hugetlb.c revision d1c3fb1f8f29c41b0d098d7cfb3c32939043631f
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26static unsigned long surplus_huge_pages;
27unsigned long max_huge_pages;
28static struct list_head hugepage_freelists[MAX_NUMNODES];
29static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30static unsigned int free_huge_pages_node[MAX_NUMNODES];
31static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33unsigned long hugepages_treat_as_movable;
34int hugetlb_dynamic_pool;
35unsigned long nr_overcommit_huge_pages;
36static int hugetlb_next_nid;
37
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
42
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45	int i;
46
47	might_sleep();
48	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49		cond_resched();
50		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51	}
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
55			   unsigned long addr, struct vm_area_struct *vma)
56{
57	int i;
58
59	might_sleep();
60	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61		cond_resched();
62		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63	}
64}
65
66static void enqueue_huge_page(struct page *page)
67{
68	int nid = page_to_nid(page);
69	list_add(&page->lru, &hugepage_freelists[nid]);
70	free_huge_pages++;
71	free_huge_pages_node[nid]++;
72}
73
74static struct page *dequeue_huge_page(struct vm_area_struct *vma,
75				unsigned long address)
76{
77	int nid;
78	struct page *page = NULL;
79	struct mempolicy *mpol;
80	struct zonelist *zonelist = huge_zonelist(vma, address,
81					htlb_alloc_mask, &mpol);
82	struct zone **z;
83
84	for (z = zonelist->zones; *z; z++) {
85		nid = zone_to_nid(*z);
86		if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
87		    !list_empty(&hugepage_freelists[nid])) {
88			page = list_entry(hugepage_freelists[nid].next,
89					  struct page, lru);
90			list_del(&page->lru);
91			free_huge_pages--;
92			free_huge_pages_node[nid]--;
93			if (vma && vma->vm_flags & VM_MAYSHARE)
94				resv_huge_pages--;
95			break;
96		}
97	}
98	mpol_free(mpol);	/* unref if mpol !NULL */
99	return page;
100}
101
102static void update_and_free_page(struct page *page)
103{
104	int i;
105	nr_huge_pages--;
106	nr_huge_pages_node[page_to_nid(page)]--;
107	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
108		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
109				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
110				1 << PG_private | 1<< PG_writeback);
111	}
112	set_compound_page_dtor(page, NULL);
113	set_page_refcounted(page);
114	__free_pages(page, HUGETLB_PAGE_ORDER);
115}
116
117static void free_huge_page(struct page *page)
118{
119	int nid = page_to_nid(page);
120	struct address_space *mapping;
121
122	mapping = (struct address_space *) page_private(page);
123	BUG_ON(page_count(page));
124	INIT_LIST_HEAD(&page->lru);
125
126	spin_lock(&hugetlb_lock);
127	if (surplus_huge_pages_node[nid]) {
128		update_and_free_page(page);
129		surplus_huge_pages--;
130		surplus_huge_pages_node[nid]--;
131	} else {
132		enqueue_huge_page(page);
133	}
134	spin_unlock(&hugetlb_lock);
135	if (mapping)
136		hugetlb_put_quota(mapping, 1);
137	set_page_private(page, 0);
138}
139
140/*
141 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
142 * balanced by operating on them in a round-robin fashion.
143 * Returns 1 if an adjustment was made.
144 */
145static int adjust_pool_surplus(int delta)
146{
147	static int prev_nid;
148	int nid = prev_nid;
149	int ret = 0;
150
151	VM_BUG_ON(delta != -1 && delta != 1);
152	do {
153		nid = next_node(nid, node_online_map);
154		if (nid == MAX_NUMNODES)
155			nid = first_node(node_online_map);
156
157		/* To shrink on this node, there must be a surplus page */
158		if (delta < 0 && !surplus_huge_pages_node[nid])
159			continue;
160		/* Surplus cannot exceed the total number of pages */
161		if (delta > 0 && surplus_huge_pages_node[nid] >=
162						nr_huge_pages_node[nid])
163			continue;
164
165		surplus_huge_pages += delta;
166		surplus_huge_pages_node[nid] += delta;
167		ret = 1;
168		break;
169	} while (nid != prev_nid);
170
171	prev_nid = nid;
172	return ret;
173}
174
175static struct page *alloc_fresh_huge_page_node(int nid)
176{
177	struct page *page;
178
179	page = alloc_pages_node(nid,
180		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
181		HUGETLB_PAGE_ORDER);
182	if (page) {
183		set_compound_page_dtor(page, free_huge_page);
184		spin_lock(&hugetlb_lock);
185		nr_huge_pages++;
186		nr_huge_pages_node[nid]++;
187		spin_unlock(&hugetlb_lock);
188		put_page(page); /* free it into the hugepage allocator */
189	}
190
191	return page;
192}
193
194static int alloc_fresh_huge_page(void)
195{
196	struct page *page;
197	int start_nid;
198	int next_nid;
199	int ret = 0;
200
201	start_nid = hugetlb_next_nid;
202
203	do {
204		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
205		if (page)
206			ret = 1;
207		/*
208		 * Use a helper variable to find the next node and then
209		 * copy it back to hugetlb_next_nid afterwards:
210		 * otherwise there's a window in which a racer might
211		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
212		 * But we don't need to use a spin_lock here: it really
213		 * doesn't matter if occasionally a racer chooses the
214		 * same nid as we do.  Move nid forward in the mask even
215		 * if we just successfully allocated a hugepage so that
216		 * the next caller gets hugepages on the next node.
