hugetlb.c revision b4d1d99fdd8b98fb03dfd6ef9b0ece220de38640
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20
21#include <asm/page.h>
22#include <asm/pgtable.h>
23#include <asm/io.h>
24
25#include <linux/hugetlb.h>
26#include "internal.h"
27
28const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
29static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
30unsigned long hugepages_treat_as_movable;
31
32static int max_hstate;
33unsigned int default_hstate_idx;
34struct hstate hstates[HUGE_MAX_HSTATE];
35
36__initdata LIST_HEAD(huge_boot_pages);
37
38/* for command line parsing */
39static struct hstate * __initdata parsed_hstate;
40static unsigned long __initdata default_hstate_max_huge_pages;
41static unsigned long __initdata default_hstate_size;
42
43#define for_each_hstate(h) \
44	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
45
46/*
47 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
48 */
49static DEFINE_SPINLOCK(hugetlb_lock);
50
51/*
52 * Region tracking -- allows tracking of reservations and instantiated pages
53 *                    across the pages in a mapping.
54 *
55 * The region data structures are protected by a combination of the mmap_sem
56 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
57 * must either hold the mmap_sem for write, or the mmap_sem for read and
58 * the hugetlb_instantiation mutex:
59 *
60 * 	down_write(&mm->mmap_sem);
61 * or
62 * 	down_read(&mm->mmap_sem);
63 * 	mutex_lock(&hugetlb_instantiation_mutex);
64 */
65struct file_region {
66	struct list_head link;
67	long from;
68	long to;
69};
70
71static long region_add(struct list_head *head, long f, long t)
72{
73	struct file_region *rg, *nrg, *trg;
74
75	/* Locate the region we are either in or before. */
76	list_for_each_entry(rg, head, link)
77		if (f <= rg->to)
78			break;
79
80	/* Round our left edge to the current segment if it encloses us. */
81	if (f > rg->from)
82		f = rg->from;
83
84	/* Check for and consume any regions we now overlap with. */
85	nrg = rg;
86	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
87		if (&rg->link == head)
88			break;
89		if (rg->from > t)
90			break;
91
92		/* If this area reaches higher then extend our area to
93		 * include it completely.  If this is not the first area
94		 * which we intend to reuse, free it. */
95		if (rg->to > t)
96			t = rg->to;
97		if (rg != nrg) {
98			list_del(&rg->link);
99			kfree(rg);
100		}
101	}
102	nrg->from = f;
103	nrg->to = t;
104	return 0;
105}
106
107static long region_chg(struct list_head *head, long f, long t)
108{
109	struct file_region *rg, *nrg;
110	long chg = 0;
111
112	/* Locate the region we are before or in. */
113	list_for_each_entry(rg, head, link)
114		if (f <= rg->to)
115			break;
116
117	/* If we are below the current region then a new region is required.
118	 * Subtle, allocate a new region at the position but make it zero
119	 * size such that we can guarantee to record the reservation. */
120	if (&rg->link == head || t < rg->from) {
121		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
122		if (!nrg)
123			return -ENOMEM;
124		nrg->from = f;
125		nrg->to   = f;
126		INIT_LIST_HEAD(&nrg->link);
127		list_add(&nrg->link, rg->link.prev);
128
129		return t - f;
130	}
131
132	/* Round our left edge to the current segment if it encloses us. */
133	if (f > rg->from)
134		f = rg->from;
135	chg = t - f;
136
137	/* Check for and consume any regions we now overlap with. */
138	list_for_each_entry(rg, rg->link.prev, link) {
139		if (&rg->link == head)
140			break;
141		if (rg->from > t)
142			return chg;
143
144		/* We overlap with this area, if it extends futher than
145		 * us then we must extend ourselves.  Account for its
146		 * existing reservation. */
147		if (rg->to > t) {
148			chg += rg->to - t;
149			t = rg->to;
150		}
151		chg -= rg->to - rg->from;
152	}
153	return chg;
154}
155
156static long region_truncate(struct list_head *head, long end)
157{
158	struct file_region *rg, *trg;
159	long chg = 0;
160
161	/* Locate the region we are either in or before. */
162	list_for_each_entry(rg, head, link)
163		if (end <= rg->to)
164			break;
165	if (&rg->link == head)
166		return 0;
167
168	/* If we are in the middle of a region then adjust it. */
169	if (end > rg->from) {
170		chg = rg->to - end;
171		rg->to = end;
172		rg = list_entry(rg->link.next, typeof(*rg), link);
173	}
174
175	/* Drop any remaining regions. */
176	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
177		if (&rg->link == head)
178			break;
179		chg += rg->to - rg->from;
180		list_del(&rg->link);
181		kfree(rg);
182	}
183	return chg;
184}
185
186static long region_count(struct list_head *head, long f, long t)
187{
188	struct file_region *rg;
189	long chg = 0;
190
191	/* Locate each segment we overlap with, and count that overlap. */
192	list_for_each_entry(rg, head, link) {
193		int seg_from;
194		int seg_to;
195
196		if (rg->to <= f)
197			continue;
198		if (rg->from >= t)
199			break;
200
201		seg_from = max(rg->from, f);
202		seg_to = min(rg->to, t);
203
204		chg += seg_to - seg_from;
205	}
206
207	return chg;
208}
209
210/*
211 * Convert the address within this vma to the page offset within
212 * the mapping, in pagecache page units; huge pages here.
213 */
214static pgoff_t vma_hugecache_offset(struct hstate *h,
215			struct vm_area_struct *vma, unsigned long address)
216{
217	return ((address - vma->vm_start) >> huge_page_shift(h)) +
218			(vma->vm_pgoff >> huge_page_order(h));
219}
220
221/*
222 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
223 * bits of the reservation map pointer, which are always clear due to
224 * alignment.
225 */
226#define HPAGE_RESV_OWNER    (1UL << 0)
227#define HPAGE_RESV_UNMAPPED (1UL << 1)
228#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
229
230/*
231 * These helpers are used to track how many pages are reserved for
232 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
233 * is guaranteed to have their future faults succeed.
234 *
235 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
236 * the reserve counters are updated with the hugetlb_lock held. It is safe
237 * to reset the VMA at fork() time as it is not in use yet and there is no
238 * chance of the global counters getting corrupted as a result of the values.
239 *
240 * The private mapping reservation is represented in a subtly different
241 * manner to a shared mapping.  A shared mapping has a region map associated
242 * with the underlying file, this region map represents the backing file
243 * pages which have ever had a reservation assigned which this persists even
244 * after the page is instantiated.  A private mapping has a region map
245 * associated with the original mmap which is attached to all VMAs which
246 * reference it, this region map represents those offsets which have consumed
247 * reservation ie. where pages have been instantiated.
248 */
249static unsigned long get_vma_private_data(struct vm_area_struct *vma)
250{
251	return (unsigned long)vma->vm_private_data;
252}
253
254static void set_vma_private_data(struct vm_area_struct *vma,
255							unsigned long value)
256{
257	vma->vm_private_data = (void *)value;
258}
259
260struct resv_map {
261	struct kref refs;
262	struct list_head regions;
263};
264
265struct resv_map *resv_map_alloc(void)
266{
267	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
268	if (!resv_map)
269		return NULL;
270
271	kref_init(&resv_map->refs);
272	INIT_LIST_HEAD(&resv_map->regions);
273
274	return resv_map;
275}
276
277void resv_map_release(struct kref *ref)
278{
279	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
280
281	/* Clear out any active regions before we release the map. */
282	region_truncate(&resv_map->regions, 0);
283	kfree(resv_map);
284}
285
286static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
287{
288	VM_BUG_ON(!is_vm_hugetlb_page(vma));
289	if (!(vma->vm_flags & VM_SHARED))
290		return (struct resv_map *)(get_vma_private_data(vma) &
291							~HPAGE_RESV_MASK);
292	return 0;
293}
294
295static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
296{
297	VM_BUG_ON(!is_vm_hugetlb_page(vma));
298	VM_BUG_ON(vma->vm_flags & VM_SHARED);
299
300	set_vma_private_data(vma, (get_vma_private_data(vma) &
301				HPAGE_RESV_MASK) | (unsigned long)map);
302}
303
304static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
305{
306	VM_BUG_ON(!is_vm_hugetlb_page(vma));
307	VM_BUG_ON(vma->vm_flags & VM_SHARED);
308
309	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
310}
311
312static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
313{
314	VM_BUG_ON(!is_vm_hugetlb_page(vma));
315
316	return (get_vma_private_data(vma) & flag) != 0;
317}
318
319/* Decrement the reserved pages in the hugepage pool by one */
320static void decrement_hugepage_resv_vma(struct hstate *h,
321			struct vm_area_struct *vma)
322{
323	if (vma->vm_flags & VM_NORESERVE)
324		return;
325
326	if (vma->vm_flags & VM_SHARED) {
327		/* Shared mappings always use reserves */
328		h->resv_huge_pages--;
329	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
330		/*
331		 * Only the process that called mmap() has reserves for
332		 * private mappings.
