hugetlb.c revision e2f17d9459aeccf4e013e31cbd741d6b1858eec4
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/seq_file.h>
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
13#include <linux/mmu_notifier.h>
14#include <linux/nodemask.h>
15#include <linux/pagemap.h>
16#include <linux/mempolicy.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/io.h>
25
26#include <linux/hugetlb.h>
27#include "internal.h"
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
32
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
37__initdata LIST_HEAD(huge_boot_pages);
38
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
42static unsigned long __initdata default_hstate_size;
43
44#define for_each_hstate(h) \
45	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
51
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 *                    across the pages in a mapping.
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * 	down_write(&mm->mmap_sem);
62 * or
63 * 	down_read(&mm->mmap_sem);
64 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 */
66struct file_region {
67	struct list_head link;
68	long from;
69	long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74	struct file_region *rg, *nrg, *trg;
75
76	/* Locate the region we are either in or before. */
77	list_for_each_entry(rg, head, link)
78		if (f <= rg->to)
79			break;
80
81	/* Round our left edge to the current segment if it encloses us. */
82	if (f > rg->from)
83		f = rg->from;
84
85	/* Check for and consume any regions we now overlap with. */
86	nrg = rg;
87	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88		if (&rg->link == head)
89			break;
90		if (rg->from > t)
91			break;
92
93		/* If this area reaches higher then extend our area to
94		 * include it completely.  If this is not the first area
95		 * which we intend to reuse, free it. */
96		if (rg->to > t)
97			t = rg->to;
98		if (rg != nrg) {
99			list_del(&rg->link);
100			kfree(rg);
101		}
102	}
103	nrg->from = f;
104	nrg->to = t;
105	return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110	struct file_region *rg, *nrg;
111	long chg = 0;
112
113	/* Locate the region we are before or in. */
114	list_for_each_entry(rg, head, link)
115		if (f <= rg->to)
116			break;
117
118	/* If we are below the current region then a new region is required.
119	 * Subtle, allocate a new region at the position but make it zero
120	 * size such that we can guarantee to record the reservation. */
121	if (&rg->link == head || t < rg->from) {
122		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123		if (!nrg)
124			return -ENOMEM;
125		nrg->from = f;
126		nrg->to   = f;
127		INIT_LIST_HEAD(&nrg->link);
128		list_add(&nrg->link, rg->link.prev);
129
130		return t - f;
131	}
132
133	/* Round our left edge to the current segment if it encloses us. */
134	if (f > rg->from)
135		f = rg->from;
136	chg = t - f;
137
138	/* Check for and consume any regions we now overlap with. */
139	list_for_each_entry(rg, rg->link.prev, link) {
140		if (&rg->link == head)
141			break;
142		if (rg->from > t)
143			return chg;
144
145		/* We overlap with this area, if it extends futher than
146		 * us then we must extend ourselves.  Account for its
147		 * existing reservation. */
148		if (rg->to > t) {
149			chg += rg->to - t;
150			t = rg->to;
151		}
152		chg -= rg->to - rg->from;
153	}
154	return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159	struct file_region *rg, *trg;
160	long chg = 0;
161
162	/* Locate the region we are either in or before. */
163	list_for_each_entry(rg, head, link)
164		if (end <= rg->to)
165			break;
166	if (&rg->link == head)
167		return 0;
168
169	/* If we are in the middle of a region then adjust it. */
170	if (end > rg->from) {
171		chg = rg->to - end;
172		rg->to = end;
173		rg = list_entry(rg->link.next, typeof(*rg), link);
174	}
175
176	/* Drop any remaining regions. */
177	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178		if (&rg->link == head)
179			break;
180		chg += rg->to - rg->from;
181		list_del(&rg->link);
182		kfree(rg);
183	}
184	return chg;
185}
186
187static long region_count(struct list_head *head, long f, long t)
188{
189	struct file_region *rg;
190	long chg = 0;
191
192	/* Locate each segment we overlap with, and count that overlap. */
193	list_for_each_entry(rg, head, link) {
194		int seg_from;
195		int seg_to;
196
197		if (rg->to <= f)
198			continue;
199		if (rg->from >= t)
200			break;
201
202		seg_from = max(rg->from, f);
203		seg_to = min(rg->to, t);
204
205		chg += seg_to - seg_from;
206	}
207
208	return chg;
209}
210
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216			struct vm_area_struct *vma, unsigned long address)
217{
218	return ((address - vma->vm_start) >> huge_page_shift(h)) +
219			(vma->vm_pgoff >> huge_page_order(h));
220}
221
222/*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227{
228	struct hstate *hstate;
229
230	if (!is_vm_hugetlb_page(vma))
231		return PAGE_SIZE;
232
233	hstate = hstate_vma(vma);
234
235	return 1UL << (hstate->order + PAGE_SHIFT);
236}
237
238/*
239 * Return the page size being used by the MMU to back a VMA. In the majority
240 * of cases, the page size used by the kernel matches the MMU size. On
241 * architectures where it differs, an architecture-specific version of this
242 * function is required.
243 */
244#ifndef vma_mmu_pagesize
245unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
246{
247	return vma_kernel_pagesize(vma);
248}
249#endif
250
251/*
252 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
253 * bits of the reservation map pointer, which are always clear due to
254 * alignment.
255 */
256#define HPAGE_RESV_OWNER    (1UL << 0)
257#define HPAGE_RESV_UNMAPPED (1UL << 1)
258#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259
260/*
261 * These helpers are used to track how many pages are reserved for
262 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263 * is guaranteed to have their future faults succeed.
264 *
265 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266 * the reserve counters are updated with the hugetlb_lock held. It is safe
267 * to reset the VMA at fork() time as it is not in use yet and there is no
268 * chance of the global counters getting corrupted as a result of the values.
269 *
270 * The private mapping reservation is represented in a subtly different
271 * manner to a shared mapping.  A shared mapping has a region map associated
272 * with the underlying file, this region map represents the backing file
273 * pages which have ever had a reservation assigned which this persists even
274 * after the page is instantiated.  A private mapping has a region map
275 * associated with the original mmap which is attached to all VMAs which
276 * reference it, this region map represents those offsets which have consumed
277 * reservation ie. where pages have been instantiated.
278 */
279static unsigned long get_vma_private_data(struct vm_area_struct *vma)
280{
281	return (unsigned long)vma->vm_private_data;
282}
283
284static void set_vma_private_data(struct vm_area_struct *vma,
285							unsigned long value)
286{
287	vma->vm_private_data = (void *)value;
288}
289
290struct resv_map {
291	struct kref refs;
292	struct list_head regions;
293};
294
295static struct resv_map *resv_map_alloc(void)
296{
297	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
298	if (!resv_map)
299		return NULL;
300
301	kref_init(&resv_map->refs);
302	INIT_LIST_HEAD(&resv_map->regions);
303
304	return resv_map;
305}
306
307static void resv_map_release(struct kref *ref)
308{
309	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
310
311	/* Clear out any active regions before we release the map. */
312	region_truncate(&resv_map->regions, 0);
313	kfree(resv_map);
314}
315
316static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317{
318	VM_BUG_ON(!is_vm_hugetlb_page(vma));
319	if (!(vma->vm_flags & VM_SHARED))
320		return (struct resv_map *)(get_vma_private_data(vma) &
321							~HPAGE_RESV_MASK);
322	return NULL;
323}
324
325static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326{
327	VM_BUG_ON(!is_vm_hugetlb_page(vma));
328	VM_BUG_ON(vma->vm_flags & VM_SHARED);
329
330	set_vma_private_data(vma, (get_vma_private_data(vma) &
331				HPAGE_RESV_MASK) | (unsigned long)map);
332}
333
334static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
335{
336	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337	VM_BUG_ON(vma->vm_flags & VM_SHARED);
338
339	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340}
341
342static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
343{
344	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345
346	return (get_vma_private_data(vma) & flag) != 0;
347}
348
349/* Decrement the reserved pages in the hugepage pool by one */
350static void decrement_hugepage_resv_vma(struct hstate *h,
351			struct vm_area_struct *vma)
352{
353	if (vma->vm_flags & VM_NORESERVE)
354		return;
355
356	if (vma->vm_flags & VM_SHARED) {
357		/* Shared mappings always use reserves */
358		h->resv_huge_pages--;
359	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360		/*
361		 * Only the process that called mmap() has reserves for
362		 * private mappings.
