hugetlb.c revision 8a21346058ad946134b6ddfeb5de975c3cfcf5da
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17#include <linux/bootmem.h>
18#include <linux/sysfs.h>
19
20#include <asm/page.h>
21#include <asm/pgtable.h>
22
23#include <linux/hugetlb.h>
24#include "internal.h"
25
26const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
28unsigned long hugepages_treat_as_movable;
29
30static int max_hstate;
31unsigned int default_hstate_idx;
32struct hstate hstates[HUGE_MAX_HSTATE];
33
34__initdata LIST_HEAD(huge_boot_pages);
35
36/* for command line parsing */
37static struct hstate * __initdata parsed_hstate;
38static unsigned long __initdata default_hstate_max_huge_pages;
39static unsigned long __initdata default_hstate_size;
40
41#define for_each_hstate(h) \
42	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
43
44/*
45 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
46 */
47static DEFINE_SPINLOCK(hugetlb_lock);
48
49/*
50 * Region tracking -- allows tracking of reservations and instantiated pages
51 *                    across the pages in a mapping.
52 *
53 * The region data structures are protected by a combination of the mmap_sem
54 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
55 * must either hold the mmap_sem for write, or the mmap_sem for read and
56 * the hugetlb_instantiation mutex:
57 *
58 * 	down_write(&mm->mmap_sem);
59 * or
60 * 	down_read(&mm->mmap_sem);
61 * 	mutex_lock(&hugetlb_instantiation_mutex);
62 */
63struct file_region {
64	struct list_head link;
65	long from;
66	long to;
67};
68
69static long region_add(struct list_head *head, long f, long t)
70{
71	struct file_region *rg, *nrg, *trg;
72
73	/* Locate the region we are either in or before. */
74	list_for_each_entry(rg, head, link)
75		if (f <= rg->to)
76			break;
77
78	/* Round our left edge to the current segment if it encloses us. */
79	if (f > rg->from)
80		f = rg->from;
81
82	/* Check for and consume any regions we now overlap with. */
83	nrg = rg;
84	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
85		if (&rg->link == head)
86			break;
87		if (rg->from > t)
88			break;
89
90		/* If this area reaches higher then extend our area to
91		 * include it completely.  If this is not the first area
92		 * which we intend to reuse, free it. */
93		if (rg->to > t)
94			t = rg->to;
95		if (rg != nrg) {
96			list_del(&rg->link);
97			kfree(rg);
98		}
99	}
100	nrg->from = f;
101	nrg->to = t;
102	return 0;
103}
104
105static long region_chg(struct list_head *head, long f, long t)
106{
107	struct file_region *rg, *nrg;
108	long chg = 0;
109
110	/* Locate the region we are before or in. */
111	list_for_each_entry(rg, head, link)
112		if (f <= rg->to)
113			break;
114
115	/* If we are below the current region then a new region is required.
116	 * Subtle, allocate a new region at the position but make it zero
117	 * size such that we can guarantee to record the reservation. */
118	if (&rg->link == head || t < rg->from) {
119		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
120		if (!nrg)
121			return -ENOMEM;
122		nrg->from = f;
123		nrg->to   = f;
124		INIT_LIST_HEAD(&nrg->link);
125		list_add(&nrg->link, rg->link.prev);
126
127		return t - f;
128	}
129
130	/* Round our left edge to the current segment if it encloses us. */
131	if (f > rg->from)
132		f = rg->from;
133	chg = t - f;
134
135	/* Check for and consume any regions we now overlap with. */
136	list_for_each_entry(rg, rg->link.prev, link) {
137		if (&rg->link == head)
138			break;
139		if (rg->from > t)
140			return chg;
141
142		/* We overlap with this area, if it extends futher than
143		 * us then we must extend ourselves.  Account for its
144		 * existing reservation. */
145		if (rg->to > t) {
146			chg += rg->to - t;
147			t = rg->to;
148		}
149		chg -= rg->to - rg->from;
150	}
151	return chg;
152}
153
154static long region_truncate(struct list_head *head, long end)
155{
156	struct file_region *rg, *trg;
157	long chg = 0;
158
159	/* Locate the region we are either in or before. */
160	list_for_each_entry(rg, head, link)
161		if (end <= rg->to)
162			break;
163	if (&rg->link == head)
164		return 0;
165
166	/* If we are in the middle of a region then adjust it. */
167	if (end > rg->from) {
168		chg = rg->to - end;
169		rg->to = end;
170		rg = list_entry(rg->link.next, typeof(*rg), link);
171	}
172
173	/* Drop any remaining regions. */
174	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
175		if (&rg->link == head)
176			break;
177		chg += rg->to - rg->from;
178		list_del(&rg->link);
179		kfree(rg);
180	}
181	return chg;
182}
183
184static long region_count(struct list_head *head, long f, long t)
185{
186	struct file_region *rg;
187	long chg = 0;
188
189	/* Locate each segment we overlap with, and count that overlap. */
190	list_for_each_entry(rg, head, link) {
191		int seg_from;
192		int seg_to;
193
194		if (rg->to <= f)
195			continue;
196		if (rg->from >= t)
197			break;
198
199		seg_from = max(rg->from, f);
200		seg_to = min(rg->to, t);
201
202		chg += seg_to - seg_from;
203	}
204
205	return chg;
206}
207
208/*
209 * Convert the address within this vma to the page offset within
210 * the mapping, in pagecache page units; huge pages here.
211 */
212static pgoff_t vma_hugecache_offset(struct hstate *h,
213			struct vm_area_struct *vma, unsigned long address)
214{
215	return ((address - vma->vm_start) >> huge_page_shift(h)) +
216			(vma->vm_pgoff >> huge_page_order(h));
217}
218
219/*
220 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
221 * bits of the reservation map pointer, which are always clear due to
222 * alignment.
223 */
224#define HPAGE_RESV_OWNER    (1UL << 0)
225#define HPAGE_RESV_UNMAPPED (1UL << 1)
226#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
227
228/*
229 * These helpers are used to track how many pages are reserved for
230 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
231 * is guaranteed to have their future faults succeed.
232 *
233 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
234 * the reserve counters are updated with the hugetlb_lock held. It is safe
235 * to reset the VMA at fork() time as it is not in use yet and there is no
236 * chance of the global counters getting corrupted as a result of the values.
237 *
238 * The private mapping reservation is represented in a subtly different
239 * manner to a shared mapping.  A shared mapping has a region map associated
240 * with the underlying file, this region map represents the backing file
241 * pages which have ever had a reservation assigned which this persists even
242 * after the page is instantiated.  A private mapping has a region map
243 * associated with the original mmap which is attached to all VMAs which
244 * reference it, this region map represents those offsets which have consumed
245 * reservation ie. where pages have been instantiated.
246 */
247static unsigned long get_vma_private_data(struct vm_area_struct *vma)
248{
249	return (unsigned long)vma->vm_private_data;
250}
251
252static void set_vma_private_data(struct vm_area_struct *vma,
253							unsigned long value)
254{
255	vma->vm_private_data = (void *)value;
256}
257
258struct resv_map {
259	struct kref refs;
260	struct list_head regions;
261};
262
263struct resv_map *resv_map_alloc(void)
264{
265	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
266	if (!resv_map)
267		return NULL;
268
269	kref_init(&resv_map->refs);
270	INIT_LIST_HEAD(&resv_map->regions);
271
272	return resv_map;
273}
274
275void resv_map_release(struct kref *ref)
276{
277	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
278
279	/* Clear out any active regions before we release the map. */
280	region_truncate(&resv_map->regions, 0);
281	kfree(resv_map);
282}
283
284static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
285{
286	VM_BUG_ON(!is_vm_hugetlb_page(vma));
287	if (!(vma->vm_flags & VM_SHARED))
288		return (struct resv_map *)(get_vma_private_data(vma) &
289							~HPAGE_RESV_MASK);
290	return 0;
291}
292
293static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
294{
295	VM_BUG_ON(!is_vm_hugetlb_page(vma));
296	VM_BUG_ON(vma->vm_flags & VM_SHARED);
297
298	set_vma_private_data(vma, (get_vma_private_data(vma) &
299				HPAGE_RESV_MASK) | (unsigned long)map);
300}
301
302static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
303{
304	VM_BUG_ON(!is_vm_hugetlb_page(vma));
305	VM_BUG_ON(vma->vm_flags & VM_SHARED);
306
307	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
308}
309
310static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
311{
312	VM_BUG_ON(!is_vm_hugetlb_page(vma));
313
314	return (get_vma_private_data(vma) & flag) != 0;
315}
316
317/* Decrement the reserved pages in the hugepage pool by one */
318static void decrement_hugepage_resv_vma(struct hstate *h,
319			struct vm_area_struct *vma)
320{
321	if (vma->vm_flags & VM_NORESERVE)
322		return;
323
324	if (vma->vm_flags & VM_SHARED) {
325		/* Shared mappings always use reserves */
326		h->resv_huge_pages--;
327	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
328		/*
329		 * Only the process that called mmap() has reserves for
330		 * private mappings.
