2369}
2370
2371void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2372			    unsigned long start, unsigned long end,
2373			    struct page *ref_page)
2374{
2375	int force_flush = 0;
2376	struct mm_struct *mm = vma->vm_mm;
2377	unsigned long address;
2378	pte_t *ptep;
2379	pte_t pte;
2380	struct page *page;
2381	struct hstate *h = hstate_vma(vma);
2382	unsigned long sz = huge_page_size(h);
2383	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2384	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2385
2386	WARN_ON(!is_vm_hugetlb_page(vma));
2387	BUG_ON(start & ~huge_page_mask(h));
2388	BUG_ON(end & ~huge_page_mask(h));
2389
2390	tlb_start_vma(tlb, vma);
2391	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2392again:
2393	spin_lock(&mm->page_table_lock);
2394	for (address = start; address < end; address += sz) {
2395		ptep = huge_pte_offset(mm, address);
2396		if (!ptep)
2397			continue;
2398
2399		if (huge_pmd_unshare(mm, &address, ptep))
2400			continue;
2401
2402		pte = huge_ptep_get(ptep);
2403		if (huge_pte_none(pte))
2404			continue;
2405
2406		/*
2407		 * HWPoisoned hugepage is already unmapped and dropped reference
2408		 */
2409		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2410			huge_pte_clear(mm, address, ptep);
2411			continue;
2412		}
2413
2414		page = pte_page(pte);
2415		/*
2416		 * If a reference page is supplied, it is because a specific
2417		 * page is being unmapped, not a range. Ensure the page we
2418		 * are about to unmap is the actual page of interest.
2419		 */
2420		if (ref_page) {
2421			if (page != ref_page)
2422				continue;
2423
2424			/*
2425			 * Mark the VMA as having unmapped its page so that
2426			 * future faults in this VMA will fail rather than
2427			 * looking like data was lost
2428			 */
2429			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2430		}
2431
2432		pte = huge_ptep_get_and_clear(mm, address, ptep);
2433		tlb_remove_tlb_entry(tlb, ptep, address);
2434		if (huge_pte_dirty(pte))
2435			set_page_dirty(page);
2436
2437		page_remove_rmap(page);
2438		force_flush = !__tlb_remove_page(tlb, page);
2439		if (force_flush)
2440			break;
2441		/* Bail out after unmapping reference page if supplied */
2442		if (ref_page)
2443			break;
2444	}
2445	spin_unlock(&mm->page_table_lock);
2446	/*
2447	 * mmu_gather ran out of room to batch pages, we break out of
2448	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2449	 * and page-free while holding it.
2450	 */
2451	if (force_flush) {
2452		force_flush = 0;
2453		tlb_flush_mmu(tlb);
2454		if (address < end && !ref_page)
2455			goto again;
2456	}
2457	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2458	tlb_end_vma(tlb, vma);
2459}
2460
2461void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2462			  struct vm_area_struct *vma, unsigned long start,
2463			  unsigned long end, struct page *ref_page)
2464{
2465	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2466
2467	/*
2468	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2469	 * test will fail on a vma being torn down, and not grab a page table
2470	 * on its way out.  We're lucky that the flag has such an appropriate
2471	 * name, and can in fact be safely cleared here. We could clear it
2472	 * before the __unmap_hugepage_range above, but all that's necessary
2473	 * is to clear it before releasing the i_mmap_mutex. This works
2474	 * because in the context this is called, the VMA is about to be
2475	 * destroyed and the i_mmap_mutex is held.
2476	 */
2477	vma->vm_flags &= ~VM_MAYSHARE;
2478}
2479
2480void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2481			  unsigned long end, struct page *ref_page)
2482{
2483	struct mm_struct *mm;
2484	struct mmu_gather tlb;
2485
2486	mm = vma->vm_mm;
2487
2488	tlb_gather_mmu(&tlb, mm, start, end);
2489	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2490	tlb_finish_mmu(&tlb, start, end);
2491}
2492
2493/*
2494 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2495 * mappping it owns the reserve page for. The intention is to unmap the page
2496 * from other VMAs and let the children be SIGKILLed if they are faulting the
2497 * same region.
2498 */
2499static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2500				struct page *page, unsigned long address)
2501{
2502	struct hstate *h = hstate_vma(vma);
2503	struct vm_area_struct *iter_vma;
2504	struct address_space *mapping;
2505	pgoff_t pgoff;
2506
2507	/*
2508	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2509	 * from page cache lookup which is in HPAGE_SIZE units.