363		 */
364		h->resv_huge_pages--;
365	}
366}
367
368/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
370{
371	VM_BUG_ON(!is_vm_hugetlb_page(vma));
372	if (!(vma->vm_flags & VM_SHARED))
373		vma->vm_private_data = (void *)0;
374}
375
376/* Returns true if the VMA has associated reserve pages */
377static int vma_has_reserves(struct vm_area_struct *vma)
378{
379	if (vma->vm_flags & VM_SHARED)
380		return 1;
381	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
382		return 1;
383	return 0;
384}
385
386static void clear_gigantic_page(struct page *page,
387			unsigned long addr, unsigned long sz)
388{
389	int i;
390	struct page *p = page;
391
392	might_sleep();
393	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
394		cond_resched();
395		clear_user_highpage(p, addr + i * PAGE_SIZE);
396	}
397}
398static void clear_huge_page(struct page *page,
399			unsigned long addr, unsigned long sz)
400{
401	int i;
402
403	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
404		clear_gigantic_page(page, addr, sz);
405		return;
406	}
407
408	might_sleep();
409	for (i = 0; i < sz/PAGE_SIZE; i++) {
410		cond_resched();
411		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
412	}
413}
414
415static void copy_gigantic_page(struct page *dst, struct page *src,
416			   unsigned long addr, struct vm_area_struct *vma)
417{
418	int i;
419	struct hstate *h = hstate_vma(vma);
420	struct page *dst_base = dst;
421	struct page *src_base = src;
422	might_sleep();
423	for (i = 0; i < pages_per_huge_page(h); ) {
424		cond_resched();
425		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
426
427		i++;
428		dst = mem_map_next(dst, dst_base, i);
429		src = mem_map_next(src, src_base, i);
430	}
431}
432static void copy_huge_page(struct page *dst, struct page *src,
433			   unsigned long addr, struct vm_area_struct *vma)
434{
435	int i;
436	struct hstate *h = hstate_vma(vma);
437
438	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
439		copy_gigantic_page(dst, src, addr, vma);
440		return;
441	}
442
443	might_sleep();
444	for (i = 0; i < pages_per_huge_page(h); i++) {
445		cond_resched();
446		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
447	}
448}
449
450static void enqueue_huge_page(struct hstate *h, struct page *page)
451{
452	int nid = page_to_nid(page);
453	list_add(&page->lru, &h->hugepage_freelists[nid]);
454	h->free_huge_pages++;
455	h->free_huge_pages_node[nid]++;
456}
457
458static struct page *dequeue_huge_page(struct hstate *h)
459{
460	int nid;
461	struct page *page = NULL;
462
463	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
464		if (!list_empty(&h->hugepage_freelists[nid])) {
465			page = list_entry(h->hugepage_freelists[nid].next,
466					  struct page, lru);
467			list_del(&page->lru);
468			h->free_huge_pages--;
469			h->free_huge_pages_node[nid]--;
470			break;
471		}
472	}
473	return page;
474}
475
476static struct page *dequeue_huge_page_vma(struct hstate *h,
477				struct vm_area_struct *vma,
478				unsigned long address, int avoid_reserve)
479{
480	int nid;
481	struct page *page = NULL;
482	struct mempolicy *mpol;
483	nodemask_t *nodemask;
484	struct zonelist *zonelist = huge_zonelist(vma, address,
485					htlb_alloc_mask, &mpol, &nodemask);
486	struct zone *zone;
487	struct zoneref *z;
488
489	/*
490	 * A child process with MAP_PRIVATE mappings created by their parent
491	 * have no page reserves. This check ensures that reservations are
492	 * not "stolen". The child may still get SIGKILLed
493	 */
494	if (!vma_has_reserves(vma) &&
495			h->free_huge_pages - h->resv_huge_pages == 0)
496		return NULL;
497
498	/* If reserves cannot be used, ensure enough pages are in the pool */
499	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
500		return NULL;
501
502	for_each_zone_zonelist_nodemask(zone, z, zonelist,
503						MAX_NR_ZONES - 1, nodemask) {
504		nid = zone_to_nid(zone);
505		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
506		    !list_empty(&h->hugepage_freelists[nid])) {
507			page = list_entry(h->hugepage_freelists[nid].next,
508					  struct page, lru);
509			list_del(&page->lru);
510			h->free_huge_pages--;
511			h->free_huge_pages_node[nid]--;
512
513			if (!avoid_reserve)
514				decrement_hugepage_resv_vma(h, vma);
515
516			break;
517		}
518	}
519	mpol_cond_put(mpol);
520	return page;
521}
522
523static void update_and_free_page(struct hstate *h, struct page *page)
524{
525	int i;
526
527	VM_BUG_ON(h->order >= MAX_ORDER);
528
529	h->nr_huge_pages--;
530	h->nr_huge_pages_node[page_to_nid(page)]--;
531	for (i = 0; i < pages_per_huge_page(h); i++) {
532		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
533				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
534				1 << PG_private | 1<< PG_writeback);
535	}
536	set_compound_page_dtor(page, NULL);
537	set_page_refcounted(page);
538	arch_release_hugepage(page);
539	__free_pages(page, huge_page_order(h));
540}
541
542struct hstate *size_to_hstate(unsigned long size)
543{
544	struct hstate *h;
545
546	for_each_hstate(h) {
547		if (huge_page_size(h) == size)
548			return h;
549	}
550	return NULL;
551}
552
553static void free_huge_page(struct page *page)
554{
555	/*
556	 * Can't pass hstate in here because it is called from the
557	 * compound page destructor.
558	 */
559	struct hstate *h = page_hstate(page);
560	int nid = page_to_nid(page);
561	struct address_space *mapping;
562
563	mapping = (struct address_space *) page_private(page);
564	set_page_private(page, 0);
565	BUG_ON(page_count(page));
566	INIT_LIST_HEAD(&page->lru);
567
568	spin_lock(&hugetlb_lock);
569	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
570		update_and_free_page(h, page);
571		h->surplus_huge_pages--;
572		h->surplus_huge_pages_node[nid]--;
573	} else {
574		enqueue_huge_page(h, page);
575	}
576	spin_unlock(&hugetlb_lock);
577	if (mapping)
578		hugetlb_put_quota(mapping, 1);
579}
580
581/*
582 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
583 * balanced by operating on them in a round-robin fashion.
584 * Returns 1 if an adjustment was made.
585 */
586static int adjust_pool_surplus(struct hstate *h, int delta)
587{
588	static int prev_nid;
589	int nid = prev_nid;
590	int ret = 0;
591
592	VM_BUG_ON(delta != -1 && delta != 1);
593	do {
594		nid = next_node(nid, node_online_map);
595		if (nid == MAX_NUMNODES)
596			nid = first_node(node_online_map);
597
598		/* To shrink on this node, there must be a surplus page */
599		if (delta < 0 && !h->surplus_huge_pages_node[nid])
600			continue;
601		/* Surplus cannot exceed the total number of pages */
602		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
603						h->nr_huge_pages_node[nid])
604			continue;
605
606		h->surplus_huge_pages += delta;
607		h->surplus_huge_pages_node[nid] += delta;
608		ret = 1;
609		break;
610	} while (nid != prev_nid);
611
612	prev_nid = nid;
613	return ret;
614}
615
616static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
617{
618	set_compound_page_dtor(page, free_huge_page);
619	spin_lock(&hugetlb_lock);
620	h->nr_huge_pages++;
621	h->nr_huge_pages_node[nid]++;
622	spin_unlock(&hugetlb_lock);
623	put_page(page); /* free it into the hugepage allocator */
624}
625
626static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
627{
628	struct page *page;
629
630	if (h->order >= MAX_ORDER)
631		return NULL;
632
633	page = alloc_pages_node(nid,
634		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
635						__GFP_REPEAT|__GFP_NOWARN,
636		huge_page_order(h));
637	if (page) {
638		if (arch_prepare_hugepage(page)) {
639			__free_pages(page, huge_page_order(h));
640			return NULL;
641		}
642		prep_new_huge_page(h, page, nid);
643	}
644
645	return page;
646}
647
648/*
649 * Use a helper variable to find the next node and then
650 * copy it back to hugetlb_next_nid afterwards:
651 * otherwise there's a window in which a racer might
652 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
653 * But we don't need to use a spin_lock here: it really
654 * doesn't matter if occasionally a racer chooses the
655 * same nid as we do.  Move nid forward in the mask even
656 * if we just successfully allocated a hugepage so that
657 * the next caller gets hugepages on the next node.