217		 */
218		next_nid = next_node(hugetlb_next_nid, node_online_map);
219		if (next_nid == MAX_NUMNODES)
220			next_nid = first_node(node_online_map);
221		hugetlb_next_nid = next_nid;
222	} while (!page && hugetlb_next_nid != start_nid);
223
224	return ret;
225}
226
227static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
228						unsigned long address)
229{
230	struct page *page;
231	unsigned int nid;
232
233	/* Check if the dynamic pool is enabled */
234	if (!hugetlb_dynamic_pool)
235		return NULL;
236
237	/*
238	 * Assume we will successfully allocate the surplus page to
239	 * prevent racing processes from causing the surplus to exceed
240	 * overcommit
241	 *
242	 * This however introduces a different race, where a process B
243	 * tries to grow the static hugepage pool while alloc_pages() is
244	 * called by process A. B will only examine the per-node
245	 * counters in determining if surplus huge pages can be
246	 * converted to normal huge pages in adjust_pool_surplus(). A
247	 * won't be able to increment the per-node counter, until the
248	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
249	 * no more huge pages can be converted from surplus to normal
250	 * state (and doesn't try to convert again). Thus, we have a
251	 * case where a surplus huge page exists, the pool is grown, and
252	 * the surplus huge page still exists after, even though it
253	 * should just have been converted to a normal huge page. This
254	 * does not leak memory, though, as the hugepage will be freed
255	 * once it is out of use. It also does not allow the counters to
256	 * go out of whack in adjust_pool_surplus() as we don't modify
257	 * the node values until we've gotten the hugepage and only the
258	 * per-node value is checked there.
259	 */
260	spin_lock(&hugetlb_lock);
261	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
262		spin_unlock(&hugetlb_lock);
263		return NULL;
264	} else {
265		nr_huge_pages++;
266		surplus_huge_pages++;
267	}
268	spin_unlock(&hugetlb_lock);
269
270	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
271					HUGETLB_PAGE_ORDER);
272
273	spin_lock(&hugetlb_lock);
274	if (page) {
275		nid = page_to_nid(page);
276		set_compound_page_dtor(page, free_huge_page);
277		/*
278		 * We incremented the global counters already
279		 */
280		nr_huge_pages_node[nid]++;
281		surplus_huge_pages_node[nid]++;
282	} else {
283		nr_huge_pages--;
284		surplus_huge_pages--;
285	}
286	spin_unlock(&hugetlb_lock);
287
288	return page;
289}
290
291/*
292 * Increase the hugetlb pool such that it can accomodate a reservation
293 * of size 'delta'.
294 */
295static int gather_surplus_pages(int delta)
296{
297	struct list_head surplus_list;
298	struct page *page, *tmp;
299	int ret, i;
300	int needed, allocated;
301
302	needed = (resv_huge_pages + delta) - free_huge_pages;
303	if (needed <= 0)
304		return 0;
305
306	allocated = 0;
307	INIT_LIST_HEAD(&surplus_list);
308
309	ret = -ENOMEM;
310retry:
311	spin_unlock(&hugetlb_lock);
312	for (i = 0; i < needed; i++) {
313		page = alloc_buddy_huge_page(NULL, 0);
314		if (!page) {
315			/*
316			 * We were not able to allocate enough pages to
317			 * satisfy the entire reservation so we free what
318			 * we've allocated so far.