2510	 */
2511	address = address & huge_page_mask(h);
2512	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2513			vma->vm_pgoff;
2514	mapping = file_inode(vma->vm_file)->i_mapping;
2515
2516	/*
2517	 * Take the mapping lock for the duration of the table walk. As
2518	 * this mapping should be shared between all the VMAs,
2519	 * __unmap_hugepage_range() is called as the lock is already held
2520	 */
2521	mutex_lock(&mapping->i_mmap_mutex);
2522	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2523		/* Do not unmap the current VMA */
2524		if (iter_vma == vma)
2525			continue;
2526
2527		/*
2528		 * Unmap the page from other VMAs without their own reserves.
2529		 * They get marked to be SIGKILLed if they fault in these
2530		 * areas. This is because a future no-page fault on this VMA
2531		 * could insert a zeroed page instead of the data existing
2532		 * from the time of fork. This would look like data corruption
2533		 */
2534		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2535			unmap_hugepage_range(iter_vma, address,
2536					     address + huge_page_size(h), page);
2537	}
2538	mutex_unlock(&mapping->i_mmap_mutex);
2539
2540	return 1;
2541}
2542
2543/*
2544 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2545 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2546 * cannot race with other handlers or page migration.
2547 * Keep the pte_same checks anyway to make transition from the mutex easier.
2548 */
2549static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2550			unsigned long address, pte_t *ptep, pte_t pte,
2551			struct page *pagecache_page)
2552{
2553	struct hstate *h = hstate_vma(vma);
2554	struct page *old_page, *new_page;
2555	int avoidcopy;
2556	int outside_reserve = 0;
2557	unsigned long mmun_start;	/* For mmu_notifiers */
2558	unsigned long mmun_end;		/* For mmu_notifiers */
2559
2560	old_page = pte_page(pte);
2561
2562retry_avoidcopy:
2563	/* If no-one else is actually using this page, avoid the copy
2564	 * and just make the page writable */
2565	avoidcopy = (page_mapcount(old_page) == 1);
2566	if (avoidcopy) {
2567		if (PageAnon(old_page))
2568			page_move_anon_rmap(old_page, vma, address);
2569		set_huge_ptep_writable(vma, address, ptep);
2570		return 0;
2571	}
2572
2573	/*
2574	 * If the process that created a MAP_PRIVATE mapping is about to
2575	 * perform a COW due to a shared page count, attempt to satisfy
2576	 * the allocation without using the existing reserves. The pagecache
2577	 * page is used to determine if the reserve at this address was
2578	 * consumed or not. If reserves were used, a partial faulted mapping
2579	 * at the time of fork() could consume its reserves on COW instead
2580	 * of the full address range.
2581	 */
2582	if (!(vma->vm_flags & VM_MAYSHARE) &&
2583			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2584			old_page != pagecache_page)
2585		outside_reserve = 1;
2586
2587	page_cache_get(old_page);
2588
2589	/* Drop page_table_lock as buddy allocator may be called */
2590	spin_unlock(&mm->page_table_lock);
2591	new_page = alloc_huge_page(vma, address, outside_reserve);
2592
2593	if (IS_ERR(new_page)) {
2594		long err = PTR_ERR(new_page);
2595		page_cache_release(old_page);
2596
2597		/*
2598		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2599		 * it is due to references held by a child and an insufficient
2600		 * huge page pool. To guarantee the original mappers
2601		 * reliability, unmap the page from child processes. The child
2602		 * may get SIGKILLed if it later faults.
2603		 */
2604		if (outside_reserve) {
2605			BUG_ON(huge_pte_none(pte));
2606			if (unmap_ref_private(mm, vma, old_page, address)) {
2607				BUG_ON(huge_pte_none(pte));
2608				spin_lock(&mm->page_table_lock);
2609				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2610				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2611					goto retry_avoidcopy;
2612				/*
2613				 * race occurs while re-acquiring page_table_lock, and
2614				 * our job is done.
2615				 */
2616				return 0;
2617			}
2618			WARN_ON_ONCE(1);
2619		}
2620
2621		/* Caller expects lock to be held */
2622		spin_lock(&mm->page_table_lock);
2623		if (err == -ENOMEM)
2624			return VM_FAULT_OOM;
2625		else
2626			return VM_FAULT_SIGBUS;
2627	}
2628
2629	/*
2630	 * When the original hugepage is shared one, it does not have
2631	 * anon_vma prepared.