331		 */
332		h->resv_huge_pages--;
333	}
334}
335
336/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
337void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
338{
339	VM_BUG_ON(!is_vm_hugetlb_page(vma));
340	if (!(vma->vm_flags & VM_SHARED))
341		vma->vm_private_data = (void *)0;
342}
343
344/* Returns true if the VMA has associated reserve pages */
345static int vma_has_reserves(struct vm_area_struct *vma)
346{
347	if (vma->vm_flags & VM_SHARED)
348		return 1;
349	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
350		return 1;
351	return 0;
352}
353
354static void clear_huge_page(struct page *page,
355			unsigned long addr, unsigned long sz)
356{
357	int i;
358
359	might_sleep();
360	for (i = 0; i < sz/PAGE_SIZE; i++) {
361		cond_resched();
362		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
363	}
364}
365
366static void copy_huge_page(struct page *dst, struct page *src,
367			   unsigned long addr, struct vm_area_struct *vma)
368{
369	int i;
370	struct hstate *h = hstate_vma(vma);
371
372	might_sleep();
373	for (i = 0; i < pages_per_huge_page(h); i++) {
374		cond_resched();
375		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
376	}
377}
378
379static void enqueue_huge_page(struct hstate *h, struct page *page)
380{
381	int nid = page_to_nid(page);
382	list_add(&page->lru, &h->hugepage_freelists[nid]);
383	h->free_huge_pages++;
384	h->free_huge_pages_node[nid]++;
385}
386
387static struct page *dequeue_huge_page(struct hstate *h)
388{
389	int nid;
390	struct page *page = NULL;
391
392	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
393		if (!list_empty(&h->hugepage_freelists[nid])) {
394			page = list_entry(h->hugepage_freelists[nid].next,
395					  struct page, lru);
396			list_del(&page->lru);
397			h->free_huge_pages--;
398			h->free_huge_pages_node[nid]--;
399			break;
400		}
401	}
402	return page;
403}
404
405static struct page *dequeue_huge_page_vma(struct hstate *h,
406				struct vm_area_struct *vma,
407				unsigned long address, int avoid_reserve)
408{
409	int nid;
410	struct page *page = NULL;
411	struct mempolicy *mpol;
412	nodemask_t *nodemask;
413	struct zonelist *zonelist = huge_zonelist(vma, address,
414					htlb_alloc_mask, &mpol, &nodemask);
415	struct zone *zone;
416	struct zoneref *z;
417
418	/*
419	 * A child process with MAP_PRIVATE mappings created by their parent
420	 * have no page reserves. This check ensures that reservations are
421	 * not "stolen". The child may still get SIGKILLed
422	 */
423	if (!vma_has_reserves(vma) &&
424			h->free_huge_pages - h->resv_huge_pages == 0)
425		return NULL;
426
427	/* If reserves cannot be used, ensure enough pages are in the pool */
428	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
429		return NULL;
430
431	for_each_zone_zonelist_nodemask(zone, z, zonelist,
432						MAX_NR_ZONES - 1, nodemask) {
433		nid = zone_to_nid(zone);
434		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
435		    !list_empty(&h->hugepage_freelists[nid])) {
436			page = list_entry(h->hugepage_freelists[nid].next,
437					  struct page, lru);
438			list_del(&page->lru);
439			h->free_huge_pages--;
440			h->free_huge_pages_node[nid]--;
441
442			if (!avoid_reserve)
443				decrement_hugepage_resv_vma(h, vma);
444
445			break;
446		}
447	}
448	mpol_cond_put(mpol);
449	return page;
450}
451
452static void update_and_free_page(struct hstate *h, struct page *page)
453{
454	int i;
455
456	h->nr_huge_pages--;
457	h->nr_huge_pages_node[page_to_nid(page)]--;
458	for (i = 0; i < pages_per_huge_page(h); i++) {
459		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
460				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
461				1 << PG_private | 1<< PG_writeback);
462	}
463	set_compound_page_dtor(page, NULL);
464	set_page_refcounted(page);
465	arch_release_hugepage(page);
466	__free_pages(page, huge_page_order(h));
467}
468
469struct hstate *size_to_hstate(unsigned long size)
470{
471	struct hstate *h;
472
473	for_each_hstate(h) {
474		if (huge_page_size(h) == size)
475			return h;
476	}
477	return NULL;
478}
479
480static void free_huge_page(struct page *page)
481{
482	/*
483	 * Can't pass hstate in here because it is called from the
484	 * compound page destructor.
485	 */
486	struct hstate *h = page_hstate(page);
487	int nid = page_to_nid(page);
488	struct address_space *mapping;
489
490	mapping = (struct address_space *) page_private(page);
491	set_page_private(page, 0);
492	BUG_ON(page_count(page));
493	INIT_LIST_HEAD(&page->lru);
494
495	spin_lock(&hugetlb_lock);
496	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
497		update_and_free_page(h, page);
498		h->surplus_huge_pages--;
499		h->surplus_huge_pages_node[nid]--;
500	} else {
501		enqueue_huge_page(h, page);
502	}
503	spin_unlock(&hugetlb_lock);
504	if (mapping)
505		hugetlb_put_quota(mapping, 1);
506}
507
508/*
509 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
510 * balanced by operating on them in a round-robin fashion.
511 * Returns 1 if an adjustment was made.
512 */
513static int adjust_pool_surplus(struct hstate *h, int delta)
514{
515	static int prev_nid;
516	int nid = prev_nid;
517	int ret = 0;
518
519	VM_BUG_ON(delta != -1 && delta != 1);
520	do {
521		nid = next_node(nid, node_online_map);
522		if (nid == MAX_NUMNODES)
523			nid = first_node(node_online_map);
524
525		/* To shrink on this node, there must be a surplus page */
526		if (delta < 0 && !h->surplus_huge_pages_node[nid])
527			continue;
528		/* Surplus cannot exceed the total number of pages */
529		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
530						h->nr_huge_pages_node[nid])
531			continue;
532
533		h->surplus_huge_pages += delta;
534		h->surplus_huge_pages_node[nid] += delta;
535		ret = 1;
536		break;
537	} while (nid != prev_nid);
538
539	prev_nid = nid;
540	return ret;
541}
542
543static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
544{
545	set_compound_page_dtor(page, free_huge_page);
546	spin_lock(&hugetlb_lock);
547	h->nr_huge_pages++;
548	h->nr_huge_pages_node[nid]++;
549	spin_unlock(&hugetlb_lock);
550	put_page(page); /* free it into the hugepage allocator */
551}
552
553static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
554{
555	struct page *page;
556
557	if (h->order >= MAX_ORDER)
558		return NULL;
559
560	page = alloc_pages_node(nid,
561		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
562						__GFP_REPEAT|__GFP_NOWARN,
563		huge_page_order(h));
564	if (page) {
565		if (arch_prepare_hugepage(page)) {
566			__free_pages(page, HUGETLB_PAGE_ORDER);
567			return NULL;
568		}
569		prep_new_huge_page(h, page, nid);
570	}
571
572	return page;
573}
574
575/*
576 * Use a helper variable to find the next node and then
577 * copy it back to hugetlb_next_nid afterwards:
578 * otherwise there's a window in which a racer might
579 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
580 * But we don't need to use a spin_lock here: it really
581 * doesn't matter if occasionally a racer chooses the
582 * same nid as we do.  Move nid forward in the mask even
583 * if we just successfully allocated a hugepage so that
584 * the next caller gets hugepages on the next node.