658 */
659static int hstate_next_node(struct hstate *h)
660{
661	int next_nid;
662	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
663	if (next_nid == MAX_NUMNODES)
664		next_nid = first_node(node_online_map);
665	h->hugetlb_next_nid = next_nid;
666	return next_nid;
667}
668
669static int alloc_fresh_huge_page(struct hstate *h)
670{
671	struct page *page;
672	int start_nid;
673	int next_nid;
674	int ret = 0;
675
676	start_nid = h->hugetlb_next_nid;
677
678	do {
679		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
680		if (page)
681			ret = 1;
682		next_nid = hstate_next_node(h);
683	} while (!page && h->hugetlb_next_nid != start_nid);
684
685	if (ret)
686		count_vm_event(HTLB_BUDDY_PGALLOC);
687	else
688		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
689
690	return ret;
691}
692
693static struct page *alloc_buddy_huge_page(struct hstate *h,
694			struct vm_area_struct *vma, unsigned long address)
695{
696	struct page *page;
697	unsigned int nid;
698
699	if (h->order >= MAX_ORDER)
700		return NULL;
701
702	/*
703	 * Assume we will successfully allocate the surplus page to
704	 * prevent racing processes from causing the surplus to exceed
705	 * overcommit
706	 *
707	 * This however introduces a different race, where a process B
708	 * tries to grow the static hugepage pool while alloc_pages() is
709	 * called by process A. B will only examine the per-node
710	 * counters in determining if surplus huge pages can be
711	 * converted to normal huge pages in adjust_pool_surplus(). A
712	 * won't be able to increment the per-node counter, until the
713	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
714	 * no more huge pages can be converted from surplus to normal
715	 * state (and doesn't try to convert again). Thus, we have a
716	 * case where a surplus huge page exists, the pool is grown, and
717	 * the surplus huge page still exists after, even though it
718	 * should just have been converted to a normal huge page. This
719	 * does not leak memory, though, as the hugepage will be freed
720	 * once it is out of use. It also does not allow the counters to
721	 * go out of whack in adjust_pool_surplus() as we don't modify
722	 * the node values until we've gotten the hugepage and only the
723	 * per-node value is checked there.
724	 */
725	spin_lock(&hugetlb_lock);
726	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
727		spin_unlock(&hugetlb_lock);
728		return NULL;
729	} else {
730		h->nr_huge_pages++;
731		h->surplus_huge_pages++;
732	}
733	spin_unlock(&hugetlb_lock);
734
735	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
736					__GFP_REPEAT|__GFP_NOWARN,
737					huge_page_order(h));
738
739	if (page && arch_prepare_hugepage(page)) {
740		__free_pages(page, huge_page_order(h));
741		return NULL;
742	}
743
744	spin_lock(&hugetlb_lock);
745	if (page) {
746		/*
747		 * This page is now managed by the hugetlb allocator and has
748		 * no users -- drop the buddy allocator's reference.
749		 */
750		put_page_testzero(page);
751		VM_BUG_ON(page_count(page));
752		nid = page_to_nid(page);
753		set_compound_page_dtor(page, free_huge_page);
754		/*
755		 * We incremented the global counters already
756		 */
757		h->nr_huge_pages_node[nid]++;
758		h->surplus_huge_pages_node[nid]++;
759		__count_vm_event(HTLB_BUDDY_PGALLOC);
760	} else {
761		h->nr_huge_pages--;
762		h->surplus_huge_pages--;
763		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
764	}
765	spin_unlock(&hugetlb_lock);
766
767	return page;
768}
769
770/*
771 * Increase the hugetlb pool such that it can accomodate a reservation
772 * of size 'delta'.
773 */
774static int gather_surplus_pages(struct hstate *h, int delta)
775{
776	struct list_head surplus_list;
777	struct page *page, *tmp;
778	int ret, i;
779	int needed, allocated;
780
781	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
782	if (needed <= 0) {
783		h->resv_huge_pages += delta;
784		return 0;
785	}
786
787	allocated = 0;
788	INIT_LIST_HEAD(&surplus_list);
789
790	ret = -ENOMEM;
791retry:
792	spin_unlock(&hugetlb_lock);
793	for (i = 0; i < needed; i++) {
794		page = alloc_buddy_huge_page(h, NULL, 0);
795		if (!page) {
796			/*
797			 * We were not able to allocate enough pages to
798			 * satisfy the entire reservation so we free what
799			 * we've allocated so far.
800			 */
801			spin_lock(&hugetlb_lock);
802			needed = 0;
803			goto free;
804		}
805
806		list_add(&page->lru, &surplus_list);
807	}
808	allocated += needed;
809
810	/*
811	 * After retaking hugetlb_lock, we need to recalculate 'needed'
812	 * because either resv_huge_pages or free_huge_pages may have changed.
813	 */
814	spin_lock(&hugetlb_lock);
815	needed = (h->resv_huge_pages + delta) -
816			(h->free_huge_pages + allocated);
817	if (needed > 0)
818		goto retry;
819
820	/*
821	 * The surplus_list now contains _at_least_ the number of extra pages
822	 * needed to accomodate the reservation.  Add the appropriate number
823	 * of pages to the hugetlb pool and free the extras back to the buddy
824	 * allocator.  Commit the entire reservation here to prevent another
825	 * process from stealing the pages as they are added to the pool but
826	 * before they are reserved.
827	 */
828	needed += allocated;
829	h->resv_huge_pages += delta;
830	ret = 0;
831free:
832	/* Free the needed pages to the hugetlb pool */
833	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
834		if ((--needed) < 0)
835			break;
836		list_del(&page->lru);
837		enqueue_huge_page(h, page);
838	}
839
840	/* Free unnecessary surplus pages to the buddy allocator */
841	if (!list_empty(&surplus_list)) {
842		spin_unlock(&hugetlb_lock);
843		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
844			list_del(&page->lru);
845			/*
846			 * The page has a reference count of zero already, so
847			 * call free_huge_page directly instead of using
848			 * put_page.  This must be done with hugetlb_lock
849			 * unlocked which is safe because free_huge_page takes
850			 * hugetlb_lock before deciding how to free the page.
851			 */
852			free_huge_page(page);
853		}
854		spin_lock(&hugetlb_lock);
855	}
856
857	return ret;
858}
859
860/*
861 * When releasing a hugetlb pool reservation, any surplus pages that were
862 * allocated to satisfy the reservation must be explicitly freed if they were
863 * never used.
864 */
865static void return_unused_surplus_pages(struct hstate *h,
866					unsigned long unused_resv_pages)
867{
868	static int nid = -1;
869	struct page *page;
870	unsigned long nr_pages;
871
872	/*
873	 * We want to release as many surplus pages as possible, spread
874	 * evenly across all nodes. Iterate across all nodes until we
875	 * can no longer free unreserved surplus pages. This occurs when
876	 * the nodes with surplus pages have no free pages.
877	 */
878	unsigned long remaining_iterations = num_online_nodes();
879
880	/* Uncommit the reservation */
881	h->resv_huge_pages -= unused_resv_pages;
882
883	/* Cannot return gigantic pages currently */
884	if (h->order >= MAX_ORDER)
885		return;
886
887	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
888
889	while (remaining_iterations-- && nr_pages) {
890		nid = next_node(nid, node_online_map);
891		if (nid == MAX_NUMNODES)
892			nid = first_node(node_online_map);
893
894		if (!h->surplus_huge_pages_node[nid])
895			continue;
896
897		if (!list_empty(&h->hugepage_freelists[nid])) {
898			page = list_entry(h->hugepage_freelists[nid].next,
899					  struct page, lru);
900			list_del(&page->lru);
901			update_and_free_page(h, page);
902			h->free_huge_pages--;
903			h->free_huge_pages_node[nid]--;
904			h->surplus_huge_pages--;
905			h->surplus_huge_pages_node[nid]--;
906			nr_pages--;
907			remaining_iterations = num_online_nodes();
908		}
909	}
910}
911
912/*
913 * Determine if the huge page at addr within the vma has an associated
914 * reservation.  Where it does not we will need to logically increase
915 * reservation and actually increase quota before an allocation can occur.
916 * Where any new reservation would be required the reservation change is
917 * prepared, but not committed.  Once the page has been quota'd allocated
918 * an instantiated the change should be committed via vma_commit_reservation.
919 * No action is required on failure.
920 */
921static long vma_needs_reservation(struct hstate *h,
922			struct vm_area_struct *vma, unsigned long addr)
923{
924	struct address_space *mapping = vma->vm_file->f_mapping;
925	struct inode *inode = mapping->host;
926
927	if (vma->vm_flags & VM_SHARED) {
928		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
929		return region_chg(&inode->i_mapping->private_list,
930							idx, idx + 1);
931
932	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
933		return 1;
934
935	} else  {
936		long err;
937		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
938		struct resv_map *reservations = vma_resv_map(vma);
939
940		err = region_chg(&reservations->regions, idx, idx + 1);
941		if (err < 0)
942			return err;
943		return 0;
944	}
945}
946static void vma_commit_reservation(struct hstate *h,
947			struct vm_area_struct *vma, unsigned long addr)
948{
949	struct address_space *mapping = vma->vm_file->f_mapping;
950	struct inode *inode = mapping->host;
951
952	if (vma->vm_flags & VM_SHARED) {
953		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
954		region_add(&inode->i_mapping->private_list, idx, idx + 1);
955
956	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
957		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
958		struct resv_map *reservations = vma_resv_map(vma);
959
960		/* Mark this page used in the map. */
961		region_add(&reservations->regions, idx, idx + 1);
962	}
963}
964
965static struct page *alloc_huge_page(struct vm_area_struct *vma,
966				    unsigned long addr, int avoid_reserve)
967{
968	struct hstate *h = hstate_vma(vma);
969	struct page *page;
970	struct address_space *mapping = vma->vm_file->f_mapping;
971	struct inode *inode = mapping->host;
972	long chg;
973
974	/*
975	 * Processes that did not create the mapping will have no reserves and
976	 * will not have accounted against quota. Check that the quota can be
977	 * made before satisfying the allocation
978	 * MAP_NORESERVE mappings may also need pages and quota allocated
979	 * if no reserve mapping overlaps.
