hugetlb.c revision 8b89a1169437541a2a9b62c8f7b1a5c0ceb0fbde
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/page-isolation.h>
25
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/tlb.h>
29
30#include <linux/io.h>
31#include <linux/hugetlb.h>
32#include <linux/hugetlb_cgroup.h>
33#include <linux/node.h>
34#include "internal.h"
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37unsigned long hugepages_treat_as_movable;
38
39int hugetlb_max_hstate __read_mostly;
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
43__initdata LIST_HEAD(huge_boot_pages);
44
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
48static unsigned long __initdata default_hstate_size;
49
50/*
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
53 */
54DEFINE_SPINLOCK(hugetlb_lock);
55
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60	spin_unlock(&spool->lock);
61
62	/* If no pages are used, and no other handles to the subpool
63	 * remain, free the subpool the subpool remain */
64	if (free)
65		kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70	struct hugepage_subpool *spool;
71
72	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73	if (!spool)
74		return NULL;
75
76	spin_lock_init(&spool->lock);
77	spool->count = 1;
78	spool->max_hpages = nr_blocks;
79	spool->used_hpages = 0;
80
81	return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86	spin_lock(&spool->lock);
87	BUG_ON(!spool->count);
88	spool->count--;
89	unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93				      long delta)
94{
95	int ret = 0;
96
97	if (!spool)
98		return 0;
99
100	spin_lock(&spool->lock);
101	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102		spool->used_hpages += delta;
103	} else {
104		ret = -ENOMEM;
105	}
106	spin_unlock(&spool->lock);
107
108	return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112				       long delta)
113{
114	if (!spool)
115		return;
116
117	spin_lock(&spool->lock);
118	spool->used_hpages -= delta;
119	/* If hugetlbfs_put_super couldn't free spool due to
120	* an outstanding quota reference, free it now. */
121	unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126	return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
131	return subpool_inode(file_inode(vma->vm_file));
132}
133
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 *                    across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
142 *
143 *	down_write(&mm->mmap_sem);
144 * or
145 *	down_read(&mm->mmap_sem);
146 *	mutex_lock(&hugetlb_instantiation_mutex);
147 */
148struct file_region {
149	struct list_head link;
150	long from;
151	long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156	struct file_region *rg, *nrg, *trg;
157
158	/* Locate the region we are either in or before. */
159	list_for_each_entry(rg, head, link)
160		if (f <= rg->to)
161			break;
162
163	/* Round our left edge to the current segment if it encloses us. */
164	if (f > rg->from)
165		f = rg->from;
166
167	/* Check for and consume any regions we now overlap with. */
168	nrg = rg;
169	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170		if (&rg->link == head)
171			break;
172		if (rg->from > t)
173			break;
174
175		/* If this area reaches higher then extend our area to
176		 * include it completely.  If this is not the first area
177		 * which we intend to reuse, free it. */
178		if (rg->to > t)
179			t = rg->to;
180		if (rg != nrg) {
181			list_del(&rg->link);
182			kfree(rg);
183		}
184	}
185	nrg->from = f;
186	nrg->to = t;
187	return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192	struct file_region *rg, *nrg;
193	long chg = 0;
194
195	/* Locate the region we are before or in. */
196	list_for_each_entry(rg, head, link)
197		if (f <= rg->to)
198			break;
199
200	/* If we are below the current region then a new region is required.
201	 * Subtle, allocate a new region at the position but make it zero
202	 * size such that we can guarantee to record the reservation. */
203	if (&rg->link == head || t < rg->from) {
204		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205		if (!nrg)
206			return -ENOMEM;
207		nrg->from = f;
208		nrg->to   = f;
209		INIT_LIST_HEAD(&nrg->link);
210		list_add(&nrg->link, rg->link.prev);
211
212		return t - f;
213	}
214
215	/* Round our left edge to the current segment if it encloses us. */
216	if (f > rg->from)
217		f = rg->from;
218	chg = t - f;
219
220	/* Check for and consume any regions we now overlap with. */
221	list_for_each_entry(rg, rg->link.prev, link) {
222		if (&rg->link == head)
223			break;
224		if (rg->from > t)
225			return chg;
226
227		/* We overlap with this area, if it extends further than
228		 * us then we must extend ourselves.  Account for its
229		 * existing reservation. */
230		if (rg->to > t) {
231			chg += rg->to - t;
232			t = rg->to;
233		}
234		chg -= rg->to - rg->from;
235	}
236	return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241	struct file_region *rg, *trg;
242	long chg = 0;
243
244	/* Locate the region we are either in or before. */
245	list_for_each_entry(rg, head, link)
246		if (end <= rg->to)
247			break;
248	if (&rg->link == head)
249		return 0;
250
251	/* If we are in the middle of a region then adjust it. */
252	if (end > rg->from) {
253		chg = rg->to - end;
254		rg->to = end;
255		rg = list_entry(rg->link.next, typeof(*rg), link);
256	}
257
258	/* Drop any remaining regions. */
259	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260		if (&rg->link == head)
261			break;
262		chg += rg->to - rg->from;
263		list_del(&rg->link);
264		kfree(rg);
265	}
266	return chg;
267}
268
269static long region_count(struct list_head *head, long f, long t)
270{
271	struct file_region *rg;
272	long chg = 0;
273
274	/* Locate each segment we overlap with, and count that overlap. */
275	list_for_each_entry(rg, head, link) {
276		long seg_from;
277		long seg_to;
278
279		if (rg->to <= f)
280			continue;
281		if (rg->from >= t)
282			break;
283
284		seg_from = max(rg->from, f);
285		seg_to = min(rg->to, t);
286
287		chg += seg_to - seg_from;
288	}
289
290	return chg;
291}
292
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298			struct vm_area_struct *vma, unsigned long address)
299{
300	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301			(vma->vm_pgoff >> huge_page_order(h));
302}
303
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305				     unsigned long address)
306{
307	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316	struct hstate *hstate;
317
318	if (!is_vm_hugetlb_page(vma))
319		return PAGE_SIZE;
320
321	hstate = hstate_vma(vma);
322
323	return 1UL << huge_page_shift(hstate);
324}
325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336	return vma_kernel_pagesize(vma);
337}
338#endif
339
340/*
341 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER    (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping.  A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated.  A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370	return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374							unsigned long value)
375{
376	vma->vm_private_data = (void *)value;
377}
378
379struct resv_map {
380	struct kref refs;
381	struct list_head regions;
382};
383
384static struct resv_map *resv_map_alloc(void)
385{
386	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387	if (!resv_map)
388		return NULL;
389
390	kref_init(&resv_map->refs);
391	INIT_LIST_HEAD(&resv_map->regions);
392
393	return resv_map;
394}
395
396static void resv_map_release(struct kref *ref)
397{
398	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400	/* Clear out any active regions before we release the map. */
401	region_truncate(&resv_map->regions, 0);
402	kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406{
407	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408	if (!(vma->vm_flags & VM_MAYSHARE))
409		return (struct resv_map *)(get_vma_private_data(vma) &
410							~HPAGE_RESV_MASK);
411	return NULL;
412}
413
414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415{
416	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419	set_vma_private_data(vma, (get_vma_private_data(vma) &
420				HPAGE_RESV_MASK) | (unsigned long)map);
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
425	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435	return (get_vma_private_data(vma) & flag) != 0;
436}
437
438/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440{
441	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442	if (!(vma->vm_flags & VM_MAYSHARE))
443		vma->vm_private_data = (void *)0;
444}
445
446/* Returns true if the VMA has associated reserve pages */
447static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448{
449	if (vma->vm_flags & VM_NORESERVE) {
450		/*
451		 * This address is already reserved by other process(chg == 0),
452		 * so, we should decrement reserved count. Without decrementing,
453		 * reserve count remains after releasing inode, because this
454		 * allocated page will go into page cache and is regarded as
455		 * coming from reserved pool in releasing step.  Currently, we
456		 * don't have any other solution to deal with this situation
457		 * properly, so add work-around here.
458		 */
459		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460			return 1;
461		else
462			return 0;
463	}
464
465	/* Shared mappings always use reserves */
466	if (vma->vm_flags & VM_MAYSHARE)
467		return 1;
468
469	/*
470	 * Only the process that called mmap() has reserves for
471	 * private mappings.
472	 */
473	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474		return 1;
475
476	return 0;
477}
478
479static void enqueue_huge_page(struct hstate *h, struct page *page)
480{
481	int nid = page_to_nid(page);
482	list_move(&page->lru, &h->hugepage_freelists[nid]);
483	h->free_huge_pages++;
484	h->free_huge_pages_node[nid]++;
485}
486
487static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488{
489	struct page *page;
490
491	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492		if (!is_migrate_isolate_page(page))
493			break;
494	/*
495	 * if 'non-isolated free hugepage' not found on the list,
496	 * the allocation fails.
497	 */
498	if (&h->hugepage_freelists[nid] == &page->lru)
499		return NULL;
500	list_move(&page->lru, &h->hugepage_activelist);
501	set_page_refcounted(page);
502	h->free_huge_pages--;
503	h->free_huge_pages_node[nid]--;
504	return page;
505}
506
507/* Movability of hugepages depends on migration support. */
508static inline gfp_t htlb_alloc_mask(struct hstate *h)
509{
510	if (hugepages_treat_as_movable || hugepage_migration_support(h))
511		return GFP_HIGHUSER_MOVABLE;
512	else
513		return GFP_HIGHUSER;
514}
515
516static struct page *dequeue_huge_page_vma(struct hstate *h,
517				struct vm_area_struct *vma,
518				unsigned long address, int avoid_reserve,
519				long chg)
520{
521	struct page *page = NULL;
522	struct mempolicy *mpol;
523	nodemask_t *nodemask;
524	struct zonelist *zonelist;
525	struct zone *zone;
526	struct zoneref *z;
527	unsigned int cpuset_mems_cookie;
528
529	/*
530	 * A child process with MAP_PRIVATE mappings created by their parent
531	 * have no page reserves. This check ensures that reservations are
532	 * not "stolen". The child may still get SIGKILLed
533	 */
534	if (!vma_has_reserves(vma, chg) &&
535			h->free_huge_pages - h->resv_huge_pages == 0)
536		goto err;
537
538	/* If reserves cannot be used, ensure enough pages are in the pool */
539	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540		goto err;
541
542retry_cpuset:
543	cpuset_mems_cookie = get_mems_allowed();
544	zonelist = huge_zonelist(vma, address,
545					htlb_alloc_mask(h), &mpol, &nodemask);
546
547	for_each_zone_zonelist_nodemask(zone, z, zonelist,
548						MAX_NR_ZONES - 1, nodemask) {
549		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550			page = dequeue_huge_page_node(h, zone_to_nid(zone));
551			if (page) {
552				if (avoid_reserve)
553					break;
554				if (!vma_has_reserves(vma, chg))
555					break;
556
557				SetPagePrivate(page);
558				h->resv_huge_pages--;
559				break;
560			}
561		}
562	}
563
564	mpol_cond_put(mpol);
565	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566		goto retry_cpuset;
567	return page;
568
569err:
570	return NULL;
571}
572
573static void update_and_free_page(struct hstate *h, struct page *page)
574{
575	int i;
576
577	VM_BUG_ON(h->order >= MAX_ORDER);
578
579	h->nr_huge_pages--;
580	h->nr_huge_pages_node[page_to_nid(page)]--;
581	for (i = 0; i < pages_per_huge_page(h); i++) {
582		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583				1 << PG_referenced | 1 << PG_dirty |
584				1 << PG_active | 1 << PG_reserved |
585				1 << PG_private | 1 << PG_writeback);
586	}
587	VM_BUG_ON(hugetlb_cgroup_from_page(page));
588	set_compound_page_dtor(page, NULL);
589	set_page_refcounted(page);
590	arch_release_hugepage(page);
591	__free_pages(page, huge_page_order(h));
592}
593
594struct hstate *size_to_hstate(unsigned long size)
595{
596	struct hstate *h;
597
598	for_each_hstate(h) {
599		if (huge_page_size(h) == size)
600			return h;
601	}
602	return NULL;
603}
604
605static void free_huge_page(struct page *page)
606{
607	/*
608	 * Can't pass hstate in here because it is called from the
609	 * compound page destructor.
