hugetlb.c revision c0ff7453bb5c7c98e0885fb94279f2571946f280
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/io.h>
25
26#include <linux/hugetlb.h>
27#include <linux/node.h>
28#include "internal.h"
29
30const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32unsigned long hugepages_treat_as_movable;
33
34static int max_hstate;
35unsigned int default_hstate_idx;
36struct hstate hstates[HUGE_MAX_HSTATE];
37
38__initdata LIST_HEAD(huge_boot_pages);
39
40/* for command line parsing */
41static struct hstate * __initdata parsed_hstate;
42static unsigned long __initdata default_hstate_max_huge_pages;
43static unsigned long __initdata default_hstate_size;
44
45#define for_each_hstate(h) \
46	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47
48/*
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 */
51static DEFINE_SPINLOCK(hugetlb_lock);
52
53/*
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 *                    across the pages in a mapping.
56 *
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
61 *
62 * 	down_write(&mm->mmap_sem);
63 * or
64 * 	down_read(&mm->mmap_sem);
65 * 	mutex_lock(&hugetlb_instantiation_mutex);
66 */
67struct file_region {
68	struct list_head link;
69	long from;
70	long to;
71};
72
73static long region_add(struct list_head *head, long f, long t)
74{
75	struct file_region *rg, *nrg, *trg;
76
77	/* Locate the region we are either in or before. */
78	list_for_each_entry(rg, head, link)
79		if (f <= rg->to)
80			break;
81
82	/* Round our left edge to the current segment if it encloses us. */
83	if (f > rg->from)
84		f = rg->from;
85
86	/* Check for and consume any regions we now overlap with. */
87	nrg = rg;
88	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89		if (&rg->link == head)
90			break;
91		if (rg->from > t)
92			break;
93
94		/* If this area reaches higher then extend our area to
95		 * include it completely.  If this is not the first area
96		 * which we intend to reuse, free it. */
97		if (rg->to > t)
98			t = rg->to;
99		if (rg != nrg) {
100			list_del(&rg->link);
101			kfree(rg);
102		}
103	}
104	nrg->from = f;
105	nrg->to = t;
106	return 0;
107}
108
109static long region_chg(struct list_head *head, long f, long t)
110{
111	struct file_region *rg, *nrg;
112	long chg = 0;
113
114	/* Locate the region we are before or in. */
115	list_for_each_entry(rg, head, link)
116		if (f <= rg->to)
117			break;
118
119	/* If we are below the current region then a new region is required.
120	 * Subtle, allocate a new region at the position but make it zero
121	 * size such that we can guarantee to record the reservation. */
122	if (&rg->link == head || t < rg->from) {
123		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124		if (!nrg)
125			return -ENOMEM;
126		nrg->from = f;
127		nrg->to   = f;
128		INIT_LIST_HEAD(&nrg->link);
129		list_add(&nrg->link, rg->link.prev);
130
131		return t - f;
132	}
133
134	/* Round our left edge to the current segment if it encloses us. */
135	if (f > rg->from)
136		f = rg->from;
137	chg = t - f;
138
139	/* Check for and consume any regions we now overlap with. */
140	list_for_each_entry(rg, rg->link.prev, link) {
141		if (&rg->link == head)
142			break;
143		if (rg->from > t)
144			return chg;
145
146		/* We overlap with this area, if it extends futher than
147		 * us then we must extend ourselves.  Account for its
148		 * existing reservation. */
149		if (rg->to > t) {
150			chg += rg->to - t;
151			t = rg->to;
152		}
153		chg -= rg->to - rg->from;
154	}
155	return chg;
156}
157
158static long region_truncate(struct list_head *head, long end)
159{
160	struct file_region *rg, *trg;
161	long chg = 0;
162
163	/* Locate the region we are either in or before. */
164	list_for_each_entry(rg, head, link)
165		if (end <= rg->to)
166			break;
167	if (&rg->link == head)
168		return 0;
169
170	/* If we are in the middle of a region then adjust it. */
171	if (end > rg->from) {
172		chg = rg->to - end;
173		rg->to = end;
174		rg = list_entry(rg->link.next, typeof(*rg), link);
175	}
176
177	/* Drop any remaining regions. */
178	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179		if (&rg->link == head)
180			break;
181		chg += rg->to - rg->from;
182		list_del(&rg->link);
183		kfree(rg);
184	}
185	return chg;
186}
187
188static long region_count(struct list_head *head, long f, long t)
189{
190	struct file_region *rg;
191	long chg = 0;
192
193	/* Locate each segment we overlap with, and count that overlap. */
194	list_for_each_entry(rg, head, link) {
195		int seg_from;
196		int seg_to;
197
198		if (rg->to <= f)
199			continue;
200		if (rg->from >= t)
201			break;
202
203		seg_from = max(rg->from, f);
204		seg_to = min(rg->to, t);
205
206		chg += seg_to - seg_from;
207	}
208
209	return chg;
210}
211
212/*
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
215 */
216static pgoff_t vma_hugecache_offset(struct hstate *h,
217			struct vm_area_struct *vma, unsigned long address)
218{
219	return ((address - vma->vm_start) >> huge_page_shift(h)) +
220			(vma->vm_pgoff >> huge_page_order(h));
221}
222
223/*
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
226 */
227unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228{
229	struct hstate *hstate;
230
231	if (!is_vm_hugetlb_page(vma))
232		return PAGE_SIZE;
233
234	hstate = hstate_vma(vma);
235
236	return 1UL << (hstate->order + PAGE_SHIFT);
237}
238EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
239
240/*
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
245 */
246#ifndef vma_mmu_pagesize
247unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248{
249	return vma_kernel_pagesize(vma);
250}
251#endif
252
253/*
254 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
256 * alignment.
257 */
258#define HPAGE_RESV_OWNER    (1UL << 0)
259#define HPAGE_RESV_UNMAPPED (1UL << 1)
260#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261
262/*
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
266 *
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
271 *
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping.  A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated.  A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
280 */
281static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282{
283	return (unsigned long)vma->vm_private_data;
284}
285
286static void set_vma_private_data(struct vm_area_struct *vma,
287							unsigned long value)
288{
289	vma->vm_private_data = (void *)value;
290}
291
292struct resv_map {
293	struct kref refs;
294	struct list_head regions;
295};
296
297static struct resv_map *resv_map_alloc(void)
298{
299	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300	if (!resv_map)
301		return NULL;
302
303	kref_init(&resv_map->refs);
304	INIT_LIST_HEAD(&resv_map->regions);
305
306	return resv_map;
307}
308
309static void resv_map_release(struct kref *ref)
310{
311	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312
313	/* Clear out any active regions before we release the map. */
314	region_truncate(&resv_map->regions, 0);
315	kfree(resv_map);
316}
317
318static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319{
320	VM_BUG_ON(!is_vm_hugetlb_page(vma));
321	if (!(vma->vm_flags & VM_MAYSHARE))
322		return (struct resv_map *)(get_vma_private_data(vma) &
323							~HPAGE_RESV_MASK);
324	return NULL;
325}
326
327static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328{
329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331
332	set_vma_private_data(vma, (get_vma_private_data(vma) &
333				HPAGE_RESV_MASK) | (unsigned long)map);
334}
335
336static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337{
338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342}
343
344static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345{
346	VM_BUG_ON(!is_vm_hugetlb_page(vma));
347
348	return (get_vma_private_data(vma) & flag) != 0;
349}
350
351/* Decrement the reserved pages in the hugepage pool by one */
352static void decrement_hugepage_resv_vma(struct hstate *h,
353			struct vm_area_struct *vma)
354{
355	if (vma->vm_flags & VM_NORESERVE)
356		return;
357
358	if (vma->vm_flags & VM_MAYSHARE) {
359		/* Shared mappings always use reserves */
360		h->resv_huge_pages--;
361	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362		/*
363		 * Only the process that called mmap() has reserves for
364		 * private mappings.
