hugetlb.c revision a1de09195b294c6a4c5dec8c8defd0a2688d3f75
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26static unsigned long surplus_huge_pages;
27static unsigned long nr_overcommit_huge_pages;
28unsigned long max_huge_pages;
29unsigned long sysctl_overcommit_huge_pages;
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36static int hugetlb_next_nid;
37
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
42
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45	int i;
46
47	might_sleep();
48	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49		cond_resched();
50		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51	}
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
55			   unsigned long addr, struct vm_area_struct *vma)
56{
57	int i;
58
59	might_sleep();
60	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61		cond_resched();
62		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63	}
64}
65
66static void enqueue_huge_page(struct page *page)
67{
68	int nid = page_to_nid(page);
69	list_add(&page->lru, &hugepage_freelists[nid]);
70	free_huge_pages++;
71	free_huge_pages_node[nid]++;
72}
73
74static struct page *dequeue_huge_page(void)
75{
76	int nid;
77	struct page *page = NULL;
78
79	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80		if (!list_empty(&hugepage_freelists[nid])) {
81			page = list_entry(hugepage_freelists[nid].next,
82					  struct page, lru);
83			list_del(&page->lru);
84			free_huge_pages--;
85			free_huge_pages_node[nid]--;
86			break;
87		}
88	}
89	return page;
90}
91
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93				unsigned long address)
94{
95	int nid;
96	struct page *page = NULL;
97	struct mempolicy *mpol;
98	struct zonelist *zonelist = huge_zonelist(vma, address,
99					htlb_alloc_mask, &mpol);
100	struct zone **z;
101
102	for (z = zonelist->zones; *z; z++) {
103		nid = zone_to_nid(*z);
104		if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
105		    !list_empty(&hugepage_freelists[nid])) {
106			page = list_entry(hugepage_freelists[nid].next,
107					  struct page, lru);
108			list_del(&page->lru);
109			free_huge_pages--;
110			free_huge_pages_node[nid]--;
111			if (vma && vma->vm_flags & VM_MAYSHARE)
112				resv_huge_pages--;
113			break;
114		}
115	}
116	mpol_free(mpol);	/* unref if mpol !NULL */
117	return page;
118}
119
120static void update_and_free_page(struct page *page)
121{
122	int i;
123	nr_huge_pages--;
124	nr_huge_pages_node[page_to_nid(page)]--;
125	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
126		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
127				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
128				1 << PG_private | 1<< PG_writeback);
129	}
130	set_compound_page_dtor(page, NULL);
131	set_page_refcounted(page);
132	__free_pages(page, HUGETLB_PAGE_ORDER);
133}
134
135static void free_huge_page(struct page *page)
136{
137	int nid = page_to_nid(page);
138	struct address_space *mapping;
139
140	mapping = (struct address_space *) page_private(page);
141	set_page_private(page, 0);
142	BUG_ON(page_count(page));
143	INIT_LIST_HEAD(&page->lru);
144
145	spin_lock(&hugetlb_lock);
146	if (surplus_huge_pages_node[nid]) {
147		update_and_free_page(page);
148		surplus_huge_pages--;
149		surplus_huge_pages_node[nid]--;
150	} else {
151		enqueue_huge_page(page);
152	}
153	spin_unlock(&hugetlb_lock);
154	if (mapping)
155		hugetlb_put_quota(mapping, 1);
156}
157
158/*
159 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
160 * balanced by operating on them in a round-robin fashion.
161 * Returns 1 if an adjustment was made.
162 */
163static int adjust_pool_surplus(int delta)
164{
165	static int prev_nid;
166	int nid = prev_nid;
167	int ret = 0;
168
169	VM_BUG_ON(delta != -1 && delta != 1);
170	do {
171		nid = next_node(nid, node_online_map);
172		if (nid == MAX_NUMNODES)
173			nid = first_node(node_online_map);
174
175		/* To shrink on this node, there must be a surplus page */
176		if (delta < 0 && !surplus_huge_pages_node[nid])
177			continue;
178		/* Surplus cannot exceed the total number of pages */
179		if (delta > 0 && surplus_huge_pages_node[nid] >=
180						nr_huge_pages_node[nid])
181			continue;
182
183		surplus_huge_pages += delta;
184		surplus_huge_pages_node[nid] += delta;
185		ret = 1;
186		break;
187	} while (nid != prev_nid);
188
189	prev_nid = nid;
190	return ret;
191}
192
193static struct page *alloc_fresh_huge_page_node(int nid)
194{
195	struct page *page;
196
197	page = alloc_pages_node(nid,
198		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
199		HUGETLB_PAGE_ORDER);
200	if (page) {
201		set_compound_page_dtor(page, free_huge_page);
202		spin_lock(&hugetlb_lock);
203		nr_huge_pages++;
204		nr_huge_pages_node[nid]++;
205		spin_unlock(&hugetlb_lock);
206		put_page(page); /* free it into the hugepage allocator */
207	}
208
209	return page;
210}
211
212static int alloc_fresh_huge_page(void)
213{
214	struct page *page;
215	int start_nid;
216	int next_nid;
217	int ret = 0;
218
219	start_nid = hugetlb_next_nid;
220
221	do {
222		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
223		if (page)
224			ret = 1;
225		/*
226		 * Use a helper variable to find the next node and then
227		 * copy it back to hugetlb_next_nid afterwards:
228		 * otherwise there's a window in which a racer might
229		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
230		 * But we don't need to use a spin_lock here: it really
231		 * doesn't matter if occasionally a racer chooses the
232		 * same nid as we do.  Move nid forward in the mask even
233		 * if we just successfully allocated a hugepage so that
234		 * the next caller gets hugepages on the next node.
