hugetlb.c revision adbe8726dc2a3805630d517270db17e3af86e526
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/io.h>
28
29#include <linux/hugetlb.h>
30#include <linux/node.h>
31#include "internal.h"
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
41__initdata LIST_HEAD(huge_boot_pages);
42
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
46static unsigned long __initdata default_hstate_size;
47
48#define for_each_hstate(h) \
49	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
55
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 *                    across the pages in a mapping.
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * 	down_write(&mm->mmap_sem);
66 * or
67 * 	down_read(&mm->mmap_sem);
68 * 	mutex_lock(&hugetlb_instantiation_mutex);
69 */
70struct file_region {
71	struct list_head link;
72	long from;
73	long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78	struct file_region *rg, *nrg, *trg;
79
80	/* Locate the region we are either in or before. */
81	list_for_each_entry(rg, head, link)
82		if (f <= rg->to)
83			break;
84
85	/* Round our left edge to the current segment if it encloses us. */
86	if (f > rg->from)
87		f = rg->from;
88
89	/* Check for and consume any regions we now overlap with. */
90	nrg = rg;
91	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92		if (&rg->link == head)
93			break;
94		if (rg->from > t)
95			break;
96
97		/* If this area reaches higher then extend our area to
98		 * include it completely.  If this is not the first area
99		 * which we intend to reuse, free it. */
100		if (rg->to > t)
101			t = rg->to;
102		if (rg != nrg) {
103			list_del(&rg->link);
104			kfree(rg);
105		}
106	}
107	nrg->from = f;
108	nrg->to = t;
109	return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114	struct file_region *rg, *nrg;
115	long chg = 0;
116
117	/* Locate the region we are before or in. */
118	list_for_each_entry(rg, head, link)
119		if (f <= rg->to)
120			break;
121
122	/* If we are below the current region then a new region is required.
123	 * Subtle, allocate a new region at the position but make it zero
124	 * size such that we can guarantee to record the reservation. */
125	if (&rg->link == head || t < rg->from) {
126		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127		if (!nrg)
128			return -ENOMEM;
129		nrg->from = f;
130		nrg->to   = f;
131		INIT_LIST_HEAD(&nrg->link);
132		list_add(&nrg->link, rg->link.prev);
133
134		return t - f;
135	}
136
137	/* Round our left edge to the current segment if it encloses us. */
138	if (f > rg->from)
139		f = rg->from;
140	chg = t - f;
141
142	/* Check for and consume any regions we now overlap with. */
143	list_for_each_entry(rg, rg->link.prev, link) {
144		if (&rg->link == head)
145			break;
146		if (rg->from > t)
147			return chg;
148
149		/* We overlap with this area, if it extends futher than
150		 * us then we must extend ourselves.  Account for its
151		 * existing reservation. */
152		if (rg->to > t) {
153			chg += rg->to - t;
154			t = rg->to;
155		}
156		chg -= rg->to - rg->from;
157	}
158	return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163	struct file_region *rg, *trg;
164	long chg = 0;
165
166	/* Locate the region we are either in or before. */
167	list_for_each_entry(rg, head, link)
168		if (end <= rg->to)
169			break;
170	if (&rg->link == head)
171		return 0;
172
173	/* If we are in the middle of a region then adjust it. */
174	if (end > rg->from) {
175		chg = rg->to - end;
176		rg->to = end;
177		rg = list_entry(rg->link.next, typeof(*rg), link);
178	}
179
180	/* Drop any remaining regions. */
181	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182		if (&rg->link == head)
183			break;
184		chg += rg->to - rg->from;
185		list_del(&rg->link);
186		kfree(rg);
187	}
188	return chg;
189}
190
191static long region_count(struct list_head *head, long f, long t)
192{
193	struct file_region *rg;
194	long chg = 0;
195
196	/* Locate each segment we overlap with, and count that overlap. */
197	list_for_each_entry(rg, head, link) {
198		int seg_from;
199		int seg_to;
200
201		if (rg->to <= f)
202			continue;
203		if (rg->from >= t)
204			break;
205
206		seg_from = max(rg->from, f);
207		seg_to = min(rg->to, t);
208
209		chg += seg_to - seg_from;
210	}
211
212	return chg;
213}
214
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220			struct vm_area_struct *vma, unsigned long address)
221{
222	return ((address - vma->vm_start) >> huge_page_shift(h)) +
223			(vma->vm_pgoff >> huge_page_order(h));
224}
225
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227				     unsigned long address)
228{
229	return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238	struct hstate *hstate;
239
240	if (!is_vm_hugetlb_page(vma))
241		return PAGE_SIZE;
242
243	hstate = hstate_vma(vma);
244
245	return 1UL << (hstate->order + PAGE_SHIFT);
246}
247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258	return vma_kernel_pagesize(vma);
259}
260#endif
261
262/*
263 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER    (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping.  A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated.  A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
289 */
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292	return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296							unsigned long value)
297{
298	vma->vm_private_data = (void *)value;
299}
300
301struct resv_map {
302	struct kref refs;
303	struct list_head regions;
304};
305
306static struct resv_map *resv_map_alloc(void)
307{
308	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309	if (!resv_map)
310		return NULL;
311
312	kref_init(&resv_map->refs);
313	INIT_LIST_HEAD(&resv_map->regions);
314
315	return resv_map;
316}
317
318static void resv_map_release(struct kref *ref)
319{
320	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322	/* Clear out any active regions before we release the map. */
323	region_truncate(&resv_map->regions, 0);
324	kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328{
329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330	if (!(vma->vm_flags & VM_MAYSHARE))
331		return (struct resv_map *)(get_vma_private_data(vma) &
332							~HPAGE_RESV_MASK);
333	return NULL;
334}
335
336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337{
338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341	set_vma_private_data(vma, (get_vma_private_data(vma) &
342				HPAGE_RESV_MASK) | (unsigned long)map);
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
347	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357	return (get_vma_private_data(vma) & flag) != 0;
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
361static void decrement_hugepage_resv_vma(struct hstate *h,
362			struct vm_area_struct *vma)
363{
364	if (vma->vm_flags & VM_NORESERVE)
365		return;
366
367	if (vma->vm_flags & VM_MAYSHARE) {
368		/* Shared mappings always use reserves */
369		h->resv_huge_pages--;
370	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371		/*
372		 * Only the process that called mmap() has reserves for
373		 * private mappings.
374		 */
375		h->resv_huge_pages--;
376	}
377}
378
379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383	if (!(vma->vm_flags & VM_MAYSHARE))
384		vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
388static int vma_has_reserves(struct vm_area_struct *vma)
389{
390	if (vma->vm_flags & VM_MAYSHARE)
391		return 1;
392	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393		return 1;
394	return 0;
395}
396
397static void copy_gigantic_page(struct page *dst, struct page *src)
398{
399	int i;
400	struct hstate *h = page_hstate(src);
401	struct page *dst_base = dst;
402	struct page *src_base = src;
403
404	for (i = 0; i < pages_per_huge_page(h); ) {
405		cond_resched();
406		copy_highpage(dst, src);
407
408		i++;
409		dst = mem_map_next(dst, dst_base, i);
410		src = mem_map_next(src, src_base, i);
411	}
412}
413
414void copy_huge_page(struct page *dst, struct page *src)
415{
416	int i;
417	struct hstate *h = page_hstate(src);
418
419	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420		copy_gigantic_page(dst, src);
421		return;
422	}
423
424	might_sleep();
425	for (i = 0; i < pages_per_huge_page(h); i++) {
426		cond_resched();
427		copy_highpage(dst + i, src + i);
428	}
429}
430
431static void enqueue_huge_page(struct hstate *h, struct page *page)
432{
433	int nid = page_to_nid(page);
434	list_add(&page->lru, &h->hugepage_freelists[nid]);
435	h->free_huge_pages++;
436	h->free_huge_pages_node[nid]++;
437}
438
439static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440{
441	struct page *page;
442
443	if (list_empty(&h->hugepage_freelists[nid]))
444		return NULL;
445	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446	list_del(&page->lru);
447	set_page_refcounted(page);
448	h->free_huge_pages--;
449	h->free_huge_pages_node[nid]--;
450	return page;
451}
452
453static struct page *dequeue_huge_page_vma(struct hstate *h,
454				struct vm_area_struct *vma,
455				unsigned long address, int avoid_reserve)
456{
457	struct page *page = NULL;
458	struct mempolicy *mpol;
459	nodemask_t *nodemask;
460	struct zonelist *zonelist;
461	struct zone *zone;
462	struct zoneref *z;
463
464	get_mems_allowed();
465	zonelist = huge_zonelist(vma, address,
466					htlb_alloc_mask, &mpol, &nodemask);
467	/*
468	 * A child process with MAP_PRIVATE mappings created by their parent
469	 * have no page reserves. This check ensures that reservations are
470	 * not "stolen". The child may still get SIGKILLed
471	 */
472	if (!vma_has_reserves(vma) &&
473			h->free_huge_pages - h->resv_huge_pages == 0)
474		goto err;
475
476	/* If reserves cannot be used, ensure enough pages are in the pool */
477	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478		goto err;;
479
480	for_each_zone_zonelist_nodemask(zone, z, zonelist,
481						MAX_NR_ZONES - 1, nodemask) {
482		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483			page = dequeue_huge_page_node(h, zone_to_nid(zone));
484			if (page) {
485				if (!avoid_reserve)
486					decrement_hugepage_resv_vma(h, vma);
487				break;
488			}
489		}
490	}
491err:
492	mpol_cond_put(mpol);
493	put_mems_allowed();
494	return page;
495}
496
497static void update_and_free_page(struct hstate *h, struct page *page)
498{
499	int i;
500
501	VM_BUG_ON(h->order >= MAX_ORDER);
502
503	h->nr_huge_pages--;
504	h->nr_huge_pages_node[page_to_nid(page)]--;
505	for (i = 0; i < pages_per_huge_page(h); i++) {
506		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
507				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
508				1 << PG_private | 1<< PG_writeback);
509	}
510	set_compound_page_dtor(page, NULL);
511	set_page_refcounted(page);
512	arch_release_hugepage(page);
513	__free_pages(page, huge_page_order(h));
514}
515
516struct hstate *size_to_hstate(unsigned long size)
517{
518	struct hstate *h;
519
520	for_each_hstate(h) {
521		if (huge_page_size(h) == size)
522			return h;
523	}
524	return NULL;
525}
526
527static void free_huge_page(struct page *page)
528{
529	/*
530	 * Can't pass hstate in here because it is called from the
531	 * compound page destructor.