365		 */
366		h->resv_huge_pages--;
367	}
368}
369
370/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372{
373	VM_BUG_ON(!is_vm_hugetlb_page(vma));
374	if (!(vma->vm_flags & VM_MAYSHARE))
375		vma->vm_private_data = (void *)0;
376}
377
378/* Returns true if the VMA has associated reserve pages */
379static int vma_has_reserves(struct vm_area_struct *vma)
380{
381	if (vma->vm_flags & VM_MAYSHARE)
382		return 1;
383	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384		return 1;
385	return 0;
386}
387
388static void clear_gigantic_page(struct page *page,
389			unsigned long addr, unsigned long sz)
390{
391	int i;
392	struct page *p = page;
393
394	might_sleep();
395	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396		cond_resched();
397		clear_user_highpage(p, addr + i * PAGE_SIZE);
398	}
399}
400static void clear_huge_page(struct page *page,
401			unsigned long addr, unsigned long sz)
402{
403	int i;
404
405	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
406		clear_gigantic_page(page, addr, sz);
407		return;
408	}
409
410	might_sleep();
411	for (i = 0; i < sz/PAGE_SIZE; i++) {
412		cond_resched();
413		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
414	}
415}
416
417static void copy_gigantic_page(struct page *dst, struct page *src,
418			   unsigned long addr, struct vm_area_struct *vma)
419{
420	int i;
421	struct hstate *h = hstate_vma(vma);
422	struct page *dst_base = dst;
423	struct page *src_base = src;
424	might_sleep();
425	for (i = 0; i < pages_per_huge_page(h); ) {
426		cond_resched();
427		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428
429		i++;
430		dst = mem_map_next(dst, dst_base, i);
431		src = mem_map_next(src, src_base, i);
432	}
433}
434static void copy_huge_page(struct page *dst, struct page *src,
435			   unsigned long addr, struct vm_area_struct *vma)
436{
437	int i;
438	struct hstate *h = hstate_vma(vma);
439
440	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441		copy_gigantic_page(dst, src, addr, vma);
442		return;
443	}
444
445	might_sleep();
446	for (i = 0; i < pages_per_huge_page(h); i++) {
447		cond_resched();
448		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
449	}
450}
451
452static void enqueue_huge_page(struct hstate *h, struct page *page)
453{
454	int nid = page_to_nid(page);
455	list_add(&page->lru, &h->hugepage_freelists[nid]);
456	h->free_huge_pages++;
457	h->free_huge_pages_node[nid]++;
458}
459
460static struct page *dequeue_huge_page_vma(struct hstate *h,
461				struct vm_area_struct *vma,
462				unsigned long address, int avoid_reserve)
463{
464	int nid;
465	struct page *page = NULL;
466	struct mempolicy *mpol;
467	nodemask_t *nodemask;
468	struct zonelist *zonelist;
469	struct zone *zone;
470	struct zoneref *z;
471
472	get_mems_allowed();
473	zonelist = huge_zonelist(vma, address,
474					htlb_alloc_mask, &mpol, &nodemask);
475	/*
476	 * A child process with MAP_PRIVATE mappings created by their parent
477	 * have no page reserves. This check ensures that reservations are
478	 * not "stolen". The child may still get SIGKILLed
479	 */
480	if (!vma_has_reserves(vma) &&
481			h->free_huge_pages - h->resv_huge_pages == 0)
482		goto err;
483
484	/* If reserves cannot be used, ensure enough pages are in the pool */
485	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
486		goto err;;
487
488	for_each_zone_zonelist_nodemask(zone, z, zonelist,
489						MAX_NR_ZONES - 1, nodemask) {
490		nid = zone_to_nid(zone);
491		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
492		    !list_empty(&h->hugepage_freelists[nid])) {
493			page = list_entry(h->hugepage_freelists[nid].next,
494					  struct page, lru);
495			list_del(&page->lru);
496			h->free_huge_pages--;
497			h->free_huge_pages_node[nid]--;
498
499			if (!avoid_reserve)
500				decrement_hugepage_resv_vma(h, vma);
501
502			break;
503		}
504	}
505err:
506	mpol_cond_put(mpol);
507	put_mems_allowed();
508	return page;
509}
510
511static void update_and_free_page(struct hstate *h, struct page *page)
512{
513	int i;
514
515	VM_BUG_ON(h->order >= MAX_ORDER);
516
517	h->nr_huge_pages--;
518	h->nr_huge_pages_node[page_to_nid(page)]--;
519	for (i = 0; i < pages_per_huge_page(h); i++) {
520		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
521				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
522				1 << PG_private | 1<< PG_writeback);
523	}
524	set_compound_page_dtor(page, NULL);
525	set_page_refcounted(page);
526	arch_release_hugepage(page);
527	__free_pages(page, huge_page_order(h));
528}
529
530struct hstate *size_to_hstate(unsigned long size)
531{
532	struct hstate *h;
533
534	for_each_hstate(h) {
535		if (huge_page_size(h) == size)
536			return h;
537	}
538	return NULL;
539}
540
541static void free_huge_page(struct page *page)
542{
543	/*
544	 * Can't pass hstate in here because it is called from the
545	 * compound page destructor.
546	 */
547	struct hstate *h = page_hstate(page);
548	int nid = page_to_nid(page);
549	struct address_space *mapping;
550
551	mapping = (struct address_space *) page_private(page);
552	set_page_private(page, 0);
553	page->mapping = NULL;
554	BUG_ON(page_count(page));
555	INIT_LIST_HEAD(&page->lru);
556
557	spin_lock(&hugetlb_lock);
558	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
559		update_and_free_page(h, page);
560		h->surplus_huge_pages--;
561		h->surplus_huge_pages_node[nid]--;
562	} else {
563		enqueue_huge_page(h, page);
564	}
565	spin_unlock(&hugetlb_lock);
566	if (mapping)
567		hugetlb_put_quota(mapping, 1);
568}
569
570static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
571{
572	set_compound_page_dtor(page, free_huge_page);
573	spin_lock(&hugetlb_lock);
574	h->nr_huge_pages++;
575	h->nr_huge_pages_node[nid]++;
576	spin_unlock(&hugetlb_lock);
577	put_page(page); /* free it into the hugepage allocator */
578}
579
580static void prep_compound_gigantic_page(struct page *page, unsigned long order)
581{
582	int i;
583	int nr_pages = 1 << order;
584	struct page *p = page + 1;
585
586	/* we rely on prep_new_huge_page to set the destructor */
587	set_compound_order(page, order);
588	__SetPageHead(page);
589	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
590		__SetPageTail(p);
591		p->first_page = page;
592	}
593}
594
595int PageHuge(struct page *page)
596{
597	compound_page_dtor *dtor;
598
599	if (!PageCompound(page))
600		return 0;
601
602	page = compound_head(page);
603	dtor = get_compound_page_dtor(page);
604
605	return dtor == free_huge_page;
606}
607
608static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
609{
610	struct page *page;
611
612	if (h->order >= MAX_ORDER)
613		return NULL;
614
615	page = alloc_pages_exact_node(nid,
616		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
617						__GFP_REPEAT|__GFP_NOWARN,
618		huge_page_order(h));
619	if (page) {
620		if (arch_prepare_hugepage(page)) {
621			__free_pages(page, huge_page_order(h));
622			return NULL;
623		}
624		prep_new_huge_page(h, page, nid);
625	}
626
627	return page;
628}
629
630/*
631 * common helper functions for hstate_next_node_to_{alloc|free}.
632 * We may have allocated or freed a huge page based on a different
633 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
634 * be outside of *nodes_allowed.  Ensure that we use an allowed
635 * node for alloc or free.
636 */
637static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
638{
639	nid = next_node(nid, *nodes_allowed);
640	if (nid == MAX_NUMNODES)
641		nid = first_node(*nodes_allowed);
642	VM_BUG_ON(nid >= MAX_NUMNODES);
643
644	return nid;
645}
646
647static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
648{
649	if (!node_isset(nid, *nodes_allowed))
650		nid = next_node_allowed(nid, nodes_allowed);
651	return nid;
652}
653
654/*
655 * returns the previously saved node ["this node"] from which to
656 * allocate a persistent huge page for the pool and advance the
657 * next node from which to allocate, handling wrap at end of node
658 * mask.
659 */
660static int hstate_next_node_to_alloc(struct hstate *h,
661					nodemask_t *nodes_allowed)
662{
663	int nid;
664
665	VM_BUG_ON(!nodes_allowed);
666
667	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
668	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
669
670	return nid;
671}
672
673static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
674{
675	struct page *page;
676	int start_nid;
677	int next_nid;
678	int ret = 0;
679
680	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
681	next_nid = start_nid;
682
683	do {
684		page = alloc_fresh_huge_page_node(h, next_nid);
685		if (page) {
686			ret = 1;
687			break;
688		}
689		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
690	} while (next_nid != start_nid);
691
692	if (ret)
693		count_vm_event(HTLB_BUDDY_PGALLOC);
694	else
695		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
696
697	return ret;
698}
699
700/*
701 * helper for free_pool_huge_page() - return the previously saved
702 * node ["this node"] from which to free a huge page.  Advance the
703 * next node id whether or not we find a free huge page to free so
704 * that the next attempt to free addresses the next node.
705 */
706static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
707{
708	int nid;
709
710	VM_BUG_ON(!nodes_allowed);
711
712	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
713	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
714
715	return nid;
716}
717
718/*
719 * Free huge page from pool from next node to free.
720 * Attempt to keep persistent huge pages more or less
721 * balanced over allowed nodes.
722 * Called with hugetlb_lock locked.
723 */
724static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
725							 bool acct_surplus)
726{
727	int start_nid;
728	int next_nid;
729	int ret = 0;
730
731	start_nid = hstate_next_node_to_free(h, nodes_allowed);
732	next_nid = start_nid;
733
734	do {
735		/*
736		 * If we're returning unused surplus pages, only examine
737		 * nodes with surplus pages.
738		 */
739		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
740		    !list_empty(&h->hugepage_freelists[next_nid])) {
741			struct page *page =
742				list_entry(h->hugepage_freelists[next_nid].next,
743					  struct page, lru);
744			list_del(&page->lru);
745			h->free_huge_pages--;
746			h->free_huge_pages_node[next_nid]--;
747			if (acct_surplus) {
748				h->surplus_huge_pages--;
749				h->surplus_huge_pages_node[next_nid]--;
750			}
751			update_and_free_page(h, page);
752			ret = 1;
753			break;
754		}
755		next_nid = hstate_next_node_to_free(h, nodes_allowed);
756	} while (next_nid != start_nid);
757
758	return ret;
759}
760
761static struct page *alloc_buddy_huge_page(struct hstate *h,
762			struct vm_area_struct *vma, unsigned long address)
763{
764	struct page *page;
765	unsigned int nid;
766
767	if (h->order >= MAX_ORDER)
768		return NULL;
769
770	/*
771	 * Assume we will successfully allocate the surplus page to
772	 * prevent racing processes from causing the surplus to exceed
773	 * overcommit
774	 *
775	 * This however introduces a different race, where a process B
776	 * tries to grow the static hugepage pool while alloc_pages() is
777	 * called by process A. B will only examine the per-node
778	 * counters in determining if surplus huge pages can be
779	 * converted to normal huge pages in adjust_pool_surplus(). A
780	 * won't be able to increment the per-node counter, until the
781	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
782	 * no more huge pages can be converted from surplus to normal
783	 * state (and doesn't try to convert again). Thus, we have a
784	 * case where a surplus huge page exists, the pool is grown, and
785	 * the surplus huge page still exists after, even though it
786	 * should just have been converted to a normal huge page. This
787	 * does not leak memory, though, as the hugepage will be freed
788	 * once it is out of use. It also does not allow the counters to
789	 * go out of whack in adjust_pool_surplus() as we don't modify
790	 * the node values until we've gotten the hugepage and only the
791	 * per-node value is checked there.
792	 */
793	spin_lock(&hugetlb_lock);
794	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
795		spin_unlock(&hugetlb_lock);
796		return NULL;
797	} else {
798		h->nr_huge_pages++;
799		h->surplus_huge_pages++;
800	}
801	spin_unlock(&hugetlb_lock);
802
803	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
804					__GFP_REPEAT|__GFP_NOWARN,
805					huge_page_order(h));
806
807	if (page && arch_prepare_hugepage(page)) {
808		__free_pages(page, huge_page_order(h));
809		return NULL;
810	}
811
812	spin_lock(&hugetlb_lock);
813	if (page) {
814		/*
815		 * This page is now managed by the hugetlb allocator and has
816		 * no users -- drop the buddy allocator's reference.
