hugetlb.c revision ed4d4902ebdd7ca8b5a51daaf6bebf4b172895cc
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/rmap.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/page-isolation.h>
26#include <linux/jhash.h>
27
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/tlb.h>
31
32#include <linux/io.h>
33#include <linux/hugetlb.h>
34#include <linux/hugetlb_cgroup.h>
35#include <linux/node.h>
36#include "internal.h"
37
38unsigned long hugepages_treat_as_movable;
39
40int hugetlb_max_hstate __read_mostly;
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
44__initdata LIST_HEAD(huge_boot_pages);
45
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
49static unsigned long __initdata default_hstate_size;
50
51/*
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
54 */
55DEFINE_SPINLOCK(hugetlb_lock);
56
57/*
58 * Serializes faults on the same logical page.  This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
64static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65{
66	bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68	spin_unlock(&spool->lock);
69
70	/* If no pages are used, and no other handles to the subpool
71	 * remain, free the subpool the subpool remain */
72	if (free)
73		kfree(spool);
74}
75
76struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77{
78	struct hugepage_subpool *spool;
79
80	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81	if (!spool)
82		return NULL;
83
84	spin_lock_init(&spool->lock);
85	spool->count = 1;
86	spool->max_hpages = nr_blocks;
87	spool->used_hpages = 0;
88
89	return spool;
90}
91
92void hugepage_put_subpool(struct hugepage_subpool *spool)
93{
94	spin_lock(&spool->lock);
95	BUG_ON(!spool->count);
96	spool->count--;
97	unlock_or_release_subpool(spool);
98}
99
100static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101				      long delta)
102{
103	int ret = 0;
104
105	if (!spool)
106		return 0;
107
108	spin_lock(&spool->lock);
109	if ((spool->used_hpages + delta) <= spool->max_hpages) {
110		spool->used_hpages += delta;
111	} else {
112		ret = -ENOMEM;
113	}
114	spin_unlock(&spool->lock);
115
116	return ret;
117}
118
119static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120				       long delta)
121{
122	if (!spool)
123		return;
124
125	spin_lock(&spool->lock);
126	spool->used_hpages -= delta;
127	/* If hugetlbfs_put_super couldn't free spool due to
128	* an outstanding quota reference, free it now. */
129	unlock_or_release_subpool(spool);
130}
131
132static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133{
134	return HUGETLBFS_SB(inode->i_sb)->spool;
135}
136
137static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138{
139	return subpool_inode(file_inode(vma->vm_file));
140}
141
142/*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 *                    across the pages in a mapping.
145 *
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
148 */
149struct file_region {
150	struct list_head link;
151	long from;
152	long to;
153};
154
155static long region_add(struct resv_map *resv, long f, long t)
156{
157	struct list_head *head = &resv->regions;
158	struct file_region *rg, *nrg, *trg;
159
160	spin_lock(&resv->lock);
161	/* Locate the region we are either in or before. */
162	list_for_each_entry(rg, head, link)
163		if (f <= rg->to)
164			break;
165
166	/* Round our left edge to the current segment if it encloses us. */
167	if (f > rg->from)
168		f = rg->from;
169
170	/* Check for and consume any regions we now overlap with. */
171	nrg = rg;
172	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173		if (&rg->link == head)
174			break;
175		if (rg->from > t)
176			break;
177
178		/* If this area reaches higher then extend our area to
179		 * include it completely.  If this is not the first area
180		 * which we intend to reuse, free it. */
181		if (rg->to > t)
182			t = rg->to;
183		if (rg != nrg) {
184			list_del(&rg->link);
185			kfree(rg);
186		}
187	}
188	nrg->from = f;
189	nrg->to = t;
190	spin_unlock(&resv->lock);
191	return 0;
192}
193
194static long region_chg(struct resv_map *resv, long f, long t)
195{
196	struct list_head *head = &resv->regions;
197	struct file_region *rg, *nrg = NULL;
198	long chg = 0;
199
200retry:
201	spin_lock(&resv->lock);
202	/* Locate the region we are before or in. */
203	list_for_each_entry(rg, head, link)
204		if (f <= rg->to)
205			break;
206
207	/* If we are below the current region then a new region is required.
208	 * Subtle, allocate a new region at the position but make it zero
209	 * size such that we can guarantee to record the reservation. */
210	if (&rg->link == head || t < rg->from) {
211		if (!nrg) {
212			spin_unlock(&resv->lock);
213			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214			if (!nrg)
215				return -ENOMEM;
216
217			nrg->from = f;
218			nrg->to   = f;
219			INIT_LIST_HEAD(&nrg->link);
220			goto retry;
221		}
222
223		list_add(&nrg->link, rg->link.prev);
224		chg = t - f;
225		goto out_nrg;
226	}
227
228	/* Round our left edge to the current segment if it encloses us. */
229	if (f > rg->from)
230		f = rg->from;
231	chg = t - f;
232
233	/* Check for and consume any regions we now overlap with. */
234	list_for_each_entry(rg, rg->link.prev, link) {
235		if (&rg->link == head)
236			break;
237		if (rg->from > t)
238			goto out;
239
240		/* We overlap with this area, if it extends further than
241		 * us then we must extend ourselves.  Account for its
242		 * existing reservation. */
243		if (rg->to > t) {
244			chg += rg->to - t;
245			t = rg->to;
246		}
247		chg -= rg->to - rg->from;
248	}
249
250out:
251	spin_unlock(&resv->lock);
252	/*  We already know we raced and no longer need the new region */
253	kfree(nrg);
254	return chg;
255out_nrg:
256	spin_unlock(&resv->lock);
257	return chg;
258}
259
260static long region_truncate(struct resv_map *resv, long end)
261{
262	struct list_head *head = &resv->regions;
263	struct file_region *rg, *trg;
264	long chg = 0;
265
266	spin_lock(&resv->lock);
267	/* Locate the region we are either in or before. */
268	list_for_each_entry(rg, head, link)
269		if (end <= rg->to)
270			break;
271	if (&rg->link == head)
272		goto out;
273
274	/* If we are in the middle of a region then adjust it. */
275	if (end > rg->from) {
276		chg = rg->to - end;
277		rg->to = end;
278		rg = list_entry(rg->link.next, typeof(*rg), link);
279	}
280
281	/* Drop any remaining regions. */
282	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283		if (&rg->link == head)
284			break;
285		chg += rg->to - rg->from;
286		list_del(&rg->link);
287		kfree(rg);
288	}
289
290out:
291	spin_unlock(&resv->lock);
292	return chg;
293}
294
295static long region_count(struct resv_map *resv, long f, long t)
296{
297	struct list_head *head = &resv->regions;
298	struct file_region *rg;
299	long chg = 0;
300
301	spin_lock(&resv->lock);
302	/* Locate each segment we overlap with, and count that overlap. */
303	list_for_each_entry(rg, head, link) {
304		long seg_from;
305		long seg_to;
306
307		if (rg->to <= f)
308			continue;
309		if (rg->from >= t)
310			break;
311
312		seg_from = max(rg->from, f);
313		seg_to = min(rg->to, t);
314
315		chg += seg_to - seg_from;
316	}
317	spin_unlock(&resv->lock);
318
319	return chg;
320}
321
322/*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
326static pgoff_t vma_hugecache_offset(struct hstate *h,
327			struct vm_area_struct *vma, unsigned long address)
328{
329	return ((address - vma->vm_start) >> huge_page_shift(h)) +
330			(vma->vm_pgoff >> huge_page_order(h));
331}
332
333pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334				     unsigned long address)
335{
336	return vma_hugecache_offset(hstate_vma(vma), vma, address);
337}
338
339/*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
343unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344{
345	struct hstate *hstate;
346
347	if (!is_vm_hugetlb_page(vma))
348		return PAGE_SIZE;
349
350	hstate = hstate_vma(vma);
351
352	return 1UL << huge_page_shift(hstate);
353}
354EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355
356/*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362#ifndef vma_mmu_pagesize
363unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364{
365	return vma_kernel_pagesize(vma);
366}
367#endif
368
369/*
370 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374#define HPAGE_RESV_OWNER    (1UL << 0)
375#define HPAGE_RESV_UNMAPPED (1UL << 1)
376#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377
378/*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping.  A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated.  A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
396 */
397static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398{
399	return (unsigned long)vma->vm_private_data;
400}
401
402static void set_vma_private_data(struct vm_area_struct *vma,
403							unsigned long value)
404{
405	vma->vm_private_data = (void *)value;
406}
407
408struct resv_map *resv_map_alloc(void)
409{
410	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411	if (!resv_map)
412		return NULL;
413
414	kref_init(&resv_map->refs);
415	spin_lock_init(&resv_map->lock);
416	INIT_LIST_HEAD(&resv_map->regions);
417
418	return resv_map;
419}
420
421void resv_map_release(struct kref *ref)
422{
423	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425	/* Clear out any active regions before we release the map. */
426	region_truncate(resv_map, 0);
427	kfree(resv_map);
428}
429
430static inline struct resv_map *inode_resv_map(struct inode *inode)
431{
432	return inode->i_mapping->private_data;
433}
434
435static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436{
437	VM_BUG_ON(!is_vm_hugetlb_page(vma));
438	if (vma->vm_flags & VM_MAYSHARE) {
439		struct address_space *mapping = vma->vm_file->f_mapping;
440		struct inode *inode = mapping->host;
441
442		return inode_resv_map(inode);
443
444	} else {
445		return (struct resv_map *)(get_vma_private_data(vma) &
446							~HPAGE_RESV_MASK);
447	}
448}
449
450static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451{
452	VM_BUG_ON(!is_vm_hugetlb_page(vma));
453	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
454
455	set_vma_private_data(vma, (get_vma_private_data(vma) &
456				HPAGE_RESV_MASK) | (unsigned long)map);
457}
458
459static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460{
461	VM_BUG_ON(!is_vm_hugetlb_page(vma));
462	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
463
464	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465}
466
467static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468{
469	VM_BUG_ON(!is_vm_hugetlb_page(vma));
470
471	return (get_vma_private_data(vma) & flag) != 0;
472}
473
474/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476{
477	VM_BUG_ON(!is_vm_hugetlb_page(vma));
478	if (!(vma->vm_flags & VM_MAYSHARE))
479		vma->vm_private_data = (void *)0;
480}
481
482/* Returns true if the VMA has associated reserve pages */
483static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484{
485	if (vma->vm_flags & VM_NORESERVE) {
486		/*
487		 * This address is already reserved by other process(chg == 0),
488		 * so, we should decrement reserved count. Without decrementing,
489		 * reserve count remains after releasing inode, because this
490		 * allocated page will go into page cache and is regarded as
491		 * coming from reserved pool in releasing step.  Currently, we
492		 * don't have any other solution to deal with this situation
493		 * properly, so add work-around here.
494		 */
495		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496			return 1;
497		else
498			return 0;
499	}
500
501	/* Shared mappings always use reserves */
502	if (vma->vm_flags & VM_MAYSHARE)
503		return 1;
504
505	/*
506	 * Only the process that called mmap() has reserves for
507	 * private mappings.
508	 */
509	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510		return 1;
511
512	return 0;
513}
514
515static void enqueue_huge_page(struct hstate *h, struct page *page)
516{
517	int nid = page_to_nid(page);
518	list_move(&page->lru, &h->hugepage_freelists[nid]);
519	h->free_huge_pages++;
520	h->free_huge_pages_node[nid]++;
521}
522
523static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524{
525	struct page *page;
526
527	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528		if (!is_migrate_isolate_page(page))
529			break;
530	/*
531	 * if 'non-isolated free hugepage' not found on the list,
532	 * the allocation fails.