235		 */
236		next_nid = next_node(hugetlb_next_nid, node_online_map);
237		if (next_nid == MAX_NUMNODES)
238			next_nid = first_node(node_online_map);
239		hugetlb_next_nid = next_nid;
240	} while (!page && hugetlb_next_nid != start_nid);
241
242	return ret;
243}
244
245static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
246						unsigned long address)
247{
248	struct page *page;
249	unsigned int nid;
250
251	/*
252	 * Assume we will successfully allocate the surplus page to
253	 * prevent racing processes from causing the surplus to exceed
254	 * overcommit
255	 *
256	 * This however introduces a different race, where a process B
257	 * tries to grow the static hugepage pool while alloc_pages() is
258	 * called by process A. B will only examine the per-node
259	 * counters in determining if surplus huge pages can be
260	 * converted to normal huge pages in adjust_pool_surplus(). A
261	 * won't be able to increment the per-node counter, until the
262	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
263	 * no more huge pages can be converted from surplus to normal
264	 * state (and doesn't try to convert again). Thus, we have a
265	 * case where a surplus huge page exists, the pool is grown, and
266	 * the surplus huge page still exists after, even though it
267	 * should just have been converted to a normal huge page. This
268	 * does not leak memory, though, as the hugepage will be freed
269	 * once it is out of use. It also does not allow the counters to
270	 * go out of whack in adjust_pool_surplus() as we don't modify
271	 * the node values until we've gotten the hugepage and only the
272	 * per-node value is checked there.
273	 */
274	spin_lock(&hugetlb_lock);
275	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
276		spin_unlock(&hugetlb_lock);
277		return NULL;
278	} else {
279		nr_huge_pages++;
280		surplus_huge_pages++;
281	}
282	spin_unlock(&hugetlb_lock);
283
284	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
285					HUGETLB_PAGE_ORDER);
286
287	spin_lock(&hugetlb_lock);
288	if (page) {
289		/*
290		 * This page is now managed by the hugetlb allocator and has
291		 * no users -- drop the buddy allocator's reference.
292		 */
293		put_page_testzero(page);
294		VM_BUG_ON(page_count(page));
295		nid = page_to_nid(page);
296		set_compound_page_dtor(page, free_huge_page);
297		/*
298		 * We incremented the global counters already
299		 */
300		nr_huge_pages_node[nid]++;
301		surplus_huge_pages_node[nid]++;
302	} else {
303		nr_huge_pages--;
304		surplus_huge_pages--;
305	}
306	spin_unlock(&hugetlb_lock);
307
308	return page;
309}
310
311/*
312 * Increase the hugetlb pool such that it can accomodate a reservation
313 * of size 'delta'.
314 */
315static int gather_surplus_pages(int delta)
316{
317	struct list_head surplus_list;
318	struct page *page, *tmp;
319	int ret, i;
320	int needed, allocated;
321
322	needed = (resv_huge_pages + delta) - free_huge_pages;
323	if (needed <= 0) {
324		resv_huge_pages += delta;
325		return 0;
326	}
327
328	allocated = 0;
329	INIT_LIST_HEAD(&surplus_list);
330
331	ret = -ENOMEM;
332retry:
333	spin_unlock(&hugetlb_lock);
334	for (i = 0; i < needed; i++) {
335		page = alloc_buddy_huge_page(NULL, 0);
336		if (!page) {
337			/*
338			 * We were not able to allocate enough pages to
339			 * satisfy the entire reservation so we free what
340			 * we've allocated so far.