532	 */
533	struct hstate *h = page_hstate(page);
534	int nid = page_to_nid(page);
535	struct address_space *mapping;
536
537	mapping = (struct address_space *) page_private(page);
538	set_page_private(page, 0);
539	page->mapping = NULL;
540	BUG_ON(page_count(page));
541	BUG_ON(page_mapcount(page));
542	INIT_LIST_HEAD(&page->lru);
543
544	spin_lock(&hugetlb_lock);
545	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
546		update_and_free_page(h, page);
547		h->surplus_huge_pages--;
548		h->surplus_huge_pages_node[nid]--;
549	} else {
550		enqueue_huge_page(h, page);
551	}
552	spin_unlock(&hugetlb_lock);
553	if (mapping)
554		hugetlb_put_quota(mapping, 1);
555}
556
557static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
558{
559	set_compound_page_dtor(page, free_huge_page);
560	spin_lock(&hugetlb_lock);
561	h->nr_huge_pages++;
562	h->nr_huge_pages_node[nid]++;
563	spin_unlock(&hugetlb_lock);
564	put_page(page); /* free it into the hugepage allocator */
565}
566
567static void prep_compound_gigantic_page(struct page *page, unsigned long order)
568{
569	int i;
570	int nr_pages = 1 << order;
571	struct page *p = page + 1;
572
573	/* we rely on prep_new_huge_page to set the destructor */
574	set_compound_order(page, order);
575	__SetPageHead(page);
576	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
577		__SetPageTail(p);
578		p->first_page = page;
579	}
580}
581
582int PageHuge(struct page *page)
583{
584	compound_page_dtor *dtor;
585
586	if (!PageCompound(page))
587		return 0;
588
589	page = compound_head(page);
590	dtor = get_compound_page_dtor(page);
591
592	return dtor == free_huge_page;
593}
594
595EXPORT_SYMBOL_GPL(PageHuge);
596
597static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
598{
599	struct page *page;
600
601	if (h->order >= MAX_ORDER)
602		return NULL;
603
604	page = alloc_pages_exact_node(nid,
605		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
606						__GFP_REPEAT|__GFP_NOWARN,
607		huge_page_order(h));
608	if (page) {
609		if (arch_prepare_hugepage(page)) {
610			__free_pages(page, huge_page_order(h));
611			return NULL;
612		}
613		prep_new_huge_page(h, page, nid);
614	}
615
616	return page;
617}
618
619/*
620 * common helper functions for hstate_next_node_to_{alloc|free}.
621 * We may have allocated or freed a huge page based on a different
622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623 * be outside of *nodes_allowed.  Ensure that we use an allowed
624 * node for alloc or free.
625 */
626static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
627{
628	nid = next_node(nid, *nodes_allowed);
629	if (nid == MAX_NUMNODES)
630		nid = first_node(*nodes_allowed);
631	VM_BUG_ON(nid >= MAX_NUMNODES);
632
633	return nid;
634}
635
636static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
637{
638	if (!node_isset(nid, *nodes_allowed))
639		nid = next_node_allowed(nid, nodes_allowed);
640	return nid;
641}
642
643/*
644 * returns the previously saved node ["this node"] from which to
645 * allocate a persistent huge page for the pool and advance the
646 * next node from which to allocate, handling wrap at end of node
647 * mask.
648 */
649static int hstate_next_node_to_alloc(struct hstate *h,
650					nodemask_t *nodes_allowed)
651{
652	int nid;
653
654	VM_BUG_ON(!nodes_allowed);
655
656	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
657	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
658
659	return nid;
660}
661
662static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
663{
664	struct page *page;
665	int start_nid;
666	int next_nid;
667	int ret = 0;
668
669	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
670	next_nid = start_nid;
671
672	do {
673		page = alloc_fresh_huge_page_node(h, next_nid);
674		if (page) {
675			ret = 1;
676			break;
677		}
678		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
679	} while (next_nid != start_nid);
680
681	if (ret)
682		count_vm_event(HTLB_BUDDY_PGALLOC);
683	else
684		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
685
686	return ret;
687}
688
689/*
690 * helper for free_pool_huge_page() - return the previously saved
691 * node ["this node"] from which to free a huge page.  Advance the
692 * next node id whether or not we find a free huge page to free so
693 * that the next attempt to free addresses the next node.
694 */
695static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
696{
697	int nid;
698
699	VM_BUG_ON(!nodes_allowed);
700
701	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
702	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
703
704	return nid;
705}
706
707/*
708 * Free huge page from pool from next node to free.
709 * Attempt to keep persistent huge pages more or less
710 * balanced over allowed nodes.
711 * Called with hugetlb_lock locked.
712 */
713static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
714							 bool acct_surplus)
715{
716	int start_nid;
717	int next_nid;
718	int ret = 0;
719
720	start_nid = hstate_next_node_to_free(h, nodes_allowed);
721	next_nid = start_nid;
722
723	do {
724		/*
725		 * If we're returning unused surplus pages, only examine
726		 * nodes with surplus pages.
727		 */
728		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
729		    !list_empty(&h->hugepage_freelists[next_nid])) {
730			struct page *page =
731				list_entry(h->hugepage_freelists[next_nid].next,
732					  struct page, lru);
733			list_del(&page->lru);
734			h->free_huge_pages--;
735			h->free_huge_pages_node[next_nid]--;
736			if (acct_surplus) {
737				h->surplus_huge_pages--;
738				h->surplus_huge_pages_node[next_nid]--;
739			}
740			update_and_free_page(h, page);
741			ret = 1;
742			break;
743		}
744		next_nid = hstate_next_node_to_free(h, nodes_allowed);
745	} while (next_nid != start_nid);
746
747	return ret;
748}
749
750static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
751{
752	struct page *page;
753	unsigned int r_nid;
754
755	if (h->order >= MAX_ORDER)
756		return NULL;
757
758	/*
759	 * Assume we will successfully allocate the surplus page to
760	 * prevent racing processes from causing the surplus to exceed
761	 * overcommit
762	 *
763	 * This however introduces a different race, where a process B
764	 * tries to grow the static hugepage pool while alloc_pages() is
765	 * called by process A. B will only examine the per-node
766	 * counters in determining if surplus huge pages can be
767	 * converted to normal huge pages in adjust_pool_surplus(). A
768	 * won't be able to increment the per-node counter, until the
769	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
770	 * no more huge pages can be converted from surplus to normal
771	 * state (and doesn't try to convert again). Thus, we have a
772	 * case where a surplus huge page exists, the pool is grown, and
773	 * the surplus huge page still exists after, even though it
774	 * should just have been converted to a normal huge page. This
775	 * does not leak memory, though, as the hugepage will be freed
776	 * once it is out of use. It also does not allow the counters to
777	 * go out of whack in adjust_pool_surplus() as we don't modify
778	 * the node values until we've gotten the hugepage and only the
779	 * per-node value is checked there.
780	 */
781	spin_lock(&hugetlb_lock);
782	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
783		spin_unlock(&hugetlb_lock);
784		return NULL;
785	} else {
786		h->nr_huge_pages++;
787		h->surplus_huge_pages++;
788	}
789	spin_unlock(&hugetlb_lock);
790
791	if (nid == NUMA_NO_NODE)
792		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
793				   __GFP_REPEAT|__GFP_NOWARN,
794				   huge_page_order(h));
795	else
796		page = alloc_pages_exact_node(nid,
797			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
798			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
799
800	if (page && arch_prepare_hugepage(page)) {
801		__free_pages(page, huge_page_order(h));
802		return NULL;
803	}
804
805	spin_lock(&hugetlb_lock);
806	if (page) {
807		r_nid = page_to_nid(page);
808		set_compound_page_dtor(page, free_huge_page);
809		/*
810		 * We incremented the global counters already
811		 */
812		h->nr_huge_pages_node[r_nid]++;
813		h->surplus_huge_pages_node[r_nid]++;
814		__count_vm_event(HTLB_BUDDY_PGALLOC);
815	} else {
816		h->nr_huge_pages--;
817		h->surplus_huge_pages--;
818		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
819	}
820	spin_unlock(&hugetlb_lock);
821
822	return page;
823}
824
825/*
826 * This allocation function is useful in the context where vma is irrelevant.
827 * E.g. soft-offlining uses this function because it only cares physical
828 * address of error page.
829 */
830struct page *alloc_huge_page_node(struct hstate *h, int nid)
831{
832	struct page *page;
833
834	spin_lock(&hugetlb_lock);
835	page = dequeue_huge_page_node(h, nid);
836	spin_unlock(&hugetlb_lock);
837
838	if (!page)
839		page = alloc_buddy_huge_page(h, nid);
840
841	return page;
842}
843
844/*
845 * Increase the hugetlb pool such that it can accomodate a reservation
846 * of size 'delta'.
847 */
848static int gather_surplus_pages(struct hstate *h, int delta)
849{
850	struct list_head surplus_list;
851	struct page *page, *tmp;
852	int ret, i;
853	int needed, allocated;
854
855	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
856	if (needed <= 0) {
857		h->resv_huge_pages += delta;
858		return 0;
859	}
860
861	allocated = 0;
862	INIT_LIST_HEAD(&surplus_list);
863
864	ret = -ENOMEM;
865retry:
866	spin_unlock(&hugetlb_lock);
867	for (i = 0; i < needed; i++) {
868		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
869		if (!page)
870			/*
871			 * We were not able to allocate enough pages to
872			 * satisfy the entire reservation so we free what
873			 * we've allocated so far.
874			 */
875			goto free;
876
877		list_add(&page->lru, &surplus_list);
878	}
879	allocated += needed;
880
881	/*
882	 * After retaking hugetlb_lock, we need to recalculate 'needed'
883	 * because either resv_huge_pages or free_huge_pages may have changed.
884	 */
885	spin_lock(&hugetlb_lock);
886	needed = (h->resv_huge_pages + delta) -
887			(h->free_huge_pages + allocated);
888	if (needed > 0)
889		goto retry;
890
891	/*
892	 * The surplus_list now contains _at_least_ the number of extra pages
893	 * needed to accomodate the reservation.  Add the appropriate number
894	 * of pages to the hugetlb pool and free the extras back to the buddy
895	 * allocator.  Commit the entire reservation here to prevent another
896	 * process from stealing the pages as they are added to the pool but
897	 * before they are reserved.
898	 */
899	needed += allocated;
900	h->resv_huge_pages += delta;
901	ret = 0;
902
903	spin_unlock(&hugetlb_lock);
904	/* Free the needed pages to the hugetlb pool */
905	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906		if ((--needed) < 0)
907			break;
908		list_del(&page->lru);
909		/*
910		 * This page is now managed by the hugetlb allocator and has
911		 * no users -- drop the buddy allocator's reference.