333		 */
334		h->resv_huge_pages--;
335	}
336}
337
338/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
340{
341	VM_BUG_ON(!is_vm_hugetlb_page(vma));
342	if (!(vma->vm_flags & VM_SHARED))
343		vma->vm_private_data = (void *)0;
344}
345
346/* Returns true if the VMA has associated reserve pages */
347static int vma_has_reserves(struct vm_area_struct *vma)
348{
349	if (vma->vm_flags & VM_SHARED)
350		return 1;
351	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
352		return 1;
353	return 0;
354}
355
356static void clear_huge_page(struct page *page,
357			unsigned long addr, unsigned long sz)
358{
359	int i;
360
361	might_sleep();
362	for (i = 0; i < sz/PAGE_SIZE; i++) {
363		cond_resched();
364		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
365	}
366}
367
368static void copy_huge_page(struct page *dst, struct page *src,
369			   unsigned long addr, struct vm_area_struct *vma)
370{
371	int i;
372	struct hstate *h = hstate_vma(vma);
373
374	might_sleep();
375	for (i = 0; i < pages_per_huge_page(h); i++) {
376		cond_resched();
377		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
378	}
379}
380
381static void enqueue_huge_page(struct hstate *h, struct page *page)
382{
383	int nid = page_to_nid(page);
384	list_add(&page->lru, &h->hugepage_freelists[nid]);
385	h->free_huge_pages++;
386	h->free_huge_pages_node[nid]++;
387}
388
389static struct page *dequeue_huge_page(struct hstate *h)
390{
391	int nid;
392	struct page *page = NULL;
393
394	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
395		if (!list_empty(&h->hugepage_freelists[nid])) {
396			page = list_entry(h->hugepage_freelists[nid].next,
397					  struct page, lru);
398			list_del(&page->lru);
399			h->free_huge_pages--;
400			h->free_huge_pages_node[nid]--;
401			break;
402		}
403	}
404	return page;
405}
406
407static struct page *dequeue_huge_page_vma(struct hstate *h,
408				struct vm_area_struct *vma,
409				unsigned long address, int avoid_reserve)
410{
411	int nid;
412	struct page *page = NULL;
413	struct mempolicy *mpol;
414	nodemask_t *nodemask;
415	struct zonelist *zonelist = huge_zonelist(vma, address,
416					htlb_alloc_mask, &mpol, &nodemask);
417	struct zone *zone;
418	struct zoneref *z;
419
420	/*
421	 * A child process with MAP_PRIVATE mappings created by their parent
422	 * have no page reserves. This check ensures that reservations are
423	 * not "stolen". The child may still get SIGKILLed
424	 */
425	if (!vma_has_reserves(vma) &&
426			h->free_huge_pages - h->resv_huge_pages == 0)
427		return NULL;
428
429	/* If reserves cannot be used, ensure enough pages are in the pool */
430	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
431		return NULL;
432
433	for_each_zone_zonelist_nodemask(zone, z, zonelist,
434						MAX_NR_ZONES - 1, nodemask) {
435		nid = zone_to_nid(zone);
436		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
437		    !list_empty(&h->hugepage_freelists[nid])) {
438			page = list_entry(h->hugepage_freelists[nid].next,
439					  struct page, lru);
440			list_del(&page->lru);
441			h->free_huge_pages--;
442			h->free_huge_pages_node[nid]--;
443
444			if (!avoid_reserve)
445				decrement_hugepage_resv_vma(h, vma);
446
447			break;
448		}
449	}
450	mpol_cond_put(mpol);
451	return page;
452}
453
454static void update_and_free_page(struct hstate *h, struct page *page)
455{
456	int i;
457
458	h->nr_huge_pages--;
459	h->nr_huge_pages_node[page_to_nid(page)]--;
460	for (i = 0; i < pages_per_huge_page(h); i++) {
461		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
462				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
463				1 << PG_private | 1<< PG_writeback);
464	}
465	set_compound_page_dtor(page, NULL);
466	set_page_refcounted(page);
467	arch_release_hugepage(page);
468	__free_pages(page, huge_page_order(h));
469}
470
471struct hstate *size_to_hstate(unsigned long size)
472{
473	struct hstate *h;
474
475	for_each_hstate(h) {
476		if (huge_page_size(h) == size)
477			return h;
478	}
479	return NULL;
480}
481
482static void free_huge_page(struct page *page)
483{
484	/*
485	 * Can't pass hstate in here because it is called from the
486	 * compound page destructor.
487	 */
488	struct hstate *h = page_hstate(page);
489	int nid = page_to_nid(page);
490	struct address_space *mapping;
491
492	mapping = (struct address_space *) page_private(page);
493	set_page_private(page, 0);
494	BUG_ON(page_count(page));
495	INIT_LIST_HEAD(&page->lru);
496
497	spin_lock(&hugetlb_lock);
498	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
499		update_and_free_page(h, page);
500		h->surplus_huge_pages--;
501		h->surplus_huge_pages_node[nid]--;
502	} else {
503		enqueue_huge_page(h, page);
504	}
505	spin_unlock(&hugetlb_lock);
506	if (mapping)
507		hugetlb_put_quota(mapping, 1);
508}
509
510/*
511 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
512 * balanced by operating on them in a round-robin fashion.
513 * Returns 1 if an adjustment was made.
514 */
515static int adjust_pool_surplus(struct hstate *h, int delta)
516{
517	static int prev_nid;
518	int nid = prev_nid;
519	int ret = 0;
520
521	VM_BUG_ON(delta != -1 && delta != 1);
522	do {
523		nid = next_node(nid, node_online_map);
524		if (nid == MAX_NUMNODES)
525			nid = first_node(node_online_map);
526
527		/* To shrink on this node, there must be a surplus page */
528		if (delta < 0 && !h->surplus_huge_pages_node[nid])
529			continue;
530		/* Surplus cannot exceed the total number of pages */
531		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
532						h->nr_huge_pages_node[nid])
533			continue;
534
535		h->surplus_huge_pages += delta;
536		h->surplus_huge_pages_node[nid] += delta;
537		ret = 1;
538		break;
539	} while (nid != prev_nid);
540
541	prev_nid = nid;
542	return ret;
543}
544
545static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
546{
547	set_compound_page_dtor(page, free_huge_page);
548	spin_lock(&hugetlb_lock);
549	h->nr_huge_pages++;
550	h->nr_huge_pages_node[nid]++;
551	spin_unlock(&hugetlb_lock);
552	put_page(page); /* free it into the hugepage allocator */
553}
554
555static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
556{
557	struct page *page;
558
559	if (h->order >= MAX_ORDER)
560		return NULL;
561
562	page = alloc_pages_node(nid,
563		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
564						__GFP_REPEAT|__GFP_NOWARN,
565		huge_page_order(h));
566	if (page) {
567		if (arch_prepare_hugepage(page)) {
568			__free_pages(page, huge_page_order(h));
569			return NULL;
570		}
571		prep_new_huge_page(h, page, nid);
572	}
573
574	return page;
575}
576
577/*
578 * Use a helper variable to find the next node and then
579 * copy it back to hugetlb_next_nid afterwards:
580 * otherwise there's a window in which a racer might
581 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
582 * But we don't need to use a spin_lock here: it really
583 * doesn't matter if occasionally a racer chooses the
584 * same nid as we do.  Move nid forward in the mask even
585 * if we just successfully allocated a hugepage so that
586 * the next caller gets hugepages on the next node.
