hugetlb.c revision 8c6c2ecb44667f7204e9d2b89c4c1f42edc5a196
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/io.h>
28
29#include <linux/hugetlb.h>
30#include <linux/node.h>
31#include "internal.h"
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
41__initdata LIST_HEAD(huge_boot_pages);
42
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
46static unsigned long __initdata default_hstate_size;
47
48#define for_each_hstate(h) \
49	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
55
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 *                    across the pages in a mapping.
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * 	down_write(&mm->mmap_sem);
66 * or
67 * 	down_read(&mm->mmap_sem);
68 * 	mutex_lock(&hugetlb_instantiation_mutex);
69 */
70struct file_region {
71	struct list_head link;
72	long from;
73	long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78	struct file_region *rg, *nrg, *trg;
79
80	/* Locate the region we are either in or before. */
81	list_for_each_entry(rg, head, link)
82		if (f <= rg->to)
83			break;
84
85	/* Round our left edge to the current segment if it encloses us. */
86	if (f > rg->from)
87		f = rg->from;
88
89	/* Check for and consume any regions we now overlap with. */
90	nrg = rg;
91	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92		if (&rg->link == head)
93			break;
94		if (rg->from > t)
95			break;
96
97		/* If this area reaches higher then extend our area to
98		 * include it completely.  If this is not the first area
99		 * which we intend to reuse, free it. */
100		if (rg->to > t)
101			t = rg->to;
102		if (rg != nrg) {
103			list_del(&rg->link);
104			kfree(rg);
105		}
106	}
107	nrg->from = f;
108	nrg->to = t;
109	return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114	struct file_region *rg, *nrg;
115	long chg = 0;
116
117	/* Locate the region we are before or in. */
118	list_for_each_entry(rg, head, link)
119		if (f <= rg->to)
120			break;
121
122	/* If we are below the current region then a new region is required.
123	 * Subtle, allocate a new region at the position but make it zero
124	 * size such that we can guarantee to record the reservation. */
125	if (&rg->link == head || t < rg->from) {
126		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127		if (!nrg)
128			return -ENOMEM;
129		nrg->from = f;
130		nrg->to   = f;
131		INIT_LIST_HEAD(&nrg->link);
132		list_add(&nrg->link, rg->link.prev);
133
134		return t - f;
135	}
136
137	/* Round our left edge to the current segment if it encloses us. */
138	if (f > rg->from)
139		f = rg->from;
140	chg = t - f;
141
142	/* Check for and consume any regions we now overlap with. */
143	list_for_each_entry(rg, rg->link.prev, link) {
144		if (&rg->link == head)
145			break;
146		if (rg->from > t)
147			return chg;
148
149		/* We overlap with this area, if it extends futher than
150		 * us then we must extend ourselves.  Account for its
151		 * existing reservation. */
152		if (rg->to > t) {
153			chg += rg->to - t;
154			t = rg->to;
155		}
156		chg -= rg->to - rg->from;
157	}
158	return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163	struct file_region *rg, *trg;
164	long chg = 0;
165
166	/* Locate the region we are either in or before. */
167	list_for_each_entry(rg, head, link)
168		if (end <= rg->to)
169			break;
170	if (&rg->link == head)
171		return 0;
172
173	/* If we are in the middle of a region then adjust it. */
174	if (end > rg->from) {
175		chg = rg->to - end;
176		rg->to = end;
177		rg = list_entry(rg->link.next, typeof(*rg), link);
178	}
179
180	/* Drop any remaining regions. */
181	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182		if (&rg->link == head)
183			break;
184		chg += rg->to - rg->from;
185		list_del(&rg->link);
186		kfree(rg);
187	}
188	return chg;
189}
190
191static long region_count(struct list_head *head, long f, long t)
192{
193	struct file_region *rg;
194	long chg = 0;
195
196	/* Locate each segment we overlap with, and count that overlap. */
197	list_for_each_entry(rg, head, link) {
198		int seg_from;
199		int seg_to;
200
201		if (rg->to <= f)
202			continue;
203		if (rg->from >= t)
204			break;
205
206		seg_from = max(rg->from, f);
207		seg_to = min(rg->to, t);
208
209		chg += seg_to - seg_from;
210	}
211
212	return chg;
213}
214
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220			struct vm_area_struct *vma, unsigned long address)
221{
222	return ((address - vma->vm_start) >> huge_page_shift(h)) +
223			(vma->vm_pgoff >> huge_page_order(h));
224}
225
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227				     unsigned long address)
228{
229	return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238	struct hstate *hstate;
239
240	if (!is_vm_hugetlb_page(vma))
241		return PAGE_SIZE;
242
243	hstate = hstate_vma(vma);
244
245	return 1UL << (hstate->order + PAGE_SHIFT);
246}
247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258	return vma_kernel_pagesize(vma);
259}
260#endif
261
262/*
263 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER    (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping.  A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated.  A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
289 */
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292	return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296							unsigned long value)
297{
298	vma->vm_private_data = (void *)value;
299}
300
301struct resv_map {
302	struct kref refs;
303	struct list_head regions;
304};
305
306static struct resv_map *resv_map_alloc(void)
307{
308	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309	if (!resv_map)
310		return NULL;
311
312	kref_init(&resv_map->refs);
313	INIT_LIST_HEAD(&resv_map->regions);
314
315	return resv_map;
316}
317
318static void resv_map_release(struct kref *ref)
319{
320	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322	/* Clear out any active regions before we release the map. */
323	region_truncate(&resv_map->regions, 0);
324	kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328{
329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330	if (!(vma->vm_flags & VM_MAYSHARE))
331		return (struct resv_map *)(get_vma_private_data(vma) &
332							~HPAGE_RESV_MASK);
333	return NULL;
334}
335
336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337{
338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341	set_vma_private_data(vma, (get_vma_private_data(vma) &
342				HPAGE_RESV_MASK) | (unsigned long)map);
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
347	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357	return (get_vma_private_data(vma) & flag) != 0;
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
361static void decrement_hugepage_resv_vma(struct hstate *h,
362			struct vm_area_struct *vma)
363{
364	if (vma->vm_flags & VM_NORESERVE)
365		return;
366
367	if (vma->vm_flags & VM_MAYSHARE) {
368		/* Shared mappings always use reserves */
369		h->resv_huge_pages--;
370	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371		/*
372		 * Only the process that called mmap() has reserves for
373		 * private mappings.
374		 */
375		h->resv_huge_pages--;
376	}
377}
378
379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383	if (!(vma->vm_flags & VM_MAYSHARE))
384		vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
388static int vma_has_reserves(struct vm_area_struct *vma)
389{
390	if (vma->vm_flags & VM_MAYSHARE)
391		return 1;
392	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393		return 1;
394	return 0;
395}
396
397static void clear_gigantic_page(struct page *page,
398			unsigned long addr, unsigned long sz)
399{
400	int i;
401	struct page *p = page;
402
403	might_sleep();
404	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405		cond_resched();
406		clear_user_highpage(p, addr + i * PAGE_SIZE);
407	}
408}
409static void clear_huge_page(struct page *page,
410			unsigned long addr, unsigned long sz)
411{
412	int i;
413
414	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
415		clear_gigantic_page(page, addr, sz);
416		return;
417	}
418
419	might_sleep();
420	for (i = 0; i < sz/PAGE_SIZE; i++) {
421		cond_resched();
422		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
423	}
424}
425
426static void copy_user_gigantic_page(struct page *dst, struct page *src,
427			   unsigned long addr, struct vm_area_struct *vma)
428{
429	int i;
430	struct hstate *h = hstate_vma(vma);
431	struct page *dst_base = dst;
432	struct page *src_base = src;
433
434	for (i = 0; i < pages_per_huge_page(h); ) {
435		cond_resched();
436		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437
438		i++;
439		dst = mem_map_next(dst, dst_base, i);
440		src = mem_map_next(src, src_base, i);
441	}
442}
443
444static void copy_user_huge_page(struct page *dst, struct page *src,
445			   unsigned long addr, struct vm_area_struct *vma)
446{
447	int i;
448	struct hstate *h = hstate_vma(vma);
449
450	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
451		copy_user_gigantic_page(dst, src, addr, vma);
452		return;
453	}
454
455	might_sleep();
456	for (i = 0; i < pages_per_huge_page(h); i++) {
457		cond_resched();
458		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
459	}
460}
461
462static void copy_gigantic_page(struct page *dst, struct page *src)
463{
464	int i;
465	struct hstate *h = page_hstate(src);
466	struct page *dst_base = dst;
467	struct page *src_base = src;
468
469	for (i = 0; i < pages_per_huge_page(h); ) {
470		cond_resched();
471		copy_highpage(dst, src);
472
473		i++;
474		dst = mem_map_next(dst, dst_base, i);
475		src = mem_map_next(src, src_base, i);
476	}
477}
478
479void copy_huge_page(struct page *dst, struct page *src)
480{
481	int i;
482	struct hstate *h = page_hstate(src);
483
484	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
485		copy_gigantic_page(dst, src);
486		return;
487	}
488
489	might_sleep();
490	for (i = 0; i < pages_per_huge_page(h); i++) {
491		cond_resched();
492		copy_highpage(dst + i, src + i);
493	}
494}
495
496static void enqueue_huge_page(struct hstate *h, struct page *page)
497{
498	int nid = page_to_nid(page);
499	list_add(&page->lru, &h->hugepage_freelists[nid]);
500	h->free_huge_pages++;
501	h->free_huge_pages_node[nid]++;
502}
503
504static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
505{
506	struct page *page;
507
508	if (list_empty(&h->hugepage_freelists[nid]))
509		return NULL;
510	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
511	list_del(&page->lru);
512	set_page_refcounted(page);
513	h->free_huge_pages--;
514	h->free_huge_pages_node[nid]--;
515	return page;
516}
517
518static struct page *dequeue_huge_page_vma(struct hstate *h,
519				struct vm_area_struct *vma,
520				unsigned long address, int avoid_reserve)
521{
522	struct page *page = NULL;
523	struct mempolicy *mpol;
524	nodemask_t *nodemask;
525	struct zonelist *zonelist;
526	struct zone *zone;
527	struct zoneref *z;
528
529	get_mems_allowed();
530	zonelist = huge_zonelist(vma, address,
531					htlb_alloc_mask, &mpol, &nodemask);
532	/*
533	 * A child process with MAP_PRIVATE mappings created by their parent
534	 * have no page reserves. This check ensures that reservations are
535	 * not "stolen". The child may still get SIGKILLed
536	 */
537	if (!vma_has_reserves(vma) &&
538			h->free_huge_pages - h->resv_huge_pages == 0)
539		goto err;
540
541	/* If reserves cannot be used, ensure enough pages are in the pool */
542	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
543		goto err;;
544
545	for_each_zone_zonelist_nodemask(zone, z, zonelist,
546						MAX_NR_ZONES - 1, nodemask) {
547		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
548			page = dequeue_huge_page_node(h, zone_to_nid(zone));
549			if (page) {
550				if (!avoid_reserve)
551					decrement_hugepage_resv_vma(h, vma);
552				break;
553			}
554		}
555	}
556err:
557	mpol_cond_put(mpol);
558	put_mems_allowed();
559	return page;
560}
561
562static void update_and_free_page(struct hstate *h, struct page *page)
563{
564	int i;
565
566	VM_BUG_ON(h->order >= MAX_ORDER);
567
568	h->nr_huge_pages--;
569	h->nr_huge_pages_node[page_to_nid(page)]--;
570	for (i = 0; i < pages_per_huge_page(h); i++) {
571		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
572				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
573				1 << PG_private | 1<< PG_writeback);
574	}
575	set_compound_page_dtor(page, NULL);
576	set_page_refcounted(page);
577	arch_release_hugepage(page);
578	__free_pages(page, huge_page_order(h));
579}
580
581struct hstate *size_to_hstate(unsigned long size)
582{
583	struct hstate *h;
584
585	for_each_hstate(h) {
586		if (huge_page_size(h) == size)
587			return h;
588	}
589	return NULL;
590}
591
592static void free_huge_page(struct page *page)
593{
594	/*
595	 * Can't pass hstate in here because it is called from the
596	 * compound page destructor.
