hugetlb.c revision c3f38a38715e9b4e7b1dda6840a1375f6894744d
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/tlb.h>
28
29#include <linux/io.h>
30#include <linux/hugetlb.h>
31#include <linux/node.h>
32#include "internal.h"
33
34const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
35static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
36unsigned long hugepages_treat_as_movable;
37
38int hugetlb_max_hstate __read_mostly;
39unsigned int default_hstate_idx;
40struct hstate hstates[HUGE_MAX_HSTATE];
41
42__initdata LIST_HEAD(huge_boot_pages);
43
44/* for command line parsing */
45static struct hstate * __initdata parsed_hstate;
46static unsigned long __initdata default_hstate_max_huge_pages;
47static unsigned long __initdata default_hstate_size;
48
49/*
50 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
51 */
52DEFINE_SPINLOCK(hugetlb_lock);
53
54static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
55{
56	bool free = (spool->count == 0) && (spool->used_hpages == 0);
57
58	spin_unlock(&spool->lock);
59
60	/* If no pages are used, and no other handles to the subpool
61	 * remain, free the subpool the subpool remain */
62	if (free)
63		kfree(spool);
64}
65
66struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
67{
68	struct hugepage_subpool *spool;
69
70	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
71	if (!spool)
72		return NULL;
73
74	spin_lock_init(&spool->lock);
75	spool->count = 1;
76	spool->max_hpages = nr_blocks;
77	spool->used_hpages = 0;
78
79	return spool;
80}
81
82void hugepage_put_subpool(struct hugepage_subpool *spool)
83{
84	spin_lock(&spool->lock);
85	BUG_ON(!spool->count);
86	spool->count--;
87	unlock_or_release_subpool(spool);
88}
89
90static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
91				      long delta)
92{
93	int ret = 0;
94
95	if (!spool)
96		return 0;
97
98	spin_lock(&spool->lock);
99	if ((spool->used_hpages + delta) <= spool->max_hpages) {
100		spool->used_hpages += delta;
101	} else {
102		ret = -ENOMEM;
103	}
104	spin_unlock(&spool->lock);
105
106	return ret;
107}
108
109static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
110				       long delta)
111{
112	if (!spool)
113		return;
114
115	spin_lock(&spool->lock);
116	spool->used_hpages -= delta;
117	/* If hugetlbfs_put_super couldn't free spool due to
118	* an outstanding quota reference, free it now. */
119	unlock_or_release_subpool(spool);
120}
121
122static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
123{
124	return HUGETLBFS_SB(inode->i_sb)->spool;
125}
126
127static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
128{
129	return subpool_inode(vma->vm_file->f_dentry->d_inode);
130}
131
132/*
133 * Region tracking -- allows tracking of reservations and instantiated pages
134 *                    across the pages in a mapping.
135 *
136 * The region data structures are protected by a combination of the mmap_sem
137 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
138 * must either hold the mmap_sem for write, or the mmap_sem for read and
139 * the hugetlb_instantiation mutex:
140 *
141 *	down_write(&mm->mmap_sem);
142 * or
143 *	down_read(&mm->mmap_sem);
144 *	mutex_lock(&hugetlb_instantiation_mutex);
145 */
146struct file_region {
147	struct list_head link;
148	long from;
149	long to;
150};
151
152static long region_add(struct list_head *head, long f, long t)
153{
154	struct file_region *rg, *nrg, *trg;
155
156	/* Locate the region we are either in or before. */
157	list_for_each_entry(rg, head, link)
158		if (f <= rg->to)
159			break;
160
161	/* Round our left edge to the current segment if it encloses us. */
162	if (f > rg->from)
163		f = rg->from;
164
165	/* Check for and consume any regions we now overlap with. */
166	nrg = rg;
167	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
168		if (&rg->link == head)
169			break;
170		if (rg->from > t)
171			break;
172
173		/* If this area reaches higher then extend our area to
174		 * include it completely.  If this is not the first area
175		 * which we intend to reuse, free it. */
176		if (rg->to > t)
177			t = rg->to;
178		if (rg != nrg) {
179			list_del(&rg->link);
180			kfree(rg);
181		}
182	}
183	nrg->from = f;
184	nrg->to = t;
185	return 0;
186}
187
188static long region_chg(struct list_head *head, long f, long t)
189{
190	struct file_region *rg, *nrg;
191	long chg = 0;
192
193	/* Locate the region we are before or in. */
194	list_for_each_entry(rg, head, link)
195		if (f <= rg->to)
196			break;
197
198	/* If we are below the current region then a new region is required.
199	 * Subtle, allocate a new region at the position but make it zero
200	 * size such that we can guarantee to record the reservation. */
201	if (&rg->link == head || t < rg->from) {
202		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
203		if (!nrg)
204			return -ENOMEM;
205		nrg->from = f;
206		nrg->to   = f;
207		INIT_LIST_HEAD(&nrg->link);
208		list_add(&nrg->link, rg->link.prev);
209
210		return t - f;
211	}
212
213	/* Round our left edge to the current segment if it encloses us. */
214	if (f > rg->from)
215		f = rg->from;
216	chg = t - f;
217
218	/* Check for and consume any regions we now overlap with. */
219	list_for_each_entry(rg, rg->link.prev, link) {
220		if (&rg->link == head)
221			break;
222		if (rg->from > t)
223			return chg;
224
225		/* We overlap with this area, if it extends further than
226		 * us then we must extend ourselves.  Account for its
227		 * existing reservation. */
228		if (rg->to > t) {
229			chg += rg->to - t;
230			t = rg->to;
231		}
232		chg -= rg->to - rg->from;
233	}
234	return chg;
235}
236
237static long region_truncate(struct list_head *head, long end)
238{
239	struct file_region *rg, *trg;
240	long chg = 0;
241
242	/* Locate the region we are either in or before. */
243	list_for_each_entry(rg, head, link)
244		if (end <= rg->to)
245			break;
246	if (&rg->link == head)
247		return 0;
248
249	/* If we are in the middle of a region then adjust it. */
250	if (end > rg->from) {
251		chg = rg->to - end;
252		rg->to = end;
253		rg = list_entry(rg->link.next, typeof(*rg), link);
254	}
255
256	/* Drop any remaining regions. */
257	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
258		if (&rg->link == head)
259			break;
260		chg += rg->to - rg->from;
261		list_del(&rg->link);
262		kfree(rg);
263	}
264	return chg;
265}
266
267static long region_count(struct list_head *head, long f, long t)
268{
269	struct file_region *rg;
270	long chg = 0;
271
272	/* Locate each segment we overlap with, and count that overlap. */
273	list_for_each_entry(rg, head, link) {
274		long seg_from;
275		long seg_to;
276
277		if (rg->to <= f)
278			continue;
279		if (rg->from >= t)
280			break;
281
282		seg_from = max(rg->from, f);
283		seg_to = min(rg->to, t);
284
285		chg += seg_to - seg_from;
286	}
287
288	return chg;
289}
290
291/*
292 * Convert the address within this vma to the page offset within
293 * the mapping, in pagecache page units; huge pages here.
294 */
295static pgoff_t vma_hugecache_offset(struct hstate *h,
296			struct vm_area_struct *vma, unsigned long address)
297{
298	return ((address - vma->vm_start) >> huge_page_shift(h)) +
299			(vma->vm_pgoff >> huge_page_order(h));
300}
301
302pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
303				     unsigned long address)
304{
305	return vma_hugecache_offset(hstate_vma(vma), vma, address);
306}
307
308/*
309 * Return the size of the pages allocated when backing a VMA. In the majority
310 * cases this will be same size as used by the page table entries.
311 */
312unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
313{
314	struct hstate *hstate;
315
316	if (!is_vm_hugetlb_page(vma))
317		return PAGE_SIZE;
318
319	hstate = hstate_vma(vma);
320
321	return 1UL << (hstate->order + PAGE_SHIFT);
322}
323EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
324
325/*
326 * Return the page size being used by the MMU to back a VMA. In the majority
327 * of cases, the page size used by the kernel matches the MMU size. On
328 * architectures where it differs, an architecture-specific version of this
329 * function is required.
330 */
331#ifndef vma_mmu_pagesize
332unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
333{
334	return vma_kernel_pagesize(vma);
335}
336#endif
337
338/*
339 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
340 * bits of the reservation map pointer, which are always clear due to
341 * alignment.
342 */
343#define HPAGE_RESV_OWNER    (1UL << 0)
344#define HPAGE_RESV_UNMAPPED (1UL << 1)
345#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
346
347/*
348 * These helpers are used to track how many pages are reserved for
349 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
350 * is guaranteed to have their future faults succeed.
351 *
352 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
353 * the reserve counters are updated with the hugetlb_lock held. It is safe
354 * to reset the VMA at fork() time as it is not in use yet and there is no
355 * chance of the global counters getting corrupted as a result of the values.
356 *
357 * The private mapping reservation is represented in a subtly different
358 * manner to a shared mapping.  A shared mapping has a region map associated
359 * with the underlying file, this region map represents the backing file
360 * pages which have ever had a reservation assigned which this persists even
361 * after the page is instantiated.  A private mapping has a region map
362 * associated with the original mmap which is attached to all VMAs which
363 * reference it, this region map represents those offsets which have consumed
364 * reservation ie. where pages have been instantiated.
365 */
366static unsigned long get_vma_private_data(struct vm_area_struct *vma)
367{
368	return (unsigned long)vma->vm_private_data;
369}
370
371static void set_vma_private_data(struct vm_area_struct *vma,
372							unsigned long value)
373{
374	vma->vm_private_data = (void *)value;
375}
376
377struct resv_map {
378	struct kref refs;
379	struct list_head regions;
380};
381
382static struct resv_map *resv_map_alloc(void)
383{
384	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
385	if (!resv_map)
386		return NULL;
387
388	kref_init(&resv_map->refs);
389	INIT_LIST_HEAD(&resv_map->regions);
390
391	return resv_map;
392}
393
394static void resv_map_release(struct kref *ref)
395{
396	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
397
398	/* Clear out any active regions before we release the map. */
399	region_truncate(&resv_map->regions, 0);
400	kfree(resv_map);
401}
402
403static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
404{
405	VM_BUG_ON(!is_vm_hugetlb_page(vma));
406	if (!(vma->vm_flags & VM_MAYSHARE))
407		return (struct resv_map *)(get_vma_private_data(vma) &
408							~HPAGE_RESV_MASK);
409	return NULL;
410}
411
412static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
413{
414	VM_BUG_ON(!is_vm_hugetlb_page(vma));
415	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
416
417	set_vma_private_data(vma, (get_vma_private_data(vma) &
418				HPAGE_RESV_MASK) | (unsigned long)map);
419}
420
421static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
422{
423	VM_BUG_ON(!is_vm_hugetlb_page(vma));
424	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
425
426	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
427}
428
429static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
430{
431	VM_BUG_ON(!is_vm_hugetlb_page(vma));
432
433	return (get_vma_private_data(vma) & flag) != 0;
434}
435
436/* Decrement the reserved pages in the hugepage pool by one */
437static void decrement_hugepage_resv_vma(struct hstate *h,
438			struct vm_area_struct *vma)
439{
440	if (vma->vm_flags & VM_NORESERVE)
441		return;
442
443	if (vma->vm_flags & VM_MAYSHARE) {
444		/* Shared mappings always use reserves */
445		h->resv_huge_pages--;
446	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
447		/*
448		 * Only the process that called mmap() has reserves for
449		 * private mappings.