2632	 */
2633	if (unlikely(anon_vma_prepare(vma))) {
2634		page_cache_release(new_page);
2635		page_cache_release(old_page);
2636		/* Caller expects lock to be held */
2637		spin_lock(&mm->page_table_lock);
2638		return VM_FAULT_OOM;
2639	}
2640
2641	copy_user_huge_page(new_page, old_page, address, vma,
2642			    pages_per_huge_page(h));
2643	__SetPageUptodate(new_page);
2644
2645	mmun_start = address & huge_page_mask(h);
2646	mmun_end = mmun_start + huge_page_size(h);
2647	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2648	/*
2649	 * Retake the page_table_lock to check for racing updates
2650	 * before the page tables are altered
2651	 */
2652	spin_lock(&mm->page_table_lock);
2653	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2654	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2655		/* Break COW */
2656		huge_ptep_clear_flush(vma, address, ptep);
2657		set_huge_pte_at(mm, address, ptep,
2658				make_huge_pte(vma, new_page, 1));
2659		page_remove_rmap(old_page);
2660		hugepage_add_new_anon_rmap(new_page, vma, address);
2661		/* Make the old page be freed below */
2662		new_page = old_page;
2663	}
2664	spin_unlock(&mm->page_table_lock);
2665	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2666	/* Caller expects lock to be held */
2667	spin_lock(&mm->page_table_lock);
2668	page_cache_release(new_page);
2669	page_cache_release(old_page);
2670	return 0;
2671}
2672
2673/* Return the pagecache page at a given address within a VMA */
2674static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2675			struct vm_area_struct *vma, unsigned long address)
2676{
2677	struct address_space *mapping;
2678	pgoff_t idx;
2679
2680	mapping = vma->vm_file->f_mapping;
2681	idx = vma_hugecache_offset(h, vma, address);
2682
2683	return find_lock_page(mapping, idx);
2684}
2685
2686/*
2687 * Return whether there is a pagecache page to back given address within VMA.
2688 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2689 */
2690static bool hugetlbfs_pagecache_present(struct hstate *h,
2691			struct vm_area_struct *vma, unsigned long address)
2692{
2693	struct address_space *mapping;
2694	pgoff_t idx;
2695	struct page *page;
2696
2697	mapping = vma->vm_file->f_mapping;
2698	idx = vma_hugecache_offset(h, vma, address);
2699
2700	page = find_get_page(mapping, idx);
2701	if (page)
2702		put_page(page);
2703	return page != NULL;
2704}
2705
2706static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2707			unsigned long address, pte_t *ptep, unsigned int flags)
2708{
2709	struct hstate *h = hstate_vma(vma);
2710	int ret = VM_FAULT_SIGBUS;
2711	int anon_rmap = 0;
2712	pgoff_t idx;
2713	unsigned long size;
2714	struct page *page;
2715	struct address_space *mapping;
2716	pte_t new_pte;
2717
2718	/*
2719	 * Currently, we are forced to kill the process in the event the
2720	 * original mapper has unmapped pages from the child due to a failed
2721	 * COW. Warn that such a situation has occurred as it may not be obvious
2722	 */
2723	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2724		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2725			   current->pid);
2726		return ret;
2727	}
2728
2729	mapping = vma->vm_file->f_mapping;
2730	idx = vma_hugecache_offset(h, vma, address);
2731
2732	/*
2733	 * Use page lock to guard against racing truncation
2734	 * before we get page_table_lock.