597	 */
598	struct hstate *h = page_hstate(page);
599	int nid = page_to_nid(page);
600	struct address_space *mapping;
601
602	mapping = (struct address_space *) page_private(page);
603	set_page_private(page, 0);
604	page->mapping = NULL;
605	BUG_ON(page_count(page));
606	BUG_ON(page_mapcount(page));
607	INIT_LIST_HEAD(&page->lru);
608
609	spin_lock(&hugetlb_lock);
610	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
611		update_and_free_page(h, page);
612		h->surplus_huge_pages--;
613		h->surplus_huge_pages_node[nid]--;
614	} else {
615		enqueue_huge_page(h, page);
616	}
617	spin_unlock(&hugetlb_lock);
618	if (mapping)
619		hugetlb_put_quota(mapping, 1);
620}
621
622static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
623{
624	set_compound_page_dtor(page, free_huge_page);
625	spin_lock(&hugetlb_lock);
626	h->nr_huge_pages++;
627	h->nr_huge_pages_node[nid]++;
628	spin_unlock(&hugetlb_lock);
629	put_page(page); /* free it into the hugepage allocator */
630}
631
632static void prep_compound_gigantic_page(struct page *page, unsigned long order)
633{
634	int i;
635	int nr_pages = 1 << order;
636	struct page *p = page + 1;
637
638	/* we rely on prep_new_huge_page to set the destructor */
639	set_compound_order(page, order);
640	__SetPageHead(page);
641	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
642		__SetPageTail(p);
643		p->first_page = page;
644	}
645}
646
647int PageHuge(struct page *page)
648{
649	compound_page_dtor *dtor;
650
651	if (!PageCompound(page))
652		return 0;
653
654	page = compound_head(page);
655	dtor = get_compound_page_dtor(page);
656
657	return dtor == free_huge_page;
658}
659
660EXPORT_SYMBOL_GPL(PageHuge);
661
662static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
663{
664	struct page *page;
665
666	if (h->order >= MAX_ORDER)
667		return NULL;
668
669	page = alloc_pages_exact_node(nid,
670		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
671						__GFP_REPEAT|__GFP_NOWARN,
672		huge_page_order(h));
673	if (page) {
674		if (arch_prepare_hugepage(page)) {
675			__free_pages(page, huge_page_order(h));
676			return NULL;
677		}
678		prep_new_huge_page(h, page, nid);
679	}
680
681	return page;
682}
683
684/*
685 * common helper functions for hstate_next_node_to_{alloc|free}.
686 * We may have allocated or freed a huge page based on a different
687 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
688 * be outside of *nodes_allowed.  Ensure that we use an allowed
689 * node for alloc or free.
690 */
691static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
692{
693	nid = next_node(nid, *nodes_allowed);
694	if (nid == MAX_NUMNODES)
695		nid = first_node(*nodes_allowed);
696	VM_BUG_ON(nid >= MAX_NUMNODES);
697
698	return nid;
699}
700
701static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
702{
703	if (!node_isset(nid, *nodes_allowed))
704		nid = next_node_allowed(nid, nodes_allowed);
705	return nid;
706}
707
708/*
709 * returns the previously saved node ["this node"] from which to
710 * allocate a persistent huge page for the pool and advance the
711 * next node from which to allocate, handling wrap at end of node
712 * mask.
713 */
714static int hstate_next_node_to_alloc(struct hstate *h,
715					nodemask_t *nodes_allowed)
716{
717	int nid;
718
719	VM_BUG_ON(!nodes_allowed);
720
721	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
722	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
723
724	return nid;
725}
726
727static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
728{
729	struct page *page;
730	int start_nid;
731	int next_nid;
732	int ret = 0;
733
734	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
735	next_nid = start_nid;
736
737	do {
738		page = alloc_fresh_huge_page_node(h, next_nid);
739		if (page) {
740			ret = 1;
741			break;
742		}
743		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
744	} while (next_nid != start_nid);
745
746	if (ret)
747		count_vm_event(HTLB_BUDDY_PGALLOC);
748	else
749		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
750
751	return ret;
752}
753
754/*
755 * helper for free_pool_huge_page() - return the previously saved
756 * node ["this node"] from which to free a huge page.  Advance the
757 * next node id whether or not we find a free huge page to free so
758 * that the next attempt to free addresses the next node.
759 */
760static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
761{
762	int nid;
763
764	VM_BUG_ON(!nodes_allowed);
765
766	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
767	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
768
769	return nid;
770}
771
772/*
773 * Free huge page from pool from next node to free.
774 * Attempt to keep persistent huge pages more or less
775 * balanced over allowed nodes.
776 * Called with hugetlb_lock locked.
777 */
778static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
779							 bool acct_surplus)
780{
781	int start_nid;
782	int next_nid;
783	int ret = 0;
784
785	start_nid = hstate_next_node_to_free(h, nodes_allowed);
786	next_nid = start_nid;
787
788	do {
789		/*
790		 * If we're returning unused surplus pages, only examine
791		 * nodes with surplus pages.
792		 */
793		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
794		    !list_empty(&h->hugepage_freelists[next_nid])) {
795			struct page *page =
796				list_entry(h->hugepage_freelists[next_nid].next,
797					  struct page, lru);
798			list_del(&page->lru);
799			h->free_huge_pages--;
800			h->free_huge_pages_node[next_nid]--;
801			if (acct_surplus) {
802				h->surplus_huge_pages--;
803				h->surplus_huge_pages_node[next_nid]--;
804			}
805			update_and_free_page(h, page);
806			ret = 1;
807			break;
808		}
809		next_nid = hstate_next_node_to_free(h, nodes_allowed);
810	} while (next_nid != start_nid);
811
812	return ret;
813}
814
815static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
816{
817	struct page *page;
818	unsigned int r_nid;
819
820	if (h->order >= MAX_ORDER)
821		return NULL;
822
823	/*
824	 * Assume we will successfully allocate the surplus page to
825	 * prevent racing processes from causing the surplus to exceed
826	 * overcommit
827	 *
828	 * This however introduces a different race, where a process B
829	 * tries to grow the static hugepage pool while alloc_pages() is
830	 * called by process A. B will only examine the per-node
831	 * counters in determining if surplus huge pages can be
832	 * converted to normal huge pages in adjust_pool_surplus(). A
833	 * won't be able to increment the per-node counter, until the
834	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
835	 * no more huge pages can be converted from surplus to normal
836	 * state (and doesn't try to convert again). Thus, we have a
837	 * case where a surplus huge page exists, the pool is grown, and
838	 * the surplus huge page still exists after, even though it
839	 * should just have been converted to a normal huge page. This
840	 * does not leak memory, though, as the hugepage will be freed
841	 * once it is out of use. It also does not allow the counters to
842	 * go out of whack in adjust_pool_surplus() as we don't modify
843	 * the node values until we've gotten the hugepage and only the
844	 * per-node value is checked there.
845	 */
846	spin_lock(&hugetlb_lock);
847	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
848		spin_unlock(&hugetlb_lock);
849		return NULL;
850	} else {
851		h->nr_huge_pages++;
852		h->surplus_huge_pages++;
853	}
854	spin_unlock(&hugetlb_lock);
855
856	if (nid == NUMA_NO_NODE)
857		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
858				   __GFP_REPEAT|__GFP_NOWARN,
859				   huge_page_order(h));
860	else
861		page = alloc_pages_exact_node(nid,
862			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
863			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
864
865	if (page && arch_prepare_hugepage(page)) {
866		__free_pages(page, huge_page_order(h));
867		return NULL;
868	}
869
870	spin_lock(&hugetlb_lock);
871	if (page) {
872		r_nid = page_to_nid(page);
873		set_compound_page_dtor(page, free_huge_page);
874		/*
875		 * We incremented the global counters already
876		 */
877		h->nr_huge_pages_node[r_nid]++;
878		h->surplus_huge_pages_node[r_nid]++;
879		__count_vm_event(HTLB_BUDDY_PGALLOC);
880	} else {
881		h->nr_huge_pages--;
882		h->surplus_huge_pages--;
883		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
884	}
885	spin_unlock(&hugetlb_lock);
886
887	return page;
888}
889
890/*
891 * This allocation function is useful in the context where vma is irrelevant.
892 * E.g. soft-offlining uses this function because it only cares physical
893 * address of error page.
894 */
895struct page *alloc_huge_page_node(struct hstate *h, int nid)
896{
897	struct page *page;
898
899	spin_lock(&hugetlb_lock);
900	page = dequeue_huge_page_node(h, nid);
901	spin_unlock(&hugetlb_lock);
902
903	if (!page)
904		page = alloc_buddy_huge_page(h, nid);
905
906	return page;
907}
908
909/*
910 * Increase the hugetlb pool such that it can accomodate a reservation
911 * of size 'delta'.
912 */
913static int gather_surplus_pages(struct hstate *h, int delta)
914{
915	struct list_head surplus_list;
916	struct page *page, *tmp;
917	int ret, i;
918	int needed, allocated;
919
920	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
921	if (needed <= 0) {
922		h->resv_huge_pages += delta;
923		return 0;
924	}
925
926	allocated = 0;
927	INIT_LIST_HEAD(&surplus_list);
928
929	ret = -ENOMEM;
930retry:
931	spin_unlock(&hugetlb_lock);
932	for (i = 0; i < needed; i++) {
933		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
934		if (!page)
935			/*
936			 * We were not able to allocate enough pages to
937			 * satisfy the entire reservation so we free what
938			 * we've allocated so far.