610	 */
611	struct hstate *h = page_hstate(page);
612	int nid = page_to_nid(page);
613	struct hugepage_subpool *spool =
614		(struct hugepage_subpool *)page_private(page);
615	bool restore_reserve;
616
617	set_page_private(page, 0);
618	page->mapping = NULL;
619	BUG_ON(page_count(page));
620	BUG_ON(page_mapcount(page));
621	restore_reserve = PagePrivate(page);
622	ClearPagePrivate(page);
623
624	spin_lock(&hugetlb_lock);
625	hugetlb_cgroup_uncharge_page(hstate_index(h),
626				     pages_per_huge_page(h), page);
627	if (restore_reserve)
628		h->resv_huge_pages++;
629
630	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631		/* remove the page from active list */
632		list_del(&page->lru);
633		update_and_free_page(h, page);
634		h->surplus_huge_pages--;
635		h->surplus_huge_pages_node[nid]--;
636	} else {
637		arch_clear_hugepage_flags(page);
638		enqueue_huge_page(h, page);
639	}
640	spin_unlock(&hugetlb_lock);
641	hugepage_subpool_put_pages(spool, 1);
642}
643
644static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645{
646	INIT_LIST_HEAD(&page->lru);
647	set_compound_page_dtor(page, free_huge_page);
648	spin_lock(&hugetlb_lock);
649	set_hugetlb_cgroup(page, NULL);
650	h->nr_huge_pages++;
651	h->nr_huge_pages_node[nid]++;
652	spin_unlock(&hugetlb_lock);
653	put_page(page); /* free it into the hugepage allocator */
654}
655
656static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657{
658	int i;
659	int nr_pages = 1 << order;
660	struct page *p = page + 1;
661
662	/* we rely on prep_new_huge_page to set the destructor */
663	set_compound_order(page, order);
664	__SetPageHead(page);
665	__ClearPageReserved(page);
666	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667		__SetPageTail(p);
668		/*
669		 * For gigantic hugepages allocated through bootmem at
670		 * boot, it's safer to be consistent with the not-gigantic
671		 * hugepages and clear the PG_reserved bit from all tail pages
672		 * too.  Otherwse drivers using get_user_pages() to access tail
673		 * pages may get the reference counting wrong if they see
674		 * PG_reserved set on a tail page (despite the head page not
675		 * having PG_reserved set).  Enforcing this consistency between
676		 * head and tail pages allows drivers to optimize away a check
677		 * on the head page when they need know if put_page() is needed
678		 * after get_user_pages().
679		 */
680		__ClearPageReserved(p);
681		set_page_count(p, 0);
682		p->first_page = page;
683	}
684}
685
686/*
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages.  See the PageTransHuge() documentation for more
689 * details.
690 */
691int PageHuge(struct page *page)
692{
693	if (!PageCompound(page))
694		return 0;
695
696	page = compound_head(page);
697	return get_compound_page_dtor(page) == free_huge_page;
698}
699EXPORT_SYMBOL_GPL(PageHuge);
700
701/*
702 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703 * normal or transparent huge pages.
704 */
705int PageHeadHuge(struct page *page_head)
706{
707	if (!PageHead(page_head))
708		return 0;
709
710	return get_compound_page_dtor(page_head) == free_huge_page;
711}
712
713pgoff_t __basepage_index(struct page *page)
714{
715	struct page *page_head = compound_head(page);
716	pgoff_t index = page_index(page_head);
717	unsigned long compound_idx;
718
719	if (!PageHuge(page_head))
720		return page_index(page);
721
722	if (compound_order(page_head) >= MAX_ORDER)
723		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
724	else
725		compound_idx = page - page_head;
726
727	return (index << compound_order(page_head)) + compound_idx;
728}
729
730static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
731{
732	struct page *page;
733
734	if (h->order >= MAX_ORDER)
735		return NULL;
736
737	page = alloc_pages_exact_node(nid,
738		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
739						__GFP_REPEAT|__GFP_NOWARN,
740		huge_page_order(h));
741	if (page) {
742		if (arch_prepare_hugepage(page)) {
743			__free_pages(page, huge_page_order(h));
744			return NULL;
745		}
746		prep_new_huge_page(h, page, nid);
747	}
748
749	return page;
750}
751
752/*
753 * common helper functions for hstate_next_node_to_{alloc|free}.
754 * We may have allocated or freed a huge page based on a different
755 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756 * be outside of *nodes_allowed.  Ensure that we use an allowed
757 * node for alloc or free.
758 */
759static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
760{
761	nid = next_node(nid, *nodes_allowed);
762	if (nid == MAX_NUMNODES)
763		nid = first_node(*nodes_allowed);
764	VM_BUG_ON(nid >= MAX_NUMNODES);
765
766	return nid;
767}
768
769static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
770{
771	if (!node_isset(nid, *nodes_allowed))
772		nid = next_node_allowed(nid, nodes_allowed);
773	return nid;
774}
775
776/*
777 * returns the previously saved node ["this node"] from which to
778 * allocate a persistent huge page for the pool and advance the
779 * next node from which to allocate, handling wrap at end of node
780 * mask.
781 */
782static int hstate_next_node_to_alloc(struct hstate *h,
783					nodemask_t *nodes_allowed)
784{
785	int nid;
786
787	VM_BUG_ON(!nodes_allowed);
788
789	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
790	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
791
792	return nid;
793}
794
795/*
796 * helper for free_pool_huge_page() - return the previously saved
797 * node ["this node"] from which to free a huge page.  Advance the
798 * next node id whether or not we find a free huge page to free so
799 * that the next attempt to free addresses the next node.
800 */
801static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
802{
803	int nid;
804
805	VM_BUG_ON(!nodes_allowed);
806
807	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
808	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
809
810	return nid;
811}
812
813#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
814	for (nr_nodes = nodes_weight(*mask);				\
815		nr_nodes > 0 &&						\
816		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
817		nr_nodes--)
818
819#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
820	for (nr_nodes = nodes_weight(*mask);				\
821		nr_nodes > 0 &&						\
822		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
823		nr_nodes--)
824
825static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
826{
827	struct page *page;
828	int nr_nodes, node;
829	int ret = 0;
830
831	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
832		page = alloc_fresh_huge_page_node(h, node);
833		if (page) {
834			ret = 1;
835			break;
836		}
837	}
838
839	if (ret)
840		count_vm_event(HTLB_BUDDY_PGALLOC);
841	else
842		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
843
844	return ret;
845}
846
847/*
848 * Free huge page from pool from next node to free.
849 * Attempt to keep persistent huge pages more or less
850 * balanced over allowed nodes.
851 * Called with hugetlb_lock locked.
852 */
853static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
854							 bool acct_surplus)
855{
856	int nr_nodes, node;
857	int ret = 0;
858
859	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
860		/*
861		 * If we're returning unused surplus pages, only examine
862		 * nodes with surplus pages.
863		 */
864		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
865		    !list_empty(&h->hugepage_freelists[node])) {
866			struct page *page =
867				list_entry(h->hugepage_freelists[node].next,
868					  struct page, lru);
869			list_del(&page->lru);
870			h->free_huge_pages--;
871			h->free_huge_pages_node[node]--;
872			if (acct_surplus) {
873				h->surplus_huge_pages--;
874				h->surplus_huge_pages_node[node]--;
875			}
876			update_and_free_page(h, page);
877			ret = 1;
878			break;
879		}
880	}
881
882	return ret;
883}
884
885/*
886 * Dissolve a given free hugepage into free buddy pages. This function does
887 * nothing for in-use (including surplus) hugepages.
888 */
889static void dissolve_free_huge_page(struct page *page)
890{
891	spin_lock(&hugetlb_lock);
892	if (PageHuge(page) && !page_count(page)) {
893		struct hstate *h = page_hstate(page);
894		int nid = page_to_nid(page);
895		list_del(&page->lru);
896		h->free_huge_pages--;
897		h->free_huge_pages_node[nid]--;
898		update_and_free_page(h, page);
899	}
900	spin_unlock(&hugetlb_lock);
901}
902
903/*
904 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905 * make specified memory blocks removable from the system.
906 * Note that start_pfn should aligned with (minimum) hugepage size.
907 */
908void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
909{
910	unsigned int order = 8 * sizeof(void *);
911	unsigned long pfn;
912	struct hstate *h;
913
914	/* Set scan step to minimum hugepage size */
915	for_each_hstate(h)
916		if (order > huge_page_order(h))
917			order = huge_page_order(h);
918	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
919	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
920		dissolve_free_huge_page(pfn_to_page(pfn));
921}
922
923static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
924{
925	struct page *page;
926	unsigned int r_nid;
927
928	if (h->order >= MAX_ORDER)
929		return NULL;
930
931	/*
932	 * Assume we will successfully allocate the surplus page to
933	 * prevent racing processes from causing the surplus to exceed
934	 * overcommit
935	 *
936	 * This however introduces a different race, where a process B
937	 * tries to grow the static hugepage pool while alloc_pages() is
938	 * called by process A. B will only examine the per-node
939	 * counters in determining if surplus huge pages can be
940	 * converted to normal huge pages in adjust_pool_surplus(). A
941	 * won't be able to increment the per-node counter, until the
942	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
943	 * no more huge pages can be converted from surplus to normal
944	 * state (and doesn't try to convert again). Thus, we have a
945	 * case where a surplus huge page exists, the pool is grown, and
946	 * the surplus huge page still exists after, even though it
947	 * should just have been converted to a normal huge page. This
948	 * does not leak memory, though, as the hugepage will be freed
949	 * once it is out of use. It also does not allow the counters to
950	 * go out of whack in adjust_pool_surplus() as we don't modify
951	 * the node values until we've gotten the hugepage and only the
952	 * per-node value is checked there.
953	 */
954	spin_lock(&hugetlb_lock);
955	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
956		spin_unlock(&hugetlb_lock);
957		return NULL;
958	} else {
959		h->nr_huge_pages++;
960		h->surplus_huge_pages++;
961	}
962	spin_unlock(&hugetlb_lock);
963
964	if (nid == NUMA_NO_NODE)
965		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
966				   __GFP_REPEAT|__GFP_NOWARN,
967				   huge_page_order(h));
968	else
969		page = alloc_pages_exact_node(nid,
970			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
971			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
972
973	if (page && arch_prepare_hugepage(page)) {
974		__free_pages(page, huge_page_order(h));
975		page = NULL;
976	}
977
978	spin_lock(&hugetlb_lock);
979	if (page) {
980		INIT_LIST_HEAD(&page->lru);
981		r_nid = page_to_nid(page);
982		set_compound_page_dtor(page, free_huge_page);
983		set_hugetlb_cgroup(page, NULL);
984		/*
985		 * We incremented the global counters already
986		 */
987		h->nr_huge_pages_node[r_nid]++;
988		h->surplus_huge_pages_node[r_nid]++;
989		__count_vm_event(HTLB_BUDDY_PGALLOC);
990	} else {
991		h->nr_huge_pages--;
992		h->surplus_huge_pages--;
993		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
994	}
995	spin_unlock(&hugetlb_lock);
996
997	return page;
998}
999
1000/*
1001 * This allocation function is useful in the context where vma is irrelevant.
1002 * E.g. soft-offlining uses this function because it only cares physical
1003 * address of error page.
1004 */
1005struct page *alloc_huge_page_node(struct hstate *h, int nid)
1006{
1007	struct page *page = NULL;
1008
1009	spin_lock(&hugetlb_lock);
1010	if (h->free_huge_pages - h->resv_huge_pages > 0)
1011		page = dequeue_huge_page_node(h, nid);
1012	spin_unlock(&hugetlb_lock);
1013
1014	if (!page)
1015		page = alloc_buddy_huge_page(h, nid);
1016
1017	return page;
1018}
1019
1020/*
1021 * Increase the hugetlb pool such that it can accommodate a reservation
1022 * of size 'delta'.
1023 */
1024static int gather_surplus_pages(struct hstate *h, int delta)
1025{
1026	struct list_head surplus_list;
1027	struct page *page, *tmp;
1028	int ret, i;
1029	int needed, allocated;
1030	bool alloc_ok = true;
1031
1032	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1033	if (needed <= 0) {
1034		h->resv_huge_pages += delta;
1035		return 0;
1036	}
1037
1038	allocated = 0;
1039	INIT_LIST_HEAD(&surplus_list);
1040
1041	ret = -ENOMEM;
1042retry:
1043	spin_unlock(&hugetlb_lock);
1044	for (i = 0; i < needed; i++) {
1045		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1046		if (!page) {
1047			alloc_ok = false;
1048			break;
1049		}
1050		list_add(&page->lru, &surplus_list);
1051	}
1052	allocated += i;
1053
1054	/*
1055	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1056	 * because either resv_huge_pages or free_huge_pages may have changed.
1057	 */
1058	spin_lock(&hugetlb_lock);
1059	needed = (h->resv_huge_pages + delta) -
1060			(h->free_huge_pages + allocated);
1061	if (needed > 0) {
1062		if (alloc_ok)
1063			goto retry;
1064		/*
1065		 * We were not able to allocate enough pages to
1066		 * satisfy the entire reservation so we free what
1067		 * we've allocated so far.