587 */
588static int hstate_next_node(struct hstate *h)
589{
590	int next_nid;
591	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
592	if (next_nid == MAX_NUMNODES)
593		next_nid = first_node(node_online_map);
594	h->hugetlb_next_nid = next_nid;
595	return next_nid;
596}
597
598static int alloc_fresh_huge_page(struct hstate *h)
599{
600	struct page *page;
601	int start_nid;
602	int next_nid;
603	int ret = 0;
604
605	start_nid = h->hugetlb_next_nid;
606
607	do {
608		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
609		if (page)
610			ret = 1;
611		next_nid = hstate_next_node(h);
612	} while (!page && h->hugetlb_next_nid != start_nid);
613
614	if (ret)
615		count_vm_event(HTLB_BUDDY_PGALLOC);
616	else
617		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
618
619	return ret;
620}
621
622static struct page *alloc_buddy_huge_page(struct hstate *h,
623			struct vm_area_struct *vma, unsigned long address)
624{
625	struct page *page;
626	unsigned int nid;
627
628	if (h->order >= MAX_ORDER)
629		return NULL;
630
631	/*
632	 * Assume we will successfully allocate the surplus page to
633	 * prevent racing processes from causing the surplus to exceed
634	 * overcommit
635	 *
636	 * This however introduces a different race, where a process B
637	 * tries to grow the static hugepage pool while alloc_pages() is
638	 * called by process A. B will only examine the per-node
639	 * counters in determining if surplus huge pages can be
640	 * converted to normal huge pages in adjust_pool_surplus(). A
641	 * won't be able to increment the per-node counter, until the
642	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
643	 * no more huge pages can be converted from surplus to normal
644	 * state (and doesn't try to convert again). Thus, we have a
645	 * case where a surplus huge page exists, the pool is grown, and
646	 * the surplus huge page still exists after, even though it
647	 * should just have been converted to a normal huge page. This
648	 * does not leak memory, though, as the hugepage will be freed
649	 * once it is out of use. It also does not allow the counters to
650	 * go out of whack in adjust_pool_surplus() as we don't modify
651	 * the node values until we've gotten the hugepage and only the
652	 * per-node value is checked there.
653	 */
654	spin_lock(&hugetlb_lock);
655	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
656		spin_unlock(&hugetlb_lock);
657		return NULL;
658	} else {
659		h->nr_huge_pages++;
660		h->surplus_huge_pages++;
661	}
662	spin_unlock(&hugetlb_lock);
663
664	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
665					__GFP_REPEAT|__GFP_NOWARN,
666					huge_page_order(h));
667
668	if (page && arch_prepare_hugepage(page)) {
669		__free_pages(page, huge_page_order(h));
670		return NULL;
671	}
672
673	spin_lock(&hugetlb_lock);
674	if (page) {
675		/*
676		 * This page is now managed by the hugetlb allocator and has
677		 * no users -- drop the buddy allocator's reference.
678		 */
679		put_page_testzero(page);
680		VM_BUG_ON(page_count(page));
681		nid = page_to_nid(page);
682		set_compound_page_dtor(page, free_huge_page);
683		/*
684		 * We incremented the global counters already
685		 */
686		h->nr_huge_pages_node[nid]++;
687		h->surplus_huge_pages_node[nid]++;
688		__count_vm_event(HTLB_BUDDY_PGALLOC);
689	} else {
690		h->nr_huge_pages--;
691		h->surplus_huge_pages--;
692		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
693	}
694	spin_unlock(&hugetlb_lock);
695
696	return page;
697}
698
699/*
700 * Increase the hugetlb pool such that it can accomodate a reservation
701 * of size 'delta'.
702 */
703static int gather_surplus_pages(struct hstate *h, int delta)
704{
705	struct list_head surplus_list;
706	struct page *page, *tmp;
707	int ret, i;
708	int needed, allocated;
709
710	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
711	if (needed <= 0) {
712		h->resv_huge_pages += delta;
713		return 0;
714	}
715
716	allocated = 0;
717	INIT_LIST_HEAD(&surplus_list);
718
719	ret = -ENOMEM;
720retry:
721	spin_unlock(&hugetlb_lock);
722	for (i = 0; i < needed; i++) {
723		page = alloc_buddy_huge_page(h, NULL, 0);
724		if (!page) {
725			/*
726			 * We were not able to allocate enough pages to
727			 * satisfy the entire reservation so we free what
728			 * we've allocated so far.
729			 */
730			spin_lock(&hugetlb_lock);
731			needed = 0;
732			goto free;
733		}
734
735		list_add(&page->lru, &surplus_list);
736	}
737	allocated += needed;
738
739	/*
740	 * After retaking hugetlb_lock, we need to recalculate 'needed'
741	 * because either resv_huge_pages or free_huge_pages may have changed.
742	 */
743	spin_lock(&hugetlb_lock);
744	needed = (h->resv_huge_pages + delta) -
745			(h->free_huge_pages + allocated);
746	if (needed > 0)
747		goto retry;
748
749	/*
750	 * The surplus_list now contains _at_least_ the number of extra pages
751	 * needed to accomodate the reservation.  Add the appropriate number
752	 * of pages to the hugetlb pool and free the extras back to the buddy
753	 * allocator.  Commit the entire reservation here to prevent another
754	 * process from stealing the pages as they are added to the pool but
755	 * before they are reserved.
756	 */
757	needed += allocated;
758	h->resv_huge_pages += delta;
759	ret = 0;
760free:
761	/* Free the needed pages to the hugetlb pool */
762	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
763		if ((--needed) < 0)
764			break;
765		list_del(&page->lru);
766		enqueue_huge_page(h, page);
767	}
768
769	/* Free unnecessary surplus pages to the buddy allocator */
770	if (!list_empty(&surplus_list)) {
771		spin_unlock(&hugetlb_lock);
772		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
773			list_del(&page->lru);
774			/*
775			 * The page has a reference count of zero already, so
776			 * call free_huge_page directly instead of using
777			 * put_page.  This must be done with hugetlb_lock
778			 * unlocked which is safe because free_huge_page takes
779			 * hugetlb_lock before deciding how to free the page.
780			 */
781			free_huge_page(page);
782		}
783		spin_lock(&hugetlb_lock);
784	}
785
786	return ret;
787}
788
789/*
790 * When releasing a hugetlb pool reservation, any surplus pages that were
791 * allocated to satisfy the reservation must be explicitly freed if they were
792 * never used.
793 */
794static void return_unused_surplus_pages(struct hstate *h,
795					unsigned long unused_resv_pages)
796{
797	static int nid = -1;
798	struct page *page;
799	unsigned long nr_pages;
800
801	/*
802	 * We want to release as many surplus pages as possible, spread
803	 * evenly across all nodes. Iterate across all nodes until we
804	 * can no longer free unreserved surplus pages. This occurs when
805	 * the nodes with surplus pages have no free pages.
806	 */
807	unsigned long remaining_iterations = num_online_nodes();
808
809	/* Uncommit the reservation */
810	h->resv_huge_pages -= unused_resv_pages;
811
812	/* Cannot return gigantic pages currently */
813	if (h->order >= MAX_ORDER)
814		return;
815
816	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
817
818	while (remaining_iterations-- && nr_pages) {
819		nid = next_node(nid, node_online_map);
820		if (nid == MAX_NUMNODES)
821			nid = first_node(node_online_map);
822
823		if (!h->surplus_huge_pages_node[nid])
824			continue;
825
826		if (!list_empty(&h->hugepage_freelists[nid])) {
827			page = list_entry(h->hugepage_freelists[nid].next,
828					  struct page, lru);
829			list_del(&page->lru);
830			update_and_free_page(h, page);
831			h->free_huge_pages--;
832			h->free_huge_pages_node[nid]--;
833			h->surplus_huge_pages--;
834			h->surplus_huge_pages_node[nid]--;
835			nr_pages--;
836			remaining_iterations = num_online_nodes();
837		}
838	}
839}
840
841/*
842 * Determine if the huge page at addr within the vma has an associated
843 * reservation.  Where it does not we will need to logically increase
844 * reservation and actually increase quota before an allocation can occur.
845 * Where any new reservation would be required the reservation change is
846 * prepared, but not committed.  Once the page has been quota'd allocated
847 * an instantiated the change should be committed via vma_commit_reservation.
848 * No action is required on failure.