939			 */
940			goto free;
941
942		list_add(&page->lru, &surplus_list);
943	}
944	allocated += needed;
945
946	/*
947	 * After retaking hugetlb_lock, we need to recalculate 'needed'
948	 * because either resv_huge_pages or free_huge_pages may have changed.
949	 */
950	spin_lock(&hugetlb_lock);
951	needed = (h->resv_huge_pages + delta) -
952			(h->free_huge_pages + allocated);
953	if (needed > 0)
954		goto retry;
955
956	/*
957	 * The surplus_list now contains _at_least_ the number of extra pages
958	 * needed to accomodate the reservation.  Add the appropriate number
959	 * of pages to the hugetlb pool and free the extras back to the buddy
960	 * allocator.  Commit the entire reservation here to prevent another
961	 * process from stealing the pages as they are added to the pool but
962	 * before they are reserved.
963	 */
964	needed += allocated;
965	h->resv_huge_pages += delta;
966	ret = 0;
967
968	spin_unlock(&hugetlb_lock);
969	/* Free the needed pages to the hugetlb pool */
970	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
971		if ((--needed) < 0)
972			break;
973		list_del(&page->lru);
974		/*
975		 * This page is now managed by the hugetlb allocator and has
976		 * no users -- drop the buddy allocator's reference.
977		 */
978		put_page_testzero(page);
979		VM_BUG_ON(page_count(page));
980		enqueue_huge_page(h, page);
981	}
982
983	/* Free unnecessary surplus pages to the buddy allocator */
984free:
985	if (!list_empty(&surplus_list)) {
986		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
987			list_del(&page->lru);
988			put_page(page);
989		}
990	}
991	spin_lock(&hugetlb_lock);
992
993	return ret;
994}
995
996/*
997 * When releasing a hugetlb pool reservation, any surplus pages that were
998 * allocated to satisfy the reservation must be explicitly freed if they were
999 * never used.
1000 * Called with hugetlb_lock held.
1001 */
1002static void return_unused_surplus_pages(struct hstate *h,
1003					unsigned long unused_resv_pages)
1004{
1005	unsigned long nr_pages;
1006
1007	/* Uncommit the reservation */
1008	h->resv_huge_pages -= unused_resv_pages;
1009
1010	/* Cannot return gigantic pages currently */
1011	if (h->order >= MAX_ORDER)
1012		return;
1013
1014	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1015
1016	/*
1017	 * We want to release as many surplus pages as possible, spread
1018	 * evenly across all nodes with memory. Iterate across these nodes
1019	 * until we can no longer free unreserved surplus pages. This occurs
1020	 * when the nodes with surplus pages have no free pages.
1021	 * free_pool_huge_page() will balance the the freed pages across the
1022	 * on-line nodes with memory and will handle the hstate accounting.
1023	 */
1024	while (nr_pages--) {
1025		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1026			break;
1027	}
1028}
1029
1030/*
1031 * Determine if the huge page at addr within the vma has an associated
1032 * reservation.  Where it does not we will need to logically increase
1033 * reservation and actually increase quota before an allocation can occur.
1034 * Where any new reservation would be required the reservation change is
1035 * prepared, but not committed.  Once the page has been quota'd allocated
1036 * an instantiated the change should be committed via vma_commit_reservation.
1037 * No action is required on failure.
1038 */
1039static long vma_needs_reservation(struct hstate *h,
1040			struct vm_area_struct *vma, unsigned long addr)
1041{
1042	struct address_space *mapping = vma->vm_file->f_mapping;
1043	struct inode *inode = mapping->host;
1044
1045	if (vma->vm_flags & VM_MAYSHARE) {
1046		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1047		return region_chg(&inode->i_mapping->private_list,
1048							idx, idx + 1);
1049
1050	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1051		return 1;
1052
1053	} else  {
1054		long err;
1055		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1056		struct resv_map *reservations = vma_resv_map(vma);
1057
1058		err = region_chg(&reservations->regions, idx, idx + 1);
1059		if (err < 0)
1060			return err;
1061		return 0;
1062	}
1063}
1064static void vma_commit_reservation(struct hstate *h,
1065			struct vm_area_struct *vma, unsigned long addr)
1066{
1067	struct address_space *mapping = vma->vm_file->f_mapping;
1068	struct inode *inode = mapping->host;
1069
1070	if (vma->vm_flags & VM_MAYSHARE) {
1071		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1072		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1073
1074	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1075		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1076		struct resv_map *reservations = vma_resv_map(vma);
1077
1078		/* Mark this page used in the map. */
1079		region_add(&reservations->regions, idx, idx + 1);
1080	}
1081}
1082
1083static struct page *alloc_huge_page(struct vm_area_struct *vma,
1084				    unsigned long addr, int avoid_reserve)
1085{
1086	struct hstate *h = hstate_vma(vma);
1087	struct page *page;
1088	struct address_space *mapping = vma->vm_file->f_mapping;
1089	struct inode *inode = mapping->host;
1090	long chg;
1091
1092	/*
1093	 * Processes that did not create the mapping will have no reserves and
1094	 * will not have accounted against quota. Check that the quota can be
1095	 * made before satisfying the allocation
1096	 * MAP_NORESERVE mappings may also need pages and quota allocated
1097	 * if no reserve mapping overlaps.
1098	 */
1099	chg = vma_needs_reservation(h, vma, addr);
1100	if (chg < 0)
1101		return ERR_PTR(chg);
1102	if (chg)
1103		if (hugetlb_get_quota(inode->i_mapping, chg))
1104			return ERR_PTR(-ENOSPC);
1105
1106	spin_lock(&hugetlb_lock);
1107	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1108	spin_unlock(&hugetlb_lock);
1109
1110	if (!page) {
1111		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1112		if (!page) {
1113			hugetlb_put_quota(inode->i_mapping, chg);
1114			return ERR_PTR(-VM_FAULT_SIGBUS);
1115		}
1116	}
1117
1118	set_page_private(page, (unsigned long) mapping);
1119
1120	vma_commit_reservation(h, vma, addr);
1121
1122	return page;
1123}
1124
1125int __weak alloc_bootmem_huge_page(struct hstate *h)
1126{
1127	struct huge_bootmem_page *m;
1128	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1129
1130	while (nr_nodes) {
1131		void *addr;
1132
1133		addr = __alloc_bootmem_node_nopanic(
1134				NODE_DATA(hstate_next_node_to_alloc(h,
1135						&node_states[N_HIGH_MEMORY])),
1136				huge_page_size(h), huge_page_size(h), 0);
1137
1138		if (addr) {
1139			/*
1140			 * Use the beginning of the huge page to store the
1141			 * huge_bootmem_page struct (until gather_bootmem
1142			 * puts them into the mem_map).
1143			 */
1144			m = addr;
1145			goto found;
1146		}
1147		nr_nodes--;
1148	}
1149	return 0;
1150
1151found:
1152	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1153	/* Put them into a private list first because mem_map is not up yet */
1154	list_add(&m->list, &huge_boot_pages);
1155	m->hstate = h;
1156	return 1;
1157}
1158
1159static void prep_compound_huge_page(struct page *page, int order)
1160{
1161	if (unlikely(order > (MAX_ORDER - 1)))
1162		prep_compound_gigantic_page(page, order);
1163	else
1164		prep_compound_page(page, order);
1165}
1166
1167/* Put bootmem huge pages into the standard lists after mem_map is up */
1168static void __init gather_bootmem_prealloc(void)
1169{
1170	struct huge_bootmem_page *m;
1171
1172	list_for_each_entry(m, &huge_boot_pages, list) {
1173		struct page *page = virt_to_page(m);
1174		struct hstate *h = m->hstate;
1175		__ClearPageReserved(page);
1176		WARN_ON(page_count(page) != 1);
1177		prep_compound_huge_page(page, h->order);
1178		prep_new_huge_page(h, page, page_to_nid(page));
1179	}
1180}
1181
1182static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1183{
1184	unsigned long i;
1185
1186	for (i = 0; i < h->max_huge_pages; ++i) {
1187		if (h->order >= MAX_ORDER) {
1188			if (!alloc_bootmem_huge_page(h))
1189				break;
1190		} else if (!alloc_fresh_huge_page(h,
1191					 &node_states[N_HIGH_MEMORY]))
1192			break;
1193	}
1194	h->max_huge_pages = i;
1195}
1196
1197static void __init hugetlb_init_hstates(void)
1198{
1199	struct hstate *h;
1200
1201	for_each_hstate(h) {
1202		/* oversize hugepages were init'ed in early boot */
1203		if (h->order < MAX_ORDER)
1204			hugetlb_hstate_alloc_pages(h);
1205	}
1206}
1207
1208static char * __init memfmt(char *buf, unsigned long n)
1209{
1210	if (n >= (1UL << 30))
1211		sprintf(buf, "%lu GB", n >> 30);
1212	else if (n >= (1UL << 20))
1213		sprintf(buf, "%lu MB", n >> 20);
1214	else
1215		sprintf(buf, "%lu KB", n >> 10);
1216	return buf;
1217}
1218
1219static void __init report_hugepages(void)
1220{
1221	struct hstate *h;
1222
1223	for_each_hstate(h) {
1224		char buf[32];
1225		printk(KERN_INFO "HugeTLB registered %s page size, "
1226				 "pre-allocated %ld pages\n",
1227			memfmt(buf, huge_page_size(h)),
1228			h->free_huge_pages);
1229	}
1230}
1231
1232#ifdef CONFIG_HIGHMEM
1233static void try_to_free_low(struct hstate *h, unsigned long count,
1234						nodemask_t *nodes_allowed)
1235{
1236	int i;
1237
1238	if (h->order >= MAX_ORDER)
1239		return;
1240
1241	for_each_node_mask(i, *nodes_allowed) {
1242		struct page *page, *next;
1243		struct list_head *freel = &h->hugepage_freelists[i];
1244		list_for_each_entry_safe(page, next, freel, lru) {
1245			if (count >= h->nr_huge_pages)
1246				return;
1247			if (PageHighMem(page))
1248				continue;
1249			list_del(&page->lru);
1250			update_and_free_page(h, page);
1251			h->free_huge_pages--;
1252			h->free_huge_pages_node[page_to_nid(page)]--;
1253		}
1254	}
1255}
1256#else
1257static inline void try_to_free_low(struct hstate *h, unsigned long count,
1258						nodemask_t *nodes_allowed)
1259{
1260}
1261#endif
1262
1263/*
1264 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1265 * balanced by operating on them in a round-robin fashion.
1266 * Returns 1 if an adjustment was made.