912		 */
913		put_page_testzero(page);
914		VM_BUG_ON(page_count(page));
915		enqueue_huge_page(h, page);
916	}
917
918	/* Free unnecessary surplus pages to the buddy allocator */
919free:
920	if (!list_empty(&surplus_list)) {
921		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922			list_del(&page->lru);
923			put_page(page);
924		}
925	}
926	spin_lock(&hugetlb_lock);
927
928	return ret;
929}
930
931/*
932 * When releasing a hugetlb pool reservation, any surplus pages that were
933 * allocated to satisfy the reservation must be explicitly freed if they were
934 * never used.
935 * Called with hugetlb_lock held.
936 */
937static void return_unused_surplus_pages(struct hstate *h,
938					unsigned long unused_resv_pages)
939{
940	unsigned long nr_pages;
941
942	/* Uncommit the reservation */
943	h->resv_huge_pages -= unused_resv_pages;
944
945	/* Cannot return gigantic pages currently */
946	if (h->order >= MAX_ORDER)
947		return;
948
949	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
950
951	/*
952	 * We want to release as many surplus pages as possible, spread
953	 * evenly across all nodes with memory. Iterate across these nodes
954	 * until we can no longer free unreserved surplus pages. This occurs
955	 * when the nodes with surplus pages have no free pages.
956	 * free_pool_huge_page() will balance the the freed pages across the
957	 * on-line nodes with memory and will handle the hstate accounting.
958	 */
959	while (nr_pages--) {
960		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
961			break;
962	}
963}
964
965/*
966 * Determine if the huge page at addr within the vma has an associated
967 * reservation.  Where it does not we will need to logically increase
968 * reservation and actually increase quota before an allocation can occur.
969 * Where any new reservation would be required the reservation change is
970 * prepared, but not committed.  Once the page has been quota'd allocated
971 * an instantiated the change should be committed via vma_commit_reservation.
972 * No action is required on failure.
973 */
974static long vma_needs_reservation(struct hstate *h,
975			struct vm_area_struct *vma, unsigned long addr)
976{
977	struct address_space *mapping = vma->vm_file->f_mapping;
978	struct inode *inode = mapping->host;
979
980	if (vma->vm_flags & VM_MAYSHARE) {
981		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982		return region_chg(&inode->i_mapping->private_list,
983							idx, idx + 1);
984
985	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
986		return 1;
987
988	} else  {
989		long err;
990		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991		struct resv_map *reservations = vma_resv_map(vma);
992
993		err = region_chg(&reservations->regions, idx, idx + 1);
994		if (err < 0)
995			return err;
996		return 0;
997	}
998}
999static void vma_commit_reservation(struct hstate *h,
1000			struct vm_area_struct *vma, unsigned long addr)
1001{
1002	struct address_space *mapping = vma->vm_file->f_mapping;
1003	struct inode *inode = mapping->host;
1004
1005	if (vma->vm_flags & VM_MAYSHARE) {
1006		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1008
1009	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011		struct resv_map *reservations = vma_resv_map(vma);
1012
1013		/* Mark this page used in the map. */
1014		region_add(&reservations->regions, idx, idx + 1);
1015	}
1016}
1017
1018static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019				    unsigned long addr, int avoid_reserve)
1020{
1021	struct hstate *h = hstate_vma(vma);
1022	struct page *page;
1023	struct address_space *mapping = vma->vm_file->f_mapping;
1024	struct inode *inode = mapping->host;
1025	long chg;
1026
1027	/*
1028	 * Processes that did not create the mapping will have no reserves and
1029	 * will not have accounted against quota. Check that the quota can be
1030	 * made before satisfying the allocation
1031	 * MAP_NORESERVE mappings may also need pages and quota allocated
1032	 * if no reserve mapping overlaps.
1033	 */
1034	chg = vma_needs_reservation(h, vma, addr);
1035	if (chg < 0)
1036		return ERR_PTR(chg);
1037	if (chg)
1038		if (hugetlb_get_quota(inode->i_mapping, chg))
1039			return ERR_PTR(-ENOSPC);
1040
1041	spin_lock(&hugetlb_lock);
1042	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1043	spin_unlock(&hugetlb_lock);
1044
1045	if (!page) {
1046		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1047		if (!page) {
1048			hugetlb_put_quota(inode->i_mapping, chg);
1049			return ERR_PTR(-VM_FAULT_SIGBUS);
1050		}
1051	}
1052
1053	set_page_private(page, (unsigned long) mapping);
1054
1055	vma_commit_reservation(h, vma, addr);
1056
1057	return page;
1058}
1059
1060int __weak alloc_bootmem_huge_page(struct hstate *h)
1061{
1062	struct huge_bootmem_page *m;
1063	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1064
1065	while (nr_nodes) {
1066		void *addr;
1067
1068		addr = __alloc_bootmem_node_nopanic(
1069				NODE_DATA(hstate_next_node_to_alloc(h,
1070						&node_states[N_HIGH_MEMORY])),
1071				huge_page_size(h), huge_page_size(h), 0);
1072
1073		if (addr) {
1074			/*
1075			 * Use the beginning of the huge page to store the
1076			 * huge_bootmem_page struct (until gather_bootmem
1077			 * puts them into the mem_map).
1078			 */
1079			m = addr;
1080			goto found;
1081		}
1082		nr_nodes--;
1083	}
1084	return 0;
1085
1086found:
1087	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1088	/* Put them into a private list first because mem_map is not up yet */
1089	list_add(&m->list, &huge_boot_pages);
1090	m->hstate = h;
1091	return 1;
1092}
1093
1094static void prep_compound_huge_page(struct page *page, int order)
1095{
1096	if (unlikely(order > (MAX_ORDER - 1)))
1097		prep_compound_gigantic_page(page, order);
1098	else
1099		prep_compound_page(page, order);
1100}
1101
1102/* Put bootmem huge pages into the standard lists after mem_map is up */
1103static void __init gather_bootmem_prealloc(void)
1104{
1105	struct huge_bootmem_page *m;
1106
1107	list_for_each_entry(m, &huge_boot_pages, list) {
1108		struct page *page = virt_to_page(m);
1109		struct hstate *h = m->hstate;
1110		__ClearPageReserved(page);
1111		WARN_ON(page_count(page) != 1);
1112		prep_compound_huge_page(page, h->order);
1113		prep_new_huge_page(h, page, page_to_nid(page));
1114	}
1115}
1116
1117static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1118{
1119	unsigned long i;
1120
1121	for (i = 0; i < h->max_huge_pages; ++i) {
1122		if (h->order >= MAX_ORDER) {
1123			if (!alloc_bootmem_huge_page(h))
1124				break;
1125		} else if (!alloc_fresh_huge_page(h,
1126					 &node_states[N_HIGH_MEMORY]))
1127			break;
1128	}
1129	h->max_huge_pages = i;
1130}
1131
1132static void __init hugetlb_init_hstates(void)
1133{
1134	struct hstate *h;
1135
1136	for_each_hstate(h) {
1137		/* oversize hugepages were init'ed in early boot */
1138		if (h->order < MAX_ORDER)
1139			hugetlb_hstate_alloc_pages(h);
1140	}
1141}
1142
1143static char * __init memfmt(char *buf, unsigned long n)
1144{
1145	if (n >= (1UL << 30))
1146		sprintf(buf, "%lu GB", n >> 30);
1147	else if (n >= (1UL << 20))
1148		sprintf(buf, "%lu MB", n >> 20);
1149	else
1150		sprintf(buf, "%lu KB", n >> 10);
1151	return buf;
1152}
1153
1154static void __init report_hugepages(void)
1155{
1156	struct hstate *h;
1157
1158	for_each_hstate(h) {
1159		char buf[32];
1160		printk(KERN_INFO "HugeTLB registered %s page size, "
1161				 "pre-allocated %ld pages\n",
1162			memfmt(buf, huge_page_size(h)),
1163			h->free_huge_pages);
1164	}
1165}
1166
1167#ifdef CONFIG_HIGHMEM
1168static void try_to_free_low(struct hstate *h, unsigned long count,
1169						nodemask_t *nodes_allowed)
1170{
1171	int i;
1172
1173	if (h->order >= MAX_ORDER)
1174		return;
1175
1176	for_each_node_mask(i, *nodes_allowed) {
1177		struct page *page, *next;
1178		struct list_head *freel = &h->hugepage_freelists[i];
1179		list_for_each_entry_safe(page, next, freel, lru) {
1180			if (count >= h->nr_huge_pages)
1181				return;
1182			if (PageHighMem(page))
1183				continue;
1184			list_del(&page->lru);
1185			update_and_free_page(h, page);
1186			h->free_huge_pages--;
1187			h->free_huge_pages_node[page_to_nid(page)]--;
1188		}
1189	}
1190}
1191#else
1192static inline void try_to_free_low(struct hstate *h, unsigned long count,
1193						nodemask_t *nodes_allowed)
1194{
1195}
1196#endif
1197
1198/*
1199 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1200 * balanced by operating on them in a round-robin fashion.
1201 * Returns 1 if an adjustment was made.
1202 */
1203static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1204				int delta)
1205{
1206	int start_nid, next_nid;
1207	int ret = 0;
1208
1209	VM_BUG_ON(delta != -1 && delta != 1);
1210
1211	if (delta < 0)
1212		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1213	else
1214		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1215	next_nid = start_nid;
1216
1217	do {
1218		int nid = next_nid;
1219		if (delta < 0)  {
1220			/*
1221			 * To shrink on this node, there must be a surplus page
1222			 */
1223			if (!h->surplus_huge_pages_node[nid]) {
1224				next_nid = hstate_next_node_to_alloc(h,
1225								nodes_allowed);
1226				continue;
1227			}
1228		}
1229		if (delta > 0) {
1230			/*
1231			 * Surplus cannot exceed the total number of pages
1232			 */
1233			if (h->surplus_huge_pages_node[nid] >=
1234						h->nr_huge_pages_node[nid]) {
1235				next_nid = hstate_next_node_to_free(h,
1236								nodes_allowed);
1237				continue;
1238			}
1239		}
1240
1241		h->surplus_huge_pages += delta;
1242		h->surplus_huge_pages_node[nid] += delta;
1243		ret = 1;
1244		break;
1245	} while (next_nid != start_nid);
1246
1247	return ret;
1248}
1249
1250#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1251static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1252						nodemask_t *nodes_allowed)
1253{
1254	unsigned long min_count, ret;
1255
1256	if (h->order >= MAX_ORDER)
1257		return h->max_huge_pages;
1258
1259	/*
1260	 * Increase the pool size
1261	 * First take pages out of surplus state.  Then make up the
1262	 * remaining difference by allocating fresh huge pages.