585 */
586static int hstate_next_node(struct hstate *h)
587{
588	int next_nid;
589	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
590	if (next_nid == MAX_NUMNODES)
591		next_nid = first_node(node_online_map);
592	h->hugetlb_next_nid = next_nid;
593	return next_nid;
594}
595
596static int alloc_fresh_huge_page(struct hstate *h)
597{
598	struct page *page;
599	int start_nid;
600	int next_nid;
601	int ret = 0;
602
603	start_nid = h->hugetlb_next_nid;
604
605	do {
606		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
607		if (page)
608			ret = 1;
609		next_nid = hstate_next_node(h);
610	} while (!page && h->hugetlb_next_nid != start_nid);
611
612	if (ret)
613		count_vm_event(HTLB_BUDDY_PGALLOC);
614	else
615		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
616
617	return ret;
618}
619
620static struct page *alloc_buddy_huge_page(struct hstate *h,
621			struct vm_area_struct *vma, unsigned long address)
622{
623	struct page *page;
624	unsigned int nid;
625
626	if (h->order >= MAX_ORDER)
627		return NULL;
628
629	/*
630	 * Assume we will successfully allocate the surplus page to
631	 * prevent racing processes from causing the surplus to exceed
632	 * overcommit
633	 *
634	 * This however introduces a different race, where a process B
635	 * tries to grow the static hugepage pool while alloc_pages() is
636	 * called by process A. B will only examine the per-node
637	 * counters in determining if surplus huge pages can be
638	 * converted to normal huge pages in adjust_pool_surplus(). A
639	 * won't be able to increment the per-node counter, until the
640	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
641	 * no more huge pages can be converted from surplus to normal
642	 * state (and doesn't try to convert again). Thus, we have a
643	 * case where a surplus huge page exists, the pool is grown, and
644	 * the surplus huge page still exists after, even though it
645	 * should just have been converted to a normal huge page. This
646	 * does not leak memory, though, as the hugepage will be freed
647	 * once it is out of use. It also does not allow the counters to
648	 * go out of whack in adjust_pool_surplus() as we don't modify
649	 * the node values until we've gotten the hugepage and only the
650	 * per-node value is checked there.
651	 */
652	spin_lock(&hugetlb_lock);
653	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
654		spin_unlock(&hugetlb_lock);
655		return NULL;
656	} else {
657		h->nr_huge_pages++;
658		h->surplus_huge_pages++;
659	}
660	spin_unlock(&hugetlb_lock);
661
662	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
663					__GFP_REPEAT|__GFP_NOWARN,
664					huge_page_order(h));
665
666	spin_lock(&hugetlb_lock);
667	if (page) {
668		/*
669		 * This page is now managed by the hugetlb allocator and has
670		 * no users -- drop the buddy allocator's reference.
671		 */
672		put_page_testzero(page);
673		VM_BUG_ON(page_count(page));
674		nid = page_to_nid(page);
675		set_compound_page_dtor(page, free_huge_page);
676		/*
677		 * We incremented the global counters already
678		 */
679		h->nr_huge_pages_node[nid]++;
680		h->surplus_huge_pages_node[nid]++;
681		__count_vm_event(HTLB_BUDDY_PGALLOC);
682	} else {
683		h->nr_huge_pages--;
684		h->surplus_huge_pages--;
685		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686	}
687	spin_unlock(&hugetlb_lock);
688
689	return page;
690}
691
692/*
693 * Increase the hugetlb pool such that it can accomodate a reservation
694 * of size 'delta'.
695 */
696static int gather_surplus_pages(struct hstate *h, int delta)
697{
698	struct list_head surplus_list;
699	struct page *page, *tmp;
700	int ret, i;
701	int needed, allocated;
702
703	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
704	if (needed <= 0) {
705		h->resv_huge_pages += delta;
706		return 0;
707	}
708
709	allocated = 0;
710	INIT_LIST_HEAD(&surplus_list);
711
712	ret = -ENOMEM;
713retry:
714	spin_unlock(&hugetlb_lock);
715	for (i = 0; i < needed; i++) {
716		page = alloc_buddy_huge_page(h, NULL, 0);
717		if (!page) {
718			/*
719			 * We were not able to allocate enough pages to
720			 * satisfy the entire reservation so we free what
721			 * we've allocated so far.
722			 */
723			spin_lock(&hugetlb_lock);
724			needed = 0;
725			goto free;
726		}
727
728		list_add(&page->lru, &surplus_list);
729	}
730	allocated += needed;
731
732	/*
733	 * After retaking hugetlb_lock, we need to recalculate 'needed'
734	 * because either resv_huge_pages or free_huge_pages may have changed.
735	 */
736	spin_lock(&hugetlb_lock);
737	needed = (h->resv_huge_pages + delta) -
738			(h->free_huge_pages + allocated);
739	if (needed > 0)
740		goto retry;
741
742	/*
743	 * The surplus_list now contains _at_least_ the number of extra pages
744	 * needed to accomodate the reservation.  Add the appropriate number
745	 * of pages to the hugetlb pool and free the extras back to the buddy
746	 * allocator.  Commit the entire reservation here to prevent another
747	 * process from stealing the pages as they are added to the pool but
748	 * before they are reserved.
749	 */
750	needed += allocated;
751	h->resv_huge_pages += delta;
752	ret = 0;
753free:
754	/* Free the needed pages to the hugetlb pool */
755	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
756		if ((--needed) < 0)
757			break;
758		list_del(&page->lru);
759		enqueue_huge_page(h, page);
760	}
761
762	/* Free unnecessary surplus pages to the buddy allocator */
763	if (!list_empty(&surplus_list)) {
764		spin_unlock(&hugetlb_lock);
765		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
766			list_del(&page->lru);
767			/*
768			 * The page has a reference count of zero already, so
769			 * call free_huge_page directly instead of using
770			 * put_page.  This must be done with hugetlb_lock
771			 * unlocked which is safe because free_huge_page takes
772			 * hugetlb_lock before deciding how to free the page.
773			 */
774			free_huge_page(page);
775		}
776		spin_lock(&hugetlb_lock);
777	}
778
779	return ret;
780}
781
782/*
783 * When releasing a hugetlb pool reservation, any surplus pages that were
784 * allocated to satisfy the reservation must be explicitly freed if they were
785 * never used.
786 */
787static void return_unused_surplus_pages(struct hstate *h,
788					unsigned long unused_resv_pages)
789{
790	static int nid = -1;
791	struct page *page;
792	unsigned long nr_pages;
793
794	/*
795	 * We want to release as many surplus pages as possible, spread
796	 * evenly across all nodes. Iterate across all nodes until we
797	 * can no longer free unreserved surplus pages. This occurs when
798	 * the nodes with surplus pages have no free pages.
799	 */
800	unsigned long remaining_iterations = num_online_nodes();
801
802	/* Uncommit the reservation */
803	h->resv_huge_pages -= unused_resv_pages;
804
805	/* Cannot return gigantic pages currently */
806	if (h->order >= MAX_ORDER)
807		return;
808
809	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
810
811	while (remaining_iterations-- && nr_pages) {
812		nid = next_node(nid, node_online_map);
813		if (nid == MAX_NUMNODES)
814			nid = first_node(node_online_map);
815
816		if (!h->surplus_huge_pages_node[nid])
817			continue;
818
819		if (!list_empty(&h->hugepage_freelists[nid])) {
820			page = list_entry(h->hugepage_freelists[nid].next,
821					  struct page, lru);
822			list_del(&page->lru);
823			update_and_free_page(h, page);
824			h->free_huge_pages--;
825			h->free_huge_pages_node[nid]--;
826			h->surplus_huge_pages--;
827			h->surplus_huge_pages_node[nid]--;
828			nr_pages--;
829			remaining_iterations = num_online_nodes();
830		}
831	}
832}
833
834/*
835 * Determine if the huge page at addr within the vma has an associated
836 * reservation.  Where it does not we will need to logically increase
837 * reservation and actually increase quota before an allocation can occur.
838 * Where any new reservation would be required the reservation change is
839 * prepared, but not committed.  Once the page has been quota'd allocated
840 * an instantiated the change should be committed via vma_commit_reservation.
841 * No action is required on failure.