1068		 */
1069		goto free;
1070	}
1071	/*
1072	 * The surplus_list now contains _at_least_ the number of extra pages
1073	 * needed to accommodate the reservation.  Add the appropriate number
1074	 * of pages to the hugetlb pool and free the extras back to the buddy
1075	 * allocator.  Commit the entire reservation here to prevent another
1076	 * process from stealing the pages as they are added to the pool but
1077	 * before they are reserved.
1078	 */
1079	needed += allocated;
1080	h->resv_huge_pages += delta;
1081	ret = 0;
1082
1083	/* Free the needed pages to the hugetlb pool */
1084	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1085		if ((--needed) < 0)
1086			break;
1087		/*
1088		 * This page is now managed by the hugetlb allocator and has
1089		 * no users -- drop the buddy allocator's reference.
1090		 */
1091		put_page_testzero(page);
1092		VM_BUG_ON(page_count(page));
1093		enqueue_huge_page(h, page);
1094	}
1095free:
1096	spin_unlock(&hugetlb_lock);
1097
1098	/* Free unnecessary surplus pages to the buddy allocator */
1099	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1100		put_page(page);
1101	spin_lock(&hugetlb_lock);
1102
1103	return ret;
1104}
1105
1106/*
1107 * When releasing a hugetlb pool reservation, any surplus pages that were
1108 * allocated to satisfy the reservation must be explicitly freed if they were
1109 * never used.
1110 * Called with hugetlb_lock held.
1111 */
1112static void return_unused_surplus_pages(struct hstate *h,
1113					unsigned long unused_resv_pages)
1114{
1115	unsigned long nr_pages;
1116
1117	/* Uncommit the reservation */
1118	h->resv_huge_pages -= unused_resv_pages;
1119
1120	/* Cannot return gigantic pages currently */
1121	if (h->order >= MAX_ORDER)
1122		return;
1123
1124	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1125
1126	/*
1127	 * We want to release as many surplus pages as possible, spread
1128	 * evenly across all nodes with memory. Iterate across these nodes
1129	 * until we can no longer free unreserved surplus pages. This occurs
1130	 * when the nodes with surplus pages have no free pages.
1131	 * free_pool_huge_page() will balance the the freed pages across the
1132	 * on-line nodes with memory and will handle the hstate accounting.
1133	 */
1134	while (nr_pages--) {
1135		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1136			break;
1137	}
1138}
1139
1140/*
1141 * Determine if the huge page at addr within the vma has an associated
1142 * reservation.  Where it does not we will need to logically increase
1143 * reservation and actually increase subpool usage before an allocation
1144 * can occur.  Where any new reservation would be required the
1145 * reservation change is prepared, but not committed.  Once the page
1146 * has been allocated from the subpool and instantiated the change should
1147 * be committed via vma_commit_reservation.  No action is required on
1148 * failure.
1149 */
1150static long vma_needs_reservation(struct hstate *h,
1151			struct vm_area_struct *vma, unsigned long addr)
1152{
1153	struct address_space *mapping = vma->vm_file->f_mapping;
1154	struct inode *inode = mapping->host;
1155
1156	if (vma->vm_flags & VM_MAYSHARE) {
1157		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1158		return region_chg(&inode->i_mapping->private_list,
1159							idx, idx + 1);
1160
1161	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1162		return 1;
1163
1164	} else  {
1165		long err;
1166		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167		struct resv_map *resv = vma_resv_map(vma);
1168
1169		err = region_chg(&resv->regions, idx, idx + 1);
1170		if (err < 0)
1171			return err;
1172		return 0;
1173	}
1174}
1175static void vma_commit_reservation(struct hstate *h,
1176			struct vm_area_struct *vma, unsigned long addr)
1177{
1178	struct address_space *mapping = vma->vm_file->f_mapping;
1179	struct inode *inode = mapping->host;
1180
1181	if (vma->vm_flags & VM_MAYSHARE) {
1182		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1183		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1184
1185	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1186		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1187		struct resv_map *resv = vma_resv_map(vma);
1188
1189		/* Mark this page used in the map. */
1190		region_add(&resv->regions, idx, idx + 1);
1191	}
1192}
1193
1194static struct page *alloc_huge_page(struct vm_area_struct *vma,
1195				    unsigned long addr, int avoid_reserve)
1196{
1197	struct hugepage_subpool *spool = subpool_vma(vma);
1198	struct hstate *h = hstate_vma(vma);
1199	struct page *page;
1200	long chg;
1201	int ret, idx;
1202	struct hugetlb_cgroup *h_cg;
1203
1204	idx = hstate_index(h);
1205	/*
1206	 * Processes that did not create the mapping will have no
1207	 * reserves and will not have accounted against subpool
1208	 * limit. Check that the subpool limit can be made before
1209	 * satisfying the allocation MAP_NORESERVE mappings may also
1210	 * need pages and subpool limit allocated allocated if no reserve
1211	 * mapping overlaps.
1212	 */
1213	chg = vma_needs_reservation(h, vma, addr);
1214	if (chg < 0)
1215		return ERR_PTR(-ENOMEM);
1216	if (chg || avoid_reserve)
1217		if (hugepage_subpool_get_pages(spool, 1))
1218			return ERR_PTR(-ENOSPC);
1219
1220	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1221	if (ret) {
1222		if (chg || avoid_reserve)
1223			hugepage_subpool_put_pages(spool, 1);
1224		return ERR_PTR(-ENOSPC);
1225	}
1226	spin_lock(&hugetlb_lock);
1227	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1228	if (!page) {
1229		spin_unlock(&hugetlb_lock);
1230		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1231		if (!page) {
1232			hugetlb_cgroup_uncharge_cgroup(idx,
1233						       pages_per_huge_page(h),
1234						       h_cg);
1235			if (chg || avoid_reserve)
1236				hugepage_subpool_put_pages(spool, 1);
1237			return ERR_PTR(-ENOSPC);
1238		}
1239		spin_lock(&hugetlb_lock);
1240		list_move(&page->lru, &h->hugepage_activelist);
1241		/* Fall through */
1242	}
1243	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1244	spin_unlock(&hugetlb_lock);
1245
1246	set_page_private(page, (unsigned long)spool);
1247
1248	vma_commit_reservation(h, vma, addr);
1249	return page;
1250}
1251
1252/*
1253 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1254 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1255 * where no ERR_VALUE is expected to be returned.
1256 */
1257struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1258				unsigned long addr, int avoid_reserve)
1259{
1260	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1261	if (IS_ERR(page))
1262		page = NULL;
1263	return page;
1264}
1265
1266int __weak alloc_bootmem_huge_page(struct hstate *h)
1267{
1268	struct huge_bootmem_page *m;
1269	int nr_nodes, node;
1270
1271	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1272		void *addr;
1273
1274		addr = memblock_virt_alloc_try_nid_nopanic(
1275				huge_page_size(h), huge_page_size(h),
1276				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1277		if (addr) {
1278			/*
1279			 * Use the beginning of the huge page to store the
1280			 * huge_bootmem_page struct (until gather_bootmem
1281			 * puts them into the mem_map).
1282			 */
1283			m = addr;
1284			goto found;
1285		}
1286	}
1287	return 0;
1288
1289found:
1290	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1291	/* Put them into a private list first because mem_map is not up yet */
1292	list_add(&m->list, &huge_boot_pages);
1293	m->hstate = h;
1294	return 1;
1295}
1296
1297static void prep_compound_huge_page(struct page *page, int order)
1298{
1299	if (unlikely(order > (MAX_ORDER - 1)))
1300		prep_compound_gigantic_page(page, order);
1301	else
1302		prep_compound_page(page, order);
1303}
1304
1305/* Put bootmem huge pages into the standard lists after mem_map is up */
1306static void __init gather_bootmem_prealloc(void)
1307{
1308	struct huge_bootmem_page *m;
1309
1310	list_for_each_entry(m, &huge_boot_pages, list) {
1311		struct hstate *h = m->hstate;
1312		struct page *page;
1313
1314#ifdef CONFIG_HIGHMEM
1315		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1316		memblock_free_late(__pa(m),
1317				   sizeof(struct huge_bootmem_page));
1318#else
1319		page = virt_to_page(m);
1320#endif
1321		WARN_ON(page_count(page) != 1);
1322		prep_compound_huge_page(page, h->order);
1323		WARN_ON(PageReserved(page));
1324		prep_new_huge_page(h, page, page_to_nid(page));
1325		/*
1326		 * If we had gigantic hugepages allocated at boot time, we need
1327		 * to restore the 'stolen' pages to totalram_pages in order to
1328		 * fix confusing memory reports from free(1) and another
1329		 * side-effects, like CommitLimit going negative.
1330		 */
1331		if (h->order > (MAX_ORDER - 1))
1332			adjust_managed_page_count(page, 1 << h->order);
1333	}
1334}
1335
1336static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1337{
1338	unsigned long i;
1339
1340	for (i = 0; i < h->max_huge_pages; ++i) {
1341		if (h->order >= MAX_ORDER) {
1342			if (!alloc_bootmem_huge_page(h))
1343				break;
1344		} else if (!alloc_fresh_huge_page(h,
1345					 &node_states[N_MEMORY]))
1346			break;
1347	}
1348	h->max_huge_pages = i;
1349}
1350
1351static void __init hugetlb_init_hstates(void)
1352{
1353	struct hstate *h;
1354
1355	for_each_hstate(h) {
1356		/* oversize hugepages were init'ed in early boot */
1357		if (h->order < MAX_ORDER)
1358			hugetlb_hstate_alloc_pages(h);
1359	}
1360}
1361
1362static char * __init memfmt(char *buf, unsigned long n)
1363{
1364	if (n >= (1UL << 30))
1365		sprintf(buf, "%lu GB", n >> 30);
1366	else if (n >= (1UL << 20))
1367		sprintf(buf, "%lu MB", n >> 20);
1368	else
1369		sprintf(buf, "%lu KB", n >> 10);
1370	return buf;
1371}
1372
1373static void __init report_hugepages(void)
1374{
1375	struct hstate *h;
1376
1377	for_each_hstate(h) {
1378		char buf[32];
1379		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1380			memfmt(buf, huge_page_size(h)),
1381			h->free_huge_pages);
1382	}
1383}
1384
1385#ifdef CONFIG_HIGHMEM
1386static void try_to_free_low(struct hstate *h, unsigned long count,
1387						nodemask_t *nodes_allowed)
1388{
1389	int i;
1390
1391	if (h->order >= MAX_ORDER)
1392		return;
1393
1394	for_each_node_mask(i, *nodes_allowed) {
1395		struct page *page, *next;
1396		struct list_head *freel = &h->hugepage_freelists[i];
1397		list_for_each_entry_safe(page, next, freel, lru) {
1398			if (count >= h->nr_huge_pages)
1399				return;
1400			if (PageHighMem(page))
1401				continue;
1402			list_del(&page->lru);
1403			update_and_free_page(h, page);
1404			h->free_huge_pages--;
1405			h->free_huge_pages_node[page_to_nid(page)]--;
1406		}
1407	}
1408}
1409#else
1410static inline void try_to_free_low(struct hstate *h, unsigned long count,
1411						nodemask_t *nodes_allowed)
1412{
1413}
1414#endif
1415
1416/*
1417 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1418 * balanced by operating on them in a round-robin fashion.
1419 * Returns 1 if an adjustment was made.
1420 */
1421static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1422				int delta)
1423{
1424	int nr_nodes, node;
1425
1426	VM_BUG_ON(delta != -1 && delta != 1);
1427
1428	if (delta < 0) {
1429		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430			if (h->surplus_huge_pages_node[node])
1431				goto found;
1432		}
1433	} else {
1434		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1435			if (h->surplus_huge_pages_node[node] <
1436					h->nr_huge_pages_node[node])
1437				goto found;
1438		}
1439	}
1440	return 0;
1441
1442found:
1443	h->surplus_huge_pages += delta;
1444	h->surplus_huge_pages_node[node] += delta;
1445	return 1;
1446}
1447
1448#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1449static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1450						nodemask_t *nodes_allowed)
1451{
1452	unsigned long min_count, ret;
1453
1454	if (h->order >= MAX_ORDER)
1455		return h->max_huge_pages;
1456
1457	/*
1458	 * Increase the pool size
1459	 * First take pages out of surplus state.  Then make up the
1460	 * remaining difference by allocating fresh huge pages.
1461	 *
1462	 * We might race with alloc_buddy_huge_page() here and be unable
1463	 * to convert a surplus huge page to a normal huge page. That is
1464	 * not critical, though, it just means the overall size of the
1465	 * pool might be one hugepage larger than it needs to be, but
1466	 * within all the constraints specified by the sysctls.
1467	 */
1468	spin_lock(&hugetlb_lock);
1469	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1470		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1471			break;
1472	}
1473
1474	while (count > persistent_huge_pages(h)) {
1475		/*
1476		 * If this allocation races such that we no longer need the
1477		 * page, free_huge_page will handle it by freeing the page
1478		 * and reducing the surplus.