849 */
850static int vma_needs_reservation(struct hstate *h,
851			struct vm_area_struct *vma, unsigned long addr)
852{
853	struct address_space *mapping = vma->vm_file->f_mapping;
854	struct inode *inode = mapping->host;
855
856	if (vma->vm_flags & VM_SHARED) {
857		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
858		return region_chg(&inode->i_mapping->private_list,
859							idx, idx + 1);
860
861	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
862		return 1;
863
864	} else  {
865		int err;
866		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
867		struct resv_map *reservations = vma_resv_map(vma);
868
869		err = region_chg(&reservations->regions, idx, idx + 1);
870		if (err < 0)
871			return err;
872		return 0;
873	}
874}
875static void vma_commit_reservation(struct hstate *h,
876			struct vm_area_struct *vma, unsigned long addr)
877{
878	struct address_space *mapping = vma->vm_file->f_mapping;
879	struct inode *inode = mapping->host;
880
881	if (vma->vm_flags & VM_SHARED) {
882		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
883		region_add(&inode->i_mapping->private_list, idx, idx + 1);
884
885	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
886		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
887		struct resv_map *reservations = vma_resv_map(vma);
888
889		/* Mark this page used in the map. */
890		region_add(&reservations->regions, idx, idx + 1);
891	}
892}
893
894static struct page *alloc_huge_page(struct vm_area_struct *vma,
895				    unsigned long addr, int avoid_reserve)
896{
897	struct hstate *h = hstate_vma(vma);
898	struct page *page;
899	struct address_space *mapping = vma->vm_file->f_mapping;
900	struct inode *inode = mapping->host;
901	unsigned int chg;
902
903	/*
904	 * Processes that did not create the mapping will have no reserves and
905	 * will not have accounted against quota. Check that the quota can be
906	 * made before satisfying the allocation
907	 * MAP_NORESERVE mappings may also need pages and quota allocated
908	 * if no reserve mapping overlaps.
909	 */
910	chg = vma_needs_reservation(h, vma, addr);
911	if (chg < 0)
912		return ERR_PTR(chg);
913	if (chg)
914		if (hugetlb_get_quota(inode->i_mapping, chg))
915			return ERR_PTR(-ENOSPC);
916
917	spin_lock(&hugetlb_lock);
918	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
919	spin_unlock(&hugetlb_lock);
920
921	if (!page) {
922		page = alloc_buddy_huge_page(h, vma, addr);
923		if (!page) {
924			hugetlb_put_quota(inode->i_mapping, chg);
925			return ERR_PTR(-VM_FAULT_OOM);
926		}
927	}
928
929	set_page_refcounted(page);
930	set_page_private(page, (unsigned long) mapping);
931
932	vma_commit_reservation(h, vma, addr);
933
934	return page;
935}
936
937__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
938{
939	struct huge_bootmem_page *m;
940	int nr_nodes = nodes_weight(node_online_map);
941
942	while (nr_nodes) {
943		void *addr;
944
945		addr = __alloc_bootmem_node_nopanic(
946				NODE_DATA(h->hugetlb_next_nid),
947				huge_page_size(h), huge_page_size(h), 0);
948
949		if (addr) {
950			/*
951			 * Use the beginning of the huge page to store the
952			 * huge_bootmem_page struct (until gather_bootmem
953			 * puts them into the mem_map).
954			 */
955			m = addr;
956			if (m)
957				goto found;
958		}
959		hstate_next_node(h);
960		nr_nodes--;
961	}
962	return 0;
963
964found:
965	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
966	/* Put them into a private list first because mem_map is not up yet */
967	list_add(&m->list, &huge_boot_pages);
968	m->hstate = h;
969	return 1;
970}
971
972/* Put bootmem huge pages into the standard lists after mem_map is up */
973static void __init gather_bootmem_prealloc(void)
974{
975	struct huge_bootmem_page *m;
976
977	list_for_each_entry(m, &huge_boot_pages, list) {
978		struct page *page = virt_to_page(m);
979		struct hstate *h = m->hstate;
980		__ClearPageReserved(page);
981		WARN_ON(page_count(page) != 1);
982		prep_compound_page(page, h->order);
983		prep_new_huge_page(h, page, page_to_nid(page));
984	}
985}
986
987static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
988{
989	unsigned long i;
990
991	for (i = 0; i < h->max_huge_pages; ++i) {
992		if (h->order >= MAX_ORDER) {
993			if (!alloc_bootmem_huge_page(h))
994				break;
995		} else if (!alloc_fresh_huge_page(h))
996			break;
997	}
998	h->max_huge_pages = i;
999}
1000
1001static void __init hugetlb_init_hstates(void)
1002{
1003	struct hstate *h;
1004
1005	for_each_hstate(h) {
1006		/* oversize hugepages were init'ed in early boot */
1007		if (h->order < MAX_ORDER)
1008			hugetlb_hstate_alloc_pages(h);
1009	}
1010}
1011
1012static char * __init memfmt(char *buf, unsigned long n)
1013{
1014	if (n >= (1UL << 30))
1015		sprintf(buf, "%lu GB", n >> 30);
1016	else if (n >= (1UL << 20))
1017		sprintf(buf, "%lu MB", n >> 20);
1018	else
1019		sprintf(buf, "%lu KB", n >> 10);
1020	return buf;
1021}
1022
1023static void __init report_hugepages(void)
1024{
1025	struct hstate *h;
1026
1027	for_each_hstate(h) {
1028		char buf[32];
1029		printk(KERN_INFO "HugeTLB registered %s page size, "
1030				 "pre-allocated %ld pages\n",
1031			memfmt(buf, huge_page_size(h)),
1032			h->free_huge_pages);
1033	}
1034}
1035
1036#ifdef CONFIG_HIGHMEM
1037static void try_to_free_low(struct hstate *h, unsigned long count)
1038{
1039	int i;
1040
1041	if (h->order >= MAX_ORDER)
1042		return;
1043
1044	for (i = 0; i < MAX_NUMNODES; ++i) {
1045		struct page *page, *next;
1046		struct list_head *freel = &h->hugepage_freelists[i];
1047		list_for_each_entry_safe(page, next, freel, lru) {
1048			if (count >= h->nr_huge_pages)
1049				return;
1050			if (PageHighMem(page))
1051				continue;
1052			list_del(&page->lru);
1053			update_and_free_page(h, page);
1054			h->free_huge_pages--;
1055			h->free_huge_pages_node[page_to_nid(page)]--;
1056		}
1057	}
1058}
1059#else
1060static inline void try_to_free_low(struct hstate *h, unsigned long count)
1061{
1062}
1063#endif
1064
1065#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1066static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1067{
1068	unsigned long min_count, ret;
1069
1070	if (h->order >= MAX_ORDER)
1071		return h->max_huge_pages;
1072
1073	/*
1074	 * Increase the pool size
1075	 * First take pages out of surplus state.  Then make up the
1076	 * remaining difference by allocating fresh huge pages.
1077	 *
1078	 * We might race with alloc_buddy_huge_page() here and be unable
1079	 * to convert a surplus huge page to a normal huge page. That is
1080	 * not critical, though, it just means the overall size of the
1081	 * pool might be one hugepage larger than it needs to be, but
1082	 * within all the constraints specified by the sysctls.
1083	 */
1084	spin_lock(&hugetlb_lock);
1085	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1086		if (!adjust_pool_surplus(h, -1))
1087			break;
1088	}
1089
1090	while (count > persistent_huge_pages(h)) {
1091		/*
1092		 * If this allocation races such that we no longer need the
1093		 * page, free_huge_page will handle it by freeing the page
1094		 * and reducing the surplus.
1095		 */
1096		spin_unlock(&hugetlb_lock);
1097		ret = alloc_fresh_huge_page(h);
1098		spin_lock(&hugetlb_lock);
1099		if (!ret)
1100			goto out;
1101
1102	}
1103
1104	/*
1105	 * Decrease the pool size
1106	 * First return free pages to the buddy allocator (being careful
1107	 * to keep enough around to satisfy reservations).  Then place
1108	 * pages into surplus state as needed so the pool will shrink
1109	 * to the desired size as pages become free.
1110	 *
1111	 * By placing pages into the surplus state independent of the
1112	 * overcommit value, we are allowing the surplus pool size to
1113	 * exceed overcommit. There are few sane options here. Since
1114	 * alloc_buddy_huge_page() is checking the global counter,
1115	 * though, we'll note that we're not allowed to exceed surplus
1116	 * and won't grow the pool anywhere else. Not until one of the
1117	 * sysctls are changed, or the surplus pages go out of use.