319			 */
320			spin_lock(&hugetlb_lock);
321			needed = 0;
322			goto free;
323		}
324
325		list_add(&page->lru, &surplus_list);
326	}
327	allocated += needed;
328
329	/*
330	 * After retaking hugetlb_lock, we need to recalculate 'needed'
331	 * because either resv_huge_pages or free_huge_pages may have changed.
332	 */
333	spin_lock(&hugetlb_lock);
334	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
335	if (needed > 0)
336		goto retry;
337
338	/*
339	 * The surplus_list now contains _at_least_ the number of extra pages
340	 * needed to accomodate the reservation.  Add the appropriate number
341	 * of pages to the hugetlb pool and free the extras back to the buddy
342	 * allocator.
343	 */
344	needed += allocated;
345	ret = 0;
346free:
347	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
348		list_del(&page->lru);
349		if ((--needed) >= 0)
350			enqueue_huge_page(page);
351		else {
352			/*
353			 * Decrement the refcount and free the page using its
354			 * destructor.  This must be done with hugetlb_lock
355			 * unlocked which is safe because free_huge_page takes
356			 * hugetlb_lock before deciding how to free the page.
357			 */
358			spin_unlock(&hugetlb_lock);
359			put_page(page);
360			spin_lock(&hugetlb_lock);
361		}
362	}
363
364	return ret;
365}
366
367/*
368 * When releasing a hugetlb pool reservation, any surplus pages that were
369 * allocated to satisfy the reservation must be explicitly freed if they were
370 * never used.
371 */
372static void return_unused_surplus_pages(unsigned long unused_resv_pages)
373{
374	static int nid = -1;
375	struct page *page;
376	unsigned long nr_pages;
377
378	nr_pages = min(unused_resv_pages, surplus_huge_pages);
379
380	while (nr_pages) {
381		nid = next_node(nid, node_online_map);
382		if (nid == MAX_NUMNODES)
383			nid = first_node(node_online_map);
384
385		if (!surplus_huge_pages_node[nid])
386			continue;
387
388		if (!list_empty(&hugepage_freelists[nid])) {
389			page = list_entry(hugepage_freelists[nid].next,
390					  struct page, lru);
391			list_del(&page->lru);
392			update_and_free_page(page);
393			free_huge_pages--;
394			free_huge_pages_node[nid]--;
395			surplus_huge_pages--;
396			surplus_huge_pages_node[nid]--;
397			nr_pages--;
398		}
399	}
400}
401
402
403static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
404						unsigned long addr)
405{
406	struct page *page;
407
408	spin_lock(&hugetlb_lock);
409	page = dequeue_huge_page(vma, addr);
410	spin_unlock(&hugetlb_lock);
411	return page ? page : ERR_PTR(-VM_FAULT_OOM);
412}
413
414static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
415						unsigned long addr)
416{
417	struct page *page = NULL;
418
419	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
420		return ERR_PTR(-VM_FAULT_SIGBUS);
421
422	spin_lock(&hugetlb_lock);
423	if (free_huge_pages > resv_huge_pages)
424		page = dequeue_huge_page(vma, addr);
425	spin_unlock(&hugetlb_lock);
426	if (!page)
427		page = alloc_buddy_huge_page(vma, addr);
428	return page ? page : ERR_PTR(-VM_FAULT_OOM);
429}
430
431static struct page *alloc_huge_page(struct vm_area_struct *vma,
432				    unsigned long addr)
433{
434	struct page *page;
435	struct address_space *mapping = vma->vm_file->f_mapping;
436
437	if (vma->vm_flags & VM_MAYSHARE)
438		page = alloc_huge_page_shared(vma, addr);
439	else
440		page = alloc_huge_page_private(vma, addr);
441
442	if (!IS_ERR(page)) {
443		set_page_refcounted(page);
444		set_page_private(page, (unsigned long) mapping);
445	}
446	return page;
447}
448
449static int __init hugetlb_init(void)
450{
451	unsigned long i;
452
453	if (HPAGE_SHIFT == 0)
454		return 0;
455
456	for (i = 0; i < MAX_NUMNODES; ++i)
457		INIT_LIST_HEAD(&hugepage_freelists[i]);
458
459	hugetlb_next_nid = first_node(node_online_map);
460
461	for (i = 0; i < max_huge_pages; ++i) {
462		if (!alloc_fresh_huge_page())
463			break;
464	}
465	max_huge_pages = free_huge_pages = nr_huge_pages = i;
466	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
467	return 0;
468}
469module_init(hugetlb_init);
470
471static int __init hugetlb_setup(char *s)
472{
473	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
474		max_huge_pages = 0;
475	return 1;
476}
477__setup("hugepages=", hugetlb_setup);
478
479static unsigned int cpuset_mems_nr(unsigned int *array)
480{
481	int node;
482	unsigned int nr = 0;
483
484	for_each_node_mask(node, cpuset_current_mems_allowed)
485		nr += array[node];
486
487	return nr;
488}
489
490#ifdef CONFIG_SYSCTL
491#ifdef CONFIG_HIGHMEM
492static void try_to_free_low(unsigned long count)
493{
494	int i;
495
496	for (i = 0; i < MAX_NUMNODES; ++i) {
497		struct page *page, *next;
498		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
499			if (count >= nr_huge_pages)
500				return;
501			if (PageHighMem(page))
502				continue;
503			list_del(&page->lru);
504			update_and_free_page(page);
505			free_huge_pages--;
506			free_huge_pages_node[page_to_nid(page)]--;
507		}
508	}
509}
510#else
511static inline void try_to_free_low(unsigned long count)
512{
513}
514#endif
515
516#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
517static unsigned long set_max_huge_pages(unsigned long count)
518{
519	unsigned long min_count, ret;
520
521	/*
522	 * Increase the pool size
523	 * First take pages out of surplus state.  Then make up the
524	 * remaining difference by allocating fresh huge pages.