1267 */
1268static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1269				int delta)
1270{
1271	int start_nid, next_nid;
1272	int ret = 0;
1273
1274	VM_BUG_ON(delta != -1 && delta != 1);
1275
1276	if (delta < 0)
1277		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1278	else
1279		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1280	next_nid = start_nid;
1281
1282	do {
1283		int nid = next_nid;
1284		if (delta < 0)  {
1285			/*
1286			 * To shrink on this node, there must be a surplus page
1287			 */
1288			if (!h->surplus_huge_pages_node[nid]) {
1289				next_nid = hstate_next_node_to_alloc(h,
1290								nodes_allowed);
1291				continue;
1292			}
1293		}
1294		if (delta > 0) {
1295			/*
1296			 * Surplus cannot exceed the total number of pages
1297			 */
1298			if (h->surplus_huge_pages_node[nid] >=
1299						h->nr_huge_pages_node[nid]) {
1300				next_nid = hstate_next_node_to_free(h,
1301								nodes_allowed);
1302				continue;
1303			}
1304		}
1305
1306		h->surplus_huge_pages += delta;
1307		h->surplus_huge_pages_node[nid] += delta;
1308		ret = 1;
1309		break;
1310	} while (next_nid != start_nid);
1311
1312	return ret;
1313}
1314
1315#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1316static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1317						nodemask_t *nodes_allowed)
1318{
1319	unsigned long min_count, ret;
1320
1321	if (h->order >= MAX_ORDER)
1322		return h->max_huge_pages;
1323
1324	/*
1325	 * Increase the pool size
1326	 * First take pages out of surplus state.  Then make up the
1327	 * remaining difference by allocating fresh huge pages.
1328	 *
1329	 * We might race with alloc_buddy_huge_page() here and be unable
1330	 * to convert a surplus huge page to a normal huge page. That is
1331	 * not critical, though, it just means the overall size of the
1332	 * pool might be one hugepage larger than it needs to be, but
1333	 * within all the constraints specified by the sysctls.
1334	 */
1335	spin_lock(&hugetlb_lock);
1336	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1337		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1338			break;
1339	}
1340
1341	while (count > persistent_huge_pages(h)) {
1342		/*
1343		 * If this allocation races such that we no longer need the
1344		 * page, free_huge_page will handle it by freeing the page
1345		 * and reducing the surplus.
1346		 */
1347		spin_unlock(&hugetlb_lock);
1348		ret = alloc_fresh_huge_page(h, nodes_allowed);
1349		spin_lock(&hugetlb_lock);
1350		if (!ret)
1351			goto out;
1352
1353		/* Bail for signals. Probably ctrl-c from user */
1354		if (signal_pending(current))
1355			goto out;
1356	}
1357
1358	/*
1359	 * Decrease the pool size
1360	 * First return free pages to the buddy allocator (being careful
1361	 * to keep enough around to satisfy reservations).  Then place
1362	 * pages into surplus state as needed so the pool will shrink
1363	 * to the desired size as pages become free.
1364	 *
1365	 * By placing pages into the surplus state independent of the
1366	 * overcommit value, we are allowing the surplus pool size to
1367	 * exceed overcommit. There are few sane options here. Since
1368	 * alloc_buddy_huge_page() is checking the global counter,
1369	 * though, we'll note that we're not allowed to exceed surplus
1370	 * and won't grow the pool anywhere else. Not until one of the
1371	 * sysctls are changed, or the surplus pages go out of use.
1372	 */
1373	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1374	min_count = max(count, min_count);
1375	try_to_free_low(h, min_count, nodes_allowed);
1376	while (min_count < persistent_huge_pages(h)) {
1377		if (!free_pool_huge_page(h, nodes_allowed, 0))
1378			break;
1379	}
1380	while (count < persistent_huge_pages(h)) {
1381		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1382			break;
1383	}
1384out:
1385	ret = persistent_huge_pages(h);
1386	spin_unlock(&hugetlb_lock);
1387	return ret;
1388}
1389
1390#define HSTATE_ATTR_RO(_name) \
1391	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1392
1393#define HSTATE_ATTR(_name) \
1394	static struct kobj_attribute _name##_attr = \
1395		__ATTR(_name, 0644, _name##_show, _name##_store)
1396
1397static struct kobject *hugepages_kobj;
1398static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1399
1400static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1401
1402static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1403{
1404	int i;
1405
1406	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1407		if (hstate_kobjs[i] == kobj) {
1408			if (nidp)
1409				*nidp = NUMA_NO_NODE;
1410			return &hstates[i];
1411		}
1412
1413	return kobj_to_node_hstate(kobj, nidp);
1414}
1415
1416static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1417					struct kobj_attribute *attr, char *buf)
1418{
1419	struct hstate *h;
1420	unsigned long nr_huge_pages;
1421	int nid;
1422
1423	h = kobj_to_hstate(kobj, &nid);
1424	if (nid == NUMA_NO_NODE)
1425		nr_huge_pages = h->nr_huge_pages;
1426	else
1427		nr_huge_pages = h->nr_huge_pages_node[nid];
1428
1429	return sprintf(buf, "%lu\n", nr_huge_pages);
1430}
1431static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1432			struct kobject *kobj, struct kobj_attribute *attr,
1433			const char *buf, size_t len)
1434{
1435	int err;
1436	int nid;
1437	unsigned long count;
1438	struct hstate *h;
1439	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1440
1441	err = strict_strtoul(buf, 10, &count);
1442	if (err)
1443		return 0;
1444
1445	h = kobj_to_hstate(kobj, &nid);
1446	if (nid == NUMA_NO_NODE) {
1447		/*
1448		 * global hstate attribute
1449		 */
1450		if (!(obey_mempolicy &&
1451				init_nodemask_of_mempolicy(nodes_allowed))) {
1452			NODEMASK_FREE(nodes_allowed);
1453			nodes_allowed = &node_states[N_HIGH_MEMORY];
1454		}
1455	} else if (nodes_allowed) {
1456		/*
1457		 * per node hstate attribute: adjust count to global,
1458		 * but restrict alloc/free to the specified node.
1459		 */
1460		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1461		init_nodemask_of_node(nodes_allowed, nid);
1462	} else
1463		nodes_allowed = &node_states[N_HIGH_MEMORY];
1464
1465	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1466
1467	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1468		NODEMASK_FREE(nodes_allowed);
1469
1470	return len;
1471}
1472
1473static ssize_t nr_hugepages_show(struct kobject *kobj,
1474				       struct kobj_attribute *attr, char *buf)
1475{
1476	return nr_hugepages_show_common(kobj, attr, buf);
1477}
1478
1479static ssize_t nr_hugepages_store(struct kobject *kobj,
1480	       struct kobj_attribute *attr, const char *buf, size_t len)
1481{
1482	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1483}
1484HSTATE_ATTR(nr_hugepages);
1485
1486#ifdef CONFIG_NUMA
1487
1488/*
1489 * hstate attribute for optionally mempolicy-based constraint on persistent
1490 * huge page alloc/free.
1491 */
1492static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1493				       struct kobj_attribute *attr, char *buf)
1494{
1495	return nr_hugepages_show_common(kobj, attr, buf);
1496}
1497
1498static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1499	       struct kobj_attribute *attr, const char *buf, size_t len)
1500{
1501	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1502}
1503HSTATE_ATTR(nr_hugepages_mempolicy);
1504#endif
1505
1506
1507static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1508					struct kobj_attribute *attr, char *buf)
1509{
1510	struct hstate *h = kobj_to_hstate(kobj, NULL);
1511	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1512}
1513static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1514		struct kobj_attribute *attr, const char *buf, size_t count)
1515{
1516	int err;
1517	unsigned long input;
1518	struct hstate *h = kobj_to_hstate(kobj, NULL);
1519
1520	err = strict_strtoul(buf, 10, &input);
1521	if (err)
1522		return 0;
1523
1524	spin_lock(&hugetlb_lock);
1525	h->nr_overcommit_huge_pages = input;
1526	spin_unlock(&hugetlb_lock);
1527
1528	return count;
1529}
1530HSTATE_ATTR(nr_overcommit_hugepages);
1531
1532static ssize_t free_hugepages_show(struct kobject *kobj,
1533					struct kobj_attribute *attr, char *buf)
1534{
1535	struct hstate *h;
1536	unsigned long free_huge_pages;
1537	int nid;
1538
1539	h = kobj_to_hstate(kobj, &nid);
1540	if (nid == NUMA_NO_NODE)
1541		free_huge_pages = h->free_huge_pages;
1542	else
1543		free_huge_pages = h->free_huge_pages_node[nid];
1544
1545	return sprintf(buf, "%lu\n", free_huge_pages);
1546}
1547HSTATE_ATTR_RO(free_hugepages);
1548
1549static ssize_t resv_hugepages_show(struct kobject *kobj,
1550					struct kobj_attribute *attr, char *buf)
1551{
1552	struct hstate *h = kobj_to_hstate(kobj, NULL);
1553	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1554}
1555HSTATE_ATTR_RO(resv_hugepages);
1556
1557static ssize_t surplus_hugepages_show(struct kobject *kobj,
1558					struct kobj_attribute *attr, char *buf)
1559{
1560	struct hstate *h;
1561	unsigned long surplus_huge_pages;
1562	int nid;
1563
1564	h = kobj_to_hstate(kobj, &nid);
1565	if (nid == NUMA_NO_NODE)
1566		surplus_huge_pages = h->surplus_huge_pages;
1567	else
1568		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1569
1570	return sprintf(buf, "%lu\n", surplus_huge_pages);
1571}
1572HSTATE_ATTR_RO(surplus_hugepages);
1573
1574static struct attribute *hstate_attrs[] = {
1575	&nr_hugepages_attr.attr,
1576	&nr_overcommit_hugepages_attr.attr,
1577	&free_hugepages_attr.attr,
1578	&resv_hugepages_attr.attr,
1579	&surplus_hugepages_attr.attr,
1580#ifdef CONFIG_NUMA
1581	&nr_hugepages_mempolicy_attr.attr,
1582#endif
1583	NULL,
1584};
1585
1586static struct attribute_group hstate_attr_group = {
1587	.attrs = hstate_attrs,
1588};
1589
1590static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1591				    struct kobject **hstate_kobjs,
1592				    struct attribute_group *hstate_attr_group)
1593{
1594	int retval;
1595	int hi = h - hstates;
1596
1597	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1598	if (!hstate_kobjs[hi])
1599		return -ENOMEM;
1600
1601	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1602	if (retval)
1603		kobject_put(hstate_kobjs[hi]);
1604
1605	return retval;
1606}
1607
1608static void __init hugetlb_sysfs_init(void)
1609{
1610	struct hstate *h;
1611	int err;
1612
1613	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1614	if (!hugepages_kobj)
1615		return;
1616
1617	for_each_hstate(h) {
1618		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1619					 hstate_kobjs, &hstate_attr_group);
1620		if (err)
1621			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1622								h->name);
1623	}
1624}
1625
1626#ifdef CONFIG_NUMA
1627
1628/*
1629 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1630 * with node sysdevs in node_devices[] using a parallel array.  The array
1631 * index of a node sysdev or _hstate == node id.