1118	 */
1119	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1120	min_count = max(count, min_count);
1121	try_to_free_low(h, min_count);
1122	while (min_count < persistent_huge_pages(h)) {
1123		struct page *page = dequeue_huge_page(h);
1124		if (!page)
1125			break;
1126		update_and_free_page(h, page);
1127	}
1128	while (count < persistent_huge_pages(h)) {
1129		if (!adjust_pool_surplus(h, 1))
1130			break;
1131	}
1132out:
1133	ret = persistent_huge_pages(h);
1134	spin_unlock(&hugetlb_lock);
1135	return ret;
1136}
1137
1138#define HSTATE_ATTR_RO(_name) \
1139	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1140
1141#define HSTATE_ATTR(_name) \
1142	static struct kobj_attribute _name##_attr = \
1143		__ATTR(_name, 0644, _name##_show, _name##_store)
1144
1145static struct kobject *hugepages_kobj;
1146static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1147
1148static struct hstate *kobj_to_hstate(struct kobject *kobj)
1149{
1150	int i;
1151	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1152		if (hstate_kobjs[i] == kobj)
1153			return &hstates[i];
1154	BUG();
1155	return NULL;
1156}
1157
1158static ssize_t nr_hugepages_show(struct kobject *kobj,
1159					struct kobj_attribute *attr, char *buf)
1160{
1161	struct hstate *h = kobj_to_hstate(kobj);
1162	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1163}
1164static ssize_t nr_hugepages_store(struct kobject *kobj,
1165		struct kobj_attribute *attr, const char *buf, size_t count)
1166{
1167	int err;
1168	unsigned long input;
1169	struct hstate *h = kobj_to_hstate(kobj);
1170
1171	err = strict_strtoul(buf, 10, &input);
1172	if (err)
1173		return 0;
1174
1175	h->max_huge_pages = set_max_huge_pages(h, input);
1176
1177	return count;
1178}
1179HSTATE_ATTR(nr_hugepages);
1180
1181static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1182					struct kobj_attribute *attr, char *buf)
1183{
1184	struct hstate *h = kobj_to_hstate(kobj);
1185	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1186}
1187static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1188		struct kobj_attribute *attr, const char *buf, size_t count)
1189{
1190	int err;
1191	unsigned long input;
1192	struct hstate *h = kobj_to_hstate(kobj);
1193
1194	err = strict_strtoul(buf, 10, &input);
1195	if (err)
1196		return 0;
1197
1198	spin_lock(&hugetlb_lock);
1199	h->nr_overcommit_huge_pages = input;
1200	spin_unlock(&hugetlb_lock);
1201
1202	return count;
1203}
1204HSTATE_ATTR(nr_overcommit_hugepages);
1205
1206static ssize_t free_hugepages_show(struct kobject *kobj,
1207					struct kobj_attribute *attr, char *buf)
1208{
1209	struct hstate *h = kobj_to_hstate(kobj);
1210	return sprintf(buf, "%lu\n", h->free_huge_pages);
1211}
1212HSTATE_ATTR_RO(free_hugepages);
1213
1214static ssize_t resv_hugepages_show(struct kobject *kobj,
1215					struct kobj_attribute *attr, char *buf)
1216{
1217	struct hstate *h = kobj_to_hstate(kobj);
1218	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1219}
1220HSTATE_ATTR_RO(resv_hugepages);
1221
1222static ssize_t surplus_hugepages_show(struct kobject *kobj,
1223					struct kobj_attribute *attr, char *buf)
1224{
1225	struct hstate *h = kobj_to_hstate(kobj);
1226	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1227}
1228HSTATE_ATTR_RO(surplus_hugepages);
1229
1230static struct attribute *hstate_attrs[] = {
1231	&nr_hugepages_attr.attr,
1232	&nr_overcommit_hugepages_attr.attr,
1233	&free_hugepages_attr.attr,
1234	&resv_hugepages_attr.attr,
1235	&surplus_hugepages_attr.attr,
1236	NULL,
1237};
1238
1239static struct attribute_group hstate_attr_group = {
1240	.attrs = hstate_attrs,
1241};
1242
1243static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1244{
1245	int retval;
1246
1247	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1248							hugepages_kobj);
1249	if (!hstate_kobjs[h - hstates])
1250		return -ENOMEM;
1251
1252	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1253							&hstate_attr_group);
1254	if (retval)
1255		kobject_put(hstate_kobjs[h - hstates]);
1256
1257	return retval;
1258}
1259
1260static void __init hugetlb_sysfs_init(void)
1261{
1262	struct hstate *h;
1263	int err;
1264
1265	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1266	if (!hugepages_kobj)
1267		return;
1268
1269	for_each_hstate(h) {
1270		err = hugetlb_sysfs_add_hstate(h);
1271		if (err)
1272			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1273								h->name);
1274	}
1275}
1276
1277static void __exit hugetlb_exit(void)
1278{
1279	struct hstate *h;
1280
1281	for_each_hstate(h) {
1282		kobject_put(hstate_kobjs[h - hstates]);
1283	}
1284
1285	kobject_put(hugepages_kobj);
1286}
1287module_exit(hugetlb_exit);
1288
1289static int __init hugetlb_init(void)
1290{
1291	/* Some platform decide whether they support huge pages at boot
1292	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1293	 * there is no such support
1294	 */
1295	if (HPAGE_SHIFT == 0)
1296		return 0;
1297
1298	if (!size_to_hstate(default_hstate_size)) {
1299		default_hstate_size = HPAGE_SIZE;
1300		if (!size_to_hstate(default_hstate_size))
1301			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1302	}
1303	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1304	if (default_hstate_max_huge_pages)
1305		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1306
1307	hugetlb_init_hstates();
1308
1309	gather_bootmem_prealloc();
1310
1311	report_hugepages();
1312
1313	hugetlb_sysfs_init();
1314
1315	return 0;
1316}
1317module_init(hugetlb_init);
1318
1319/* Should be called on processing a hugepagesz=... option */
1320void __init hugetlb_add_hstate(unsigned order)
1321{
1322	struct hstate *h;
1323	unsigned long i;
1324
1325	if (size_to_hstate(PAGE_SIZE << order)) {
1326		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1327		return;
1328	}
1329	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1330	BUG_ON(order == 0);
1331	h = &hstates[max_hstate++];
1332	h->order = order;
1333	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1334	h->nr_huge_pages = 0;
1335	h->free_huge_pages = 0;
1336	for (i = 0; i < MAX_NUMNODES; ++i)
1337		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1338	h->hugetlb_next_nid = first_node(node_online_map);
1339	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1340					huge_page_size(h)/1024);
1341
1342	parsed_hstate = h;
1343}
1344
1345static int __init hugetlb_nrpages_setup(char *s)
1346{
1347	unsigned long *mhp;
1348	static unsigned long *last_mhp;
1349
1350	/*
1351	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1352	 * so this hugepages= parameter goes to the "default hstate".
1353	 */
1354	if (!max_hstate)
1355		mhp = &default_hstate_max_huge_pages;
1356	else
1357		mhp = &parsed_hstate->max_huge_pages;
1358
1359	if (mhp == last_mhp) {
1360		printk(KERN_WARNING "hugepages= specified twice without "
1361			"interleaving hugepagesz=, ignoring\n");
1362		return 1;
1363	}
1364
1365	if (sscanf(s, "%lu", mhp) <= 0)
1366		*mhp = 0;
1367
1368	/*
1369	 * Global state is always initialized later in hugetlb_init.
1370	 * But we need to allocate >= MAX_ORDER hstates here early to still
1371	 * use the bootmem allocator.