533	 */
534	if (&h->hugepage_freelists[nid] == &page->lru)
535		return NULL;
536	list_move(&page->lru, &h->hugepage_activelist);
537	set_page_refcounted(page);
538	h->free_huge_pages--;
539	h->free_huge_pages_node[nid]--;
540	return page;
541}
542
543/* Movability of hugepages depends on migration support. */
544static inline gfp_t htlb_alloc_mask(struct hstate *h)
545{
546	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
547		return GFP_HIGHUSER_MOVABLE;
548	else
549		return GFP_HIGHUSER;
550}
551
552static struct page *dequeue_huge_page_vma(struct hstate *h,
553				struct vm_area_struct *vma,
554				unsigned long address, int avoid_reserve,
555				long chg)
556{
557	struct page *page = NULL;
558	struct mempolicy *mpol;
559	nodemask_t *nodemask;
560	struct zonelist *zonelist;
561	struct zone *zone;
562	struct zoneref *z;
563	unsigned int cpuset_mems_cookie;
564
565	/*
566	 * A child process with MAP_PRIVATE mappings created by their parent
567	 * have no page reserves. This check ensures that reservations are
568	 * not "stolen". The child may still get SIGKILLed
569	 */
570	if (!vma_has_reserves(vma, chg) &&
571			h->free_huge_pages - h->resv_huge_pages == 0)
572		goto err;
573
574	/* If reserves cannot be used, ensure enough pages are in the pool */
575	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576		goto err;
577
578retry_cpuset:
579	cpuset_mems_cookie = read_mems_allowed_begin();
580	zonelist = huge_zonelist(vma, address,
581					htlb_alloc_mask(h), &mpol, &nodemask);
582
583	for_each_zone_zonelist_nodemask(zone, z, zonelist,
584						MAX_NR_ZONES - 1, nodemask) {
585		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586			page = dequeue_huge_page_node(h, zone_to_nid(zone));
587			if (page) {
588				if (avoid_reserve)
589					break;
590				if (!vma_has_reserves(vma, chg))
591					break;
592
593				SetPagePrivate(page);
594				h->resv_huge_pages--;
595				break;
596			}
597		}
598	}
599
600	mpol_cond_put(mpol);
601	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602		goto retry_cpuset;
603	return page;
604
605err:
606	return NULL;
607}
608
609/*
610 * common helper functions for hstate_next_node_to_{alloc|free}.
611 * We may have allocated or freed a huge page based on a different
612 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613 * be outside of *nodes_allowed.  Ensure that we use an allowed
614 * node for alloc or free.
615 */
616static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617{
618	nid = next_node(nid, *nodes_allowed);
619	if (nid == MAX_NUMNODES)
620		nid = first_node(*nodes_allowed);
621	VM_BUG_ON(nid >= MAX_NUMNODES);
622
623	return nid;
624}
625
626static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627{
628	if (!node_isset(nid, *nodes_allowed))
629		nid = next_node_allowed(nid, nodes_allowed);
630	return nid;
631}
632
633/*
634 * returns the previously saved node ["this node"] from which to
635 * allocate a persistent huge page for the pool and advance the
636 * next node from which to allocate, handling wrap at end of node
637 * mask.
638 */
639static int hstate_next_node_to_alloc(struct hstate *h,
640					nodemask_t *nodes_allowed)
641{
642	int nid;
643
644	VM_BUG_ON(!nodes_allowed);
645
646	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648
649	return nid;
650}
651
652/*
653 * helper for free_pool_huge_page() - return the previously saved
654 * node ["this node"] from which to free a huge page.  Advance the
655 * next node id whether or not we find a free huge page to free so
656 * that the next attempt to free addresses the next node.
657 */
658static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659{
660	int nid;
661
662	VM_BUG_ON(!nodes_allowed);
663
664	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666
667	return nid;
668}
669
670#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
671	for (nr_nodes = nodes_weight(*mask);				\
672		nr_nodes > 0 &&						\
673		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
674		nr_nodes--)
675
676#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
677	for (nr_nodes = nodes_weight(*mask);				\
678		nr_nodes > 0 &&						\
679		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
680		nr_nodes--)
681
682#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683static void destroy_compound_gigantic_page(struct page *page,
684					unsigned long order)
685{
686	int i;
687	int nr_pages = 1 << order;
688	struct page *p = page + 1;
689
690	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691		__ClearPageTail(p);
692		set_page_refcounted(p);
693		p->first_page = NULL;
694	}
695
696	set_compound_order(page, 0);
697	__ClearPageHead(page);
698}
699
700static void free_gigantic_page(struct page *page, unsigned order)
701{
702	free_contig_range(page_to_pfn(page), 1 << order);
703}
704
705static int __alloc_gigantic_page(unsigned long start_pfn,
706				unsigned long nr_pages)
707{
708	unsigned long end_pfn = start_pfn + nr_pages;
709	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710}
711
712static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713				unsigned long nr_pages)
714{
715	unsigned long i, end_pfn = start_pfn + nr_pages;
716	struct page *page;
717
718	for (i = start_pfn; i < end_pfn; i++) {
719		if (!pfn_valid(i))
720			return false;
721
722		page = pfn_to_page(i);
723
724		if (PageReserved(page))
725			return false;
726
727		if (page_count(page) > 0)
728			return false;
729
730		if (PageHuge(page))
731			return false;
732	}
733
734	return true;
735}
736
737static bool zone_spans_last_pfn(const struct zone *zone,
738			unsigned long start_pfn, unsigned long nr_pages)
739{
740	unsigned long last_pfn = start_pfn + nr_pages - 1;
741	return zone_spans_pfn(zone, last_pfn);
742}
743
744static struct page *alloc_gigantic_page(int nid, unsigned order)
745{
746	unsigned long nr_pages = 1 << order;
747	unsigned long ret, pfn, flags;
748	struct zone *z;
749
750	z = NODE_DATA(nid)->node_zones;
751	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752		spin_lock_irqsave(&z->lock, flags);
753
754		pfn = ALIGN(z->zone_start_pfn, nr_pages);
755		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757				/*
758				 * We release the zone lock here because
759				 * alloc_contig_range() will also lock the zone
760				 * at some point. If there's an allocation
761				 * spinning on this lock, it may win the race
762				 * and cause alloc_contig_range() to fail...
763				 */
764				spin_unlock_irqrestore(&z->lock, flags);
765				ret = __alloc_gigantic_page(pfn, nr_pages);
766				if (!ret)
767					return pfn_to_page(pfn);
768				spin_lock_irqsave(&z->lock, flags);
769			}
770			pfn += nr_pages;
771		}
772
773		spin_unlock_irqrestore(&z->lock, flags);
774	}
775
776	return NULL;
777}
778
779static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780static void prep_compound_gigantic_page(struct page *page, unsigned long order);
781
782static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783{
784	struct page *page;
785
786	page = alloc_gigantic_page(nid, huge_page_order(h));
787	if (page) {
788		prep_compound_gigantic_page(page, huge_page_order(h));
789		prep_new_huge_page(h, page, nid);
790	}
791
792	return page;
793}
794
795static int alloc_fresh_gigantic_page(struct hstate *h,
796				nodemask_t *nodes_allowed)
797{
798	struct page *page = NULL;
799	int nr_nodes, node;
800
801	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802		page = alloc_fresh_gigantic_page_node(h, node);
803		if (page)
804			return 1;
805	}
806
807	return 0;
808}
809
810static inline bool gigantic_page_supported(void) { return true; }
811#else
812static inline bool gigantic_page_supported(void) { return false; }
813static inline void free_gigantic_page(struct page *page, unsigned order) { }
814static inline void destroy_compound_gigantic_page(struct page *page,
815						unsigned long order) { }
816static inline int alloc_fresh_gigantic_page(struct hstate *h,
817					nodemask_t *nodes_allowed) { return 0; }
818#endif
819
820static void update_and_free_page(struct hstate *h, struct page *page)
821{
822	int i;
823
824	if (hstate_is_gigantic(h) && !gigantic_page_supported())
825		return;
826
827	h->nr_huge_pages--;
828	h->nr_huge_pages_node[page_to_nid(page)]--;
829	for (i = 0; i < pages_per_huge_page(h); i++) {
830		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831				1 << PG_referenced | 1 << PG_dirty |
832				1 << PG_active | 1 << PG_private |
833				1 << PG_writeback);
834	}
835	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
836	set_compound_page_dtor(page, NULL);
837	set_page_refcounted(page);
838	if (hstate_is_gigantic(h)) {
839		destroy_compound_gigantic_page(page, huge_page_order(h));
840		free_gigantic_page(page, huge_page_order(h));
841	} else {
842		arch_release_hugepage(page);
843		__free_pages(page, huge_page_order(h));
844	}
845}
846
847struct hstate *size_to_hstate(unsigned long size)
848{
849	struct hstate *h;
850
851	for_each_hstate(h) {
852		if (huge_page_size(h) == size)
853			return h;
854	}
855	return NULL;
856}
857
858void free_huge_page(struct page *page)
859{
860	/*
861	 * Can't pass hstate in here because it is called from the
862	 * compound page destructor.
863	 */
864	struct hstate *h = page_hstate(page);
865	int nid = page_to_nid(page);
866	struct hugepage_subpool *spool =
867		(struct hugepage_subpool *)page_private(page);
868	bool restore_reserve;
869
870	set_page_private(page, 0);
871	page->mapping = NULL;
872	BUG_ON(page_count(page));
873	BUG_ON(page_mapcount(page));
874	restore_reserve = PagePrivate(page);
875	ClearPagePrivate(page);
876
877	spin_lock(&hugetlb_lock);
878	hugetlb_cgroup_uncharge_page(hstate_index(h),
879				     pages_per_huge_page(h), page);
880	if (restore_reserve)
881		h->resv_huge_pages++;
882
883	if (h->surplus_huge_pages_node[nid]) {
884		/* remove the page from active list */
885		list_del(&page->lru);
886		update_and_free_page(h, page);
887		h->surplus_huge_pages--;
888		h->surplus_huge_pages_node[nid]--;
889	} else {
890		arch_clear_hugepage_flags(page);
891		enqueue_huge_page(h, page);
892	}
893	spin_unlock(&hugetlb_lock);
894	hugepage_subpool_put_pages(spool, 1);
895}
896
897static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
898{
899	INIT_LIST_HEAD(&page->lru);
900	set_compound_page_dtor(page, free_huge_page);
901	spin_lock(&hugetlb_lock);
902	set_hugetlb_cgroup(page, NULL);
903	h->nr_huge_pages++;
904	h->nr_huge_pages_node[nid]++;
905	spin_unlock(&hugetlb_lock);
906	put_page(page); /* free it into the hugepage allocator */
907}
908
909static void prep_compound_gigantic_page(struct page *page, unsigned long order)
910{
911	int i;
912	int nr_pages = 1 << order;
913	struct page *p = page + 1;
914
915	/* we rely on prep_new_huge_page to set the destructor */
916	set_compound_order(page, order);
917	__SetPageHead(page);
918	__ClearPageReserved(page);
919	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
920		__SetPageTail(p);
921		/*
922		 * For gigantic hugepages allocated through bootmem at
923		 * boot, it's safer to be consistent with the not-gigantic
924		 * hugepages and clear the PG_reserved bit from all tail pages
925		 * too.  Otherwse drivers using get_user_pages() to access tail
926		 * pages may get the reference counting wrong if they see
927		 * PG_reserved set on a tail page (despite the head page not
928		 * having PG_reserved set).  Enforcing this consistency between
929		 * head and tail pages allows drivers to optimize away a check
930		 * on the head page when they need know if put_page() is needed
931		 * after get_user_pages().
932		 */
933		__ClearPageReserved(p);
934		set_page_count(p, 0);
935		p->first_page = page;
936	}
937}
938
939/*
940 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
941 * transparent huge pages.  See the PageTransHuge() documentation for more
942 * details.
943 */
944int PageHuge(struct page *page)
945{
946	if (!PageCompound(page))
947		return 0;
948
949	page = compound_head(page);
950	return get_compound_page_dtor(page) == free_huge_page;
951}
952EXPORT_SYMBOL_GPL(PageHuge);
953
954/*
955 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
956 * normal or transparent huge pages.
957 */
958int PageHeadHuge(struct page *page_head)
959{
960	if (!PageHead(page_head))
961		return 0;
962
963	return get_compound_page_dtor(page_head) == free_huge_page;
964}
965
966pgoff_t __basepage_index(struct page *page)
967{
968	struct page *page_head = compound_head(page);
969	pgoff_t index = page_index(page_head);
970	unsigned long compound_idx;
971
972	if (!PageHuge(page_head))
973		return page_index(page);
974
975	if (compound_order(page_head) >= MAX_ORDER)
976		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
977	else
978		compound_idx = page - page_head;
979
980	return (index << compound_order(page_head)) + compound_idx;
981}
982
983static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
984{
985	struct page *page;
986
987	page = alloc_pages_exact_node(nid,
988		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
989						__GFP_REPEAT|__GFP_NOWARN,
990		huge_page_order(h));
991	if (page) {
992		if (arch_prepare_hugepage(page)) {
993			__free_pages(page, huge_page_order(h));
994			return NULL;
995		}
996		prep_new_huge_page(h, page, nid);
997	}
998
999	return page;
1000}
1001
1002static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1003{
1004	struct page *page;
1005	int nr_nodes, node;
1006	int ret = 0;
1007
1008	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1009		page = alloc_fresh_huge_page_node(h, node);
1010		if (page) {
1011			ret = 1;
1012			break;
1013		}
1014	}
1015
1016	if (ret)
1017		count_vm_event(HTLB_BUDDY_PGALLOC);
1018	else
1019		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020
1021	return ret;
1022}
1023
1024/*
1025 * Free huge page from pool from next node to free.