2735	 */
2736retry:
2737	page = find_lock_page(mapping, idx);
2738	if (!page) {
2739		size = i_size_read(mapping->host) >> huge_page_shift(h);
2740		if (idx >= size)
2741			goto out;
2742		page = alloc_huge_page(vma, address, 0);
2743		if (IS_ERR(page)) {
2744			ret = PTR_ERR(page);
2745			if (ret == -ENOMEM)
2746				ret = VM_FAULT_OOM;
2747			else
2748				ret = VM_FAULT_SIGBUS;
2749			goto out;
2750		}
2751		clear_huge_page(page, address, pages_per_huge_page(h));
2752		__SetPageUptodate(page);
2753
2754		if (vma->vm_flags & VM_MAYSHARE) {
2755			int err;
2756			struct inode *inode = mapping->host;
2757
2758			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2759			if (err) {
2760				put_page(page);
2761				if (err == -EEXIST)
2762					goto retry;
2763				goto out;
2764			}
2765
2766			spin_lock(&inode->i_lock);
2767			inode->i_blocks += blocks_per_huge_page(h);
2768			spin_unlock(&inode->i_lock);
2769		} else {
2770			lock_page(page);
2771			if (unlikely(anon_vma_prepare(vma))) {
2772				ret = VM_FAULT_OOM;
2773				goto backout_unlocked;
2774			}
2775			anon_rmap = 1;
2776		}
2777	} else {
2778		/*
2779		 * If memory error occurs between mmap() and fault, some process
2780		 * don't have hwpoisoned swap entry for errored virtual address.
2781		 * So we need to block hugepage fault by PG_hwpoison bit check.
2782		 */
2783		if (unlikely(PageHWPoison(page))) {
2784			ret = VM_FAULT_HWPOISON |
2785				VM_FAULT_SET_HINDEX(hstate_index(h));
2786			goto backout_unlocked;
2787		}
2788	}
2789
2790	/*
2791	 * If we are going to COW a private mapping later, we examine the
2792	 * pending reservations for this page now. This will ensure that
2793	 * any allocations necessary to record that reservation occur outside
2794	 * the spinlock.
2795	 */
2796	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2797		if (vma_needs_reservation(h, vma, address) < 0) {
2798			ret = VM_FAULT_OOM;
2799			goto backout_unlocked;
2800		}
2801
2802	spin_lock(&mm->page_table_lock);
2803	size = i_size_read(mapping->host) >> huge_page_shift(h);
2804	if (idx >= size)
2805		goto backout;
2806
2807	ret = 0;
2808	if (!huge_pte_none(huge_ptep_get(ptep)))
2809		goto backout;
2810
2811	if (anon_rmap)
2812		hugepage_add_new_anon_rmap(page, vma, address);
2813	else
2814		page_dup_rmap(page);
2815	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2816				&& (vma->vm_flags & VM_SHARED)));
2817	set_huge_pte_at(mm, address, ptep, new_pte);
2818
2819	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2820		/* Optimization, do the COW without a second fault */
2821		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2822	}
2823
2824	spin_unlock(&mm->page_table_lock);
2825	unlock_page(page);
2826out:
2827	return ret;
2828
2829backout:
2830	spin_unlock(&mm->page_table_lock);
2831backout_unlocked:
2832	unlock_page(page);
2833	put_page(page);
2834	goto out;
2835}
2836
2837int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2838			unsigned long address, unsigned int flags)
2839{
2840	pte_t *ptep;
2841	pte_t entry;
2842	int ret;
2843	struct page *page = NULL;
2844	struct page *pagecache_page = NULL;
2845	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2846	struct hstate *h = hstate_vma(vma);
2847
2848	address &= huge_page_mask(h);
2849
2850	ptep = huge_pte_offset(mm, address);
2851	if (ptep) {
2852		entry = huge_ptep_get(ptep);
2853		if (unlikely(is_hugetlb_entry_migration(entry))) {
2854			migration_entry_wait_huge(mm, ptep);
2855			return 0;
2856		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2857			return VM_FAULT_HWPOISON_LARGE |
2858				VM_FAULT_SET_HINDEX(hstate_index(h));
2859	}
2860
2861	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2862	if (!ptep)
2863		return VM_FAULT_OOM;
2864
2865	/*
2866	 * Serialize hugepage allocation and instantiation, so that we don't
2867	 * get spurious allocation failures if two CPUs race to instantiate
2868	 * the same page in the page cache.
2869	 */
2870	mutex_lock(&hugetlb_instantiation_mutex);
2871	entry = huge_ptep_get(ptep);
2872	if (huge_pte_none(entry)) {
2873		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2874		goto out_mutex;
2875	}
2876
2877	ret = 0;
2878
2879	/*
2880	 * If we are going to COW the mapping later, we examine the pending
2881	 * reservations for this page now. This will ensure that any
2882	 * allocations necessary to record that reservation occur outside the
2883	 * spinlock. For private mappings, we also lookup the pagecache
2884	 * page now as it is used to determine if a reservation has been
2885	 * consumed.