525	 *
526	 * We might race with alloc_buddy_huge_page() here and be unable
527	 * to convert a surplus huge page to a normal huge page. That is
528	 * not critical, though, it just means the overall size of the
529	 * pool might be one hugepage larger than it needs to be, but
530	 * within all the constraints specified by the sysctls.
531	 */
532	spin_lock(&hugetlb_lock);
533	while (surplus_huge_pages && count > persistent_huge_pages) {
534		if (!adjust_pool_surplus(-1))
535			break;
536	}
537
538	while (count > persistent_huge_pages) {
539		int ret;
540		/*
541		 * If this allocation races such that we no longer need the
542		 * page, free_huge_page will handle it by freeing the page
543		 * and reducing the surplus.
544		 */
545		spin_unlock(&hugetlb_lock);
546		ret = alloc_fresh_huge_page();
547		spin_lock(&hugetlb_lock);
548		if (!ret)
549			goto out;
550
551	}
552
553	/*
554	 * Decrease the pool size
555	 * First return free pages to the buddy allocator (being careful
556	 * to keep enough around to satisfy reservations).  Then place
557	 * pages into surplus state as needed so the pool will shrink
558	 * to the desired size as pages become free.
559	 *
560	 * By placing pages into the surplus state independent of the
561	 * overcommit value, we are allowing the surplus pool size to
562	 * exceed overcommit. There are few sane options here. Since
563	 * alloc_buddy_huge_page() is checking the global counter,
564	 * though, we'll note that we're not allowed to exceed surplus
565	 * and won't grow the pool anywhere else. Not until one of the
566	 * sysctls are changed, or the surplus pages go out of use.
567	 */
568	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
569	min_count = max(count, min_count);
570	try_to_free_low(min_count);
571	while (min_count < persistent_huge_pages) {
572		struct page *page = dequeue_huge_page(NULL, 0);
573		if (!page)
574			break;
575		update_and_free_page(page);
576	}
577	while (count < persistent_huge_pages) {
578		if (!adjust_pool_surplus(1))
579			break;
580	}
581out:
582	ret = persistent_huge_pages;
583	spin_unlock(&hugetlb_lock);
584	return ret;
585}
586
587int hugetlb_sysctl_handler(struct ctl_table *table, int write,
588			   struct file *file, void __user *buffer,
589			   size_t *length, loff_t *ppos)
590{
591	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
592	max_huge_pages = set_max_huge_pages(max_huge_pages);
593	return 0;
594}
595
596int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
597			struct file *file, void __user *buffer,
598			size_t *length, loff_t *ppos)
599{
600	proc_dointvec(table, write, file, buffer, length, ppos);
601	if (hugepages_treat_as_movable)
602		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
603	else
604		htlb_alloc_mask = GFP_HIGHUSER;
605	return 0;
606}
607
608#endif /* CONFIG_SYSCTL */
609
610int hugetlb_report_meminfo(char *buf)
611{
612	return sprintf(buf,
613			"HugePages_Total: %5lu\n"
614			"HugePages_Free:  %5lu\n"
615			"HugePages_Rsvd:  %5lu\n"
616			"HugePages_Surp:  %5lu\n"
617			"Hugepagesize:    %5lu kB\n",
618			nr_huge_pages,
619			free_huge_pages,
620			resv_huge_pages,
621			surplus_huge_pages,
622			HPAGE_SIZE/1024);
623}
624
625int hugetlb_report_node_meminfo(int nid, char *buf)
626{
627	return sprintf(buf,
628		"Node %d HugePages_Total: %5u\n"
629		"Node %d HugePages_Free:  %5u\n",
630		nid, nr_huge_pages_node[nid],
631		nid, free_huge_pages_node[nid]);
632}
633
634/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
635unsigned long hugetlb_total_pages(void)
636{
637	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
638}
639
640/*
641 * We cannot handle pagefaults against hugetlb pages at all.  They cause
642 * handle_mm_fault() to try to instantiate regular-sized pages in the
643 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
644 * this far.