1026 * Attempt to keep persistent huge pages more or less
1027 * balanced over allowed nodes.
1028 * Called with hugetlb_lock locked.
1029 */
1030static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1031							 bool acct_surplus)
1032{
1033	int nr_nodes, node;
1034	int ret = 0;
1035
1036	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1037		/*
1038		 * If we're returning unused surplus pages, only examine
1039		 * nodes with surplus pages.
1040		 */
1041		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1042		    !list_empty(&h->hugepage_freelists[node])) {
1043			struct page *page =
1044				list_entry(h->hugepage_freelists[node].next,
1045					  struct page, lru);
1046			list_del(&page->lru);
1047			h->free_huge_pages--;
1048			h->free_huge_pages_node[node]--;
1049			if (acct_surplus) {
1050				h->surplus_huge_pages--;
1051				h->surplus_huge_pages_node[node]--;
1052			}
1053			update_and_free_page(h, page);
1054			ret = 1;
1055			break;
1056		}
1057	}
1058
1059	return ret;
1060}
1061
1062/*
1063 * Dissolve a given free hugepage into free buddy pages. This function does
1064 * nothing for in-use (including surplus) hugepages.
1065 */
1066static void dissolve_free_huge_page(struct page *page)
1067{
1068	spin_lock(&hugetlb_lock);
1069	if (PageHuge(page) && !page_count(page)) {
1070		struct hstate *h = page_hstate(page);
1071		int nid = page_to_nid(page);
1072		list_del(&page->lru);
1073		h->free_huge_pages--;
1074		h->free_huge_pages_node[nid]--;
1075		update_and_free_page(h, page);
1076	}
1077	spin_unlock(&hugetlb_lock);
1078}
1079
1080/*
1081 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1082 * make specified memory blocks removable from the system.
1083 * Note that start_pfn should aligned with (minimum) hugepage size.
1084 */
1085void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1086{
1087	unsigned int order = 8 * sizeof(void *);
1088	unsigned long pfn;
1089	struct hstate *h;
1090
1091	/* Set scan step to minimum hugepage size */
1092	for_each_hstate(h)
1093		if (order > huge_page_order(h))
1094			order = huge_page_order(h);
1095	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1096	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1097		dissolve_free_huge_page(pfn_to_page(pfn));
1098}
1099
1100static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1101{
1102	struct page *page;
1103	unsigned int r_nid;
1104
1105	if (hstate_is_gigantic(h))
1106		return NULL;
1107
1108	/*
1109	 * Assume we will successfully allocate the surplus page to
1110	 * prevent racing processes from causing the surplus to exceed
1111	 * overcommit
1112	 *
1113	 * This however introduces a different race, where a process B
1114	 * tries to grow the static hugepage pool while alloc_pages() is
1115	 * called by process A. B will only examine the per-node
1116	 * counters in determining if surplus huge pages can be
1117	 * converted to normal huge pages in adjust_pool_surplus(). A
1118	 * won't be able to increment the per-node counter, until the
1119	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1120	 * no more huge pages can be converted from surplus to normal
1121	 * state (and doesn't try to convert again). Thus, we have a
1122	 * case where a surplus huge page exists, the pool is grown, and
1123	 * the surplus huge page still exists after, even though it
1124	 * should just have been converted to a normal huge page. This
1125	 * does not leak memory, though, as the hugepage will be freed
1126	 * once it is out of use. It also does not allow the counters to
1127	 * go out of whack in adjust_pool_surplus() as we don't modify
1128	 * the node values until we've gotten the hugepage and only the
1129	 * per-node value is checked there.
1130	 */
1131	spin_lock(&hugetlb_lock);
1132	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1133		spin_unlock(&hugetlb_lock);
1134		return NULL;
1135	} else {
1136		h->nr_huge_pages++;
1137		h->surplus_huge_pages++;
1138	}
1139	spin_unlock(&hugetlb_lock);
1140
1141	if (nid == NUMA_NO_NODE)
1142		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1143				   __GFP_REPEAT|__GFP_NOWARN,
1144				   huge_page_order(h));
1145	else
1146		page = alloc_pages_exact_node(nid,
1147			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1148			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1149
1150	if (page && arch_prepare_hugepage(page)) {
1151		__free_pages(page, huge_page_order(h));
1152		page = NULL;
1153	}
1154
1155	spin_lock(&hugetlb_lock);
1156	if (page) {
1157		INIT_LIST_HEAD(&page->lru);
1158		r_nid = page_to_nid(page);
1159		set_compound_page_dtor(page, free_huge_page);
1160		set_hugetlb_cgroup(page, NULL);
1161		/*
1162		 * We incremented the global counters already
1163		 */
1164		h->nr_huge_pages_node[r_nid]++;
1165		h->surplus_huge_pages_node[r_nid]++;
1166		__count_vm_event(HTLB_BUDDY_PGALLOC);
1167	} else {
1168		h->nr_huge_pages--;
1169		h->surplus_huge_pages--;
1170		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1171	}
1172	spin_unlock(&hugetlb_lock);
1173
1174	return page;
1175}
1176
1177/*
1178 * This allocation function is useful in the context where vma is irrelevant.
1179 * E.g. soft-offlining uses this function because it only cares physical
1180 * address of error page.
1181 */
1182struct page *alloc_huge_page_node(struct hstate *h, int nid)
1183{
1184	struct page *page = NULL;
1185
1186	spin_lock(&hugetlb_lock);
1187	if (h->free_huge_pages - h->resv_huge_pages > 0)
1188		page = dequeue_huge_page_node(h, nid);
1189	spin_unlock(&hugetlb_lock);
1190
1191	if (!page)
1192		page = alloc_buddy_huge_page(h, nid);
1193
1194	return page;
1195}
1196
1197/*
1198 * Increase the hugetlb pool such that it can accommodate a reservation
1199 * of size 'delta'.
1200 */
1201static int gather_surplus_pages(struct hstate *h, int delta)
1202{
1203	struct list_head surplus_list;
1204	struct page *page, *tmp;
1205	int ret, i;
1206	int needed, allocated;
1207	bool alloc_ok = true;
1208
1209	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1210	if (needed <= 0) {
1211		h->resv_huge_pages += delta;
1212		return 0;
1213	}
1214
1215	allocated = 0;
1216	INIT_LIST_HEAD(&surplus_list);
1217
1218	ret = -ENOMEM;
1219retry:
1220	spin_unlock(&hugetlb_lock);
1221	for (i = 0; i < needed; i++) {
1222		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1223		if (!page) {
1224			alloc_ok = false;
1225			break;
1226		}
1227		list_add(&page->lru, &surplus_list);
1228	}
1229	allocated += i;
1230
1231	/*
1232	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1233	 * because either resv_huge_pages or free_huge_pages may have changed.
1234	 */
1235	spin_lock(&hugetlb_lock);
1236	needed = (h->resv_huge_pages + delta) -
1237			(h->free_huge_pages + allocated);
1238	if (needed > 0) {
1239		if (alloc_ok)
1240			goto retry;
1241		/*
1242		 * We were not able to allocate enough pages to
1243		 * satisfy the entire reservation so we free what
1244		 * we've allocated so far.
1245		 */
1246		goto free;
1247	}
1248	/*
1249	 * The surplus_list now contains _at_least_ the number of extra pages
1250	 * needed to accommodate the reservation.  Add the appropriate number
1251	 * of pages to the hugetlb pool and free the extras back to the buddy
1252	 * allocator.  Commit the entire reservation here to prevent another
1253	 * process from stealing the pages as they are added to the pool but
1254	 * before they are reserved.
1255	 */
1256	needed += allocated;
1257	h->resv_huge_pages += delta;
1258	ret = 0;
1259
1260	/* Free the needed pages to the hugetlb pool */
1261	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1262		if ((--needed) < 0)
1263			break;
1264		/*
1265		 * This page is now managed by the hugetlb allocator and has
1266		 * no users -- drop the buddy allocator's reference.
1267		 */
1268		put_page_testzero(page);
1269		VM_BUG_ON_PAGE(page_count(page), page);
1270		enqueue_huge_page(h, page);
1271	}
1272free:
1273	spin_unlock(&hugetlb_lock);
1274
1275	/* Free unnecessary surplus pages to the buddy allocator */
1276	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1277		put_page(page);
1278	spin_lock(&hugetlb_lock);
1279
1280	return ret;
1281}
1282
1283/*
1284 * When releasing a hugetlb pool reservation, any surplus pages that were
1285 * allocated to satisfy the reservation must be explicitly freed if they were
1286 * never used.
1287 * Called with hugetlb_lock held.
1288 */
1289static void return_unused_surplus_pages(struct hstate *h,
1290					unsigned long unused_resv_pages)
1291{
1292	unsigned long nr_pages;
1293
1294	/* Uncommit the reservation */
1295	h->resv_huge_pages -= unused_resv_pages;
1296
1297	/* Cannot return gigantic pages currently */
1298	if (hstate_is_gigantic(h))
1299		return;
1300
1301	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1302
1303	/*
1304	 * We want to release as many surplus pages as possible, spread
1305	 * evenly across all nodes with memory. Iterate across these nodes
1306	 * until we can no longer free unreserved surplus pages. This occurs
1307	 * when the nodes with surplus pages have no free pages.
1308	 * free_pool_huge_page() will balance the the freed pages across the
1309	 * on-line nodes with memory and will handle the hstate accounting.
1310	 */
1311	while (nr_pages--) {
1312		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1313			break;
1314		cond_resched_lock(&hugetlb_lock);
1315	}
1316}
1317
1318/*
1319 * Determine if the huge page at addr within the vma has an associated
1320 * reservation.  Where it does not we will need to logically increase
1321 * reservation and actually increase subpool usage before an allocation
1322 * can occur.  Where any new reservation would be required the
1323 * reservation change is prepared, but not committed.  Once the page
1324 * has been allocated from the subpool and instantiated the change should
1325 * be committed via vma_commit_reservation.  No action is required on
1326 * failure.
1327 */
1328static long vma_needs_reservation(struct hstate *h,
1329			struct vm_area_struct *vma, unsigned long addr)
1330{
1331	struct resv_map *resv;
1332	pgoff_t idx;
1333	long chg;
1334
1335	resv = vma_resv_map(vma);
1336	if (!resv)
1337		return 1;
1338
1339	idx = vma_hugecache_offset(h, vma, addr);
1340	chg = region_chg(resv, idx, idx + 1);
1341
1342	if (vma->vm_flags & VM_MAYSHARE)
1343		return chg;
1344	else
1345		return chg < 0 ? chg : 0;
1346}
1347static void vma_commit_reservation(struct hstate *h,
1348			struct vm_area_struct *vma, unsigned long addr)
1349{
1350	struct resv_map *resv;
1351	pgoff_t idx;
1352
1353	resv = vma_resv_map(vma);
1354	if (!resv)
1355		return;
1356
1357	idx = vma_hugecache_offset(h, vma, addr);
1358	region_add(resv, idx, idx + 1);
1359}
1360
1361static struct page *alloc_huge_page(struct vm_area_struct *vma,
1362				    unsigned long addr, int avoid_reserve)
1363{
1364	struct hugepage_subpool *spool = subpool_vma(vma);
1365	struct hstate *h = hstate_vma(vma);
1366	struct page *page;
1367	long chg;
1368	int ret, idx;
1369	struct hugetlb_cgroup *h_cg;
1370
1371	idx = hstate_index(h);
1372	/*
1373	 * Processes that did not create the mapping will have no
1374	 * reserves and will not have accounted against subpool
1375	 * limit. Check that the subpool limit can be made before
1376	 * satisfying the allocation MAP_NORESERVE mappings may also
1377	 * need pages and subpool limit allocated allocated if no reserve
1378	 * mapping overlaps.