817		 */
818		put_page_testzero(page);
819		VM_BUG_ON(page_count(page));
820		nid = page_to_nid(page);
821		set_compound_page_dtor(page, free_huge_page);
822		/*
823		 * We incremented the global counters already
824		 */
825		h->nr_huge_pages_node[nid]++;
826		h->surplus_huge_pages_node[nid]++;
827		__count_vm_event(HTLB_BUDDY_PGALLOC);
828	} else {
829		h->nr_huge_pages--;
830		h->surplus_huge_pages--;
831		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832	}
833	spin_unlock(&hugetlb_lock);
834
835	return page;
836}
837
838/*
839 * Increase the hugetlb pool such that it can accomodate a reservation
840 * of size 'delta'.
841 */
842static int gather_surplus_pages(struct hstate *h, int delta)
843{
844	struct list_head surplus_list;
845	struct page *page, *tmp;
846	int ret, i;
847	int needed, allocated;
848
849	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
850	if (needed <= 0) {
851		h->resv_huge_pages += delta;
852		return 0;
853	}
854
855	allocated = 0;
856	INIT_LIST_HEAD(&surplus_list);
857
858	ret = -ENOMEM;
859retry:
860	spin_unlock(&hugetlb_lock);
861	for (i = 0; i < needed; i++) {
862		page = alloc_buddy_huge_page(h, NULL, 0);
863		if (!page) {
864			/*
865			 * We were not able to allocate enough pages to
866			 * satisfy the entire reservation so we free what
867			 * we've allocated so far.
868			 */
869			spin_lock(&hugetlb_lock);
870			needed = 0;
871			goto free;
872		}
873
874		list_add(&page->lru, &surplus_list);
875	}
876	allocated += needed;
877
878	/*
879	 * After retaking hugetlb_lock, we need to recalculate 'needed'
880	 * because either resv_huge_pages or free_huge_pages may have changed.
881	 */
882	spin_lock(&hugetlb_lock);
883	needed = (h->resv_huge_pages + delta) -
884			(h->free_huge_pages + allocated);
885	if (needed > 0)
886		goto retry;
887
888	/*
889	 * The surplus_list now contains _at_least_ the number of extra pages
890	 * needed to accomodate the reservation.  Add the appropriate number
891	 * of pages to the hugetlb pool and free the extras back to the buddy
892	 * allocator.  Commit the entire reservation here to prevent another
893	 * process from stealing the pages as they are added to the pool but
894	 * before they are reserved.
895	 */
896	needed += allocated;
897	h->resv_huge_pages += delta;
898	ret = 0;
899free:
900	/* Free the needed pages to the hugetlb pool */
901	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
902		if ((--needed) < 0)
903			break;
904		list_del(&page->lru);
905		enqueue_huge_page(h, page);
906	}
907
908	/* Free unnecessary surplus pages to the buddy allocator */
909	if (!list_empty(&surplus_list)) {
910		spin_unlock(&hugetlb_lock);
911		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
912			list_del(&page->lru);
913			/*
914			 * The page has a reference count of zero already, so
915			 * call free_huge_page directly instead of using
916			 * put_page.  This must be done with hugetlb_lock
917			 * unlocked which is safe because free_huge_page takes
918			 * hugetlb_lock before deciding how to free the page.
919			 */
920			free_huge_page(page);
921		}
922		spin_lock(&hugetlb_lock);
923	}
924
925	return ret;
926}
927
928/*
929 * When releasing a hugetlb pool reservation, any surplus pages that were
930 * allocated to satisfy the reservation must be explicitly freed if they were
931 * never used.
932 * Called with hugetlb_lock held.
933 */
934static void return_unused_surplus_pages(struct hstate *h,
935					unsigned long unused_resv_pages)
936{
937	unsigned long nr_pages;
938
939	/* Uncommit the reservation */
940	h->resv_huge_pages -= unused_resv_pages;
941
942	/* Cannot return gigantic pages currently */
943	if (h->order >= MAX_ORDER)
944		return;
945
946	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
947
948	/*
949	 * We want to release as many surplus pages as possible, spread
950	 * evenly across all nodes with memory. Iterate across these nodes
951	 * until we can no longer free unreserved surplus pages. This occurs
952	 * when the nodes with surplus pages have no free pages.
953	 * free_pool_huge_page() will balance the the freed pages across the
954	 * on-line nodes with memory and will handle the hstate accounting.
955	 */
956	while (nr_pages--) {
957		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
958			break;
959	}
960}
961
962/*
963 * Determine if the huge page at addr within the vma has an associated
964 * reservation.  Where it does not we will need to logically increase
965 * reservation and actually increase quota before an allocation can occur.
966 * Where any new reservation would be required the reservation change is
967 * prepared, but not committed.  Once the page has been quota'd allocated
968 * an instantiated the change should be committed via vma_commit_reservation.
969 * No action is required on failure.
970 */
971static long vma_needs_reservation(struct hstate *h,
972			struct vm_area_struct *vma, unsigned long addr)
973{
974	struct address_space *mapping = vma->vm_file->f_mapping;
975	struct inode *inode = mapping->host;
976
977	if (vma->vm_flags & VM_MAYSHARE) {
978		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
979		return region_chg(&inode->i_mapping->private_list,
980							idx, idx + 1);
981
982	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
983		return 1;
984
985	} else  {
986		long err;
987		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
988		struct resv_map *reservations = vma_resv_map(vma);
989
990		err = region_chg(&reservations->regions, idx, idx + 1);
991		if (err < 0)
992			return err;
993		return 0;
994	}
995}
996static void vma_commit_reservation(struct hstate *h,
997			struct vm_area_struct *vma, unsigned long addr)
998{
999	struct address_space *mapping = vma->vm_file->f_mapping;
1000	struct inode *inode = mapping->host;
1001
1002	if (vma->vm_flags & VM_MAYSHARE) {
1003		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1004		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1005
1006	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1007		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1008		struct resv_map *reservations = vma_resv_map(vma);
1009
1010		/* Mark this page used in the map. */
1011		region_add(&reservations->regions, idx, idx + 1);
1012	}
1013}
1014
1015static struct page *alloc_huge_page(struct vm_area_struct *vma,
1016				    unsigned long addr, int avoid_reserve)
1017{
1018	struct hstate *h = hstate_vma(vma);
1019	struct page *page;
1020	struct address_space *mapping = vma->vm_file->f_mapping;
1021	struct inode *inode = mapping->host;
1022	long chg;
1023
1024	/*
1025	 * Processes that did not create the mapping will have no reserves and
1026	 * will not have accounted against quota. Check that the quota can be
1027	 * made before satisfying the allocation
1028	 * MAP_NORESERVE mappings may also need pages and quota allocated
1029	 * if no reserve mapping overlaps.
1030	 */
1031	chg = vma_needs_reservation(h, vma, addr);
1032	if (chg < 0)
1033		return ERR_PTR(chg);
1034	if (chg)
1035		if (hugetlb_get_quota(inode->i_mapping, chg))
1036			return ERR_PTR(-ENOSPC);
1037
1038	spin_lock(&hugetlb_lock);
1039	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1040	spin_unlock(&hugetlb_lock);
1041
1042	if (!page) {
1043		page = alloc_buddy_huge_page(h, vma, addr);
1044		if (!page) {
1045			hugetlb_put_quota(inode->i_mapping, chg);
1046			return ERR_PTR(-VM_FAULT_SIGBUS);
1047		}
1048	}
1049
1050	set_page_refcounted(page);
1051	set_page_private(page, (unsigned long) mapping);
1052
1053	vma_commit_reservation(h, vma, addr);
1054
1055	return page;
1056}
1057
1058int __weak alloc_bootmem_huge_page(struct hstate *h)
1059{
1060	struct huge_bootmem_page *m;
1061	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1062
1063	while (nr_nodes) {
1064		void *addr;
1065
1066		addr = __alloc_bootmem_node_nopanic(
1067				NODE_DATA(hstate_next_node_to_alloc(h,
1068						&node_states[N_HIGH_MEMORY])),
1069				huge_page_size(h), huge_page_size(h), 0);
1070
1071		if (addr) {
1072			/*
1073			 * Use the beginning of the huge page to store the
1074			 * huge_bootmem_page struct (until gather_bootmem
1075			 * puts them into the mem_map).
1076			 */
1077			m = addr;
1078			goto found;
1079		}
1080		nr_nodes--;
1081	}
1082	return 0;
1083
1084found:
1085	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1086	/* Put them into a private list first because mem_map is not up yet */
1087	list_add(&m->list, &huge_boot_pages);
1088	m->hstate = h;
1089	return 1;
1090}
1091
1092static void prep_compound_huge_page(struct page *page, int order)
1093{
1094	if (unlikely(order > (MAX_ORDER - 1)))
1095		prep_compound_gigantic_page(page, order);
1096	else
1097		prep_compound_page(page, order);
1098}
1099
1100/* Put bootmem huge pages into the standard lists after mem_map is up */
1101static void __init gather_bootmem_prealloc(void)
1102{
1103	struct huge_bootmem_page *m;
1104
1105	list_for_each_entry(m, &huge_boot_pages, list) {
1106		struct page *page = virt_to_page(m);
1107		struct hstate *h = m->hstate;
1108		__ClearPageReserved(page);
1109		WARN_ON(page_count(page) != 1);
1110		prep_compound_huge_page(page, h->order);
1111		prep_new_huge_page(h, page, page_to_nid(page));
1112	}
1113}
1114
1115static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1116{
1117	unsigned long i;
1118
1119	for (i = 0; i < h->max_huge_pages; ++i) {
1120		if (h->order >= MAX_ORDER) {
1121			if (!alloc_bootmem_huge_page(h))
1122				break;
1123		} else if (!alloc_fresh_huge_page(h,
1124					 &node_states[N_HIGH_MEMORY]))
1125			break;
1126	}
1127	h->max_huge_pages = i;
1128}
1129
1130static void __init hugetlb_init_hstates(void)
1131{
1132	struct hstate *h;
1133
1134	for_each_hstate(h) {
1135		/* oversize hugepages were init'ed in early boot */
1136		if (h->order < MAX_ORDER)
1137			hugetlb_hstate_alloc_pages(h);
1138	}
1139}
1140
1141static char * __init memfmt(char *buf, unsigned long n)
1142{
1143	if (n >= (1UL << 30))
1144		sprintf(buf, "%lu GB", n >> 30);
1145	else if (n >= (1UL << 20))
1146		sprintf(buf, "%lu MB", n >> 20);
1147	else
1148		sprintf(buf, "%lu KB", n >> 10);
1149	return buf;
1150}
1151
1152static void __init report_hugepages(void)
1153{
1154	struct hstate *h;
1155
1156	for_each_hstate(h) {
1157		char buf[32];
1158		printk(KERN_INFO "HugeTLB registered %s page size, "
1159				 "pre-allocated %ld pages\n",
1160			memfmt(buf, huge_page_size(h)),
1161			h->free_huge_pages);
1162	}
1163}
1164
1165#ifdef CONFIG_HIGHMEM
1166static void try_to_free_low(struct hstate *h, unsigned long count,
1167						nodemask_t *nodes_allowed)
1168{
1169	int i;
1170
1171	if (h->order >= MAX_ORDER)
1172		return;
1173
1174	for_each_node_mask(i, *nodes_allowed) {
1175		struct page *page, *next;
1176		struct list_head *freel = &h->hugepage_freelists[i];
1177		list_for_each_entry_safe(page, next, freel, lru) {
1178			if (count >= h->nr_huge_pages)
1179				return;
1180			if (PageHighMem(page))
1181				continue;
1182			list_del(&page->lru);
1183			update_and_free_page(h, page);
1184			h->free_huge_pages--;
1185			h->free_huge_pages_node[page_to_nid(page)]--;
1186		}
1187	}
1188}
1189#else
1190static inline void try_to_free_low(struct hstate *h, unsigned long count,
1191						nodemask_t *nodes_allowed)
1192{
1193}
1194#endif
1195
1196/*
1197 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1198 * balanced by operating on them in a round-robin fashion.