1632 * This is here to avoid any static dependency of the node sysdev driver, in
1633 * the base kernel, on the hugetlb module.
1634 */
1635struct node_hstate {
1636	struct kobject		*hugepages_kobj;
1637	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1638};
1639struct node_hstate node_hstates[MAX_NUMNODES];
1640
1641/*
1642 * A subset of global hstate attributes for node sysdevs
1643 */
1644static struct attribute *per_node_hstate_attrs[] = {
1645	&nr_hugepages_attr.attr,
1646	&free_hugepages_attr.attr,
1647	&surplus_hugepages_attr.attr,
1648	NULL,
1649};
1650
1651static struct attribute_group per_node_hstate_attr_group = {
1652	.attrs = per_node_hstate_attrs,
1653};
1654
1655/*
1656 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1657 * Returns node id via non-NULL nidp.
1658 */
1659static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1660{
1661	int nid;
1662
1663	for (nid = 0; nid < nr_node_ids; nid++) {
1664		struct node_hstate *nhs = &node_hstates[nid];
1665		int i;
1666		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1667			if (nhs->hstate_kobjs[i] == kobj) {
1668				if (nidp)
1669					*nidp = nid;
1670				return &hstates[i];
1671			}
1672	}
1673
1674	BUG();
1675	return NULL;
1676}
1677
1678/*
1679 * Unregister hstate attributes from a single node sysdev.
1680 * No-op if no hstate attributes attached.
1681 */
1682void hugetlb_unregister_node(struct node *node)
1683{
1684	struct hstate *h;
1685	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1686
1687	if (!nhs->hugepages_kobj)
1688		return;		/* no hstate attributes */
1689
1690	for_each_hstate(h)
1691		if (nhs->hstate_kobjs[h - hstates]) {
1692			kobject_put(nhs->hstate_kobjs[h - hstates]);
1693			nhs->hstate_kobjs[h - hstates] = NULL;
1694		}
1695
1696	kobject_put(nhs->hugepages_kobj);
1697	nhs->hugepages_kobj = NULL;
1698}
1699
1700/*
1701 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1702 * that have them.
1703 */
1704static void hugetlb_unregister_all_nodes(void)
1705{
1706	int nid;
1707
1708	/*
1709	 * disable node sysdev registrations.
1710	 */
1711	register_hugetlbfs_with_node(NULL, NULL);
1712
1713	/*
1714	 * remove hstate attributes from any nodes that have them.
1715	 */
1716	for (nid = 0; nid < nr_node_ids; nid++)
1717		hugetlb_unregister_node(&node_devices[nid]);
1718}
1719
1720/*
1721 * Register hstate attributes for a single node sysdev.
1722 * No-op if attributes already registered.
1723 */
1724void hugetlb_register_node(struct node *node)
1725{
1726	struct hstate *h;
1727	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1728	int err;
1729
1730	if (nhs->hugepages_kobj)
1731		return;		/* already allocated */
1732
1733	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1734							&node->sysdev.kobj);
1735	if (!nhs->hugepages_kobj)
1736		return;
1737
1738	for_each_hstate(h) {
1739		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1740						nhs->hstate_kobjs,
1741						&per_node_hstate_attr_group);
1742		if (err) {
1743			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1744					" for node %d\n",
1745						h->name, node->sysdev.id);
1746			hugetlb_unregister_node(node);
1747			break;
1748		}
1749	}
1750}
1751
1752/*
1753 * hugetlb init time:  register hstate attributes for all registered node
1754 * sysdevs of nodes that have memory.  All on-line nodes should have
1755 * registered their associated sysdev by this time.
1756 */
1757static void hugetlb_register_all_nodes(void)
1758{
1759	int nid;
1760
1761	for_each_node_state(nid, N_HIGH_MEMORY) {
1762		struct node *node = &node_devices[nid];
1763		if (node->sysdev.id == nid)
1764			hugetlb_register_node(node);
1765	}
1766
1767	/*
1768	 * Let the node sysdev driver know we're here so it can
1769	 * [un]register hstate attributes on node hotplug.
1770	 */
1771	register_hugetlbfs_with_node(hugetlb_register_node,
1772				     hugetlb_unregister_node);
1773}
1774#else	/* !CONFIG_NUMA */
1775
1776static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1777{
1778	BUG();
1779	if (nidp)
1780		*nidp = -1;
1781	return NULL;
1782}
1783
1784static void hugetlb_unregister_all_nodes(void) { }
1785
1786static void hugetlb_register_all_nodes(void) { }
1787
1788#endif
1789
1790static void __exit hugetlb_exit(void)
1791{
1792	struct hstate *h;
1793
1794	hugetlb_unregister_all_nodes();
1795
1796	for_each_hstate(h) {
1797		kobject_put(hstate_kobjs[h - hstates]);
1798	}
1799
1800	kobject_put(hugepages_kobj);
1801}
1802module_exit(hugetlb_exit);
1803
1804static int __init hugetlb_init(void)
1805{
1806	/* Some platform decide whether they support huge pages at boot
1807	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1808	 * there is no such support
1809	 */
1810	if (HPAGE_SHIFT == 0)
1811		return 0;
1812
1813	if (!size_to_hstate(default_hstate_size)) {
1814		default_hstate_size = HPAGE_SIZE;
1815		if (!size_to_hstate(default_hstate_size))
1816			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1817	}
1818	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1819	if (default_hstate_max_huge_pages)
1820		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1821
1822	hugetlb_init_hstates();
1823
1824	gather_bootmem_prealloc();
1825
1826	report_hugepages();
1827
1828	hugetlb_sysfs_init();
1829
1830	hugetlb_register_all_nodes();
1831
1832	return 0;
1833}
1834module_init(hugetlb_init);
1835
1836/* Should be called on processing a hugepagesz=... option */
1837void __init hugetlb_add_hstate(unsigned order)
1838{
1839	struct hstate *h;
1840	unsigned long i;
1841
1842	if (size_to_hstate(PAGE_SIZE << order)) {
1843		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1844		return;
1845	}
1846	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1847	BUG_ON(order == 0);
1848	h = &hstates[max_hstate++];
1849	h->order = order;
1850	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1851	h->nr_huge_pages = 0;
1852	h->free_huge_pages = 0;
1853	for (i = 0; i < MAX_NUMNODES; ++i)
1854		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1855	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1856	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1857	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1858					huge_page_size(h)/1024);
1859
1860	parsed_hstate = h;
1861}
1862
1863static int __init hugetlb_nrpages_setup(char *s)
1864{
1865	unsigned long *mhp;
1866	static unsigned long *last_mhp;
1867
1868	/*
1869	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1870	 * so this hugepages= parameter goes to the "default hstate".
1871	 */
1872	if (!max_hstate)
1873		mhp = &default_hstate_max_huge_pages;
1874	else
1875		mhp = &parsed_hstate->max_huge_pages;
1876
1877	if (mhp == last_mhp) {
1878		printk(KERN_WARNING "hugepages= specified twice without "
1879			"interleaving hugepagesz=, ignoring\n");
1880		return 1;
1881	}
1882
1883	if (sscanf(s, "%lu", mhp) <= 0)
1884		*mhp = 0;
1885
1886	/*
1887	 * Global state is always initialized later in hugetlb_init.
1888	 * But we need to allocate >= MAX_ORDER hstates here early to still
1889	 * use the bootmem allocator.
1890	 */
1891	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1892		hugetlb_hstate_alloc_pages(parsed_hstate);
1893
1894	last_mhp = mhp;
1895
1896	return 1;
1897}
1898__setup("hugepages=", hugetlb_nrpages_setup);
1899
1900static int __init hugetlb_default_setup(char *s)
1901{
1902	default_hstate_size = memparse(s, &s);
1903	return 1;
1904}
1905__setup("default_hugepagesz=", hugetlb_default_setup);
1906
1907static unsigned int cpuset_mems_nr(unsigned int *array)
1908{
1909	int node;
1910	unsigned int nr = 0;
1911
1912	for_each_node_mask(node, cpuset_current_mems_allowed)
1913		nr += array[node];
1914
1915	return nr;
1916}
1917
1918#ifdef CONFIG_SYSCTL
1919static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1920			 struct ctl_table *table, int write,
1921			 void __user *buffer, size_t *length, loff_t *ppos)
1922{
1923	struct hstate *h = &default_hstate;
1924	unsigned long tmp;
1925
1926	if (!write)
1927		tmp = h->max_huge_pages;
1928
1929	table->data = &tmp;
1930	table->maxlen = sizeof(unsigned long);
1931	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1932
1933	if (write) {
1934		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1935						GFP_KERNEL | __GFP_NORETRY);
1936		if (!(obey_mempolicy &&
1937			       init_nodemask_of_mempolicy(nodes_allowed))) {
1938			NODEMASK_FREE(nodes_allowed);
1939			nodes_allowed = &node_states[N_HIGH_MEMORY];
1940		}
1941		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1942
1943		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1944			NODEMASK_FREE(nodes_allowed);
1945	}
1946
1947	return 0;
1948}
1949
1950int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1951			  void __user *buffer, size_t *length, loff_t *ppos)
1952{
1953
1954	return hugetlb_sysctl_handler_common(false, table, write,
1955							buffer, length, ppos);
1956}
1957
1958#ifdef CONFIG_NUMA
1959int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1960			  void __user *buffer, size_t *length, loff_t *ppos)
1961{
1962	return hugetlb_sysctl_handler_common(true, table, write,
1963							buffer, length, ppos);
1964}
1965#endif /* CONFIG_NUMA */
1966
1967int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1968			void __user *buffer,
1969			size_t *length, loff_t *ppos)
1970{
1971	proc_dointvec(table, write, buffer, length, ppos);
1972	if (hugepages_treat_as_movable)
1973		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1974	else
1975		htlb_alloc_mask = GFP_HIGHUSER;
1976	return 0;
1977}
1978
1979int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1980			void __user *buffer,
1981			size_t *length, loff_t *ppos)
1982{
1983	struct hstate *h = &default_hstate;
1984	unsigned long tmp;
1985
1986	if (!write)
1987		tmp = h->nr_overcommit_huge_pages;
1988
1989	table->data = &tmp;
1990	table->maxlen = sizeof(unsigned long);
1991	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1992
1993	if (write) {
1994		spin_lock(&hugetlb_lock);
1995		h->nr_overcommit_huge_pages = tmp;
1996		spin_unlock(&hugetlb_lock);
1997	}
1998
1999	return 0;
2000}
2001
2002#endif /* CONFIG_SYSCTL */
2003
2004void hugetlb_report_meminfo(struct seq_file *m)
2005{
2006	struct hstate *h = &default_hstate;
2007	seq_printf(m,
2008			"HugePages_Total:   %5lu\n"
2009			"HugePages_Free:    %5lu\n"
2010			"HugePages_Rsvd:    %5lu\n"
2011			"HugePages_Surp:    %5lu\n"
2012			"Hugepagesize:   %8lu kB\n",
2013			h->nr_huge_pages,
2014			h->free_huge_pages,
2015			h->resv_huge_pages,
2016			h->surplus_huge_pages,
2017			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2018}
2019
2020int hugetlb_report_node_meminfo(int nid, char *buf)
2021{
2022	struct hstate *h = &default_hstate;
2023	return sprintf(buf,
2024		"Node %d HugePages_Total: %5u\n"
2025		"Node %d HugePages_Free:  %5u\n"
2026		"Node %d HugePages_Surp:  %5u\n",
2027		nid, h->nr_huge_pages_node[nid],
2028		nid, h->free_huge_pages_node[nid],
2029		nid, h->surplus_huge_pages_node[nid]);
2030}
2031
2032/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2033unsigned long hugetlb_total_pages(void)
2034{
2035	struct hstate *h = &default_hstate;
2036	return h->nr_huge_pages * pages_per_huge_page(h);
2037}
2038
2039static int hugetlb_acct_memory(struct hstate *h, long delta)
2040{
2041	int ret = -ENOMEM;
2042
2043	spin_lock(&hugetlb_lock);
2044	/*
2045	 * When cpuset is configured, it breaks the strict hugetlb page
2046	 * reservation as the accounting is done on a global variable. Such
2047	 * reservation is completely rubbish in the presence of cpuset because
2048	 * the reservation is not checked against page availability for the
2049	 * current cpuset. Application can still potentially OOM'ed by kernel
2050	 * with lack of free htlb page in cpuset that the task is in.