450		 */
451		h->resv_huge_pages--;
452	}
453}
454
455/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
456void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
457{
458	VM_BUG_ON(!is_vm_hugetlb_page(vma));
459	if (!(vma->vm_flags & VM_MAYSHARE))
460		vma->vm_private_data = (void *)0;
461}
462
463/* Returns true if the VMA has associated reserve pages */
464static int vma_has_reserves(struct vm_area_struct *vma)
465{
466	if (vma->vm_flags & VM_MAYSHARE)
467		return 1;
468	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
469		return 1;
470	return 0;
471}
472
473static void copy_gigantic_page(struct page *dst, struct page *src)
474{
475	int i;
476	struct hstate *h = page_hstate(src);
477	struct page *dst_base = dst;
478	struct page *src_base = src;
479
480	for (i = 0; i < pages_per_huge_page(h); ) {
481		cond_resched();
482		copy_highpage(dst, src);
483
484		i++;
485		dst = mem_map_next(dst, dst_base, i);
486		src = mem_map_next(src, src_base, i);
487	}
488}
489
490void copy_huge_page(struct page *dst, struct page *src)
491{
492	int i;
493	struct hstate *h = page_hstate(src);
494
495	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
496		copy_gigantic_page(dst, src);
497		return;
498	}
499
500	might_sleep();
501	for (i = 0; i < pages_per_huge_page(h); i++) {
502		cond_resched();
503		copy_highpage(dst + i, src + i);
504	}
505}
506
507static void enqueue_huge_page(struct hstate *h, struct page *page)
508{
509	int nid = page_to_nid(page);
510	list_move(&page->lru, &h->hugepage_freelists[nid]);
511	h->free_huge_pages++;
512	h->free_huge_pages_node[nid]++;
513}
514
515static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
516{
517	struct page *page;
518
519	if (list_empty(&h->hugepage_freelists[nid]))
520		return NULL;
521	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
522	list_move(&page->lru, &h->hugepage_activelist);
523	set_page_refcounted(page);
524	h->free_huge_pages--;
525	h->free_huge_pages_node[nid]--;
526	return page;
527}
528
529static struct page *dequeue_huge_page_vma(struct hstate *h,
530				struct vm_area_struct *vma,
531				unsigned long address, int avoid_reserve)
532{
533	struct page *page = NULL;
534	struct mempolicy *mpol;
535	nodemask_t *nodemask;
536	struct zonelist *zonelist;
537	struct zone *zone;
538	struct zoneref *z;
539	unsigned int cpuset_mems_cookie;
540
541retry_cpuset:
542	cpuset_mems_cookie = get_mems_allowed();
543	zonelist = huge_zonelist(vma, address,
544					htlb_alloc_mask, &mpol, &nodemask);
545	/*
546	 * A child process with MAP_PRIVATE mappings created by their parent
547	 * have no page reserves. This check ensures that reservations are
548	 * not "stolen". The child may still get SIGKILLed
549	 */
550	if (!vma_has_reserves(vma) &&
551			h->free_huge_pages - h->resv_huge_pages == 0)
552		goto err;
553
554	/* If reserves cannot be used, ensure enough pages are in the pool */
555	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
556		goto err;
557
558	for_each_zone_zonelist_nodemask(zone, z, zonelist,
559						MAX_NR_ZONES - 1, nodemask) {
560		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
561			page = dequeue_huge_page_node(h, zone_to_nid(zone));
562			if (page) {
563				if (!avoid_reserve)
564					decrement_hugepage_resv_vma(h, vma);
565				break;
566			}
567		}
568	}
569
570	mpol_cond_put(mpol);
571	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
572		goto retry_cpuset;
573	return page;
574
575err:
576	mpol_cond_put(mpol);
577	return NULL;
578}
579
580static void update_and_free_page(struct hstate *h, struct page *page)
581{
582	int i;
583
584	VM_BUG_ON(h->order >= MAX_ORDER);
585
586	h->nr_huge_pages--;
587	h->nr_huge_pages_node[page_to_nid(page)]--;
588	for (i = 0; i < pages_per_huge_page(h); i++) {
589		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
590				1 << PG_referenced | 1 << PG_dirty |
591				1 << PG_active | 1 << PG_reserved |
592				1 << PG_private | 1 << PG_writeback);
593	}
594	set_compound_page_dtor(page, NULL);
595	set_page_refcounted(page);
596	arch_release_hugepage(page);
597	__free_pages(page, huge_page_order(h));
598}
599
600struct hstate *size_to_hstate(unsigned long size)
601{
602	struct hstate *h;
603
604	for_each_hstate(h) {
605		if (huge_page_size(h) == size)
606			return h;
607	}
608	return NULL;
609}
610
611static void free_huge_page(struct page *page)
612{
613	/*
614	 * Can't pass hstate in here because it is called from the
615	 * compound page destructor.
616	 */
617	struct hstate *h = page_hstate(page);
618	int nid = page_to_nid(page);
619	struct hugepage_subpool *spool =
620		(struct hugepage_subpool *)page_private(page);
621
622	set_page_private(page, 0);
623	page->mapping = NULL;
624	BUG_ON(page_count(page));
625	BUG_ON(page_mapcount(page));
626
627	spin_lock(&hugetlb_lock);
628	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
629		/* remove the page from active list */
630		list_del(&page->lru);
631		update_and_free_page(h, page);
632		h->surplus_huge_pages--;
633		h->surplus_huge_pages_node[nid]--;
634	} else {
635		enqueue_huge_page(h, page);
636	}
637	spin_unlock(&hugetlb_lock);
638	hugepage_subpool_put_pages(spool, 1);
639}
640
641static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
642{
643	INIT_LIST_HEAD(&page->lru);
644	set_compound_page_dtor(page, free_huge_page);
645	spin_lock(&hugetlb_lock);
646	h->nr_huge_pages++;
647	h->nr_huge_pages_node[nid]++;
648	spin_unlock(&hugetlb_lock);
649	put_page(page); /* free it into the hugepage allocator */
650}
651
652static void prep_compound_gigantic_page(struct page *page, unsigned long order)
653{
654	int i;
655	int nr_pages = 1 << order;
656	struct page *p = page + 1;
657
658	/* we rely on prep_new_huge_page to set the destructor */
659	set_compound_order(page, order);
660	__SetPageHead(page);
661	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662		__SetPageTail(p);
663		set_page_count(p, 0);
664		p->first_page = page;
665	}
666}
667
668int PageHuge(struct page *page)
669{
670	compound_page_dtor *dtor;
671
672	if (!PageCompound(page))
673		return 0;
674
675	page = compound_head(page);
676	dtor = get_compound_page_dtor(page);
677
678	return dtor == free_huge_page;
679}
680EXPORT_SYMBOL_GPL(PageHuge);
681
682static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
683{
684	struct page *page;
685
686	if (h->order >= MAX_ORDER)
687		return NULL;
688
689	page = alloc_pages_exact_node(nid,
690		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
691						__GFP_REPEAT|__GFP_NOWARN,
692		huge_page_order(h));
693	if (page) {
694		if (arch_prepare_hugepage(page)) {
695			__free_pages(page, huge_page_order(h));
696			return NULL;
697		}
698		prep_new_huge_page(h, page, nid);
699	}
700
701	return page;
702}
703
704/*
705 * common helper functions for hstate_next_node_to_{alloc|free}.
706 * We may have allocated or freed a huge page based on a different
707 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
708 * be outside of *nodes_allowed.  Ensure that we use an allowed
709 * node for alloc or free.
710 */
711static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
712{
713	nid = next_node(nid, *nodes_allowed);
714	if (nid == MAX_NUMNODES)
715		nid = first_node(*nodes_allowed);
716	VM_BUG_ON(nid >= MAX_NUMNODES);
717
718	return nid;
719}
720
721static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
722{
723	if (!node_isset(nid, *nodes_allowed))
724		nid = next_node_allowed(nid, nodes_allowed);
725	return nid;
726}
727
728/*
729 * returns the previously saved node ["this node"] from which to
730 * allocate a persistent huge page for the pool and advance the
731 * next node from which to allocate, handling wrap at end of node
732 * mask.
733 */
734static int hstate_next_node_to_alloc(struct hstate *h,
735					nodemask_t *nodes_allowed)
736{
737	int nid;
738
739	VM_BUG_ON(!nodes_allowed);
740
741	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
742	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
743
744	return nid;
745}
746
747static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
748{
749	struct page *page;
750	int start_nid;
751	int next_nid;
752	int ret = 0;
753
754	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
755	next_nid = start_nid;
756
757	do {
758		page = alloc_fresh_huge_page_node(h, next_nid);
759		if (page) {
760			ret = 1;
761			break;
762		}
763		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
764	} while (next_nid != start_nid);
765
766	if (ret)
767		count_vm_event(HTLB_BUDDY_PGALLOC);
768	else
769		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
770
771	return ret;
772}
773
774/*
775 * helper for free_pool_huge_page() - return the previously saved
776 * node ["this node"] from which to free a huge page.  Advance the
777 * next node id whether or not we find a free huge page to free so
778 * that the next attempt to free addresses the next node.
779 */
780static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
781{
782	int nid;
783
784	VM_BUG_ON(!nodes_allowed);
785
786	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
787	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
788
789	return nid;
790}
791
792/*
793 * Free huge page from pool from next node to free.
794 * Attempt to keep persistent huge pages more or less
795 * balanced over allowed nodes.
796 * Called with hugetlb_lock locked.
797 */
798static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
799							 bool acct_surplus)
800{
801	int start_nid;
802	int next_nid;
803	int ret = 0;
804
805	start_nid = hstate_next_node_to_free(h, nodes_allowed);
806	next_nid = start_nid;
807
808	do {
809		/*
810		 * If we're returning unused surplus pages, only examine
811		 * nodes with surplus pages.
812		 */
813		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
814		    !list_empty(&h->hugepage_freelists[next_nid])) {
815			struct page *page =
816				list_entry(h->hugepage_freelists[next_nid].next,
817					  struct page, lru);
818			list_del(&page->lru);
819			h->free_huge_pages--;
820			h->free_huge_pages_node[next_nid]--;
821			if (acct_surplus) {
822				h->surplus_huge_pages--;
823				h->surplus_huge_pages_node[next_nid]--;
824			}
825			update_and_free_page(h, page);
826			ret = 1;
827			break;
828		}
829		next_nid = hstate_next_node_to_free(h, nodes_allowed);
830	} while (next_nid != start_nid);
831
832	return ret;
833}
834
835static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
836{
837	struct page *page;
838	unsigned int r_nid;
839
840	if (h->order >= MAX_ORDER)
841		return NULL;
842
843	/*
844	 * Assume we will successfully allocate the surplus page to
845	 * prevent racing processes from causing the surplus to exceed
846	 * overcommit
847	 *
848	 * This however introduces a different race, where a process B
849	 * tries to grow the static hugepage pool while alloc_pages() is
850	 * called by process A. B will only examine the per-node
851	 * counters in determining if surplus huge pages can be
852	 * converted to normal huge pages in adjust_pool_surplus(). A
853	 * won't be able to increment the per-node counter, until the
854	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
855	 * no more huge pages can be converted from surplus to normal
856	 * state (and doesn't try to convert again). Thus, we have a
857	 * case where a surplus huge page exists, the pool is grown, and
858	 * the surplus huge page still exists after, even though it
859	 * should just have been converted to a normal huge page. This
860	 * does not leak memory, though, as the hugepage will be freed
861	 * once it is out of use. It also does not allow the counters to
862	 * go out of whack in adjust_pool_surplus() as we don't modify
863	 * the node values until we've gotten the hugepage and only the
864	 * per-node value is checked there.