842 */
843static int vma_needs_reservation(struct hstate *h,
844			struct vm_area_struct *vma, unsigned long addr)
845{
846	struct address_space *mapping = vma->vm_file->f_mapping;
847	struct inode *inode = mapping->host;
848
849	if (vma->vm_flags & VM_SHARED) {
850		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
851		return region_chg(&inode->i_mapping->private_list,
852							idx, idx + 1);
853
854	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
855		return 1;
856
857	} else  {
858		int err;
859		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
860		struct resv_map *reservations = vma_resv_map(vma);
861
862		err = region_chg(&reservations->regions, idx, idx + 1);
863		if (err < 0)
864			return err;
865		return 0;
866	}
867}
868static void vma_commit_reservation(struct hstate *h,
869			struct vm_area_struct *vma, unsigned long addr)
870{
871	struct address_space *mapping = vma->vm_file->f_mapping;
872	struct inode *inode = mapping->host;
873
874	if (vma->vm_flags & VM_SHARED) {
875		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
876		region_add(&inode->i_mapping->private_list, idx, idx + 1);
877
878	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
879		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
880		struct resv_map *reservations = vma_resv_map(vma);
881
882		/* Mark this page used in the map. */
883		region_add(&reservations->regions, idx, idx + 1);
884	}
885}
886
887static struct page *alloc_huge_page(struct vm_area_struct *vma,
888				    unsigned long addr, int avoid_reserve)
889{
890	struct hstate *h = hstate_vma(vma);
891	struct page *page;
892	struct address_space *mapping = vma->vm_file->f_mapping;
893	struct inode *inode = mapping->host;
894	unsigned int chg;
895
896	/*
897	 * Processes that did not create the mapping will have no reserves and
898	 * will not have accounted against quota. Check that the quota can be
899	 * made before satisfying the allocation
900	 * MAP_NORESERVE mappings may also need pages and quota allocated
901	 * if no reserve mapping overlaps.
902	 */
903	chg = vma_needs_reservation(h, vma, addr);
904	if (chg < 0)
905		return ERR_PTR(chg);
906	if (chg)
907		if (hugetlb_get_quota(inode->i_mapping, chg))
908			return ERR_PTR(-ENOSPC);
909
910	spin_lock(&hugetlb_lock);
911	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
912	spin_unlock(&hugetlb_lock);
913
914	if (!page) {
915		page = alloc_buddy_huge_page(h, vma, addr);
916		if (!page) {
917			hugetlb_put_quota(inode->i_mapping, chg);
918			return ERR_PTR(-VM_FAULT_OOM);
919		}
920	}
921
922	set_page_refcounted(page);
923	set_page_private(page, (unsigned long) mapping);
924
925	vma_commit_reservation(h, vma, addr);
926
927	return page;
928}
929
930__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
931{
932	struct huge_bootmem_page *m;
933	int nr_nodes = nodes_weight(node_online_map);
934
935	while (nr_nodes) {
936		void *addr;
937
938		addr = __alloc_bootmem_node_nopanic(
939				NODE_DATA(h->hugetlb_next_nid),
940				huge_page_size(h), huge_page_size(h), 0);
941
942		if (addr) {
943			/*
944			 * Use the beginning of the huge page to store the
945			 * huge_bootmem_page struct (until gather_bootmem
946			 * puts them into the mem_map).
947			 */
948			m = addr;
949			if (m)
950				goto found;
951		}
952		hstate_next_node(h);
953		nr_nodes--;
954	}
955	return 0;
956
957found:
958	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
959	/* Put them into a private list first because mem_map is not up yet */
960	list_add(&m->list, &huge_boot_pages);
961	m->hstate = h;
962	return 1;
963}
964
965/* Put bootmem huge pages into the standard lists after mem_map is up */
966static void __init gather_bootmem_prealloc(void)
967{
968	struct huge_bootmem_page *m;
969
970	list_for_each_entry(m, &huge_boot_pages, list) {
971		struct page *page = virt_to_page(m);
972		struct hstate *h = m->hstate;
973		__ClearPageReserved(page);
974		WARN_ON(page_count(page) != 1);
975		prep_compound_page(page, h->order);
976		prep_new_huge_page(h, page, page_to_nid(page));
977	}
978}
979
980static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
981{
982	unsigned long i;
983
984	for (i = 0; i < h->max_huge_pages; ++i) {
985		if (h->order >= MAX_ORDER) {
986			if (!alloc_bootmem_huge_page(h))
987				break;
988		} else if (!alloc_fresh_huge_page(h))
989			break;
990	}
991	h->max_huge_pages = i;
992}
993
994static void __init hugetlb_init_hstates(void)
995{
996	struct hstate *h;
997
998	for_each_hstate(h) {
999		/* oversize hugepages were init'ed in early boot */
1000		if (h->order < MAX_ORDER)
1001			hugetlb_hstate_alloc_pages(h);
1002	}
1003}
1004
1005static char * __init memfmt(char *buf, unsigned long n)
1006{
1007	if (n >= (1UL << 30))
1008		sprintf(buf, "%lu GB", n >> 30);
1009	else if (n >= (1UL << 20))
1010		sprintf(buf, "%lu MB", n >> 20);
1011	else
1012		sprintf(buf, "%lu KB", n >> 10);
1013	return buf;
1014}
1015
1016static void __init report_hugepages(void)
1017{
1018	struct hstate *h;
1019
1020	for_each_hstate(h) {
1021		char buf[32];
1022		printk(KERN_INFO "HugeTLB registered %s page size, "
1023				 "pre-allocated %ld pages\n",
1024			memfmt(buf, huge_page_size(h)),
1025			h->free_huge_pages);
1026	}
1027}
1028
1029#ifdef CONFIG_HIGHMEM
1030static void try_to_free_low(struct hstate *h, unsigned long count)
1031{
1032	int i;
1033
1034	if (h->order >= MAX_ORDER)
1035		return;
1036
1037	for (i = 0; i < MAX_NUMNODES; ++i) {
1038		struct page *page, *next;
1039		struct list_head *freel = &h->hugepage_freelists[i];
1040		list_for_each_entry_safe(page, next, freel, lru) {
1041			if (count >= h->nr_huge_pages)
1042				return;
1043			if (PageHighMem(page))
1044				continue;
1045			list_del(&page->lru);
1046			update_and_free_page(h, page);
1047			h->free_huge_pages--;
1048			h->free_huge_pages_node[page_to_nid(page)]--;
1049		}
1050	}
1051}
1052#else
1053static inline void try_to_free_low(struct hstate *h, unsigned long count)
1054{
1055}
1056#endif
1057
1058#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1059static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1060{
1061	unsigned long min_count, ret;
1062
1063	if (h->order >= MAX_ORDER)
1064		return h->max_huge_pages;
1065
1066	/*
1067	 * Increase the pool size
1068	 * First take pages out of surplus state.  Then make up the
1069	 * remaining difference by allocating fresh huge pages.
1070	 *
1071	 * We might race with alloc_buddy_huge_page() here and be unable
1072	 * to convert a surplus huge page to a normal huge page. That is
1073	 * not critical, though, it just means the overall size of the
1074	 * pool might be one hugepage larger than it needs to be, but
1075	 * within all the constraints specified by the sysctls.
1076	 */
1077	spin_lock(&hugetlb_lock);
1078	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1079		if (!adjust_pool_surplus(h, -1))
1080			break;
1081	}
1082
1083	while (count > persistent_huge_pages(h)) {
1084		/*
1085		 * If this allocation races such that we no longer need the
1086		 * page, free_huge_page will handle it by freeing the page
1087		 * and reducing the surplus.
1088		 */
1089		spin_unlock(&hugetlb_lock);
1090		ret = alloc_fresh_huge_page(h);
1091		spin_lock(&hugetlb_lock);
1092		if (!ret)
1093			goto out;
1094
1095	}
1096
1097	/*
1098	 * Decrease the pool size
1099	 * First return free pages to the buddy allocator (being careful
1100	 * to keep enough around to satisfy reservations).  Then place
1101	 * pages into surplus state as needed so the pool will shrink
1102	 * to the desired size as pages become free.
1103	 *
1104	 * By placing pages into the surplus state independent of the
1105	 * overcommit value, we are allowing the surplus pool size to
1106	 * exceed overcommit. There are few sane options here. Since
1107	 * alloc_buddy_huge_page() is checking the global counter,
1108	 * though, we'll note that we're not allowed to exceed surplus
1109	 * and won't grow the pool anywhere else. Not until one of the
1110	 * sysctls are changed, or the surplus pages go out of use.