2051	 * Attempt to enforce strict accounting with cpuset is almost
2052	 * impossible (or too ugly) because cpuset is too fluid that
2053	 * task or memory node can be dynamically moved between cpusets.
2054	 *
2055	 * The change of semantics for shared hugetlb mapping with cpuset is
2056	 * undesirable. However, in order to preserve some of the semantics,
2057	 * we fall back to check against current free page availability as
2058	 * a best attempt and hopefully to minimize the impact of changing
2059	 * semantics that cpuset has.
2060	 */
2061	if (delta > 0) {
2062		if (gather_surplus_pages(h, delta) < 0)
2063			goto out;
2064
2065		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2066			return_unused_surplus_pages(h, delta);
2067			goto out;
2068		}
2069	}
2070
2071	ret = 0;
2072	if (delta < 0)
2073		return_unused_surplus_pages(h, (unsigned long) -delta);
2074
2075out:
2076	spin_unlock(&hugetlb_lock);
2077	return ret;
2078}
2079
2080static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2081{
2082	struct resv_map *reservations = vma_resv_map(vma);
2083
2084	/*
2085	 * This new VMA should share its siblings reservation map if present.
2086	 * The VMA will only ever have a valid reservation map pointer where
2087	 * it is being copied for another still existing VMA.  As that VMA
2088	 * has a reference to the reservation map it cannot dissappear until
2089	 * after this open call completes.  It is therefore safe to take a
2090	 * new reference here without additional locking.
2091	 */
2092	if (reservations)
2093		kref_get(&reservations->refs);
2094}
2095
2096static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2097{
2098	struct hstate *h = hstate_vma(vma);
2099	struct resv_map *reservations = vma_resv_map(vma);
2100	unsigned long reserve;
2101	unsigned long start;
2102	unsigned long end;
2103
2104	if (reservations) {
2105		start = vma_hugecache_offset(h, vma, vma->vm_start);
2106		end = vma_hugecache_offset(h, vma, vma->vm_end);
2107
2108		reserve = (end - start) -
2109			region_count(&reservations->regions, start, end);
2110
2111		kref_put(&reservations->refs, resv_map_release);
2112
2113		if (reserve) {
2114			hugetlb_acct_memory(h, -reserve);
2115			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2116		}
2117	}
2118}
2119
2120/*
2121 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2122 * handle_mm_fault() to try to instantiate regular-sized pages in the
2123 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2124 * this far.
2125 */
2126static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2127{
2128	BUG();
2129	return 0;
2130}
2131
2132const struct vm_operations_struct hugetlb_vm_ops = {
2133	.fault = hugetlb_vm_op_fault,
2134	.open = hugetlb_vm_op_open,
2135	.close = hugetlb_vm_op_close,
2136};
2137
2138static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2139				int writable)
2140{
2141	pte_t entry;
2142
2143	if (writable) {
2144		entry =
2145		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2146	} else {
2147		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2148	}
2149	entry = pte_mkyoung(entry);
2150	entry = pte_mkhuge(entry);
2151
2152	return entry;
2153}
2154
2155static void set_huge_ptep_writable(struct vm_area_struct *vma,
2156				   unsigned long address, pte_t *ptep)
2157{
2158	pte_t entry;
2159
2160	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2161	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2162		update_mmu_cache(vma, address, ptep);
2163	}
2164}
2165
2166
2167int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2168			    struct vm_area_struct *vma)
2169{
2170	pte_t *src_pte, *dst_pte, entry;
2171	struct page *ptepage;
2172	unsigned long addr;
2173	int cow;
2174	struct hstate *h = hstate_vma(vma);
2175	unsigned long sz = huge_page_size(h);
2176
2177	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2178
2179	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2180		src_pte = huge_pte_offset(src, addr);
2181		if (!src_pte)
2182			continue;
2183		dst_pte = huge_pte_alloc(dst, addr, sz);
2184		if (!dst_pte)
2185			goto nomem;
2186
2187		/* If the pagetables are shared don't copy or take references */
2188		if (dst_pte == src_pte)
2189			continue;
2190
2191		spin_lock(&dst->page_table_lock);
2192		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2193		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2194			if (cow)
2195				huge_ptep_set_wrprotect(src, addr, src_pte);
2196			entry = huge_ptep_get(src_pte);
2197			ptepage = pte_page(entry);
2198			get_page(ptepage);
2199			page_dup_rmap(ptepage);
2200			set_huge_pte_at(dst, addr, dst_pte, entry);
2201		}
2202		spin_unlock(&src->page_table_lock);
2203		spin_unlock(&dst->page_table_lock);
2204	}
2205	return 0;
2206
2207nomem:
2208	return -ENOMEM;
2209}
2210
2211static int is_hugetlb_entry_migration(pte_t pte)
2212{
2213	swp_entry_t swp;
2214
2215	if (huge_pte_none(pte) || pte_present(pte))
2216		return 0;
2217	swp = pte_to_swp_entry(pte);
2218	if (non_swap_entry(swp) && is_migration_entry(swp)) {
2219		return 1;
2220	} else
2221		return 0;
2222}
2223
2224static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2225{
2226	swp_entry_t swp;
2227
2228	if (huge_pte_none(pte) || pte_present(pte))
2229		return 0;
2230	swp = pte_to_swp_entry(pte);
2231	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2232		return 1;
2233	} else
2234		return 0;
2235}
2236
2237void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2238			    unsigned long end, struct page *ref_page)
2239{
2240	struct mm_struct *mm = vma->vm_mm;
2241	unsigned long address;
2242	pte_t *ptep;
2243	pte_t pte;
2244	struct page *page;
2245	struct page *tmp;
2246	struct hstate *h = hstate_vma(vma);
2247	unsigned long sz = huge_page_size(h);
2248
2249	/*
2250	 * A page gathering list, protected by per file i_mmap_lock. The
2251	 * lock is used to avoid list corruption from multiple unmapping
2252	 * of the same page since we are using page->lru.
2253	 */
2254	LIST_HEAD(page_list);
2255
2256	WARN_ON(!is_vm_hugetlb_page(vma));
2257	BUG_ON(start & ~huge_page_mask(h));
2258	BUG_ON(end & ~huge_page_mask(h));
2259
2260	mmu_notifier_invalidate_range_start(mm, start, end);
2261	spin_lock(&mm->page_table_lock);
2262	for (address = start; address < end; address += sz) {
2263		ptep = huge_pte_offset(mm, address);
2264		if (!ptep)
2265			continue;
2266
2267		if (huge_pmd_unshare(mm, &address, ptep))
2268			continue;
2269
2270		/*
2271		 * If a reference page is supplied, it is because a specific
2272		 * page is being unmapped, not a range. Ensure the page we
2273		 * are about to unmap is the actual page of interest.
2274		 */
2275		if (ref_page) {
2276			pte = huge_ptep_get(ptep);
2277			if (huge_pte_none(pte))
2278				continue;
2279			page = pte_page(pte);
2280			if (page != ref_page)
2281				continue;
2282
2283			/*
2284			 * Mark the VMA as having unmapped its page so that
2285			 * future faults in this VMA will fail rather than
2286			 * looking like data was lost
2287			 */
2288			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2289		}
2290
2291		pte = huge_ptep_get_and_clear(mm, address, ptep);
2292		if (huge_pte_none(pte))
2293			continue;
2294
2295		/*
2296		 * HWPoisoned hugepage is already unmapped and dropped reference
2297		 */
2298		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2299			continue;
2300
2301		page = pte_page(pte);
2302		if (pte_dirty(pte))
2303			set_page_dirty(page);
2304		list_add(&page->lru, &page_list);
2305	}
2306	spin_unlock(&mm->page_table_lock);
2307	flush_tlb_range(vma, start, end);
2308	mmu_notifier_invalidate_range_end(mm, start, end);
2309	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2310		page_remove_rmap(page);
2311		list_del(&page->lru);
2312		put_page(page);
2313	}
2314}
2315
2316void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2317			  unsigned long end, struct page *ref_page)
2318{
2319	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2320	__unmap_hugepage_range(vma, start, end, ref_page);
2321	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2322}
2323
2324/*
2325 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2326 * mappping it owns the reserve page for. The intention is to unmap the page
2327 * from other VMAs and let the children be SIGKILLed if they are faulting the
2328 * same region.
2329 */
2330static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2331				struct page *page, unsigned long address)
2332{
2333	struct hstate *h = hstate_vma(vma);
2334	struct vm_area_struct *iter_vma;
2335	struct address_space *mapping;
2336	struct prio_tree_iter iter;
2337	pgoff_t pgoff;
2338
2339	/*
2340	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2341	 * from page cache lookup which is in HPAGE_SIZE units.