1263	 *
1264	 * We might race with alloc_buddy_huge_page() here and be unable
1265	 * to convert a surplus huge page to a normal huge page. That is
1266	 * not critical, though, it just means the overall size of the
1267	 * pool might be one hugepage larger than it needs to be, but
1268	 * within all the constraints specified by the sysctls.
1269	 */
1270	spin_lock(&hugetlb_lock);
1271	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1272		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1273			break;
1274	}
1275
1276	while (count > persistent_huge_pages(h)) {
1277		/*
1278		 * If this allocation races such that we no longer need the
1279		 * page, free_huge_page will handle it by freeing the page
1280		 * and reducing the surplus.
1281		 */
1282		spin_unlock(&hugetlb_lock);
1283		ret = alloc_fresh_huge_page(h, nodes_allowed);
1284		spin_lock(&hugetlb_lock);
1285		if (!ret)
1286			goto out;
1287
1288		/* Bail for signals. Probably ctrl-c from user */
1289		if (signal_pending(current))
1290			goto out;
1291	}
1292
1293	/*
1294	 * Decrease the pool size
1295	 * First return free pages to the buddy allocator (being careful
1296	 * to keep enough around to satisfy reservations).  Then place
1297	 * pages into surplus state as needed so the pool will shrink
1298	 * to the desired size as pages become free.
1299	 *
1300	 * By placing pages into the surplus state independent of the
1301	 * overcommit value, we are allowing the surplus pool size to
1302	 * exceed overcommit. There are few sane options here. Since
1303	 * alloc_buddy_huge_page() is checking the global counter,
1304	 * though, we'll note that we're not allowed to exceed surplus
1305	 * and won't grow the pool anywhere else. Not until one of the
1306	 * sysctls are changed, or the surplus pages go out of use.
1307	 */
1308	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1309	min_count = max(count, min_count);
1310	try_to_free_low(h, min_count, nodes_allowed);
1311	while (min_count < persistent_huge_pages(h)) {
1312		if (!free_pool_huge_page(h, nodes_allowed, 0))
1313			break;
1314	}
1315	while (count < persistent_huge_pages(h)) {
1316		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1317			break;
1318	}
1319out:
1320	ret = persistent_huge_pages(h);
1321	spin_unlock(&hugetlb_lock);
1322	return ret;
1323}
1324
1325#define HSTATE_ATTR_RO(_name) \
1326	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1327
1328#define HSTATE_ATTR(_name) \
1329	static struct kobj_attribute _name##_attr = \
1330		__ATTR(_name, 0644, _name##_show, _name##_store)
1331
1332static struct kobject *hugepages_kobj;
1333static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1334
1335static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1336
1337static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1338{
1339	int i;
1340
1341	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1342		if (hstate_kobjs[i] == kobj) {
1343			if (nidp)
1344				*nidp = NUMA_NO_NODE;
1345			return &hstates[i];
1346		}
1347
1348	return kobj_to_node_hstate(kobj, nidp);
1349}
1350
1351static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1352					struct kobj_attribute *attr, char *buf)
1353{
1354	struct hstate *h;
1355	unsigned long nr_huge_pages;
1356	int nid;
1357
1358	h = kobj_to_hstate(kobj, &nid);
1359	if (nid == NUMA_NO_NODE)
1360		nr_huge_pages = h->nr_huge_pages;
1361	else
1362		nr_huge_pages = h->nr_huge_pages_node[nid];
1363
1364	return sprintf(buf, "%lu\n", nr_huge_pages);
1365}
1366
1367static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1368			struct kobject *kobj, struct kobj_attribute *attr,
1369			const char *buf, size_t len)
1370{
1371	int err;
1372	int nid;
1373	unsigned long count;
1374	struct hstate *h;
1375	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1376
1377	err = strict_strtoul(buf, 10, &count);
1378	if (err) {
1379		err = 0;		/* This seems wrong */
1380		goto out;
1381	}
1382
1383	h = kobj_to_hstate(kobj, &nid);
1384	if (h->order >= MAX_ORDER) {
1385		err = -EINVAL;
1386		goto out;
1387	}
1388
1389	if (nid == NUMA_NO_NODE) {
1390		/*
1391		 * global hstate attribute
1392		 */
1393		if (!(obey_mempolicy &&
1394				init_nodemask_of_mempolicy(nodes_allowed))) {
1395			NODEMASK_FREE(nodes_allowed);
1396			nodes_allowed = &node_states[N_HIGH_MEMORY];
1397		}
1398	} else if (nodes_allowed) {
1399		/*
1400		 * per node hstate attribute: adjust count to global,
1401		 * but restrict alloc/free to the specified node.
1402		 */
1403		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1404		init_nodemask_of_node(nodes_allowed, nid);
1405	} else
1406		nodes_allowed = &node_states[N_HIGH_MEMORY];
1407
1408	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1409
1410	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1411		NODEMASK_FREE(nodes_allowed);
1412
1413	return len;
1414out:
1415	NODEMASK_FREE(nodes_allowed);
1416	return err;
1417}
1418
1419static ssize_t nr_hugepages_show(struct kobject *kobj,
1420				       struct kobj_attribute *attr, char *buf)
1421{
1422	return nr_hugepages_show_common(kobj, attr, buf);
1423}
1424
1425static ssize_t nr_hugepages_store(struct kobject *kobj,
1426	       struct kobj_attribute *attr, const char *buf, size_t len)
1427{
1428	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1429}
1430HSTATE_ATTR(nr_hugepages);
1431
1432#ifdef CONFIG_NUMA
1433
1434/*
1435 * hstate attribute for optionally mempolicy-based constraint on persistent
1436 * huge page alloc/free.
1437 */
1438static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1439				       struct kobj_attribute *attr, char *buf)
1440{
1441	return nr_hugepages_show_common(kobj, attr, buf);
1442}
1443
1444static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1445	       struct kobj_attribute *attr, const char *buf, size_t len)
1446{
1447	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1448}
1449HSTATE_ATTR(nr_hugepages_mempolicy);
1450#endif
1451
1452
1453static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1454					struct kobj_attribute *attr, char *buf)
1455{
1456	struct hstate *h = kobj_to_hstate(kobj, NULL);
1457	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1458}
1459
1460static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1461		struct kobj_attribute *attr, const char *buf, size_t count)
1462{
1463	int err;
1464	unsigned long input;
1465	struct hstate *h = kobj_to_hstate(kobj, NULL);
1466
1467	if (h->order >= MAX_ORDER)
1468		return -EINVAL;
1469
1470	err = strict_strtoul(buf, 10, &input);
1471	if (err)
1472		return 0;
1473
1474	spin_lock(&hugetlb_lock);
1475	h->nr_overcommit_huge_pages = input;
1476	spin_unlock(&hugetlb_lock);
1477
1478	return count;
1479}
1480HSTATE_ATTR(nr_overcommit_hugepages);
1481
1482static ssize_t free_hugepages_show(struct kobject *kobj,
1483					struct kobj_attribute *attr, char *buf)
1484{
1485	struct hstate *h;
1486	unsigned long free_huge_pages;
1487	int nid;
1488
1489	h = kobj_to_hstate(kobj, &nid);
1490	if (nid == NUMA_NO_NODE)
1491		free_huge_pages = h->free_huge_pages;
1492	else
1493		free_huge_pages = h->free_huge_pages_node[nid];
1494
1495	return sprintf(buf, "%lu\n", free_huge_pages);
1496}
1497HSTATE_ATTR_RO(free_hugepages);
1498
1499static ssize_t resv_hugepages_show(struct kobject *kobj,
1500					struct kobj_attribute *attr, char *buf)
1501{
1502	struct hstate *h = kobj_to_hstate(kobj, NULL);
1503	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1504}
1505HSTATE_ATTR_RO(resv_hugepages);
1506
1507static ssize_t surplus_hugepages_show(struct kobject *kobj,
1508					struct kobj_attribute *attr, char *buf)
1509{
1510	struct hstate *h;
1511	unsigned long surplus_huge_pages;
1512	int nid;
1513
1514	h = kobj_to_hstate(kobj, &nid);
1515	if (nid == NUMA_NO_NODE)
1516		surplus_huge_pages = h->surplus_huge_pages;
1517	else
1518		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1519
1520	return sprintf(buf, "%lu\n", surplus_huge_pages);
1521}
1522HSTATE_ATTR_RO(surplus_hugepages);
1523
1524static struct attribute *hstate_attrs[] = {
1525	&nr_hugepages_attr.attr,
1526	&nr_overcommit_hugepages_attr.attr,
1527	&free_hugepages_attr.attr,
1528	&resv_hugepages_attr.attr,
1529	&surplus_hugepages_attr.attr,
1530#ifdef CONFIG_NUMA
1531	&nr_hugepages_mempolicy_attr.attr,
1532#endif
1533	NULL,
1534};
1535
1536static struct attribute_group hstate_attr_group = {
1537	.attrs = hstate_attrs,
1538};
1539
1540static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1541				    struct kobject **hstate_kobjs,
1542				    struct attribute_group *hstate_attr_group)
1543{
1544	int retval;
1545	int hi = h - hstates;
1546
1547	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1548	if (!hstate_kobjs[hi])
1549		return -ENOMEM;
1550
1551	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1552	if (retval)
1553		kobject_put(hstate_kobjs[hi]);
1554
1555	return retval;
1556}
1557
1558static void __init hugetlb_sysfs_init(void)
1559{
1560	struct hstate *h;
1561	int err;
1562
1563	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1564	if (!hugepages_kobj)
1565		return;
1566
1567	for_each_hstate(h) {
1568		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1569					 hstate_kobjs, &hstate_attr_group);
1570		if (err)
1571			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1572								h->name);
1573	}
1574}
1575
1576#ifdef CONFIG_NUMA
1577
1578/*
1579 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1580 * with node sysdevs in node_devices[] using a parallel array.  The array
1581 * index of a node sysdev or _hstate == node id.
1582 * This is here to avoid any static dependency of the node sysdev driver, in
1583 * the base kernel, on the hugetlb module.
1584 */
1585struct node_hstate {
1586	struct kobject		*hugepages_kobj;
1587	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1588};
1589struct node_hstate node_hstates[MAX_NUMNODES];
1590
1591/*
1592 * A subset of global hstate attributes for node sysdevs
1593 */
1594static struct attribute *per_node_hstate_attrs[] = {
1595	&nr_hugepages_attr.attr,
1596	&free_hugepages_attr.attr,
1597	&surplus_hugepages_attr.attr,
1598	NULL,
1599};
1600
1601static struct attribute_group per_node_hstate_attr_group = {
1602	.attrs = per_node_hstate_attrs,
1603};
1604
1605/*
1606 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1607 * Returns node id via non-NULL nidp.