1111	 */
1112	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1113	min_count = max(count, min_count);
1114	try_to_free_low(h, min_count);
1115	while (min_count < persistent_huge_pages(h)) {
1116		struct page *page = dequeue_huge_page(h);
1117		if (!page)
1118			break;
1119		update_and_free_page(h, page);
1120	}
1121	while (count < persistent_huge_pages(h)) {
1122		if (!adjust_pool_surplus(h, 1))
1123			break;
1124	}
1125out:
1126	ret = persistent_huge_pages(h);
1127	spin_unlock(&hugetlb_lock);
1128	return ret;
1129}
1130
1131#define HSTATE_ATTR_RO(_name) \
1132	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1133
1134#define HSTATE_ATTR(_name) \
1135	static struct kobj_attribute _name##_attr = \
1136		__ATTR(_name, 0644, _name##_show, _name##_store)
1137
1138static struct kobject *hugepages_kobj;
1139static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1140
1141static struct hstate *kobj_to_hstate(struct kobject *kobj)
1142{
1143	int i;
1144	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1145		if (hstate_kobjs[i] == kobj)
1146			return &hstates[i];
1147	BUG();
1148	return NULL;
1149}
1150
1151static ssize_t nr_hugepages_show(struct kobject *kobj,
1152					struct kobj_attribute *attr, char *buf)
1153{
1154	struct hstate *h = kobj_to_hstate(kobj);
1155	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1156}
1157static ssize_t nr_hugepages_store(struct kobject *kobj,
1158		struct kobj_attribute *attr, const char *buf, size_t count)
1159{
1160	int err;
1161	unsigned long input;
1162	struct hstate *h = kobj_to_hstate(kobj);
1163
1164	err = strict_strtoul(buf, 10, &input);
1165	if (err)
1166		return 0;
1167
1168	h->max_huge_pages = set_max_huge_pages(h, input);
1169
1170	return count;
1171}
1172HSTATE_ATTR(nr_hugepages);
1173
1174static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1175					struct kobj_attribute *attr, char *buf)
1176{
1177	struct hstate *h = kobj_to_hstate(kobj);
1178	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1179}
1180static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1181		struct kobj_attribute *attr, const char *buf, size_t count)
1182{
1183	int err;
1184	unsigned long input;
1185	struct hstate *h = kobj_to_hstate(kobj);
1186
1187	err = strict_strtoul(buf, 10, &input);
1188	if (err)
1189		return 0;
1190
1191	spin_lock(&hugetlb_lock);
1192	h->nr_overcommit_huge_pages = input;
1193	spin_unlock(&hugetlb_lock);
1194
1195	return count;
1196}
1197HSTATE_ATTR(nr_overcommit_hugepages);
1198
1199static ssize_t free_hugepages_show(struct kobject *kobj,
1200					struct kobj_attribute *attr, char *buf)
1201{
1202	struct hstate *h = kobj_to_hstate(kobj);
1203	return sprintf(buf, "%lu\n", h->free_huge_pages);
1204}
1205HSTATE_ATTR_RO(free_hugepages);
1206
1207static ssize_t resv_hugepages_show(struct kobject *kobj,
1208					struct kobj_attribute *attr, char *buf)
1209{
1210	struct hstate *h = kobj_to_hstate(kobj);
1211	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1212}
1213HSTATE_ATTR_RO(resv_hugepages);
1214
1215static ssize_t surplus_hugepages_show(struct kobject *kobj,
1216					struct kobj_attribute *attr, char *buf)
1217{
1218	struct hstate *h = kobj_to_hstate(kobj);
1219	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1220}
1221HSTATE_ATTR_RO(surplus_hugepages);
1222
1223static struct attribute *hstate_attrs[] = {
1224	&nr_hugepages_attr.attr,
1225	&nr_overcommit_hugepages_attr.attr,
1226	&free_hugepages_attr.attr,
1227	&resv_hugepages_attr.attr,
1228	&surplus_hugepages_attr.attr,
1229	NULL,
1230};
1231
1232static struct attribute_group hstate_attr_group = {
1233	.attrs = hstate_attrs,
1234};
1235
1236static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1237{
1238	int retval;
1239
1240	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1241							hugepages_kobj);
1242	if (!hstate_kobjs[h - hstates])
1243		return -ENOMEM;
1244
1245	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1246							&hstate_attr_group);
1247	if (retval)
1248		kobject_put(hstate_kobjs[h - hstates]);
1249
1250	return retval;
1251}
1252
1253static void __init hugetlb_sysfs_init(void)
1254{
1255	struct hstate *h;
1256	int err;
1257
1258	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1259	if (!hugepages_kobj)
1260		return;
1261
1262	for_each_hstate(h) {
1263		err = hugetlb_sysfs_add_hstate(h);
1264		if (err)
1265			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1266								h->name);
1267	}
1268}
1269
1270static void __exit hugetlb_exit(void)
1271{
1272	struct hstate *h;
1273
1274	for_each_hstate(h) {
1275		kobject_put(hstate_kobjs[h - hstates]);
1276	}
1277
1278	kobject_put(hugepages_kobj);
1279}
1280module_exit(hugetlb_exit);
1281
1282static int __init hugetlb_init(void)
1283{
1284	BUILD_BUG_ON(HPAGE_SHIFT == 0);
1285
1286	if (!size_to_hstate(default_hstate_size)) {
1287		default_hstate_size = HPAGE_SIZE;
1288		if (!size_to_hstate(default_hstate_size))
1289			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1290	}
1291	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1292	if (default_hstate_max_huge_pages)
1293		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1294
1295	hugetlb_init_hstates();
1296
1297	gather_bootmem_prealloc();
1298
1299	report_hugepages();
1300
1301	hugetlb_sysfs_init();
1302
1303	return 0;
1304}
1305module_init(hugetlb_init);
1306
1307/* Should be called on processing a hugepagesz=... option */
1308void __init hugetlb_add_hstate(unsigned order)
1309{
1310	struct hstate *h;
1311	unsigned long i;
1312
1313	if (size_to_hstate(PAGE_SIZE << order)) {
1314		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1315		return;
1316	}
1317	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1318	BUG_ON(order == 0);
1319	h = &hstates[max_hstate++];
1320	h->order = order;
1321	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1322	h->nr_huge_pages = 0;
1323	h->free_huge_pages = 0;
1324	for (i = 0; i < MAX_NUMNODES; ++i)
1325		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1326	h->hugetlb_next_nid = first_node(node_online_map);
1327	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1328					huge_page_size(h)/1024);
1329
1330	parsed_hstate = h;
1331}
1332
1333static int __init hugetlb_nrpages_setup(char *s)
1334{
1335	unsigned long *mhp;
1336	static unsigned long *last_mhp;
1337
1338	/*
1339	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1340	 * so this hugepages= parameter goes to the "default hstate".
1341	 */
1342	if (!max_hstate)
1343		mhp = &default_hstate_max_huge_pages;
1344	else
1345		mhp = &parsed_hstate->max_huge_pages;
1346
1347	if (mhp == last_mhp) {
1348		printk(KERN_WARNING "hugepages= specified twice without "
1349			"interleaving hugepagesz=, ignoring\n");
1350		return 1;
1351	}
1352
1353	if (sscanf(s, "%lu", mhp) <= 0)
1354		*mhp = 0;
1355
1356	/*
1357	 * Global state is always initialized later in hugetlb_init.
1358	 * But we need to allocate >= MAX_ORDER hstates here early to still
1359	 * use the bootmem allocator.