2886	 */
2887	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2888		if (vma_needs_reservation(h, vma, address) < 0) {
2889			ret = VM_FAULT_OOM;
2890			goto out_mutex;
2891		}
2892
2893		if (!(vma->vm_flags & VM_MAYSHARE))
2894			pagecache_page = hugetlbfs_pagecache_page(h,
2895								vma, address);
2896	}
2897
2898	/*
2899	 * hugetlb_cow() requires page locks of pte_page(entry) and
2900	 * pagecache_page, so here we need take the former one
2901	 * when page != pagecache_page or !pagecache_page.
2902	 * Note that locking order is always pagecache_page -> page,
2903	 * so no worry about deadlock.
2904	 */
2905	page = pte_page(entry);
2906	get_page(page);
2907	if (page != pagecache_page)
2908		lock_page(page);
2909
2910	spin_lock(&mm->page_table_lock);
2911	/* Check for a racing update before calling hugetlb_cow */
2912	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2913		goto out_page_table_lock;
2914
2915
2916	if (flags & FAULT_FLAG_WRITE) {
2917		if (!huge_pte_write(entry)) {
2918			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2919							pagecache_page);
2920			goto out_page_table_lock;
2921		}
2922		entry = huge_pte_mkdirty(entry);
2923	}
2924	entry = pte_mkyoung(entry);
2925	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2926						flags & FAULT_FLAG_WRITE))
2927		update_mmu_cache(vma, address, ptep);
2928
2929out_page_table_lock:
2930	spin_unlock(&mm->page_table_lock);
2931
2932	if (pagecache_page) {
2933		unlock_page(pagecache_page);
2934		put_page(pagecache_page);
2935	}
2936	if (page != pagecache_page)
2937		unlock_page(page);
2938	put_page(page);
2939
2940out_mutex:
2941	mutex_unlock(&hugetlb_instantiation_mutex);
2942
2943	return ret;
2944}
2945
2946long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2947			 struct page **pages, struct vm_area_struct **vmas,
2948			 unsigned long *position, unsigned long *nr_pages,
2949			 long i, unsigned int flags)
2950{
2951	unsigned long pfn_offset;
2952	unsigned long vaddr = *position;
2953	unsigned long remainder = *nr_pages;
2954	struct hstate *h = hstate_vma(vma);
2955
2956	spin_lock(&mm->page_table_lock);
2957	while (vaddr < vma->vm_end && remainder) {
2958		pte_t *pte;
2959		int absent;
2960		struct page *page;
2961
2962		/*
2963		 * Some archs (sparc64, sh*) have multiple pte_ts to
2964		 * each hugepage.  We have to make sure we get the
2965		 * first, for the page indexing below to work.
2966		 */
2967		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2968		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2969
2970		/*
2971		 * When coredumping, it suits get_dump_page if we just return
2972		 * an error where there's an empty slot with no huge pagecache
2973		 * to back it.  This way, we avoid allocating a hugepage, and
2974		 * the sparse dumpfile avoids allocating disk blocks, but its
2975		 * huge holes still show up with zeroes where they need to be.
2976		 */
2977		if (absent && (flags & FOLL_DUMP) &&
2978		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2979			remainder = 0;
2980			break;
2981		}
2982
2983		/*
2984		 * We need call hugetlb_fault for both hugepages under migration
2985		 * (in which case hugetlb_fault waits for the migration,) and
2986		 * hwpoisoned hugepages (in which case we need to prevent the
2987		 * caller from accessing to them.) In order to do this, we use
2988		 * here is_swap_pte instead of is_hugetlb_entry_migration and
2989		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2990		 * both cases, and because we can't follow correct pages
2991		 * directly from any kind of swap entries.
2992		 */
2993		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2994		    ((flags & FOLL_WRITE) &&
2995		      !huge_pte_write(huge_ptep_get(pte)))) {
2996			int ret;
2997
2998			spin_unlock(&mm->page_table_lock);
2999			ret = hugetlb_fault(mm, vma, vaddr,
3000				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3001			spin_lock(&mm->page_table_lock);
3002			if (!(ret & VM_FAULT_ERROR))
3003				continue;
3004
3005			remainder = 0;
3006			break;
3007		}
3008
3009		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3010		page = pte_page(huge_ptep_get(pte));
3011same_page:
3012		if (pages) {
3013			pages[i] = mem_map_offset(page, pfn_offset);
3014			get_page(pages[i]);
3015		}
3016
3017		if (vmas)
3018			vmas[i] = vma;
3019
3020		vaddr += PAGE_SIZE;
3021		++pfn_offset;
3022		--remainder;
3023		++i;
3024		if (vaddr < vma->vm_end && remainder &&
3025				pfn_offset < pages_per_huge_page(h)) {
3026			/*
3027			 * We use pfn_offset to avoid touching the pageframes
3028			 * of this compound page.