1608 */
1609static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1610{
1611	int nid;
1612
1613	for (nid = 0; nid < nr_node_ids; nid++) {
1614		struct node_hstate *nhs = &node_hstates[nid];
1615		int i;
1616		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1617			if (nhs->hstate_kobjs[i] == kobj) {
1618				if (nidp)
1619					*nidp = nid;
1620				return &hstates[i];
1621			}
1622	}
1623
1624	BUG();
1625	return NULL;
1626}
1627
1628/*
1629 * Unregister hstate attributes from a single node sysdev.
1630 * No-op if no hstate attributes attached.
1631 */
1632void hugetlb_unregister_node(struct node *node)
1633{
1634	struct hstate *h;
1635	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1636
1637	if (!nhs->hugepages_kobj)
1638		return;		/* no hstate attributes */
1639
1640	for_each_hstate(h)
1641		if (nhs->hstate_kobjs[h - hstates]) {
1642			kobject_put(nhs->hstate_kobjs[h - hstates]);
1643			nhs->hstate_kobjs[h - hstates] = NULL;
1644		}
1645
1646	kobject_put(nhs->hugepages_kobj);
1647	nhs->hugepages_kobj = NULL;
1648}
1649
1650/*
1651 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1652 * that have them.
1653 */
1654static void hugetlb_unregister_all_nodes(void)
1655{
1656	int nid;
1657
1658	/*
1659	 * disable node sysdev registrations.
1660	 */
1661	register_hugetlbfs_with_node(NULL, NULL);
1662
1663	/*
1664	 * remove hstate attributes from any nodes that have them.
1665	 */
1666	for (nid = 0; nid < nr_node_ids; nid++)
1667		hugetlb_unregister_node(&node_devices[nid]);
1668}
1669
1670/*
1671 * Register hstate attributes for a single node sysdev.
1672 * No-op if attributes already registered.
1673 */
1674void hugetlb_register_node(struct node *node)
1675{
1676	struct hstate *h;
1677	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1678	int err;
1679
1680	if (nhs->hugepages_kobj)
1681		return;		/* already allocated */
1682
1683	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1684							&node->sysdev.kobj);
1685	if (!nhs->hugepages_kobj)
1686		return;
1687
1688	for_each_hstate(h) {
1689		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1690						nhs->hstate_kobjs,
1691						&per_node_hstate_attr_group);
1692		if (err) {
1693			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1694					" for node %d\n",
1695						h->name, node->sysdev.id);
1696			hugetlb_unregister_node(node);
1697			break;
1698		}
1699	}
1700}
1701
1702/*
1703 * hugetlb init time:  register hstate attributes for all registered node
1704 * sysdevs of nodes that have memory.  All on-line nodes should have
1705 * registered their associated sysdev by this time.
1706 */
1707static void hugetlb_register_all_nodes(void)
1708{
1709	int nid;
1710
1711	for_each_node_state(nid, N_HIGH_MEMORY) {
1712		struct node *node = &node_devices[nid];
1713		if (node->sysdev.id == nid)
1714			hugetlb_register_node(node);
1715	}
1716
1717	/*
1718	 * Let the node sysdev driver know we're here so it can
1719	 * [un]register hstate attributes on node hotplug.
1720	 */
1721	register_hugetlbfs_with_node(hugetlb_register_node,
1722				     hugetlb_unregister_node);
1723}
1724#else	/* !CONFIG_NUMA */
1725
1726static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1727{
1728	BUG();
1729	if (nidp)
1730		*nidp = -1;
1731	return NULL;
1732}
1733
1734static void hugetlb_unregister_all_nodes(void) { }
1735
1736static void hugetlb_register_all_nodes(void) { }
1737
1738#endif
1739
1740static void __exit hugetlb_exit(void)
1741{
1742	struct hstate *h;
1743
1744	hugetlb_unregister_all_nodes();
1745
1746	for_each_hstate(h) {
1747		kobject_put(hstate_kobjs[h - hstates]);
1748	}
1749
1750	kobject_put(hugepages_kobj);
1751}
1752module_exit(hugetlb_exit);
1753
1754static int __init hugetlb_init(void)
1755{
1756	/* Some platform decide whether they support huge pages at boot
1757	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1758	 * there is no such support
1759	 */
1760	if (HPAGE_SHIFT == 0)
1761		return 0;
1762
1763	if (!size_to_hstate(default_hstate_size)) {
1764		default_hstate_size = HPAGE_SIZE;
1765		if (!size_to_hstate(default_hstate_size))
1766			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1767	}
1768	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1769	if (default_hstate_max_huge_pages)
1770		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1771
1772	hugetlb_init_hstates();
1773
1774	gather_bootmem_prealloc();
1775
1776	report_hugepages();
1777
1778	hugetlb_sysfs_init();
1779
1780	hugetlb_register_all_nodes();
1781
1782	return 0;
1783}
1784module_init(hugetlb_init);
1785
1786/* Should be called on processing a hugepagesz=... option */
1787void __init hugetlb_add_hstate(unsigned order)
1788{
1789	struct hstate *h;
1790	unsigned long i;
1791
1792	if (size_to_hstate(PAGE_SIZE << order)) {
1793		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1794		return;
1795	}
1796	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1797	BUG_ON(order == 0);
1798	h = &hstates[max_hstate++];
1799	h->order = order;
1800	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1801	h->nr_huge_pages = 0;
1802	h->free_huge_pages = 0;
1803	for (i = 0; i < MAX_NUMNODES; ++i)
1804		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1805	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1806	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1807	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1808					huge_page_size(h)/1024);
1809
1810	parsed_hstate = h;
1811}
1812
1813static int __init hugetlb_nrpages_setup(char *s)
1814{
1815	unsigned long *mhp;
1816	static unsigned long *last_mhp;
1817
1818	/*
1819	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1820	 * so this hugepages= parameter goes to the "default hstate".
1821	 */
1822	if (!max_hstate)
1823		mhp = &default_hstate_max_huge_pages;
1824	else
1825		mhp = &parsed_hstate->max_huge_pages;
1826
1827	if (mhp == last_mhp) {
1828		printk(KERN_WARNING "hugepages= specified twice without "
1829			"interleaving hugepagesz=, ignoring\n");
1830		return 1;
1831	}
1832
1833	if (sscanf(s, "%lu", mhp) <= 0)
1834		*mhp = 0;
1835
1836	/*
1837	 * Global state is always initialized later in hugetlb_init.
1838	 * But we need to allocate >= MAX_ORDER hstates here early to still
1839	 * use the bootmem allocator.
1840	 */
1841	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1842		hugetlb_hstate_alloc_pages(parsed_hstate);
1843
1844	last_mhp = mhp;
1845
1846	return 1;
1847}
1848__setup("hugepages=", hugetlb_nrpages_setup);
1849
1850static int __init hugetlb_default_setup(char *s)
1851{
1852	default_hstate_size = memparse(s, &s);
1853	return 1;
1854}
1855__setup("default_hugepagesz=", hugetlb_default_setup);
1856
1857static unsigned int cpuset_mems_nr(unsigned int *array)
1858{
1859	int node;
1860	unsigned int nr = 0;
1861
1862	for_each_node_mask(node, cpuset_current_mems_allowed)
1863		nr += array[node];
1864
1865	return nr;
1866}
1867
1868#ifdef CONFIG_SYSCTL
1869static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1870			 struct ctl_table *table, int write,
1871			 void __user *buffer, size_t *length, loff_t *ppos)
1872{
1873	struct hstate *h = &default_hstate;
1874	unsigned long tmp;
1875	int ret;
1876
1877	if (!write)
1878		tmp = h->max_huge_pages;
1879
1880	if (write && h->order >= MAX_ORDER)
1881		return -EINVAL;
1882
1883	table->data = &tmp;
1884	table->maxlen = sizeof(unsigned long);
1885	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1886	if (ret)
1887		goto out;
1888
1889	if (write) {
1890		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1891						GFP_KERNEL | __GFP_NORETRY);
1892		if (!(obey_mempolicy &&
1893			       init_nodemask_of_mempolicy(nodes_allowed))) {
1894			NODEMASK_FREE(nodes_allowed);
1895			nodes_allowed = &node_states[N_HIGH_MEMORY];
1896		}
1897		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1898
1899		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1900			NODEMASK_FREE(nodes_allowed);
1901	}
1902out:
1903	return ret;
1904}
1905
1906int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1907			  void __user *buffer, size_t *length, loff_t *ppos)
1908{
1909
1910	return hugetlb_sysctl_handler_common(false, table, write,
1911							buffer, length, ppos);
1912}
1913
1914#ifdef CONFIG_NUMA
1915int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1916			  void __user *buffer, size_t *length, loff_t *ppos)
1917{
1918	return hugetlb_sysctl_handler_common(true, table, write,
1919							buffer, length, ppos);
1920}
1921#endif /* CONFIG_NUMA */
1922
1923int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1924			void __user *buffer,
1925			size_t *length, loff_t *ppos)
1926{
1927	proc_dointvec(table, write, buffer, length, ppos);
1928	if (hugepages_treat_as_movable)
1929		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1930	else
1931		htlb_alloc_mask = GFP_HIGHUSER;
1932	return 0;
1933}
1934
1935int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1936			void __user *buffer,
1937			size_t *length, loff_t *ppos)
1938{
1939	struct hstate *h = &default_hstate;
1940	unsigned long tmp;
1941	int ret;
1942
1943	if (!write)
1944		tmp = h->nr_overcommit_huge_pages;
1945
1946	if (write && h->order >= MAX_ORDER)
1947		return -EINVAL;
1948
1949	table->data = &tmp;
1950	table->maxlen = sizeof(unsigned long);
1951	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1952	if (ret)
1953		goto out;
1954
1955	if (write) {
1956		spin_lock(&hugetlb_lock);
1957		h->nr_overcommit_huge_pages = tmp;
1958		spin_unlock(&hugetlb_lock);
1959	}
1960out:
1961	return ret;
1962}
1963
1964#endif /* CONFIG_SYSCTL */
1965
1966void hugetlb_report_meminfo(struct seq_file *m)
1967{
1968	struct hstate *h = &default_hstate;
1969	seq_printf(m,
1970			"HugePages_Total:   %5lu\n"
1971			"HugePages_Free:    %5lu\n"
1972			"HugePages_Rsvd:    %5lu\n"
1973			"HugePages_Surp:    %5lu\n"
1974			"Hugepagesize:   %8lu kB\n",
1975			h->nr_huge_pages,
1976			h->free_huge_pages,
1977			h->resv_huge_pages,
1978			h->surplus_huge_pages,
1979			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1980}
1981
1982int hugetlb_report_node_meminfo(int nid, char *buf)
1983{
1984	struct hstate *h = &default_hstate;
1985	return sprintf(buf,
1986		"Node %d HugePages_Total: %5u\n"
1987		"Node %d HugePages_Free:  %5u\n"
1988		"Node %d HugePages_Surp:  %5u\n",
1989		nid, h->nr_huge_pages_node[nid],
1990		nid, h->free_huge_pages_node[nid],
1991		nid, h->surplus_huge_pages_node[nid]);
1992}
1993
1994/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1995unsigned long hugetlb_total_pages(void)
1996{
1997	struct hstate *h = &default_hstate;
1998	return h->nr_huge_pages * pages_per_huge_page(h);
1999}
2000
2001static int hugetlb_acct_memory(struct hstate *h, long delta)
2002{
2003	int ret = -ENOMEM;
2004
2005	spin_lock(&hugetlb_lock);
2006	/*
2007	 * When cpuset is configured, it breaks the strict hugetlb page
2008	 * reservation as the accounting is done on a global variable. Such
2009	 * reservation is completely rubbish in the presence of cpuset because
2010	 * the reservation is not checked against page availability for the
2011	 * current cpuset. Application can still potentially OOM'ed by kernel
2012	 * with lack of free htlb page in cpuset that the task is in.