2342	 */
2343	address = address & huge_page_mask(h);
2344	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2345		+ (vma->vm_pgoff >> PAGE_SHIFT);
2346	mapping = (struct address_space *)page_private(page);
2347
2348	/*
2349	 * Take the mapping lock for the duration of the table walk. As
2350	 * this mapping should be shared between all the VMAs,
2351	 * __unmap_hugepage_range() is called as the lock is already held
2352	 */
2353	spin_lock(&mapping->i_mmap_lock);
2354	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2355		/* Do not unmap the current VMA */
2356		if (iter_vma == vma)
2357			continue;
2358
2359		/*
2360		 * Unmap the page from other VMAs without their own reserves.
2361		 * They get marked to be SIGKILLed if they fault in these
2362		 * areas. This is because a future no-page fault on this VMA
2363		 * could insert a zeroed page instead of the data existing
2364		 * from the time of fork. This would look like data corruption
2365		 */
2366		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2367			__unmap_hugepage_range(iter_vma,
2368				address, address + huge_page_size(h),
2369				page);
2370	}
2371	spin_unlock(&mapping->i_mmap_lock);
2372
2373	return 1;
2374}
2375
2376/*
2377 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2378 */
2379static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2380			unsigned long address, pte_t *ptep, pte_t pte,
2381			struct page *pagecache_page)
2382{
2383	struct hstate *h = hstate_vma(vma);
2384	struct page *old_page, *new_page;
2385	int avoidcopy;
2386	int outside_reserve = 0;
2387
2388	old_page = pte_page(pte);
2389
2390retry_avoidcopy:
2391	/* If no-one else is actually using this page, avoid the copy
2392	 * and just make the page writable */
2393	avoidcopy = (page_mapcount(old_page) == 1);
2394	if (avoidcopy) {
2395		if (PageAnon(old_page))
2396			page_move_anon_rmap(old_page, vma, address);
2397		set_huge_ptep_writable(vma, address, ptep);
2398		return 0;
2399	}
2400
2401	/*
2402	 * If the process that created a MAP_PRIVATE mapping is about to
2403	 * perform a COW due to a shared page count, attempt to satisfy
2404	 * the allocation without using the existing reserves. The pagecache
2405	 * page is used to determine if the reserve at this address was
2406	 * consumed or not. If reserves were used, a partial faulted mapping
2407	 * at the time of fork() could consume its reserves on COW instead
2408	 * of the full address range.
2409	 */
2410	if (!(vma->vm_flags & VM_MAYSHARE) &&
2411			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2412			old_page != pagecache_page)
2413		outside_reserve = 1;
2414
2415	page_cache_get(old_page);
2416
2417	/* Drop page_table_lock as buddy allocator may be called */
2418	spin_unlock(&mm->page_table_lock);
2419	new_page = alloc_huge_page(vma, address, outside_reserve);
2420
2421	if (IS_ERR(new_page)) {
2422		page_cache_release(old_page);
2423
2424		/*
2425		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2426		 * it is due to references held by a child and an insufficient
2427		 * huge page pool. To guarantee the original mappers
2428		 * reliability, unmap the page from child processes. The child
2429		 * may get SIGKILLed if it later faults.
2430		 */
2431		if (outside_reserve) {
2432			BUG_ON(huge_pte_none(pte));
2433			if (unmap_ref_private(mm, vma, old_page, address)) {
2434				BUG_ON(page_count(old_page) != 1);
2435				BUG_ON(huge_pte_none(pte));
2436				spin_lock(&mm->page_table_lock);
2437				goto retry_avoidcopy;
2438			}
2439			WARN_ON_ONCE(1);
2440		}
2441
2442		/* Caller expects lock to be held */
2443		spin_lock(&mm->page_table_lock);
2444		return -PTR_ERR(new_page);
2445	}
2446
2447	/*
2448	 * When the original hugepage is shared one, it does not have
2449	 * anon_vma prepared.
2450	 */
2451	if (unlikely(anon_vma_prepare(vma)))
2452		return VM_FAULT_OOM;
2453
2454	copy_user_huge_page(new_page, old_page, address, vma);
2455	__SetPageUptodate(new_page);
2456
2457	/*
2458	 * Retake the page_table_lock to check for racing updates
2459	 * before the page tables are altered
2460	 */
2461	spin_lock(&mm->page_table_lock);
2462	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2463	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2464		/* Break COW */
2465		mmu_notifier_invalidate_range_start(mm,
2466			address & huge_page_mask(h),
2467			(address & huge_page_mask(h)) + huge_page_size(h));
2468		huge_ptep_clear_flush(vma, address, ptep);
2469		set_huge_pte_at(mm, address, ptep,
2470				make_huge_pte(vma, new_page, 1));
2471		page_remove_rmap(old_page);
2472		hugepage_add_new_anon_rmap(new_page, vma, address);
2473		/* Make the old page be freed below */
2474		new_page = old_page;
2475		mmu_notifier_invalidate_range_end(mm,
2476			address & huge_page_mask(h),
2477			(address & huge_page_mask(h)) + huge_page_size(h));
2478	}
2479	page_cache_release(new_page);
2480	page_cache_release(old_page);
2481	return 0;
2482}
2483
2484/* Return the pagecache page at a given address within a VMA */
2485static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2486			struct vm_area_struct *vma, unsigned long address)
2487{
2488	struct address_space *mapping;
2489	pgoff_t idx;
2490
2491	mapping = vma->vm_file->f_mapping;
2492	idx = vma_hugecache_offset(h, vma, address);
2493
2494	return find_lock_page(mapping, idx);
2495}
2496
2497/*
2498 * Return whether there is a pagecache page to back given address within VMA.
2499 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2500 */
2501static bool hugetlbfs_pagecache_present(struct hstate *h,
2502			struct vm_area_struct *vma, unsigned long address)
2503{
2504	struct address_space *mapping;
2505	pgoff_t idx;
2506	struct page *page;
2507
2508	mapping = vma->vm_file->f_mapping;
2509	idx = vma_hugecache_offset(h, vma, address);
2510
2511	page = find_get_page(mapping, idx);
2512	if (page)
2513		put_page(page);
2514	return page != NULL;
2515}
2516
2517static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2518			unsigned long address, pte_t *ptep, unsigned int flags)
2519{
2520	struct hstate *h = hstate_vma(vma);
2521	int ret = VM_FAULT_SIGBUS;
2522	pgoff_t idx;
2523	unsigned long size;
2524	struct page *page;
2525	struct address_space *mapping;
2526	pte_t new_pte;
2527
2528	/*
2529	 * Currently, we are forced to kill the process in the event the
2530	 * original mapper has unmapped pages from the child due to a failed
2531	 * COW. Warn that such a situation has occured as it may not be obvious
2532	 */
2533	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2534		printk(KERN_WARNING
2535			"PID %d killed due to inadequate hugepage pool\n",
2536			current->pid);
2537		return ret;
2538	}
2539
2540	mapping = vma->vm_file->f_mapping;
2541	idx = vma_hugecache_offset(h, vma, address);
2542
2543	/*
2544	 * Use page lock to guard against racing truncation
2545	 * before we get page_table_lock.
2546	 */
2547retry:
2548	page = find_lock_page(mapping, idx);
2549	if (!page) {
2550		size = i_size_read(mapping->host) >> huge_page_shift(h);
2551		if (idx >= size)
2552			goto out;
2553		page = alloc_huge_page(vma, address, 0);
2554		if (IS_ERR(page)) {
2555			ret = -PTR_ERR(page);
2556			goto out;
2557		}
2558		clear_huge_page(page, address, huge_page_size(h));
2559		__SetPageUptodate(page);
2560
2561		if (vma->vm_flags & VM_MAYSHARE) {
2562			int err;
2563			struct inode *inode = mapping->host;
2564
2565			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2566			if (err) {
2567				put_page(page);
2568				if (err == -EEXIST)
2569					goto retry;
2570				goto out;
2571			}
2572
2573			spin_lock(&inode->i_lock);
2574			inode->i_blocks += blocks_per_huge_page(h);
2575			spin_unlock(&inode->i_lock);
2576			page_dup_rmap(page);
2577		} else {
2578			lock_page(page);
2579			if (unlikely(anon_vma_prepare(vma))) {
2580				ret = VM_FAULT_OOM;
2581				goto backout_unlocked;
2582			}
2583			hugepage_add_new_anon_rmap(page, vma, address);
2584		}
2585	} else {
2586		/*
2587		 * If memory error occurs between mmap() and fault, some process
2588		 * don't have hwpoisoned swap entry for errored virtual address.
2589		 * So we need to block hugepage fault by PG_hwpoison bit check.
2590		 */
2591		if (unlikely(PageHWPoison(page))) {
2592			ret = VM_FAULT_HWPOISON;
2593			goto backout_unlocked;
2594		}
2595		page_dup_rmap(page);
2596	}
2597
2598	/*
2599	 * If we are going to COW a private mapping later, we examine the
2600	 * pending reservations for this page now. This will ensure that
2601	 * any allocations necessary to record that reservation occur outside
2602	 * the spinlock.
2603	 */
2604	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2605		if (vma_needs_reservation(h, vma, address) < 0) {
2606			ret = VM_FAULT_OOM;
2607			goto backout_unlocked;
2608		}
2609
2610	spin_lock(&mm->page_table_lock);
2611	size = i_size_read(mapping->host) >> huge_page_shift(h);
2612	if (idx >= size)
2613		goto backout;
2614
2615	ret = 0;
2616	if (!huge_pte_none(huge_ptep_get(ptep)))
2617		goto backout;
2618
2619	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2620				&& (vma->vm_flags & VM_SHARED)));
2621	set_huge_pte_at(mm, address, ptep, new_pte);
2622
2623	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2624		/* Optimization, do the COW without a second fault */
2625		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2626	}
2627
2628	spin_unlock(&mm->page_table_lock);
2629	unlock_page(page);
2630out:
2631	return ret;
2632
2633backout:
2634	spin_unlock(&mm->page_table_lock);
2635backout_unlocked:
2636	unlock_page(page);
2637	put_page(page);
2638	goto out;
2639}
2640
2641int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2642			unsigned long address, unsigned int flags)
2643{
2644	pte_t *ptep;
2645	pte_t entry;
2646	int ret;
2647	struct page *page = NULL;
2648	struct page *pagecache_page = NULL;
2649	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2650	struct hstate *h = hstate_vma(vma);
2651
2652	ptep = huge_pte_offset(mm, address);
2653	if (ptep) {
2654		entry = huge_ptep_get(ptep);
2655		if (unlikely(is_hugetlb_entry_migration(entry))) {
2656			migration_entry_wait(mm, (pmd_t *)ptep, address);
2657			return 0;
2658		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2659			return VM_FAULT_HWPOISON;
2660	}
2661
2662	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2663	if (!ptep)
2664		return VM_FAULT_OOM;
2665
2666	/*
2667	 * Serialize hugepage allocation and instantiation, so that we don't
2668	 * get spurious allocation failures if two CPUs race to instantiate
2669	 * the same page in the page cache.