1379	 */
1380	chg = vma_needs_reservation(h, vma, addr);
1381	if (chg < 0)
1382		return ERR_PTR(-ENOMEM);
1383	if (chg || avoid_reserve)
1384		if (hugepage_subpool_get_pages(spool, 1))
1385			return ERR_PTR(-ENOSPC);
1386
1387	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1388	if (ret)
1389		goto out_subpool_put;
1390
1391	spin_lock(&hugetlb_lock);
1392	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1393	if (!page) {
1394		spin_unlock(&hugetlb_lock);
1395		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1396		if (!page)
1397			goto out_uncharge_cgroup;
1398
1399		spin_lock(&hugetlb_lock);
1400		list_move(&page->lru, &h->hugepage_activelist);
1401		/* Fall through */
1402	}
1403	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1404	spin_unlock(&hugetlb_lock);
1405
1406	set_page_private(page, (unsigned long)spool);
1407
1408	vma_commit_reservation(h, vma, addr);
1409	return page;
1410
1411out_uncharge_cgroup:
1412	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1413out_subpool_put:
1414	if (chg || avoid_reserve)
1415		hugepage_subpool_put_pages(spool, 1);
1416	return ERR_PTR(-ENOSPC);
1417}
1418
1419/*
1420 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1421 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1422 * where no ERR_VALUE is expected to be returned.
1423 */
1424struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1425				unsigned long addr, int avoid_reserve)
1426{
1427	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1428	if (IS_ERR(page))
1429		page = NULL;
1430	return page;
1431}
1432
1433int __weak alloc_bootmem_huge_page(struct hstate *h)
1434{
1435	struct huge_bootmem_page *m;
1436	int nr_nodes, node;
1437
1438	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1439		void *addr;
1440
1441		addr = memblock_virt_alloc_try_nid_nopanic(
1442				huge_page_size(h), huge_page_size(h),
1443				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1444		if (addr) {
1445			/*
1446			 * Use the beginning of the huge page to store the
1447			 * huge_bootmem_page struct (until gather_bootmem
1448			 * puts them into the mem_map).
1449			 */
1450			m = addr;
1451			goto found;
1452		}
1453	}
1454	return 0;
1455
1456found:
1457	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1458	/* Put them into a private list first because mem_map is not up yet */
1459	list_add(&m->list, &huge_boot_pages);
1460	m->hstate = h;
1461	return 1;
1462}
1463
1464static void __init prep_compound_huge_page(struct page *page, int order)
1465{
1466	if (unlikely(order > (MAX_ORDER - 1)))
1467		prep_compound_gigantic_page(page, order);
1468	else
1469		prep_compound_page(page, order);
1470}
1471
1472/* Put bootmem huge pages into the standard lists after mem_map is up */
1473static void __init gather_bootmem_prealloc(void)
1474{
1475	struct huge_bootmem_page *m;
1476
1477	list_for_each_entry(m, &huge_boot_pages, list) {
1478		struct hstate *h = m->hstate;
1479		struct page *page;
1480
1481#ifdef CONFIG_HIGHMEM
1482		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1483		memblock_free_late(__pa(m),
1484				   sizeof(struct huge_bootmem_page));
1485#else
1486		page = virt_to_page(m);
1487#endif
1488		WARN_ON(page_count(page) != 1);
1489		prep_compound_huge_page(page, h->order);
1490		WARN_ON(PageReserved(page));
1491		prep_new_huge_page(h, page, page_to_nid(page));
1492		/*
1493		 * If we had gigantic hugepages allocated at boot time, we need
1494		 * to restore the 'stolen' pages to totalram_pages in order to
1495		 * fix confusing memory reports from free(1) and another
1496		 * side-effects, like CommitLimit going negative.
1497		 */
1498		if (hstate_is_gigantic(h))
1499			adjust_managed_page_count(page, 1 << h->order);
1500	}
1501}
1502
1503static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1504{
1505	unsigned long i;
1506
1507	for (i = 0; i < h->max_huge_pages; ++i) {
1508		if (hstate_is_gigantic(h)) {
1509			if (!alloc_bootmem_huge_page(h))
1510				break;
1511		} else if (!alloc_fresh_huge_page(h,
1512					 &node_states[N_MEMORY]))
1513			break;
1514	}
1515	h->max_huge_pages = i;
1516}
1517
1518static void __init hugetlb_init_hstates(void)
1519{
1520	struct hstate *h;
1521
1522	for_each_hstate(h) {
1523		/* oversize hugepages were init'ed in early boot */
1524		if (!hstate_is_gigantic(h))
1525			hugetlb_hstate_alloc_pages(h);
1526	}
1527}
1528
1529static char * __init memfmt(char *buf, unsigned long n)
1530{
1531	if (n >= (1UL << 30))
1532		sprintf(buf, "%lu GB", n >> 30);
1533	else if (n >= (1UL << 20))
1534		sprintf(buf, "%lu MB", n >> 20);
1535	else
1536		sprintf(buf, "%lu KB", n >> 10);
1537	return buf;
1538}
1539
1540static void __init report_hugepages(void)
1541{
1542	struct hstate *h;
1543
1544	for_each_hstate(h) {
1545		char buf[32];
1546		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1547			memfmt(buf, huge_page_size(h)),
1548			h->free_huge_pages);
1549	}
1550}
1551
1552#ifdef CONFIG_HIGHMEM
1553static void try_to_free_low(struct hstate *h, unsigned long count,
1554						nodemask_t *nodes_allowed)
1555{
1556	int i;
1557
1558	if (hstate_is_gigantic(h))
1559		return;
1560
1561	for_each_node_mask(i, *nodes_allowed) {
1562		struct page *page, *next;
1563		struct list_head *freel = &h->hugepage_freelists[i];
1564		list_for_each_entry_safe(page, next, freel, lru) {
1565			if (count >= h->nr_huge_pages)
1566				return;
1567			if (PageHighMem(page))
1568				continue;
1569			list_del(&page->lru);
1570			update_and_free_page(h, page);
1571			h->free_huge_pages--;
1572			h->free_huge_pages_node[page_to_nid(page)]--;
1573		}
1574	}
1575}
1576#else
1577static inline void try_to_free_low(struct hstate *h, unsigned long count,
1578						nodemask_t *nodes_allowed)
1579{
1580}
1581#endif
1582
1583/*
1584 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1585 * balanced by operating on them in a round-robin fashion.
1586 * Returns 1 if an adjustment was made.
1587 */
1588static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1589				int delta)
1590{
1591	int nr_nodes, node;
1592
1593	VM_BUG_ON(delta != -1 && delta != 1);
1594
1595	if (delta < 0) {
1596		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1597			if (h->surplus_huge_pages_node[node])
1598				goto found;
1599		}
1600	} else {
1601		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1602			if (h->surplus_huge_pages_node[node] <
1603					h->nr_huge_pages_node[node])
1604				goto found;
1605		}
1606	}
1607	return 0;
1608
1609found:
1610	h->surplus_huge_pages += delta;
1611	h->surplus_huge_pages_node[node] += delta;
1612	return 1;
1613}
1614
1615#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1616static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1617						nodemask_t *nodes_allowed)
1618{
1619	unsigned long min_count, ret;
1620
1621	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1622		return h->max_huge_pages;
1623
1624	/*
1625	 * Increase the pool size
1626	 * First take pages out of surplus state.  Then make up the
1627	 * remaining difference by allocating fresh huge pages.
1628	 *
1629	 * We might race with alloc_buddy_huge_page() here and be unable
1630	 * to convert a surplus huge page to a normal huge page. That is
1631	 * not critical, though, it just means the overall size of the
1632	 * pool might be one hugepage larger than it needs to be, but
1633	 * within all the constraints specified by the sysctls.
1634	 */
1635	spin_lock(&hugetlb_lock);
1636	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1637		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1638			break;
1639	}
1640
1641	while (count > persistent_huge_pages(h)) {
1642		/*
1643		 * If this allocation races such that we no longer need the
1644		 * page, free_huge_page will handle it by freeing the page
1645		 * and reducing the surplus.
1646		 */
1647		spin_unlock(&hugetlb_lock);
1648		if (hstate_is_gigantic(h))
1649			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1650		else
1651			ret = alloc_fresh_huge_page(h, nodes_allowed);
1652		spin_lock(&hugetlb_lock);
1653		if (!ret)
1654			goto out;
1655
1656		/* Bail for signals. Probably ctrl-c from user */
1657		if (signal_pending(current))
1658			goto out;
1659	}
1660
1661	/*
1662	 * Decrease the pool size
1663	 * First return free pages to the buddy allocator (being careful
1664	 * to keep enough around to satisfy reservations).  Then place
1665	 * pages into surplus state as needed so the pool will shrink
1666	 * to the desired size as pages become free.
1667	 *
1668	 * By placing pages into the surplus state independent of the
1669	 * overcommit value, we are allowing the surplus pool size to
1670	 * exceed overcommit. There are few sane options here. Since
1671	 * alloc_buddy_huge_page() is checking the global counter,
1672	 * though, we'll note that we're not allowed to exceed surplus
1673	 * and won't grow the pool anywhere else. Not until one of the
1674	 * sysctls are changed, or the surplus pages go out of use.
1675	 */
1676	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1677	min_count = max(count, min_count);
1678	try_to_free_low(h, min_count, nodes_allowed);
1679	while (min_count < persistent_huge_pages(h)) {
1680		if (!free_pool_huge_page(h, nodes_allowed, 0))
1681			break;
1682		cond_resched_lock(&hugetlb_lock);
1683	}
1684	while (count < persistent_huge_pages(h)) {
1685		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1686			break;
1687	}
1688out:
1689	ret = persistent_huge_pages(h);
1690	spin_unlock(&hugetlb_lock);
1691	return ret;
1692}
1693
1694#define HSTATE_ATTR_RO(_name) \
1695	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1696
1697#define HSTATE_ATTR(_name) \
1698	static struct kobj_attribute _name##_attr = \
1699		__ATTR(_name, 0644, _name##_show, _name##_store)
1700
1701static struct kobject *hugepages_kobj;
1702static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1703
1704static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1705
1706static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1707{
1708	int i;
1709
1710	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1711		if (hstate_kobjs[i] == kobj) {
1712			if (nidp)
1713				*nidp = NUMA_NO_NODE;
1714			return &hstates[i];
1715		}
1716
1717	return kobj_to_node_hstate(kobj, nidp);
1718}
1719
1720static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1721					struct kobj_attribute *attr, char *buf)
1722{
1723	struct hstate *h;
1724	unsigned long nr_huge_pages;
1725	int nid;
1726
1727	h = kobj_to_hstate(kobj, &nid);
1728	if (nid == NUMA_NO_NODE)
1729		nr_huge_pages = h->nr_huge_pages;
1730	else
1731		nr_huge_pages = h->nr_huge_pages_node[nid];
1732
1733	return sprintf(buf, "%lu\n", nr_huge_pages);
1734}
1735
1736static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1737					   struct hstate *h, int nid,
1738					   unsigned long count, size_t len)
1739{
1740	int err;
1741	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1742
1743	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1744		err = -EINVAL;
1745		goto out;
1746	}
1747
1748	if (nid == NUMA_NO_NODE) {
1749		/*
1750		 * global hstate attribute
1751		 */
1752		if (!(obey_mempolicy &&
1753				init_nodemask_of_mempolicy(nodes_allowed))) {
1754			NODEMASK_FREE(nodes_allowed);
1755			nodes_allowed = &node_states[N_MEMORY];
1756		}
1757	} else if (nodes_allowed) {
1758		/*
1759		 * per node hstate attribute: adjust count to global,
1760		 * but restrict alloc/free to the specified node.
1761		 */
1762		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1763		init_nodemask_of_node(nodes_allowed, nid);
1764	} else
1765		nodes_allowed = &node_states[N_MEMORY];
1766
1767	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1768
1769	if (nodes_allowed != &node_states[N_MEMORY])
1770		NODEMASK_FREE(nodes_allowed);
1771
1772	return len;
1773out:
1774	NODEMASK_FREE(nodes_allowed);
1775	return err;
1776}
1777
1778static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1779					 struct kobject *kobj, const char *buf,
1780					 size_t len)
1781{
1782	struct hstate *h;
1783	unsigned long count;
1784	int nid;
1785	int err;
1786
1787	err = kstrtoul(buf, 10, &count);
1788	if (err)
1789		return err;
1790
1791	h = kobj_to_hstate(kobj, &nid);
1792	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1793}
1794
1795static ssize_t nr_hugepages_show(struct kobject *kobj,
1796				       struct kobj_attribute *attr, char *buf)
1797{
1798	return nr_hugepages_show_common(kobj, attr, buf);
1799}
1800
1801static ssize_t nr_hugepages_store(struct kobject *kobj,
1802	       struct kobj_attribute *attr, const char *buf, size_t len)
1803{
1804	return nr_hugepages_store_common(false, kobj, buf, len);
1805}
1806HSTATE_ATTR(nr_hugepages);
1807
1808#ifdef CONFIG_NUMA
1809
1810/*
1811 * hstate attribute for optionally mempolicy-based constraint on persistent
1812 * huge page alloc/free.