1199 * Returns 1 if an adjustment was made.
1200 */
1201static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1202				int delta)
1203{
1204	int start_nid, next_nid;
1205	int ret = 0;
1206
1207	VM_BUG_ON(delta != -1 && delta != 1);
1208
1209	if (delta < 0)
1210		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1211	else
1212		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1213	next_nid = start_nid;
1214
1215	do {
1216		int nid = next_nid;
1217		if (delta < 0)  {
1218			/*
1219			 * To shrink on this node, there must be a surplus page
1220			 */
1221			if (!h->surplus_huge_pages_node[nid]) {
1222				next_nid = hstate_next_node_to_alloc(h,
1223								nodes_allowed);
1224				continue;
1225			}
1226		}
1227		if (delta > 0) {
1228			/*
1229			 * Surplus cannot exceed the total number of pages
1230			 */
1231			if (h->surplus_huge_pages_node[nid] >=
1232						h->nr_huge_pages_node[nid]) {
1233				next_nid = hstate_next_node_to_free(h,
1234								nodes_allowed);
1235				continue;
1236			}
1237		}
1238
1239		h->surplus_huge_pages += delta;
1240		h->surplus_huge_pages_node[nid] += delta;
1241		ret = 1;
1242		break;
1243	} while (next_nid != start_nid);
1244
1245	return ret;
1246}
1247
1248#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1249static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1250						nodemask_t *nodes_allowed)
1251{
1252	unsigned long min_count, ret;
1253
1254	if (h->order >= MAX_ORDER)
1255		return h->max_huge_pages;
1256
1257	/*
1258	 * Increase the pool size
1259	 * First take pages out of surplus state.  Then make up the
1260	 * remaining difference by allocating fresh huge pages.
1261	 *
1262	 * We might race with alloc_buddy_huge_page() here and be unable
1263	 * to convert a surplus huge page to a normal huge page. That is
1264	 * not critical, though, it just means the overall size of the
1265	 * pool might be one hugepage larger than it needs to be, but
1266	 * within all the constraints specified by the sysctls.
1267	 */
1268	spin_lock(&hugetlb_lock);
1269	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1270		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1271			break;
1272	}
1273
1274	while (count > persistent_huge_pages(h)) {
1275		/*
1276		 * If this allocation races such that we no longer need the
1277		 * page, free_huge_page will handle it by freeing the page
1278		 * and reducing the surplus.
1279		 */
1280		spin_unlock(&hugetlb_lock);
1281		ret = alloc_fresh_huge_page(h, nodes_allowed);
1282		spin_lock(&hugetlb_lock);
1283		if (!ret)
1284			goto out;
1285
1286		/* Bail for signals. Probably ctrl-c from user */
1287		if (signal_pending(current))
1288			goto out;
1289	}
1290
1291	/*
1292	 * Decrease the pool size
1293	 * First return free pages to the buddy allocator (being careful
1294	 * to keep enough around to satisfy reservations).  Then place
1295	 * pages into surplus state as needed so the pool will shrink
1296	 * to the desired size as pages become free.
1297	 *
1298	 * By placing pages into the surplus state independent of the
1299	 * overcommit value, we are allowing the surplus pool size to
1300	 * exceed overcommit. There are few sane options here. Since
1301	 * alloc_buddy_huge_page() is checking the global counter,
1302	 * though, we'll note that we're not allowed to exceed surplus
1303	 * and won't grow the pool anywhere else. Not until one of the
1304	 * sysctls are changed, or the surplus pages go out of use.
1305	 */
1306	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1307	min_count = max(count, min_count);
1308	try_to_free_low(h, min_count, nodes_allowed);
1309	while (min_count < persistent_huge_pages(h)) {
1310		if (!free_pool_huge_page(h, nodes_allowed, 0))
1311			break;
1312	}
1313	while (count < persistent_huge_pages(h)) {
1314		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1315			break;
1316	}
1317out:
1318	ret = persistent_huge_pages(h);
1319	spin_unlock(&hugetlb_lock);
1320	return ret;
1321}
1322
1323#define HSTATE_ATTR_RO(_name) \
1324	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1325
1326#define HSTATE_ATTR(_name) \
1327	static struct kobj_attribute _name##_attr = \
1328		__ATTR(_name, 0644, _name##_show, _name##_store)
1329
1330static struct kobject *hugepages_kobj;
1331static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1332
1333static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1334
1335static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1336{
1337	int i;
1338
1339	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1340		if (hstate_kobjs[i] == kobj) {
1341			if (nidp)
1342				*nidp = NUMA_NO_NODE;
1343			return &hstates[i];
1344		}
1345
1346	return kobj_to_node_hstate(kobj, nidp);
1347}
1348
1349static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1350					struct kobj_attribute *attr, char *buf)
1351{
1352	struct hstate *h;
1353	unsigned long nr_huge_pages;
1354	int nid;
1355
1356	h = kobj_to_hstate(kobj, &nid);
1357	if (nid == NUMA_NO_NODE)
1358		nr_huge_pages = h->nr_huge_pages;
1359	else
1360		nr_huge_pages = h->nr_huge_pages_node[nid];
1361
1362	return sprintf(buf, "%lu\n", nr_huge_pages);
1363}
1364static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1365			struct kobject *kobj, struct kobj_attribute *attr,
1366			const char *buf, size_t len)
1367{
1368	int err;
1369	int nid;
1370	unsigned long count;
1371	struct hstate *h;
1372	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1373
1374	err = strict_strtoul(buf, 10, &count);
1375	if (err)
1376		return 0;
1377
1378	h = kobj_to_hstate(kobj, &nid);
1379	if (nid == NUMA_NO_NODE) {
1380		/*
1381		 * global hstate attribute
1382		 */
1383		if (!(obey_mempolicy &&
1384				init_nodemask_of_mempolicy(nodes_allowed))) {
1385			NODEMASK_FREE(nodes_allowed);
1386			nodes_allowed = &node_states[N_HIGH_MEMORY];
1387		}
1388	} else if (nodes_allowed) {
1389		/*
1390		 * per node hstate attribute: adjust count to global,
1391		 * but restrict alloc/free to the specified node.
1392		 */
1393		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1394		init_nodemask_of_node(nodes_allowed, nid);
1395	} else
1396		nodes_allowed = &node_states[N_HIGH_MEMORY];
1397
1398	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1399
1400	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1401		NODEMASK_FREE(nodes_allowed);
1402
1403	return len;
1404}
1405
1406static ssize_t nr_hugepages_show(struct kobject *kobj,
1407				       struct kobj_attribute *attr, char *buf)
1408{
1409	return nr_hugepages_show_common(kobj, attr, buf);
1410}
1411
1412static ssize_t nr_hugepages_store(struct kobject *kobj,
1413	       struct kobj_attribute *attr, const char *buf, size_t len)
1414{
1415	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1416}
1417HSTATE_ATTR(nr_hugepages);
1418
1419#ifdef CONFIG_NUMA
1420
1421/*
1422 * hstate attribute for optionally mempolicy-based constraint on persistent
1423 * huge page alloc/free.