341			 */
342			spin_lock(&hugetlb_lock);
343			needed = 0;
344			goto free;
345		}
346
347		list_add(&page->lru, &surplus_list);
348	}
349	allocated += needed;
350
351	/*
352	 * After retaking hugetlb_lock, we need to recalculate 'needed'
353	 * because either resv_huge_pages or free_huge_pages may have changed.
354	 */
355	spin_lock(&hugetlb_lock);
356	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
357	if (needed > 0)
358		goto retry;
359
360	/*
361	 * The surplus_list now contains _at_least_ the number of extra pages
362	 * needed to accomodate the reservation.  Add the appropriate number
363	 * of pages to the hugetlb pool and free the extras back to the buddy
364	 * allocator.  Commit the entire reservation here to prevent another
365	 * process from stealing the pages as they are added to the pool but
366	 * before they are reserved.
367	 */
368	needed += allocated;
369	resv_huge_pages += delta;
370	ret = 0;
371free:
372	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
373		list_del(&page->lru);
374		if ((--needed) >= 0)
375			enqueue_huge_page(page);
376		else {
377			/*
378			 * The page has a reference count of zero already, so
379			 * call free_huge_page directly instead of using
380			 * put_page.  This must be done with hugetlb_lock
381			 * unlocked which is safe because free_huge_page takes
382			 * hugetlb_lock before deciding how to free the page.
383			 */
384			spin_unlock(&hugetlb_lock);
385			free_huge_page(page);
386			spin_lock(&hugetlb_lock);
387		}
388	}
389
390	return ret;
391}
392
393/*
394 * When releasing a hugetlb pool reservation, any surplus pages that were
395 * allocated to satisfy the reservation must be explicitly freed if they were
396 * never used.
397 */
398static void return_unused_surplus_pages(unsigned long unused_resv_pages)
399{
400	static int nid = -1;
401	struct page *page;
402	unsigned long nr_pages;
403
404	/* Uncommit the reservation */
405	resv_huge_pages -= unused_resv_pages;
406
407	nr_pages = min(unused_resv_pages, surplus_huge_pages);
408
409	while (nr_pages) {
410		nid = next_node(nid, node_online_map);
411		if (nid == MAX_NUMNODES)
412			nid = first_node(node_online_map);
413
414		if (!surplus_huge_pages_node[nid])
415			continue;
416
417		if (!list_empty(&hugepage_freelists[nid])) {
418			page = list_entry(hugepage_freelists[nid].next,
419					  struct page, lru);
420			list_del(&page->lru);
421			update_and_free_page(page);
422			free_huge_pages--;
423			free_huge_pages_node[nid]--;
424			surplus_huge_pages--;
425			surplus_huge_pages_node[nid]--;
426			nr_pages--;
427		}
428	}
429}
430
431
432static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
433						unsigned long addr)
434{
435	struct page *page;
436
437	spin_lock(&hugetlb_lock);
438	page = dequeue_huge_page_vma(vma, addr);
439	spin_unlock(&hugetlb_lock);
440	return page ? page : ERR_PTR(-VM_FAULT_OOM);
441}
442
443static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
444						unsigned long addr)
445{
446	struct page *page = NULL;
447
448	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
449		return ERR_PTR(-VM_FAULT_SIGBUS);
450
451	spin_lock(&hugetlb_lock);
452	if (free_huge_pages > resv_huge_pages)
453		page = dequeue_huge_page_vma(vma, addr);
454	spin_unlock(&hugetlb_lock);
455	if (!page) {
456		page = alloc_buddy_huge_page(vma, addr);
457		if (!page) {
458			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
459			return ERR_PTR(-VM_FAULT_OOM);
460		}
461	}
462	return page;
463}
464
465static struct page *alloc_huge_page(struct vm_area_struct *vma,
466				    unsigned long addr)
467{
468	struct page *page;
469	struct address_space *mapping = vma->vm_file->f_mapping;
470
471	if (vma->vm_flags & VM_MAYSHARE)
472		page = alloc_huge_page_shared(vma, addr);
473	else
474		page = alloc_huge_page_private(vma, addr);
475
476	if (!IS_ERR(page)) {
477		set_page_refcounted(page);
478		set_page_private(page, (unsigned long) mapping);
479	}
480	return page;
481}
482
483static int __init hugetlb_init(void)
484{
485	unsigned long i;
486
487	if (HPAGE_SHIFT == 0)
488		return 0;
489
490	for (i = 0; i < MAX_NUMNODES; ++i)
491		INIT_LIST_HEAD(&hugepage_freelists[i]);
492
493	hugetlb_next_nid = first_node(node_online_map);
494
495	for (i = 0; i < max_huge_pages; ++i) {
496		if (!alloc_fresh_huge_page())
497			break;
498	}
499	max_huge_pages = free_huge_pages = nr_huge_pages = i;
500	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
501	return 0;
502}
503module_init(hugetlb_init);
504
505static int __init hugetlb_setup(char *s)
506{
507	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
508		max_huge_pages = 0;
509	return 1;
510}
511__setup("hugepages=", hugetlb_setup);
512
513static unsigned int cpuset_mems_nr(unsigned int *array)
514{
515	int node;
516	unsigned int nr = 0;
517
518	for_each_node_mask(node, cpuset_current_mems_allowed)
519		nr += array[node];
520
521	return nr;
522}
523
524#ifdef CONFIG_SYSCTL
525#ifdef CONFIG_HIGHMEM
526static void try_to_free_low(unsigned long count)
527{
528	int i;
529