645 */
646static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
647{
648	BUG();
649	return 0;
650}
651
652struct vm_operations_struct hugetlb_vm_ops = {
653	.fault = hugetlb_vm_op_fault,
654};
655
656static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
657				int writable)
658{
659	pte_t entry;
660
661	if (writable) {
662		entry =
663		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
664	} else {
665		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
666	}
667	entry = pte_mkyoung(entry);
668	entry = pte_mkhuge(entry);
669
670	return entry;
671}
672
673static void set_huge_ptep_writable(struct vm_area_struct *vma,
674				   unsigned long address, pte_t *ptep)
675{
676	pte_t entry;
677
678	entry = pte_mkwrite(pte_mkdirty(*ptep));
679	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
680		update_mmu_cache(vma, address, entry);
681	}
682}
683
684
685int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
686			    struct vm_area_struct *vma)
687{
688	pte_t *src_pte, *dst_pte, entry;
689	struct page *ptepage;
690	unsigned long addr;
691	int cow;
692
693	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694
695	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
696		src_pte = huge_pte_offset(src, addr);
697		if (!src_pte)
698			continue;
699		dst_pte = huge_pte_alloc(dst, addr);
700		if (!dst_pte)
701			goto nomem;
702		spin_lock(&dst->page_table_lock);
703		spin_lock(&src->page_table_lock);
704		if (!pte_none(*src_pte)) {
705			if (cow)
706				ptep_set_wrprotect(src, addr, src_pte);
707			entry = *src_pte;
708			ptepage = pte_page(entry);
709			get_page(ptepage);
710			set_huge_pte_at(dst, addr, dst_pte, entry);
711		}
712		spin_unlock(&src->page_table_lock);
713		spin_unlock(&dst->page_table_lock);
714	}
715	return 0;
716
717nomem:
718	return -ENOMEM;
719}
720
721void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
722			    unsigned long end)
723{
724	struct mm_struct *mm = vma->vm_mm;
725	unsigned long address;
726	pte_t *ptep;
727	pte_t pte;
728	struct page *page;
729	struct page *tmp;
730	/*
731	 * A page gathering list, protected by per file i_mmap_lock. The
732	 * lock is used to avoid list corruption from multiple unmapping
733	 * of the same page since we are using page->lru.
734	 */
735	LIST_HEAD(page_list);
736
737	WARN_ON(!is_vm_hugetlb_page(vma));
738	BUG_ON(start & ~HPAGE_MASK);
739	BUG_ON(end & ~HPAGE_MASK);
740
741	spin_lock(&mm->page_table_lock);
742	for (address = start; address < end; address += HPAGE_SIZE) {
743		ptep = huge_pte_offset(mm, address);
744		if (!ptep)
745			continue;
746
747		if (huge_pmd_unshare(mm, &address, ptep))
748			continue;
749
750		pte = huge_ptep_get_and_clear(mm, address, ptep);
751		if (pte_none(pte))
752			continue;
753
754		page = pte_page(pte);
755		if (pte_dirty(pte))
756			set_page_dirty(page);
757		list_add(&page->lru, &page_list);
758	}
759	spin_unlock(&mm->page_table_lock);
760	flush_tlb_range(vma, start, end);
761	list_for_each_entry_safe(page, tmp, &page_list, lru) {
762		list_del(&page->lru);
763		put_page(page);
764	}
765}
766
767void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
768			  unsigned long end)
769{
770	/*
771	 * It is undesirable to test vma->vm_file as it should be non-null
772	 * for valid hugetlb area. However, vm_file will be NULL in the error
773	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
774	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
775	 * to clean up. Since no pte has actually been setup, it is safe to
776	 * do nothing in this case.