865	 */
866	spin_lock(&hugetlb_lock);
867	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
868		spin_unlock(&hugetlb_lock);
869		return NULL;
870	} else {
871		h->nr_huge_pages++;
872		h->surplus_huge_pages++;
873	}
874	spin_unlock(&hugetlb_lock);
875
876	if (nid == NUMA_NO_NODE)
877		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
878				   __GFP_REPEAT|__GFP_NOWARN,
879				   huge_page_order(h));
880	else
881		page = alloc_pages_exact_node(nid,
882			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
883			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
884
885	if (page && arch_prepare_hugepage(page)) {
886		__free_pages(page, huge_page_order(h));
887		page = NULL;
888	}
889
890	spin_lock(&hugetlb_lock);
891	if (page) {
892		INIT_LIST_HEAD(&page->lru);
893		r_nid = page_to_nid(page);
894		set_compound_page_dtor(page, free_huge_page);
895		/*
896		 * We incremented the global counters already
897		 */
898		h->nr_huge_pages_node[r_nid]++;
899		h->surplus_huge_pages_node[r_nid]++;
900		__count_vm_event(HTLB_BUDDY_PGALLOC);
901	} else {
902		h->nr_huge_pages--;
903		h->surplus_huge_pages--;
904		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
905	}
906	spin_unlock(&hugetlb_lock);
907
908	return page;
909}
910
911/*
912 * This allocation function is useful in the context where vma is irrelevant.
913 * E.g. soft-offlining uses this function because it only cares physical
914 * address of error page.
915 */
916struct page *alloc_huge_page_node(struct hstate *h, int nid)
917{
918	struct page *page;
919
920	spin_lock(&hugetlb_lock);
921	page = dequeue_huge_page_node(h, nid);
922	spin_unlock(&hugetlb_lock);
923
924	if (!page)
925		page = alloc_buddy_huge_page(h, nid);
926
927	return page;
928}
929
930/*
931 * Increase the hugetlb pool such that it can accommodate a reservation
932 * of size 'delta'.
933 */
934static int gather_surplus_pages(struct hstate *h, int delta)
935{
936	struct list_head surplus_list;
937	struct page *page, *tmp;
938	int ret, i;
939	int needed, allocated;
940	bool alloc_ok = true;
941
942	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
943	if (needed <= 0) {
944		h->resv_huge_pages += delta;
945		return 0;
946	}
947
948	allocated = 0;
949	INIT_LIST_HEAD(&surplus_list);
950
951	ret = -ENOMEM;
952retry:
953	spin_unlock(&hugetlb_lock);
954	for (i = 0; i < needed; i++) {
955		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
956		if (!page) {
957			alloc_ok = false;
958			break;
959		}
960		list_add(&page->lru, &surplus_list);
961	}
962	allocated += i;
963
964	/*
965	 * After retaking hugetlb_lock, we need to recalculate 'needed'
966	 * because either resv_huge_pages or free_huge_pages may have changed.
967	 */
968	spin_lock(&hugetlb_lock);
969	needed = (h->resv_huge_pages + delta) -
970			(h->free_huge_pages + allocated);
971	if (needed > 0) {
972		if (alloc_ok)
973			goto retry;
974		/*
975		 * We were not able to allocate enough pages to
976		 * satisfy the entire reservation so we free what
977		 * we've allocated so far.
978		 */
979		goto free;
980	}
981	/*
982	 * The surplus_list now contains _at_least_ the number of extra pages
983	 * needed to accommodate the reservation.  Add the appropriate number
984	 * of pages to the hugetlb pool and free the extras back to the buddy
985	 * allocator.  Commit the entire reservation here to prevent another
986	 * process from stealing the pages as they are added to the pool but
987	 * before they are reserved.
988	 */
989	needed += allocated;
990	h->resv_huge_pages += delta;
991	ret = 0;
992
993	/* Free the needed pages to the hugetlb pool */
994	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
995		if ((--needed) < 0)
996			break;
997		/*
998		 * This page is now managed by the hugetlb allocator and has
999		 * no users -- drop the buddy allocator's reference.
1000		 */
1001		put_page_testzero(page);
1002		VM_BUG_ON(page_count(page));
1003		enqueue_huge_page(h, page);
1004	}
1005free:
1006	spin_unlock(&hugetlb_lock);
1007
1008	/* Free unnecessary surplus pages to the buddy allocator */
1009	if (!list_empty(&surplus_list)) {
1010		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1011			put_page(page);
1012		}
1013	}
1014	spin_lock(&hugetlb_lock);
1015
1016	return ret;
1017}
1018
1019/*
1020 * When releasing a hugetlb pool reservation, any surplus pages that were
1021 * allocated to satisfy the reservation must be explicitly freed if they were
1022 * never used.
1023 * Called with hugetlb_lock held.
1024 */
1025static void return_unused_surplus_pages(struct hstate *h,
1026					unsigned long unused_resv_pages)
1027{
1028	unsigned long nr_pages;
1029
1030	/* Uncommit the reservation */
1031	h->resv_huge_pages -= unused_resv_pages;
1032
1033	/* Cannot return gigantic pages currently */
1034	if (h->order >= MAX_ORDER)
1035		return;
1036
1037	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1038
1039	/*
1040	 * We want to release as many surplus pages as possible, spread
1041	 * evenly across all nodes with memory. Iterate across these nodes
1042	 * until we can no longer free unreserved surplus pages. This occurs
1043	 * when the nodes with surplus pages have no free pages.
1044	 * free_pool_huge_page() will balance the the freed pages across the
1045	 * on-line nodes with memory and will handle the hstate accounting.
1046	 */
1047	while (nr_pages--) {
1048		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1049			break;
1050	}
1051}
1052
1053/*
1054 * Determine if the huge page at addr within the vma has an associated
1055 * reservation.  Where it does not we will need to logically increase
1056 * reservation and actually increase subpool usage before an allocation
1057 * can occur.  Where any new reservation would be required the
1058 * reservation change is prepared, but not committed.  Once the page
1059 * has been allocated from the subpool and instantiated the change should
1060 * be committed via vma_commit_reservation.  No action is required on
1061 * failure.
1062 */
1063static long vma_needs_reservation(struct hstate *h,
1064			struct vm_area_struct *vma, unsigned long addr)
1065{
1066	struct address_space *mapping = vma->vm_file->f_mapping;
1067	struct inode *inode = mapping->host;
1068
1069	if (vma->vm_flags & VM_MAYSHARE) {
1070		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1071		return region_chg(&inode->i_mapping->private_list,
1072							idx, idx + 1);
1073
1074	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1075		return 1;
1076
1077	} else  {
1078		long err;
1079		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1080		struct resv_map *reservations = vma_resv_map(vma);
1081
1082		err = region_chg(&reservations->regions, idx, idx + 1);
1083		if (err < 0)
1084			return err;
1085		return 0;
1086	}
1087}
1088static void vma_commit_reservation(struct hstate *h,
1089			struct vm_area_struct *vma, unsigned long addr)
1090{
1091	struct address_space *mapping = vma->vm_file->f_mapping;
1092	struct inode *inode = mapping->host;
1093
1094	if (vma->vm_flags & VM_MAYSHARE) {
1095		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1096		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1097
1098	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1099		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1100		struct resv_map *reservations = vma_resv_map(vma);
1101
1102		/* Mark this page used in the map. */
1103		region_add(&reservations->regions, idx, idx + 1);
1104	}
1105}
1106
1107static struct page *alloc_huge_page(struct vm_area_struct *vma,
1108				    unsigned long addr, int avoid_reserve)
1109{
1110	struct hugepage_subpool *spool = subpool_vma(vma);
1111	struct hstate *h = hstate_vma(vma);
1112	struct page *page;
1113	long chg;
1114
1115	/*
1116	 * Processes that did not create the mapping will have no
1117	 * reserves and will not have accounted against subpool
1118	 * limit. Check that the subpool limit can be made before
1119	 * satisfying the allocation MAP_NORESERVE mappings may also
1120	 * need pages and subpool limit allocated allocated if no reserve
1121	 * mapping overlaps.
1122	 */
1123	chg = vma_needs_reservation(h, vma, addr);
1124	if (chg < 0)
1125		return ERR_PTR(-ENOMEM);
1126	if (chg)
1127		if (hugepage_subpool_get_pages(spool, chg))
1128			return ERR_PTR(-ENOSPC);
1129
1130	spin_lock(&hugetlb_lock);
1131	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1132	spin_unlock(&hugetlb_lock);
1133
1134	if (!page) {
1135		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1136		if (!page) {
1137			hugepage_subpool_put_pages(spool, chg);
1138			return ERR_PTR(-ENOSPC);
1139		}
1140	}
1141
1142	set_page_private(page, (unsigned long)spool);
1143
1144	vma_commit_reservation(h, vma, addr);
1145
1146	return page;
1147}
1148
1149int __weak alloc_bootmem_huge_page(struct hstate *h)
1150{
1151	struct huge_bootmem_page *m;
1152	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1153
1154	while (nr_nodes) {
1155		void *addr;
1156
1157		addr = __alloc_bootmem_node_nopanic(
1158				NODE_DATA(hstate_next_node_to_alloc(h,
1159						&node_states[N_HIGH_MEMORY])),
1160				huge_page_size(h), huge_page_size(h), 0);
1161
1162		if (addr) {
1163			/*
1164			 * Use the beginning of the huge page to store the
1165			 * huge_bootmem_page struct (until gather_bootmem
1166			 * puts them into the mem_map).
1167			 */
1168			m = addr;
1169			goto found;
1170		}
1171		nr_nodes--;
1172	}
1173	return 0;
1174
1175found:
1176	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1177	/* Put them into a private list first because mem_map is not up yet */
1178	list_add(&m->list, &huge_boot_pages);
1179	m->hstate = h;
1180	return 1;
1181}
1182
1183static void prep_compound_huge_page(struct page *page, int order)
1184{
1185	if (unlikely(order > (MAX_ORDER - 1)))
1186		prep_compound_gigantic_page(page, order);
1187	else
1188		prep_compound_page(page, order);
1189}
1190
1191/* Put bootmem huge pages into the standard lists after mem_map is up */
1192static void __init gather_bootmem_prealloc(void)
1193{
1194	struct huge_bootmem_page *m;
1195
1196	list_for_each_entry(m, &huge_boot_pages, list) {
1197		struct hstate *h = m->hstate;
1198		struct page *page;
1199
1200#ifdef CONFIG_HIGHMEM
1201		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1202		free_bootmem_late((unsigned long)m,
1203				  sizeof(struct huge_bootmem_page));
1204#else
1205		page = virt_to_page(m);
1206#endif
1207		__ClearPageReserved(page);
1208		WARN_ON(page_count(page) != 1);
1209		prep_compound_huge_page(page, h->order);
1210		prep_new_huge_page(h, page, page_to_nid(page));
1211		/*
1212		 * If we had gigantic hugepages allocated at boot time, we need
1213		 * to restore the 'stolen' pages to totalram_pages in order to
1214		 * fix confusing memory reports from free(1) and another
1215		 * side-effects, like CommitLimit going negative.