530	for (i = 0; i < MAX_NUMNODES; ++i) {
531		struct page *page, *next;
532		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
533			if (count >= nr_huge_pages)
534				return;
535			if (PageHighMem(page))
536				continue;
537			list_del(&page->lru);
538			update_and_free_page(page);
539			free_huge_pages--;
540			free_huge_pages_node[page_to_nid(page)]--;
541		}
542	}
543}
544#else
545static inline void try_to_free_low(unsigned long count)
546{
547}
548#endif
549
550#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
551static unsigned long set_max_huge_pages(unsigned long count)
552{
553	unsigned long min_count, ret;
554
555	/*
556	 * Increase the pool size
557	 * First take pages out of surplus state.  Then make up the
558	 * remaining difference by allocating fresh huge pages.
559	 *
560	 * We might race with alloc_buddy_huge_page() here and be unable
561	 * to convert a surplus huge page to a normal huge page. That is
562	 * not critical, though, it just means the overall size of the
563	 * pool might be one hugepage larger than it needs to be, but
564	 * within all the constraints specified by the sysctls.
565	 */
566	spin_lock(&hugetlb_lock);
567	while (surplus_huge_pages && count > persistent_huge_pages) {
568		if (!adjust_pool_surplus(-1))
569			break;
570	}
571
572	while (count > persistent_huge_pages) {
573		int ret;
574		/*
575		 * If this allocation races such that we no longer need the
576		 * page, free_huge_page will handle it by freeing the page
577		 * and reducing the surplus.
578		 */
579		spin_unlock(&hugetlb_lock);
580		ret = alloc_fresh_huge_page();
581		spin_lock(&hugetlb_lock);
582		if (!ret)
583			goto out;
584
585	}
586
587	/*
588	 * Decrease the pool size
589	 * First return free pages to the buddy allocator (being careful
590	 * to keep enough around to satisfy reservations).  Then place
591	 * pages into surplus state as needed so the pool will shrink
592	 * to the desired size as pages become free.
593	 *
594	 * By placing pages into the surplus state independent of the
595	 * overcommit value, we are allowing the surplus pool size to
596	 * exceed overcommit. There are few sane options here. Since
597	 * alloc_buddy_huge_page() is checking the global counter,
598	 * though, we'll note that we're not allowed to exceed surplus
599	 * and won't grow the pool anywhere else. Not until one of the
600	 * sysctls are changed, or the surplus pages go out of use.
601	 */
602	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
603	min_count = max(count, min_count);
604	try_to_free_low(min_count);
605	while (min_count < persistent_huge_pages) {
606		struct page *page = dequeue_huge_page();
607		if (!page)
608			break;
609		update_and_free_page(page);
610	}
611	while (count < persistent_huge_pages) {
612		if (!adjust_pool_surplus(1))
613			break;
614	}
615out:
616	ret = persistent_huge_pages;
617	spin_unlock(&hugetlb_lock);
618	return ret;
619}
620
621int hugetlb_sysctl_handler(struct ctl_table *table, int write,
622			   struct file *file, void __user *buffer,
623			   size_t *length, loff_t *ppos)
624{
625	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
626	max_huge_pages = set_max_huge_pages(max_huge_pages);
627	return 0;
628}
629
630int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
631			struct file *file, void __user *buffer,
632			size_t *length, loff_t *ppos)
633{
634	proc_dointvec(table, write, file, buffer, length, ppos);
635	if (hugepages_treat_as_movable)
636		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
637	else
638		htlb_alloc_mask = GFP_HIGHUSER;
639	return 0;
640}
641
642int hugetlb_overcommit_handler(struct ctl_table *table, int write,
643			struct file *file, void __user *buffer,
644			size_t *length, loff_t *ppos)
645{
646	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
647	spin_lock(&hugetlb_lock);
648	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
649	spin_unlock(&hugetlb_lock);
650	return 0;
651}
652
653#endif /* CONFIG_SYSCTL */
654
655int hugetlb_report_meminfo(char *buf)
656{
657	return sprintf(buf,
658			"HugePages_Total: %5lu\n"
659			"HugePages_Free:  %5lu\n"
660			"HugePages_Rsvd:  %5lu\n"
661			"HugePages_Surp:  %5lu\n"
662			"Hugepagesize:    %5lu kB\n",
663			nr_huge_pages,
664			free_huge_pages,
665			resv_huge_pages,
666			surplus_huge_pages,
667			HPAGE_SIZE/1024);
668}
669
670int hugetlb_report_node_meminfo(int nid, char *buf)
671{
672	return sprintf(buf,
673		"Node %d HugePages_Total: %5u\n"
674		"Node %d HugePages_Free:  %5u\n"
675		"Node %d HugePages_Surp:  %5u\n",
676		nid, nr_huge_pages_node[nid],
677		nid, free_huge_pages_node[nid],
678		nid, surplus_huge_pages_node[nid]);
679}
680
681/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
682unsigned long hugetlb_total_pages(void)
683{
684	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
685}
686
687/*
688 * We cannot handle pagefaults against hugetlb pages at all.  They cause
689 * handle_mm_fault() to try to instantiate regular-sized pages in the
690 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
691 * this far.