777	 */
778	if (vma->vm_file) {
779		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
780		__unmap_hugepage_range(vma, start, end);
781		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
782	}
783}
784
785static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
786			unsigned long address, pte_t *ptep, pte_t pte)
787{
788	struct page *old_page, *new_page;
789	int avoidcopy;
790
791	old_page = pte_page(pte);
792
793	/* If no-one else is actually using this page, avoid the copy
794	 * and just make the page writable */
795	avoidcopy = (page_count(old_page) == 1);
796	if (avoidcopy) {
797		set_huge_ptep_writable(vma, address, ptep);
798		return 0;
799	}
800
801	page_cache_get(old_page);
802	new_page = alloc_huge_page(vma, address);
803
804	if (IS_ERR(new_page)) {
805		page_cache_release(old_page);
806		return -PTR_ERR(new_page);
807	}
808
809	spin_unlock(&mm->page_table_lock);
810	copy_huge_page(new_page, old_page, address, vma);
811	spin_lock(&mm->page_table_lock);
812
813	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
814	if (likely(pte_same(*ptep, pte))) {
815		/* Break COW */
816		set_huge_pte_at(mm, address, ptep,
817				make_huge_pte(vma, new_page, 1));
818		/* Make the old page be freed below */
819		new_page = old_page;
820	}
821	page_cache_release(new_page);
822	page_cache_release(old_page);
823	return 0;
824}
825
826static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
827			unsigned long address, pte_t *ptep, int write_access)
828{
829	int ret = VM_FAULT_SIGBUS;
830	unsigned long idx;
831	unsigned long size;
832	struct page *page;
833	struct address_space *mapping;
834	pte_t new_pte;
835
836	mapping = vma->vm_file->f_mapping;
837	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
838		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
839
840	/*
841	 * Use page lock to guard against racing truncation
842	 * before we get page_table_lock.
843	 */
844retry:
845	page = find_lock_page(mapping, idx);
846	if (!page) {
847		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
848		if (idx >= size)
849			goto out;
850		page = alloc_huge_page(vma, address);
851		if (IS_ERR(page)) {
852			ret = -PTR_ERR(page);
853			goto out;
854		}
855		clear_huge_page(page, address);
856
857		if (vma->vm_flags & VM_SHARED) {
858			int err;
859			struct inode *inode = mapping->host;
860
861			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
862			if (err) {
863				put_page(page);
864				if (err == -EEXIST)
865					goto retry;
866				goto out;
867			}
868
869			spin_lock(&inode->i_lock);
870			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
871			spin_unlock(&inode->i_lock);
872		} else
873			lock_page(page);
874	}
875
876	spin_lock(&mm->page_table_lock);
877	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
878	if (idx >= size)
879		goto backout;
880
881	ret = 0;
882	if (!pte_none(*ptep))
883		goto backout;
884
885	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
886				&& (vma->vm_flags & VM_SHARED)));
887	set_huge_pte_at(mm, address, ptep, new_pte);
888
889	if (write_access && !(vma->vm_flags & VM_SHARED)) {
890		/* Optimization, do the COW without a second fault */
891		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
892	}
893
894	spin_unlock(&mm->page_table_lock);
895	unlock_page(page);
896out:
897	return ret;
898
899backout:
900	spin_unlock(&mm->page_table_lock);
901	unlock_page(page);
902	put_page(page);
903	goto out;
904}
905
906int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
907			unsigned long address, int write_access)
908{
909	pte_t *ptep;
910	pte_t entry;
911	int ret;
912	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
913
914	ptep = huge_pte_alloc(mm, address);
915	if (!ptep)
916		return VM_FAULT_OOM;
917
918	/*
919	 * Serialize hugepage allocation and instantiation, so that we don't
920	 * get spurious allocation failures if two CPUs race to instantiate
921	 * the same page in the page cache.
922	 */
923	mutex_lock(&hugetlb_instantiation_mutex);
924	entry = *ptep;
925	if (pte_none(entry)) {
926		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
927		mutex_unlock(&hugetlb_instantiation_mutex);
928		return ret;
929	}
930
931	ret = 0;
932
933	spin_lock(&mm->page_table_lock);
934	/* Check for a racing update before calling hugetlb_cow */
935	if (likely(pte_same(entry, *ptep)))
936		if (write_access && !pte_write(entry))
937			ret = hugetlb_cow(mm, vma, address, ptep, entry);
938	spin_unlock(&mm->page_table_lock);
939	mutex_unlock(&hugetlb_instantiation_mutex);
940
941	return ret;
942}
943
944int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
945			struct page **pages, struct vm_area_struct **vmas,
946			unsigned long *position, int *length, int i,
947			int write)
948{
949	unsigned long pfn_offset;
950	unsigned long vaddr = *position;
951	int remainder = *length;
952
953	spin_lock(&mm->page_table_lock);
954	while (vaddr < vma->vm_end && remainder) {
955		pte_t *pte;
956		struct page *page;
957
958		/*
959		 * Some archs (sparc64, sh*) have multiple pte_ts to
960		 * each hugepage.  We have to make * sure we get the
961		 * first, for the page indexing below to work.