980	 */
981	chg = vma_needs_reservation(h, vma, addr);
982	if (chg < 0)
983		return ERR_PTR(chg);
984	if (chg)
985		if (hugetlb_get_quota(inode->i_mapping, chg))
986			return ERR_PTR(-ENOSPC);
987
988	spin_lock(&hugetlb_lock);
989	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
990	spin_unlock(&hugetlb_lock);
991
992	if (!page) {
993		page = alloc_buddy_huge_page(h, vma, addr);
994		if (!page) {
995			hugetlb_put_quota(inode->i_mapping, chg);
996			return ERR_PTR(-VM_FAULT_OOM);
997		}
998	}
999
1000	set_page_refcounted(page);
1001	set_page_private(page, (unsigned long) mapping);
1002
1003	vma_commit_reservation(h, vma, addr);
1004
1005	return page;
1006}
1007
1008int __weak alloc_bootmem_huge_page(struct hstate *h)
1009{
1010	struct huge_bootmem_page *m;
1011	int nr_nodes = nodes_weight(node_online_map);
1012
1013	while (nr_nodes) {
1014		void *addr;
1015
1016		addr = __alloc_bootmem_node_nopanic(
1017				NODE_DATA(h->hugetlb_next_nid),
1018				huge_page_size(h), huge_page_size(h), 0);
1019
1020		if (addr) {
1021			/*
1022			 * Use the beginning of the huge page to store the
1023			 * huge_bootmem_page struct (until gather_bootmem
1024			 * puts them into the mem_map).
1025			 */
1026			m = addr;
1027			goto found;
1028		}
1029		hstate_next_node(h);
1030		nr_nodes--;
1031	}
1032	return 0;
1033
1034found:
1035	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1036	/* Put them into a private list first because mem_map is not up yet */
1037	list_add(&m->list, &huge_boot_pages);
1038	m->hstate = h;
1039	return 1;
1040}
1041
1042static void prep_compound_huge_page(struct page *page, int order)
1043{
1044	if (unlikely(order > (MAX_ORDER - 1)))
1045		prep_compound_gigantic_page(page, order);
1046	else
1047		prep_compound_page(page, order);
1048}
1049
1050/* Put bootmem huge pages into the standard lists after mem_map is up */
1051static void __init gather_bootmem_prealloc(void)
1052{
1053	struct huge_bootmem_page *m;
1054
1055	list_for_each_entry(m, &huge_boot_pages, list) {
1056		struct page *page = virt_to_page(m);
1057		struct hstate *h = m->hstate;
1058		__ClearPageReserved(page);
1059		WARN_ON(page_count(page) != 1);
1060		prep_compound_huge_page(page, h->order);
1061		prep_new_huge_page(h, page, page_to_nid(page));
1062	}
1063}
1064
1065static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1066{
1067	unsigned long i;
1068
1069	for (i = 0; i < h->max_huge_pages; ++i) {
1070		if (h->order >= MAX_ORDER) {
1071			if (!alloc_bootmem_huge_page(h))
1072				break;
1073		} else if (!alloc_fresh_huge_page(h))
1074			break;
1075	}
1076	h->max_huge_pages = i;
1077}
1078
1079static void __init hugetlb_init_hstates(void)
1080{
1081	struct hstate *h;
1082
1083	for_each_hstate(h) {
1084		/* oversize hugepages were init'ed in early boot */
1085		if (h->order < MAX_ORDER)
1086			hugetlb_hstate_alloc_pages(h);
1087	}
1088}
1089
1090static char * __init memfmt(char *buf, unsigned long n)
1091{
1092	if (n >= (1UL << 30))
1093		sprintf(buf, "%lu GB", n >> 30);
1094	else if (n >= (1UL << 20))
1095		sprintf(buf, "%lu MB", n >> 20);
1096	else
1097		sprintf(buf, "%lu KB", n >> 10);
1098	return buf;
1099}
1100
1101static void __init report_hugepages(void)
1102{
1103	struct hstate *h;
1104
1105	for_each_hstate(h) {
1106		char buf[32];
1107		printk(KERN_INFO "HugeTLB registered %s page size, "
1108				 "pre-allocated %ld pages\n",
1109			memfmt(buf, huge_page_size(h)),
1110			h->free_huge_pages);
1111	}
1112}
1113
1114#ifdef CONFIG_HIGHMEM
1115static void try_to_free_low(struct hstate *h, unsigned long count)
1116{
1117	int i;
1118
1119	if (h->order >= MAX_ORDER)
1120		return;
1121
1122	for (i = 0; i < MAX_NUMNODES; ++i) {
1123		struct page *page, *next;
1124		struct list_head *freel = &h->hugepage_freelists[i];
1125		list_for_each_entry_safe(page, next, freel, lru) {
1126			if (count >= h->nr_huge_pages)
1127				return;
1128			if (PageHighMem(page))
1129				continue;
1130			list_del(&page->lru);
1131			update_and_free_page(h, page);
1132			h->free_huge_pages--;
1133			h->free_huge_pages_node[page_to_nid(page)]--;
1134		}
1135	}
1136}
1137#else
1138static inline void try_to_free_low(struct hstate *h, unsigned long count)
1139{
1140}
1141#endif
1142
1143#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1144static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1145{
1146	unsigned long min_count, ret;
1147
1148	if (h->order >= MAX_ORDER)
1149		return h->max_huge_pages;
1150
1151	/*
1152	 * Increase the pool size
1153	 * First take pages out of surplus state.  Then make up the
1154	 * remaining difference by allocating fresh huge pages.
1155	 *
1156	 * We might race with alloc_buddy_huge_page() here and be unable
1157	 * to convert a surplus huge page to a normal huge page. That is
1158	 * not critical, though, it just means the overall size of the
1159	 * pool might be one hugepage larger than it needs to be, but
1160	 * within all the constraints specified by the sysctls.
1161	 */
1162	spin_lock(&hugetlb_lock);
1163	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1164		if (!adjust_pool_surplus(h, -1))
1165			break;
1166	}
1167
1168	while (count > persistent_huge_pages(h)) {
1169		/*
1170		 * If this allocation races such that we no longer need the
1171		 * page, free_huge_page will handle it by freeing the page
1172		 * and reducing the surplus.
1173		 */
1174		spin_unlock(&hugetlb_lock);
1175		ret = alloc_fresh_huge_page(h);
1176		spin_lock(&hugetlb_lock);
1177		if (!ret)
1178			goto out;
1179
1180	}
1181
1182	/*
1183	 * Decrease the pool size
1184	 * First return free pages to the buddy allocator (being careful
1185	 * to keep enough around to satisfy reservations).  Then place
1186	 * pages into surplus state as needed so the pool will shrink
1187	 * to the desired size as pages become free.
1188	 *
1189	 * By placing pages into the surplus state independent of the
1190	 * overcommit value, we are allowing the surplus pool size to
1191	 * exceed overcommit. There are few sane options here. Since
1192	 * alloc_buddy_huge_page() is checking the global counter,
1193	 * though, we'll note that we're not allowed to exceed surplus
1194	 * and won't grow the pool anywhere else. Not until one of the
1195	 * sysctls are changed, or the surplus pages go out of use.