1216		 */
1217		if (h->order > (MAX_ORDER - 1))
1218			totalram_pages += 1 << h->order;
1219	}
1220}
1221
1222static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1223{
1224	unsigned long i;
1225
1226	for (i = 0; i < h->max_huge_pages; ++i) {
1227		if (h->order >= MAX_ORDER) {
1228			if (!alloc_bootmem_huge_page(h))
1229				break;
1230		} else if (!alloc_fresh_huge_page(h,
1231					 &node_states[N_HIGH_MEMORY]))
1232			break;
1233	}
1234	h->max_huge_pages = i;
1235}
1236
1237static void __init hugetlb_init_hstates(void)
1238{
1239	struct hstate *h;
1240
1241	for_each_hstate(h) {
1242		/* oversize hugepages were init'ed in early boot */
1243		if (h->order < MAX_ORDER)
1244			hugetlb_hstate_alloc_pages(h);
1245	}
1246}
1247
1248static char * __init memfmt(char *buf, unsigned long n)
1249{
1250	if (n >= (1UL << 30))
1251		sprintf(buf, "%lu GB", n >> 30);
1252	else if (n >= (1UL << 20))
1253		sprintf(buf, "%lu MB", n >> 20);
1254	else
1255		sprintf(buf, "%lu KB", n >> 10);
1256	return buf;
1257}
1258
1259static void __init report_hugepages(void)
1260{
1261	struct hstate *h;
1262
1263	for_each_hstate(h) {
1264		char buf[32];
1265		printk(KERN_INFO "HugeTLB registered %s page size, "
1266				 "pre-allocated %ld pages\n",
1267			memfmt(buf, huge_page_size(h)),
1268			h->free_huge_pages);
1269	}
1270}
1271
1272#ifdef CONFIG_HIGHMEM
1273static void try_to_free_low(struct hstate *h, unsigned long count,
1274						nodemask_t *nodes_allowed)
1275{
1276	int i;
1277
1278	if (h->order >= MAX_ORDER)
1279		return;
1280
1281	for_each_node_mask(i, *nodes_allowed) {
1282		struct page *page, *next;
1283		struct list_head *freel = &h->hugepage_freelists[i];
1284		list_for_each_entry_safe(page, next, freel, lru) {
1285			if (count >= h->nr_huge_pages)
1286				return;
1287			if (PageHighMem(page))
1288				continue;
1289			list_del(&page->lru);
1290			update_and_free_page(h, page);
1291			h->free_huge_pages--;
1292			h->free_huge_pages_node[page_to_nid(page)]--;
1293		}
1294	}
1295}
1296#else
1297static inline void try_to_free_low(struct hstate *h, unsigned long count,
1298						nodemask_t *nodes_allowed)
1299{
1300}
1301#endif
1302
1303/*
1304 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1305 * balanced by operating on them in a round-robin fashion.
1306 * Returns 1 if an adjustment was made.
1307 */
1308static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1309				int delta)
1310{
1311	int start_nid, next_nid;
1312	int ret = 0;
1313
1314	VM_BUG_ON(delta != -1 && delta != 1);
1315
1316	if (delta < 0)
1317		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1318	else
1319		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1320	next_nid = start_nid;
1321
1322	do {
1323		int nid = next_nid;
1324		if (delta < 0)  {
1325			/*
1326			 * To shrink on this node, there must be a surplus page
1327			 */
1328			if (!h->surplus_huge_pages_node[nid]) {
1329				next_nid = hstate_next_node_to_alloc(h,
1330								nodes_allowed);
1331				continue;
1332			}
1333		}
1334		if (delta > 0) {
1335			/*
1336			 * Surplus cannot exceed the total number of pages
1337			 */
1338			if (h->surplus_huge_pages_node[nid] >=
1339						h->nr_huge_pages_node[nid]) {
1340				next_nid = hstate_next_node_to_free(h,
1341								nodes_allowed);
1342				continue;
1343			}
1344		}
1345
1346		h->surplus_huge_pages += delta;
1347		h->surplus_huge_pages_node[nid] += delta;
1348		ret = 1;
1349		break;
1350	} while (next_nid != start_nid);
1351
1352	return ret;
1353}
1354
1355#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1356static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1357						nodemask_t *nodes_allowed)
1358{
1359	unsigned long min_count, ret;
1360
1361	if (h->order >= MAX_ORDER)
1362		return h->max_huge_pages;
1363
1364	/*
1365	 * Increase the pool size
1366	 * First take pages out of surplus state.  Then make up the
1367	 * remaining difference by allocating fresh huge pages.
1368	 *
1369	 * We might race with alloc_buddy_huge_page() here and be unable
1370	 * to convert a surplus huge page to a normal huge page. That is
1371	 * not critical, though, it just means the overall size of the
1372	 * pool might be one hugepage larger than it needs to be, but
1373	 * within all the constraints specified by the sysctls.
1374	 */
1375	spin_lock(&hugetlb_lock);
1376	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1377		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1378			break;
1379	}
1380
1381	while (count > persistent_huge_pages(h)) {
1382		/*
1383		 * If this allocation races such that we no longer need the
1384		 * page, free_huge_page will handle it by freeing the page
1385		 * and reducing the surplus.
1386		 */
1387		spin_unlock(&hugetlb_lock);
1388		ret = alloc_fresh_huge_page(h, nodes_allowed);
1389		spin_lock(&hugetlb_lock);
1390		if (!ret)
1391			goto out;
1392
1393		/* Bail for signals. Probably ctrl-c from user */
1394		if (signal_pending(current))
1395			goto out;
1396	}
1397
1398	/*
1399	 * Decrease the pool size
1400	 * First return free pages to the buddy allocator (being careful
1401	 * to keep enough around to satisfy reservations).  Then place
1402	 * pages into surplus state as needed so the pool will shrink
1403	 * to the desired size as pages become free.
1404	 *
1405	 * By placing pages into the surplus state independent of the
1406	 * overcommit value, we are allowing the surplus pool size to
1407	 * exceed overcommit. There are few sane options here. Since
1408	 * alloc_buddy_huge_page() is checking the global counter,
1409	 * though, we'll note that we're not allowed to exceed surplus
1410	 * and won't grow the pool anywhere else. Not until one of the
1411	 * sysctls are changed, or the surplus pages go out of use.
1412	 */
1413	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1414	min_count = max(count, min_count);
1415	try_to_free_low(h, min_count, nodes_allowed);
1416	while (min_count < persistent_huge_pages(h)) {
1417		if (!free_pool_huge_page(h, nodes_allowed, 0))
1418			break;
1419	}
1420	while (count < persistent_huge_pages(h)) {
1421		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1422			break;
1423	}
1424out:
1425	ret = persistent_huge_pages(h);
1426	spin_unlock(&hugetlb_lock);
1427	return ret;
1428}
1429
1430#define HSTATE_ATTR_RO(_name) \
1431	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1432
1433#define HSTATE_ATTR(_name) \
1434	static struct kobj_attribute _name##_attr = \
1435		__ATTR(_name, 0644, _name##_show, _name##_store)
1436
1437static struct kobject *hugepages_kobj;
1438static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1439
1440static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1441
1442static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1443{
1444	int i;
1445
1446	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1447		if (hstate_kobjs[i] == kobj) {
1448			if (nidp)
1449				*nidp = NUMA_NO_NODE;
1450			return &hstates[i];
1451		}
1452
1453	return kobj_to_node_hstate(kobj, nidp);
1454}
1455
1456static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1457					struct kobj_attribute *attr, char *buf)
1458{
1459	struct hstate *h;
1460	unsigned long nr_huge_pages;
1461	int nid;
1462
1463	h = kobj_to_hstate(kobj, &nid);
1464	if (nid == NUMA_NO_NODE)
1465		nr_huge_pages = h->nr_huge_pages;
1466	else
1467		nr_huge_pages = h->nr_huge_pages_node[nid];
1468
1469	return sprintf(buf, "%lu\n", nr_huge_pages);
1470}
1471
1472static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1473			struct kobject *kobj, struct kobj_attribute *attr,
1474			const char *buf, size_t len)
1475{
1476	int err;
1477	int nid;
1478	unsigned long count;
1479	struct hstate *h;
1480	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1481
1482	err = strict_strtoul(buf, 10, &count);
1483	if (err)
1484		goto out;
1485
1486	h = kobj_to_hstate(kobj, &nid);
1487	if (h->order >= MAX_ORDER) {
1488		err = -EINVAL;
1489		goto out;
1490	}
1491
1492	if (nid == NUMA_NO_NODE) {
1493		/*
1494		 * global hstate attribute
1495		 */
1496		if (!(obey_mempolicy &&
1497				init_nodemask_of_mempolicy(nodes_allowed))) {
1498			NODEMASK_FREE(nodes_allowed);
1499			nodes_allowed = &node_states[N_HIGH_MEMORY];
1500		}
1501	} else if (nodes_allowed) {
1502		/*
1503		 * per node hstate attribute: adjust count to global,
1504		 * but restrict alloc/free to the specified node.
1505		 */
1506		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1507		init_nodemask_of_node(nodes_allowed, nid);
1508	} else
1509		nodes_allowed = &node_states[N_HIGH_MEMORY];
1510
1511	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1512
1513	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1514		NODEMASK_FREE(nodes_allowed);
1515
1516	return len;
1517out:
1518	NODEMASK_FREE(nodes_allowed);
1519	return err;
1520}
1521
1522static ssize_t nr_hugepages_show(struct kobject *kobj,
1523				       struct kobj_attribute *attr, char *buf)
1524{
1525	return nr_hugepages_show_common(kobj, attr, buf);
1526}
1527
1528static ssize_t nr_hugepages_store(struct kobject *kobj,
1529	       struct kobj_attribute *attr, const char *buf, size_t len)
1530{
1531	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1532}
1533HSTATE_ATTR(nr_hugepages);
1534
1535#ifdef CONFIG_NUMA
1536
1537/*
1538 * hstate attribute for optionally mempolicy-based constraint on persistent
1539 * huge page alloc/free.
1540 */
1541static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1542				       struct kobj_attribute *attr, char *buf)
1543{
1544	return nr_hugepages_show_common(kobj, attr, buf);
1545}
1546
1547static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1548	       struct kobj_attribute *attr, const char *buf, size_t len)
1549{
1550	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1551}
1552HSTATE_ATTR(nr_hugepages_mempolicy);
1553#endif
1554
1555
1556static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1557					struct kobj_attribute *attr, char *buf)
1558{
1559	struct hstate *h = kobj_to_hstate(kobj, NULL);
1560	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1561}
1562
1563static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1564		struct kobj_attribute *attr, const char *buf, size_t count)
1565{
1566	int err;
1567	unsigned long input;
1568	struct hstate *h = kobj_to_hstate(kobj, NULL);
1569
1570	if (h->order >= MAX_ORDER)
1571		return -EINVAL;
1572
1573	err = strict_strtoul(buf, 10, &input);
1574	if (err)
1575		return err;
1576
1577	spin_lock(&hugetlb_lock);
1578	h->nr_overcommit_huge_pages = input;
1579	spin_unlock(&hugetlb_lock);
1580
1581	return count;
1582}
1583HSTATE_ATTR(nr_overcommit_hugepages);
1584
1585static ssize_t free_hugepages_show(struct kobject *kobj,
1586					struct kobj_attribute *attr, char *buf)
1587{
1588	struct hstate *h;
1589	unsigned long free_huge_pages;
1590	int nid;
1591
1592	h = kobj_to_hstate(kobj, &nid);
1593	if (nid == NUMA_NO_NODE)
1594		free_huge_pages = h->free_huge_pages;
1595	else
1596		free_huge_pages = h->free_huge_pages_node[nid];
1597
1598	return sprintf(buf, "%lu\n", free_huge_pages);
1599}
1600HSTATE_ATTR_RO(free_hugepages);
1601
1602static ssize_t resv_hugepages_show(struct kobject *kobj,
1603					struct kobj_attribute *attr, char *buf)
1604{
1605	struct hstate *h = kobj_to_hstate(kobj, NULL);
1606	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1607}
1608HSTATE_ATTR_RO(resv_hugepages);
1609
1610static ssize_t surplus_hugepages_show(struct kobject *kobj,
1611					struct kobj_attribute *attr, char *buf)
1612{
1613	struct hstate *h;
1614	unsigned long surplus_huge_pages;
1615	int nid;
1616
1617	h = kobj_to_hstate(kobj, &nid);
1618	if (nid == NUMA_NO_NODE)
1619		surplus_huge_pages = h->surplus_huge_pages;
1620	else
1621		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1622
1623	return sprintf(buf, "%lu\n", surplus_huge_pages);
1624}
1625HSTATE_ATTR_RO(surplus_hugepages);
1626
1627static struct attribute *hstate_attrs[] = {
1628	&nr_hugepages_attr.attr,
1629	&nr_overcommit_hugepages_attr.attr,
1630	&free_hugepages_attr.attr,
1631	&resv_hugepages_attr.attr,
1632	&surplus_hugepages_attr.attr,
1633#ifdef CONFIG_NUMA
1634	&nr_hugepages_mempolicy_attr.attr,
1635#endif
1636	NULL,
1637};
1638
1639static struct attribute_group hstate_attr_group = {
1640	.attrs = hstate_attrs,
1641};
1642
1643static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1644				    struct kobject **hstate_kobjs,
1645				    struct attribute_group *hstate_attr_group)
1646{
1647	int retval;
1648	int hi = hstate_index(h);
1649
1650	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1651	if (!hstate_kobjs[hi])
1652		return -ENOMEM;
1653
1654	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1655	if (retval)
1656		kobject_put(hstate_kobjs[hi]);
1657
1658	return retval;
1659}
1660
1661static void __init hugetlb_sysfs_init(void)
1662{
1663	struct hstate *h;
1664	int err;
1665
1666	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1667	if (!hugepages_kobj)
1668		return;
1669
1670	for_each_hstate(h) {
1671		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1672					 hstate_kobjs, &hstate_attr_group);
1673		if (err)
1674			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1675								h->name);
1676	}
1677}
1678
1679#ifdef CONFIG_NUMA
1680
1681/*
1682 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1683 * with node devices in node_devices[] using a parallel array.  The array
1684 * index of a node device or _hstate == node id.