3029			 */
3030			goto same_page;
3031		}
3032	}
3033	spin_unlock(&mm->page_table_lock);
3034	*nr_pages = remainder;
3035	*position = vaddr;
3036
3037	return i ? i : -EFAULT;
3038}
3039
3040unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3041		unsigned long address, unsigned long end, pgprot_t newprot)
3042{
3043	struct mm_struct *mm = vma->vm_mm;
3044	unsigned long start = address;
3045	pte_t *ptep;
3046	pte_t pte;
3047	struct hstate *h = hstate_vma(vma);
3048	unsigned long pages = 0;
3049
3050	BUG_ON(address >= end);
3051	flush_cache_range(vma, address, end);
3052
3053	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3054	spin_lock(&mm->page_table_lock);
3055	for (; address < end; address += huge_page_size(h)) {
3056		ptep = huge_pte_offset(mm, address);
3057		if (!ptep)
3058			continue;
3059		if (huge_pmd_unshare(mm, &address, ptep)) {
3060			pages++;
3061			continue;
3062		}
3063		if (!huge_pte_none(huge_ptep_get(ptep))) {
3064			pte = huge_ptep_get_and_clear(mm, address, ptep);
3065			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3066			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3067			set_huge_pte_at(mm, address, ptep, pte);
3068			pages++;
3069		}
3070	}
3071	spin_unlock(&mm->page_table_lock);
3072	/*
3073	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3074	 * may have cleared our pud entry and done put_page on the page table:
3075	 * once we release i_mmap_mutex, another task can do the final put_page
3076	 * and that page table be reused and filled with junk.
3077	 */
3078	flush_tlb_range(vma, start, end);
3079	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3080
3081	return pages << h->order;
3082}
3083
3084int hugetlb_reserve_pages(struct inode *inode,
3085					long from, long to,
3086					struct vm_area_struct *vma,
3087					vm_flags_t vm_flags)
3088{
3089	long ret, chg;
3090	struct hstate *h = hstate_inode(inode);
3091	struct hugepage_subpool *spool = subpool_inode(inode);
3092
3093	/*
3094	 * Only apply hugepage reservation if asked. At fault time, an
3095	 * attempt will be made for VM_NORESERVE to allocate a page
3096	 * without using reserves
3097	 */
3098	if (vm_flags & VM_NORESERVE)
3099		return 0;
3100
3101	/*
3102	 * Shared mappings base their reservation on the number of pages that
3103	 * are already allocated on behalf of the file. Private mappings need
3104	 * to reserve the full area even if read-only as mprotect() may be
3105	 * called to make the mapping read-write. Assume !vma is a shm mapping
3106	 */
3107	if (!vma || vma->vm_flags & VM_MAYSHARE)
3108		chg = region_chg(&inode->i_mapping->private_list, from, to);
3109	else {
3110		struct resv_map *resv_map = resv_map_alloc();
3111		if (!resv_map)
3112			return -ENOMEM;
3113
3114		chg = to - from;
3115
3116		set_vma_resv_map(vma, resv_map);
3117		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3118	}
3119
3120	if (chg < 0) {
3121		ret = chg;
3122		goto out_err;
3123	}
3124
3125	/* There must be enough pages in the subpool for the mapping */
3126	if (hugepage_subpool_get_pages(spool, chg)) {
3127		ret = -ENOSPC;
3128		goto out_err;
3129	}
3130
3131	/*
3132	 * Check enough hugepages are available for the reservation.
3133	 * Hand the pages back to the subpool if there are not
3134	 */
3135	ret = hugetlb_acct_memory(h, chg);
3136	if (ret < 0) {
3137		hugepage_subpool_put_pages(spool, chg);
3138		goto out_err;
3139	}
3140
3141	/*
3142	 * Account for the reservations made. Shared mappings record regions
3143	 * that have reservations as they are shared by multiple VMAs.