1479		 */
1480		spin_unlock(&hugetlb_lock);
1481		ret = alloc_fresh_huge_page(h, nodes_allowed);
1482		spin_lock(&hugetlb_lock);
1483		if (!ret)
1484			goto out;
1485
1486		/* Bail for signals. Probably ctrl-c from user */
1487		if (signal_pending(current))
1488			goto out;
1489	}
1490
1491	/*
1492	 * Decrease the pool size
1493	 * First return free pages to the buddy allocator (being careful
1494	 * to keep enough around to satisfy reservations).  Then place
1495	 * pages into surplus state as needed so the pool will shrink
1496	 * to the desired size as pages become free.
1497	 *
1498	 * By placing pages into the surplus state independent of the
1499	 * overcommit value, we are allowing the surplus pool size to
1500	 * exceed overcommit. There are few sane options here. Since
1501	 * alloc_buddy_huge_page() is checking the global counter,
1502	 * though, we'll note that we're not allowed to exceed surplus
1503	 * and won't grow the pool anywhere else. Not until one of the
1504	 * sysctls are changed, or the surplus pages go out of use.
1505	 */
1506	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1507	min_count = max(count, min_count);
1508	try_to_free_low(h, min_count, nodes_allowed);
1509	while (min_count < persistent_huge_pages(h)) {
1510		if (!free_pool_huge_page(h, nodes_allowed, 0))
1511			break;
1512	}
1513	while (count < persistent_huge_pages(h)) {
1514		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1515			break;
1516	}
1517out:
1518	ret = persistent_huge_pages(h);
1519	spin_unlock(&hugetlb_lock);
1520	return ret;
1521}
1522
1523#define HSTATE_ATTR_RO(_name) \
1524	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1525
1526#define HSTATE_ATTR(_name) \
1527	static struct kobj_attribute _name##_attr = \
1528		__ATTR(_name, 0644, _name##_show, _name##_store)
1529
1530static struct kobject *hugepages_kobj;
1531static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1532
1533static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1534
1535static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1536{
1537	int i;
1538
1539	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1540		if (hstate_kobjs[i] == kobj) {
1541			if (nidp)
1542				*nidp = NUMA_NO_NODE;
1543			return &hstates[i];
1544		}
1545
1546	return kobj_to_node_hstate(kobj, nidp);
1547}
1548
1549static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1550					struct kobj_attribute *attr, char *buf)
1551{
1552	struct hstate *h;
1553	unsigned long nr_huge_pages;
1554	int nid;
1555
1556	h = kobj_to_hstate(kobj, &nid);
1557	if (nid == NUMA_NO_NODE)
1558		nr_huge_pages = h->nr_huge_pages;
1559	else
1560		nr_huge_pages = h->nr_huge_pages_node[nid];
1561
1562	return sprintf(buf, "%lu\n", nr_huge_pages);
1563}
1564
1565static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1566			struct kobject *kobj, struct kobj_attribute *attr,
1567			const char *buf, size_t len)
1568{
1569	int err;
1570	int nid;
1571	unsigned long count;
1572	struct hstate *h;
1573	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1574
1575	err = kstrtoul(buf, 10, &count);
1576	if (err)
1577		goto out;
1578
1579	h = kobj_to_hstate(kobj, &nid);
1580	if (h->order >= MAX_ORDER) {
1581		err = -EINVAL;
1582		goto out;
1583	}
1584
1585	if (nid == NUMA_NO_NODE) {
1586		/*
1587		 * global hstate attribute
1588		 */
1589		if (!(obey_mempolicy &&
1590				init_nodemask_of_mempolicy(nodes_allowed))) {
1591			NODEMASK_FREE(nodes_allowed);
1592			nodes_allowed = &node_states[N_MEMORY];
1593		}
1594	} else if (nodes_allowed) {
1595		/*
1596		 * per node hstate attribute: adjust count to global,
1597		 * but restrict alloc/free to the specified node.
1598		 */
1599		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1600		init_nodemask_of_node(nodes_allowed, nid);
1601	} else
1602		nodes_allowed = &node_states[N_MEMORY];
1603
1604	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1605
1606	if (nodes_allowed != &node_states[N_MEMORY])
1607		NODEMASK_FREE(nodes_allowed);
1608
1609	return len;
1610out:
1611	NODEMASK_FREE(nodes_allowed);
1612	return err;
1613}
1614
1615static ssize_t nr_hugepages_show(struct kobject *kobj,
1616				       struct kobj_attribute *attr, char *buf)
1617{
1618	return nr_hugepages_show_common(kobj, attr, buf);
1619}
1620
1621static ssize_t nr_hugepages_store(struct kobject *kobj,
1622	       struct kobj_attribute *attr, const char *buf, size_t len)
1623{
1624	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1625}
1626HSTATE_ATTR(nr_hugepages);
1627
1628#ifdef CONFIG_NUMA
1629
1630/*
1631 * hstate attribute for optionally mempolicy-based constraint on persistent
1632 * huge page alloc/free.
1633 */
1634static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1635				       struct kobj_attribute *attr, char *buf)
1636{
1637	return nr_hugepages_show_common(kobj, attr, buf);
1638}
1639
1640static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1641	       struct kobj_attribute *attr, const char *buf, size_t len)
1642{
1643	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1644}
1645HSTATE_ATTR(nr_hugepages_mempolicy);
1646#endif
1647
1648
1649static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1650					struct kobj_attribute *attr, char *buf)
1651{
1652	struct hstate *h = kobj_to_hstate(kobj, NULL);
1653	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1654}
1655
1656static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1657		struct kobj_attribute *attr, const char *buf, size_t count)
1658{
1659	int err;
1660	unsigned long input;
1661	struct hstate *h = kobj_to_hstate(kobj, NULL);
1662
1663	if (h->order >= MAX_ORDER)
1664		return -EINVAL;
1665
1666	err = kstrtoul(buf, 10, &input);
1667	if (err)
1668		return err;
1669
1670	spin_lock(&hugetlb_lock);
1671	h->nr_overcommit_huge_pages = input;
1672	spin_unlock(&hugetlb_lock);
1673
1674	return count;
1675}
1676HSTATE_ATTR(nr_overcommit_hugepages);
1677
1678static ssize_t free_hugepages_show(struct kobject *kobj,
1679					struct kobj_attribute *attr, char *buf)
1680{
1681	struct hstate *h;
1682	unsigned long free_huge_pages;
1683	int nid;
1684
1685	h = kobj_to_hstate(kobj, &nid);
1686	if (nid == NUMA_NO_NODE)
1687		free_huge_pages = h->free_huge_pages;
1688	else
1689		free_huge_pages = h->free_huge_pages_node[nid];
1690
1691	return sprintf(buf, "%lu\n", free_huge_pages);
1692}
1693HSTATE_ATTR_RO(free_hugepages);
1694
1695static ssize_t resv_hugepages_show(struct kobject *kobj,
1696					struct kobj_attribute *attr, char *buf)
1697{
1698	struct hstate *h = kobj_to_hstate(kobj, NULL);
1699	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1700}
1701HSTATE_ATTR_RO(resv_hugepages);
1702
1703static ssize_t surplus_hugepages_show(struct kobject *kobj,
1704					struct kobj_attribute *attr, char *buf)
1705{
1706	struct hstate *h;
1707	unsigned long surplus_huge_pages;
1708	int nid;
1709
1710	h = kobj_to_hstate(kobj, &nid);
1711	if (nid == NUMA_NO_NODE)
1712		surplus_huge_pages = h->surplus_huge_pages;
1713	else
1714		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1715
1716	return sprintf(buf, "%lu\n", surplus_huge_pages);
1717}
1718HSTATE_ATTR_RO(surplus_hugepages);
1719
1720static struct attribute *hstate_attrs[] = {
1721	&nr_hugepages_attr.attr,
1722	&nr_overcommit_hugepages_attr.attr,
1723	&free_hugepages_attr.attr,
1724	&resv_hugepages_attr.attr,
1725	&surplus_hugepages_attr.attr,
1726#ifdef CONFIG_NUMA
1727	&nr_hugepages_mempolicy_attr.attr,
1728#endif
1729	NULL,
1730};
1731
1732static struct attribute_group hstate_attr_group = {
1733	.attrs = hstate_attrs,
1734};
1735
1736static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1737				    struct kobject **hstate_kobjs,
1738				    struct attribute_group *hstate_attr_group)
1739{
1740	int retval;
1741	int hi = hstate_index(h);
1742
1743	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1744	if (!hstate_kobjs[hi])
1745		return -ENOMEM;
1746
1747	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1748	if (retval)
1749		kobject_put(hstate_kobjs[hi]);
1750
1751	return retval;
1752}
1753
1754static void __init hugetlb_sysfs_init(void)
1755{
1756	struct hstate *h;
1757	int err;
1758
1759	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1760	if (!hugepages_kobj)
1761		return;
1762
1763	for_each_hstate(h) {
1764		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1765					 hstate_kobjs, &hstate_attr_group);
1766		if (err)
1767			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1768	}
1769}
1770
1771#ifdef CONFIG_NUMA
1772
1773/*
1774 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1775 * with node devices in node_devices[] using a parallel array.  The array
1776 * index of a node device or _hstate == node id.
1777 * This is here to avoid any static dependency of the node device driver, in
1778 * the base kernel, on the hugetlb module.
1779 */
1780struct node_hstate {
1781	struct kobject		*hugepages_kobj;
1782	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1783};
1784struct node_hstate node_hstates[MAX_NUMNODES];
1785
1786/*
1787 * A subset of global hstate attributes for node devices
1788 */
1789static struct attribute *per_node_hstate_attrs[] = {
1790	&nr_hugepages_attr.attr,
1791	&free_hugepages_attr.attr,
1792	&surplus_hugepages_attr.attr,
1793	NULL,
1794};
1795
1796static struct attribute_group per_node_hstate_attr_group = {
1797	.attrs = per_node_hstate_attrs,
1798};
1799
1800/*
1801 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1802 * Returns node id via non-NULL nidp.
1803 */
1804static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1805{
1806	int nid;
1807
1808	for (nid = 0; nid < nr_node_ids; nid++) {
1809		struct node_hstate *nhs = &node_hstates[nid];
1810		int i;
1811		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1812			if (nhs->hstate_kobjs[i] == kobj) {
1813				if (nidp)
1814					*nidp = nid;
1815				return &hstates[i];
1816			}
1817	}
1818
1819	BUG();
1820	return NULL;
1821}
1822
1823/*
1824 * Unregister hstate attributes from a single node device.
1825 * No-op if no hstate attributes attached.
1826 */
1827static void hugetlb_unregister_node(struct node *node)
1828{
1829	struct hstate *h;
1830	struct node_hstate *nhs = &node_hstates[node->dev.id];
1831
1832	if (!nhs->hugepages_kobj)
1833		return;		/* no hstate attributes */
1834
1835	for_each_hstate(h) {
1836		int idx = hstate_index(h);
1837		if (nhs->hstate_kobjs[idx]) {
1838			kobject_put(nhs->hstate_kobjs[idx]);
1839			nhs->hstate_kobjs[idx] = NULL;
1840		}
1841	}
1842
1843	kobject_put(nhs->hugepages_kobj);
1844	nhs->hugepages_kobj = NULL;
1845}
1846
1847/*
1848 * hugetlb module exit:  unregister hstate attributes from node devices
1849 * that have them.
1850 */
1851static void hugetlb_unregister_all_nodes(void)
1852{
1853	int nid;
1854
1855	/*
1856	 * disable node device registrations.
1857	 */
1858	register_hugetlbfs_with_node(NULL, NULL);
1859
1860	/*
1861	 * remove hstate attributes from any nodes that have them.
1862	 */
1863	for (nid = 0; nid < nr_node_ids; nid++)
1864		hugetlb_unregister_node(node_devices[nid]);
1865}
1866
1867/*
1868 * Register hstate attributes for a single node device.
1869 * No-op if attributes already registered.
1870 */
1871static void hugetlb_register_node(struct node *node)
1872{
1873	struct hstate *h;
1874	struct node_hstate *nhs = &node_hstates[node->dev.id];
1875	int err;
1876
1877	if (nhs->hugepages_kobj)
1878		return;		/* already allocated */
1879
1880	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1881							&node->dev.kobj);
1882	if (!nhs->hugepages_kobj)
1883		return;
1884
1885	for_each_hstate(h) {
1886		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1887						nhs->hstate_kobjs,
1888						&per_node_hstate_attr_group);
1889		if (err) {
1890			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1891				h->name, node->dev.id);
1892			hugetlb_unregister_node(node);
1893			break;
1894		}
1895	}
1896}
1897
1898/*
1899 * hugetlb init time:  register hstate attributes for all registered node
1900 * devices of nodes that have memory.  All on-line nodes should have
1901 * registered their associated device by this time.