962		 */
963		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
964
965		if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
966			int ret;
967
968			spin_unlock(&mm->page_table_lock);
969			ret = hugetlb_fault(mm, vma, vaddr, write);
970			spin_lock(&mm->page_table_lock);
971			if (!(ret & VM_FAULT_ERROR))
972				continue;
973
974			remainder = 0;
975			if (!i)
976				i = -EFAULT;
977			break;
978		}
979
980		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
981		page = pte_page(*pte);
982same_page:
983		if (pages) {
984			get_page(page);
985			pages[i] = page + pfn_offset;
986		}
987
988		if (vmas)
989			vmas[i] = vma;
990
991		vaddr += PAGE_SIZE;
992		++pfn_offset;
993		--remainder;
994		++i;
995		if (vaddr < vma->vm_end && remainder &&
996				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
997			/*
998			 * We use pfn_offset to avoid touching the pageframes
999			 * of this compound page.
1000			 */
1001			goto same_page;
1002		}
1003	}
1004	spin_unlock(&mm->page_table_lock);
1005	*length = remainder;
1006	*position = vaddr;
1007
1008	return i;
1009}
1010
1011void hugetlb_change_protection(struct vm_area_struct *vma,
1012		unsigned long address, unsigned long end, pgprot_t newprot)
1013{
1014	struct mm_struct *mm = vma->vm_mm;
1015	unsigned long start = address;
1016	pte_t *ptep;
1017	pte_t pte;
1018
1019	BUG_ON(address >= end);
1020	flush_cache_range(vma, address, end);
1021
1022	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1023	spin_lock(&mm->page_table_lock);
1024	for (; address < end; address += HPAGE_SIZE) {
1025		ptep = huge_pte_offset(mm, address);
1026		if (!ptep)
1027			continue;
1028		if (huge_pmd_unshare(mm, &address, ptep))
1029			continue;
1030		if (!pte_none(*ptep)) {
1031			pte = huge_ptep_get_and_clear(mm, address, ptep);
1032			pte = pte_mkhuge(pte_modify(pte, newprot));
1033			set_huge_pte_at(mm, address, ptep, pte);
1034		}
1035	}
1036	spin_unlock(&mm->page_table_lock);
1037	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1038
1039	flush_tlb_range(vma, start, end);
1040}
1041
1042struct file_region {
1043	struct list_head link;
1044	long from;
1045	long to;
1046};
1047
1048static long region_add(struct list_head *head, long f, long t)
1049{
1050	struct file_region *rg, *nrg, *trg;
1051
1052	/* Locate the region we are either in or before. */
1053	list_for_each_entry(rg, head, link)
1054		if (f <= rg->to)
1055			break;
1056
1057	/* Round our left edge to the current segment if it encloses us. */
1058	if (f > rg->from)
1059		f = rg->from;
1060
1061	/* Check for and consume any regions we now overlap with. */
1062	nrg = rg;
1063	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1064		if (&rg->link == head)
1065			break;
1066		if (rg->from > t)
1067			break;
1068
1069		/* If this area reaches higher then extend our area to
1070		 * include it completely.  If this is not the first area
1071		 * which we intend to reuse, free it. */
1072		if (rg->to > t)
1073			t = rg->to;
1074		if (rg != nrg) {
1075			list_del(&rg->link);
1076			kfree(rg);
1077		}
1078	}
1079	nrg->from = f;
1080	nrg->to = t;
1081	return 0;
1082}
1083
1084static long region_chg(struct list_head *head, long f, long t)
1085{
1086	struct file_region *rg, *nrg;
1087	long chg = 0;
1088
1089	/* Locate the region we are before or in. */
1090	list_for_each_entry(rg, head, link)
1091		if (f <= rg->to)
1092			break;
1093
1094	/* If we are below the current region then a new region is required.