1372	 */
1373	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1374		hugetlb_hstate_alloc_pages(parsed_hstate);
1375
1376	last_mhp = mhp;
1377
1378	return 1;
1379}
1380__setup("hugepages=", hugetlb_nrpages_setup);
1381
1382static int __init hugetlb_default_setup(char *s)
1383{
1384	default_hstate_size = memparse(s, &s);
1385	return 1;
1386}
1387__setup("default_hugepagesz=", hugetlb_default_setup);
1388
1389static unsigned int cpuset_mems_nr(unsigned int *array)
1390{
1391	int node;
1392	unsigned int nr = 0;
1393
1394	for_each_node_mask(node, cpuset_current_mems_allowed)
1395		nr += array[node];
1396
1397	return nr;
1398}
1399
1400#ifdef CONFIG_SYSCTL
1401int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1402			   struct file *file, void __user *buffer,
1403			   size_t *length, loff_t *ppos)
1404{
1405	struct hstate *h = &default_hstate;
1406	unsigned long tmp;
1407
1408	if (!write)
1409		tmp = h->max_huge_pages;
1410
1411	table->data = &tmp;
1412	table->maxlen = sizeof(unsigned long);
1413	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1414
1415	if (write)
1416		h->max_huge_pages = set_max_huge_pages(h, tmp);
1417
1418	return 0;
1419}
1420
1421int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1422			struct file *file, void __user *buffer,
1423			size_t *length, loff_t *ppos)
1424{
1425	proc_dointvec(table, write, file, buffer, length, ppos);
1426	if (hugepages_treat_as_movable)
1427		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1428	else
1429		htlb_alloc_mask = GFP_HIGHUSER;
1430	return 0;
1431}
1432
1433int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1434			struct file *file, void __user *buffer,
1435			size_t *length, loff_t *ppos)
1436{
1437	struct hstate *h = &default_hstate;
1438	unsigned long tmp;
1439
1440	if (!write)
1441		tmp = h->nr_overcommit_huge_pages;
1442
1443	table->data = &tmp;
1444	table->maxlen = sizeof(unsigned long);
1445	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1446
1447	if (write) {
1448		spin_lock(&hugetlb_lock);
1449		h->nr_overcommit_huge_pages = tmp;
1450		spin_unlock(&hugetlb_lock);
1451	}
1452
1453	return 0;
1454}
1455
1456#endif /* CONFIG_SYSCTL */
1457
1458int hugetlb_report_meminfo(char *buf)
1459{
1460	struct hstate *h = &default_hstate;
1461	return sprintf(buf,
1462			"HugePages_Total: %5lu\n"
1463			"HugePages_Free:  %5lu\n"
1464			"HugePages_Rsvd:  %5lu\n"
1465			"HugePages_Surp:  %5lu\n"
1466			"Hugepagesize:    %5lu kB\n",
1467			h->nr_huge_pages,
1468			h->free_huge_pages,
1469			h->resv_huge_pages,
1470			h->surplus_huge_pages,
1471			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1472}
1473
1474int hugetlb_report_node_meminfo(int nid, char *buf)
1475{
1476	struct hstate *h = &default_hstate;
1477	return sprintf(buf,
1478		"Node %d HugePages_Total: %5u\n"
1479		"Node %d HugePages_Free:  %5u\n"
1480		"Node %d HugePages_Surp:  %5u\n",
1481		nid, h->nr_huge_pages_node[nid],
1482		nid, h->free_huge_pages_node[nid],
1483		nid, h->surplus_huge_pages_node[nid]);
1484}
1485
1486/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1487unsigned long hugetlb_total_pages(void)
1488{
1489	struct hstate *h = &default_hstate;
1490	return h->nr_huge_pages * pages_per_huge_page(h);
1491}
1492
1493static int hugetlb_acct_memory(struct hstate *h, long delta)
1494{
1495	int ret = -ENOMEM;
1496
1497	spin_lock(&hugetlb_lock);
1498	/*
1499	 * When cpuset is configured, it breaks the strict hugetlb page
1500	 * reservation as the accounting is done on a global variable. Such
1501	 * reservation is completely rubbish in the presence of cpuset because
1502	 * the reservation is not checked against page availability for the
1503	 * current cpuset. Application can still potentially OOM'ed by kernel
1504	 * with lack of free htlb page in cpuset that the task is in.
1505	 * Attempt to enforce strict accounting with cpuset is almost
1506	 * impossible (or too ugly) because cpuset is too fluid that
1507	 * task or memory node can be dynamically moved between cpusets.
1508	 *
1509	 * The change of semantics for shared hugetlb mapping with cpuset is
1510	 * undesirable. However, in order to preserve some of the semantics,
1511	 * we fall back to check against current free page availability as
1512	 * a best attempt and hopefully to minimize the impact of changing
1513	 * semantics that cpuset has.
1514	 */
1515	if (delta > 0) {
1516		if (gather_surplus_pages(h, delta) < 0)
1517			goto out;
1518
1519		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1520			return_unused_surplus_pages(h, delta);
1521			goto out;
1522		}
1523	}
1524
1525	ret = 0;
1526	if (delta < 0)
1527		return_unused_surplus_pages(h, (unsigned long) -delta);
1528
1529out:
1530	spin_unlock(&hugetlb_lock);
1531	return ret;
1532}
1533
1534static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1535{
1536	struct resv_map *reservations = vma_resv_map(vma);
1537
1538	/*
1539	 * This new VMA should share its siblings reservation map if present.
1540	 * The VMA will only ever have a valid reservation map pointer where
1541	 * it is being copied for another still existing VMA.  As that VMA
1542	 * has a reference to the reservation map it cannot dissappear until
1543	 * after this open call completes.  It is therefore safe to take a
1544	 * new reference here without additional locking.
1545	 */
1546	if (reservations)
1547		kref_get(&reservations->refs);
1548}
1549
1550static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1551{
1552	struct hstate *h = hstate_vma(vma);
1553	struct resv_map *reservations = vma_resv_map(vma);
1554	unsigned long reserve;
1555	unsigned long start;
1556	unsigned long end;
1557
1558	if (reservations) {
1559		start = vma_hugecache_offset(h, vma, vma->vm_start);
1560		end = vma_hugecache_offset(h, vma, vma->vm_end);
1561
1562		reserve = (end - start) -
1563			region_count(&reservations->regions, start, end);
1564
1565		kref_put(&reservations->refs, resv_map_release);
1566
1567		if (reserve) {
1568			hugetlb_acct_memory(h, -reserve);
1569			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1570		}
1571	}
1572}
1573
1574/*
1575 * We cannot handle pagefaults against hugetlb pages at all.  They cause
1576 * handle_mm_fault() to try to instantiate regular-sized pages in the
1577 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1578 * this far.
1579 */
1580static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1581{
1582	BUG();
1583	return 0;
1584}
1585
1586struct vm_operations_struct hugetlb_vm_ops = {
1587	.fault = hugetlb_vm_op_fault,
1588	.open = hugetlb_vm_op_open,
1589	.close = hugetlb_vm_op_close,
1590};
1591
1592static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1593				int writable)
1594{
1595	pte_t entry;
1596
1597	if (writable) {
1598		entry =
1599		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1600	} else {
1601		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1602	}
1603	entry = pte_mkyoung(entry);
1604	entry = pte_mkhuge(entry);
1605
1606	return entry;
1607}
1608
1609static void set_huge_ptep_writable(struct vm_area_struct *vma,
1610				   unsigned long address, pte_t *ptep)
1611{
1612	pte_t entry;
1613
1614	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1615	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1616		update_mmu_cache(vma, address, entry);
1617	}
1618}
1619
1620
1621int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1622			    struct vm_area_struct *vma)
1623{
1624	pte_t *src_pte, *dst_pte, entry;
1625	struct page *ptepage;
1626	unsigned long addr;
1627	int cow;
1628	struct hstate *h = hstate_vma(vma);
1629	unsigned long sz = huge_page_size(h);
1630
1631	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1632
1633	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1634		src_pte = huge_pte_offset(src, addr);
1635		if (!src_pte)
1636			continue;
1637		dst_pte = huge_pte_alloc(dst, addr, sz);
1638		if (!dst_pte)
1639			goto nomem;
1640
1641		/* If the pagetables are shared don't copy or take references */
1642		if (dst_pte == src_pte)
1643			continue;
1644
1645		spin_lock(&dst->page_table_lock);
1646		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1647		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1648			if (cow)
1649				huge_ptep_set_wrprotect(src, addr, src_pte);
1650			entry = huge_ptep_get(src_pte);
1651			ptepage = pte_page(entry);
1652			get_page(ptepage);
1653			set_huge_pte_at(dst, addr, dst_pte, entry);
1654		}
1655		spin_unlock(&src->page_table_lock);
1656		spin_unlock(&dst->page_table_lock);
1657	}
1658	return 0;
1659
1660nomem:
1661	return -ENOMEM;
1662}
1663
1664void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1665			    unsigned long end, struct page *ref_page)
1666{
1667	struct mm_struct *mm = vma->vm_mm;
1668	unsigned long address;
1669	pte_t *ptep;
1670	pte_t pte;
1671	struct page *page;
1672	struct page *tmp;
1673	struct hstate *h = hstate_vma(vma);
1674	unsigned long sz = huge_page_size(h);
1675
1676	/*
1677	 * A page gathering list, protected by per file i_mmap_lock. The
1678	 * lock is used to avoid list corruption from multiple unmapping
1679	 * of the same page since we are using page->lru.
1680	 */
1681	LIST_HEAD(page_list);
1682
1683	WARN_ON(!is_vm_hugetlb_page(vma));
1684	BUG_ON(start & ~huge_page_mask(h));
1685	BUG_ON(end & ~huge_page_mask(h));
1686
1687	mmu_notifier_invalidate_range_start(mm, start, end);
1688	spin_lock(&mm->page_table_lock);
1689	for (address = start; address < end; address += sz) {
1690		ptep = huge_pte_offset(mm, address);
1691		if (!ptep)
1692			continue;
1693
1694		if (huge_pmd_unshare(mm, &address, ptep))
1695			continue;
1696
1697		/*
1698		 * If a reference page is supplied, it is because a specific
1699		 * page is being unmapped, not a range. Ensure the page we
1700		 * are about to unmap is the actual page of interest.