1685 * This is here to avoid any static dependency of the node device driver, in
1686 * the base kernel, on the hugetlb module.
1687 */
1688struct node_hstate {
1689	struct kobject		*hugepages_kobj;
1690	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1691};
1692struct node_hstate node_hstates[MAX_NUMNODES];
1693
1694/*
1695 * A subset of global hstate attributes for node devices
1696 */
1697static struct attribute *per_node_hstate_attrs[] = {
1698	&nr_hugepages_attr.attr,
1699	&free_hugepages_attr.attr,
1700	&surplus_hugepages_attr.attr,
1701	NULL,
1702};
1703
1704static struct attribute_group per_node_hstate_attr_group = {
1705	.attrs = per_node_hstate_attrs,
1706};
1707
1708/*
1709 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1710 * Returns node id via non-NULL nidp.
1711 */
1712static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1713{
1714	int nid;
1715
1716	for (nid = 0; nid < nr_node_ids; nid++) {
1717		struct node_hstate *nhs = &node_hstates[nid];
1718		int i;
1719		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1720			if (nhs->hstate_kobjs[i] == kobj) {
1721				if (nidp)
1722					*nidp = nid;
1723				return &hstates[i];
1724			}
1725	}
1726
1727	BUG();
1728	return NULL;
1729}
1730
1731/*
1732 * Unregister hstate attributes from a single node device.
1733 * No-op if no hstate attributes attached.
1734 */
1735void hugetlb_unregister_node(struct node *node)
1736{
1737	struct hstate *h;
1738	struct node_hstate *nhs = &node_hstates[node->dev.id];
1739
1740	if (!nhs->hugepages_kobj)
1741		return;		/* no hstate attributes */
1742
1743	for_each_hstate(h) {
1744		int idx = hstate_index(h);
1745		if (nhs->hstate_kobjs[idx]) {
1746			kobject_put(nhs->hstate_kobjs[idx]);
1747			nhs->hstate_kobjs[idx] = NULL;
1748		}
1749	}
1750
1751	kobject_put(nhs->hugepages_kobj);
1752	nhs->hugepages_kobj = NULL;
1753}
1754
1755/*
1756 * hugetlb module exit:  unregister hstate attributes from node devices
1757 * that have them.
1758 */
1759static void hugetlb_unregister_all_nodes(void)
1760{
1761	int nid;
1762
1763	/*
1764	 * disable node device registrations.
1765	 */
1766	register_hugetlbfs_with_node(NULL, NULL);
1767
1768	/*
1769	 * remove hstate attributes from any nodes that have them.
1770	 */
1771	for (nid = 0; nid < nr_node_ids; nid++)
1772		hugetlb_unregister_node(&node_devices[nid]);
1773}
1774
1775/*
1776 * Register hstate attributes for a single node device.
1777 * No-op if attributes already registered.
1778 */
1779void hugetlb_register_node(struct node *node)
1780{
1781	struct hstate *h;
1782	struct node_hstate *nhs = &node_hstates[node->dev.id];
1783	int err;
1784
1785	if (nhs->hugepages_kobj)
1786		return;		/* already allocated */
1787
1788	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1789							&node->dev.kobj);
1790	if (!nhs->hugepages_kobj)
1791		return;
1792
1793	for_each_hstate(h) {
1794		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1795						nhs->hstate_kobjs,
1796						&per_node_hstate_attr_group);
1797		if (err) {
1798			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1799					" for node %d\n",
1800						h->name, node->dev.id);
1801			hugetlb_unregister_node(node);
1802			break;
1803		}
1804	}
1805}
1806
1807/*
1808 * hugetlb init time:  register hstate attributes for all registered node
1809 * devices of nodes that have memory.  All on-line nodes should have
1810 * registered their associated device by this time.
1811 */
1812static void hugetlb_register_all_nodes(void)
1813{
1814	int nid;
1815
1816	for_each_node_state(nid, N_HIGH_MEMORY) {
1817		struct node *node = &node_devices[nid];
1818		if (node->dev.id == nid)
1819			hugetlb_register_node(node);
1820	}
1821
1822	/*
1823	 * Let the node device driver know we're here so it can
1824	 * [un]register hstate attributes on node hotplug.
1825	 */
1826	register_hugetlbfs_with_node(hugetlb_register_node,
1827				     hugetlb_unregister_node);
1828}
1829#else	/* !CONFIG_NUMA */
1830
1831static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1832{
1833	BUG();
1834	if (nidp)
1835		*nidp = -1;
1836	return NULL;
1837}
1838
1839static void hugetlb_unregister_all_nodes(void) { }
1840
1841static void hugetlb_register_all_nodes(void) { }
1842
1843#endif
1844
1845static void __exit hugetlb_exit(void)
1846{
1847	struct hstate *h;
1848
1849	hugetlb_unregister_all_nodes();
1850
1851	for_each_hstate(h) {
1852		kobject_put(hstate_kobjs[hstate_index(h)]);
1853	}
1854
1855	kobject_put(hugepages_kobj);
1856}
1857module_exit(hugetlb_exit);
1858
1859static int __init hugetlb_init(void)
1860{
1861	/* Some platform decide whether they support huge pages at boot
1862	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1863	 * there is no such support
1864	 */
1865	if (HPAGE_SHIFT == 0)
1866		return 0;
1867
1868	if (!size_to_hstate(default_hstate_size)) {
1869		default_hstate_size = HPAGE_SIZE;
1870		if (!size_to_hstate(default_hstate_size))
1871			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1872	}
1873	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1874	if (default_hstate_max_huge_pages)
1875		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1876
1877	hugetlb_init_hstates();
1878
1879	gather_bootmem_prealloc();
1880
1881	report_hugepages();
1882
1883	hugetlb_sysfs_init();
1884
1885	hugetlb_register_all_nodes();
1886
1887	return 0;
1888}
1889module_init(hugetlb_init);
1890
1891/* Should be called on processing a hugepagesz=... option */
1892void __init hugetlb_add_hstate(unsigned order)
1893{
1894	struct hstate *h;
1895	unsigned long i;
1896
1897	if (size_to_hstate(PAGE_SIZE << order)) {
1898		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1899		return;
1900	}
1901	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1902	BUG_ON(order == 0);
1903	h = &hstates[hugetlb_max_hstate++];
1904	h->order = order;
1905	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1906	h->nr_huge_pages = 0;
1907	h->free_huge_pages = 0;
1908	for (i = 0; i < MAX_NUMNODES; ++i)
1909		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1910	INIT_LIST_HEAD(&h->hugepage_activelist);
1911	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1912	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1913	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1914					huge_page_size(h)/1024);
1915
1916	parsed_hstate = h;
1917}
1918
1919static int __init hugetlb_nrpages_setup(char *s)
1920{
1921	unsigned long *mhp;
1922	static unsigned long *last_mhp;
1923
1924	/*
1925	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1926	 * so this hugepages= parameter goes to the "default hstate".
1927	 */
1928	if (!hugetlb_max_hstate)
1929		mhp = &default_hstate_max_huge_pages;
1930	else
1931		mhp = &parsed_hstate->max_huge_pages;
1932
1933	if (mhp == last_mhp) {
1934		printk(KERN_WARNING "hugepages= specified twice without "
1935			"interleaving hugepagesz=, ignoring\n");
1936		return 1;
1937	}
1938
1939	if (sscanf(s, "%lu", mhp) <= 0)
1940		*mhp = 0;
1941
1942	/*
1943	 * Global state is always initialized later in hugetlb_init.
1944	 * But we need to allocate >= MAX_ORDER hstates here early to still
1945	 * use the bootmem allocator.