1360	 */
1361	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1362		hugetlb_hstate_alloc_pages(parsed_hstate);
1363
1364	last_mhp = mhp;
1365
1366	return 1;
1367}
1368__setup("hugepages=", hugetlb_nrpages_setup);
1369
1370static int __init hugetlb_default_setup(char *s)
1371{
1372	default_hstate_size = memparse(s, &s);
1373	return 1;
1374}
1375__setup("default_hugepagesz=", hugetlb_default_setup);
1376
1377static unsigned int cpuset_mems_nr(unsigned int *array)
1378{
1379	int node;
1380	unsigned int nr = 0;
1381
1382	for_each_node_mask(node, cpuset_current_mems_allowed)
1383		nr += array[node];
1384
1385	return nr;
1386}
1387
1388#ifdef CONFIG_SYSCTL
1389int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1390			   struct file *file, void __user *buffer,
1391			   size_t *length, loff_t *ppos)
1392{
1393	struct hstate *h = &default_hstate;
1394	unsigned long tmp;
1395
1396	if (!write)
1397		tmp = h->max_huge_pages;
1398
1399	table->data = &tmp;
1400	table->maxlen = sizeof(unsigned long);
1401	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1402
1403	if (write)
1404		h->max_huge_pages = set_max_huge_pages(h, tmp);
1405
1406	return 0;
1407}
1408
1409int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1410			struct file *file, void __user *buffer,
1411			size_t *length, loff_t *ppos)
1412{
1413	proc_dointvec(table, write, file, buffer, length, ppos);
1414	if (hugepages_treat_as_movable)
1415		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1416	else
1417		htlb_alloc_mask = GFP_HIGHUSER;
1418	return 0;
1419}
1420
1421int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1422			struct file *file, void __user *buffer,
1423			size_t *length, loff_t *ppos)
1424{
1425	struct hstate *h = &default_hstate;
1426	unsigned long tmp;
1427
1428	if (!write)
1429		tmp = h->nr_overcommit_huge_pages;
1430
1431	table->data = &tmp;
1432	table->maxlen = sizeof(unsigned long);
1433	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1434
1435	if (write) {
1436		spin_lock(&hugetlb_lock);
1437		h->nr_overcommit_huge_pages = tmp;
1438		spin_unlock(&hugetlb_lock);
1439	}
1440
1441	return 0;
1442}
1443
1444#endif /* CONFIG_SYSCTL */
1445
1446int hugetlb_report_meminfo(char *buf)
1447{
1448	struct hstate *h = &default_hstate;
1449	return sprintf(buf,
1450			"HugePages_Total: %5lu\n"
1451			"HugePages_Free:  %5lu\n"
1452			"HugePages_Rsvd:  %5lu\n"
1453			"HugePages_Surp:  %5lu\n"
1454			"Hugepagesize:    %5lu kB\n",
1455			h->nr_huge_pages,
1456			h->free_huge_pages,
1457			h->resv_huge_pages,
1458			h->surplus_huge_pages,
1459			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1460}
1461
1462int hugetlb_report_node_meminfo(int nid, char *buf)
1463{
1464	struct hstate *h = &default_hstate;
1465	return sprintf(buf,
1466		"Node %d HugePages_Total: %5u\n"
1467		"Node %d HugePages_Free:  %5u\n"
1468		"Node %d HugePages_Surp:  %5u\n",
1469		nid, h->nr_huge_pages_node[nid],
1470		nid, h->free_huge_pages_node[nid],
1471		nid, h->surplus_huge_pages_node[nid]);
1472}
1473
1474/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1475unsigned long hugetlb_total_pages(void)
1476{
1477	struct hstate *h = &default_hstate;
1478	return h->nr_huge_pages * pages_per_huge_page(h);
1479}
1480
1481static int hugetlb_acct_memory(struct hstate *h, long delta)
1482{
1483	int ret = -ENOMEM;
1484
1485	spin_lock(&hugetlb_lock);
1486	/*
1487	 * When cpuset is configured, it breaks the strict hugetlb page
1488	 * reservation as the accounting is done on a global variable. Such
1489	 * reservation is completely rubbish in the presence of cpuset because
1490	 * the reservation is not checked against page availability for the
1491	 * current cpuset. Application can still potentially OOM'ed by kernel
1492	 * with lack of free htlb page in cpuset that the task is in.
1493	 * Attempt to enforce strict accounting with cpuset is almost
1494	 * impossible (or too ugly) because cpuset is too fluid that
1495	 * task or memory node can be dynamically moved between cpusets.
1496	 *
1497	 * The change of semantics for shared hugetlb mapping with cpuset is
1498	 * undesirable. However, in order to preserve some of the semantics,
1499	 * we fall back to check against current free page availability as
1500	 * a best attempt and hopefully to minimize the impact of changing
1501	 * semantics that cpuset has.
1502	 */
1503	if (delta > 0) {
1504		if (gather_surplus_pages(h, delta) < 0)
1505			goto out;
1506
1507		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1508			return_unused_surplus_pages(h, delta);
1509			goto out;
1510		}
1511	}
1512
1513	ret = 0;
1514	if (delta < 0)
1515		return_unused_surplus_pages(h, (unsigned long) -delta);
1516
1517out:
1518	spin_unlock(&hugetlb_lock);
1519	return ret;
1520}
1521
1522static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1523{
1524	struct resv_map *reservations = vma_resv_map(vma);
1525
1526	/*
1527	 * This new VMA should share its siblings reservation map if present.
1528	 * The VMA will only ever have a valid reservation map pointer where
1529	 * it is being copied for another still existing VMA.  As that VMA
1530	 * has a reference to the reservation map it cannot dissappear until
1531	 * after this open call completes.  It is therefore safe to take a
1532	 * new reference here without additional locking.
1533	 */
1534	if (reservations)
1535		kref_get(&reservations->refs);
1536}
1537
1538static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1539{
1540	struct hstate *h = hstate_vma(vma);
1541	struct resv_map *reservations = vma_resv_map(vma);
1542	unsigned long reserve;
1543	unsigned long start;
1544	unsigned long end;
1545
1546	if (reservations) {
1547		start = vma_hugecache_offset(h, vma, vma->vm_start);
1548		end = vma_hugecache_offset(h, vma, vma->vm_end);
1549
1550		reserve = (end - start) -
1551			region_count(&reservations->regions, start, end);
1552
1553		kref_put(&reservations->refs, resv_map_release);
1554
1555		if (reserve) {
1556			hugetlb_acct_memory(h, -reserve);
1557			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1558		}
1559	}
1560}
1561
1562/*
1563 * We cannot handle pagefaults against hugetlb pages at all.  They cause
1564 * handle_mm_fault() to try to instantiate regular-sized pages in the
1565 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1566 * this far.
1567 */
1568static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1569{
1570	BUG();
1571	return 0;
1572}
1573
1574struct vm_operations_struct hugetlb_vm_ops = {
1575	.fault = hugetlb_vm_op_fault,
1576	.open = hugetlb_vm_op_open,
1577	.close = hugetlb_vm_op_close,
1578};
1579
1580static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1581				int writable)
1582{
1583	pte_t entry;
1584
1585	if (writable) {
1586		entry =
1587		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1588	} else {
1589		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1590	}
1591	entry = pte_mkyoung(entry);
1592	entry = pte_mkhuge(entry);
1593
1594	return entry;
1595}
1596
1597static void set_huge_ptep_writable(struct vm_area_struct *vma,
1598				   unsigned long address, pte_t *ptep)
1599{
1600	pte_t entry;
1601
1602	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1603	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1604		update_mmu_cache(vma, address, entry);
1605	}
1606}
1607
1608
1609int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1610			    struct vm_area_struct *vma)
1611{
1612	pte_t *src_pte, *dst_pte, entry;
1613	struct page *ptepage;
1614	unsigned long addr;
1615	int cow;
1616	struct hstate *h = hstate_vma(vma);
1617	unsigned long sz = huge_page_size(h);
1618
1619	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1620
1621	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1622		src_pte = huge_pte_offset(src, addr);
1623		if (!src_pte)
1624			continue;
1625		dst_pte = huge_pte_alloc(dst, addr, sz);
1626		if (!dst_pte)
1627			goto nomem;
1628
1629		/* If the pagetables are shared don't copy or take references */
1630		if (dst_pte == src_pte)
1631			continue;
1632
1633		spin_lock(&dst->page_table_lock);
1634		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1635		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1636			if (cow)
1637				huge_ptep_set_wrprotect(src, addr, src_pte);
1638			entry = huge_ptep_get(src_pte);
1639			ptepage = pte_page(entry);
1640			get_page(ptepage);
1641			set_huge_pte_at(dst, addr, dst_pte, entry);
1642		}
1643		spin_unlock(&src->page_table_lock);
1644		spin_unlock(&dst->page_table_lock);
1645	}
1646	return 0;
1647
1648nomem:
1649	return -ENOMEM;
1650}
1651
1652void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1653			    unsigned long end, struct page *ref_page)
1654{
1655	struct mm_struct *mm = vma->vm_mm;
1656	unsigned long address;
1657	pte_t *ptep;
1658	pte_t pte;
1659	struct page *page;
1660	struct page *tmp;
1661	struct hstate *h = hstate_vma(vma);
1662	unsigned long sz = huge_page_size(h);
1663
1664	/*
1665	 * A page gathering list, protected by per file i_mmap_lock. The
1666	 * lock is used to avoid list corruption from multiple unmapping
1667	 * of the same page since we are using page->lru.