2670	 */
2671	mutex_lock(&hugetlb_instantiation_mutex);
2672	entry = huge_ptep_get(ptep);
2673	if (huge_pte_none(entry)) {
2674		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2675		goto out_mutex;
2676	}
2677
2678	ret = 0;
2679
2680	/*
2681	 * If we are going to COW the mapping later, we examine the pending
2682	 * reservations for this page now. This will ensure that any
2683	 * allocations necessary to record that reservation occur outside the
2684	 * spinlock. For private mappings, we also lookup the pagecache
2685	 * page now as it is used to determine if a reservation has been
2686	 * consumed.
2687	 */
2688	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2689		if (vma_needs_reservation(h, vma, address) < 0) {
2690			ret = VM_FAULT_OOM;
2691			goto out_mutex;
2692		}
2693
2694		if (!(vma->vm_flags & VM_MAYSHARE))
2695			pagecache_page = hugetlbfs_pagecache_page(h,
2696								vma, address);
2697	}
2698
2699	/*
2700	 * hugetlb_cow() requires page locks of pte_page(entry) and
2701	 * pagecache_page, so here we need take the former one
2702	 * when page != pagecache_page or !pagecache_page.
2703	 * Note that locking order is always pagecache_page -> page,
2704	 * so no worry about deadlock.
2705	 */
2706	page = pte_page(entry);
2707	if (page != pagecache_page)
2708		lock_page(page);
2709
2710	spin_lock(&mm->page_table_lock);
2711	/* Check for a racing update before calling hugetlb_cow */
2712	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2713		goto out_page_table_lock;
2714
2715
2716	if (flags & FAULT_FLAG_WRITE) {
2717		if (!pte_write(entry)) {
2718			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2719							pagecache_page);
2720			goto out_page_table_lock;
2721		}
2722		entry = pte_mkdirty(entry);
2723	}
2724	entry = pte_mkyoung(entry);
2725	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2726						flags & FAULT_FLAG_WRITE))
2727		update_mmu_cache(vma, address, ptep);
2728
2729out_page_table_lock:
2730	spin_unlock(&mm->page_table_lock);
2731
2732	if (pagecache_page) {
2733		unlock_page(pagecache_page);
2734		put_page(pagecache_page);
2735	}
2736	unlock_page(page);
2737
2738out_mutex:
2739	mutex_unlock(&hugetlb_instantiation_mutex);
2740
2741	return ret;
2742}
2743
2744/* Can be overriden by architectures */
2745__attribute__((weak)) struct page *
2746follow_huge_pud(struct mm_struct *mm, unsigned long address,
2747	       pud_t *pud, int write)
2748{
2749	BUG();
2750	return NULL;
2751}
2752
2753int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2754			struct page **pages, struct vm_area_struct **vmas,
2755			unsigned long *position, int *length, int i,
2756			unsigned int flags)
2757{
2758	unsigned long pfn_offset;
2759	unsigned long vaddr = *position;
2760	int remainder = *length;
2761	struct hstate *h = hstate_vma(vma);
2762
2763	spin_lock(&mm->page_table_lock);
2764	while (vaddr < vma->vm_end && remainder) {
2765		pte_t *pte;
2766		int absent;
2767		struct page *page;
2768
2769		/*
2770		 * Some archs (sparc64, sh*) have multiple pte_ts to
2771		 * each hugepage.  We have to make sure we get the
2772		 * first, for the page indexing below to work.
2773		 */
2774		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2775		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2776
2777		/*
2778		 * When coredumping, it suits get_dump_page if we just return
2779		 * an error where there's an empty slot with no huge pagecache
2780		 * to back it.  This way, we avoid allocating a hugepage, and
2781		 * the sparse dumpfile avoids allocating disk blocks, but its
2782		 * huge holes still show up with zeroes where they need to be.
2783		 */
2784		if (absent && (flags & FOLL_DUMP) &&
2785		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2786			remainder = 0;
2787			break;
2788		}
2789
2790		if (absent ||
2791		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2792			int ret;
2793
2794			spin_unlock(&mm->page_table_lock);
2795			ret = hugetlb_fault(mm, vma, vaddr,
2796				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2797			spin_lock(&mm->page_table_lock);
2798			if (!(ret & VM_FAULT_ERROR))
2799				continue;
2800
2801			remainder = 0;
2802			break;
2803		}
2804
2805		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2806		page = pte_page(huge_ptep_get(pte));
2807same_page:
2808		if (pages) {
2809			pages[i] = mem_map_offset(page, pfn_offset);
2810			get_page(pages[i]);
2811		}
2812
2813		if (vmas)
2814			vmas[i] = vma;
2815
2816		vaddr += PAGE_SIZE;
2817		++pfn_offset;
2818		--remainder;
2819		++i;
2820		if (vaddr < vma->vm_end && remainder &&
2821				pfn_offset < pages_per_huge_page(h)) {
2822			/*
2823			 * We use pfn_offset to avoid touching the pageframes
2824			 * of this compound page.
2825			 */
2826			goto same_page;
2827		}
2828	}
2829	spin_unlock(&mm->page_table_lock);
2830	*length = remainder;
2831	*position = vaddr;
2832
2833	return i ? i : -EFAULT;
2834}
2835
2836void hugetlb_change_protection(struct vm_area_struct *vma,
2837		unsigned long address, unsigned long end, pgprot_t newprot)
2838{
2839	struct mm_struct *mm = vma->vm_mm;
2840	unsigned long start = address;
2841	pte_t *ptep;
2842	pte_t pte;
2843	struct hstate *h = hstate_vma(vma);
2844
2845	BUG_ON(address >= end);
2846	flush_cache_range(vma, address, end);
2847
2848	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2849	spin_lock(&mm->page_table_lock);
2850	for (; address < end; address += huge_page_size(h)) {
2851		ptep = huge_pte_offset(mm, address);
2852		if (!ptep)
2853			continue;
2854		if (huge_pmd_unshare(mm, &address, ptep))
2855			continue;
2856		if (!huge_pte_none(huge_ptep_get(ptep))) {
2857			pte = huge_ptep_get_and_clear(mm, address, ptep);
2858			pte = pte_mkhuge(pte_modify(pte, newprot));
2859			set_huge_pte_at(mm, address, ptep, pte);
2860		}
2861	}
2862	spin_unlock(&mm->page_table_lock);
2863	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2864
2865	flush_tlb_range(vma, start, end);
2866}
2867
2868int hugetlb_reserve_pages(struct inode *inode,
2869					long from, long to,
2870					struct vm_area_struct *vma,
2871					int acctflag)
2872{
2873	long ret, chg;
2874	struct hstate *h = hstate_inode(inode);
2875
2876	/*
2877	 * Only apply hugepage reservation if asked. At fault time, an
2878	 * attempt will be made for VM_NORESERVE to allocate a page
2879	 * and filesystem quota without using reserves
2880	 */
2881	if (acctflag & VM_NORESERVE)
2882		return 0;
2883
2884	/*
2885	 * Shared mappings base their reservation on the number of pages that
2886	 * are already allocated on behalf of the file. Private mappings need
2887	 * to reserve the full area even if read-only as mprotect() may be
2888	 * called to make the mapping read-write. Assume !vma is a shm mapping
2889	 */
2890	if (!vma || vma->vm_flags & VM_MAYSHARE)
2891		chg = region_chg(&inode->i_mapping->private_list, from, to);
2892	else {
2893		struct resv_map *resv_map = resv_map_alloc();
2894		if (!resv_map)
2895			return -ENOMEM;
2896
2897		chg = to - from;
2898
2899		set_vma_resv_map(vma, resv_map);
2900		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2901	}
2902
2903	if (chg < 0)
2904		return chg;
2905
2906	/* There must be enough filesystem quota for the mapping */
2907	if (hugetlb_get_quota(inode->i_mapping, chg))
2908		return -ENOSPC;
2909
2910	/*
2911	 * Check enough hugepages are available for the reservation.
2912	 * Hand back the quota if there are not
2913	 */
2914	ret = hugetlb_acct_memory(h, chg);
2915	if (ret < 0) {
2916		hugetlb_put_quota(inode->i_mapping, chg);
2917		return ret;
2918	}
2919
2920	/*
2921	 * Account for the reservations made. Shared mappings record regions
2922	 * that have reservations as they are shared by multiple VMAs.
2923	 * When the last VMA disappears, the region map says how much
2924	 * the reservation was and the page cache tells how much of
2925	 * the reservation was consumed. Private mappings are per-VMA and
2926	 * only the consumed reservations are tracked. When the VMA
2927	 * disappears, the original reservation is the VMA size and the
2928	 * consumed reservations are stored in the map. Hence, nothing
2929	 * else has to be done for private mappings here
2930	 */
2931	if (!vma || vma->vm_flags & VM_MAYSHARE)
2932		region_add(&inode->i_mapping->private_list, from, to);
2933	return 0;
2934}
2935
2936void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2937{
2938	struct hstate *h = hstate_inode(inode);
2939	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2940
2941	spin_lock(&inode->i_lock);
2942	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2943	spin_unlock(&inode->i_lock);
2944
2945	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2946	hugetlb_acct_memory(h, -(chg - freed));
2947}
2948
2949/* Should be called in hugetlb_lock */
2950static int is_hugepage_on_freelist(struct page *hpage)
2951{
2952	struct page *page;
2953	struct page *tmp;
2954	struct hstate *h = page_hstate(hpage);
2955	int nid = page_to_nid(hpage);
2956
2957	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2958		if (page == hpage)
2959			return 1;
2960	return 0;
2961}
2962
2963#ifdef CONFIG_MEMORY_FAILURE
2964/*
2965 * This function is called from memory failure code.
2966 * Assume the caller holds page lock of the head page.
2967 */
2968int dequeue_hwpoisoned_huge_page(struct page *hpage)
2969{
2970	struct hstate *h = page_hstate(hpage);
2971	int nid = page_to_nid(hpage);
2972	int ret = -EBUSY;
2973
2974	spin_lock(&hugetlb_lock);
2975	if (is_hugepage_on_freelist(hpage)) {
2976		list_del(&hpage->lru);
2977		set_page_refcounted(hpage);
2978		h->free_huge_pages--;
2979		h->free_huge_pages_node[nid]--;
2980		ret = 0;
2981	}
2982	spin_unlock(&hugetlb_lock);
2983	return ret;
2984}
2985#endif
2986