3144	 * When the last VMA disappears, the region map says how much
3145	 * the reservation was and the page cache tells how much of
3146	 * the reservation was consumed. Private mappings are per-VMA and
3147	 * only the consumed reservations are tracked. When the VMA
3148	 * disappears, the original reservation is the VMA size and the
3149	 * consumed reservations are stored in the map. Hence, nothing
3150	 * else has to be done for private mappings here
3151	 */
3152	if (!vma || vma->vm_flags & VM_MAYSHARE)
3153		region_add(&inode->i_mapping->private_list, from, to);
3154	return 0;
3155out_err:
3156	if (vma)
3157		resv_map_put(vma);
3158	return ret;
3159}
3160
3161void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3162{
3163	struct hstate *h = hstate_inode(inode);
3164	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3165	struct hugepage_subpool *spool = subpool_inode(inode);
3166
3167	spin_lock(&inode->i_lock);
3168	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3169	spin_unlock(&inode->i_lock);
3170
3171	hugepage_subpool_put_pages(spool, (chg - freed));
3172	hugetlb_acct_memory(h, -(chg - freed));
3173}
3174
3175#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3176static unsigned long page_table_shareable(struct vm_area_struct *svma,
3177				struct vm_area_struct *vma,
3178				unsigned long addr, pgoff_t idx)
3179{
3180	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3181				svma->vm_start;
3182	unsigned long sbase = saddr & PUD_MASK;
3183	unsigned long s_end = sbase + PUD_SIZE;
3184
3185	/* Allow segments to share if only one is marked locked */
3186	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3187	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3188
3189	/*
3190	 * match the virtual addresses, permission and the alignment of the
3191	 * page table page.
3192	 */
3193	if (pmd_index(addr) != pmd_index(saddr) ||
3194	    vm_flags != svm_flags ||
3195	    sbase < svma->vm_start || svma->vm_end < s_end)
3196		return 0;
3197
3198	return saddr;
3199}
3200
3201static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3202{
3203	unsigned long base = addr & PUD_MASK;
3204	unsigned long end = base + PUD_SIZE;
3205
3206	/*
3207	 * check on proper vm_flags and page table alignment
3208	 */
3209	if (vma->vm_flags & VM_MAYSHARE &&
3210	    vma->vm_start <= base && end <= vma->vm_end)
3211		return 1;
3212	return 0;
3213}
3214
3215/*
3216 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3217 * and returns the corresponding pte. While this is not necessary for the
3218 * !shared pmd case because we can allocate the pmd later as well, it makes the
3219 * code much cleaner. pmd allocation is essential for the shared case because
3220 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3221 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3222 * bad pmd for sharing.
3223 */
3224pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3225{
3226	struct vm_area_struct *vma = find_vma(mm, addr);
3227	struct address_space *mapping = vma->vm_file->f_mapping;
3228	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3229			vma->vm_pgoff;
3230	struct vm_area_struct *svma;
3231	unsigned long saddr;
3232	pte_t *spte = NULL;
3233	pte_t *pte;
3234
3235	if (!vma_shareable(vma, addr))
3236		return (pte_t *)pmd_alloc(mm, pud, addr);
3237
3238	mutex_lock(&mapping->i_mmap_mutex);
3239	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3240		if (svma == vma)
3241			continue;
3242
3243		saddr = page_table_shareable(svma, vma, addr, idx);
3244		if (saddr) {
3245			spte = huge_pte_offset(svma->vm_mm, saddr);
3246			if (spte) {
3247				get_page(virt_to_page(spte));
3248				break;
3249			}
3250		}
3251	}
3252
3253	if (!spte)
3254		goto out;
3255
3256	spin_lock(&mm->page_table_lock);
3257	if (pud_none(*pud))
3258		pud_populate(mm, pud,
3259				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3260	else
3261		put_page(virt_to_page(spte));
3262	spin_unlock(&mm->page_table_lock);
3263out:
3264	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3265	mutex_unlock(&mapping->i_mmap_mutex);
3266	return pte;
3267}
3268
3269/*
3270 * unmap huge page backed by shared pte.
3271 *
3272 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3273 * indicated by page_count > 1, unmap is achieved by clearing pud and
3274 * decrementing the ref count. If count == 1, the pte page is not shared.
3275 *
3276 * called with vma->vm_mm->page_table_lock held.