1424 */
1425static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1426				       struct kobj_attribute *attr, char *buf)
1427{
1428	return nr_hugepages_show_common(kobj, attr, buf);
1429}
1430
1431static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1432	       struct kobj_attribute *attr, const char *buf, size_t len)
1433{
1434	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1435}
1436HSTATE_ATTR(nr_hugepages_mempolicy);
1437#endif
1438
1439
1440static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1441					struct kobj_attribute *attr, char *buf)
1442{
1443	struct hstate *h = kobj_to_hstate(kobj, NULL);
1444	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1445}
1446static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1447		struct kobj_attribute *attr, const char *buf, size_t count)
1448{
1449	int err;
1450	unsigned long input;
1451	struct hstate *h = kobj_to_hstate(kobj, NULL);
1452
1453	err = strict_strtoul(buf, 10, &input);
1454	if (err)
1455		return 0;
1456
1457	spin_lock(&hugetlb_lock);
1458	h->nr_overcommit_huge_pages = input;
1459	spin_unlock(&hugetlb_lock);
1460
1461	return count;
1462}
1463HSTATE_ATTR(nr_overcommit_hugepages);
1464
1465static ssize_t free_hugepages_show(struct kobject *kobj,
1466					struct kobj_attribute *attr, char *buf)
1467{
1468	struct hstate *h;
1469	unsigned long free_huge_pages;
1470	int nid;
1471
1472	h = kobj_to_hstate(kobj, &nid);
1473	if (nid == NUMA_NO_NODE)
1474		free_huge_pages = h->free_huge_pages;
1475	else
1476		free_huge_pages = h->free_huge_pages_node[nid];
1477
1478	return sprintf(buf, "%lu\n", free_huge_pages);
1479}
1480HSTATE_ATTR_RO(free_hugepages);
1481
1482static ssize_t resv_hugepages_show(struct kobject *kobj,
1483					struct kobj_attribute *attr, char *buf)
1484{
1485	struct hstate *h = kobj_to_hstate(kobj, NULL);
1486	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1487}
1488HSTATE_ATTR_RO(resv_hugepages);
1489
1490static ssize_t surplus_hugepages_show(struct kobject *kobj,
1491					struct kobj_attribute *attr, char *buf)
1492{
1493	struct hstate *h;
1494	unsigned long surplus_huge_pages;
1495	int nid;
1496
1497	h = kobj_to_hstate(kobj, &nid);
1498	if (nid == NUMA_NO_NODE)
1499		surplus_huge_pages = h->surplus_huge_pages;
1500	else
1501		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1502
1503	return sprintf(buf, "%lu\n", surplus_huge_pages);
1504}
1505HSTATE_ATTR_RO(surplus_hugepages);
1506
1507static struct attribute *hstate_attrs[] = {
1508	&nr_hugepages_attr.attr,
1509	&nr_overcommit_hugepages_attr.attr,
1510	&free_hugepages_attr.attr,
1511	&resv_hugepages_attr.attr,
1512	&surplus_hugepages_attr.attr,
1513#ifdef CONFIG_NUMA
1514	&nr_hugepages_mempolicy_attr.attr,
1515#endif
1516	NULL,
1517};
1518
1519static struct attribute_group hstate_attr_group = {
1520	.attrs = hstate_attrs,
1521};
1522
1523static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1524				    struct kobject **hstate_kobjs,
1525				    struct attribute_group *hstate_attr_group)
1526{
1527	int retval;
1528	int hi = h - hstates;
1529
1530	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1531	if (!hstate_kobjs[hi])
1532		return -ENOMEM;
1533
1534	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1535	if (retval)
1536		kobject_put(hstate_kobjs[hi]);
1537
1538	return retval;
1539}
1540
1541static void __init hugetlb_sysfs_init(void)
1542{
1543	struct hstate *h;
1544	int err;
1545
1546	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1547	if (!hugepages_kobj)
1548		return;
1549
1550	for_each_hstate(h) {
1551		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1552					 hstate_kobjs, &hstate_attr_group);
1553		if (err)
1554			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1555								h->name);
1556	}
1557}
1558
1559#ifdef CONFIG_NUMA
1560
1561/*
1562 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1563 * with node sysdevs in node_devices[] using a parallel array.  The array
1564 * index of a node sysdev or _hstate == node id.
1565 * This is here to avoid any static dependency of the node sysdev driver, in
1566 * the base kernel, on the hugetlb module.
1567 */
1568struct node_hstate {
1569	struct kobject		*hugepages_kobj;
1570	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1571};
1572struct node_hstate node_hstates[MAX_NUMNODES];
1573
1574/*
1575 * A subset of global hstate attributes for node sysdevs
1576 */
1577static struct attribute *per_node_hstate_attrs[] = {
1578	&nr_hugepages_attr.attr,
1579	&free_hugepages_attr.attr,
1580	&surplus_hugepages_attr.attr,
1581	NULL,
1582};
1583
1584static struct attribute_group per_node_hstate_attr_group = {
1585	.attrs = per_node_hstate_attrs,
1586};
1587
1588/*
1589 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1590 * Returns node id via non-NULL nidp.
1591 */
1592static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1593{
1594	int nid;
1595
1596	for (nid = 0; nid < nr_node_ids; nid++) {
1597		struct node_hstate *nhs = &node_hstates[nid];
1598		int i;
1599		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1600			if (nhs->hstate_kobjs[i] == kobj) {
1601				if (nidp)
1602					*nidp = nid;
1603				return &hstates[i];
1604			}
1605	}
1606
1607	BUG();
1608	return NULL;
1609}
1610
1611/*
1612 * Unregister hstate attributes from a single node sysdev.
1613 * No-op if no hstate attributes attached.
1614 */
1615void hugetlb_unregister_node(struct node *node)
1616{
1617	struct hstate *h;
1618	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1619
1620	if (!nhs->hugepages_kobj)
1621		return;		/* no hstate attributes */
1622
1623	for_each_hstate(h)
1624		if (nhs->hstate_kobjs[h - hstates]) {
1625			kobject_put(nhs->hstate_kobjs[h - hstates]);
1626			nhs->hstate_kobjs[h - hstates] = NULL;
1627		}
1628
1629	kobject_put(nhs->hugepages_kobj);
1630	nhs->hugepages_kobj = NULL;
1631}
1632
1633/*
1634 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1635 * that have them.
1636 */
1637static void hugetlb_unregister_all_nodes(void)
1638{
1639	int nid;
1640
1641	/*
1642	 * disable node sysdev registrations.
1643	 */
1644	register_hugetlbfs_with_node(NULL, NULL);
1645
1646	/*
1647	 * remove hstate attributes from any nodes that have them.
1648	 */
1649	for (nid = 0; nid < nr_node_ids; nid++)
1650		hugetlb_unregister_node(&node_devices[nid]);
1651}
1652
1653/*
1654 * Register hstate attributes for a single node sysdev.
1655 * No-op if attributes already registered.
1656 */
1657void hugetlb_register_node(struct node *node)
1658{
1659	struct hstate *h;
1660	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1661	int err;
1662
1663	if (nhs->hugepages_kobj)
1664		return;		/* already allocated */
1665
1666	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1667							&node->sysdev.kobj);
1668	if (!nhs->hugepages_kobj)
1669		return;
1670
1671	for_each_hstate(h) {
1672		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1673						nhs->hstate_kobjs,
1674						&per_node_hstate_attr_group);
1675		if (err) {
1676			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1677					" for node %d\n",
1678						h->name, node->sysdev.id);
1679			hugetlb_unregister_node(node);
1680			break;
1681		}
1682	}
1683}
1684
1685/*
1686 * hugetlb init time:  register hstate attributes for all registered node
1687 * sysdevs of nodes that have memory.  All on-line nodes should have
1688 * registered their associated sysdev by this time.
1689 */
1690static void hugetlb_register_all_nodes(void)
1691{
1692	int nid;
1693
1694	for_each_node_state(nid, N_HIGH_MEMORY) {
1695		struct node *node = &node_devices[nid];
1696		if (node->sysdev.id == nid)
1697			hugetlb_register_node(node);
1698	}
1699
1700	/*
1701	 * Let the node sysdev driver know we're here so it can
1702	 * [un]register hstate attributes on node hotplug.
1703	 */
1704	register_hugetlbfs_with_node(hugetlb_register_node,
1705				     hugetlb_unregister_node);
1706}
1707#else	/* !CONFIG_NUMA */
1708
1709static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1710{
1711	BUG();
1712	if (nidp)
1713		*nidp = -1;
1714	return NULL;
1715}
1716
1717static void hugetlb_unregister_all_nodes(void) { }
1718
1719static void hugetlb_register_all_nodes(void) { }
1720
1721#endif
1722
1723static void __exit hugetlb_exit(void)
1724{
1725	struct hstate *h;
1726
1727	hugetlb_unregister_all_nodes();
1728
1729	for_each_hstate(h) {
1730		kobject_put(hstate_kobjs[h - hstates]);
1731	}
1732
1733	kobject_put(hugepages_kobj);
1734}
1735module_exit(hugetlb_exit);
1736
1737static int __init hugetlb_init(void)
1738{
1739	/* Some platform decide whether they support huge pages at boot
1740	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1741	 * there is no such support
1742	 */
1743	if (HPAGE_SHIFT == 0)
1744		return 0;
1745
1746	if (!size_to_hstate(default_hstate_size)) {
1747		default_hstate_size = HPAGE_SIZE;
1748		if (!size_to_hstate(default_hstate_size))
1749			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1750	}
1751	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1752	if (default_hstate_max_huge_pages)
1753		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1754
1755	hugetlb_init_hstates();
1756
1757	gather_bootmem_prealloc();
1758
1759	report_hugepages();
1760
1761	hugetlb_sysfs_init();
1762
1763	hugetlb_register_all_nodes();
1764
1765	return 0;
1766}
1767module_init(hugetlb_init);
1768
1769/* Should be called on processing a hugepagesz=... option */
1770void __init hugetlb_add_hstate(unsigned order)
1771{
1772	struct hstate *h;
1773	unsigned long i;
1774
1775	if (size_to_hstate(PAGE_SIZE << order)) {
1776		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1777		return;
1778	}
1779	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1780	BUG_ON(order == 0);
1781	h = &hstates[max_hstate++];
1782	h->order = order;
1783	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1784	h->nr_huge_pages = 0;
1785	h->free_huge_pages = 0;
1786	for (i = 0; i < MAX_NUMNODES; ++i)
1787		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1788	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1789	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1790	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1791					huge_page_size(h)/1024);
1792
1793	parsed_hstate = h;
1794}
1795
1796static int __init hugetlb_nrpages_setup(char *s)
1797{
1798	unsigned long *mhp;
1799	static unsigned long *last_mhp;
1800
1801	/*
1802	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1803	 * so this hugepages= parameter goes to the "default hstate".
1804	 */
1805	if (!max_hstate)
1806		mhp = &default_hstate_max_huge_pages;
1807	else
1808		mhp = &parsed_hstate->max_huge_pages;
1809
1810	if (mhp == last_mhp) {
1811		printk(KERN_WARNING "hugepages= specified twice without "
1812			"interleaving hugepagesz=, ignoring\n");
1813		return 1;
1814	}
1815
1816	if (sscanf(s, "%lu", mhp) <= 0)
1817		*mhp = 0;
1818
1819	/*
1820	 * Global state is always initialized later in hugetlb_init.
1821	 * But we need to allocate >= MAX_ORDER hstates here early to still
1822	 * use the bootmem allocator.