1196	 */
1197	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1198	min_count = max(count, min_count);
1199	try_to_free_low(h, min_count);
1200	while (min_count < persistent_huge_pages(h)) {
1201		struct page *page = dequeue_huge_page(h);
1202		if (!page)
1203			break;
1204		update_and_free_page(h, page);
1205	}
1206	while (count < persistent_huge_pages(h)) {
1207		if (!adjust_pool_surplus(h, 1))
1208			break;
1209	}
1210out:
1211	ret = persistent_huge_pages(h);
1212	spin_unlock(&hugetlb_lock);
1213	return ret;
1214}
1215
1216#define HSTATE_ATTR_RO(_name) \
1217	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1218
1219#define HSTATE_ATTR(_name) \
1220	static struct kobj_attribute _name##_attr = \
1221		__ATTR(_name, 0644, _name##_show, _name##_store)
1222
1223static struct kobject *hugepages_kobj;
1224static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1225
1226static struct hstate *kobj_to_hstate(struct kobject *kobj)
1227{
1228	int i;
1229	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1230		if (hstate_kobjs[i] == kobj)
1231			return &hstates[i];
1232	BUG();
1233	return NULL;
1234}
1235
1236static ssize_t nr_hugepages_show(struct kobject *kobj,
1237					struct kobj_attribute *attr, char *buf)
1238{
1239	struct hstate *h = kobj_to_hstate(kobj);
1240	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1241}
1242static ssize_t nr_hugepages_store(struct kobject *kobj,
1243		struct kobj_attribute *attr, const char *buf, size_t count)
1244{
1245	int err;
1246	unsigned long input;
1247	struct hstate *h = kobj_to_hstate(kobj);
1248
1249	err = strict_strtoul(buf, 10, &input);
1250	if (err)
1251		return 0;
1252
1253	h->max_huge_pages = set_max_huge_pages(h, input);
1254
1255	return count;
1256}
1257HSTATE_ATTR(nr_hugepages);
1258
1259static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1260					struct kobj_attribute *attr, char *buf)
1261{
1262	struct hstate *h = kobj_to_hstate(kobj);
1263	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1264}
1265static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1266		struct kobj_attribute *attr, const char *buf, size_t count)
1267{
1268	int err;
1269	unsigned long input;
1270	struct hstate *h = kobj_to_hstate(kobj);
1271
1272	err = strict_strtoul(buf, 10, &input);
1273	if (err)
1274		return 0;
1275
1276	spin_lock(&hugetlb_lock);
1277	h->nr_overcommit_huge_pages = input;
1278	spin_unlock(&hugetlb_lock);
1279
1280	return count;
1281}
1282HSTATE_ATTR(nr_overcommit_hugepages);
1283
1284static ssize_t free_hugepages_show(struct kobject *kobj,
1285					struct kobj_attribute *attr, char *buf)
1286{
1287	struct hstate *h = kobj_to_hstate(kobj);
1288	return sprintf(buf, "%lu\n", h->free_huge_pages);
1289}
1290HSTATE_ATTR_RO(free_hugepages);
1291
1292static ssize_t resv_hugepages_show(struct kobject *kobj,
1293					struct kobj_attribute *attr, char *buf)
1294{
1295	struct hstate *h = kobj_to_hstate(kobj);
1296	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1297}
1298HSTATE_ATTR_RO(resv_hugepages);
1299
1300static ssize_t surplus_hugepages_show(struct kobject *kobj,
1301					struct kobj_attribute *attr, char *buf)
1302{
1303	struct hstate *h = kobj_to_hstate(kobj);
1304	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1305}
1306HSTATE_ATTR_RO(surplus_hugepages);
1307
1308static struct attribute *hstate_attrs[] = {
1309	&nr_hugepages_attr.attr,
1310	&nr_overcommit_hugepages_attr.attr,
1311	&free_hugepages_attr.attr,
1312	&resv_hugepages_attr.attr,
1313	&surplus_hugepages_attr.attr,
1314	NULL,
1315};
1316
1317static struct attribute_group hstate_attr_group = {
1318	.attrs = hstate_attrs,
1319};
1320
1321static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1322{
1323	int retval;
1324
1325	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1326							hugepages_kobj);
1327	if (!hstate_kobjs[h - hstates])
1328		return -ENOMEM;
1329
1330	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1331							&hstate_attr_group);
1332	if (retval)
1333		kobject_put(hstate_kobjs[h - hstates]);
1334
1335	return retval;
1336}
1337
1338static void __init hugetlb_sysfs_init(void)
1339{
1340	struct hstate *h;
1341	int err;
1342
1343	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1344	if (!hugepages_kobj)
1345		return;
1346
1347	for_each_hstate(h) {
1348		err = hugetlb_sysfs_add_hstate(h);
1349		if (err)
1350			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1351								h->name);
1352	}
1353}
1354
1355static void __exit hugetlb_exit(void)
1356{
1357	struct hstate *h;
1358
1359	for_each_hstate(h) {
1360		kobject_put(hstate_kobjs[h - hstates]);
1361	}
1362
1363	kobject_put(hugepages_kobj);
1364}
1365module_exit(hugetlb_exit);
1366
1367static int __init hugetlb_init(void)
1368{
1369	/* Some platform decide whether they support huge pages at boot
1370	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1371	 * there is no such support
1372	 */
1373	if (HPAGE_SHIFT == 0)
1374		return 0;
1375
1376	if (!size_to_hstate(default_hstate_size)) {
1377		default_hstate_size = HPAGE_SIZE;
1378		if (!size_to_hstate(default_hstate_size))
1379			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1380	}
1381	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1382	if (default_hstate_max_huge_pages)
1383		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1384
1385	hugetlb_init_hstates();
1386
1387	gather_bootmem_prealloc();
1388
1389	report_hugepages();
1390
1391	hugetlb_sysfs_init();
1392
1393	return 0;
1394}
1395module_init(hugetlb_init);
1396
1397/* Should be called on processing a hugepagesz=... option */
1398void __init hugetlb_add_hstate(unsigned order)
1399{
1400	struct hstate *h;
1401	unsigned long i;
1402
1403	if (size_to_hstate(PAGE_SIZE << order)) {
1404		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1405		return;
1406	}
1407	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1408	BUG_ON(order == 0);
1409	h = &hstates[max_hstate++];
1410	h->order = order;
1411	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1412	h->nr_huge_pages = 0;
1413	h->free_huge_pages = 0;
1414	for (i = 0; i < MAX_NUMNODES; ++i)
1415		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1416	h->hugetlb_next_nid = first_node(node_online_map);
1417	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1418					huge_page_size(h)/1024);
1419
1420	parsed_hstate = h;
1421}
1422
1423static int __init hugetlb_nrpages_setup(char *s)
1424{
1425	unsigned long *mhp;
1426	static unsigned long *last_mhp;
1427
1428	/*
1429	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1430	 * so this hugepages= parameter goes to the "default hstate".
1431	 */
1432	if (!max_hstate)
1433		mhp = &default_hstate_max_huge_pages;
1434	else
1435		mhp = &parsed_hstate->max_huge_pages;
1436
1437	if (mhp == last_mhp) {
1438		printk(KERN_WARNING "hugepages= specified twice without "
1439			"interleaving hugepagesz=, ignoring\n");
1440		return 1;
1441	}
1442
1443	if (sscanf(s, "%lu", mhp) <= 0)
1444		*mhp = 0;
1445
1446	/*
1447	 * Global state is always initialized later in hugetlb_init.
1448	 * But we need to allocate >= MAX_ORDER hstates here early to still
1449	 * use the bootmem allocator.
1450	 */
1451	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1452		hugetlb_hstate_alloc_pages(parsed_hstate);
1453
1454	last_mhp = mhp;
1455
1456	return 1;
1457}
1458__setup("hugepages=", hugetlb_nrpages_setup);
1459
1460static int __init hugetlb_default_setup(char *s)
1461{
1462	default_hstate_size = memparse(s, &s);
1463	return 1;
1464}
1465__setup("default_hugepagesz=", hugetlb_default_setup);
1466
1467static unsigned int cpuset_mems_nr(unsigned int *array)
1468{
1469	int node;
1470	unsigned int nr = 0;
1471
1472	for_each_node_mask(node, cpuset_current_mems_allowed)
1473		nr += array[node];
1474
1475	return nr;
1476}
1477
1478#ifdef CONFIG_SYSCTL
1479int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1480			   struct file *file, void __user *buffer,
1481			   size_t *length, loff_t *ppos)
1482{
1483	struct hstate *h = &default_hstate;
1484	unsigned long tmp;
1485
1486	if (!write)
1487		tmp = h->max_huge_pages;
1488
1489	table->data = &tmp;
1490	table->maxlen = sizeof(unsigned long);
1491	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1492
1493	if (write)
1494		h->max_huge_pages = set_max_huge_pages(h, tmp);
1495
1496	return 0;
1497}
1498
1499int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1500			struct file *file, void __user *buffer,
1501			size_t *length, loff_t *ppos)
1502{
1503	proc_dointvec(table, write, file, buffer, length, ppos);
1504	if (hugepages_treat_as_movable)
1505		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1506	else
1507		htlb_alloc_mask = GFP_HIGHUSER;
1508	return 0;
1509}
1510
1511int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1512			struct file *file, void __user *buffer,
1513			size_t *length, loff_t *ppos)
1514{
1515	struct hstate *h = &default_hstate;
1516	unsigned long tmp;
1517
1518	if (!write)
1519		tmp = h->nr_overcommit_huge_pages;
1520
1521	table->data = &tmp;
1522	table->maxlen = sizeof(unsigned long);
1523	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1524
1525	if (write) {
1526		spin_lock(&hugetlb_lock);
1527		h->nr_overcommit_huge_pages = tmp;
1528		spin_unlock(&hugetlb_lock);
1529	}
1530
1531	return 0;
1532}
1533
1534#endif /* CONFIG_SYSCTL */
1535
1536void hugetlb_report_meminfo(struct seq_file *m)
1537{
1538	struct hstate *h = &default_hstate;
1539	seq_printf(m,
1540			"HugePages_Total:   %5lu\n"
1541			"HugePages_Free:    %5lu\n"
1542			"HugePages_Rsvd:    %5lu\n"
1543			"HugePages_Surp:    %5lu\n"
1544			"Hugepagesize:   %8lu kB\n",
1545			h->nr_huge_pages,
1546			h->free_huge_pages,
1547			h->resv_huge_pages,
1548			h->surplus_huge_pages,
1549			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1550}
1551
1552int hugetlb_report_node_meminfo(int nid, char *buf)
1553{
1554	struct hstate *h = &default_hstate;
1555	return sprintf(buf,
1556		"Node %d HugePages_Total: %5u\n"
1557		"Node %d HugePages_Free:  %5u\n"
1558		"Node %d HugePages_Surp:  %5u\n",
1559		nid, h->nr_huge_pages_node[nid],
1560		nid, h->free_huge_pages_node[nid],
1561		nid, h->surplus_huge_pages_node[nid]);
1562}
1563
1564/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1565unsigned long hugetlb_total_pages(void)
1566{
1567	struct hstate *h = &default_hstate;
1568	return h->nr_huge_pages * pages_per_huge_page(h);
1569}
1570
1571static int hugetlb_acct_memory(struct hstate *h, long delta)
1572{
1573	int ret = -ENOMEM;
1574
1575	spin_lock(&hugetlb_lock);
1576	/*
1577	 * When cpuset is configured, it breaks the strict hugetlb page
1578	 * reservation as the accounting is done on a global variable. Such
1579	 * reservation is completely rubbish in the presence of cpuset because
1580	 * the reservation is not checked against page availability for the
1581	 * current cpuset. Application can still potentially OOM'ed by kernel
1582	 * with lack of free htlb page in cpuset that the task is in.