1813 */
1814static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1815				       struct kobj_attribute *attr, char *buf)
1816{
1817	return nr_hugepages_show_common(kobj, attr, buf);
1818}
1819
1820static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1821	       struct kobj_attribute *attr, const char *buf, size_t len)
1822{
1823	return nr_hugepages_store_common(true, kobj, buf, len);
1824}
1825HSTATE_ATTR(nr_hugepages_mempolicy);
1826#endif
1827
1828
1829static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1830					struct kobj_attribute *attr, char *buf)
1831{
1832	struct hstate *h = kobj_to_hstate(kobj, NULL);
1833	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1834}
1835
1836static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1837		struct kobj_attribute *attr, const char *buf, size_t count)
1838{
1839	int err;
1840	unsigned long input;
1841	struct hstate *h = kobj_to_hstate(kobj, NULL);
1842
1843	if (hstate_is_gigantic(h))
1844		return -EINVAL;
1845
1846	err = kstrtoul(buf, 10, &input);
1847	if (err)
1848		return err;
1849
1850	spin_lock(&hugetlb_lock);
1851	h->nr_overcommit_huge_pages = input;
1852	spin_unlock(&hugetlb_lock);
1853
1854	return count;
1855}
1856HSTATE_ATTR(nr_overcommit_hugepages);
1857
1858static ssize_t free_hugepages_show(struct kobject *kobj,
1859					struct kobj_attribute *attr, char *buf)
1860{
1861	struct hstate *h;
1862	unsigned long free_huge_pages;
1863	int nid;
1864
1865	h = kobj_to_hstate(kobj, &nid);
1866	if (nid == NUMA_NO_NODE)
1867		free_huge_pages = h->free_huge_pages;
1868	else
1869		free_huge_pages = h->free_huge_pages_node[nid];
1870
1871	return sprintf(buf, "%lu\n", free_huge_pages);
1872}
1873HSTATE_ATTR_RO(free_hugepages);
1874
1875static ssize_t resv_hugepages_show(struct kobject *kobj,
1876					struct kobj_attribute *attr, char *buf)
1877{
1878	struct hstate *h = kobj_to_hstate(kobj, NULL);
1879	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1880}
1881HSTATE_ATTR_RO(resv_hugepages);
1882
1883static ssize_t surplus_hugepages_show(struct kobject *kobj,
1884					struct kobj_attribute *attr, char *buf)
1885{
1886	struct hstate *h;
1887	unsigned long surplus_huge_pages;
1888	int nid;
1889
1890	h = kobj_to_hstate(kobj, &nid);
1891	if (nid == NUMA_NO_NODE)
1892		surplus_huge_pages = h->surplus_huge_pages;
1893	else
1894		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1895
1896	return sprintf(buf, "%lu\n", surplus_huge_pages);
1897}
1898HSTATE_ATTR_RO(surplus_hugepages);
1899
1900static struct attribute *hstate_attrs[] = {
1901	&nr_hugepages_attr.attr,
1902	&nr_overcommit_hugepages_attr.attr,
1903	&free_hugepages_attr.attr,
1904	&resv_hugepages_attr.attr,
1905	&surplus_hugepages_attr.attr,
1906#ifdef CONFIG_NUMA
1907	&nr_hugepages_mempolicy_attr.attr,
1908#endif
1909	NULL,
1910};
1911
1912static struct attribute_group hstate_attr_group = {
1913	.attrs = hstate_attrs,
1914};
1915
1916static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1917				    struct kobject **hstate_kobjs,
1918				    struct attribute_group *hstate_attr_group)
1919{
1920	int retval;
1921	int hi = hstate_index(h);
1922
1923	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1924	if (!hstate_kobjs[hi])
1925		return -ENOMEM;
1926
1927	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1928	if (retval)
1929		kobject_put(hstate_kobjs[hi]);
1930
1931	return retval;
1932}
1933
1934static void __init hugetlb_sysfs_init(void)
1935{
1936	struct hstate *h;
1937	int err;
1938
1939	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1940	if (!hugepages_kobj)
1941		return;
1942
1943	for_each_hstate(h) {
1944		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1945					 hstate_kobjs, &hstate_attr_group);
1946		if (err)
1947			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1948	}
1949}
1950
1951#ifdef CONFIG_NUMA
1952
1953/*
1954 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1955 * with node devices in node_devices[] using a parallel array.  The array
1956 * index of a node device or _hstate == node id.
1957 * This is here to avoid any static dependency of the node device driver, in
1958 * the base kernel, on the hugetlb module.
1959 */
1960struct node_hstate {
1961	struct kobject		*hugepages_kobj;
1962	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1963};
1964struct node_hstate node_hstates[MAX_NUMNODES];
1965
1966/*
1967 * A subset of global hstate attributes for node devices
1968 */
1969static struct attribute *per_node_hstate_attrs[] = {
1970	&nr_hugepages_attr.attr,
1971	&free_hugepages_attr.attr,
1972	&surplus_hugepages_attr.attr,
1973	NULL,
1974};
1975
1976static struct attribute_group per_node_hstate_attr_group = {
1977	.attrs = per_node_hstate_attrs,
1978};
1979
1980/*
1981 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1982 * Returns node id via non-NULL nidp.
1983 */
1984static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1985{
1986	int nid;
1987
1988	for (nid = 0; nid < nr_node_ids; nid++) {
1989		struct node_hstate *nhs = &node_hstates[nid];
1990		int i;
1991		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1992			if (nhs->hstate_kobjs[i] == kobj) {
1993				if (nidp)
1994					*nidp = nid;
1995				return &hstates[i];
1996			}
1997	}
1998
1999	BUG();
2000	return NULL;
2001}
2002
2003/*
2004 * Unregister hstate attributes from a single node device.
2005 * No-op if no hstate attributes attached.
2006 */
2007static void hugetlb_unregister_node(struct node *node)
2008{
2009	struct hstate *h;
2010	struct node_hstate *nhs = &node_hstates[node->dev.id];
2011
2012	if (!nhs->hugepages_kobj)
2013		return;		/* no hstate attributes */
2014
2015	for_each_hstate(h) {
2016		int idx = hstate_index(h);
2017		if (nhs->hstate_kobjs[idx]) {
2018			kobject_put(nhs->hstate_kobjs[idx]);
2019			nhs->hstate_kobjs[idx] = NULL;
2020		}
2021	}
2022
2023	kobject_put(nhs->hugepages_kobj);
2024	nhs->hugepages_kobj = NULL;
2025}
2026
2027/*
2028 * hugetlb module exit:  unregister hstate attributes from node devices
2029 * that have them.
2030 */
2031static void hugetlb_unregister_all_nodes(void)
2032{
2033	int nid;
2034
2035	/*
2036	 * disable node device registrations.
2037	 */
2038	register_hugetlbfs_with_node(NULL, NULL);
2039
2040	/*
2041	 * remove hstate attributes from any nodes that have them.
2042	 */
2043	for (nid = 0; nid < nr_node_ids; nid++)
2044		hugetlb_unregister_node(node_devices[nid]);
2045}
2046
2047/*
2048 * Register hstate attributes for a single node device.
2049 * No-op if attributes already registered.
2050 */
2051static void hugetlb_register_node(struct node *node)
2052{
2053	struct hstate *h;
2054	struct node_hstate *nhs = &node_hstates[node->dev.id];
2055	int err;
2056
2057	if (nhs->hugepages_kobj)
2058		return;		/* already allocated */
2059
2060	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2061							&node->dev.kobj);
2062	if (!nhs->hugepages_kobj)
2063		return;
2064
2065	for_each_hstate(h) {
2066		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2067						nhs->hstate_kobjs,
2068						&per_node_hstate_attr_group);
2069		if (err) {
2070			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2071				h->name, node->dev.id);
2072			hugetlb_unregister_node(node);
2073			break;
2074		}
2075	}
2076}
2077
2078/*
2079 * hugetlb init time:  register hstate attributes for all registered node
2080 * devices of nodes that have memory.  All on-line nodes should have
2081 * registered their associated device by this time.
2082 */
2083static void hugetlb_register_all_nodes(void)
2084{
2085	int nid;
2086
2087	for_each_node_state(nid, N_MEMORY) {
2088		struct node *node = node_devices[nid];
2089		if (node->dev.id == nid)
2090			hugetlb_register_node(node);
2091	}
2092
2093	/*
2094	 * Let the node device driver know we're here so it can
2095	 * [un]register hstate attributes on node hotplug.
2096	 */
2097	register_hugetlbfs_with_node(hugetlb_register_node,
2098				     hugetlb_unregister_node);
2099}
2100#else	/* !CONFIG_NUMA */
2101
2102static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2103{
2104	BUG();
2105	if (nidp)
2106		*nidp = -1;
2107	return NULL;
2108}
2109
2110static void hugetlb_unregister_all_nodes(void) { }
2111
2112static void hugetlb_register_all_nodes(void) { }
2113
2114#endif
2115
2116static void __exit hugetlb_exit(void)
2117{
2118	struct hstate *h;
2119
2120	hugetlb_unregister_all_nodes();
2121
2122	for_each_hstate(h) {
2123		kobject_put(hstate_kobjs[hstate_index(h)]);
2124	}
2125
2126	kobject_put(hugepages_kobj);
2127	kfree(htlb_fault_mutex_table);
2128}
2129module_exit(hugetlb_exit);
2130
2131static int __init hugetlb_init(void)
2132{
2133	int i;
2134
2135	if (!hugepages_supported())
2136		return 0;
2137
2138	if (!size_to_hstate(default_hstate_size)) {
2139		default_hstate_size = HPAGE_SIZE;
2140		if (!size_to_hstate(default_hstate_size))
2141			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2142	}
2143	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2144	if (default_hstate_max_huge_pages)
2145		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2146
2147	hugetlb_init_hstates();
2148	gather_bootmem_prealloc();
2149	report_hugepages();
2150
2151	hugetlb_sysfs_init();
2152	hugetlb_register_all_nodes();
2153	hugetlb_cgroup_file_init();
2154
2155#ifdef CONFIG_SMP
2156	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2157#else
2158	num_fault_mutexes = 1;
2159#endif
2160	htlb_fault_mutex_table =
2161		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2162	BUG_ON(!htlb_fault_mutex_table);
2163
2164	for (i = 0; i < num_fault_mutexes; i++)
2165		mutex_init(&htlb_fault_mutex_table[i]);
2166	return 0;
2167}
2168module_init(hugetlb_init);
2169
2170/* Should be called on processing a hugepagesz=... option */
2171void __init hugetlb_add_hstate(unsigned order)
2172{
2173	struct hstate *h;
2174	unsigned long i;
2175
2176	if (size_to_hstate(PAGE_SIZE << order)) {
2177		pr_warning("hugepagesz= specified twice, ignoring\n");
2178		return;
2179	}
2180	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2181	BUG_ON(order == 0);
2182	h = &hstates[hugetlb_max_hstate++];
2183	h->order = order;
2184	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2185	h->nr_huge_pages = 0;
2186	h->free_huge_pages = 0;
2187	for (i = 0; i < MAX_NUMNODES; ++i)
2188		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2189	INIT_LIST_HEAD(&h->hugepage_activelist);
2190	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2191	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2192	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2193					huge_page_size(h)/1024);
2194
2195	parsed_hstate = h;
2196}
2197
2198static int __init hugetlb_nrpages_setup(char *s)
2199{
2200	unsigned long *mhp;
2201	static unsigned long *last_mhp;
2202
2203	/*
2204	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2205	 * so this hugepages= parameter goes to the "default hstate".
2206	 */
2207	if (!hugetlb_max_hstate)
2208		mhp = &default_hstate_max_huge_pages;
2209	else
2210		mhp = &parsed_hstate->max_huge_pages;
2211
2212	if (mhp == last_mhp) {
2213		pr_warning("hugepages= specified twice without "
2214			   "interleaving hugepagesz=, ignoring\n");
2215		return 1;
2216	}
2217
2218	if (sscanf(s, "%lu", mhp) <= 0)
2219		*mhp = 0;
2220
2221	/*
2222	 * Global state is always initialized later in hugetlb_init.