1946	 */
1947	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1948		hugetlb_hstate_alloc_pages(parsed_hstate);
1949
1950	last_mhp = mhp;
1951
1952	return 1;
1953}
1954__setup("hugepages=", hugetlb_nrpages_setup);
1955
1956static int __init hugetlb_default_setup(char *s)
1957{
1958	default_hstate_size = memparse(s, &s);
1959	return 1;
1960}
1961__setup("default_hugepagesz=", hugetlb_default_setup);
1962
1963static unsigned int cpuset_mems_nr(unsigned int *array)
1964{
1965	int node;
1966	unsigned int nr = 0;
1967
1968	for_each_node_mask(node, cpuset_current_mems_allowed)
1969		nr += array[node];
1970
1971	return nr;
1972}
1973
1974#ifdef CONFIG_SYSCTL
1975static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1976			 struct ctl_table *table, int write,
1977			 void __user *buffer, size_t *length, loff_t *ppos)
1978{
1979	struct hstate *h = &default_hstate;
1980	unsigned long tmp;
1981	int ret;
1982
1983	tmp = h->max_huge_pages;
1984
1985	if (write && h->order >= MAX_ORDER)
1986		return -EINVAL;
1987
1988	table->data = &tmp;
1989	table->maxlen = sizeof(unsigned long);
1990	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1991	if (ret)
1992		goto out;
1993
1994	if (write) {
1995		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1996						GFP_KERNEL | __GFP_NORETRY);
1997		if (!(obey_mempolicy &&
1998			       init_nodemask_of_mempolicy(nodes_allowed))) {
1999			NODEMASK_FREE(nodes_allowed);
2000			nodes_allowed = &node_states[N_HIGH_MEMORY];
2001		}
2002		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2003
2004		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2005			NODEMASK_FREE(nodes_allowed);
2006	}
2007out:
2008	return ret;
2009}
2010
2011int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2012			  void __user *buffer, size_t *length, loff_t *ppos)
2013{
2014
2015	return hugetlb_sysctl_handler_common(false, table, write,
2016							buffer, length, ppos);
2017}
2018
2019#ifdef CONFIG_NUMA
2020int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2021			  void __user *buffer, size_t *length, loff_t *ppos)
2022{
2023	return hugetlb_sysctl_handler_common(true, table, write,
2024							buffer, length, ppos);
2025}
2026#endif /* CONFIG_NUMA */
2027
2028int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2029			void __user *buffer,
2030			size_t *length, loff_t *ppos)
2031{
2032	proc_dointvec(table, write, buffer, length, ppos);
2033	if (hugepages_treat_as_movable)
2034		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2035	else
2036		htlb_alloc_mask = GFP_HIGHUSER;
2037	return 0;
2038}
2039
2040int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2041			void __user *buffer,
2042			size_t *length, loff_t *ppos)
2043{
2044	struct hstate *h = &default_hstate;
2045	unsigned long tmp;
2046	int ret;
2047
2048	tmp = h->nr_overcommit_huge_pages;
2049
2050	if (write && h->order >= MAX_ORDER)
2051		return -EINVAL;
2052
2053	table->data = &tmp;
2054	table->maxlen = sizeof(unsigned long);
2055	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2056	if (ret)
2057		goto out;
2058
2059	if (write) {
2060		spin_lock(&hugetlb_lock);
2061		h->nr_overcommit_huge_pages = tmp;
2062		spin_unlock(&hugetlb_lock);
2063	}
2064out:
2065	return ret;
2066}
2067
2068#endif /* CONFIG_SYSCTL */
2069
2070void hugetlb_report_meminfo(struct seq_file *m)
2071{
2072	struct hstate *h = &default_hstate;
2073	seq_printf(m,
2074			"HugePages_Total:   %5lu\n"
2075			"HugePages_Free:    %5lu\n"
2076			"HugePages_Rsvd:    %5lu\n"
2077			"HugePages_Surp:    %5lu\n"
2078			"Hugepagesize:   %8lu kB\n",
2079			h->nr_huge_pages,
2080			h->free_huge_pages,
2081			h->resv_huge_pages,
2082			h->surplus_huge_pages,
2083			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2084}
2085
2086int hugetlb_report_node_meminfo(int nid, char *buf)
2087{
2088	struct hstate *h = &default_hstate;
2089	return sprintf(buf,
2090		"Node %d HugePages_Total: %5u\n"
2091		"Node %d HugePages_Free:  %5u\n"
2092		"Node %d HugePages_Surp:  %5u\n",
2093		nid, h->nr_huge_pages_node[nid],
2094		nid, h->free_huge_pages_node[nid],
2095		nid, h->surplus_huge_pages_node[nid]);
2096}
2097
2098/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2099unsigned long hugetlb_total_pages(void)
2100{
2101	struct hstate *h = &default_hstate;
2102	return h->nr_huge_pages * pages_per_huge_page(h);
2103}
2104
2105static int hugetlb_acct_memory(struct hstate *h, long delta)
2106{
2107	int ret = -ENOMEM;
2108
2109	spin_lock(&hugetlb_lock);
2110	/*
2111	 * When cpuset is configured, it breaks the strict hugetlb page
2112	 * reservation as the accounting is done on a global variable. Such
2113	 * reservation is completely rubbish in the presence of cpuset because
2114	 * the reservation is not checked against page availability for the
2115	 * current cpuset. Application can still potentially OOM'ed by kernel
2116	 * with lack of free htlb page in cpuset that the task is in.
2117	 * Attempt to enforce strict accounting with cpuset is almost
2118	 * impossible (or too ugly) because cpuset is too fluid that
2119	 * task or memory node can be dynamically moved between cpusets.
2120	 *
2121	 * The change of semantics for shared hugetlb mapping with cpuset is
2122	 * undesirable. However, in order to preserve some of the semantics,
2123	 * we fall back to check against current free page availability as
2124	 * a best attempt and hopefully to minimize the impact of changing
2125	 * semantics that cpuset has.
2126	 */
2127	if (delta > 0) {
2128		if (gather_surplus_pages(h, delta) < 0)
2129			goto out;
2130
2131		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2132			return_unused_surplus_pages(h, delta);
2133			goto out;
2134		}
2135	}
2136
2137	ret = 0;
2138	if (delta < 0)
2139		return_unused_surplus_pages(h, (unsigned long) -delta);
2140
2141out:
2142	spin_unlock(&hugetlb_lock);
2143	return ret;
2144}
2145
2146static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2147{
2148	struct resv_map *reservations = vma_resv_map(vma);
2149
2150	/*
2151	 * This new VMA should share its siblings reservation map if present.
2152	 * The VMA will only ever have a valid reservation map pointer where
2153	 * it is being copied for another still existing VMA.  As that VMA
2154	 * has a reference to the reservation map it cannot disappear until
2155	 * after this open call completes.  It is therefore safe to take a
2156	 * new reference here without additional locking.
2157	 */
2158	if (reservations)
2159		kref_get(&reservations->refs);
2160}
2161
2162static void resv_map_put(struct vm_area_struct *vma)
2163{
2164	struct resv_map *reservations = vma_resv_map(vma);
2165
2166	if (!reservations)
2167		return;
2168	kref_put(&reservations->refs, resv_map_release);
2169}
2170
2171static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2172{
2173	struct hstate *h = hstate_vma(vma);
2174	struct resv_map *reservations = vma_resv_map(vma);
2175	struct hugepage_subpool *spool = subpool_vma(vma);
2176	unsigned long reserve;
2177	unsigned long start;
2178	unsigned long end;
2179
2180	if (reservations) {
2181		start = vma_hugecache_offset(h, vma, vma->vm_start);
2182		end = vma_hugecache_offset(h, vma, vma->vm_end);
2183
2184		reserve = (end - start) -
2185			region_count(&reservations->regions, start, end);
2186
2187		resv_map_put(vma);
2188
2189		if (reserve) {
2190			hugetlb_acct_memory(h, -reserve);
2191			hugepage_subpool_put_pages(spool, reserve);
2192		}
2193	}
2194}
2195
2196/*
2197 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2198 * handle_mm_fault() to try to instantiate regular-sized pages in the
2199 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2200 * this far.
2201 */
2202static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2203{
2204	BUG();
2205	return 0;
2206}
2207
2208const struct vm_operations_struct hugetlb_vm_ops = {
2209	.fault = hugetlb_vm_op_fault,
2210	.open = hugetlb_vm_op_open,
2211	.close = hugetlb_vm_op_close,
2212};
2213
2214static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2215				int writable)
2216{
2217	pte_t entry;
2218
2219	if (writable) {
2220		entry =
2221		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2222	} else {
2223		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2224	}
2225	entry = pte_mkyoung(entry);
2226	entry = pte_mkhuge(entry);
2227	entry = arch_make_huge_pte(entry, vma, page, writable);
2228
2229	return entry;
2230}
2231
2232static void set_huge_ptep_writable(struct vm_area_struct *vma,
2233				   unsigned long address, pte_t *ptep)
2234{
2235	pte_t entry;
2236
2237	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2238	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2239		update_mmu_cache(vma, address, ptep);
2240}
2241
2242
2243int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2244			    struct vm_area_struct *vma)
2245{
2246	pte_t *src_pte, *dst_pte, entry;
2247	struct page *ptepage;
2248	unsigned long addr;
2249	int cow;
2250	struct hstate *h = hstate_vma(vma);
2251	unsigned long sz = huge_page_size(h);
2252
2253	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2254
2255	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2256		src_pte = huge_pte_offset(src, addr);
2257		if (!src_pte)
2258			continue;
2259		dst_pte = huge_pte_alloc(dst, addr, sz);
2260		if (!dst_pte)
2261			goto nomem;
2262
2263		/* If the pagetables are shared don't copy or take references */
2264		if (dst_pte == src_pte)
2265			continue;
2266
2267		spin_lock(&dst->page_table_lock);
2268		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2269		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2270			if (cow)
2271				huge_ptep_set_wrprotect(src, addr, src_pte);
2272			entry = huge_ptep_get(src_pte);
2273			ptepage = pte_page(entry);
2274			get_page(ptepage);
2275			page_dup_rmap(ptepage);
2276			set_huge_pte_at(dst, addr, dst_pte, entry);
2277		}
2278		spin_unlock(&src->page_table_lock);
2279		spin_unlock(&dst->page_table_lock);
2280	}
2281	return 0;
2282
2283nomem:
2284	return -ENOMEM;
2285}
2286
2287static int is_hugetlb_entry_migration(pte_t pte)
2288{
2289	swp_entry_t swp;
2290
2291	if (huge_pte_none(pte) || pte_present(pte))
2292		return 0;
2293	swp = pte_to_swp_entry(pte);
2294	if (non_swap_entry(swp) && is_migration_entry(swp))
2295		return 1;
2296	else
2297		return 0;
2298}
2299
2300static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2301{
2302	swp_entry_t swp;
2303
2304	if (huge_pte_none(pte) || pte_present(pte))
2305		return 0;
2306	swp = pte_to_swp_entry(pte);
2307	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2308		return 1;
2309	else
2310		return 0;
2311}
2312
2313void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2314			    unsigned long start, unsigned long end,
2315			    struct page *ref_page)
2316{
2317	int force_flush = 0;
2318	struct mm_struct *mm = vma->vm_mm;
2319	unsigned long address;
2320	pte_t *ptep;
2321	pte_t pte;
2322	struct page *page;
2323	struct hstate *h = hstate_vma(vma);
2324	unsigned long sz = huge_page_size(h);
2325
2326	WARN_ON(!is_vm_hugetlb_page(vma));
2327	BUG_ON(start & ~huge_page_mask(h));
2328	BUG_ON(end & ~huge_page_mask(h));
2329
2330	tlb_start_vma(tlb, vma);
2331	mmu_notifier_invalidate_range_start(mm, start, end);
2332again:
2333	spin_lock(&mm->page_table_lock);
2334	for (address = start; address < end; address += sz) {
2335		ptep = huge_pte_offset(mm, address);
2336		if (!ptep)
2337			continue;
2338
2339		if (huge_pmd_unshare(mm, &address, ptep))
2340			continue;
2341
2342		pte = huge_ptep_get(ptep);
2343		if (huge_pte_none(pte))
2344			continue;
2345
2346		/*
2347		 * HWPoisoned hugepage is already unmapped and dropped reference
2348		 */
2349		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2350			continue;
2351
2352		page = pte_page(pte);
2353		/*
2354		 * If a reference page is supplied, it is because a specific
2355		 * page is being unmapped, not a range. Ensure the page we
2356		 * are about to unmap is the actual page of interest.
2357		 */
2358		if (ref_page) {
2359			if (page != ref_page)
2360				continue;
2361
2362			/*
2363			 * Mark the VMA as having unmapped its page so that
2364			 * future faults in this VMA will fail rather than
2365			 * looking like data was lost
2366			 */
2367			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2368		}
2369
2370		pte = huge_ptep_get_and_clear(mm, address, ptep);
2371		tlb_remove_tlb_entry(tlb, ptep, address);
2372		if (pte_dirty(pte))
2373			set_page_dirty(page);
2374
2375		page_remove_rmap(page);
2376		force_flush = !__tlb_remove_page(tlb, page);
2377		if (force_flush)
2378			break;
2379		/* Bail out after unmapping reference page if supplied */
2380		if (ref_page)
2381			break;
2382	}
2383	spin_unlock(&mm->page_table_lock);
2384	/*
2385	 * mmu_gather ran out of room to batch pages, we break out of
2386	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2387	 * and page-free while holding it.
2388	 */
2389	if (force_flush) {
2390		force_flush = 0;
2391		tlb_flush_mmu(tlb);
2392		if (address < end && !ref_page)
2393			goto again;
2394	}
2395	mmu_notifier_invalidate_range_end(mm, start, end);
2396	tlb_end_vma(tlb, vma);
2397}
2398
2399void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2400			  unsigned long end, struct page *ref_page)
2401{
2402	struct mm_struct *mm;
2403	struct mmu_gather tlb;
2404
2405	mm = vma->vm_mm;
2406
2407	tlb_gather_mmu(&tlb, mm, 0);
2408	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2409	tlb_finish_mmu(&tlb, start, end);
2410}
2411
2412/*
2413 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2414 * mappping it owns the reserve page for. The intention is to unmap the page
2415 * from other VMAs and let the children be SIGKILLed if they are faulting the
2416 * same region.