1583	 * Attempt to enforce strict accounting with cpuset is almost
1584	 * impossible (or too ugly) because cpuset is too fluid that
1585	 * task or memory node can be dynamically moved between cpusets.
1586	 *
1587	 * The change of semantics for shared hugetlb mapping with cpuset is
1588	 * undesirable. However, in order to preserve some of the semantics,
1589	 * we fall back to check against current free page availability as
1590	 * a best attempt and hopefully to minimize the impact of changing
1591	 * semantics that cpuset has.
1592	 */
1593	if (delta > 0) {
1594		if (gather_surplus_pages(h, delta) < 0)
1595			goto out;
1596
1597		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1598			return_unused_surplus_pages(h, delta);
1599			goto out;
1600		}
1601	}
1602
1603	ret = 0;
1604	if (delta < 0)
1605		return_unused_surplus_pages(h, (unsigned long) -delta);
1606
1607out:
1608	spin_unlock(&hugetlb_lock);
1609	return ret;
1610}
1611
1612static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1613{
1614	struct resv_map *reservations = vma_resv_map(vma);
1615
1616	/*
1617	 * This new VMA should share its siblings reservation map if present.
1618	 * The VMA will only ever have a valid reservation map pointer where
1619	 * it is being copied for another still existing VMA.  As that VMA
1620	 * has a reference to the reservation map it cannot dissappear until
1621	 * after this open call completes.  It is therefore safe to take a
1622	 * new reference here without additional locking.
1623	 */
1624	if (reservations)
1625		kref_get(&reservations->refs);
1626}
1627
1628static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1629{
1630	struct hstate *h = hstate_vma(vma);
1631	struct resv_map *reservations = vma_resv_map(vma);
1632	unsigned long reserve;
1633	unsigned long start;
1634	unsigned long end;
1635
1636	if (reservations) {
1637		start = vma_hugecache_offset(h, vma, vma->vm_start);
1638		end = vma_hugecache_offset(h, vma, vma->vm_end);
1639
1640		reserve = (end - start) -
1641			region_count(&reservations->regions, start, end);
1642
1643		kref_put(&reservations->refs, resv_map_release);
1644
1645		if (reserve) {
1646			hugetlb_acct_memory(h, -reserve);
1647			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1648		}
1649	}
1650}
1651
1652/*
1653 * We cannot handle pagefaults against hugetlb pages at all.  They cause
1654 * handle_mm_fault() to try to instantiate regular-sized pages in the
1655 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1656 * this far.
1657 */
1658static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1659{
1660	BUG();
1661	return 0;
1662}
1663
1664struct vm_operations_struct hugetlb_vm_ops = {
1665	.fault = hugetlb_vm_op_fault,
1666	.open = hugetlb_vm_op_open,
1667	.close = hugetlb_vm_op_close,
1668};
1669
1670static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1671				int writable)
1672{
1673	pte_t entry;
1674
1675	if (writable) {
1676		entry =
1677		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1678	} else {
1679		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1680	}
1681	entry = pte_mkyoung(entry);
1682	entry = pte_mkhuge(entry);
1683
1684	return entry;
1685}
1686
1687static void set_huge_ptep_writable(struct vm_area_struct *vma,
1688				   unsigned long address, pte_t *ptep)
1689{
1690	pte_t entry;
1691
1692	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1693	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1694		update_mmu_cache(vma, address, entry);
1695	}
1696}
1697
1698
1699int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1700			    struct vm_area_struct *vma)
1701{
1702	pte_t *src_pte, *dst_pte, entry;
1703	struct page *ptepage;
1704	unsigned long addr;
1705	int cow;
1706	struct hstate *h = hstate_vma(vma);
1707	unsigned long sz = huge_page_size(h);
1708
1709	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1710
1711	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1712		src_pte = huge_pte_offset(src, addr);
1713		if (!src_pte)
1714			continue;
1715		dst_pte = huge_pte_alloc(dst, addr, sz);
1716		if (!dst_pte)
1717			goto nomem;
1718
1719		/* If the pagetables are shared don't copy or take references */
1720		if (dst_pte == src_pte)
1721			continue;
1722
1723		spin_lock(&dst->page_table_lock);
1724		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1725		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1726			if (cow)
1727				huge_ptep_set_wrprotect(src, addr, src_pte);
1728			entry = huge_ptep_get(src_pte);
1729			ptepage = pte_page(entry);
1730			get_page(ptepage);
1731			set_huge_pte_at(dst, addr, dst_pte, entry);
1732		}
1733		spin_unlock(&src->page_table_lock);
1734		spin_unlock(&dst->page_table_lock);
1735	}
1736	return 0;
1737
1738nomem:
1739	return -ENOMEM;
1740}
1741
1742void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1743			    unsigned long end, struct page *ref_page)
1744{
1745	struct mm_struct *mm = vma->vm_mm;
1746	unsigned long address;
1747	pte_t *ptep;
1748	pte_t pte;
1749	struct page *page;
1750	struct page *tmp;
1751	struct hstate *h = hstate_vma(vma);
1752	unsigned long sz = huge_page_size(h);
1753
1754	/*
1755	 * A page gathering list, protected by per file i_mmap_lock. The
1756	 * lock is used to avoid list corruption from multiple unmapping
1757	 * of the same page since we are using page->lru.
1758	 */
1759	LIST_HEAD(page_list);
1760
1761	WARN_ON(!is_vm_hugetlb_page(vma));
1762	BUG_ON(start & ~huge_page_mask(h));
1763	BUG_ON(end & ~huge_page_mask(h));
1764
1765	mmu_notifier_invalidate_range_start(mm, start, end);
1766	spin_lock(&mm->page_table_lock);
1767	for (address = start; address < end; address += sz) {
1768		ptep = huge_pte_offset(mm, address);
1769		if (!ptep)
1770			continue;
1771
1772		if (huge_pmd_unshare(mm, &address, ptep))
1773			continue;
1774
1775		/*
1776		 * If a reference page is supplied, it is because a specific
1777		 * page is being unmapped, not a range. Ensure the page we
1778		 * are about to unmap is the actual page of interest.
1779		 */
1780		if (ref_page) {
1781			pte = huge_ptep_get(ptep);
1782			if (huge_pte_none(pte))
1783				continue;
1784			page = pte_page(pte);
1785			if (page != ref_page)
1786				continue;
1787
1788			/*
1789			 * Mark the VMA as having unmapped its page so that
1790			 * future faults in this VMA will fail rather than
1791			 * looking like data was lost
1792			 */
1793			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1794		}
1795
1796		pte = huge_ptep_get_and_clear(mm, address, ptep);
1797		if (huge_pte_none(pte))
1798			continue;
1799
1800		page = pte_page(pte);
1801		if (pte_dirty(pte))
1802			set_page_dirty(page);
1803		list_add(&page->lru, &page_list);
1804	}
1805	spin_unlock(&mm->page_table_lock);
1806	flush_tlb_range(vma, start, end);
1807	mmu_notifier_invalidate_range_end(mm, start, end);
1808	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1809		list_del(&page->lru);
1810		put_page(page);
1811	}
1812}
1813
1814void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1815			  unsigned long end, struct page *ref_page)
1816{
1817	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1818	__unmap_hugepage_range(vma, start, end, ref_page);
1819	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1820}
1821
1822/*
1823 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1824 * mappping it owns the reserve page for. The intention is to unmap the page
1825 * from other VMAs and let the children be SIGKILLed if they are faulting the
1826 * same region.