2223	 * But we need to allocate >= MAX_ORDER hstates here early to still
2224	 * use the bootmem allocator.
2225	 */
2226	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2227		hugetlb_hstate_alloc_pages(parsed_hstate);
2228
2229	last_mhp = mhp;
2230
2231	return 1;
2232}
2233__setup("hugepages=", hugetlb_nrpages_setup);
2234
2235static int __init hugetlb_default_setup(char *s)
2236{
2237	default_hstate_size = memparse(s, &s);
2238	return 1;
2239}
2240__setup("default_hugepagesz=", hugetlb_default_setup);
2241
2242static unsigned int cpuset_mems_nr(unsigned int *array)
2243{
2244	int node;
2245	unsigned int nr = 0;
2246
2247	for_each_node_mask(node, cpuset_current_mems_allowed)
2248		nr += array[node];
2249
2250	return nr;
2251}
2252
2253#ifdef CONFIG_SYSCTL
2254static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2255			 struct ctl_table *table, int write,
2256			 void __user *buffer, size_t *length, loff_t *ppos)
2257{
2258	struct hstate *h = &default_hstate;
2259	unsigned long tmp = h->max_huge_pages;
2260	int ret;
2261
2262	if (!hugepages_supported())
2263		return -ENOTSUPP;
2264
2265	table->data = &tmp;
2266	table->maxlen = sizeof(unsigned long);
2267	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2268	if (ret)
2269		goto out;
2270
2271	if (write)
2272		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2273						  NUMA_NO_NODE, tmp, *length);
2274out:
2275	return ret;
2276}
2277
2278int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2279			  void __user *buffer, size_t *length, loff_t *ppos)
2280{
2281
2282	return hugetlb_sysctl_handler_common(false, table, write,
2283							buffer, length, ppos);
2284}
2285
2286#ifdef CONFIG_NUMA
2287int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2288			  void __user *buffer, size_t *length, loff_t *ppos)
2289{
2290	return hugetlb_sysctl_handler_common(true, table, write,
2291							buffer, length, ppos);
2292}
2293#endif /* CONFIG_NUMA */
2294
2295int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2296			void __user *buffer,
2297			size_t *length, loff_t *ppos)
2298{
2299	struct hstate *h = &default_hstate;
2300	unsigned long tmp;
2301	int ret;
2302
2303	if (!hugepages_supported())
2304		return -ENOTSUPP;
2305
2306	tmp = h->nr_overcommit_huge_pages;
2307
2308	if (write && hstate_is_gigantic(h))
2309		return -EINVAL;
2310
2311	table->data = &tmp;
2312	table->maxlen = sizeof(unsigned long);
2313	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2314	if (ret)
2315		goto out;
2316
2317	if (write) {
2318		spin_lock(&hugetlb_lock);
2319		h->nr_overcommit_huge_pages = tmp;
2320		spin_unlock(&hugetlb_lock);
2321	}
2322out:
2323	return ret;
2324}
2325
2326#endif /* CONFIG_SYSCTL */
2327
2328void hugetlb_report_meminfo(struct seq_file *m)
2329{
2330	struct hstate *h = &default_hstate;
2331	if (!hugepages_supported())
2332		return;
2333	seq_printf(m,
2334			"HugePages_Total:   %5lu\n"
2335			"HugePages_Free:    %5lu\n"
2336			"HugePages_Rsvd:    %5lu\n"
2337			"HugePages_Surp:    %5lu\n"
2338			"Hugepagesize:   %8lu kB\n",
2339			h->nr_huge_pages,
2340			h->free_huge_pages,
2341			h->resv_huge_pages,
2342			h->surplus_huge_pages,
2343			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2344}
2345
2346int hugetlb_report_node_meminfo(int nid, char *buf)
2347{
2348	struct hstate *h = &default_hstate;
2349	if (!hugepages_supported())
2350		return 0;
2351	return sprintf(buf,
2352		"Node %d HugePages_Total: %5u\n"
2353		"Node %d HugePages_Free:  %5u\n"
2354		"Node %d HugePages_Surp:  %5u\n",
2355		nid, h->nr_huge_pages_node[nid],
2356		nid, h->free_huge_pages_node[nid],
2357		nid, h->surplus_huge_pages_node[nid]);
2358}
2359
2360void hugetlb_show_meminfo(void)
2361{
2362	struct hstate *h;
2363	int nid;
2364
2365	if (!hugepages_supported())
2366		return;
2367
2368	for_each_node_state(nid, N_MEMORY)
2369		for_each_hstate(h)
2370			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2371				nid,
2372				h->nr_huge_pages_node[nid],
2373				h->free_huge_pages_node[nid],
2374				h->surplus_huge_pages_node[nid],
2375				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2376}
2377
2378/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2379unsigned long hugetlb_total_pages(void)
2380{
2381	struct hstate *h;
2382	unsigned long nr_total_pages = 0;
2383
2384	for_each_hstate(h)
2385		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2386	return nr_total_pages;
2387}
2388
2389static int hugetlb_acct_memory(struct hstate *h, long delta)
2390{
2391	int ret = -ENOMEM;
2392
2393	spin_lock(&hugetlb_lock);
2394	/*
2395	 * When cpuset is configured, it breaks the strict hugetlb page
2396	 * reservation as the accounting is done on a global variable. Such
2397	 * reservation is completely rubbish in the presence of cpuset because
2398	 * the reservation is not checked against page availability for the
2399	 * current cpuset. Application can still potentially OOM'ed by kernel
2400	 * with lack of free htlb page in cpuset that the task is in.
2401	 * Attempt to enforce strict accounting with cpuset is almost
2402	 * impossible (or too ugly) because cpuset is too fluid that
2403	 * task or memory node can be dynamically moved between cpusets.
2404	 *
2405	 * The change of semantics for shared hugetlb mapping with cpuset is
2406	 * undesirable. However, in order to preserve some of the semantics,
2407	 * we fall back to check against current free page availability as
2408	 * a best attempt and hopefully to minimize the impact of changing
2409	 * semantics that cpuset has.
2410	 */
2411	if (delta > 0) {
2412		if (gather_surplus_pages(h, delta) < 0)
2413			goto out;
2414
2415		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2416			return_unused_surplus_pages(h, delta);
2417			goto out;
2418		}
2419	}
2420
2421	ret = 0;
2422	if (delta < 0)
2423		return_unused_surplus_pages(h, (unsigned long) -delta);
2424
2425out:
2426	spin_unlock(&hugetlb_lock);
2427	return ret;
2428}
2429
2430static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2431{
2432	struct resv_map *resv = vma_resv_map(vma);
2433
2434	/*
2435	 * This new VMA should share its siblings reservation map if present.
2436	 * The VMA will only ever have a valid reservation map pointer where
2437	 * it is being copied for another still existing VMA.  As that VMA
2438	 * has a reference to the reservation map it cannot disappear until
2439	 * after this open call completes.  It is therefore safe to take a
2440	 * new reference here without additional locking.
2441	 */
2442	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2443		kref_get(&resv->refs);
2444}
2445
2446static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2447{
2448	struct hstate *h = hstate_vma(vma);
2449	struct resv_map *resv = vma_resv_map(vma);
2450	struct hugepage_subpool *spool = subpool_vma(vma);
2451	unsigned long reserve, start, end;
2452
2453	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2454		return;
2455
2456	start = vma_hugecache_offset(h, vma, vma->vm_start);
2457	end = vma_hugecache_offset(h, vma, vma->vm_end);
2458
2459	reserve = (end - start) - region_count(resv, start, end);
2460
2461	kref_put(&resv->refs, resv_map_release);
2462
2463	if (reserve) {
2464		hugetlb_acct_memory(h, -reserve);
2465		hugepage_subpool_put_pages(spool, reserve);
2466	}
2467}
2468
2469/*
2470 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2471 * handle_mm_fault() to try to instantiate regular-sized pages in the
2472 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2473 * this far.
2474 */
2475static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2476{
2477	BUG();
2478	return 0;
2479}
2480
2481const struct vm_operations_struct hugetlb_vm_ops = {
2482	.fault = hugetlb_vm_op_fault,
2483	.open = hugetlb_vm_op_open,
2484	.close = hugetlb_vm_op_close,
2485};
2486
2487static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2488				int writable)
2489{
2490	pte_t entry;
2491
2492	if (writable) {
2493		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2494					 vma->vm_page_prot)));
2495	} else {
2496		entry = huge_pte_wrprotect(mk_huge_pte(page,
2497					   vma->vm_page_prot));
2498	}
2499	entry = pte_mkyoung(entry);
2500	entry = pte_mkhuge(entry);
2501	entry = arch_make_huge_pte(entry, vma, page, writable);
2502
2503	return entry;
2504}
2505
2506static void set_huge_ptep_writable(struct vm_area_struct *vma,
2507				   unsigned long address, pte_t *ptep)
2508{
2509	pte_t entry;
2510
2511	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2512	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2513		update_mmu_cache(vma, address, ptep);
2514}
2515
2516static int is_hugetlb_entry_migration(pte_t pte)
2517{
2518	swp_entry_t swp;
2519
2520	if (huge_pte_none(pte) || pte_present(pte))
2521		return 0;
2522	swp = pte_to_swp_entry(pte);
2523	if (non_swap_entry(swp) && is_migration_entry(swp))
2524		return 1;
2525	else
2526		return 0;
2527}
2528
2529static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2530{
2531	swp_entry_t swp;
2532
2533	if (huge_pte_none(pte) || pte_present(pte))
2534		return 0;
2535	swp = pte_to_swp_entry(pte);
2536	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2537		return 1;
2538	else
2539		return 0;
2540}
2541
2542int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2543			    struct vm_area_struct *vma)
2544{
2545	pte_t *src_pte, *dst_pte, entry;
2546	struct page *ptepage;
2547	unsigned long addr;
2548	int cow;
2549	struct hstate *h = hstate_vma(vma);
2550	unsigned long sz = huge_page_size(h);
2551	unsigned long mmun_start;	/* For mmu_notifiers */
2552	unsigned long mmun_end;		/* For mmu_notifiers */
2553	int ret = 0;
2554
2555	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2556
2557	mmun_start = vma->vm_start;
2558	mmun_end = vma->vm_end;
2559	if (cow)
2560		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2561
2562	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2563		spinlock_t *src_ptl, *dst_ptl;
2564		src_pte = huge_pte_offset(src, addr);
2565		if (!src_pte)
2566			continue;
2567		dst_pte = huge_pte_alloc(dst, addr, sz);
2568		if (!dst_pte) {
2569			ret = -ENOMEM;
2570			break;
2571		}
2572
2573		/* If the pagetables are shared don't copy or take references */
2574		if (dst_pte == src_pte)
2575			continue;
2576
2577		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2578		src_ptl = huge_pte_lockptr(h, src, src_pte);
2579		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2580		entry = huge_ptep_get(src_pte);
2581		if (huge_pte_none(entry)) { /* skip none entry */
2582			;
2583		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
2584				    is_hugetlb_entry_hwpoisoned(entry))) {
2585			swp_entry_t swp_entry = pte_to_swp_entry(entry);
2586
2587			if (is_write_migration_entry(swp_entry) && cow) {
2588				/*
2589				 * COW mappings require pages in both
2590				 * parent and child to be set to read.