1823	 */
1824	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1825		hugetlb_hstate_alloc_pages(parsed_hstate);
1826
1827	last_mhp = mhp;
1828
1829	return 1;
1830}
1831__setup("hugepages=", hugetlb_nrpages_setup);
1832
1833static int __init hugetlb_default_setup(char *s)
1834{
1835	default_hstate_size = memparse(s, &s);
1836	return 1;
1837}
1838__setup("default_hugepagesz=", hugetlb_default_setup);
1839
1840static unsigned int cpuset_mems_nr(unsigned int *array)
1841{
1842	int node;
1843	unsigned int nr = 0;
1844
1845	for_each_node_mask(node, cpuset_current_mems_allowed)
1846		nr += array[node];
1847
1848	return nr;
1849}
1850
1851#ifdef CONFIG_SYSCTL
1852static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1853			 struct ctl_table *table, int write,
1854			 void __user *buffer, size_t *length, loff_t *ppos)
1855{
1856	struct hstate *h = &default_hstate;
1857	unsigned long tmp;
1858
1859	if (!write)
1860		tmp = h->max_huge_pages;
1861
1862	table->data = &tmp;
1863	table->maxlen = sizeof(unsigned long);
1864	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1865
1866	if (write) {
1867		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1868						GFP_KERNEL | __GFP_NORETRY);
1869		if (!(obey_mempolicy &&
1870			       init_nodemask_of_mempolicy(nodes_allowed))) {
1871			NODEMASK_FREE(nodes_allowed);
1872			nodes_allowed = &node_states[N_HIGH_MEMORY];
1873		}
1874		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1875
1876		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1877			NODEMASK_FREE(nodes_allowed);
1878	}
1879
1880	return 0;
1881}
1882
1883int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1884			  void __user *buffer, size_t *length, loff_t *ppos)
1885{
1886
1887	return hugetlb_sysctl_handler_common(false, table, write,
1888							buffer, length, ppos);
1889}
1890
1891#ifdef CONFIG_NUMA
1892int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1893			  void __user *buffer, size_t *length, loff_t *ppos)
1894{
1895	return hugetlb_sysctl_handler_common(true, table, write,
1896							buffer, length, ppos);
1897}
1898#endif /* CONFIG_NUMA */
1899
1900int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1901			void __user *buffer,
1902			size_t *length, loff_t *ppos)
1903{
1904	proc_dointvec(table, write, buffer, length, ppos);
1905	if (hugepages_treat_as_movable)
1906		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1907	else
1908		htlb_alloc_mask = GFP_HIGHUSER;
1909	return 0;
1910}
1911
1912int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1913			void __user *buffer,
1914			size_t *length, loff_t *ppos)
1915{
1916	struct hstate *h = &default_hstate;
1917	unsigned long tmp;
1918
1919	if (!write)
1920		tmp = h->nr_overcommit_huge_pages;
1921
1922	table->data = &tmp;
1923	table->maxlen = sizeof(unsigned long);
1924	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1925
1926	if (write) {
1927		spin_lock(&hugetlb_lock);
1928		h->nr_overcommit_huge_pages = tmp;
1929		spin_unlock(&hugetlb_lock);
1930	}
1931
1932	return 0;
1933}
1934
1935#endif /* CONFIG_SYSCTL */
1936
1937void hugetlb_report_meminfo(struct seq_file *m)
1938{
1939	struct hstate *h = &default_hstate;
1940	seq_printf(m,
1941			"HugePages_Total:   %5lu\n"
1942			"HugePages_Free:    %5lu\n"
1943			"HugePages_Rsvd:    %5lu\n"
1944			"HugePages_Surp:    %5lu\n"
1945			"Hugepagesize:   %8lu kB\n",
1946			h->nr_huge_pages,
1947			h->free_huge_pages,
1948			h->resv_huge_pages,
1949			h->surplus_huge_pages,
1950			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1951}
1952
1953int hugetlb_report_node_meminfo(int nid, char *buf)
1954{
1955	struct hstate *h = &default_hstate;
1956	return sprintf(buf,
1957		"Node %d HugePages_Total: %5u\n"
1958		"Node %d HugePages_Free:  %5u\n"
1959		"Node %d HugePages_Surp:  %5u\n",
1960		nid, h->nr_huge_pages_node[nid],
1961		nid, h->free_huge_pages_node[nid],
1962		nid, h->surplus_huge_pages_node[nid]);
1963}
1964
1965/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1966unsigned long hugetlb_total_pages(void)
1967{
1968	struct hstate *h = &default_hstate;
1969	return h->nr_huge_pages * pages_per_huge_page(h);
1970}
1971
1972static int hugetlb_acct_memory(struct hstate *h, long delta)
1973{
1974	int ret = -ENOMEM;
1975
1976	spin_lock(&hugetlb_lock);
1977	/*
1978	 * When cpuset is configured, it breaks the strict hugetlb page
1979	 * reservation as the accounting is done on a global variable. Such
1980	 * reservation is completely rubbish in the presence of cpuset because
1981	 * the reservation is not checked against page availability for the
1982	 * current cpuset. Application can still potentially OOM'ed by kernel
1983	 * with lack of free htlb page in cpuset that the task is in.
1984	 * Attempt to enforce strict accounting with cpuset is almost
1985	 * impossible (or too ugly) because cpuset is too fluid that
1986	 * task or memory node can be dynamically moved between cpusets.
1987	 *
1988	 * The change of semantics for shared hugetlb mapping with cpuset is
1989	 * undesirable. However, in order to preserve some of the semantics,
1990	 * we fall back to check against current free page availability as
1991	 * a best attempt and hopefully to minimize the impact of changing
1992	 * semantics that cpuset has.
1993	 */
1994	if (delta > 0) {
1995		if (gather_surplus_pages(h, delta) < 0)
1996			goto out;
1997
1998		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1999			return_unused_surplus_pages(h, delta);
2000			goto out;
2001		}
2002	}
2003
2004	ret = 0;
2005	if (delta < 0)
2006		return_unused_surplus_pages(h, (unsigned long) -delta);
2007
2008out:
2009	spin_unlock(&hugetlb_lock);
2010	return ret;
2011}
2012
2013static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2014{
2015	struct resv_map *reservations = vma_resv_map(vma);
2016
2017	/*
2018	 * This new VMA should share its siblings reservation map if present.
2019	 * The VMA will only ever have a valid reservation map pointer where
2020	 * it is being copied for another still existing VMA.  As that VMA
2021	 * has a reference to the reservation map it cannot dissappear until
2022	 * after this open call completes.  It is therefore safe to take a
2023	 * new reference here without additional locking.
2024	 */
2025	if (reservations)
2026		kref_get(&reservations->refs);
2027}
2028
2029static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2030{
2031	struct hstate *h = hstate_vma(vma);
2032	struct resv_map *reservations = vma_resv_map(vma);
2033	unsigned long reserve;
2034	unsigned long start;
2035	unsigned long end;
2036
2037	if (reservations) {
2038		start = vma_hugecache_offset(h, vma, vma->vm_start);
2039		end = vma_hugecache_offset(h, vma, vma->vm_end);
2040
2041		reserve = (end - start) -
2042			region_count(&reservations->regions, start, end);
2043
2044		kref_put(&reservations->refs, resv_map_release);
2045
2046		if (reserve) {
2047			hugetlb_acct_memory(h, -reserve);
2048			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2049		}
2050	}
2051}
2052
2053/*
2054 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2055 * handle_mm_fault() to try to instantiate regular-sized pages in the
2056 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2057 * this far.
2058 */
2059static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2060{
2061	BUG();
2062	return 0;
2063}
2064
2065const struct vm_operations_struct hugetlb_vm_ops = {
2066	.fault = hugetlb_vm_op_fault,
2067	.open = hugetlb_vm_op_open,
2068	.close = hugetlb_vm_op_close,
2069};
2070
2071static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2072				int writable)
2073{
2074	pte_t entry;
2075
2076	if (writable) {
2077		entry =
2078		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2079	} else {
2080		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2081	}
2082	entry = pte_mkyoung(entry);
2083	entry = pte_mkhuge(entry);
2084
2085	return entry;
2086}
2087
2088static void set_huge_ptep_writable(struct vm_area_struct *vma,
2089				   unsigned long address, pte_t *ptep)
2090{
2091	pte_t entry;
2092
2093	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2094	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2095		update_mmu_cache(vma, address, ptep);
2096	}
2097}
2098
2099
2100int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2101			    struct vm_area_struct *vma)
2102{
2103	pte_t *src_pte, *dst_pte, entry;
2104	struct page *ptepage;
2105	unsigned long addr;
2106	int cow;
2107	struct hstate *h = hstate_vma(vma);
2108	unsigned long sz = huge_page_size(h);
2109
2110	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2111
2112	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2113		src_pte = huge_pte_offset(src, addr);
2114		if (!src_pte)
2115			continue;
2116		dst_pte = huge_pte_alloc(dst, addr, sz);
2117		if (!dst_pte)
2118			goto nomem;
2119
2120		/* If the pagetables are shared don't copy or take references */
2121		if (dst_pte == src_pte)
2122			continue;
2123
2124		spin_lock(&dst->page_table_lock);
2125		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2126		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2127			if (cow)
2128				huge_ptep_set_wrprotect(src, addr, src_pte);
2129			entry = huge_ptep_get(src_pte);
2130			ptepage = pte_page(entry);
2131			get_page(ptepage);
2132			set_huge_pte_at(dst, addr, dst_pte, entry);
2133		}
2134		spin_unlock(&src->page_table_lock);
2135		spin_unlock(&dst->page_table_lock);
2136	}
2137	return 0;
2138
2139nomem:
2140	return -ENOMEM;
2141}
2142
2143void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2144			    unsigned long end, struct page *ref_page)
2145{
2146	struct mm_struct *mm = vma->vm_mm;
2147	unsigned long address;
2148	pte_t *ptep;
2149	pte_t pte;
2150	struct page *page;
2151	struct page *tmp;
2152	struct hstate *h = hstate_vma(vma);
2153	unsigned long sz = huge_page_size(h);
2154
2155	/*
2156	 * A page gathering list, protected by per file i_mmap_lock. The
2157	 * lock is used to avoid list corruption from multiple unmapping
2158	 * of the same page since we are using page->lru.