2013	 * Attempt to enforce strict accounting with cpuset is almost
2014	 * impossible (or too ugly) because cpuset is too fluid that
2015	 * task or memory node can be dynamically moved between cpusets.
2016	 *
2017	 * The change of semantics for shared hugetlb mapping with cpuset is
2018	 * undesirable. However, in order to preserve some of the semantics,
2019	 * we fall back to check against current free page availability as
2020	 * a best attempt and hopefully to minimize the impact of changing
2021	 * semantics that cpuset has.
2022	 */
2023	if (delta > 0) {
2024		if (gather_surplus_pages(h, delta) < 0)
2025			goto out;
2026
2027		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2028			return_unused_surplus_pages(h, delta);
2029			goto out;
2030		}
2031	}
2032
2033	ret = 0;
2034	if (delta < 0)
2035		return_unused_surplus_pages(h, (unsigned long) -delta);
2036
2037out:
2038	spin_unlock(&hugetlb_lock);
2039	return ret;
2040}
2041
2042static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2043{
2044	struct resv_map *reservations = vma_resv_map(vma);
2045
2046	/*
2047	 * This new VMA should share its siblings reservation map if present.
2048	 * The VMA will only ever have a valid reservation map pointer where
2049	 * it is being copied for another still existing VMA.  As that VMA
2050	 * has a reference to the reservation map it cannot dissappear until
2051	 * after this open call completes.  It is therefore safe to take a
2052	 * new reference here without additional locking.
2053	 */
2054	if (reservations)
2055		kref_get(&reservations->refs);
2056}
2057
2058static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2059{
2060	struct hstate *h = hstate_vma(vma);
2061	struct resv_map *reservations = vma_resv_map(vma);
2062	unsigned long reserve;
2063	unsigned long start;
2064	unsigned long end;
2065
2066	if (reservations) {
2067		start = vma_hugecache_offset(h, vma, vma->vm_start);
2068		end = vma_hugecache_offset(h, vma, vma->vm_end);
2069
2070		reserve = (end - start) -
2071			region_count(&reservations->regions, start, end);
2072
2073		kref_put(&reservations->refs, resv_map_release);
2074
2075		if (reserve) {
2076			hugetlb_acct_memory(h, -reserve);
2077			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2078		}
2079	}
2080}
2081
2082/*
2083 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2084 * handle_mm_fault() to try to instantiate regular-sized pages in the
2085 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2086 * this far.
2087 */
2088static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2089{
2090	BUG();
2091	return 0;
2092}
2093
2094const struct vm_operations_struct hugetlb_vm_ops = {
2095	.fault = hugetlb_vm_op_fault,
2096	.open = hugetlb_vm_op_open,
2097	.close = hugetlb_vm_op_close,
2098};
2099
2100static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2101				int writable)
2102{
2103	pte_t entry;
2104
2105	if (writable) {
2106		entry =
2107		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2108	} else {
2109		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2110	}
2111	entry = pte_mkyoung(entry);
2112	entry = pte_mkhuge(entry);
2113
2114	return entry;
2115}
2116
2117static void set_huge_ptep_writable(struct vm_area_struct *vma,
2118				   unsigned long address, pte_t *ptep)
2119{
2120	pte_t entry;
2121
2122	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2123	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2124		update_mmu_cache(vma, address, ptep);
2125	}
2126}
2127
2128
2129int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2130			    struct vm_area_struct *vma)
2131{
2132	pte_t *src_pte, *dst_pte, entry;
2133	struct page *ptepage;
2134	unsigned long addr;
2135	int cow;
2136	struct hstate *h = hstate_vma(vma);
2137	unsigned long sz = huge_page_size(h);
2138
2139	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2140
2141	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2142		src_pte = huge_pte_offset(src, addr);
2143		if (!src_pte)
2144			continue;
2145		dst_pte = huge_pte_alloc(dst, addr, sz);
2146		if (!dst_pte)
2147			goto nomem;
2148
2149		/* If the pagetables are shared don't copy or take references */
2150		if (dst_pte == src_pte)
2151			continue;
2152
2153		spin_lock(&dst->page_table_lock);
2154		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2155		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2156			if (cow)
2157				huge_ptep_set_wrprotect(src, addr, src_pte);
2158			entry = huge_ptep_get(src_pte);
2159			ptepage = pte_page(entry);
2160			get_page(ptepage);
2161			page_dup_rmap(ptepage);
2162			set_huge_pte_at(dst, addr, dst_pte, entry);
2163		}
2164		spin_unlock(&src->page_table_lock);
2165		spin_unlock(&dst->page_table_lock);
2166	}
2167	return 0;
2168
2169nomem:
2170	return -ENOMEM;
2171}
2172
2173static int is_hugetlb_entry_migration(pte_t pte)
2174{
2175	swp_entry_t swp;
2176
2177	if (huge_pte_none(pte) || pte_present(pte))
2178		return 0;
2179	swp = pte_to_swp_entry(pte);
2180	if (non_swap_entry(swp) && is_migration_entry(swp)) {
2181		return 1;
2182	} else
2183		return 0;
2184}
2185
2186static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2187{
2188	swp_entry_t swp;
2189
2190	if (huge_pte_none(pte) || pte_present(pte))
2191		return 0;
2192	swp = pte_to_swp_entry(pte);
2193	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2194		return 1;
2195	} else
2196		return 0;
2197}
2198
2199void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2200			    unsigned long end, struct page *ref_page)
2201{
2202	struct mm_struct *mm = vma->vm_mm;
2203	unsigned long address;
2204	pte_t *ptep;
2205	pte_t pte;
2206	struct page *page;
2207	struct page *tmp;
2208	struct hstate *h = hstate_vma(vma);
2209	unsigned long sz = huge_page_size(h);
2210
2211	/*
2212	 * A page gathering list, protected by per file i_mmap_lock. The
2213	 * lock is used to avoid list corruption from multiple unmapping
2214	 * of the same page since we are using page->lru.
2215	 */
2216	LIST_HEAD(page_list);
2217
2218	WARN_ON(!is_vm_hugetlb_page(vma));
2219	BUG_ON(start & ~huge_page_mask(h));
2220	BUG_ON(end & ~huge_page_mask(h));
2221
2222	mmu_notifier_invalidate_range_start(mm, start, end);
2223	spin_lock(&mm->page_table_lock);
2224	for (address = start; address < end; address += sz) {
2225		ptep = huge_pte_offset(mm, address);
2226		if (!ptep)
2227			continue;
2228
2229		if (huge_pmd_unshare(mm, &address, ptep))
2230			continue;
2231
2232		/*
2233		 * If a reference page is supplied, it is because a specific
2234		 * page is being unmapped, not a range. Ensure the page we
2235		 * are about to unmap is the actual page of interest.
2236		 */
2237		if (ref_page) {
2238			pte = huge_ptep_get(ptep);
2239			if (huge_pte_none(pte))
2240				continue;
2241			page = pte_page(pte);
2242			if (page != ref_page)
2243				continue;
2244
2245			/*
2246			 * Mark the VMA as having unmapped its page so that
2247			 * future faults in this VMA will fail rather than
2248			 * looking like data was lost
2249			 */
2250			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2251		}
2252
2253		pte = huge_ptep_get_and_clear(mm, address, ptep);
2254		if (huge_pte_none(pte))
2255			continue;
2256
2257		/*
2258		 * HWPoisoned hugepage is already unmapped and dropped reference
2259		 */
2260		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2261			continue;
2262
2263		page = pte_page(pte);
2264		if (pte_dirty(pte))
2265			set_page_dirty(page);
2266		list_add(&page->lru, &page_list);
2267	}
2268	spin_unlock(&mm->page_table_lock);
2269	flush_tlb_range(vma, start, end);
2270	mmu_notifier_invalidate_range_end(mm, start, end);
2271	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2272		page_remove_rmap(page);
2273		list_del(&page->lru);
2274		put_page(page);
2275	}
2276}
2277
2278void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2279			  unsigned long end, struct page *ref_page)
2280{
2281	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2282	__unmap_hugepage_range(vma, start, end, ref_page);
2283	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2284}
2285
2286/*
2287 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2288 * mappping it owns the reserve page for. The intention is to unmap the page
2289 * from other VMAs and let the children be SIGKILLed if they are faulting the
2290 * same region.
2291 */
2292static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2293				struct page *page, unsigned long address)
2294{
2295	struct hstate *h = hstate_vma(vma);
2296	struct vm_area_struct *iter_vma;
2297	struct address_space *mapping;
2298	struct prio_tree_iter iter;
2299	pgoff_t pgoff;
2300
2301	/*
2302	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2303	 * from page cache lookup which is in HPAGE_SIZE units.
2304	 */
2305	address = address & huge_page_mask(h);
2306	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2307		+ (vma->vm_pgoff >> PAGE_SHIFT);
2308	mapping = (struct address_space *)page_private(page);
2309
2310	/*
2311	 * Take the mapping lock for the duration of the table walk. As
2312	 * this mapping should be shared between all the VMAs,
2313	 * __unmap_hugepage_range() is called as the lock is already held
2314	 */
2315	spin_lock(&mapping->i_mmap_lock);
2316	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2317		/* Do not unmap the current VMA */
2318		if (iter_vma == vma)
2319			continue;
2320
2321		/*
2322		 * Unmap the page from other VMAs without their own reserves.