2417 */
2418static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2419				struct page *page, unsigned long address)
2420{
2421	struct hstate *h = hstate_vma(vma);
2422	struct vm_area_struct *iter_vma;
2423	struct address_space *mapping;
2424	struct prio_tree_iter iter;
2425	pgoff_t pgoff;
2426
2427	/*
2428	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2429	 * from page cache lookup which is in HPAGE_SIZE units.
2430	 */
2431	address = address & huge_page_mask(h);
2432	pgoff = vma_hugecache_offset(h, vma, address);
2433	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2434
2435	/*
2436	 * Take the mapping lock for the duration of the table walk. As
2437	 * this mapping should be shared between all the VMAs,
2438	 * __unmap_hugepage_range() is called as the lock is already held
2439	 */
2440	mutex_lock(&mapping->i_mmap_mutex);
2441	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2442		/* Do not unmap the current VMA */
2443		if (iter_vma == vma)
2444			continue;
2445
2446		/*
2447		 * Unmap the page from other VMAs without their own reserves.
2448		 * They get marked to be SIGKILLed if they fault in these
2449		 * areas. This is because a future no-page fault on this VMA
2450		 * could insert a zeroed page instead of the data existing
2451		 * from the time of fork. This would look like data corruption
2452		 */
2453		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2454			unmap_hugepage_range(iter_vma, address,
2455					     address + huge_page_size(h), page);
2456	}
2457	mutex_unlock(&mapping->i_mmap_mutex);
2458
2459	return 1;
2460}
2461
2462/*
2463 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2464 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2465 * cannot race with other handlers or page migration.
2466 * Keep the pte_same checks anyway to make transition from the mutex easier.
2467 */
2468static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2469			unsigned long address, pte_t *ptep, pte_t pte,
2470			struct page *pagecache_page)
2471{
2472	struct hstate *h = hstate_vma(vma);
2473	struct page *old_page, *new_page;
2474	int avoidcopy;
2475	int outside_reserve = 0;
2476
2477	old_page = pte_page(pte);
2478
2479retry_avoidcopy:
2480	/* If no-one else is actually using this page, avoid the copy
2481	 * and just make the page writable */
2482	avoidcopy = (page_mapcount(old_page) == 1);
2483	if (avoidcopy) {
2484		if (PageAnon(old_page))
2485			page_move_anon_rmap(old_page, vma, address);
2486		set_huge_ptep_writable(vma, address, ptep);
2487		return 0;
2488	}
2489
2490	/*
2491	 * If the process that created a MAP_PRIVATE mapping is about to
2492	 * perform a COW due to a shared page count, attempt to satisfy
2493	 * the allocation without using the existing reserves. The pagecache
2494	 * page is used to determine if the reserve at this address was
2495	 * consumed or not. If reserves were used, a partial faulted mapping
2496	 * at the time of fork() could consume its reserves on COW instead
2497	 * of the full address range.
2498	 */
2499	if (!(vma->vm_flags & VM_MAYSHARE) &&
2500			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2501			old_page != pagecache_page)
2502		outside_reserve = 1;
2503
2504	page_cache_get(old_page);
2505
2506	/* Drop page_table_lock as buddy allocator may be called */
2507	spin_unlock(&mm->page_table_lock);
2508	new_page = alloc_huge_page(vma, address, outside_reserve);
2509
2510	if (IS_ERR(new_page)) {
2511		long err = PTR_ERR(new_page);
2512		page_cache_release(old_page);
2513
2514		/*
2515		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2516		 * it is due to references held by a child and an insufficient
2517		 * huge page pool. To guarantee the original mappers
2518		 * reliability, unmap the page from child processes. The child
2519		 * may get SIGKILLed if it later faults.
2520		 */
2521		if (outside_reserve) {
2522			BUG_ON(huge_pte_none(pte));
2523			if (unmap_ref_private(mm, vma, old_page, address)) {
2524				BUG_ON(huge_pte_none(pte));
2525				spin_lock(&mm->page_table_lock);
2526				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2527				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2528					goto retry_avoidcopy;
2529				/*
2530				 * race occurs while re-acquiring page_table_lock, and
2531				 * our job is done.
2532				 */
2533				return 0;
2534			}
2535			WARN_ON_ONCE(1);
2536		}
2537
2538		/* Caller expects lock to be held */
2539		spin_lock(&mm->page_table_lock);
2540		if (err == -ENOMEM)
2541			return VM_FAULT_OOM;
2542		else
2543			return VM_FAULT_SIGBUS;
2544	}
2545
2546	/*
2547	 * When the original hugepage is shared one, it does not have
2548	 * anon_vma prepared.
2549	 */
2550	if (unlikely(anon_vma_prepare(vma))) {
2551		page_cache_release(new_page);
2552		page_cache_release(old_page);
2553		/* Caller expects lock to be held */
2554		spin_lock(&mm->page_table_lock);
2555		return VM_FAULT_OOM;
2556	}
2557
2558	copy_user_huge_page(new_page, old_page, address, vma,
2559			    pages_per_huge_page(h));
2560	__SetPageUptodate(new_page);
2561
2562	/*
2563	 * Retake the page_table_lock to check for racing updates
2564	 * before the page tables are altered
2565	 */
2566	spin_lock(&mm->page_table_lock);
2567	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2568	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2569		/* Break COW */
2570		mmu_notifier_invalidate_range_start(mm,
2571			address & huge_page_mask(h),
2572			(address & huge_page_mask(h)) + huge_page_size(h));
2573		huge_ptep_clear_flush(vma, address, ptep);
2574		set_huge_pte_at(mm, address, ptep,
2575				make_huge_pte(vma, new_page, 1));
2576		page_remove_rmap(old_page);
2577		hugepage_add_new_anon_rmap(new_page, vma, address);
2578		/* Make the old page be freed below */
2579		new_page = old_page;
2580		mmu_notifier_invalidate_range_end(mm,
2581			address & huge_page_mask(h),
2582			(address & huge_page_mask(h)) + huge_page_size(h));
2583	}
2584	page_cache_release(new_page);
2585	page_cache_release(old_page);
2586	return 0;
2587}
2588
2589/* Return the pagecache page at a given address within a VMA */
2590static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2591			struct vm_area_struct *vma, unsigned long address)
2592{
2593	struct address_space *mapping;
2594	pgoff_t idx;
2595
2596	mapping = vma->vm_file->f_mapping;
2597	idx = vma_hugecache_offset(h, vma, address);
2598
2599	return find_lock_page(mapping, idx);
2600}
2601
2602/*
2603 * Return whether there is a pagecache page to back given address within VMA.
2604 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2605 */
2606static bool hugetlbfs_pagecache_present(struct hstate *h,
2607			struct vm_area_struct *vma, unsigned long address)
2608{
2609	struct address_space *mapping;
2610	pgoff_t idx;
2611	struct page *page;
2612
2613	mapping = vma->vm_file->f_mapping;
2614	idx = vma_hugecache_offset(h, vma, address);
2615
2616	page = find_get_page(mapping, idx);
2617	if (page)
2618		put_page(page);
2619	return page != NULL;
2620}
2621
2622static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2623			unsigned long address, pte_t *ptep, unsigned int flags)
2624{
2625	struct hstate *h = hstate_vma(vma);
2626	int ret = VM_FAULT_SIGBUS;
2627	int anon_rmap = 0;
2628	pgoff_t idx;
2629	unsigned long size;
2630	struct page *page;
2631	struct address_space *mapping;
2632	pte_t new_pte;
2633
2634	/*
2635	 * Currently, we are forced to kill the process in the event the
2636	 * original mapper has unmapped pages from the child due to a failed
2637	 * COW. Warn that such a situation has occurred as it may not be obvious
2638	 */
2639	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2640		printk(KERN_WARNING
2641			"PID %d killed due to inadequate hugepage pool\n",
2642			current->pid);
2643		return ret;
2644	}
2645
2646	mapping = vma->vm_file->f_mapping;
2647	idx = vma_hugecache_offset(h, vma, address);
2648
2649	/*
2650	 * Use page lock to guard against racing truncation
2651	 * before we get page_table_lock.
2652	 */
2653retry:
2654	page = find_lock_page(mapping, idx);
2655	if (!page) {
2656		size = i_size_read(mapping->host) >> huge_page_shift(h);
2657		if (idx >= size)
2658			goto out;
2659		page = alloc_huge_page(vma, address, 0);
2660		if (IS_ERR(page)) {
2661			ret = PTR_ERR(page);
2662			if (ret == -ENOMEM)
2663				ret = VM_FAULT_OOM;
2664			else
2665				ret = VM_FAULT_SIGBUS;
2666			goto out;
2667		}
2668		clear_huge_page(page, address, pages_per_huge_page(h));
2669		__SetPageUptodate(page);
2670
2671		if (vma->vm_flags & VM_MAYSHARE) {
2672			int err;
2673			struct inode *inode = mapping->host;
2674
2675			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2676			if (err) {
2677				put_page(page);
2678				if (err == -EEXIST)
2679					goto retry;
2680				goto out;
2681			}
2682
2683			spin_lock(&inode->i_lock);
2684			inode->i_blocks += blocks_per_huge_page(h);
2685			spin_unlock(&inode->i_lock);
2686		} else {
2687			lock_page(page);
2688			if (unlikely(anon_vma_prepare(vma))) {
2689				ret = VM_FAULT_OOM;
2690				goto backout_unlocked;
2691			}
2692			anon_rmap = 1;
2693		}
2694	} else {
2695		/*
2696		 * If memory error occurs between mmap() and fault, some process
2697		 * don't have hwpoisoned swap entry for errored virtual address.
2698		 * So we need to block hugepage fault by PG_hwpoison bit check.
2699		 */
2700		if (unlikely(PageHWPoison(page))) {
2701			ret = VM_FAULT_HWPOISON |
2702				VM_FAULT_SET_HINDEX(hstate_index(h));
2703			goto backout_unlocked;
2704		}
2705	}
2706
2707	/*
2708	 * If we are going to COW a private mapping later, we examine the
2709	 * pending reservations for this page now. This will ensure that
2710	 * any allocations necessary to record that reservation occur outside
2711	 * the spinlock.
2712	 */
2713	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2714		if (vma_needs_reservation(h, vma, address) < 0) {
2715			ret = VM_FAULT_OOM;
2716			goto backout_unlocked;
2717		}
2718
2719	spin_lock(&mm->page_table_lock);
2720	size = i_size_read(mapping->host) >> huge_page_shift(h);
2721	if (idx >= size)
2722		goto backout;
2723
2724	ret = 0;
2725	if (!huge_pte_none(huge_ptep_get(ptep)))
2726		goto backout;
2727
2728	if (anon_rmap)
2729		hugepage_add_new_anon_rmap(page, vma, address);
2730	else
2731		page_dup_rmap(page);
2732	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2733				&& (vma->vm_flags & VM_SHARED)));
2734	set_huge_pte_at(mm, address, ptep, new_pte);
2735
2736	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2737		/* Optimization, do the COW without a second fault */
2738		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2739	}
2740
2741	spin_unlock(&mm->page_table_lock);
2742	unlock_page(page);
2743out:
2744	return ret;
2745
2746backout:
2747	spin_unlock(&mm->page_table_lock);
2748backout_unlocked:
2749	unlock_page(page);
2750	put_page(page);
2751	goto out;
2752}
2753
2754int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2755			unsigned long address, unsigned int flags)
2756{
2757	pte_t *ptep;
2758	pte_t entry;
2759	int ret;
2760	struct page *page = NULL;
2761	struct page *pagecache_page = NULL;
2762	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2763	struct hstate *h = hstate_vma(vma);
2764
2765	address &= huge_page_mask(h);
2766
2767	ptep = huge_pte_offset(mm, address);
2768	if (ptep) {
2769		entry = huge_ptep_get(ptep);
2770		if (unlikely(is_hugetlb_entry_migration(entry))) {
2771			migration_entry_wait(mm, (pmd_t *)ptep, address);
2772			return 0;
2773		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2774			return VM_FAULT_HWPOISON_LARGE |
2775				VM_FAULT_SET_HINDEX(hstate_index(h));
2776	}
2777
2778	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2779	if (!ptep)
2780		return VM_FAULT_OOM;
2781
2782	/*
2783	 * Serialize hugepage allocation and instantiation, so that we don't
2784	 * get spurious allocation failures if two CPUs race to instantiate
2785	 * the same page in the page cache.