1668	 */
1669	LIST_HEAD(page_list);
1670
1671	WARN_ON(!is_vm_hugetlb_page(vma));
1672	BUG_ON(start & ~huge_page_mask(h));
1673	BUG_ON(end & ~huge_page_mask(h));
1674
1675	spin_lock(&mm->page_table_lock);
1676	for (address = start; address < end; address += sz) {
1677		ptep = huge_pte_offset(mm, address);
1678		if (!ptep)
1679			continue;
1680
1681		if (huge_pmd_unshare(mm, &address, ptep))
1682			continue;
1683
1684		/*
1685		 * If a reference page is supplied, it is because a specific
1686		 * page is being unmapped, not a range. Ensure the page we
1687		 * are about to unmap is the actual page of interest.
1688		 */
1689		if (ref_page) {
1690			pte = huge_ptep_get(ptep);
1691			if (huge_pte_none(pte))
1692				continue;
1693			page = pte_page(pte);
1694			if (page != ref_page)
1695				continue;
1696
1697			/*
1698			 * Mark the VMA as having unmapped its page so that
1699			 * future faults in this VMA will fail rather than
1700			 * looking like data was lost
1701			 */
1702			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1703		}
1704
1705		pte = huge_ptep_get_and_clear(mm, address, ptep);
1706		if (huge_pte_none(pte))
1707			continue;
1708
1709		page = pte_page(pte);
1710		if (pte_dirty(pte))
1711			set_page_dirty(page);
1712		list_add(&page->lru, &page_list);
1713	}
1714	spin_unlock(&mm->page_table_lock);
1715	flush_tlb_range(vma, start, end);
1716	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1717		list_del(&page->lru);
1718		put_page(page);
1719	}
1720}
1721
1722void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1723			  unsigned long end, struct page *ref_page)
1724{
1725	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1726	__unmap_hugepage_range(vma, start, end, ref_page);
1727	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1728}
1729
1730/*
1731 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1732 * mappping it owns the reserve page for. The intention is to unmap the page
1733 * from other VMAs and let the children be SIGKILLed if they are faulting the
1734 * same region.
1735 */
1736int unmap_ref_private(struct mm_struct *mm,
1737					struct vm_area_struct *vma,
1738					struct page *page,
1739					unsigned long address)
1740{
1741	struct vm_area_struct *iter_vma;
1742	struct address_space *mapping;
1743	struct prio_tree_iter iter;
1744	pgoff_t pgoff;
1745
1746	/*
1747	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1748	 * from page cache lookup which is in HPAGE_SIZE units.
1749	 */
1750	address = address & huge_page_mask(hstate_vma(vma));
1751	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1752		+ (vma->vm_pgoff >> PAGE_SHIFT);
1753	mapping = (struct address_space *)page_private(page);
1754
1755	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1756		/* Do not unmap the current VMA */
1757		if (iter_vma == vma)
1758			continue;
1759
1760		/*
1761		 * Unmap the page from other VMAs without their own reserves.
1762		 * They get marked to be SIGKILLed if they fault in these
1763		 * areas. This is because a future no-page fault on this VMA
1764		 * could insert a zeroed page instead of the data existing
1765		 * from the time of fork. This would look like data corruption
1766		 */
1767		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1768			unmap_hugepage_range(iter_vma,
1769				address, address + HPAGE_SIZE,
1770				page);
1771	}
1772
1773	return 1;
1774}
1775
1776static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1777			unsigned long address, pte_t *ptep, pte_t pte,
1778			struct page *pagecache_page)
1779{
1780	struct hstate *h = hstate_vma(vma);
1781	struct page *old_page, *new_page;
1782	int avoidcopy;
1783	int outside_reserve = 0;
1784
1785	old_page = pte_page(pte);
1786
1787retry_avoidcopy:
1788	/* If no-one else is actually using this page, avoid the copy
1789	 * and just make the page writable */
1790	avoidcopy = (page_count(old_page) == 1);
1791	if (avoidcopy) {
1792		set_huge_ptep_writable(vma, address, ptep);
1793		return 0;
1794	}
1795
1796	/*
1797	 * If the process that created a MAP_PRIVATE mapping is about to
1798	 * perform a COW due to a shared page count, attempt to satisfy
1799	 * the allocation without using the existing reserves. The pagecache
1800	 * page is used to determine if the reserve at this address was
1801	 * consumed or not. If reserves were used, a partial faulted mapping
1802	 * at the time of fork() could consume its reserves on COW instead
1803	 * of the full address range.
1804	 */
1805	if (!(vma->vm_flags & VM_SHARED) &&
1806			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1807			old_page != pagecache_page)
1808		outside_reserve = 1;
1809
1810	page_cache_get(old_page);
1811	new_page = alloc_huge_page(vma, address, outside_reserve);
1812
1813	if (IS_ERR(new_page)) {
1814		page_cache_release(old_page);
1815
1816		/*
1817		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1818		 * it is due to references held by a child and an insufficient
1819		 * huge page pool. To guarantee the original mappers
1820		 * reliability, unmap the page from child processes. The child
1821		 * may get SIGKILLed if it later faults.
1822		 */
1823		if (outside_reserve) {
1824			BUG_ON(huge_pte_none(pte));
1825			if (unmap_ref_private(mm, vma, old_page, address)) {
1826				BUG_ON(page_count(old_page) != 1);
1827				BUG_ON(huge_pte_none(pte));
1828				goto retry_avoidcopy;
1829			}
1830			WARN_ON_ONCE(1);
1831		}
1832
1833		return -PTR_ERR(new_page);
1834	}
1835
1836	spin_unlock(&mm->page_table_lock);
1837	copy_huge_page(new_page, old_page, address, vma);
1838	__SetPageUptodate(new_page);
1839	spin_lock(&mm->page_table_lock);
1840
1841	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1842	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1843		/* Break COW */
1844		huge_ptep_clear_flush(vma, address, ptep);
1845		set_huge_pte_at(mm, address, ptep,
1846				make_huge_pte(vma, new_page, 1));
1847		/* Make the old page be freed below */
1848		new_page = old_page;
1849	}
1850	page_cache_release(new_page);
1851	page_cache_release(old_page);
1852	return 0;
1853}
1854
1855/* Return the pagecache page at a given address within a VMA */
1856static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1857			struct vm_area_struct *vma, unsigned long address)
1858{
1859	struct address_space *mapping;
1860	pgoff_t idx;
1861
1862	mapping = vma->vm_file->f_mapping;
1863	idx = vma_hugecache_offset(h, vma, address);
1864
1865	return find_lock_page(mapping, idx);
1866}
1867
1868static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1869			unsigned long address, pte_t *ptep, int write_access)
1870{
1871	struct hstate *h = hstate_vma(vma);
1872	int ret = VM_FAULT_SIGBUS;
1873	pgoff_t idx;
1874	unsigned long size;
1875	struct page *page;
1876	struct address_space *mapping;
1877	pte_t new_pte;
1878
1879	/*
1880	 * Currently, we are forced to kill the process in the event the
1881	 * original mapper has unmapped pages from the child due to a failed
1882	 * COW. Warn that such a situation has occured as it may not be obvious
1883	 */
1884	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1885		printk(KERN_WARNING
1886			"PID %d killed due to inadequate hugepage pool\n",
1887			current->pid);
1888		return ret;
1889	}
1890
1891	mapping = vma->vm_file->f_mapping;
1892	idx = vma_hugecache_offset(h, vma, address);
1893
1894	/*
1895	 * Use page lock to guard against racing truncation
1896	 * before we get page_table_lock.