1902 */
1903static void hugetlb_register_all_nodes(void)
1904{
1905	int nid;
1906
1907	for_each_node_state(nid, N_MEMORY) {
1908		struct node *node = node_devices[nid];
1909		if (node->dev.id == nid)
1910			hugetlb_register_node(node);
1911	}
1912
1913	/*
1914	 * Let the node device driver know we're here so it can
1915	 * [un]register hstate attributes on node hotplug.
1916	 */
1917	register_hugetlbfs_with_node(hugetlb_register_node,
1918				     hugetlb_unregister_node);
1919}
1920#else	/* !CONFIG_NUMA */
1921
1922static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1923{
1924	BUG();
1925	if (nidp)
1926		*nidp = -1;
1927	return NULL;
1928}
1929
1930static void hugetlb_unregister_all_nodes(void) { }
1931
1932static void hugetlb_register_all_nodes(void) { }
1933
1934#endif
1935
1936static void __exit hugetlb_exit(void)
1937{
1938	struct hstate *h;
1939
1940	hugetlb_unregister_all_nodes();
1941
1942	for_each_hstate(h) {
1943		kobject_put(hstate_kobjs[hstate_index(h)]);
1944	}
1945
1946	kobject_put(hugepages_kobj);
1947}
1948module_exit(hugetlb_exit);
1949
1950static int __init hugetlb_init(void)
1951{
1952	/* Some platform decide whether they support huge pages at boot
1953	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1954	 * there is no such support
1955	 */
1956	if (HPAGE_SHIFT == 0)
1957		return 0;
1958
1959	if (!size_to_hstate(default_hstate_size)) {
1960		default_hstate_size = HPAGE_SIZE;
1961		if (!size_to_hstate(default_hstate_size))
1962			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1963	}
1964	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1965	if (default_hstate_max_huge_pages)
1966		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1967
1968	hugetlb_init_hstates();
1969	gather_bootmem_prealloc();
1970	report_hugepages();
1971
1972	hugetlb_sysfs_init();
1973	hugetlb_register_all_nodes();
1974	hugetlb_cgroup_file_init();
1975
1976	return 0;
1977}
1978module_init(hugetlb_init);
1979
1980/* Should be called on processing a hugepagesz=... option */
1981void __init hugetlb_add_hstate(unsigned order)
1982{
1983	struct hstate *h;
1984	unsigned long i;
1985
1986	if (size_to_hstate(PAGE_SIZE << order)) {
1987		pr_warning("hugepagesz= specified twice, ignoring\n");
1988		return;
1989	}
1990	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1991	BUG_ON(order == 0);
1992	h = &hstates[hugetlb_max_hstate++];
1993	h->order = order;
1994	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1995	h->nr_huge_pages = 0;
1996	h->free_huge_pages = 0;
1997	for (i = 0; i < MAX_NUMNODES; ++i)
1998		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1999	INIT_LIST_HEAD(&h->hugepage_activelist);
2000	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2001	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2002	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2003					huge_page_size(h)/1024);
2004
2005	parsed_hstate = h;
2006}
2007
2008static int __init hugetlb_nrpages_setup(char *s)
2009{
2010	unsigned long *mhp;
2011	static unsigned long *last_mhp;
2012
2013	/*
2014	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2015	 * so this hugepages= parameter goes to the "default hstate".
2016	 */
2017	if (!hugetlb_max_hstate)
2018		mhp = &default_hstate_max_huge_pages;
2019	else
2020		mhp = &parsed_hstate->max_huge_pages;
2021
2022	if (mhp == last_mhp) {
2023		pr_warning("hugepages= specified twice without "
2024			   "interleaving hugepagesz=, ignoring\n");
2025		return 1;
2026	}
2027
2028	if (sscanf(s, "%lu", mhp) <= 0)
2029		*mhp = 0;
2030
2031	/*
2032	 * Global state is always initialized later in hugetlb_init.
2033	 * But we need to allocate >= MAX_ORDER hstates here early to still
2034	 * use the bootmem allocator.
2035	 */
2036	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2037		hugetlb_hstate_alloc_pages(parsed_hstate);
2038
2039	last_mhp = mhp;
2040
2041	return 1;
2042}
2043__setup("hugepages=", hugetlb_nrpages_setup);
2044
2045static int __init hugetlb_default_setup(char *s)
2046{
2047	default_hstate_size = memparse(s, &s);
2048	return 1;
2049}
2050__setup("default_hugepagesz=", hugetlb_default_setup);
2051
2052static unsigned int cpuset_mems_nr(unsigned int *array)
2053{
2054	int node;
2055	unsigned int nr = 0;
2056
2057	for_each_node_mask(node, cpuset_current_mems_allowed)
2058		nr += array[node];
2059
2060	return nr;
2061}
2062
2063#ifdef CONFIG_SYSCTL
2064static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2065			 struct ctl_table *table, int write,
2066			 void __user *buffer, size_t *length, loff_t *ppos)
2067{
2068	struct hstate *h = &default_hstate;
2069	unsigned long tmp;
2070	int ret;
2071
2072	tmp = h->max_huge_pages;
2073
2074	if (write && h->order >= MAX_ORDER)
2075		return -EINVAL;
2076
2077	table->data = &tmp;
2078	table->maxlen = sizeof(unsigned long);
2079	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2080	if (ret)
2081		goto out;
2082
2083	if (write) {
2084		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2085						GFP_KERNEL | __GFP_NORETRY);
2086		if (!(obey_mempolicy &&
2087			       init_nodemask_of_mempolicy(nodes_allowed))) {
2088			NODEMASK_FREE(nodes_allowed);
2089			nodes_allowed = &node_states[N_MEMORY];
2090		}
2091		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2092
2093		if (nodes_allowed != &node_states[N_MEMORY])
2094			NODEMASK_FREE(nodes_allowed);
2095	}
2096out:
2097	return ret;
2098}
2099
2100int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2101			  void __user *buffer, size_t *length, loff_t *ppos)
2102{
2103
2104	return hugetlb_sysctl_handler_common(false, table, write,
2105							buffer, length, ppos);
2106}
2107
2108#ifdef CONFIG_NUMA
2109int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2110			  void __user *buffer, size_t *length, loff_t *ppos)
2111{
2112	return hugetlb_sysctl_handler_common(true, table, write,
2113							buffer, length, ppos);
2114}
2115#endif /* CONFIG_NUMA */
2116
2117int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2118			void __user *buffer,
2119			size_t *length, loff_t *ppos)
2120{
2121	struct hstate *h = &default_hstate;
2122	unsigned long tmp;
2123	int ret;
2124
2125	tmp = h->nr_overcommit_huge_pages;
2126
2127	if (write && h->order >= MAX_ORDER)
2128		return -EINVAL;
2129
2130	table->data = &tmp;
2131	table->maxlen = sizeof(unsigned long);
2132	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2133	if (ret)
2134		goto out;
2135
2136	if (write) {
2137		spin_lock(&hugetlb_lock);
2138		h->nr_overcommit_huge_pages = tmp;
2139		spin_unlock(&hugetlb_lock);
2140	}
2141out:
2142	return ret;
2143}
2144
2145#endif /* CONFIG_SYSCTL */
2146
2147void hugetlb_report_meminfo(struct seq_file *m)
2148{
2149	struct hstate *h = &default_hstate;
2150	seq_printf(m,
2151			"HugePages_Total:   %5lu\n"
2152			"HugePages_Free:    %5lu\n"
2153			"HugePages_Rsvd:    %5lu\n"
2154			"HugePages_Surp:    %5lu\n"
2155			"Hugepagesize:   %8lu kB\n",
2156			h->nr_huge_pages,
2157			h->free_huge_pages,
2158			h->resv_huge_pages,
2159			h->surplus_huge_pages,
2160			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2161}
2162
2163int hugetlb_report_node_meminfo(int nid, char *buf)
2164{
2165	struct hstate *h = &default_hstate;
2166	return sprintf(buf,
2167		"Node %d HugePages_Total: %5u\n"
2168		"Node %d HugePages_Free:  %5u\n"
2169		"Node %d HugePages_Surp:  %5u\n",
2170		nid, h->nr_huge_pages_node[nid],
2171		nid, h->free_huge_pages_node[nid],
2172		nid, h->surplus_huge_pages_node[nid]);
2173}
2174
2175void hugetlb_show_meminfo(void)
2176{
2177	struct hstate *h;
2178	int nid;
2179
2180	for_each_node_state(nid, N_MEMORY)
2181		for_each_hstate(h)
2182			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2183				nid,
2184				h->nr_huge_pages_node[nid],
2185				h->free_huge_pages_node[nid],
2186				h->surplus_huge_pages_node[nid],
2187				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2188}
2189
2190/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2191unsigned long hugetlb_total_pages(void)
2192{
2193	struct hstate *h;
2194	unsigned long nr_total_pages = 0;
2195
2196	for_each_hstate(h)
2197		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2198	return nr_total_pages;
2199}
2200
2201static int hugetlb_acct_memory(struct hstate *h, long delta)
2202{
2203	int ret = -ENOMEM;
2204
2205	spin_lock(&hugetlb_lock);
2206	/*
2207	 * When cpuset is configured, it breaks the strict hugetlb page
2208	 * reservation as the accounting is done on a global variable. Such
2209	 * reservation is completely rubbish in the presence of cpuset because
2210	 * the reservation is not checked against page availability for the
2211	 * current cpuset. Application can still potentially OOM'ed by kernel
2212	 * with lack of free htlb page in cpuset that the task is in.
2213	 * Attempt to enforce strict accounting with cpuset is almost
2214	 * impossible (or too ugly) because cpuset is too fluid that
2215	 * task or memory node can be dynamically moved between cpusets.
2216	 *
2217	 * The change of semantics for shared hugetlb mapping with cpuset is
2218	 * undesirable. However, in order to preserve some of the semantics,
2219	 * we fall back to check against current free page availability as
2220	 * a best attempt and hopefully to minimize the impact of changing
2221	 * semantics that cpuset has.
2222	 */
2223	if (delta > 0) {
2224		if (gather_surplus_pages(h, delta) < 0)
2225			goto out;
2226
2227		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2228			return_unused_surplus_pages(h, delta);
2229			goto out;
2230		}
2231	}
2232
2233	ret = 0;
2234	if (delta < 0)
2235		return_unused_surplus_pages(h, (unsigned long) -delta);
2236
2237out:
2238	spin_unlock(&hugetlb_lock);
2239	return ret;
2240}
2241
2242static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2243{
2244	struct resv_map *resv = vma_resv_map(vma);
2245
2246	/*
2247	 * This new VMA should share its siblings reservation map if present.
2248	 * The VMA will only ever have a valid reservation map pointer where
2249	 * it is being copied for another still existing VMA.  As that VMA
2250	 * has a reference to the reservation map it cannot disappear until
2251	 * after this open call completes.  It is therefore safe to take a
2252	 * new reference here without additional locking.
2253	 */
2254	if (resv)
2255		kref_get(&resv->refs);
2256}
2257
2258static void resv_map_put(struct vm_area_struct *vma)
2259{
2260	struct resv_map *resv = vma_resv_map(vma);
2261
2262	if (!resv)
2263		return;
2264	kref_put(&resv->refs, resv_map_release);
2265}
2266
2267static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2268{
2269	struct hstate *h = hstate_vma(vma);
2270	struct resv_map *resv = vma_resv_map(vma);
2271	struct hugepage_subpool *spool = subpool_vma(vma);
2272	unsigned long reserve;
2273	unsigned long start;
2274	unsigned long end;
2275
2276	if (resv) {
2277		start = vma_hugecache_offset(h, vma, vma->vm_start);
2278		end = vma_hugecache_offset(h, vma, vma->vm_end);
2279
2280		reserve = (end - start) -
2281			region_count(&resv->regions, start, end);
2282
2283		resv_map_put(vma);
2284
2285		if (reserve) {
2286			hugetlb_acct_memory(h, -reserve);
2287			hugepage_subpool_put_pages(spool, reserve);
2288		}
2289	}
2290}
2291
2292/*
2293 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2294 * handle_mm_fault() to try to instantiate regular-sized pages in the
2295 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2296 * this far.