2786	 */
2787	mutex_lock(&hugetlb_instantiation_mutex);
2788	entry = huge_ptep_get(ptep);
2789	if (huge_pte_none(entry)) {
2790		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2791		goto out_mutex;
2792	}
2793
2794	ret = 0;
2795
2796	/*
2797	 * If we are going to COW the mapping later, we examine the pending
2798	 * reservations for this page now. This will ensure that any
2799	 * allocations necessary to record that reservation occur outside the
2800	 * spinlock. For private mappings, we also lookup the pagecache
2801	 * page now as it is used to determine if a reservation has been
2802	 * consumed.
2803	 */
2804	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2805		if (vma_needs_reservation(h, vma, address) < 0) {
2806			ret = VM_FAULT_OOM;
2807			goto out_mutex;
2808		}
2809
2810		if (!(vma->vm_flags & VM_MAYSHARE))
2811			pagecache_page = hugetlbfs_pagecache_page(h,
2812								vma, address);
2813	}
2814
2815	/*
2816	 * hugetlb_cow() requires page locks of pte_page(entry) and
2817	 * pagecache_page, so here we need take the former one
2818	 * when page != pagecache_page or !pagecache_page.
2819	 * Note that locking order is always pagecache_page -> page,
2820	 * so no worry about deadlock.
2821	 */
2822	page = pte_page(entry);
2823	get_page(page);
2824	if (page != pagecache_page)
2825		lock_page(page);
2826
2827	spin_lock(&mm->page_table_lock);
2828	/* Check for a racing update before calling hugetlb_cow */
2829	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2830		goto out_page_table_lock;
2831
2832
2833	if (flags & FAULT_FLAG_WRITE) {
2834		if (!pte_write(entry)) {
2835			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2836							pagecache_page);
2837			goto out_page_table_lock;
2838		}
2839		entry = pte_mkdirty(entry);
2840	}
2841	entry = pte_mkyoung(entry);
2842	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2843						flags & FAULT_FLAG_WRITE))
2844		update_mmu_cache(vma, address, ptep);
2845
2846out_page_table_lock:
2847	spin_unlock(&mm->page_table_lock);
2848
2849	if (pagecache_page) {
2850		unlock_page(pagecache_page);
2851		put_page(pagecache_page);
2852	}
2853	if (page != pagecache_page)
2854		unlock_page(page);
2855	put_page(page);
2856
2857out_mutex:
2858	mutex_unlock(&hugetlb_instantiation_mutex);
2859
2860	return ret;
2861}
2862
2863/* Can be overriden by architectures */
2864__attribute__((weak)) struct page *
2865follow_huge_pud(struct mm_struct *mm, unsigned long address,
2866	       pud_t *pud, int write)
2867{
2868	BUG();
2869	return NULL;
2870}
2871
2872int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2873			struct page **pages, struct vm_area_struct **vmas,
2874			unsigned long *position, int *length, int i,
2875			unsigned int flags)
2876{
2877	unsigned long pfn_offset;
2878	unsigned long vaddr = *position;
2879	int remainder = *length;
2880	struct hstate *h = hstate_vma(vma);
2881
2882	spin_lock(&mm->page_table_lock);
2883	while (vaddr < vma->vm_end && remainder) {
2884		pte_t *pte;
2885		int absent;
2886		struct page *page;
2887
2888		/*
2889		 * Some archs (sparc64, sh*) have multiple pte_ts to
2890		 * each hugepage.  We have to make sure we get the
2891		 * first, for the page indexing below to work.
2892		 */
2893		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2894		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2895
2896		/*
2897		 * When coredumping, it suits get_dump_page if we just return
2898		 * an error where there's an empty slot with no huge pagecache
2899		 * to back it.  This way, we avoid allocating a hugepage, and
2900		 * the sparse dumpfile avoids allocating disk blocks, but its
2901		 * huge holes still show up with zeroes where they need to be.
2902		 */
2903		if (absent && (flags & FOLL_DUMP) &&
2904		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2905			remainder = 0;
2906			break;
2907		}
2908
2909		if (absent ||
2910		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2911			int ret;
2912
2913			spin_unlock(&mm->page_table_lock);
2914			ret = hugetlb_fault(mm, vma, vaddr,
2915				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2916			spin_lock(&mm->page_table_lock);
2917			if (!(ret & VM_FAULT_ERROR))
2918				continue;
2919
2920			remainder = 0;
2921			break;
2922		}
2923
2924		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2925		page = pte_page(huge_ptep_get(pte));
2926same_page:
2927		if (pages) {
2928			pages[i] = mem_map_offset(page, pfn_offset);
2929			get_page(pages[i]);
2930		}
2931
2932		if (vmas)
2933			vmas[i] = vma;
2934
2935		vaddr += PAGE_SIZE;
2936		++pfn_offset;
2937		--remainder;
2938		++i;
2939		if (vaddr < vma->vm_end && remainder &&
2940				pfn_offset < pages_per_huge_page(h)) {
2941			/*
2942			 * We use pfn_offset to avoid touching the pageframes
2943			 * of this compound page.
2944			 */
2945			goto same_page;
2946		}
2947	}
2948	spin_unlock(&mm->page_table_lock);
2949	*length = remainder;
2950	*position = vaddr;
2951
2952	return i ? i : -EFAULT;
2953}
2954
2955void hugetlb_change_protection(struct vm_area_struct *vma,
2956		unsigned long address, unsigned long end, pgprot_t newprot)
2957{
2958	struct mm_struct *mm = vma->vm_mm;
2959	unsigned long start = address;
2960	pte_t *ptep;
2961	pte_t pte;
2962	struct hstate *h = hstate_vma(vma);
2963
2964	BUG_ON(address >= end);
2965	flush_cache_range(vma, address, end);
2966
2967	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2968	spin_lock(&mm->page_table_lock);
2969	for (; address < end; address += huge_page_size(h)) {
2970		ptep = huge_pte_offset(mm, address);
2971		if (!ptep)
2972			continue;
2973		if (huge_pmd_unshare(mm, &address, ptep))
2974			continue;
2975		if (!huge_pte_none(huge_ptep_get(ptep))) {
2976			pte = huge_ptep_get_and_clear(mm, address, ptep);
2977			pte = pte_mkhuge(pte_modify(pte, newprot));
2978			set_huge_pte_at(mm, address, ptep, pte);
2979		}
2980	}
2981	spin_unlock(&mm->page_table_lock);
2982	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2983
2984	flush_tlb_range(vma, start, end);
2985}
2986
2987int hugetlb_reserve_pages(struct inode *inode,
2988					long from, long to,
2989					struct vm_area_struct *vma,
2990					vm_flags_t vm_flags)
2991{
2992	long ret, chg;
2993	struct hstate *h = hstate_inode(inode);
2994	struct hugepage_subpool *spool = subpool_inode(inode);
2995
2996	/*
2997	 * Only apply hugepage reservation if asked. At fault time, an
2998	 * attempt will be made for VM_NORESERVE to allocate a page
2999	 * without using reserves
3000	 */
3001	if (vm_flags & VM_NORESERVE)
3002		return 0;
3003
3004	/*
3005	 * Shared mappings base their reservation on the number of pages that
3006	 * are already allocated on behalf of the file. Private mappings need
3007	 * to reserve the full area even if read-only as mprotect() may be
3008	 * called to make the mapping read-write. Assume !vma is a shm mapping
3009	 */
3010	if (!vma || vma->vm_flags & VM_MAYSHARE)
3011		chg = region_chg(&inode->i_mapping->private_list, from, to);
3012	else {
3013		struct resv_map *resv_map = resv_map_alloc();
3014		if (!resv_map)
3015			return -ENOMEM;
3016
3017		chg = to - from;
3018
3019		set_vma_resv_map(vma, resv_map);
3020		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3021	}
3022
3023	if (chg < 0) {
3024		ret = chg;
3025		goto out_err;
3026	}
3027
3028	/* There must be enough pages in the subpool for the mapping */
3029	if (hugepage_subpool_get_pages(spool, chg)) {
3030		ret = -ENOSPC;
3031		goto out_err;
3032	}
3033
3034	/*
3035	 * Check enough hugepages are available for the reservation.
3036	 * Hand the pages back to the subpool if there are not
3037	 */
3038	ret = hugetlb_acct_memory(h, chg);
3039	if (ret < 0) {
3040		hugepage_subpool_put_pages(spool, chg);
3041		goto out_err;
3042	}
3043
3044	/*
3045	 * Account for the reservations made. Shared mappings record regions
3046	 * that have reservations as they are shared by multiple VMAs.
3047	 * When the last VMA disappears, the region map says how much
3048	 * the reservation was and the page cache tells how much of
3049	 * the reservation was consumed. Private mappings are per-VMA and
3050	 * only the consumed reservations are tracked. When the VMA
3051	 * disappears, the original reservation is the VMA size and the
3052	 * consumed reservations are stored in the map. Hence, nothing
3053	 * else has to be done for private mappings here
3054	 */
3055	if (!vma || vma->vm_flags & VM_MAYSHARE)
3056		region_add(&inode->i_mapping->private_list, from, to);
3057	return 0;
3058out_err:
3059	if (vma)
3060		resv_map_put(vma);
3061	return ret;
3062}
3063
3064void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3065{
3066	struct hstate *h = hstate_inode(inode);
3067	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3068	struct hugepage_subpool *spool = subpool_inode(inode);
3069
3070	spin_lock(&inode->i_lock);
3071	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3072	spin_unlock(&inode->i_lock);
3073
3074	hugepage_subpool_put_pages(spool, (chg - freed));
3075	hugetlb_acct_memory(h, -(chg - freed));
3076}
3077
3078#ifdef CONFIG_MEMORY_FAILURE
3079
3080/* Should be called in hugetlb_lock */
3081static int is_hugepage_on_freelist(struct page *hpage)
3082{
3083	struct page *page;
3084	struct page *tmp;
3085	struct hstate *h = page_hstate(hpage);
3086	int nid = page_to_nid(hpage);
3087
3088	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3089		if (page == hpage)
3090			return 1;
3091	return 0;
3092}
3093
3094/*
3095 * This function is called from memory failure code.
3096 * Assume the caller holds page lock of the head page.
3097 */
3098int dequeue_hwpoisoned_huge_page(struct page *hpage)
3099{
3100	struct hstate *h = page_hstate(hpage);
3101	int nid = page_to_nid(hpage);
3102	int ret = -EBUSY;
3103
3104	spin_lock(&hugetlb_lock);
3105	if (is_hugepage_on_freelist(hpage)) {
3106		list_del(&hpage->lru);
3107		set_page_refcounted(hpage);
3108		h->free_huge_pages--;
3109		h->free_huge_pages_node[nid]--;
3110		ret = 0;
3111	}
3112	spin_unlock(&hugetlb_lock);
3113	return ret;
3114}
3115#endif
3116