2591				 */
2592				make_migration_entry_read(&swp_entry);
2593				entry = swp_entry_to_pte(swp_entry);
2594				set_huge_pte_at(src, addr, src_pte, entry);
2595			}
2596			set_huge_pte_at(dst, addr, dst_pte, entry);
2597		} else {
2598			if (cow)
2599				huge_ptep_set_wrprotect(src, addr, src_pte);
2600			entry = huge_ptep_get(src_pte);
2601			ptepage = pte_page(entry);
2602			get_page(ptepage);
2603			page_dup_rmap(ptepage);
2604			set_huge_pte_at(dst, addr, dst_pte, entry);
2605		}
2606		spin_unlock(src_ptl);
2607		spin_unlock(dst_ptl);
2608	}
2609
2610	if (cow)
2611		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2612
2613	return ret;
2614}
2615
2616void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2617			    unsigned long start, unsigned long end,
2618			    struct page *ref_page)
2619{
2620	int force_flush = 0;
2621	struct mm_struct *mm = vma->vm_mm;
2622	unsigned long address;
2623	pte_t *ptep;
2624	pte_t pte;
2625	spinlock_t *ptl;
2626	struct page *page;
2627	struct hstate *h = hstate_vma(vma);
2628	unsigned long sz = huge_page_size(h);
2629	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2630	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2631
2632	WARN_ON(!is_vm_hugetlb_page(vma));
2633	BUG_ON(start & ~huge_page_mask(h));
2634	BUG_ON(end & ~huge_page_mask(h));
2635
2636	tlb_start_vma(tlb, vma);
2637	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2638again:
2639	for (address = start; address < end; address += sz) {
2640		ptep = huge_pte_offset(mm, address);
2641		if (!ptep)
2642			continue;
2643
2644		ptl = huge_pte_lock(h, mm, ptep);
2645		if (huge_pmd_unshare(mm, &address, ptep))
2646			goto unlock;
2647
2648		pte = huge_ptep_get(ptep);
2649		if (huge_pte_none(pte))
2650			goto unlock;
2651
2652		/*
2653		 * HWPoisoned hugepage is already unmapped and dropped reference
2654		 */
2655		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2656			huge_pte_clear(mm, address, ptep);
2657			goto unlock;
2658		}
2659
2660		page = pte_page(pte);
2661		/*
2662		 * If a reference page is supplied, it is because a specific
2663		 * page is being unmapped, not a range. Ensure the page we
2664		 * are about to unmap is the actual page of interest.
2665		 */
2666		if (ref_page) {
2667			if (page != ref_page)
2668				goto unlock;
2669
2670			/*
2671			 * Mark the VMA as having unmapped its page so that
2672			 * future faults in this VMA will fail rather than
2673			 * looking like data was lost
2674			 */
2675			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2676		}
2677
2678		pte = huge_ptep_get_and_clear(mm, address, ptep);
2679		tlb_remove_tlb_entry(tlb, ptep, address);
2680		if (huge_pte_dirty(pte))
2681			set_page_dirty(page);
2682
2683		page_remove_rmap(page);
2684		force_flush = !__tlb_remove_page(tlb, page);
2685		if (force_flush) {
2686			spin_unlock(ptl);
2687			break;
2688		}
2689		/* Bail out after unmapping reference page if supplied */
2690		if (ref_page) {
2691			spin_unlock(ptl);
2692			break;
2693		}
2694unlock:
2695		spin_unlock(ptl);
2696	}
2697	/*
2698	 * mmu_gather ran out of room to batch pages, we break out of
2699	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2700	 * and page-free while holding it.
2701	 */
2702	if (force_flush) {
2703		force_flush = 0;
2704		tlb_flush_mmu(tlb);
2705		if (address < end && !ref_page)
2706			goto again;
2707	}
2708	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2709	tlb_end_vma(tlb, vma);
2710}
2711
2712void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2713			  struct vm_area_struct *vma, unsigned long start,
2714			  unsigned long end, struct page *ref_page)
2715{
2716	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2717
2718	/*
2719	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2720	 * test will fail on a vma being torn down, and not grab a page table
2721	 * on its way out.  We're lucky that the flag has such an appropriate
2722	 * name, and can in fact be safely cleared here. We could clear it
2723	 * before the __unmap_hugepage_range above, but all that's necessary
2724	 * is to clear it before releasing the i_mmap_mutex. This works
2725	 * because in the context this is called, the VMA is about to be
2726	 * destroyed and the i_mmap_mutex is held.
2727	 */
2728	vma->vm_flags &= ~VM_MAYSHARE;
2729}
2730
2731void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2732			  unsigned long end, struct page *ref_page)
2733{
2734	struct mm_struct *mm;
2735	struct mmu_gather tlb;
2736
2737	mm = vma->vm_mm;
2738
2739	tlb_gather_mmu(&tlb, mm, start, end);
2740	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2741	tlb_finish_mmu(&tlb, start, end);
2742}
2743
2744/*
2745 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2746 * mappping it owns the reserve page for. The intention is to unmap the page
2747 * from other VMAs and let the children be SIGKILLed if they are faulting the
2748 * same region.
2749 */
2750static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2751			      struct page *page, unsigned long address)
2752{
2753	struct hstate *h = hstate_vma(vma);
2754	struct vm_area_struct *iter_vma;
2755	struct address_space *mapping;
2756	pgoff_t pgoff;
2757
2758	/*
2759	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2760	 * from page cache lookup which is in HPAGE_SIZE units.
2761	 */
2762	address = address & huge_page_mask(h);
2763	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2764			vma->vm_pgoff;
2765	mapping = file_inode(vma->vm_file)->i_mapping;
2766
2767	/*
2768	 * Take the mapping lock for the duration of the table walk. As
2769	 * this mapping should be shared between all the VMAs,
2770	 * __unmap_hugepage_range() is called as the lock is already held
2771	 */
2772	mutex_lock(&mapping->i_mmap_mutex);
2773	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2774		/* Do not unmap the current VMA */
2775		if (iter_vma == vma)
2776			continue;
2777
2778		/*
2779		 * Unmap the page from other VMAs without their own reserves.
2780		 * They get marked to be SIGKILLed if they fault in these
2781		 * areas. This is because a future no-page fault on this VMA
2782		 * could insert a zeroed page instead of the data existing
2783		 * from the time of fork. This would look like data corruption
2784		 */
2785		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2786			unmap_hugepage_range(iter_vma, address,
2787					     address + huge_page_size(h), page);
2788	}
2789	mutex_unlock(&mapping->i_mmap_mutex);
2790}
2791
2792/*
2793 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2794 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2795 * cannot race with other handlers or page migration.
2796 * Keep the pte_same checks anyway to make transition from the mutex easier.
2797 */
2798static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2799			unsigned long address, pte_t *ptep, pte_t pte,
2800			struct page *pagecache_page, spinlock_t *ptl)
2801{
2802	struct hstate *h = hstate_vma(vma);
2803	struct page *old_page, *new_page;
2804	int ret = 0, outside_reserve = 0;
2805	unsigned long mmun_start;	/* For mmu_notifiers */
2806	unsigned long mmun_end;		/* For mmu_notifiers */
2807
2808	old_page = pte_page(pte);
2809
2810retry_avoidcopy:
2811	/* If no-one else is actually using this page, avoid the copy
2812	 * and just make the page writable */
2813	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2814		page_move_anon_rmap(old_page, vma, address);
2815		set_huge_ptep_writable(vma, address, ptep);
2816		return 0;
2817	}
2818
2819	/*
2820	 * If the process that created a MAP_PRIVATE mapping is about to
2821	 * perform a COW due to a shared page count, attempt to satisfy
2822	 * the allocation without using the existing reserves. The pagecache
2823	 * page is used to determine if the reserve at this address was
2824	 * consumed or not. If reserves were used, a partial faulted mapping
2825	 * at the time of fork() could consume its reserves on COW instead
2826	 * of the full address range.
2827	 */
2828	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2829			old_page != pagecache_page)
2830		outside_reserve = 1;
2831
2832	page_cache_get(old_page);
2833
2834	/*
2835	 * Drop page table lock as buddy allocator may be called. It will
2836	 * be acquired again before returning to the caller, as expected.
2837	 */
2838	spin_unlock(ptl);
2839	new_page = alloc_huge_page(vma, address, outside_reserve);
2840
2841	if (IS_ERR(new_page)) {
2842		/*
2843		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2844		 * it is due to references held by a child and an insufficient
2845		 * huge page pool. To guarantee the original mappers
2846		 * reliability, unmap the page from child processes. The child
2847		 * may get SIGKILLed if it later faults.
2848		 */
2849		if (outside_reserve) {
2850			page_cache_release(old_page);
2851			BUG_ON(huge_pte_none(pte));
2852			unmap_ref_private(mm, vma, old_page, address);
2853			BUG_ON(huge_pte_none(pte));
2854			spin_lock(ptl);
2855			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2856			if (likely(ptep &&
2857				   pte_same(huge_ptep_get(ptep), pte)))
2858				goto retry_avoidcopy;
2859			/*
2860			 * race occurs while re-acquiring page table
2861			 * lock, and our job is done.
2862			 */
2863			return 0;
2864		}
2865
2866		ret = (PTR_ERR(new_page) == -ENOMEM) ?
2867			VM_FAULT_OOM : VM_FAULT_SIGBUS;
2868		goto out_release_old;
2869	}
2870
2871	/*
2872	 * When the original hugepage is shared one, it does not have
2873	 * anon_vma prepared.
2874	 */
2875	if (unlikely(anon_vma_prepare(vma))) {
2876		ret = VM_FAULT_OOM;
2877		goto out_release_all;
2878	}
2879
2880	copy_user_huge_page(new_page, old_page, address, vma,
2881			    pages_per_huge_page(h));
2882	__SetPageUptodate(new_page);
2883
2884	mmun_start = address & huge_page_mask(h);
2885	mmun_end = mmun_start + huge_page_size(h);
2886	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2887
2888	/*
2889	 * Retake the page table lock to check for racing updates
2890	 * before the page tables are altered
2891	 */
2892	spin_lock(ptl);
2893	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2894	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2895		ClearPagePrivate(new_page);
2896
2897		/* Break COW */
2898		huge_ptep_clear_flush(vma, address, ptep);
2899		set_huge_pte_at(mm, address, ptep,
2900				make_huge_pte(vma, new_page, 1));
2901		page_remove_rmap(old_page);
2902		hugepage_add_new_anon_rmap(new_page, vma, address);
2903		/* Make the old page be freed below */
2904		new_page = old_page;
2905	}
2906	spin_unlock(ptl);
2907	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2908out_release_all:
2909	page_cache_release(new_page);
2910out_release_old:
2911	page_cache_release(old_page);
2912
2913	spin_lock(ptl); /* Caller expects lock to be held */
2914	return ret;
2915}
2916
2917/* Return the pagecache page at a given address within a VMA */
2918static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2919			struct vm_area_struct *vma, unsigned long address)
2920{
2921	struct address_space *mapping;
2922	pgoff_t idx;
2923
2924	mapping = vma->vm_file->f_mapping;
2925	idx = vma_hugecache_offset(h, vma, address);
2926
2927	return find_lock_page(mapping, idx);
2928}
2929
2930/*
2931 * Return whether there is a pagecache page to back given address within VMA.
2932 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2933 */
2934static bool hugetlbfs_pagecache_present(struct hstate *h,
2935			struct vm_area_struct *vma, unsigned long address)
2936{
2937	struct address_space *mapping;
2938	pgoff_t idx;
2939	struct page *page;
2940
2941	mapping = vma->vm_file->f_mapping;
2942	idx = vma_hugecache_offset(h, vma, address);
2943
2944	page = find_get_page(mapping, idx);
2945	if (page)
2946		put_page(page);
2947	return page != NULL;
2948}
2949
2950static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2951			   struct address_space *mapping, pgoff_t idx,
2952			   unsigned long address, pte_t *ptep, unsigned int flags)
2953{
2954	struct hstate *h = hstate_vma(vma);
2955	int ret = VM_FAULT_SIGBUS;
2956	int anon_rmap = 0;
2957	unsigned long size;
2958	struct page *page;
2959	pte_t new_pte;
2960	spinlock_t *ptl;
2961
2962	/*
2963	 * Currently, we are forced to kill the process in the event the
2964	 * original mapper has unmapped pages from the child due to a failed
2965	 * COW. Warn that such a situation has occurred as it may not be obvious
2966	 */
2967	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2968		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2969			   current->pid);
2970		return ret;
2971	}
2972
2973	/*
2974	 * Use page lock to guard against racing truncation
2975	 * before we get page_table_lock.