2323		 * They get marked to be SIGKILLed if they fault in these
2324		 * areas. This is because a future no-page fault on this VMA
2325		 * could insert a zeroed page instead of the data existing
2326		 * from the time of fork. This would look like data corruption
2327		 */
2328		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2329			__unmap_hugepage_range(iter_vma,
2330				address, address + huge_page_size(h),
2331				page);
2332	}
2333	spin_unlock(&mapping->i_mmap_lock);
2334
2335	return 1;
2336}
2337
2338/*
2339 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2340 */
2341static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2342			unsigned long address, pte_t *ptep, pte_t pte,
2343			struct page *pagecache_page)
2344{
2345	struct hstate *h = hstate_vma(vma);
2346	struct page *old_page, *new_page;
2347	int avoidcopy;
2348	int outside_reserve = 0;
2349
2350	old_page = pte_page(pte);
2351
2352retry_avoidcopy:
2353	/* If no-one else is actually using this page, avoid the copy
2354	 * and just make the page writable */
2355	avoidcopy = (page_mapcount(old_page) == 1);
2356	if (avoidcopy) {
2357		if (PageAnon(old_page))
2358			page_move_anon_rmap(old_page, vma, address);
2359		set_huge_ptep_writable(vma, address, ptep);
2360		return 0;
2361	}
2362
2363	/*
2364	 * If the process that created a MAP_PRIVATE mapping is about to
2365	 * perform a COW due to a shared page count, attempt to satisfy
2366	 * the allocation without using the existing reserves. The pagecache
2367	 * page is used to determine if the reserve at this address was
2368	 * consumed or not. If reserves were used, a partial faulted mapping
2369	 * at the time of fork() could consume its reserves on COW instead
2370	 * of the full address range.
2371	 */
2372	if (!(vma->vm_flags & VM_MAYSHARE) &&
2373			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2374			old_page != pagecache_page)
2375		outside_reserve = 1;
2376
2377	page_cache_get(old_page);
2378
2379	/* Drop page_table_lock as buddy allocator may be called */
2380	spin_unlock(&mm->page_table_lock);
2381	new_page = alloc_huge_page(vma, address, outside_reserve);
2382
2383	if (IS_ERR(new_page)) {
2384		page_cache_release(old_page);
2385
2386		/*
2387		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2388		 * it is due to references held by a child and an insufficient
2389		 * huge page pool. To guarantee the original mappers
2390		 * reliability, unmap the page from child processes. The child
2391		 * may get SIGKILLed if it later faults.
2392		 */
2393		if (outside_reserve) {
2394			BUG_ON(huge_pte_none(pte));
2395			if (unmap_ref_private(mm, vma, old_page, address)) {
2396				BUG_ON(page_count(old_page) != 1);
2397				BUG_ON(huge_pte_none(pte));
2398				spin_lock(&mm->page_table_lock);
2399				goto retry_avoidcopy;
2400			}
2401			WARN_ON_ONCE(1);
2402		}
2403
2404		/* Caller expects lock to be held */
2405		spin_lock(&mm->page_table_lock);
2406		return -PTR_ERR(new_page);
2407	}
2408
2409	/*
2410	 * When the original hugepage is shared one, it does not have
2411	 * anon_vma prepared.
2412	 */
2413	if (unlikely(anon_vma_prepare(vma))) {
2414		/* Caller expects lock to be held */
2415		spin_lock(&mm->page_table_lock);
2416		return VM_FAULT_OOM;
2417	}
2418
2419	copy_user_huge_page(new_page, old_page, address, vma,
2420			    pages_per_huge_page(h));
2421	__SetPageUptodate(new_page);
2422
2423	/*
2424	 * Retake the page_table_lock to check for racing updates
2425	 * before the page tables are altered
2426	 */
2427	spin_lock(&mm->page_table_lock);
2428	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2429	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2430		/* Break COW */
2431		mmu_notifier_invalidate_range_start(mm,
2432			address & huge_page_mask(h),
2433			(address & huge_page_mask(h)) + huge_page_size(h));
2434		huge_ptep_clear_flush(vma, address, ptep);
2435		set_huge_pte_at(mm, address, ptep,
2436				make_huge_pte(vma, new_page, 1));
2437		page_remove_rmap(old_page);
2438		hugepage_add_new_anon_rmap(new_page, vma, address);
2439		/* Make the old page be freed below */
2440		new_page = old_page;
2441		mmu_notifier_invalidate_range_end(mm,
2442			address & huge_page_mask(h),
2443			(address & huge_page_mask(h)) + huge_page_size(h));
2444	}
2445	page_cache_release(new_page);
2446	page_cache_release(old_page);
2447	return 0;
2448}
2449
2450/* Return the pagecache page at a given address within a VMA */
2451static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2452			struct vm_area_struct *vma, unsigned long address)
2453{
2454	struct address_space *mapping;
2455	pgoff_t idx;
2456
2457	mapping = vma->vm_file->f_mapping;
2458	idx = vma_hugecache_offset(h, vma, address);
2459
2460	return find_lock_page(mapping, idx);
2461}
2462
2463/*
2464 * Return whether there is a pagecache page to back given address within VMA.
2465 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2466 */
2467static bool hugetlbfs_pagecache_present(struct hstate *h,
2468			struct vm_area_struct *vma, unsigned long address)
2469{
2470	struct address_space *mapping;
2471	pgoff_t idx;
2472	struct page *page;
2473
2474	mapping = vma->vm_file->f_mapping;
2475	idx = vma_hugecache_offset(h, vma, address);
2476
2477	page = find_get_page(mapping, idx);
2478	if (page)
2479		put_page(page);
2480	return page != NULL;
2481}
2482
2483static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2484			unsigned long address, pte_t *ptep, unsigned int flags)
2485{
2486	struct hstate *h = hstate_vma(vma);
2487	int ret = VM_FAULT_SIGBUS;
2488	pgoff_t idx;
2489	unsigned long size;
2490	struct page *page;
2491	struct address_space *mapping;
2492	pte_t new_pte;
2493
2494	/*
2495	 * Currently, we are forced to kill the process in the event the
2496	 * original mapper has unmapped pages from the child due to a failed
2497	 * COW. Warn that such a situation has occured as it may not be obvious
2498	 */
2499	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2500		printk(KERN_WARNING
2501			"PID %d killed due to inadequate hugepage pool\n",
2502			current->pid);
2503		return ret;
2504	}
2505
2506	mapping = vma->vm_file->f_mapping;
2507	idx = vma_hugecache_offset(h, vma, address);
2508
2509	/*
2510	 * Use page lock to guard against racing truncation
2511	 * before we get page_table_lock.
2512	 */
2513retry:
2514	page = find_lock_page(mapping, idx);
2515	if (!page) {
2516		size = i_size_read(mapping->host) >> huge_page_shift(h);
2517		if (idx >= size)
2518			goto out;
2519		page = alloc_huge_page(vma, address, 0);
2520		if (IS_ERR(page)) {
2521			ret = -PTR_ERR(page);
2522			goto out;
2523		}
2524		clear_huge_page(page, address, pages_per_huge_page(h));
2525		__SetPageUptodate(page);
2526
2527		if (vma->vm_flags & VM_MAYSHARE) {
2528			int err;
2529			struct inode *inode = mapping->host;
2530
2531			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2532			if (err) {
2533				put_page(page);
2534				if (err == -EEXIST)
2535					goto retry;
2536				goto out;
2537			}
2538
2539			spin_lock(&inode->i_lock);
2540			inode->i_blocks += blocks_per_huge_page(h);
2541			spin_unlock(&inode->i_lock);
2542			page_dup_rmap(page);
2543		} else {
2544			lock_page(page);
2545			if (unlikely(anon_vma_prepare(vma))) {
2546				ret = VM_FAULT_OOM;
2547				goto backout_unlocked;
2548			}
2549			hugepage_add_new_anon_rmap(page, vma, address);
2550		}
2551	} else {
2552		/*
2553		 * If memory error occurs between mmap() and fault, some process
2554		 * don't have hwpoisoned swap entry for errored virtual address.
2555		 * So we need to block hugepage fault by PG_hwpoison bit check.
2556		 */
2557		if (unlikely(PageHWPoison(page))) {
2558			ret = VM_FAULT_HWPOISON |
2559			      VM_FAULT_SET_HINDEX(h - hstates);
2560			goto backout_unlocked;
2561		}
2562		page_dup_rmap(page);
2563	}
2564
2565	/*
2566	 * If we are going to COW a private mapping later, we examine the
2567	 * pending reservations for this page now. This will ensure that
2568	 * any allocations necessary to record that reservation occur outside
2569	 * the spinlock.
2570	 */
2571	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2572		if (vma_needs_reservation(h, vma, address) < 0) {
2573			ret = VM_FAULT_OOM;
2574			goto backout_unlocked;
2575		}
2576
2577	spin_lock(&mm->page_table_lock);
2578	size = i_size_read(mapping->host) >> huge_page_shift(h);
2579	if (idx >= size)
2580		goto backout;
2581
2582	ret = 0;
2583	if (!huge_pte_none(huge_ptep_get(ptep)))
2584		goto backout;
2585
2586	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2587				&& (vma->vm_flags & VM_SHARED)));
2588	set_huge_pte_at(mm, address, ptep, new_pte);
2589
2590	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2591		/* Optimization, do the COW without a second fault */
2592		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2593	}
2594
2595	spin_unlock(&mm->page_table_lock);
2596	unlock_page(page);
2597out:
2598	return ret;
2599
2600backout:
2601	spin_unlock(&mm->page_table_lock);
2602backout_unlocked:
2603	unlock_page(page);
2604	put_page(page);
2605	goto out;
2606}
2607
2608int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2609			unsigned long address, unsigned int flags)
2610{
2611	pte_t *ptep;
2612	pte_t entry;
2613	int ret;
2614	struct page *page = NULL;
2615	struct page *pagecache_page = NULL;
2616	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2617	struct hstate *h = hstate_vma(vma);
2618
2619	ptep = huge_pte_offset(mm, address);
2620	if (ptep) {
2621		entry = huge_ptep_get(ptep);
2622		if (unlikely(is_hugetlb_entry_migration(entry))) {
2623			migration_entry_wait(mm, (pmd_t *)ptep, address);
2624			return 0;
2625		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2626			return VM_FAULT_HWPOISON_LARGE |
2627			       VM_FAULT_SET_HINDEX(h - hstates);
2628	}
2629
2630	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2631	if (!ptep)
2632		return VM_FAULT_OOM;
2633
2634	/*
2635	 * Serialize hugepage allocation and instantiation, so that we don't
2636	 * get spurious allocation failures if two CPUs race to instantiate
2637	 * the same page in the page cache.