2159	 */
2160	LIST_HEAD(page_list);
2161
2162	WARN_ON(!is_vm_hugetlb_page(vma));
2163	BUG_ON(start & ~huge_page_mask(h));
2164	BUG_ON(end & ~huge_page_mask(h));
2165
2166	mmu_notifier_invalidate_range_start(mm, start, end);
2167	spin_lock(&mm->page_table_lock);
2168	for (address = start; address < end; address += sz) {
2169		ptep = huge_pte_offset(mm, address);
2170		if (!ptep)
2171			continue;
2172
2173		if (huge_pmd_unshare(mm, &address, ptep))
2174			continue;
2175
2176		/*
2177		 * If a reference page is supplied, it is because a specific
2178		 * page is being unmapped, not a range. Ensure the page we
2179		 * are about to unmap is the actual page of interest.
2180		 */
2181		if (ref_page) {
2182			pte = huge_ptep_get(ptep);
2183			if (huge_pte_none(pte))
2184				continue;
2185			page = pte_page(pte);
2186			if (page != ref_page)
2187				continue;
2188
2189			/*
2190			 * Mark the VMA as having unmapped its page so that
2191			 * future faults in this VMA will fail rather than
2192			 * looking like data was lost
2193			 */
2194			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2195		}
2196
2197		pte = huge_ptep_get_and_clear(mm, address, ptep);
2198		if (huge_pte_none(pte))
2199			continue;
2200
2201		page = pte_page(pte);
2202		if (pte_dirty(pte))
2203			set_page_dirty(page);
2204		list_add(&page->lru, &page_list);
2205	}
2206	spin_unlock(&mm->page_table_lock);
2207	flush_tlb_range(vma, start, end);
2208	mmu_notifier_invalidate_range_end(mm, start, end);
2209	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2210		list_del(&page->lru);
2211		put_page(page);
2212	}
2213}
2214
2215void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2216			  unsigned long end, struct page *ref_page)
2217{
2218	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2219	__unmap_hugepage_range(vma, start, end, ref_page);
2220	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2221}
2222
2223/*
2224 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2225 * mappping it owns the reserve page for. The intention is to unmap the page
2226 * from other VMAs and let the children be SIGKILLed if they are faulting the
2227 * same region.
2228 */
2229static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2230				struct page *page, unsigned long address)
2231{
2232	struct hstate *h = hstate_vma(vma);
2233	struct vm_area_struct *iter_vma;
2234	struct address_space *mapping;
2235	struct prio_tree_iter iter;
2236	pgoff_t pgoff;
2237
2238	/*
2239	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2240	 * from page cache lookup which is in HPAGE_SIZE units.
2241	 */
2242	address = address & huge_page_mask(h);
2243	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2244		+ (vma->vm_pgoff >> PAGE_SHIFT);
2245	mapping = (struct address_space *)page_private(page);
2246
2247	/*
2248	 * Take the mapping lock for the duration of the table walk. As
2249	 * this mapping should be shared between all the VMAs,
2250	 * __unmap_hugepage_range() is called as the lock is already held
2251	 */
2252	spin_lock(&mapping->i_mmap_lock);
2253	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2254		/* Do not unmap the current VMA */
2255		if (iter_vma == vma)
2256			continue;
2257
2258		/*
2259		 * Unmap the page from other VMAs without their own reserves.
2260		 * They get marked to be SIGKILLed if they fault in these
2261		 * areas. This is because a future no-page fault on this VMA
2262		 * could insert a zeroed page instead of the data existing
2263		 * from the time of fork. This would look like data corruption
2264		 */
2265		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2266			__unmap_hugepage_range(iter_vma,
2267				address, address + huge_page_size(h),
2268				page);
2269	}
2270	spin_unlock(&mapping->i_mmap_lock);
2271
2272	return 1;
2273}
2274
2275static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2276			unsigned long address, pte_t *ptep, pte_t pte,
2277			struct page *pagecache_page)
2278{
2279	struct hstate *h = hstate_vma(vma);
2280	struct page *old_page, *new_page;
2281	int avoidcopy;
2282	int outside_reserve = 0;
2283
2284	old_page = pte_page(pte);
2285
2286retry_avoidcopy:
2287	/* If no-one else is actually using this page, avoid the copy
2288	 * and just make the page writable */
2289	avoidcopy = (page_count(old_page) == 1);
2290	if (avoidcopy) {
2291		set_huge_ptep_writable(vma, address, ptep);
2292		return 0;
2293	}
2294
2295	/*
2296	 * If the process that created a MAP_PRIVATE mapping is about to
2297	 * perform a COW due to a shared page count, attempt to satisfy
2298	 * the allocation without using the existing reserves. The pagecache
2299	 * page is used to determine if the reserve at this address was
2300	 * consumed or not. If reserves were used, a partial faulted mapping
2301	 * at the time of fork() could consume its reserves on COW instead
2302	 * of the full address range.
2303	 */
2304	if (!(vma->vm_flags & VM_MAYSHARE) &&
2305			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2306			old_page != pagecache_page)
2307		outside_reserve = 1;
2308
2309	page_cache_get(old_page);
2310
2311	/* Drop page_table_lock as buddy allocator may be called */
2312	spin_unlock(&mm->page_table_lock);
2313	new_page = alloc_huge_page(vma, address, outside_reserve);
2314
2315	if (IS_ERR(new_page)) {
2316		page_cache_release(old_page);
2317
2318		/*
2319		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2320		 * it is due to references held by a child and an insufficient
2321		 * huge page pool. To guarantee the original mappers
2322		 * reliability, unmap the page from child processes. The child
2323		 * may get SIGKILLed if it later faults.
2324		 */
2325		if (outside_reserve) {
2326			BUG_ON(huge_pte_none(pte));
2327			if (unmap_ref_private(mm, vma, old_page, address)) {
2328				BUG_ON(page_count(old_page) != 1);
2329				BUG_ON(huge_pte_none(pte));
2330				spin_lock(&mm->page_table_lock);
2331				goto retry_avoidcopy;
2332			}
2333			WARN_ON_ONCE(1);
2334		}
2335
2336		/* Caller expects lock to be held */
2337		spin_lock(&mm->page_table_lock);
2338		return -PTR_ERR(new_page);
2339	}
2340
2341	copy_huge_page(new_page, old_page, address, vma);
2342	__SetPageUptodate(new_page);
2343
2344	/*
2345	 * Retake the page_table_lock to check for racing updates
2346	 * before the page tables are altered
2347	 */
2348	spin_lock(&mm->page_table_lock);
2349	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2350	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2351		/* Break COW */
2352		huge_ptep_clear_flush(vma, address, ptep);
2353		set_huge_pte_at(mm, address, ptep,
2354				make_huge_pte(vma, new_page, 1));
2355		/* Make the old page be freed below */
2356		new_page = old_page;
2357	}
2358	page_cache_release(new_page);
2359	page_cache_release(old_page);
2360	return 0;
2361}
2362
2363/* Return the pagecache page at a given address within a VMA */
2364static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2365			struct vm_area_struct *vma, unsigned long address)
2366{
2367	struct address_space *mapping;
2368	pgoff_t idx;
2369
2370	mapping = vma->vm_file->f_mapping;
2371	idx = vma_hugecache_offset(h, vma, address);
2372
2373	return find_lock_page(mapping, idx);
2374}
2375
2376/*
2377 * Return whether there is a pagecache page to back given address within VMA.
2378 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2379 */
2380static bool hugetlbfs_pagecache_present(struct hstate *h,
2381			struct vm_area_struct *vma, unsigned long address)
2382{
2383	struct address_space *mapping;
2384	pgoff_t idx;
2385	struct page *page;
2386
2387	mapping = vma->vm_file->f_mapping;
2388	idx = vma_hugecache_offset(h, vma, address);
2389
2390	page = find_get_page(mapping, idx);
2391	if (page)
2392		put_page(page);
2393	return page != NULL;
2394}
2395
2396static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2397			unsigned long address, pte_t *ptep, unsigned int flags)
2398{
2399	struct hstate *h = hstate_vma(vma);
2400	int ret = VM_FAULT_SIGBUS;
2401	pgoff_t idx;
2402	unsigned long size;
2403	struct page *page;
2404	struct address_space *mapping;
2405	pte_t new_pte;
2406
2407	/*
2408	 * Currently, we are forced to kill the process in the event the
2409	 * original mapper has unmapped pages from the child due to a failed
2410	 * COW. Warn that such a situation has occured as it may not be obvious
2411	 */
2412	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2413		printk(KERN_WARNING
2414			"PID %d killed due to inadequate hugepage pool\n",
2415			current->pid);
2416		return ret;
2417	}
2418
2419	mapping = vma->vm_file->f_mapping;
2420	idx = vma_hugecache_offset(h, vma, address);
2421
2422	/*
2423	 * Use page lock to guard against racing truncation
2424	 * before we get page_table_lock.
2425	 */
2426retry:
2427	page = find_lock_page(mapping, idx);
2428	if (!page) {
2429		size = i_size_read(mapping->host) >> huge_page_shift(h);
2430		if (idx >= size)
2431			goto out;
2432		page = alloc_huge_page(vma, address, 0);
2433		if (IS_ERR(page)) {
2434			ret = -PTR_ERR(page);
2435			goto out;
2436		}
2437		clear_huge_page(page, address, huge_page_size(h));
2438		__SetPageUptodate(page);
2439
2440		if (vma->vm_flags & VM_MAYSHARE) {
2441			int err;
2442			struct inode *inode = mapping->host;
2443
2444			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2445			if (err) {
2446				put_page(page);
2447				if (err == -EEXIST)
2448					goto retry;
2449				goto out;
2450			}
2451
2452			spin_lock(&inode->i_lock);
2453			inode->i_blocks += blocks_per_huge_page(h);
2454			spin_unlock(&inode->i_lock);
2455		} else {
2456			lock_page(page);
2457			page->mapping = HUGETLB_POISON;
2458		}
2459	}
2460
2461	/*
2462	 * If we are going to COW a private mapping later, we examine the
2463	 * pending reservations for this page now. This will ensure that
2464	 * any allocations necessary to record that reservation occur outside
2465	 * the spinlock.