1827 */
1828static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1829				struct page *page, unsigned long address)
1830{
1831	struct hstate *h = hstate_vma(vma);
1832	struct vm_area_struct *iter_vma;
1833	struct address_space *mapping;
1834	struct prio_tree_iter iter;
1835	pgoff_t pgoff;
1836
1837	/*
1838	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1839	 * from page cache lookup which is in HPAGE_SIZE units.
1840	 */
1841	address = address & huge_page_mask(h);
1842	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1843		+ (vma->vm_pgoff >> PAGE_SHIFT);
1844	mapping = (struct address_space *)page_private(page);
1845
1846	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1847		/* Do not unmap the current VMA */
1848		if (iter_vma == vma)
1849			continue;
1850
1851		/*
1852		 * Unmap the page from other VMAs without their own reserves.
1853		 * They get marked to be SIGKILLed if they fault in these
1854		 * areas. This is because a future no-page fault on this VMA
1855		 * could insert a zeroed page instead of the data existing
1856		 * from the time of fork. This would look like data corruption
1857		 */
1858		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1859			unmap_hugepage_range(iter_vma,
1860				address, address + huge_page_size(h),
1861				page);
1862	}
1863
1864	return 1;
1865}
1866
1867static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1868			unsigned long address, pte_t *ptep, pte_t pte,
1869			struct page *pagecache_page)
1870{
1871	struct hstate *h = hstate_vma(vma);
1872	struct page *old_page, *new_page;
1873	int avoidcopy;
1874	int outside_reserve = 0;
1875
1876	old_page = pte_page(pte);
1877
1878retry_avoidcopy:
1879	/* If no-one else is actually using this page, avoid the copy
1880	 * and just make the page writable */
1881	avoidcopy = (page_count(old_page) == 1);
1882	if (avoidcopy) {
1883		set_huge_ptep_writable(vma, address, ptep);
1884		return 0;
1885	}
1886
1887	/*
1888	 * If the process that created a MAP_PRIVATE mapping is about to
1889	 * perform a COW due to a shared page count, attempt to satisfy
1890	 * the allocation without using the existing reserves. The pagecache
1891	 * page is used to determine if the reserve at this address was
1892	 * consumed or not. If reserves were used, a partial faulted mapping
1893	 * at the time of fork() could consume its reserves on COW instead
1894	 * of the full address range.
1895	 */
1896	if (!(vma->vm_flags & VM_SHARED) &&
1897			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1898			old_page != pagecache_page)
1899		outside_reserve = 1;
1900
1901	page_cache_get(old_page);
1902	new_page = alloc_huge_page(vma, address, outside_reserve);
1903
1904	if (IS_ERR(new_page)) {
1905		page_cache_release(old_page);
1906
1907		/*
1908		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1909		 * it is due to references held by a child and an insufficient
1910		 * huge page pool. To guarantee the original mappers
1911		 * reliability, unmap the page from child processes. The child
1912		 * may get SIGKILLed if it later faults.
1913		 */
1914		if (outside_reserve) {
1915			BUG_ON(huge_pte_none(pte));
1916			if (unmap_ref_private(mm, vma, old_page, address)) {
1917				BUG_ON(page_count(old_page) != 1);
1918				BUG_ON(huge_pte_none(pte));
1919				goto retry_avoidcopy;
1920			}
1921			WARN_ON_ONCE(1);
1922		}
1923
1924		return -PTR_ERR(new_page);
1925	}
1926
1927	spin_unlock(&mm->page_table_lock);
1928	copy_huge_page(new_page, old_page, address, vma);
1929	__SetPageUptodate(new_page);
1930	spin_lock(&mm->page_table_lock);
1931
1932	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1933	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1934		/* Break COW */
1935		huge_ptep_clear_flush(vma, address, ptep);
1936		set_huge_pte_at(mm, address, ptep,
1937				make_huge_pte(vma, new_page, 1));
1938		/* Make the old page be freed below */
1939		new_page = old_page;
1940	}
1941	page_cache_release(new_page);
1942	page_cache_release(old_page);
1943	return 0;
1944}
1945
1946/* Return the pagecache page at a given address within a VMA */
1947static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1948			struct vm_area_struct *vma, unsigned long address)
1949{
1950	struct address_space *mapping;
1951	pgoff_t idx;
1952
1953	mapping = vma->vm_file->f_mapping;
1954	idx = vma_hugecache_offset(h, vma, address);
1955
1956	return find_lock_page(mapping, idx);
1957}
1958
1959static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1960			unsigned long address, pte_t *ptep, int write_access)
1961{
1962	struct hstate *h = hstate_vma(vma);
1963	int ret = VM_FAULT_SIGBUS;
1964	pgoff_t idx;
1965	unsigned long size;
1966	struct page *page;
1967	struct address_space *mapping;
1968	pte_t new_pte;
1969
1970	/*
1971	 * Currently, we are forced to kill the process in the event the
1972	 * original mapper has unmapped pages from the child due to a failed
1973	 * COW. Warn that such a situation has occured as it may not be obvious
1974	 */
1975	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1976		printk(KERN_WARNING
1977			"PID %d killed due to inadequate hugepage pool\n",
1978			current->pid);
1979		return ret;
1980	}
1981
1982	mapping = vma->vm_file->f_mapping;
1983	idx = vma_hugecache_offset(h, vma, address);
1984
1985	/*
1986	 * Use page lock to guard against racing truncation
1987	 * before we get page_table_lock.
1988	 */
1989retry:
1990	page = find_lock_page(mapping, idx);
1991	if (!page) {
1992		size = i_size_read(mapping->host) >> huge_page_shift(h);
1993		if (idx >= size)
1994			goto out;
1995		page = alloc_huge_page(vma, address, 0);
1996		if (IS_ERR(page)) {
1997			ret = -PTR_ERR(page);
1998			goto out;
1999		}
2000		clear_huge_page(page, address, huge_page_size(h));
2001		__SetPageUptodate(page);
2002
2003		if (vma->vm_flags & VM_SHARED) {
2004			int err;
2005			struct inode *inode = mapping->host;
2006
2007			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2008			if (err) {
2009				put_page(page);
2010				if (err == -EEXIST)
2011					goto retry;
2012				goto out;
2013			}
2014
2015			spin_lock(&inode->i_lock);
2016			inode->i_blocks += blocks_per_huge_page(h);
2017			spin_unlock(&inode->i_lock);
2018		} else
2019			lock_page(page);
2020	}
2021
2022	/*
2023	 * If we are going to COW a private mapping later, we examine the
2024	 * pending reservations for this page now. This will ensure that
2025	 * any allocations necessary to record that reservation occur outside
2026	 * the spinlock.
2027	 */
2028	if (write_access && !(vma->vm_flags & VM_SHARED))
2029		if (vma_needs_reservation(h, vma, address) < 0) {
2030			ret = VM_FAULT_OOM;
2031			goto backout_unlocked;
2032		}
2033
2034	spin_lock(&mm->page_table_lock);
2035	size = i_size_read(mapping->host) >> huge_page_shift(h);
2036	if (idx >= size)
2037		goto backout;
2038
2039	ret = 0;
2040	if (!huge_pte_none(huge_ptep_get(ptep)))
2041		goto backout;
2042
2043	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2044				&& (vma->vm_flags & VM_SHARED)));
2045	set_huge_pte_at(mm, address, ptep, new_pte);
2046
2047	if (write_access && !(vma->vm_flags & VM_SHARED)) {
2048		/* Optimization, do the COW without a second fault */
2049		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2050	}
2051
2052	spin_unlock(&mm->page_table_lock);
2053	unlock_page(page);
2054out:
2055	return ret;
2056
2057backout:
2058	spin_unlock(&mm->page_table_lock);
2059backout_unlocked:
2060	unlock_page(page);
2061	put_page(page);
2062	goto out;
2063}
2064
2065int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2066			unsigned long address, int write_access)
2067{
2068	pte_t *ptep;
2069	pte_t entry;
2070	int ret;
2071	struct page *pagecache_page = NULL;
2072	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2073	struct hstate *h = hstate_vma(vma);
2074
2075	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2076	if (!ptep)
2077		return VM_FAULT_OOM;
2078
2079	/*
2080	 * Serialize hugepage allocation and instantiation, so that we don't
2081	 * get spurious allocation failures if two CPUs race to instantiate
2082	 * the same page in the page cache.