2638	 */
2639	mutex_lock(&hugetlb_instantiation_mutex);
2640	entry = huge_ptep_get(ptep);
2641	if (huge_pte_none(entry)) {
2642		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2643		goto out_mutex;
2644	}
2645
2646	ret = 0;
2647
2648	/*
2649	 * If we are going to COW the mapping later, we examine the pending
2650	 * reservations for this page now. This will ensure that any
2651	 * allocations necessary to record that reservation occur outside the
2652	 * spinlock. For private mappings, we also lookup the pagecache
2653	 * page now as it is used to determine if a reservation has been
2654	 * consumed.
2655	 */
2656	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2657		if (vma_needs_reservation(h, vma, address) < 0) {
2658			ret = VM_FAULT_OOM;
2659			goto out_mutex;
2660		}
2661
2662		if (!(vma->vm_flags & VM_MAYSHARE))
2663			pagecache_page = hugetlbfs_pagecache_page(h,
2664								vma, address);
2665	}
2666
2667	/*
2668	 * hugetlb_cow() requires page locks of pte_page(entry) and
2669	 * pagecache_page, so here we need take the former one
2670	 * when page != pagecache_page or !pagecache_page.
2671	 * Note that locking order is always pagecache_page -> page,
2672	 * so no worry about deadlock.
2673	 */
2674	page = pte_page(entry);
2675	if (page != pagecache_page)
2676		lock_page(page);
2677
2678	spin_lock(&mm->page_table_lock);
2679	/* Check for a racing update before calling hugetlb_cow */
2680	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2681		goto out_page_table_lock;
2682
2683
2684	if (flags & FAULT_FLAG_WRITE) {
2685		if (!pte_write(entry)) {
2686			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2687							pagecache_page);
2688			goto out_page_table_lock;
2689		}
2690		entry = pte_mkdirty(entry);
2691	}
2692	entry = pte_mkyoung(entry);
2693	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2694						flags & FAULT_FLAG_WRITE))
2695		update_mmu_cache(vma, address, ptep);
2696
2697out_page_table_lock:
2698	spin_unlock(&mm->page_table_lock);
2699
2700	if (pagecache_page) {
2701		unlock_page(pagecache_page);
2702		put_page(pagecache_page);
2703	}
2704	if (page != pagecache_page)
2705		unlock_page(page);
2706
2707out_mutex:
2708	mutex_unlock(&hugetlb_instantiation_mutex);
2709
2710	return ret;
2711}
2712
2713/* Can be overriden by architectures */
2714__attribute__((weak)) struct page *
2715follow_huge_pud(struct mm_struct *mm, unsigned long address,
2716	       pud_t *pud, int write)
2717{
2718	BUG();
2719	return NULL;
2720}
2721
2722int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2723			struct page **pages, struct vm_area_struct **vmas,
2724			unsigned long *position, int *length, int i,
2725			unsigned int flags)
2726{
2727	unsigned long pfn_offset;
2728	unsigned long vaddr = *position;
2729	int remainder = *length;
2730	struct hstate *h = hstate_vma(vma);
2731
2732	spin_lock(&mm->page_table_lock);
2733	while (vaddr < vma->vm_end && remainder) {
2734		pte_t *pte;
2735		int absent;
2736		struct page *page;
2737
2738		/*
2739		 * Some archs (sparc64, sh*) have multiple pte_ts to
2740		 * each hugepage.  We have to make sure we get the
2741		 * first, for the page indexing below to work.
2742		 */
2743		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2744		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2745
2746		/*
2747		 * When coredumping, it suits get_dump_page if we just return
2748		 * an error where there's an empty slot with no huge pagecache
2749		 * to back it.  This way, we avoid allocating a hugepage, and
2750		 * the sparse dumpfile avoids allocating disk blocks, but its
2751		 * huge holes still show up with zeroes where they need to be.
2752		 */
2753		if (absent && (flags & FOLL_DUMP) &&
2754		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2755			remainder = 0;
2756			break;
2757		}
2758
2759		if (absent ||
2760		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2761			int ret;
2762
2763			spin_unlock(&mm->page_table_lock);
2764			ret = hugetlb_fault(mm, vma, vaddr,
2765				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2766			spin_lock(&mm->page_table_lock);
2767			if (!(ret & VM_FAULT_ERROR))
2768				continue;
2769
2770			remainder = 0;
2771			break;
2772		}
2773
2774		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2775		page = pte_page(huge_ptep_get(pte));
2776same_page:
2777		if (pages) {
2778			pages[i] = mem_map_offset(page, pfn_offset);
2779			get_page(pages[i]);
2780		}
2781
2782		if (vmas)
2783			vmas[i] = vma;
2784
2785		vaddr += PAGE_SIZE;
2786		++pfn_offset;
2787		--remainder;
2788		++i;
2789		if (vaddr < vma->vm_end && remainder &&
2790				pfn_offset < pages_per_huge_page(h)) {
2791			/*
2792			 * We use pfn_offset to avoid touching the pageframes
2793			 * of this compound page.
2794			 */
2795			goto same_page;
2796		}
2797	}
2798	spin_unlock(&mm->page_table_lock);
2799	*length = remainder;
2800	*position = vaddr;
2801
2802	return i ? i : -EFAULT;
2803}
2804
2805void hugetlb_change_protection(struct vm_area_struct *vma,
2806		unsigned long address, unsigned long end, pgprot_t newprot)
2807{
2808	struct mm_struct *mm = vma->vm_mm;
2809	unsigned long start = address;
2810	pte_t *ptep;
2811	pte_t pte;
2812	struct hstate *h = hstate_vma(vma);
2813
2814	BUG_ON(address >= end);
2815	flush_cache_range(vma, address, end);
2816
2817	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2818	spin_lock(&mm->page_table_lock);
2819	for (; address < end; address += huge_page_size(h)) {
2820		ptep = huge_pte_offset(mm, address);
2821		if (!ptep)
2822			continue;
2823		if (huge_pmd_unshare(mm, &address, ptep))
2824			continue;
2825		if (!huge_pte_none(huge_ptep_get(ptep))) {
2826			pte = huge_ptep_get_and_clear(mm, address, ptep);
2827			pte = pte_mkhuge(pte_modify(pte, newprot));
2828			set_huge_pte_at(mm, address, ptep, pte);
2829		}
2830	}
2831	spin_unlock(&mm->page_table_lock);
2832	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2833
2834	flush_tlb_range(vma, start, end);
2835}
2836
2837int hugetlb_reserve_pages(struct inode *inode,
2838					long from, long to,
2839					struct vm_area_struct *vma,
2840					int acctflag)
2841{
2842	long ret, chg;
2843	struct hstate *h = hstate_inode(inode);
2844
2845	/*
2846	 * Only apply hugepage reservation if asked. At fault time, an
2847	 * attempt will be made for VM_NORESERVE to allocate a page
2848	 * and filesystem quota without using reserves
2849	 */
2850	if (acctflag & VM_NORESERVE)
2851		return 0;
2852
2853	/*
2854	 * Shared mappings base their reservation on the number of pages that
2855	 * are already allocated on behalf of the file. Private mappings need
2856	 * to reserve the full area even if read-only as mprotect() may be
2857	 * called to make the mapping read-write. Assume !vma is a shm mapping
2858	 */
2859	if (!vma || vma->vm_flags & VM_MAYSHARE)
2860		chg = region_chg(&inode->i_mapping->private_list, from, to);
2861	else {
2862		struct resv_map *resv_map = resv_map_alloc();
2863		if (!resv_map)
2864			return -ENOMEM;
2865
2866		chg = to - from;
2867
2868		set_vma_resv_map(vma, resv_map);
2869		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2870	}
2871
2872	if (chg < 0)
2873		return chg;
2874
2875	/* There must be enough filesystem quota for the mapping */
2876	if (hugetlb_get_quota(inode->i_mapping, chg))
2877		return -ENOSPC;
2878
2879	/*
2880	 * Check enough hugepages are available for the reservation.
2881	 * Hand back the quota if there are not
2882	 */
2883	ret = hugetlb_acct_memory(h, chg);
2884	if (ret < 0) {
2885		hugetlb_put_quota(inode->i_mapping, chg);
2886		return ret;
2887	}
2888
2889	/*
2890	 * Account for the reservations made. Shared mappings record regions
2891	 * that have reservations as they are shared by multiple VMAs.
2892	 * When the last VMA disappears, the region map says how much
2893	 * the reservation was and the page cache tells how much of
2894	 * the reservation was consumed. Private mappings are per-VMA and
2895	 * only the consumed reservations are tracked. When the VMA
2896	 * disappears, the original reservation is the VMA size and the
2897	 * consumed reservations are stored in the map. Hence, nothing
2898	 * else has to be done for private mappings here
2899	 */
2900	if (!vma || vma->vm_flags & VM_MAYSHARE)
2901		region_add(&inode->i_mapping->private_list, from, to);
2902	return 0;
2903}
2904
2905void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2906{
2907	struct hstate *h = hstate_inode(inode);
2908	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2909
2910	spin_lock(&inode->i_lock);
2911	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2912	spin_unlock(&inode->i_lock);
2913
2914	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2915	hugetlb_acct_memory(h, -(chg - freed));
2916}
2917
2918#ifdef CONFIG_MEMORY_FAILURE
2919
2920/* Should be called in hugetlb_lock */
2921static int is_hugepage_on_freelist(struct page *hpage)
2922{
2923	struct page *page;
2924	struct page *tmp;
2925	struct hstate *h = page_hstate(hpage);
2926	int nid = page_to_nid(hpage);
2927
2928	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2929		if (page == hpage)
2930			return 1;
2931	return 0;
2932}
2933
2934/*
2935 * This function is called from memory failure code.
2936 * Assume the caller holds page lock of the head page.
2937 */
2938int dequeue_hwpoisoned_huge_page(struct page *hpage)
2939{
2940	struct hstate *h = page_hstate(hpage);
2941	int nid = page_to_nid(hpage);
2942	int ret = -EBUSY;
2943
2944	spin_lock(&hugetlb_lock);
2945	if (is_hugepage_on_freelist(hpage)) {
2946		list_del(&hpage->lru);
2947		set_page_refcounted(hpage);
2948		h->free_huge_pages--;
2949		h->free_huge_pages_node[nid]--;
2950		ret = 0;
2951	}
2952	spin_unlock(&hugetlb_lock);
2953	return ret;
2954}
2955#endif
2956