2297 */
2298static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2299{
2300	BUG();
2301	return 0;
2302}
2303
2304const struct vm_operations_struct hugetlb_vm_ops = {
2305	.fault = hugetlb_vm_op_fault,
2306	.open = hugetlb_vm_op_open,
2307	.close = hugetlb_vm_op_close,
2308};
2309
2310static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2311				int writable)
2312{
2313	pte_t entry;
2314
2315	if (writable) {
2316		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2317					 vma->vm_page_prot)));
2318	} else {
2319		entry = huge_pte_wrprotect(mk_huge_pte(page,
2320					   vma->vm_page_prot));
2321	}
2322	entry = pte_mkyoung(entry);
2323	entry = pte_mkhuge(entry);
2324	entry = arch_make_huge_pte(entry, vma, page, writable);
2325
2326	return entry;
2327}
2328
2329static void set_huge_ptep_writable(struct vm_area_struct *vma,
2330				   unsigned long address, pte_t *ptep)
2331{
2332	pte_t entry;
2333
2334	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2335	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2336		update_mmu_cache(vma, address, ptep);
2337}
2338
2339
2340int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2341			    struct vm_area_struct *vma)
2342{
2343	pte_t *src_pte, *dst_pte, entry;
2344	struct page *ptepage;
2345	unsigned long addr;
2346	int cow;
2347	struct hstate *h = hstate_vma(vma);
2348	unsigned long sz = huge_page_size(h);
2349	unsigned long mmun_start;	/* For mmu_notifiers */
2350	unsigned long mmun_end;		/* For mmu_notifiers */
2351	int ret = 0;
2352
2353	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2354
2355	mmun_start = vma->vm_start;
2356	mmun_end = vma->vm_end;
2357	if (cow)
2358		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2359
2360	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2361		spinlock_t *src_ptl, *dst_ptl;
2362		src_pte = huge_pte_offset(src, addr);
2363		if (!src_pte)
2364			continue;
2365		dst_pte = huge_pte_alloc(dst, addr, sz);
2366		if (!dst_pte) {
2367			ret = -ENOMEM;
2368			break;
2369		}
2370
2371		/* If the pagetables are shared don't copy or take references */
2372		if (dst_pte == src_pte)
2373			continue;
2374
2375		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2376		src_ptl = huge_pte_lockptr(h, src, src_pte);
2377		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2378		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2379			if (cow)
2380				huge_ptep_set_wrprotect(src, addr, src_pte);
2381			entry = huge_ptep_get(src_pte);
2382			ptepage = pte_page(entry);
2383			get_page(ptepage);
2384			page_dup_rmap(ptepage);
2385			set_huge_pte_at(dst, addr, dst_pte, entry);
2386		}
2387		spin_unlock(src_ptl);
2388		spin_unlock(dst_ptl);
2389	}
2390
2391	if (cow)
2392		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2393
2394	return ret;
2395}
2396
2397static int is_hugetlb_entry_migration(pte_t pte)
2398{
2399	swp_entry_t swp;
2400
2401	if (huge_pte_none(pte) || pte_present(pte))
2402		return 0;
2403	swp = pte_to_swp_entry(pte);
2404	if (non_swap_entry(swp) && is_migration_entry(swp))
2405		return 1;
2406	else
2407		return 0;
2408}
2409
2410static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2411{
2412	swp_entry_t swp;
2413
2414	if (huge_pte_none(pte) || pte_present(pte))
2415		return 0;
2416	swp = pte_to_swp_entry(pte);
2417	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2418		return 1;
2419	else
2420		return 0;
2421}
2422
2423void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2424			    unsigned long start, unsigned long end,
2425			    struct page *ref_page)
2426{
2427	int force_flush = 0;
2428	struct mm_struct *mm = vma->vm_mm;
2429	unsigned long address;
2430	pte_t *ptep;
2431	pte_t pte;
2432	spinlock_t *ptl;
2433	struct page *page;
2434	struct hstate *h = hstate_vma(vma);
2435	unsigned long sz = huge_page_size(h);
2436	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2437	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2438
2439	WARN_ON(!is_vm_hugetlb_page(vma));
2440	BUG_ON(start & ~huge_page_mask(h));
2441	BUG_ON(end & ~huge_page_mask(h));
2442
2443	tlb_start_vma(tlb, vma);
2444	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2445again:
2446	for (address = start; address < end; address += sz) {
2447		ptep = huge_pte_offset(mm, address);
2448		if (!ptep)
2449			continue;
2450
2451		ptl = huge_pte_lock(h, mm, ptep);
2452		if (huge_pmd_unshare(mm, &address, ptep))
2453			goto unlock;
2454
2455		pte = huge_ptep_get(ptep);
2456		if (huge_pte_none(pte))
2457			goto unlock;
2458
2459		/*
2460		 * HWPoisoned hugepage is already unmapped and dropped reference
2461		 */
2462		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2463			huge_pte_clear(mm, address, ptep);
2464			goto unlock;
2465		}
2466
2467		page = pte_page(pte);
2468		/*
2469		 * If a reference page is supplied, it is because a specific
2470		 * page is being unmapped, not a range. Ensure the page we
2471		 * are about to unmap is the actual page of interest.
2472		 */
2473		if (ref_page) {
2474			if (page != ref_page)
2475				goto unlock;
2476
2477			/*
2478			 * Mark the VMA as having unmapped its page so that
2479			 * future faults in this VMA will fail rather than
2480			 * looking like data was lost
2481			 */
2482			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2483		}
2484
2485		pte = huge_ptep_get_and_clear(mm, address, ptep);
2486		tlb_remove_tlb_entry(tlb, ptep, address);
2487		if (huge_pte_dirty(pte))
2488			set_page_dirty(page);
2489
2490		page_remove_rmap(page);
2491		force_flush = !__tlb_remove_page(tlb, page);
2492		if (force_flush) {
2493			spin_unlock(ptl);
2494			break;
2495		}
2496		/* Bail out after unmapping reference page if supplied */
2497		if (ref_page) {
2498			spin_unlock(ptl);
2499			break;
2500		}
2501unlock:
2502		spin_unlock(ptl);
2503	}
2504	/*
2505	 * mmu_gather ran out of room to batch pages, we break out of
2506	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2507	 * and page-free while holding it.
2508	 */
2509	if (force_flush) {
2510		force_flush = 0;
2511		tlb_flush_mmu(tlb);
2512		if (address < end && !ref_page)
2513			goto again;
2514	}
2515	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2516	tlb_end_vma(tlb, vma);
2517}
2518
2519void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2520			  struct vm_area_struct *vma, unsigned long start,
2521			  unsigned long end, struct page *ref_page)
2522{
2523	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2524
2525	/*
2526	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2527	 * test will fail on a vma being torn down, and not grab a page table
2528	 * on its way out.  We're lucky that the flag has such an appropriate
2529	 * name, and can in fact be safely cleared here. We could clear it
2530	 * before the __unmap_hugepage_range above, but all that's necessary
2531	 * is to clear it before releasing the i_mmap_mutex. This works
2532	 * because in the context this is called, the VMA is about to be
2533	 * destroyed and the i_mmap_mutex is held.
2534	 */
2535	vma->vm_flags &= ~VM_MAYSHARE;
2536}
2537
2538void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2539			  unsigned long end, struct page *ref_page)
2540{
2541	struct mm_struct *mm;
2542	struct mmu_gather tlb;
2543
2544	mm = vma->vm_mm;
2545
2546	tlb_gather_mmu(&tlb, mm, start, end);
2547	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2548	tlb_finish_mmu(&tlb, start, end);
2549}
2550
2551/*
2552 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2553 * mappping it owns the reserve page for. The intention is to unmap the page
2554 * from other VMAs and let the children be SIGKILLed if they are faulting the
2555 * same region.
2556 */
2557static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2558				struct page *page, unsigned long address)
2559{
2560	struct hstate *h = hstate_vma(vma);
2561	struct vm_area_struct *iter_vma;
2562	struct address_space *mapping;
2563	pgoff_t pgoff;
2564
2565	/*
2566	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2567	 * from page cache lookup which is in HPAGE_SIZE units.
2568	 */
2569	address = address & huge_page_mask(h);
2570	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2571			vma->vm_pgoff;
2572	mapping = file_inode(vma->vm_file)->i_mapping;
2573
2574	/*
2575	 * Take the mapping lock for the duration of the table walk. As
2576	 * this mapping should be shared between all the VMAs,
2577	 * __unmap_hugepage_range() is called as the lock is already held
2578	 */
2579	mutex_lock(&mapping->i_mmap_mutex);
2580	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2581		/* Do not unmap the current VMA */
2582		if (iter_vma == vma)
2583			continue;
2584
2585		/*
2586		 * Unmap the page from other VMAs without their own reserves.
2587		 * They get marked to be SIGKILLed if they fault in these
2588		 * areas. This is because a future no-page fault on this VMA
2589		 * could insert a zeroed page instead of the data existing
2590		 * from the time of fork. This would look like data corruption
2591		 */
2592		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2593			unmap_hugepage_range(iter_vma, address,
2594					     address + huge_page_size(h), page);
2595	}
2596	mutex_unlock(&mapping->i_mmap_mutex);
2597
2598	return 1;
2599}
2600
2601/*
2602 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2603 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2604 * cannot race with other handlers or page migration.
2605 * Keep the pte_same checks anyway to make transition from the mutex easier.
2606 */
2607static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2608			unsigned long address, pte_t *ptep, pte_t pte,
2609			struct page *pagecache_page, spinlock_t *ptl)
2610{
2611	struct hstate *h = hstate_vma(vma);
2612	struct page *old_page, *new_page;
2613	int outside_reserve = 0;
2614	unsigned long mmun_start;	/* For mmu_notifiers */
2615	unsigned long mmun_end;		/* For mmu_notifiers */
2616
2617	old_page = pte_page(pte);
2618
2619retry_avoidcopy:
2620	/* If no-one else is actually using this page, avoid the copy
2621	 * and just make the page writable */
2622	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2623		page_move_anon_rmap(old_page, vma, address);
2624		set_huge_ptep_writable(vma, address, ptep);
2625		return 0;
2626	}
2627
2628	/*
2629	 * If the process that created a MAP_PRIVATE mapping is about to
2630	 * perform a COW due to a shared page count, attempt to satisfy
2631	 * the allocation without using the existing reserves. The pagecache
2632	 * page is used to determine if the reserve at this address was
2633	 * consumed or not. If reserves were used, a partial faulted mapping
2634	 * at the time of fork() could consume its reserves on COW instead
2635	 * of the full address range.
2636	 */
2637	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2638			old_page != pagecache_page)
2639		outside_reserve = 1;
2640
2641	page_cache_get(old_page);
2642
2643	/* Drop page table lock as buddy allocator may be called */
2644	spin_unlock(ptl);
2645	new_page = alloc_huge_page(vma, address, outside_reserve);
2646
2647	if (IS_ERR(new_page)) {
2648		long err = PTR_ERR(new_page);
2649		page_cache_release(old_page);
2650
2651		/*
2652		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2653		 * it is due to references held by a child and an insufficient
2654		 * huge page pool. To guarantee the original mappers
2655		 * reliability, unmap the page from child processes. The child
2656		 * may get SIGKILLed if it later faults.
2657		 */
2658		if (outside_reserve) {
2659			BUG_ON(huge_pte_none(pte));
2660			if (unmap_ref_private(mm, vma, old_page, address)) {
2661				BUG_ON(huge_pte_none(pte));
2662				spin_lock(ptl);
2663				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2664				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2665					goto retry_avoidcopy;
2666				/*
2667				 * race occurs while re-acquiring page table
2668				 * lock, and our job is done.
2669				 */
2670				return 0;
2671			}
2672			WARN_ON_ONCE(1);
2673		}
2674
2675		/* Caller expects lock to be held */
2676		spin_lock(ptl);
2677		if (err == -ENOMEM)
2678			return VM_FAULT_OOM;
2679		else
2680			return VM_FAULT_SIGBUS;
2681	}
2682
2683	/*
2684	 * When the original hugepage is shared one, it does not have
2685	 * anon_vma prepared.
2686	 */
2687	if (unlikely(anon_vma_prepare(vma))) {
2688		page_cache_release(new_page);
2689		page_cache_release(old_page);
2690		/* Caller expects lock to be held */
2691		spin_lock(ptl);
2692		return VM_FAULT_OOM;
2693	}
2694
2695	copy_user_huge_page(new_page, old_page, address, vma,
2696			    pages_per_huge_page(h));
2697	__SetPageUptodate(new_page);
2698
2699	mmun_start = address & huge_page_mask(h);
2700	mmun_end = mmun_start + huge_page_size(h);
2701	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2702	/*
2703	 * Retake the page table lock to check for racing updates
2704	 * before the page tables are altered
2705	 */
2706	spin_lock(ptl);
2707	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2708	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2709		ClearPagePrivate(new_page);
2710
2711		/* Break COW */
2712		huge_ptep_clear_flush(vma, address, ptep);
2713		set_huge_pte_at(mm, address, ptep,
2714				make_huge_pte(vma, new_page, 1));
2715		page_remove_rmap(old_page);
2716		hugepage_add_new_anon_rmap(new_page, vma, address);
2717		/* Make the old page be freed below */
2718		new_page = old_page;
2719	}
2720	spin_unlock(ptl);
2721	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2722	page_cache_release(new_page);
2723	page_cache_release(old_page);
2724
2725	/* Caller expects lock to be held */
2726	spin_lock(ptl);
2727	return 0;
2728}
2729
2730/* Return the pagecache page at a given address within a VMA */
2731static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2732			struct vm_area_struct *vma, unsigned long address)
2733{
2734	struct address_space *mapping;
2735	pgoff_t idx;
2736
2737	mapping = vma->vm_file->f_mapping;
2738	idx = vma_hugecache_offset(h, vma, address);
2739
2740	return find_lock_page(mapping, idx);
2741}
2742
2743/*
2744 * Return whether there is a pagecache page to back given address within VMA.