2083	 */
2084	mutex_lock(&hugetlb_instantiation_mutex);
2085	entry = huge_ptep_get(ptep);
2086	if (huge_pte_none(entry)) {
2087		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2088		goto out_mutex;
2089	}
2090
2091	ret = 0;
2092
2093	/*
2094	 * If we are going to COW the mapping later, we examine the pending
2095	 * reservations for this page now. This will ensure that any
2096	 * allocations necessary to record that reservation occur outside the
2097	 * spinlock. For private mappings, we also lookup the pagecache
2098	 * page now as it is used to determine if a reservation has been
2099	 * consumed.
2100	 */
2101	if (write_access && !pte_write(entry)) {
2102		if (vma_needs_reservation(h, vma, address) < 0) {
2103			ret = VM_FAULT_OOM;
2104			goto out_mutex;
2105		}
2106
2107		if (!(vma->vm_flags & VM_SHARED))
2108			pagecache_page = hugetlbfs_pagecache_page(h,
2109								vma, address);
2110	}
2111
2112	spin_lock(&mm->page_table_lock);
2113	/* Check for a racing update before calling hugetlb_cow */
2114	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2115		goto out_page_table_lock;
2116
2117
2118	if (write_access) {
2119		if (!pte_write(entry)) {
2120			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2121							pagecache_page);
2122			goto out_page_table_lock;
2123		}
2124		entry = pte_mkdirty(entry);
2125	}
2126	entry = pte_mkyoung(entry);
2127	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2128		update_mmu_cache(vma, address, entry);
2129
2130out_page_table_lock:
2131	spin_unlock(&mm->page_table_lock);
2132
2133	if (pagecache_page) {
2134		unlock_page(pagecache_page);
2135		put_page(pagecache_page);
2136	}
2137
2138out_mutex:
2139	mutex_unlock(&hugetlb_instantiation_mutex);
2140
2141	return ret;
2142}
2143
2144/* Can be overriden by architectures */
2145__attribute__((weak)) struct page *
2146follow_huge_pud(struct mm_struct *mm, unsigned long address,
2147	       pud_t *pud, int write)
2148{
2149	BUG();
2150	return NULL;
2151}
2152
2153static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2154{
2155	if (!ptep || write || shared)
2156		return 0;
2157	else
2158		return huge_pte_none(huge_ptep_get(ptep));
2159}
2160
2161int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2162			struct page **pages, struct vm_area_struct **vmas,
2163			unsigned long *position, int *length, int i,
2164			int write)
2165{
2166	unsigned long pfn_offset;
2167	unsigned long vaddr = *position;
2168	int remainder = *length;
2169	struct hstate *h = hstate_vma(vma);
2170	int zeropage_ok = 0;
2171	int shared = vma->vm_flags & VM_SHARED;
2172
2173	spin_lock(&mm->page_table_lock);
2174	while (vaddr < vma->vm_end && remainder) {
2175		pte_t *pte;
2176		struct page *page;
2177
2178		/*
2179		 * Some archs (sparc64, sh*) have multiple pte_ts to
2180		 * each hugepage.  We have to make * sure we get the
2181		 * first, for the page indexing below to work.
2182		 */
2183		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2184		if (huge_zeropage_ok(pte, write, shared))
2185			zeropage_ok = 1;
2186
2187		if (!pte ||
2188		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2189		    (write && !pte_write(huge_ptep_get(pte)))) {
2190			int ret;
2191
2192			spin_unlock(&mm->page_table_lock);
2193			ret = hugetlb_fault(mm, vma, vaddr, write);
2194			spin_lock(&mm->page_table_lock);
2195			if (!(ret & VM_FAULT_ERROR))
2196				continue;
2197
2198			remainder = 0;
2199			if (!i)
2200				i = -EFAULT;
2201			break;
2202		}
2203
2204		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2205		page = pte_page(huge_ptep_get(pte));
2206same_page:
2207		if (pages) {
2208			if (zeropage_ok)
2209				pages[i] = ZERO_PAGE(0);
2210			else
2211				pages[i] = mem_map_offset(page, pfn_offset);
2212			get_page(pages[i]);
2213		}
2214
2215		if (vmas)
2216			vmas[i] = vma;
2217
2218		vaddr += PAGE_SIZE;
2219		++pfn_offset;
2220		--remainder;
2221		++i;
2222		if (vaddr < vma->vm_end && remainder &&
2223				pfn_offset < pages_per_huge_page(h)) {
2224			/*
2225			 * We use pfn_offset to avoid touching the pageframes
2226			 * of this compound page.
2227			 */
2228			goto same_page;
2229		}
2230	}
2231	spin_unlock(&mm->page_table_lock);
2232	*length = remainder;
2233	*position = vaddr;
2234
2235	return i;
2236}
2237
2238void hugetlb_change_protection(struct vm_area_struct *vma,
2239		unsigned long address, unsigned long end, pgprot_t newprot)
2240{
2241	struct mm_struct *mm = vma->vm_mm;
2242	unsigned long start = address;
2243	pte_t *ptep;
2244	pte_t pte;
2245	struct hstate *h = hstate_vma(vma);
2246
2247	BUG_ON(address >= end);
2248	flush_cache_range(vma, address, end);
2249
2250	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2251	spin_lock(&mm->page_table_lock);
2252	for (; address < end; address += huge_page_size(h)) {
2253		ptep = huge_pte_offset(mm, address);
2254		if (!ptep)
2255			continue;
2256		if (huge_pmd_unshare(mm, &address, ptep))
2257			continue;
2258		if (!huge_pte_none(huge_ptep_get(ptep))) {
2259			pte = huge_ptep_get_and_clear(mm, address, ptep);
2260			pte = pte_mkhuge(pte_modify(pte, newprot));
2261			set_huge_pte_at(mm, address, ptep, pte);
2262		}
2263	}
2264	spin_unlock(&mm->page_table_lock);
2265	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2266
2267	flush_tlb_range(vma, start, end);
2268}
2269
2270int hugetlb_reserve_pages(struct inode *inode,
2271					long from, long to,
2272					struct vm_area_struct *vma,
2273					int acctflag)
2274{
2275	long ret, chg;
2276	struct hstate *h = hstate_inode(inode);
2277
2278	/*
2279	 * Only apply hugepage reservation if asked. At fault time, an
2280	 * attempt will be made for VM_NORESERVE to allocate a page
2281	 * and filesystem quota without using reserves
2282	 */
2283	if (acctflag & VM_NORESERVE)
2284		return 0;
2285
2286	/*
2287	 * Shared mappings base their reservation on the number of pages that
2288	 * are already allocated on behalf of the file. Private mappings need
2289	 * to reserve the full area even if read-only as mprotect() may be
2290	 * called to make the mapping read-write. Assume !vma is a shm mapping
2291	 */
2292	if (!vma || vma->vm_flags & VM_SHARED)
2293		chg = region_chg(&inode->i_mapping->private_list, from, to);
2294	else {
2295		struct resv_map *resv_map = resv_map_alloc();
2296		if (!resv_map)
2297			return -ENOMEM;
2298
2299		chg = to - from;
2300
2301		set_vma_resv_map(vma, resv_map);
2302		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2303	}
2304
2305	if (chg < 0)
2306		return chg;
2307
2308	/* There must be enough filesystem quota for the mapping */
2309	if (hugetlb_get_quota(inode->i_mapping, chg))
2310		return -ENOSPC;
2311
2312	/*
2313	 * Check enough hugepages are available for the reservation.
2314	 * Hand back the quota if there are not
2315	 */
2316	ret = hugetlb_acct_memory(h, chg);
2317	if (ret < 0) {
2318		hugetlb_put_quota(inode->i_mapping, chg);
2319		return ret;
2320	}
2321
2322	/*
2323	 * Account for the reservations made. Shared mappings record regions
2324	 * that have reservations as they are shared by multiple VMAs.
2325	 * When the last VMA disappears, the region map says how much
2326	 * the reservation was and the page cache tells how much of
2327	 * the reservation was consumed. Private mappings are per-VMA and
2328	 * only the consumed reservations are tracked. When the VMA
2329	 * disappears, the original reservation is the VMA size and the
2330	 * consumed reservations are stored in the map. Hence, nothing
2331	 * else has to be done for private mappings here
2332	 */
2333	if (!vma || vma->vm_flags & VM_SHARED)
2334		region_add(&inode->i_mapping->private_list, from, to);
2335	return 0;
2336}
2337
2338void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2339{
2340	struct hstate *h = hstate_inode(inode);
2341	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2342
2343	spin_lock(&inode->i_lock);
2344	inode->i_blocks -= blocks_per_huge_page(h);
2345	spin_unlock(&inode->i_lock);
2346
2347	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2348	hugetlb_acct_memory(h, -(chg - freed));
2349}
2350