692 */
693static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
694{
695	BUG();
696	return 0;
697}
698
699struct vm_operations_struct hugetlb_vm_ops = {
700	.fault = hugetlb_vm_op_fault,
701};
702
703static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
704				int writable)
705{
706	pte_t entry;
707
708	if (writable) {
709		entry =
710		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
711	} else {
712		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
713	}
714	entry = pte_mkyoung(entry);
715	entry = pte_mkhuge(entry);
716
717	return entry;
718}
719
720static void set_huge_ptep_writable(struct vm_area_struct *vma,
721				   unsigned long address, pte_t *ptep)
722{
723	pte_t entry;
724
725	entry = pte_mkwrite(pte_mkdirty(*ptep));
726	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
727		update_mmu_cache(vma, address, entry);
728	}
729}
730
731
732int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
733			    struct vm_area_struct *vma)
734{
735	pte_t *src_pte, *dst_pte, entry;
736	struct page *ptepage;
737	unsigned long addr;
738	int cow;
739
740	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
741
742	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
743		src_pte = huge_pte_offset(src, addr);
744		if (!src_pte)
745			continue;
746		dst_pte = huge_pte_alloc(dst, addr);
747		if (!dst_pte)
748			goto nomem;
749
750		/* If the pagetables are shared don't copy or take references */
751		if (dst_pte == src_pte)
752			continue;
753
754		spin_lock(&dst->page_table_lock);
755		spin_lock(&src->page_table_lock);
756		if (!pte_none(*src_pte)) {
757			if (cow)
758				ptep_set_wrprotect(src, addr, src_pte);
759			entry = *src_pte;
760			ptepage = pte_page(entry);
761			get_page(ptepage);
762			set_huge_pte_at(dst, addr, dst_pte, entry);
763		}
764		spin_unlock(&src->page_table_lock);
765		spin_unlock(&dst->page_table_lock);
766	}
767	return 0;
768
769nomem:
770	return -ENOMEM;
771}
772
773void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
774			    unsigned long end)
775{
776	struct mm_struct *mm = vma->vm_mm;
777	unsigned long address;
778	pte_t *ptep;
779	pte_t pte;
780	struct page *page;
781	struct page *tmp;
782	/*
783	 * A page gathering list, protected by per file i_mmap_lock. The
784	 * lock is used to avoid list corruption from multiple unmapping
785	 * of the same page since we are using page->lru.
786	 */
787	LIST_HEAD(page_list);
788
789	WARN_ON(!is_vm_hugetlb_page(vma));
790	BUG_ON(start & ~HPAGE_MASK);
791	BUG_ON(end & ~HPAGE_MASK);
792
793	spin_lock(&mm->page_table_lock);
794	for (address = start; address < end; address += HPAGE_SIZE) {
795		ptep = huge_pte_offset(mm, address);
796		if (!ptep)
797			continue;
798
799		if (huge_pmd_unshare(mm, &address, ptep))
800			continue;
801
802		pte = huge_ptep_get_and_clear(mm, address, ptep);
803		if (pte_none(pte))
804			continue;
805
806		page = pte_page(pte);
807		if (pte_dirty(pte))
808			set_page_dirty(page);
809		list_add(&page->lru, &page_list);
810	}
811	spin_unlock(&mm->page_table_lock);
812	flush_tlb_range(vma, start, end);
813	list_for_each_entry_safe(page, tmp, &page_list, lru) {
814		list_del(&page->lru);
815		put_page(page);
816	}
817}
818
819void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
820			  unsigned long end)
821{
822	/*
823	 * It is undesirable to test vma->vm_file as it should be non-null
824	 * for valid hugetlb area. However, vm_file will be NULL in the error
825	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
826	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
827	 * to clean up. Since no pte has actually been setup, it is safe to
828	 * do nothing in this case.