2745 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2746 */
2747static bool hugetlbfs_pagecache_present(struct hstate *h,
2748			struct vm_area_struct *vma, unsigned long address)
2749{
2750	struct address_space *mapping;
2751	pgoff_t idx;
2752	struct page *page;
2753
2754	mapping = vma->vm_file->f_mapping;
2755	idx = vma_hugecache_offset(h, vma, address);
2756
2757	page = find_get_page(mapping, idx);
2758	if (page)
2759		put_page(page);
2760	return page != NULL;
2761}
2762
2763static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2764			unsigned long address, pte_t *ptep, unsigned int flags)
2765{
2766	struct hstate *h = hstate_vma(vma);
2767	int ret = VM_FAULT_SIGBUS;
2768	int anon_rmap = 0;
2769	pgoff_t idx;
2770	unsigned long size;
2771	struct page *page;
2772	struct address_space *mapping;
2773	pte_t new_pte;
2774	spinlock_t *ptl;
2775
2776	/*
2777	 * Currently, we are forced to kill the process in the event the
2778	 * original mapper has unmapped pages from the child due to a failed
2779	 * COW. Warn that such a situation has occurred as it may not be obvious
2780	 */
2781	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2782		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2783			   current->pid);
2784		return ret;
2785	}
2786
2787	mapping = vma->vm_file->f_mapping;
2788	idx = vma_hugecache_offset(h, vma, address);
2789
2790	/*
2791	 * Use page lock to guard against racing truncation
2792	 * before we get page_table_lock.
2793	 */
2794retry:
2795	page = find_lock_page(mapping, idx);
2796	if (!page) {
2797		size = i_size_read(mapping->host) >> huge_page_shift(h);
2798		if (idx >= size)
2799			goto out;
2800		page = alloc_huge_page(vma, address, 0);
2801		if (IS_ERR(page)) {
2802			ret = PTR_ERR(page);
2803			if (ret == -ENOMEM)
2804				ret = VM_FAULT_OOM;
2805			else
2806				ret = VM_FAULT_SIGBUS;
2807			goto out;
2808		}
2809		clear_huge_page(page, address, pages_per_huge_page(h));
2810		__SetPageUptodate(page);
2811
2812		if (vma->vm_flags & VM_MAYSHARE) {
2813			int err;
2814			struct inode *inode = mapping->host;
2815
2816			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2817			if (err) {
2818				put_page(page);
2819				if (err == -EEXIST)
2820					goto retry;
2821				goto out;
2822			}
2823			ClearPagePrivate(page);
2824
2825			spin_lock(&inode->i_lock);
2826			inode->i_blocks += blocks_per_huge_page(h);
2827			spin_unlock(&inode->i_lock);
2828		} else {
2829			lock_page(page);
2830			if (unlikely(anon_vma_prepare(vma))) {
2831				ret = VM_FAULT_OOM;
2832				goto backout_unlocked;
2833			}
2834			anon_rmap = 1;
2835		}
2836	} else {
2837		/*
2838		 * If memory error occurs between mmap() and fault, some process
2839		 * don't have hwpoisoned swap entry for errored virtual address.
2840		 * So we need to block hugepage fault by PG_hwpoison bit check.
2841		 */
2842		if (unlikely(PageHWPoison(page))) {
2843			ret = VM_FAULT_HWPOISON |
2844				VM_FAULT_SET_HINDEX(hstate_index(h));
2845			goto backout_unlocked;
2846		}
2847	}
2848
2849	/*
2850	 * If we are going to COW a private mapping later, we examine the
2851	 * pending reservations for this page now. This will ensure that
2852	 * any allocations necessary to record that reservation occur outside
2853	 * the spinlock.
2854	 */
2855	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2856		if (vma_needs_reservation(h, vma, address) < 0) {
2857			ret = VM_FAULT_OOM;
2858			goto backout_unlocked;
2859		}
2860
2861	ptl = huge_pte_lockptr(h, mm, ptep);
2862	spin_lock(ptl);
2863	size = i_size_read(mapping->host) >> huge_page_shift(h);
2864	if (idx >= size)
2865		goto backout;
2866
2867	ret = 0;
2868	if (!huge_pte_none(huge_ptep_get(ptep)))
2869		goto backout;
2870
2871	if (anon_rmap) {
2872		ClearPagePrivate(page);
2873		hugepage_add_new_anon_rmap(page, vma, address);
2874	}
2875	else
2876		page_dup_rmap(page);
2877	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2878				&& (vma->vm_flags & VM_SHARED)));
2879	set_huge_pte_at(mm, address, ptep, new_pte);
2880
2881	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2882		/* Optimization, do the COW without a second fault */
2883		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2884	}
2885
2886	spin_unlock(ptl);
2887	unlock_page(page);
2888out:
2889	return ret;
2890
2891backout:
2892	spin_unlock(ptl);
2893backout_unlocked:
2894	unlock_page(page);
2895	put_page(page);
2896	goto out;
2897}
2898
2899int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2900			unsigned long address, unsigned int flags)
2901{
2902	pte_t *ptep;
2903	pte_t entry;
2904	spinlock_t *ptl;
2905	int ret;
2906	struct page *page = NULL;
2907	struct page *pagecache_page = NULL;
2908	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2909	struct hstate *h = hstate_vma(vma);
2910
2911	address &= huge_page_mask(h);
2912
2913	ptep = huge_pte_offset(mm, address);
2914	if (ptep) {
2915		entry = huge_ptep_get(ptep);
2916		if (unlikely(is_hugetlb_entry_migration(entry))) {
2917			migration_entry_wait_huge(vma, mm, ptep);
2918			return 0;
2919		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2920			return VM_FAULT_HWPOISON_LARGE |
2921				VM_FAULT_SET_HINDEX(hstate_index(h));
2922	}
2923
2924	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2925	if (!ptep)
2926		return VM_FAULT_OOM;
2927
2928	/*
2929	 * Serialize hugepage allocation and instantiation, so that we don't
2930	 * get spurious allocation failures if two CPUs race to instantiate
2931	 * the same page in the page cache.
2932	 */
2933	mutex_lock(&hugetlb_instantiation_mutex);
2934	entry = huge_ptep_get(ptep);
2935	if (huge_pte_none(entry)) {
2936		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2937		goto out_mutex;
2938	}
2939
2940	ret = 0;
2941
2942	/*
2943	 * If we are going to COW the mapping later, we examine the pending
2944	 * reservations for this page now. This will ensure that any
2945	 * allocations necessary to record that reservation occur outside the
2946	 * spinlock. For private mappings, we also lookup the pagecache
2947	 * page now as it is used to determine if a reservation has been
2948	 * consumed.
2949	 */
2950	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2951		if (vma_needs_reservation(h, vma, address) < 0) {
2952			ret = VM_FAULT_OOM;
2953			goto out_mutex;
2954		}
2955
2956		if (!(vma->vm_flags & VM_MAYSHARE))
2957			pagecache_page = hugetlbfs_pagecache_page(h,
2958								vma, address);
2959	}
2960
2961	/*
2962	 * hugetlb_cow() requires page locks of pte_page(entry) and
2963	 * pagecache_page, so here we need take the former one
2964	 * when page != pagecache_page or !pagecache_page.
2965	 * Note that locking order is always pagecache_page -> page,
2966	 * so no worry about deadlock.
2967	 */
2968	page = pte_page(entry);
2969	get_page(page);
2970	if (page != pagecache_page)
2971		lock_page(page);
2972
2973	ptl = huge_pte_lockptr(h, mm, ptep);
2974	spin_lock(ptl);
2975	/* Check for a racing update before calling hugetlb_cow */
2976	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2977		goto out_ptl;
2978
2979
2980	if (flags & FAULT_FLAG_WRITE) {
2981		if (!huge_pte_write(entry)) {
2982			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2983					pagecache_page, ptl);
2984			goto out_ptl;
2985		}
2986		entry = huge_pte_mkdirty(entry);
2987	}
2988	entry = pte_mkyoung(entry);
2989	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2990						flags & FAULT_FLAG_WRITE))
2991		update_mmu_cache(vma, address, ptep);
2992
2993out_ptl:
2994	spin_unlock(ptl);
2995
2996	if (pagecache_page) {
2997		unlock_page(pagecache_page);
2998		put_page(pagecache_page);
2999	}
3000	if (page != pagecache_page)
3001		unlock_page(page);
3002	put_page(page);
3003
3004out_mutex:
3005	mutex_unlock(&hugetlb_instantiation_mutex);
3006
3007	return ret;
3008}
3009
3010long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3011			 struct page **pages, struct vm_area_struct **vmas,
3012			 unsigned long *position, unsigned long *nr_pages,
3013			 long i, unsigned int flags)
3014{
3015	unsigned long pfn_offset;
3016	unsigned long vaddr = *position;
3017	unsigned long remainder = *nr_pages;
3018	struct hstate *h = hstate_vma(vma);
3019
3020	while (vaddr < vma->vm_end && remainder) {
3021		pte_t *pte;
3022		spinlock_t *ptl = NULL;
3023		int absent;
3024		struct page *page;
3025
3026		/*
3027		 * Some archs (sparc64, sh*) have multiple pte_ts to
3028		 * each hugepage.  We have to make sure we get the
3029		 * first, for the page indexing below to work.
3030		 *
3031		 * Note that page table lock is not held when pte is null.
3032		 */
3033		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3034		if (pte)
3035			ptl = huge_pte_lock(h, mm, pte);
3036		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3037
3038		/*
3039		 * When coredumping, it suits get_dump_page if we just return
3040		 * an error where there's an empty slot with no huge pagecache
3041		 * to back it.  This way, we avoid allocating a hugepage, and
3042		 * the sparse dumpfile avoids allocating disk blocks, but its
3043		 * huge holes still show up with zeroes where they need to be.
3044		 */
3045		if (absent && (flags & FOLL_DUMP) &&
3046		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3047			if (pte)
3048				spin_unlock(ptl);
3049			remainder = 0;
3050			break;
3051		}
3052
3053		/*
3054		 * We need call hugetlb_fault for both hugepages under migration
3055		 * (in which case hugetlb_fault waits for the migration,) and
3056		 * hwpoisoned hugepages (in which case we need to prevent the
3057		 * caller from accessing to them.) In order to do this, we use
3058		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3059		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3060		 * both cases, and because we can't follow correct pages
3061		 * directly from any kind of swap entries.
3062		 */
3063		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3064		    ((flags & FOLL_WRITE) &&
3065		      !huge_pte_write(huge_ptep_get(pte)))) {
3066			int ret;
3067
3068			if (pte)
3069				spin_unlock(ptl);
3070			ret = hugetlb_fault(mm, vma, vaddr,
3071				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3072			if (!(ret & VM_FAULT_ERROR))
3073				continue;
3074
3075			remainder = 0;
3076			break;
3077		}
3078
3079		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3080		page = pte_page(huge_ptep_get(pte));
3081same_page:
3082		if (pages) {
3083			pages[i] = mem_map_offset(page, pfn_offset);
3084			get_page_foll(pages[i]);
3085		}
3086
3087		if (vmas)
3088			vmas[i] = vma;
3089
3090		vaddr += PAGE_SIZE;
3091		++pfn_offset;
3092		--remainder;
3093		++i;
3094		if (vaddr < vma->vm_end && remainder &&
3095				pfn_offset < pages_per_huge_page(h)) {
3096			/*
3097			 * We use pfn_offset to avoid touching the pageframes
3098			 * of this compound page.
3099			 */
3100			goto same_page;
3101		}
3102		spin_unlock(ptl);
3103	}
3104	*nr_pages = remainder;
3105	*position = vaddr;
3106
3107	return i ? i : -EFAULT;
3108}
3109
3110unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3111		unsigned long address, unsigned long end, pgprot_t newprot)
3112{
3113	struct mm_struct *mm = vma->vm_mm;
3114	unsigned long start = address;
3115	pte_t *ptep;
3116	pte_t pte;
3117	struct hstate *h = hstate_vma(vma);
3118	unsigned long pages = 0;
3119
3120	BUG_ON(address >= end);
3121	flush_cache_range(vma, address, end);
3122
3123	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3124	for (; address < end; address += huge_page_size(h)) {
3125		spinlock_t *ptl;
3126		ptep = huge_pte_offset(mm, address);
3127		if (!ptep)
3128			continue;
3129		ptl = huge_pte_lock(h, mm, ptep);
3130		if (huge_pmd_unshare(mm, &address, ptep)) {
3131			pages++;
3132			spin_unlock(ptl);
3133			continue;
3134		}
3135		if (!huge_pte_none(huge_ptep_get(ptep))) {
3136			pte = huge_ptep_get_and_clear(mm, address, ptep);
3137			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3138			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3139			set_huge_pte_at(mm, address, ptep, pte);
3140			pages++;
3141		}
3142		spin_unlock(ptl);
3143	}
3144	/*
3145	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3146	 * may have cleared our pud entry and done put_page on the page table:
3147	 * once we release i_mmap_mutex, another task can do the final put_page
3148	 * and that page table be reused and filled with junk.