1095	 * Subtle, allocate a new region at the position but make it zero
1096	 * size such that we can guarantee to record the reservation. */
1097	if (&rg->link == head || t < rg->from) {
1098		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1099		if (!nrg)
1100			return -ENOMEM;
1101		nrg->from = f;
1102		nrg->to   = f;
1103		INIT_LIST_HEAD(&nrg->link);
1104		list_add(&nrg->link, rg->link.prev);
1105
1106		return t - f;
1107	}
1108
1109	/* Round our left edge to the current segment if it encloses us. */
1110	if (f > rg->from)
1111		f = rg->from;
1112	chg = t - f;
1113
1114	/* Check for and consume any regions we now overlap with. */
1115	list_for_each_entry(rg, rg->link.prev, link) {
1116		if (&rg->link == head)
1117			break;
1118		if (rg->from > t)
1119			return chg;
1120
1121		/* We overlap with this area, if it extends futher than
1122		 * us then we must extend ourselves.  Account for its
1123		 * existing reservation. */
1124		if (rg->to > t) {
1125			chg += rg->to - t;
1126			t = rg->to;
1127		}
1128		chg -= rg->to - rg->from;
1129	}
1130	return chg;
1131}
1132
1133static long region_truncate(struct list_head *head, long end)
1134{
1135	struct file_region *rg, *trg;
1136	long chg = 0;
1137
1138	/* Locate the region we are either in or before. */
1139	list_for_each_entry(rg, head, link)
1140		if (end <= rg->to)
1141			break;
1142	if (&rg->link == head)
1143		return 0;
1144
1145	/* If we are in the middle of a region then adjust it. */
1146	if (end > rg->from) {
1147		chg = rg->to - end;
1148		rg->to = end;
1149		rg = list_entry(rg->link.next, typeof(*rg), link);
1150	}
1151
1152	/* Drop any remaining regions. */
1153	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1154		if (&rg->link == head)
1155			break;
1156		chg += rg->to - rg->from;
1157		list_del(&rg->link);
1158		kfree(rg);
1159	}
1160	return chg;
1161}
1162
1163static int hugetlb_acct_memory(long delta)
1164{
1165	int ret = -ENOMEM;
1166
1167	spin_lock(&hugetlb_lock);
1168	/*
1169	 * When cpuset is configured, it breaks the strict hugetlb page
1170	 * reservation as the accounting is done on a global variable. Such
1171	 * reservation is completely rubbish in the presence of cpuset because
1172	 * the reservation is not checked against page availability for the
1173	 * current cpuset. Application can still potentially OOM'ed by kernel
1174	 * with lack of free htlb page in cpuset that the task is in.
1175	 * Attempt to enforce strict accounting with cpuset is almost
1176	 * impossible (or too ugly) because cpuset is too fluid that
1177	 * task or memory node can be dynamically moved between cpusets.
1178	 *
1179	 * The change of semantics for shared hugetlb mapping with cpuset is
1180	 * undesirable. However, in order to preserve some of the semantics,
1181	 * we fall back to check against current free page availability as
1182	 * a best attempt and hopefully to minimize the impact of changing
1183	 * semantics that cpuset has.
1184	 */
1185	if (delta > 0) {
1186		if (gather_surplus_pages(delta) < 0)
1187			goto out;
1188
1189		if (delta > cpuset_mems_nr(free_huge_pages_node))
1190			goto out;
1191	}
1192
1193	ret = 0;
1194	resv_huge_pages += delta;
1195	if (delta < 0)
1196		return_unused_surplus_pages((unsigned long) -delta);
1197
1198out:
1199	spin_unlock(&hugetlb_lock);
1200	return ret;
1201}
1202
1203int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1204{
1205	long ret, chg;
1206
1207	chg = region_chg(&inode->i_mapping->private_list, from, to);
1208	if (chg < 0)
1209		return chg;
1210
1211	if (hugetlb_get_quota(inode->i_mapping, chg))
1212		return -ENOSPC;
1213	ret = hugetlb_acct_memory(chg);
1214	if (ret < 0)
1215		return ret;
1216	region_add(&inode->i_mapping->private_list, from, to);
1217	return 0;
1218}
1219
1220void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1221{
1222	long chg = region_truncate(&inode->i_mapping->private_list, offset);
1223
1224	spin_lock(&inode->i_lock);
1225	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1226	spin_unlock(&inode->i_lock);
1227
1228	hugetlb_put_quota(inode->i_mapping, (chg - freed));
1229	hugetlb_acct_memory(-(chg - freed));
1230}
1231