2466	 */
2467	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2468		if (vma_needs_reservation(h, vma, address) < 0) {
2469			ret = VM_FAULT_OOM;
2470			goto backout_unlocked;
2471		}
2472
2473	spin_lock(&mm->page_table_lock);
2474	size = i_size_read(mapping->host) >> huge_page_shift(h);
2475	if (idx >= size)
2476		goto backout;
2477
2478	ret = 0;
2479	if (!huge_pte_none(huge_ptep_get(ptep)))
2480		goto backout;
2481
2482	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2483				&& (vma->vm_flags & VM_SHARED)));
2484	set_huge_pte_at(mm, address, ptep, new_pte);
2485
2486	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2487		/* Optimization, do the COW without a second fault */
2488		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2489	}
2490
2491	spin_unlock(&mm->page_table_lock);
2492	unlock_page(page);
2493out:
2494	return ret;
2495
2496backout:
2497	spin_unlock(&mm->page_table_lock);
2498backout_unlocked:
2499	unlock_page(page);
2500	put_page(page);
2501	goto out;
2502}
2503
2504int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2505			unsigned long address, unsigned int flags)
2506{
2507	pte_t *ptep;
2508	pte_t entry;
2509	int ret;
2510	struct page *pagecache_page = NULL;
2511	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2512	struct hstate *h = hstate_vma(vma);
2513
2514	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2515	if (!ptep)
2516		return VM_FAULT_OOM;
2517
2518	/*
2519	 * Serialize hugepage allocation and instantiation, so that we don't
2520	 * get spurious allocation failures if two CPUs race to instantiate
2521	 * the same page in the page cache.
2522	 */
2523	mutex_lock(&hugetlb_instantiation_mutex);
2524	entry = huge_ptep_get(ptep);
2525	if (huge_pte_none(entry)) {
2526		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2527		goto out_mutex;
2528	}
2529
2530	ret = 0;
2531
2532	/*
2533	 * If we are going to COW the mapping later, we examine the pending
2534	 * reservations for this page now. This will ensure that any
2535	 * allocations necessary to record that reservation occur outside the
2536	 * spinlock. For private mappings, we also lookup the pagecache
2537	 * page now as it is used to determine if a reservation has been
2538	 * consumed.
2539	 */
2540	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2541		if (vma_needs_reservation(h, vma, address) < 0) {
2542			ret = VM_FAULT_OOM;
2543			goto out_mutex;
2544		}
2545
2546		if (!(vma->vm_flags & VM_MAYSHARE))
2547			pagecache_page = hugetlbfs_pagecache_page(h,
2548								vma, address);
2549	}
2550
2551	spin_lock(&mm->page_table_lock);
2552	/* Check for a racing update before calling hugetlb_cow */
2553	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2554		goto out_page_table_lock;
2555
2556
2557	if (flags & FAULT_FLAG_WRITE) {
2558		if (!pte_write(entry)) {
2559			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2560							pagecache_page);
2561			goto out_page_table_lock;
2562		}
2563		entry = pte_mkdirty(entry);
2564	}
2565	entry = pte_mkyoung(entry);
2566	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2567						flags & FAULT_FLAG_WRITE))
2568		update_mmu_cache(vma, address, ptep);
2569
2570out_page_table_lock:
2571	spin_unlock(&mm->page_table_lock);
2572
2573	if (pagecache_page) {
2574		unlock_page(pagecache_page);
2575		put_page(pagecache_page);
2576	}
2577
2578out_mutex:
2579	mutex_unlock(&hugetlb_instantiation_mutex);
2580
2581	return ret;
2582}
2583
2584/* Can be overriden by architectures */
2585__attribute__((weak)) struct page *
2586follow_huge_pud(struct mm_struct *mm, unsigned long address,
2587	       pud_t *pud, int write)
2588{
2589	BUG();
2590	return NULL;
2591}
2592
2593int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2594			struct page **pages, struct vm_area_struct **vmas,
2595			unsigned long *position, int *length, int i,
2596			unsigned int flags)
2597{
2598	unsigned long pfn_offset;
2599	unsigned long vaddr = *position;
2600	int remainder = *length;
2601	struct hstate *h = hstate_vma(vma);
2602
2603	spin_lock(&mm->page_table_lock);
2604	while (vaddr < vma->vm_end && remainder) {
2605		pte_t *pte;
2606		int absent;
2607		struct page *page;
2608
2609		/*
2610		 * Some archs (sparc64, sh*) have multiple pte_ts to
2611		 * each hugepage.  We have to make sure we get the
2612		 * first, for the page indexing below to work.
2613		 */
2614		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2615		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2616
2617		/*
2618		 * When coredumping, it suits get_dump_page if we just return
2619		 * an error where there's an empty slot with no huge pagecache
2620		 * to back it.  This way, we avoid allocating a hugepage, and
2621		 * the sparse dumpfile avoids allocating disk blocks, but its
2622		 * huge holes still show up with zeroes where they need to be.
2623		 */
2624		if (absent && (flags & FOLL_DUMP) &&
2625		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2626			remainder = 0;
2627			break;
2628		}
2629
2630		if (absent ||
2631		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2632			int ret;
2633
2634			spin_unlock(&mm->page_table_lock);
2635			ret = hugetlb_fault(mm, vma, vaddr,
2636				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2637			spin_lock(&mm->page_table_lock);
2638			if (!(ret & VM_FAULT_ERROR))
2639				continue;
2640
2641			remainder = 0;
2642			break;
2643		}
2644
2645		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2646		page = pte_page(huge_ptep_get(pte));
2647same_page:
2648		if (pages) {
2649			pages[i] = mem_map_offset(page, pfn_offset);
2650			get_page(pages[i]);
2651		}
2652
2653		if (vmas)
2654			vmas[i] = vma;
2655
2656		vaddr += PAGE_SIZE;
2657		++pfn_offset;
2658		--remainder;
2659		++i;
2660		if (vaddr < vma->vm_end && remainder &&
2661				pfn_offset < pages_per_huge_page(h)) {
2662			/*
2663			 * We use pfn_offset to avoid touching the pageframes
2664			 * of this compound page.
2665			 */
2666			goto same_page;
2667		}
2668	}
2669	spin_unlock(&mm->page_table_lock);
2670	*length = remainder;
2671	*position = vaddr;
2672
2673	return i ? i : -EFAULT;
2674}
2675
2676void hugetlb_change_protection(struct vm_area_struct *vma,
2677		unsigned long address, unsigned long end, pgprot_t newprot)
2678{
2679	struct mm_struct *mm = vma->vm_mm;
2680	unsigned long start = address;
2681	pte_t *ptep;
2682	pte_t pte;
2683	struct hstate *h = hstate_vma(vma);
2684
2685	BUG_ON(address >= end);
2686	flush_cache_range(vma, address, end);
2687
2688	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2689	spin_lock(&mm->page_table_lock);
2690	for (; address < end; address += huge_page_size(h)) {
2691		ptep = huge_pte_offset(mm, address);
2692		if (!ptep)
2693			continue;
2694		if (huge_pmd_unshare(mm, &address, ptep))
2695			continue;
2696		if (!huge_pte_none(huge_ptep_get(ptep))) {
2697			pte = huge_ptep_get_and_clear(mm, address, ptep);
2698			pte = pte_mkhuge(pte_modify(pte, newprot));
2699			set_huge_pte_at(mm, address, ptep, pte);
2700		}
2701	}
2702	spin_unlock(&mm->page_table_lock);
2703	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2704
2705	flush_tlb_range(vma, start, end);
2706}
2707
2708int hugetlb_reserve_pages(struct inode *inode,
2709					long from, long to,
2710					struct vm_area_struct *vma,
2711					int acctflag)
2712{
2713	long ret, chg;
2714	struct hstate *h = hstate_inode(inode);
2715
2716	/*
2717	 * Only apply hugepage reservation if asked. At fault time, an
2718	 * attempt will be made for VM_NORESERVE to allocate a page
2719	 * and filesystem quota without using reserves
2720	 */
2721	if (acctflag & VM_NORESERVE)
2722		return 0;
2723
2724	/*
2725	 * Shared mappings base their reservation on the number of pages that
2726	 * are already allocated on behalf of the file. Private mappings need
2727	 * to reserve the full area even if read-only as mprotect() may be
2728	 * called to make the mapping read-write. Assume !vma is a shm mapping
2729	 */
2730	if (!vma || vma->vm_flags & VM_MAYSHARE)
2731		chg = region_chg(&inode->i_mapping->private_list, from, to);
2732	else {
2733		struct resv_map *resv_map = resv_map_alloc();
2734		if (!resv_map)
2735			return -ENOMEM;
2736
2737		chg = to - from;
2738
2739		set_vma_resv_map(vma, resv_map);
2740		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2741	}
2742
2743	if (chg < 0)
2744		return chg;
2745
2746	/* There must be enough filesystem quota for the mapping */
2747	if (hugetlb_get_quota(inode->i_mapping, chg))
2748		return -ENOSPC;
2749
2750	/*
2751	 * Check enough hugepages are available for the reservation.
2752	 * Hand back the quota if there are not
2753	 */
2754	ret = hugetlb_acct_memory(h, chg);
2755	if (ret < 0) {
2756		hugetlb_put_quota(inode->i_mapping, chg);
2757		return ret;
2758	}
2759
2760	/*
2761	 * Account for the reservations made. Shared mappings record regions
2762	 * that have reservations as they are shared by multiple VMAs.
2763	 * When the last VMA disappears, the region map says how much
2764	 * the reservation was and the page cache tells how much of
2765	 * the reservation was consumed. Private mappings are per-VMA and
2766	 * only the consumed reservations are tracked. When the VMA
2767	 * disappears, the original reservation is the VMA size and the
2768	 * consumed reservations are stored in the map. Hence, nothing
2769	 * else has to be done for private mappings here
2770	 */
2771	if (!vma || vma->vm_flags & VM_MAYSHARE)
2772		region_add(&inode->i_mapping->private_list, from, to);
2773	return 0;
2774}
2775
2776void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2777{
2778	struct hstate *h = hstate_inode(inode);
2779	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2780
2781	spin_lock(&inode->i_lock);
2782	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2783	spin_unlock(&inode->i_lock);
2784
2785	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2786	hugetlb_acct_memory(h, -(chg - freed));
2787}
2788