1897	 */
1898retry:
1899	page = find_lock_page(mapping, idx);
1900	if (!page) {
1901		size = i_size_read(mapping->host) >> huge_page_shift(h);
1902		if (idx >= size)
1903			goto out;
1904		page = alloc_huge_page(vma, address, 0);
1905		if (IS_ERR(page)) {
1906			ret = -PTR_ERR(page);
1907			goto out;
1908		}
1909		clear_huge_page(page, address, huge_page_size(h));
1910		__SetPageUptodate(page);
1911
1912		if (vma->vm_flags & VM_SHARED) {
1913			int err;
1914			struct inode *inode = mapping->host;
1915
1916			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1917			if (err) {
1918				put_page(page);
1919				if (err == -EEXIST)
1920					goto retry;
1921				goto out;
1922			}
1923
1924			spin_lock(&inode->i_lock);
1925			inode->i_blocks += blocks_per_huge_page(h);
1926			spin_unlock(&inode->i_lock);
1927		} else
1928			lock_page(page);
1929	}
1930
1931	spin_lock(&mm->page_table_lock);
1932	size = i_size_read(mapping->host) >> huge_page_shift(h);
1933	if (idx >= size)
1934		goto backout;
1935
1936	ret = 0;
1937	if (!huge_pte_none(huge_ptep_get(ptep)))
1938		goto backout;
1939
1940	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1941				&& (vma->vm_flags & VM_SHARED)));
1942	set_huge_pte_at(mm, address, ptep, new_pte);
1943
1944	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1945		/* Optimization, do the COW without a second fault */
1946		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1947	}
1948
1949	spin_unlock(&mm->page_table_lock);
1950	unlock_page(page);
1951out:
1952	return ret;
1953
1954backout:
1955	spin_unlock(&mm->page_table_lock);
1956	unlock_page(page);
1957	put_page(page);
1958	goto out;
1959}
1960
1961int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1962			unsigned long address, int write_access)
1963{
1964	pte_t *ptep;
1965	pte_t entry;
1966	int ret;
1967	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1968	struct hstate *h = hstate_vma(vma);
1969
1970	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1971	if (!ptep)
1972		return VM_FAULT_OOM;
1973
1974	/*
1975	 * Serialize hugepage allocation and instantiation, so that we don't
1976	 * get spurious allocation failures if two CPUs race to instantiate
1977	 * the same page in the page cache.
1978	 */
1979	mutex_lock(&hugetlb_instantiation_mutex);
1980	entry = huge_ptep_get(ptep);
1981	if (huge_pte_none(entry)) {
1982		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1983		mutex_unlock(&hugetlb_instantiation_mutex);
1984		return ret;
1985	}
1986
1987	ret = 0;
1988
1989	spin_lock(&mm->page_table_lock);
1990	/* Check for a racing update before calling hugetlb_cow */
1991	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1992		if (write_access && !pte_write(entry)) {
1993			struct page *page;
1994			page = hugetlbfs_pagecache_page(h, vma, address);
1995			ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1996			if (page) {
1997				unlock_page(page);
1998				put_page(page);
1999			}
2000		}
2001	spin_unlock(&mm->page_table_lock);
2002	mutex_unlock(&hugetlb_instantiation_mutex);
2003
2004	return ret;
2005}
2006
2007/* Can be overriden by architectures */
2008__attribute__((weak)) struct page *
2009follow_huge_pud(struct mm_struct *mm, unsigned long address,
2010	       pud_t *pud, int write)
2011{
2012	BUG();
2013	return NULL;
2014}
2015
2016int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2017			struct page **pages, struct vm_area_struct **vmas,
2018			unsigned long *position, int *length, int i,
2019			int write)
2020{
2021	unsigned long pfn_offset;
2022	unsigned long vaddr = *position;
2023	int remainder = *length;
2024	struct hstate *h = hstate_vma(vma);
2025
2026	spin_lock(&mm->page_table_lock);
2027	while (vaddr < vma->vm_end && remainder) {
2028		pte_t *pte;
2029		struct page *page;
2030
2031		/*
2032		 * Some archs (sparc64, sh*) have multiple pte_ts to
2033		 * each hugepage.  We have to make * sure we get the
2034		 * first, for the page indexing below to work.
2035		 */
2036		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2037
2038		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
2039		    (write && !pte_write(huge_ptep_get(pte)))) {
2040			int ret;
2041
2042			spin_unlock(&mm->page_table_lock);
2043			ret = hugetlb_fault(mm, vma, vaddr, write);
2044			spin_lock(&mm->page_table_lock);
2045			if (!(ret & VM_FAULT_ERROR))
2046				continue;
2047
2048			remainder = 0;
2049			if (!i)
2050				i = -EFAULT;
2051			break;
2052		}
2053
2054		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2055		page = pte_page(huge_ptep_get(pte));
2056same_page:
2057		if (pages) {
2058			get_page(page);
2059			pages[i] = page + pfn_offset;
2060		}
2061
2062		if (vmas)
2063			vmas[i] = vma;
2064
2065		vaddr += PAGE_SIZE;
2066		++pfn_offset;
2067		--remainder;
2068		++i;
2069		if (vaddr < vma->vm_end && remainder &&
2070				pfn_offset < pages_per_huge_page(h)) {
2071			/*
2072			 * We use pfn_offset to avoid touching the pageframes
2073			 * of this compound page.
2074			 */
2075			goto same_page;
2076		}
2077	}
2078	spin_unlock(&mm->page_table_lock);
2079	*length = remainder;
2080	*position = vaddr;
2081
2082	return i;
2083}
2084
2085void hugetlb_change_protection(struct vm_area_struct *vma,
2086		unsigned long address, unsigned long end, pgprot_t newprot)
2087{
2088	struct mm_struct *mm = vma->vm_mm;
2089	unsigned long start = address;
2090	pte_t *ptep;
2091	pte_t pte;
2092	struct hstate *h = hstate_vma(vma);
2093
2094	BUG_ON(address >= end);
2095	flush_cache_range(vma, address, end);
2096
2097	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2098	spin_lock(&mm->page_table_lock);
2099	for (; address < end; address += huge_page_size(h)) {
2100		ptep = huge_pte_offset(mm, address);
2101		if (!ptep)
2102			continue;
2103		if (huge_pmd_unshare(mm, &address, ptep))
2104			continue;
2105		if (!huge_pte_none(huge_ptep_get(ptep))) {
2106			pte = huge_ptep_get_and_clear(mm, address, ptep);
2107			pte = pte_mkhuge(pte_modify(pte, newprot));
2108			set_huge_pte_at(mm, address, ptep, pte);
2109		}
2110	}
2111	spin_unlock(&mm->page_table_lock);
2112	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2113
2114	flush_tlb_range(vma, start, end);
2115}
2116
2117int hugetlb_reserve_pages(struct inode *inode,
2118					long from, long to,
2119					struct vm_area_struct *vma)
2120{
2121	long ret, chg;
2122	struct hstate *h = hstate_inode(inode);
2123
2124	if (vma && vma->vm_flags & VM_NORESERVE)
2125		return 0;
2126
2127	/*
2128	 * Shared mappings base their reservation on the number of pages that
2129	 * are already allocated on behalf of the file. Private mappings need
2130	 * to reserve the full area even if read-only as mprotect() may be
2131	 * called to make the mapping read-write. Assume !vma is a shm mapping
2132	 */
2133	if (!vma || vma->vm_flags & VM_SHARED)
2134		chg = region_chg(&inode->i_mapping->private_list, from, to);
2135	else {
2136		struct resv_map *resv_map = resv_map_alloc();
2137		if (!resv_map)
2138			return -ENOMEM;
2139
2140		chg = to - from;
2141
2142		set_vma_resv_map(vma, resv_map);
2143		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2144	}
2145
2146	if (chg < 0)
2147		return chg;
2148
2149	if (hugetlb_get_quota(inode->i_mapping, chg))
2150		return -ENOSPC;
2151	ret = hugetlb_acct_memory(h, chg);
2152	if (ret < 0) {
2153		hugetlb_put_quota(inode->i_mapping, chg);
2154		return ret;
2155	}
2156	if (!vma || vma->vm_flags & VM_SHARED)
2157		region_add(&inode->i_mapping->private_list, from, to);
2158	return 0;
2159}
2160
2161void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2162{
2163	struct hstate *h = hstate_inode(inode);
2164	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2165
2166	spin_lock(&inode->i_lock);
2167	inode->i_blocks -= blocks_per_huge_page(h);
2168	spin_unlock(&inode->i_lock);
2169
2170	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2171	hugetlb_acct_memory(h, -(chg - freed));
2172}
2173