829	 */
830	if (vma->vm_file) {
831		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
832		__unmap_hugepage_range(vma, start, end);
833		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
834	}
835}
836
837static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
838			unsigned long address, pte_t *ptep, pte_t pte)
839{
840	struct page *old_page, *new_page;
841	int avoidcopy;
842
843	old_page = pte_page(pte);
844
845	/* If no-one else is actually using this page, avoid the copy
846	 * and just make the page writable */
847	avoidcopy = (page_count(old_page) == 1);
848	if (avoidcopy) {
849		set_huge_ptep_writable(vma, address, ptep);
850		return 0;
851	}
852
853	page_cache_get(old_page);
854	new_page = alloc_huge_page(vma, address);
855
856	if (IS_ERR(new_page)) {
857		page_cache_release(old_page);
858		return -PTR_ERR(new_page);
859	}
860
861	spin_unlock(&mm->page_table_lock);
862	copy_huge_page(new_page, old_page, address, vma);
863	__SetPageUptodate(new_page);
864	spin_lock(&mm->page_table_lock);
865
866	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
867	if (likely(pte_same(*ptep, pte))) {
868		/* Break COW */
869		set_huge_pte_at(mm, address, ptep,
870				make_huge_pte(vma, new_page, 1));
871		/* Make the old page be freed below */
872		new_page = old_page;
873	}
874	page_cache_release(new_page);
875	page_cache_release(old_page);
876	return 0;
877}
878
879static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
880			unsigned long address, pte_t *ptep, int write_access)
881{
882	int ret = VM_FAULT_SIGBUS;
883	unsigned long idx;
884	unsigned long size;
885	struct page *page;
886	struct address_space *mapping;
887	pte_t new_pte;
888
889	mapping = vma->vm_file->f_mapping;
890	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
891		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
892
893	/*
894	 * Use page lock to guard against racing truncation
895	 * before we get page_table_lock.
896	 */
897retry:
898	page = find_lock_page(mapping, idx);
899	if (!page) {
900		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
901		if (idx >= size)
902			goto out;
903		page = alloc_huge_page(vma, address);
904		if (IS_ERR(page)) {
905			ret = -PTR_ERR(page);
906			goto out;
907		}
908		clear_huge_page(page, address);
909		__SetPageUptodate(page);
910
911		if (vma->vm_flags & VM_SHARED) {
912			int err;
913			struct inode *inode = mapping->host;
914
915			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
916			if (err) {
917				put_page(page);
918				if (err == -EEXIST)
919					goto retry;
920				goto out;
921			}
922
923			spin_lock(&inode->i_lock);
924			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
925			spin_unlock(&inode->i_lock);
926		} else
927			lock_page(page);
928	}
929
930	spin_lock(&mm->page_table_lock);
931	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
932	if (idx >= size)
933		goto backout;
934
935	ret = 0;
936	if (!pte_none(*ptep))
937		goto backout;
938
939	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
940				&& (vma->vm_flags & VM_SHARED)));
941	set_huge_pte_at(mm, address, ptep, new_pte);
942
943	if (write_access && !(vma->vm_flags & VM_SHARED)) {
944		/* Optimization, do the COW without a second fault */
945		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
946	}
947
948	spin_unlock(&mm->page_table_lock);
949	unlock_page(page);
950out:
951	return ret;
952
953backout:
954	spin_unlock(&mm->page_table_lock);
955	unlock_page(page);
956	put_page(page);
957	goto out;
958}
959
960int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
961			unsigned long address, int write_access)
962{
963	pte_t *ptep;
964	pte_t entry;
965	int ret;
966	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
967
968	ptep = huge_pte_alloc(mm, address);
969	if (!ptep)
970		return VM_FAULT_OOM;
971
972	/*
973	 * Serialize hugepage allocation and instantiation, so that we don't
974	 * get spurious allocation failures if two CPUs race to instantiate
975	 * the same page in the page cache.