3149	 */
3150	flush_tlb_range(vma, start, end);
3151	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3152
3153	return pages << h->order;
3154}
3155
3156int hugetlb_reserve_pages(struct inode *inode,
3157					long from, long to,
3158					struct vm_area_struct *vma,
3159					vm_flags_t vm_flags)
3160{
3161	long ret, chg;
3162	struct hstate *h = hstate_inode(inode);
3163	struct hugepage_subpool *spool = subpool_inode(inode);
3164
3165	/*
3166	 * Only apply hugepage reservation if asked. At fault time, an
3167	 * attempt will be made for VM_NORESERVE to allocate a page
3168	 * without using reserves
3169	 */
3170	if (vm_flags & VM_NORESERVE)
3171		return 0;
3172
3173	/*
3174	 * Shared mappings base their reservation on the number of pages that
3175	 * are already allocated on behalf of the file. Private mappings need
3176	 * to reserve the full area even if read-only as mprotect() may be
3177	 * called to make the mapping read-write. Assume !vma is a shm mapping
3178	 */
3179	if (!vma || vma->vm_flags & VM_MAYSHARE)
3180		chg = region_chg(&inode->i_mapping->private_list, from, to);
3181	else {
3182		struct resv_map *resv_map = resv_map_alloc();
3183		if (!resv_map)
3184			return -ENOMEM;
3185
3186		chg = to - from;
3187
3188		set_vma_resv_map(vma, resv_map);
3189		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3190	}
3191
3192	if (chg < 0) {
3193		ret = chg;
3194		goto out_err;
3195	}
3196
3197	/* There must be enough pages in the subpool for the mapping */
3198	if (hugepage_subpool_get_pages(spool, chg)) {
3199		ret = -ENOSPC;
3200		goto out_err;
3201	}
3202
3203	/*
3204	 * Check enough hugepages are available for the reservation.
3205	 * Hand the pages back to the subpool if there are not
3206	 */
3207	ret = hugetlb_acct_memory(h, chg);
3208	if (ret < 0) {
3209		hugepage_subpool_put_pages(spool, chg);
3210		goto out_err;
3211	}
3212
3213	/*
3214	 * Account for the reservations made. Shared mappings record regions
3215	 * that have reservations as they are shared by multiple VMAs.
3216	 * When the last VMA disappears, the region map says how much
3217	 * the reservation was and the page cache tells how much of
3218	 * the reservation was consumed. Private mappings are per-VMA and
3219	 * only the consumed reservations are tracked. When the VMA
3220	 * disappears, the original reservation is the VMA size and the
3221	 * consumed reservations are stored in the map. Hence, nothing
3222	 * else has to be done for private mappings here
3223	 */
3224	if (!vma || vma->vm_flags & VM_MAYSHARE)
3225		region_add(&inode->i_mapping->private_list, from, to);
3226	return 0;
3227out_err:
3228	if (vma)
3229		resv_map_put(vma);
3230	return ret;
3231}
3232
3233void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3234{
3235	struct hstate *h = hstate_inode(inode);
3236	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3237	struct hugepage_subpool *spool = subpool_inode(inode);
3238
3239	spin_lock(&inode->i_lock);
3240	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3241	spin_unlock(&inode->i_lock);
3242
3243	hugepage_subpool_put_pages(spool, (chg - freed));
3244	hugetlb_acct_memory(h, -(chg - freed));
3245}
3246
3247#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3248static unsigned long page_table_shareable(struct vm_area_struct *svma,
3249				struct vm_area_struct *vma,
3250				unsigned long addr, pgoff_t idx)
3251{
3252	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3253				svma->vm_start;
3254	unsigned long sbase = saddr & PUD_MASK;
3255	unsigned long s_end = sbase + PUD_SIZE;
3256
3257	/* Allow segments to share if only one is marked locked */
3258	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3259	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3260
3261	/*
3262	 * match the virtual addresses, permission and the alignment of the
3263	 * page table page.
3264	 */
3265	if (pmd_index(addr) != pmd_index(saddr) ||
3266	    vm_flags != svm_flags ||
3267	    sbase < svma->vm_start || svma->vm_end < s_end)
3268		return 0;
3269
3270	return saddr;
3271}
3272
3273static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3274{
3275	unsigned long base = addr & PUD_MASK;
3276	unsigned long end = base + PUD_SIZE;
3277
3278	/*
3279	 * check on proper vm_flags and page table alignment
3280	 */
3281	if (vma->vm_flags & VM_MAYSHARE &&
3282	    vma->vm_start <= base && end <= vma->vm_end)
3283		return 1;
3284	return 0;
3285}
3286
3287/*
3288 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3289 * and returns the corresponding pte. While this is not necessary for the
3290 * !shared pmd case because we can allocate the pmd later as well, it makes the
3291 * code much cleaner. pmd allocation is essential for the shared case because
3292 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3293 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3294 * bad pmd for sharing.
3295 */
3296pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3297{
3298	struct vm_area_struct *vma = find_vma(mm, addr);
3299	struct address_space *mapping = vma->vm_file->f_mapping;
3300	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3301			vma->vm_pgoff;
3302	struct vm_area_struct *svma;
3303	unsigned long saddr;
3304	pte_t *spte = NULL;
3305	pte_t *pte;
3306	spinlock_t *ptl;
3307
3308	if (!vma_shareable(vma, addr))
3309		return (pte_t *)pmd_alloc(mm, pud, addr);
3310
3311	mutex_lock(&mapping->i_mmap_mutex);
3312	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3313		if (svma == vma)
3314			continue;
3315
3316		saddr = page_table_shareable(svma, vma, addr, idx);
3317		if (saddr) {
3318			spte = huge_pte_offset(svma->vm_mm, saddr);
3319			if (spte) {
3320				get_page(virt_to_page(spte));
3321				break;
3322			}
3323		}
3324	}
3325
3326	if (!spte)
3327		goto out;
3328
3329	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3330	spin_lock(ptl);
3331	if (pud_none(*pud))
3332		pud_populate(mm, pud,
3333				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3334	else
3335		put_page(virt_to_page(spte));
3336	spin_unlock(ptl);
3337out:
3338	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3339	mutex_unlock(&mapping->i_mmap_mutex);
3340	return pte;
3341}
3342
3343/*
3344 * unmap huge page backed by shared pte.
3345 *
3346 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3347 * indicated by page_count > 1, unmap is achieved by clearing pud and
3348 * decrementing the ref count. If count == 1, the pte page is not shared.
3349 *
3350 * called with page table lock held.
3351 *
3352 * returns: 1 successfully unmapped a shared pte page
3353 *	    0 the underlying pte page is not shared, or it is the last user
3354 */
3355int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3356{
3357	pgd_t *pgd = pgd_offset(mm, *addr);
3358	pud_t *pud = pud_offset(pgd, *addr);
3359
3360	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3361	if (page_count(virt_to_page(ptep)) == 1)
3362		return 0;
3363
3364	pud_clear(pud);
3365	put_page(virt_to_page(ptep));
3366	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3367	return 1;
3368}
3369#define want_pmd_share()	(1)
3370#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3371pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3372{
3373	return NULL;
3374}
3375#define want_pmd_share()	(0)
3376#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3377
3378#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3379pte_t *huge_pte_alloc(struct mm_struct *mm,
3380			unsigned long addr, unsigned long sz)
3381{
3382	pgd_t *pgd;
3383	pud_t *pud;
3384	pte_t *pte = NULL;
3385
3386	pgd = pgd_offset(mm, addr);
3387	pud = pud_alloc(mm, pgd, addr);
3388	if (pud) {
3389		if (sz == PUD_SIZE) {
3390			pte = (pte_t *)pud;
3391		} else {
3392			BUG_ON(sz != PMD_SIZE);
3393			if (want_pmd_share() && pud_none(*pud))
3394				pte = huge_pmd_share(mm, addr, pud);
3395			else
3396				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3397		}
3398	}
3399	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3400
3401	return pte;
3402}
3403
3404pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3405{
3406	pgd_t *pgd;
3407	pud_t *pud;
3408	pmd_t *pmd = NULL;
3409
3410	pgd = pgd_offset(mm, addr);
3411	if (pgd_present(*pgd)) {
3412		pud = pud_offset(pgd, addr);
3413		if (pud_present(*pud)) {
3414			if (pud_huge(*pud))
3415				return (pte_t *)pud;
3416			pmd = pmd_offset(pud, addr);
3417		}
3418	}
3419	return (pte_t *) pmd;
3420}
3421
3422struct page *
3423follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3424		pmd_t *pmd, int write)
3425{
3426	struct page *page;
3427
3428	page = pte_page(*(pte_t *)pmd);
3429	if (page)
3430		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3431	return page;
3432}
3433
3434struct page *
3435follow_huge_pud(struct mm_struct *mm, unsigned long address,
3436		pud_t *pud, int write)
3437{
3438	struct page *page;
3439
3440	page = pte_page(*(pte_t *)pud);
3441	if (page)
3442		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3443	return page;
3444}
3445
3446#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3447
3448/* Can be overriden by architectures */
3449__attribute__((weak)) struct page *
3450follow_huge_pud(struct mm_struct *mm, unsigned long address,
3451	       pud_t *pud, int write)
3452{
3453	BUG();
3454	return NULL;
3455}
3456
3457#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3458
3459#ifdef CONFIG_MEMORY_FAILURE
3460
3461/* Should be called in hugetlb_lock */
3462static int is_hugepage_on_freelist(struct page *hpage)
3463{
3464	struct page *page;
3465	struct page *tmp;
3466	struct hstate *h = page_hstate(hpage);
3467	int nid = page_to_nid(hpage);
3468
3469	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3470		if (page == hpage)
3471			return 1;
3472	return 0;
3473}
3474
3475/*
3476 * This function is called from memory failure code.
3477 * Assume the caller holds page lock of the head page.
3478 */
3479int dequeue_hwpoisoned_huge_page(struct page *hpage)
3480{
3481	struct hstate *h = page_hstate(hpage);
3482	int nid = page_to_nid(hpage);
3483	int ret = -EBUSY;
3484
3485	spin_lock(&hugetlb_lock);
3486	if (is_hugepage_on_freelist(hpage)) {
3487		/*
3488		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3489		 * but dangling hpage->lru can trigger list-debug warnings
3490		 * (this happens when we call unpoison_memory() on it),
3491		 * so let it point to itself with list_del_init().
3492		 */
3493		list_del_init(&hpage->lru);
3494		set_page_refcounted(hpage);
3495		h->free_huge_pages--;
3496		h->free_huge_pages_node[nid]--;
3497		ret = 0;
3498	}
3499	spin_unlock(&hugetlb_lock);
3500	return ret;
3501}
3502#endif
3503
3504bool isolate_huge_page(struct page *page, struct list_head *list)
3505{
3506	VM_BUG_ON(!PageHead(page));
3507	if (!get_page_unless_zero(page))
3508		return false;
3509	spin_lock(&hugetlb_lock);
3510	list_move_tail(&page->lru, list);
3511	spin_unlock(&hugetlb_lock);
3512	return true;
3513}
3514
3515void putback_active_hugepage(struct page *page)
3516{
3517	VM_BUG_ON(!PageHead(page));
3518	spin_lock(&hugetlb_lock);
3519	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3520	spin_unlock(&hugetlb_lock);
3521	put_page(page);
3522}
3523
3524bool is_hugepage_active(struct page *page)
3525{
3526	VM_BUG_ON(!PageHuge(page));
3527	/*
3528	 * This function can be called for a tail page because the caller,
3529	 * scan_movable_pages, scans through a given pfn-range which typically
3530	 * covers one memory block. In systems using gigantic hugepage (1GB
3531	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3532	 * support migrating such large hugepages for now, so return false
3533	 * when called for tail pages.
3534	 */
3535	if (PageTail(page))
3536		return false;
3537	/*
3538	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3539	 * so we should return false for them.
3540	 */
3541	if (unlikely(PageHWPoison(page)))
3542		return false;
3543	return page_count(page) > 0;
3544}
3545