1701		 */
1702		if (ref_page) {
1703			pte = huge_ptep_get(ptep);
1704			if (huge_pte_none(pte))
1705				continue;
1706			page = pte_page(pte);
1707			if (page != ref_page)
1708				continue;
1709
1710			/*
1711			 * Mark the VMA as having unmapped its page so that
1712			 * future faults in this VMA will fail rather than
1713			 * looking like data was lost
1714			 */
1715			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1716		}
1717
1718		pte = huge_ptep_get_and_clear(mm, address, ptep);
1719		if (huge_pte_none(pte))
1720			continue;
1721
1722		page = pte_page(pte);
1723		if (pte_dirty(pte))
1724			set_page_dirty(page);
1725		list_add(&page->lru, &page_list);
1726	}
1727	spin_unlock(&mm->page_table_lock);
1728	flush_tlb_range(vma, start, end);
1729	mmu_notifier_invalidate_range_end(mm, start, end);
1730	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1731		list_del(&page->lru);
1732		put_page(page);
1733	}
1734}
1735
1736void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1737			  unsigned long end, struct page *ref_page)
1738{
1739	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1740	__unmap_hugepage_range(vma, start, end, ref_page);
1741	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1742}
1743
1744/*
1745 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1746 * mappping it owns the reserve page for. The intention is to unmap the page
1747 * from other VMAs and let the children be SIGKILLed if they are faulting the
1748 * same region.
1749 */
1750int unmap_ref_private(struct mm_struct *mm,
1751					struct vm_area_struct *vma,
1752					struct page *page,
1753					unsigned long address)
1754{
1755	struct vm_area_struct *iter_vma;
1756	struct address_space *mapping;
1757	struct prio_tree_iter iter;
1758	pgoff_t pgoff;
1759
1760	/*
1761	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1762	 * from page cache lookup which is in HPAGE_SIZE units.
1763	 */
1764	address = address & huge_page_mask(hstate_vma(vma));
1765	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1766		+ (vma->vm_pgoff >> PAGE_SHIFT);
1767	mapping = (struct address_space *)page_private(page);
1768
1769	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1770		/* Do not unmap the current VMA */
1771		if (iter_vma == vma)
1772			continue;
1773
1774		/*
1775		 * Unmap the page from other VMAs without their own reserves.
1776		 * They get marked to be SIGKILLed if they fault in these
1777		 * areas. This is because a future no-page fault on this VMA
1778		 * could insert a zeroed page instead of the data existing
1779		 * from the time of fork. This would look like data corruption
1780		 */
1781		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1782			unmap_hugepage_range(iter_vma,
1783				address, address + HPAGE_SIZE,
1784				page);
1785	}
1786
1787	return 1;
1788}
1789
1790static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1791			unsigned long address, pte_t *ptep, pte_t pte,
1792			struct page *pagecache_page)
1793{
1794	struct hstate *h = hstate_vma(vma);
1795	struct page *old_page, *new_page;
1796	int avoidcopy;
1797	int outside_reserve = 0;
1798
1799	old_page = pte_page(pte);
1800
1801retry_avoidcopy:
1802	/* If no-one else is actually using this page, avoid the copy
1803	 * and just make the page writable */
1804	avoidcopy = (page_count(old_page) == 1);
1805	if (avoidcopy) {
1806		set_huge_ptep_writable(vma, address, ptep);
1807		return 0;
1808	}
1809
1810	/*
1811	 * If the process that created a MAP_PRIVATE mapping is about to
1812	 * perform a COW due to a shared page count, attempt to satisfy
1813	 * the allocation without using the existing reserves. The pagecache
1814	 * page is used to determine if the reserve at this address was
1815	 * consumed or not. If reserves were used, a partial faulted mapping
1816	 * at the time of fork() could consume its reserves on COW instead
1817	 * of the full address range.
1818	 */
1819	if (!(vma->vm_flags & VM_SHARED) &&
1820			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1821			old_page != pagecache_page)
1822		outside_reserve = 1;
1823
1824	page_cache_get(old_page);
1825	new_page = alloc_huge_page(vma, address, outside_reserve);
1826
1827	if (IS_ERR(new_page)) {
1828		page_cache_release(old_page);
1829
1830		/*
1831		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1832		 * it is due to references held by a child and an insufficient
1833		 * huge page pool. To guarantee the original mappers
1834		 * reliability, unmap the page from child processes. The child
1835		 * may get SIGKILLed if it later faults.
1836		 */
1837		if (outside_reserve) {
1838			BUG_ON(huge_pte_none(pte));
1839			if (unmap_ref_private(mm, vma, old_page, address)) {
1840				BUG_ON(page_count(old_page) != 1);
1841				BUG_ON(huge_pte_none(pte));
1842				goto retry_avoidcopy;
1843			}
1844			WARN_ON_ONCE(1);
1845		}
1846
1847		return -PTR_ERR(new_page);
1848	}
1849
1850	spin_unlock(&mm->page_table_lock);
1851	copy_huge_page(new_page, old_page, address, vma);
1852	__SetPageUptodate(new_page);
1853	spin_lock(&mm->page_table_lock);
1854
1855	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1856	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1857		/* Break COW */
1858		huge_ptep_clear_flush(vma, address, ptep);
1859		set_huge_pte_at(mm, address, ptep,
1860				make_huge_pte(vma, new_page, 1));
1861		/* Make the old page be freed below */
1862		new_page = old_page;
1863	}
1864	page_cache_release(new_page);
1865	page_cache_release(old_page);
1866	return 0;
1867}
1868
1869/* Return the pagecache page at a given address within a VMA */
1870static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1871			struct vm_area_struct *vma, unsigned long address)
1872{
1873	struct address_space *mapping;
1874	pgoff_t idx;
1875
1876	mapping = vma->vm_file->f_mapping;
1877	idx = vma_hugecache_offset(h, vma, address);
1878
1879	return find_lock_page(mapping, idx);
1880}
1881
1882static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1883			unsigned long address, pte_t *ptep, int write_access)
1884{
1885	struct hstate *h = hstate_vma(vma);
1886	int ret = VM_FAULT_SIGBUS;
1887	pgoff_t idx;
1888	unsigned long size;
1889	struct page *page;
1890	struct address_space *mapping;
1891	pte_t new_pte;
1892
1893	/*
1894	 * Currently, we are forced to kill the process in the event the
1895	 * original mapper has unmapped pages from the child due to a failed
1896	 * COW. Warn that such a situation has occured as it may not be obvious
1897	 */
1898	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1899		printk(KERN_WARNING
1900			"PID %d killed due to inadequate hugepage pool\n",
1901			current->pid);
1902		return ret;
1903	}
1904
1905	mapping = vma->vm_file->f_mapping;
1906	idx = vma_hugecache_offset(h, vma, address);
1907
1908	/*
1909	 * Use page lock to guard against racing truncation
1910	 * before we get page_table_lock.
1911	 */
1912retry:
1913	page = find_lock_page(mapping, idx);
1914	if (!page) {
1915		size = i_size_read(mapping->host) >> huge_page_shift(h);
1916		if (idx >= size)
1917			goto out;
1918		page = alloc_huge_page(vma, address, 0);
1919		if (IS_ERR(page)) {
1920			ret = -PTR_ERR(page);
1921			goto out;
1922		}
1923		clear_huge_page(page, address, huge_page_size(h));
1924		__SetPageUptodate(page);
1925
1926		if (vma->vm_flags & VM_SHARED) {
1927			int err;
1928			struct inode *inode = mapping->host;
1929
1930			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1931			if (err) {
1932				put_page(page);
1933				if (err == -EEXIST)
1934					goto retry;
1935				goto out;
1936			}
1937
1938			spin_lock(&inode->i_lock);
1939			inode->i_blocks += blocks_per_huge_page(h);
1940			spin_unlock(&inode->i_lock);
1941		} else
1942			lock_page(page);
1943	}
1944
1945	/*
1946	 * If we are going to COW a private mapping later, we examine the
1947	 * pending reservations for this page now. This will ensure that
1948	 * any allocations necessary to record that reservation occur outside
1949	 * the spinlock.