976	 */
977	mutex_lock(&hugetlb_instantiation_mutex);
978	entry = *ptep;
979	if (pte_none(entry)) {
980		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
981		mutex_unlock(&hugetlb_instantiation_mutex);
982		return ret;
983	}
984
985	ret = 0;
986
987	spin_lock(&mm->page_table_lock);
988	/* Check for a racing update before calling hugetlb_cow */
989	if (likely(pte_same(entry, *ptep)))
990		if (write_access && !pte_write(entry))
991			ret = hugetlb_cow(mm, vma, address, ptep, entry);
992	spin_unlock(&mm->page_table_lock);
993	mutex_unlock(&hugetlb_instantiation_mutex);
994
995	return ret;
996}
997
998int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
999			struct page **pages, struct vm_area_struct **vmas,
1000			unsigned long *position, int *length, int i,
1001			int write)
1002{
1003	unsigned long pfn_offset;
1004	unsigned long vaddr = *position;
1005	int remainder = *length;
1006
1007	spin_lock(&mm->page_table_lock);
1008	while (vaddr < vma->vm_end && remainder) {
1009		pte_t *pte;
1010		struct page *page;
1011
1012		/*
1013		 * Some archs (sparc64, sh*) have multiple pte_ts to
1014		 * each hugepage.  We have to make * sure we get the
1015		 * first, for the page indexing below to work.
1016		 */
1017		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1018
1019		if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1020			int ret;
1021
1022			spin_unlock(&mm->page_table_lock);
1023			ret = hugetlb_fault(mm, vma, vaddr, write);
1024			spin_lock(&mm->page_table_lock);
1025			if (!(ret & VM_FAULT_ERROR))
1026				continue;
1027
1028			remainder = 0;
1029			if (!i)
1030				i = -EFAULT;
1031			break;
1032		}
1033
1034		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1035		page = pte_page(*pte);
1036same_page:
1037		if (pages) {
1038			get_page(page);
1039			pages[i] = page + pfn_offset;
1040		}
1041
1042		if (vmas)
1043			vmas[i] = vma;
1044
1045		vaddr += PAGE_SIZE;
1046		++pfn_offset;
1047		--remainder;
1048		++i;
1049		if (vaddr < vma->vm_end && remainder &&
1050				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1051			/*
1052			 * We use pfn_offset to avoid touching the pageframes
1053			 * of this compound page.
1054			 */
1055			goto same_page;
1056		}
1057	}
1058	spin_unlock(&mm->page_table_lock);
1059	*length = remainder;
1060	*position = vaddr;
1061
1062	return i;
1063}
1064
1065void hugetlb_change_protection(struct vm_area_struct *vma,
1066		unsigned long address, unsigned long end, pgprot_t newprot)
1067{
1068	struct mm_struct *mm = vma->vm_mm;
1069	unsigned long start = address;
1070	pte_t *ptep;
1071	pte_t pte;
1072
1073	BUG_ON(address >= end);
1074	flush_cache_range(vma, address, end);
1075
1076	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1077	spin_lock(&mm->page_table_lock);
1078	for (; address < end; address += HPAGE_SIZE) {
1079		ptep = huge_pte_offset(mm, address);
1080		if (!ptep)
1081			continue;
1082		if (huge_pmd_unshare(mm, &address, ptep))
1083			continue;
1084		if (!pte_none(*ptep)) {
1085			pte = huge_ptep_get_and_clear(mm, address, ptep);
1086			pte = pte_mkhuge(pte_modify(pte, newprot));
1087			set_huge_pte_at(mm, address, ptep, pte);
1088		}
1089	}
1090	spin_unlock(&mm->page_table_lock);
1091	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1092
1093	flush_tlb_range(vma, start, end);
1094}
1095
1096struct file_region {
1097	struct list_head link;
1098	long from;
1099	long to;
1100};
1101
1102static long region_add(struct list_head *head, long f, long t)
1103{
1104	struct file_region *rg, *nrg, *trg;
1105
1106	/* Locate the region we are either in or before. */
1107	list_for_each_entry(rg, head, link)
1108		if (f <= rg->to)
1109			break;
1110
1111	/* Round our left edge to the current segment if it encloses us. */
1112	if (f > rg->from)
1113		f = rg->from;
1114
1115	/* Check for and consume any regions we now overlap with. */
1116	nrg = rg;
1117	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1118		if (&rg->link == head)
1119			break;
1120		if (rg->from > t)
1121			break;
1122
1123		/* If this area reaches higher then extend our area to
1124		 * include it completely.  If this is not the first area
1125		 * which we intend to reuse, free it. */
1126		if (rg->to > t)
1127			t = rg->to;
1128		if (rg != nrg) {
1129			list_del(&rg->link);
1130			kfree(rg);
1131		}
1132	}
1133	nrg->from = f;
1134	nrg->to = t;
1135	return 0;
1136}
1137
1138static long region_chg(struct list_head *head, long f, long t)
1139{
1140	struct file_region *rg, *nrg;
1141	long chg = 0;
1142
1143	/* Locate the region we are before or in. */
1144	list_for_each_entry(rg, head, link)
1145		if (f <= rg->to)
1146			break;
1147
1148	/* If we are below the current region then a new region is required.