3277 *
3278 * returns: 1 successfully unmapped a shared pte page
3279 *	    0 the underlying pte page is not shared, or it is the last user
3280 */
3281int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3282{
3283	pgd_t *pgd = pgd_offset(mm, *addr);
3284	pud_t *pud = pud_offset(pgd, *addr);
3285
3286	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3287	if (page_count(virt_to_page(ptep)) == 1)
3288		return 0;
3289
3290	pud_clear(pud);
3291	put_page(virt_to_page(ptep));
3292	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3293	return 1;
3294}
3295#define want_pmd_share()	(1)
3296#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3297pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3298{
3299	return NULL;
3300}
3301#define want_pmd_share()	(0)
3302#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3303
3304#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3305pte_t *huge_pte_alloc(struct mm_struct *mm,
3306			unsigned long addr, unsigned long sz)
3307{
3308	pgd_t *pgd;
3309	pud_t *pud;
3310	pte_t *pte = NULL;
3311
3312	pgd = pgd_offset(mm, addr);
3313	pud = pud_alloc(mm, pgd, addr);
3314	if (pud) {
3315		if (sz == PUD_SIZE) {
3316			pte = (pte_t *)pud;
3317		} else {
3318			BUG_ON(sz != PMD_SIZE);
3319			if (want_pmd_share() && pud_none(*pud))
3320				pte = huge_pmd_share(mm, addr, pud);
3321			else
3322				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3323		}
3324	}
3325	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3326
3327	return pte;
3328}
3329
3330pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3331{
3332	pgd_t *pgd;
3333	pud_t *pud;
3334	pmd_t *pmd = NULL;
3335
3336	pgd = pgd_offset(mm, addr);
3337	if (pgd_present(*pgd)) {
3338		pud = pud_offset(pgd, addr);
3339		if (pud_present(*pud)) {
3340			if (pud_huge(*pud))
3341				return (pte_t *)pud;
3342			pmd = pmd_offset(pud, addr);
3343		}
3344	}
3345	return (pte_t *) pmd;
3346}
3347
3348struct page *
3349follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3350		pmd_t *pmd, int write)
3351{
3352	struct page *page;
3353
3354	page = pte_page(*(pte_t *)pmd);
3355	if (page)
3356		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3357	return page;
3358}
3359
3360struct page *
3361follow_huge_pud(struct mm_struct *mm, unsigned long address,
3362		pud_t *pud, int write)
3363{
3364	struct page *page;
3365
3366	page = pte_page(*(pte_t *)pud);
3367	if (page)
3368		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3369	return page;
3370}
3371
3372#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3373
3374/* Can be overriden by architectures */
3375__attribute__((weak)) struct page *
3376follow_huge_pud(struct mm_struct *mm, unsigned long address,
3377	       pud_t *pud, int write)
3378{
3379	BUG();
3380	return NULL;
3381}
3382
3383#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3384
3385#ifdef CONFIG_MEMORY_FAILURE
3386
3387/* Should be called in hugetlb_lock */
3388static int is_hugepage_on_freelist(struct page *hpage)
3389{
3390	struct page *page;
3391	struct page *tmp;
3392	struct hstate *h = page_hstate(hpage);
3393	int nid = page_to_nid(hpage);
3394
3395	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3396		if (page == hpage)
3397			return 1;
3398	return 0;
3399}
3400
3401/*
3402 * This function is called from memory failure code.
3403 * Assume the caller holds page lock of the head page.
3404 */
3405int dequeue_hwpoisoned_huge_page(struct page *hpage)
3406{
3407	struct hstate *h = page_hstate(hpage);
3408	int nid = page_to_nid(hpage);
3409	int ret = -EBUSY;
3410
3411	spin_lock(&hugetlb_lock);
3412	if (is_hugepage_on_freelist(hpage)) {
3413		/*
3414		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3415		 * but dangling hpage->lru can trigger list-debug warnings
3416		 * (this happens when we call unpoison_memory() on it),
3417		 * so let it point to itself with list_del_init().
3418		 */
3419		list_del_init(&hpage->lru);
3420		set_page_refcounted(hpage);
3421		h->free_huge_pages--;
3422		h->free_huge_pages_node[nid]--;
3423		ret = 0;
3424	}
3425	spin_unlock(&hugetlb_lock);
3426	return ret;
3427}
3428#endif
3429