1950	 */
1951	if (write_access && !(vma->vm_flags & VM_SHARED))
1952		if (vma_needs_reservation(h, vma, address) < 0) {
1953			ret = VM_FAULT_OOM;
1954			goto backout_unlocked;
1955		}
1956
1957	spin_lock(&mm->page_table_lock);
1958	size = i_size_read(mapping->host) >> huge_page_shift(h);
1959	if (idx >= size)
1960		goto backout;
1961
1962	ret = 0;
1963	if (!huge_pte_none(huge_ptep_get(ptep)))
1964		goto backout;
1965
1966	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1967				&& (vma->vm_flags & VM_SHARED)));
1968	set_huge_pte_at(mm, address, ptep, new_pte);
1969
1970	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1971		/* Optimization, do the COW without a second fault */
1972		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1973	}
1974
1975	spin_unlock(&mm->page_table_lock);
1976	unlock_page(page);
1977out:
1978	return ret;
1979
1980backout:
1981	spin_unlock(&mm->page_table_lock);
1982backout_unlocked:
1983	unlock_page(page);
1984	put_page(page);
1985	goto out;
1986}
1987
1988int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1989			unsigned long address, int write_access)
1990{
1991	pte_t *ptep;
1992	pte_t entry;
1993	int ret;
1994	struct page *pagecache_page = NULL;
1995	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1996	struct hstate *h = hstate_vma(vma);
1997
1998	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1999	if (!ptep)
2000		return VM_FAULT_OOM;
2001
2002	/*
2003	 * Serialize hugepage allocation and instantiation, so that we don't
2004	 * get spurious allocation failures if two CPUs race to instantiate
2005	 * the same page in the page cache.
2006	 */
2007	mutex_lock(&hugetlb_instantiation_mutex);
2008	entry = huge_ptep_get(ptep);
2009	if (huge_pte_none(entry)) {
2010		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2011		goto out_mutex;
2012	}
2013
2014	ret = 0;
2015
2016	/*
2017	 * If we are going to COW the mapping later, we examine the pending
2018	 * reservations for this page now. This will ensure that any
2019	 * allocations necessary to record that reservation occur outside the
2020	 * spinlock. For private mappings, we also lookup the pagecache
2021	 * page now as it is used to determine if a reservation has been
2022	 * consumed.
2023	 */
2024	if (write_access && !pte_write(entry)) {
2025		if (vma_needs_reservation(h, vma, address) < 0) {
2026			ret = VM_FAULT_OOM;
2027			goto out_mutex;
2028		}
2029
2030		if (!(vma->vm_flags & VM_SHARED))
2031			pagecache_page = hugetlbfs_pagecache_page(h,
2032								vma, address);
2033	}
2034
2035	spin_lock(&mm->page_table_lock);
2036	/* Check for a racing update before calling hugetlb_cow */
2037	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2038		goto out_page_table_lock;
2039
2040
2041	if (write_access) {
2042		if (!pte_write(entry)) {
2043			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2044							pagecache_page);
2045			goto out_page_table_lock;
2046		}
2047		entry = pte_mkdirty(entry);
2048	}
2049	entry = pte_mkyoung(entry);
2050	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2051		update_mmu_cache(vma, address, entry);
2052
2053out_page_table_lock:
2054	spin_unlock(&mm->page_table_lock);
2055
2056	if (pagecache_page) {
2057		unlock_page(pagecache_page);
2058		put_page(pagecache_page);
2059	}
2060
2061out_mutex:
2062	mutex_unlock(&hugetlb_instantiation_mutex);
2063
2064	return ret;
2065}
2066
2067/* Can be overriden by architectures */
2068__attribute__((weak)) struct page *
2069follow_huge_pud(struct mm_struct *mm, unsigned long address,
2070	       pud_t *pud, int write)
2071{
2072	BUG();
2073	return NULL;
2074}
2075
2076int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2077			struct page **pages, struct vm_area_struct **vmas,
2078			unsigned long *position, int *length, int i,
2079			int write)
2080{
2081	unsigned long pfn_offset;
2082	unsigned long vaddr = *position;
2083	int remainder = *length;
2084	struct hstate *h = hstate_vma(vma);
2085
2086	spin_lock(&mm->page_table_lock);
2087	while (vaddr < vma->vm_end && remainder) {
2088		pte_t *pte;
2089		struct page *page;
2090
2091		/*
2092		 * Some archs (sparc64, sh*) have multiple pte_ts to
2093		 * each hugepage.  We have to make * sure we get the
2094		 * first, for the page indexing below to work.
2095		 */
2096		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2097
2098		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
2099		    (write && !pte_write(huge_ptep_get(pte)))) {
2100			int ret;
2101
2102			spin_unlock(&mm->page_table_lock);
2103			ret = hugetlb_fault(mm, vma, vaddr, write);
2104			spin_lock(&mm->page_table_lock);
2105			if (!(ret & VM_FAULT_ERROR))
2106				continue;
2107
2108			remainder = 0;
2109			if (!i)
2110				i = -EFAULT;
2111			break;
2112		}
2113
2114		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2115		page = pte_page(huge_ptep_get(pte));
2116same_page:
2117		if (pages) {
2118			get_page(page);
2119			pages[i] = page + pfn_offset;
2120		}
2121
2122		if (vmas)
2123			vmas[i] = vma;
2124
2125		vaddr += PAGE_SIZE;
2126		++pfn_offset;
2127		--remainder;
2128		++i;
2129		if (vaddr < vma->vm_end && remainder &&
2130				pfn_offset < pages_per_huge_page(h)) {
2131			/*
2132			 * We use pfn_offset to avoid touching the pageframes
2133			 * of this compound page.
2134			 */
2135			goto same_page;
2136		}
2137	}
2138	spin_unlock(&mm->page_table_lock);
2139	*length = remainder;
2140	*position = vaddr;
2141
2142	return i;
2143}
2144
2145void hugetlb_change_protection(struct vm_area_struct *vma,
2146		unsigned long address, unsigned long end, pgprot_t newprot)
2147{
2148	struct mm_struct *mm = vma->vm_mm;
2149	unsigned long start = address;
2150	pte_t *ptep;
2151	pte_t pte;
2152	struct hstate *h = hstate_vma(vma);
2153
2154	BUG_ON(address >= end);
2155	flush_cache_range(vma, address, end);
2156
2157	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2158	spin_lock(&mm->page_table_lock);
2159	for (; address < end; address += huge_page_size(h)) {
2160		ptep = huge_pte_offset(mm, address);
2161		if (!ptep)
2162			continue;
2163		if (huge_pmd_unshare(mm, &address, ptep))
2164			continue;
2165		if (!huge_pte_none(huge_ptep_get(ptep))) {
2166			pte = huge_ptep_get_and_clear(mm, address, ptep);
2167			pte = pte_mkhuge(pte_modify(pte, newprot));
2168			set_huge_pte_at(mm, address, ptep, pte);
2169		}
2170	}
2171	spin_unlock(&mm->page_table_lock);
2172	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2173
2174	flush_tlb_range(vma, start, end);
2175}
2176
2177int hugetlb_reserve_pages(struct inode *inode,
2178					long from, long to,
2179					struct vm_area_struct *vma)
2180{
2181	long ret, chg;
2182	struct hstate *h = hstate_inode(inode);
2183
2184	if (vma && vma->vm_flags & VM_NORESERVE)
2185		return 0;
2186
2187	/*
2188	 * Shared mappings base their reservation on the number of pages that
2189	 * are already allocated on behalf of the file. Private mappings need
2190	 * to reserve the full area even if read-only as mprotect() may be
2191	 * called to make the mapping read-write. Assume !vma is a shm mapping
2192	 */
2193	if (!vma || vma->vm_flags & VM_SHARED)
2194		chg = region_chg(&inode->i_mapping->private_list, from, to);
2195	else {
2196		struct resv_map *resv_map = resv_map_alloc();
2197		if (!resv_map)
2198			return -ENOMEM;
2199
2200		chg = to - from;
2201
2202		set_vma_resv_map(vma, resv_map);
2203		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2204	}
2205
2206	if (chg < 0)
2207		return chg;
2208
2209	if (hugetlb_get_quota(inode->i_mapping, chg))
2210		return -ENOSPC;
2211	ret = hugetlb_acct_memory(h, chg);
2212	if (ret < 0) {
2213		hugetlb_put_quota(inode->i_mapping, chg);
2214		return ret;
2215	}
2216	if (!vma || vma->vm_flags & VM_SHARED)
2217		region_add(&inode->i_mapping->private_list, from, to);
2218	return 0;
2219}
2220
2221void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2222{
2223	struct hstate *h = hstate_inode(inode);
2224	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2225
2226	spin_lock(&inode->i_lock);
2227	inode->i_blocks -= blocks_per_huge_page(h);
2228	spin_unlock(&inode->i_lock);
2229
2230	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2231	hugetlb_acct_memory(h, -(chg - freed));
2232}
2233