1149	 * Subtle, allocate a new region at the position but make it zero
1150	 * size such that we can guarantee to record the reservation. */
1151	if (&rg->link == head || t < rg->from) {
1152		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1153		if (!nrg)
1154			return -ENOMEM;
1155		nrg->from = f;
1156		nrg->to   = f;
1157		INIT_LIST_HEAD(&nrg->link);
1158		list_add(&nrg->link, rg->link.prev);
1159
1160		return t - f;
1161	}
1162
1163	/* Round our left edge to the current segment if it encloses us. */
1164	if (f > rg->from)
1165		f = rg->from;
1166	chg = t - f;
1167
1168	/* Check for and consume any regions we now overlap with. */
1169	list_for_each_entry(rg, rg->link.prev, link) {
1170		if (&rg->link == head)
1171			break;
1172		if (rg->from > t)
1173			return chg;
1174
1175		/* We overlap with this area, if it extends futher than
1176		 * us then we must extend ourselves.  Account for its
1177		 * existing reservation. */
1178		if (rg->to > t) {
1179			chg += rg->to - t;
1180			t = rg->to;
1181		}
1182		chg -= rg->to - rg->from;
1183	}
1184	return chg;
1185}
1186
1187static long region_truncate(struct list_head *head, long end)
1188{
1189	struct file_region *rg, *trg;
1190	long chg = 0;
1191
1192	/* Locate the region we are either in or before. */
1193	list_for_each_entry(rg, head, link)
1194		if (end <= rg->to)
1195			break;
1196	if (&rg->link == head)
1197		return 0;
1198
1199	/* If we are in the middle of a region then adjust it. */
1200	if (end > rg->from) {
1201		chg = rg->to - end;
1202		rg->to = end;
1203		rg = list_entry(rg->link.next, typeof(*rg), link);
1204	}
1205
1206	/* Drop any remaining regions. */
1207	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1208		if (&rg->link == head)
1209			break;
1210		chg += rg->to - rg->from;
1211		list_del(&rg->link);
1212		kfree(rg);
1213	}
1214	return chg;
1215}
1216
1217static int hugetlb_acct_memory(long delta)
1218{
1219	int ret = -ENOMEM;
1220
1221	spin_lock(&hugetlb_lock);
1222	/*
1223	 * When cpuset is configured, it breaks the strict hugetlb page
1224	 * reservation as the accounting is done on a global variable. Such
1225	 * reservation is completely rubbish in the presence of cpuset because
1226	 * the reservation is not checked against page availability for the
1227	 * current cpuset. Application can still potentially OOM'ed by kernel
1228	 * with lack of free htlb page in cpuset that the task is in.
1229	 * Attempt to enforce strict accounting with cpuset is almost
1230	 * impossible (or too ugly) because cpuset is too fluid that
1231	 * task or memory node can be dynamically moved between cpusets.
1232	 *
1233	 * The change of semantics for shared hugetlb mapping with cpuset is
1234	 * undesirable. However, in order to preserve some of the semantics,
1235	 * we fall back to check against current free page availability as
1236	 * a best attempt and hopefully to minimize the impact of changing
1237	 * semantics that cpuset has.
1238	 */
1239	if (delta > 0) {
1240		if (gather_surplus_pages(delta) < 0)
1241			goto out;
1242
1243		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1244			return_unused_surplus_pages(delta);
1245			goto out;
1246		}
1247	}
1248
1249	ret = 0;
1250	if (delta < 0)
1251		return_unused_surplus_pages((unsigned long) -delta);
1252
1253out:
1254	spin_unlock(&hugetlb_lock);
1255	return ret;
1256}
1257
1258int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1259{
1260	long ret, chg;
1261
1262	chg = region_chg(&inode->i_mapping->private_list, from, to);
1263	if (chg < 0)
1264		return chg;
1265
1266	if (hugetlb_get_quota(inode->i_mapping, chg))
1267		return -ENOSPC;
1268	ret = hugetlb_acct_memory(chg);
1269	if (ret < 0) {
1270		hugetlb_put_quota(inode->i_mapping, chg);
1271		return ret;
1272	}
1273	region_add(&inode->i_mapping->private_list, from, to);
1274	return 0;
1275}
1276
1277void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1278{
1279	long chg = region_truncate(&inode->i_mapping->private_list, offset);
1280
1281	spin_lock(&inode->i_lock);
1282	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1283	spin_unlock(&inode->i_lock);
1284
1285	hugetlb_put_quota(inode->i_mapping, (chg - freed));
1286	hugetlb_acct_memory(-(chg - freed));
1287}
1288