2976	 */
2977retry:
2978	page = find_lock_page(mapping, idx);
2979	if (!page) {
2980		size = i_size_read(mapping->host) >> huge_page_shift(h);
2981		if (idx >= size)
2982			goto out;
2983		page = alloc_huge_page(vma, address, 0);
2984		if (IS_ERR(page)) {
2985			ret = PTR_ERR(page);
2986			if (ret == -ENOMEM)
2987				ret = VM_FAULT_OOM;
2988			else
2989				ret = VM_FAULT_SIGBUS;
2990			goto out;
2991		}
2992		clear_huge_page(page, address, pages_per_huge_page(h));
2993		__SetPageUptodate(page);
2994
2995		if (vma->vm_flags & VM_MAYSHARE) {
2996			int err;
2997			struct inode *inode = mapping->host;
2998
2999			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3000			if (err) {
3001				put_page(page);
3002				if (err == -EEXIST)
3003					goto retry;
3004				goto out;
3005			}
3006			ClearPagePrivate(page);
3007
3008			spin_lock(&inode->i_lock);
3009			inode->i_blocks += blocks_per_huge_page(h);
3010			spin_unlock(&inode->i_lock);
3011		} else {
3012			lock_page(page);
3013			if (unlikely(anon_vma_prepare(vma))) {
3014				ret = VM_FAULT_OOM;
3015				goto backout_unlocked;
3016			}
3017			anon_rmap = 1;
3018		}
3019	} else {
3020		/*
3021		 * If memory error occurs between mmap() and fault, some process
3022		 * don't have hwpoisoned swap entry for errored virtual address.
3023		 * So we need to block hugepage fault by PG_hwpoison bit check.
3024		 */
3025		if (unlikely(PageHWPoison(page))) {
3026			ret = VM_FAULT_HWPOISON |
3027				VM_FAULT_SET_HINDEX(hstate_index(h));
3028			goto backout_unlocked;
3029		}
3030	}
3031
3032	/*
3033	 * If we are going to COW a private mapping later, we examine the
3034	 * pending reservations for this page now. This will ensure that
3035	 * any allocations necessary to record that reservation occur outside
3036	 * the spinlock.
3037	 */
3038	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3039		if (vma_needs_reservation(h, vma, address) < 0) {
3040			ret = VM_FAULT_OOM;
3041			goto backout_unlocked;
3042		}
3043
3044	ptl = huge_pte_lockptr(h, mm, ptep);
3045	spin_lock(ptl);
3046	size = i_size_read(mapping->host) >> huge_page_shift(h);
3047	if (idx >= size)
3048		goto backout;
3049
3050	ret = 0;
3051	if (!huge_pte_none(huge_ptep_get(ptep)))
3052		goto backout;
3053
3054	if (anon_rmap) {
3055		ClearPagePrivate(page);
3056		hugepage_add_new_anon_rmap(page, vma, address);
3057	} else
3058		page_dup_rmap(page);
3059	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3060				&& (vma->vm_flags & VM_SHARED)));
3061	set_huge_pte_at(mm, address, ptep, new_pte);
3062
3063	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3064		/* Optimization, do the COW without a second fault */
3065		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3066	}
3067
3068	spin_unlock(ptl);
3069	unlock_page(page);
3070out:
3071	return ret;
3072
3073backout:
3074	spin_unlock(ptl);
3075backout_unlocked:
3076	unlock_page(page);
3077	put_page(page);
3078	goto out;
3079}
3080
3081#ifdef CONFIG_SMP
3082static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3083			    struct vm_area_struct *vma,
3084			    struct address_space *mapping,
3085			    pgoff_t idx, unsigned long address)
3086{
3087	unsigned long key[2];
3088	u32 hash;
3089
3090	if (vma->vm_flags & VM_SHARED) {
3091		key[0] = (unsigned long) mapping;
3092		key[1] = idx;
3093	} else {
3094		key[0] = (unsigned long) mm;
3095		key[1] = address >> huge_page_shift(h);
3096	}
3097
3098	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3099
3100	return hash & (num_fault_mutexes - 1);
3101}
3102#else
3103/*
3104 * For uniprocesor systems we always use a single mutex, so just
3105 * return 0 and avoid the hashing overhead.
3106 */
3107static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3108			    struct vm_area_struct *vma,
3109			    struct address_space *mapping,
3110			    pgoff_t idx, unsigned long address)
3111{
3112	return 0;
3113}
3114#endif
3115
3116int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3117			unsigned long address, unsigned int flags)
3118{
3119	pte_t *ptep, entry;
3120	spinlock_t *ptl;
3121	int ret;
3122	u32 hash;
3123	pgoff_t idx;
3124	struct page *page = NULL;
3125	struct page *pagecache_page = NULL;
3126	struct hstate *h = hstate_vma(vma);
3127	struct address_space *mapping;
3128
3129	address &= huge_page_mask(h);
3130
3131	ptep = huge_pte_offset(mm, address);
3132	if (ptep) {
3133		entry = huge_ptep_get(ptep);
3134		if (unlikely(is_hugetlb_entry_migration(entry))) {
3135			migration_entry_wait_huge(vma, mm, ptep);
3136			return 0;
3137		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3138			return VM_FAULT_HWPOISON_LARGE |
3139				VM_FAULT_SET_HINDEX(hstate_index(h));
3140	}
3141
3142	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3143	if (!ptep)
3144		return VM_FAULT_OOM;
3145
3146	mapping = vma->vm_file->f_mapping;
3147	idx = vma_hugecache_offset(h, vma, address);
3148
3149	/*
3150	 * Serialize hugepage allocation and instantiation, so that we don't
3151	 * get spurious allocation failures if two CPUs race to instantiate
3152	 * the same page in the page cache.
3153	 */
3154	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3155	mutex_lock(&htlb_fault_mutex_table[hash]);
3156
3157	entry = huge_ptep_get(ptep);
3158	if (huge_pte_none(entry)) {
3159		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3160		goto out_mutex;
3161	}
3162
3163	ret = 0;
3164
3165	/*
3166	 * If we are going to COW the mapping later, we examine the pending
3167	 * reservations for this page now. This will ensure that any
3168	 * allocations necessary to record that reservation occur outside the
3169	 * spinlock. For private mappings, we also lookup the pagecache
3170	 * page now as it is used to determine if a reservation has been
3171	 * consumed.
3172	 */
3173	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3174		if (vma_needs_reservation(h, vma, address) < 0) {
3175			ret = VM_FAULT_OOM;
3176			goto out_mutex;
3177		}
3178
3179		if (!(vma->vm_flags & VM_MAYSHARE))
3180			pagecache_page = hugetlbfs_pagecache_page(h,
3181								vma, address);
3182	}
3183
3184	/*
3185	 * hugetlb_cow() requires page locks of pte_page(entry) and
3186	 * pagecache_page, so here we need take the former one
3187	 * when page != pagecache_page or !pagecache_page.
3188	 * Note that locking order is always pagecache_page -> page,
3189	 * so no worry about deadlock.
3190	 */
3191	page = pte_page(entry);
3192	get_page(page);
3193	if (page != pagecache_page)
3194		lock_page(page);
3195
3196	ptl = huge_pte_lockptr(h, mm, ptep);
3197	spin_lock(ptl);
3198	/* Check for a racing update before calling hugetlb_cow */
3199	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3200		goto out_ptl;
3201
3202
3203	if (flags & FAULT_FLAG_WRITE) {
3204		if (!huge_pte_write(entry)) {
3205			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3206					pagecache_page, ptl);
3207			goto out_ptl;
3208		}
3209		entry = huge_pte_mkdirty(entry);
3210	}
3211	entry = pte_mkyoung(entry);
3212	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3213						flags & FAULT_FLAG_WRITE))
3214		update_mmu_cache(vma, address, ptep);
3215
3216out_ptl:
3217	spin_unlock(ptl);
3218
3219	if (pagecache_page) {
3220		unlock_page(pagecache_page);
3221		put_page(pagecache_page);
3222	}
3223	if (page != pagecache_page)
3224		unlock_page(page);
3225	put_page(page);
3226
3227out_mutex:
3228	mutex_unlock(&htlb_fault_mutex_table[hash]);
3229	return ret;
3230}
3231
3232long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3233			 struct page **pages, struct vm_area_struct **vmas,
3234			 unsigned long *position, unsigned long *nr_pages,
3235			 long i, unsigned int flags)
3236{
3237	unsigned long pfn_offset;
3238	unsigned long vaddr = *position;
3239	unsigned long remainder = *nr_pages;
3240	struct hstate *h = hstate_vma(vma);
3241
3242	while (vaddr < vma->vm_end && remainder) {
3243		pte_t *pte;
3244		spinlock_t *ptl = NULL;
3245		int absent;
3246		struct page *page;
3247
3248		/*
3249		 * Some archs (sparc64, sh*) have multiple pte_ts to
3250		 * each hugepage.  We have to make sure we get the
3251		 * first, for the page indexing below to work.
3252		 *
3253		 * Note that page table lock is not held when pte is null.
3254		 */
3255		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3256		if (pte)
3257			ptl = huge_pte_lock(h, mm, pte);
3258		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3259
3260		/*
3261		 * When coredumping, it suits get_dump_page if we just return
3262		 * an error where there's an empty slot with no huge pagecache
3263		 * to back it.  This way, we avoid allocating a hugepage, and
3264		 * the sparse dumpfile avoids allocating disk blocks, but its
3265		 * huge holes still show up with zeroes where they need to be.
3266		 */
3267		if (absent && (flags & FOLL_DUMP) &&
3268		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3269			if (pte)
3270				spin_unlock(ptl);
3271			remainder = 0;
3272			break;
3273		}
3274
3275		/*
3276		 * We need call hugetlb_fault for both hugepages under migration
3277		 * (in which case hugetlb_fault waits for the migration,) and
3278		 * hwpoisoned hugepages (in which case we need to prevent the
3279		 * caller from accessing to them.) In order to do this, we use
3280		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3281		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3282		 * both cases, and because we can't follow correct pages
3283		 * directly from any kind of swap entries.
3284		 */
3285		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3286		    ((flags & FOLL_WRITE) &&
3287		      !huge_pte_write(huge_ptep_get(pte)))) {
3288			int ret;
3289
3290			if (pte)
3291				spin_unlock(ptl);
3292			ret = hugetlb_fault(mm, vma, vaddr,
3293				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3294			if (!(ret & VM_FAULT_ERROR))
3295				continue;
3296
3297			remainder = 0;
3298			break;
3299		}
3300
3301		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3302		page = pte_page(huge_ptep_get(pte));
3303same_page:
3304		if (pages) {
3305			pages[i] = mem_map_offset(page, pfn_offset);
3306			get_page_foll(pages[i]);
3307		}
3308
3309		if (vmas)
3310			vmas[i] = vma;
3311
3312		vaddr += PAGE_SIZE;
3313		++pfn_offset;
3314		--remainder;
3315		++i;
3316		if (vaddr < vma->vm_end && remainder &&
3317				pfn_offset < pages_per_huge_page(h)) {
3318			/*
3319			 * We use pfn_offset to avoid touching the pageframes
3320			 * of this compound page.
3321			 */
3322			goto same_page;
3323		}
3324		spin_unlock(ptl);
3325	}
3326	*nr_pages = remainder;
3327	*position = vaddr;
3328
3329	return i ? i : -EFAULT;
3330}
3331
3332unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3333		unsigned long address, unsigned long end, pgprot_t newprot)
3334{
3335	struct mm_struct *mm = vma->vm_mm;
3336	unsigned long start = address;
3337	pte_t *ptep;
3338	pte_t pte;
3339	struct hstate *h = hstate_vma(vma);
3340	unsigned long pages = 0;
3341
3342	BUG_ON(address >= end);
3343	flush_cache_range(vma, address, end);
3344
3345	mmu_notifier_invalidate_range_start(mm, start, end);
3346	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3347	for (; address < end; address += huge_page_size(h)) {
3348		spinlock_t *ptl;
3349		ptep = huge_pte_offset(mm, address);
3350		if (!ptep)
3351			continue;
3352		ptl = huge_pte_lock(h, mm, ptep);
3353		if (huge_pmd_unshare(mm, &address, ptep)) {
3354			pages++;
3355			spin_unlock(ptl);
3356			continue;
3357		}
3358		if (!huge_pte_none(huge_ptep_get(ptep))) {
3359			pte = huge_ptep_get_and_clear(mm, address, ptep);
3360			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3361			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3362			set_huge_pte_at(mm, address, ptep, pte);
3363			pages++;
3364		}
3365		spin_unlock(ptl);
3366	}
3367	/*
3368	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3369	 * may have cleared our pud entry and done put_page on the page table:
3370	 * once we release i_mmap_mutex, another task can do the final put_page
3371	 * and that page table be reused and filled with junk.
3372	 */
3373	flush_tlb_range(vma, start, end);
3374	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3375	mmu_notifier_invalidate_range_end(mm, start, end);
3376
3377	return pages << h->order;
3378}
3379
3380int hugetlb_reserve_pages(struct inode *inode,
3381					long from, long to,
3382					struct vm_area_struct *vma,
3383					vm_flags_t vm_flags)
3384{
3385	long ret, chg;
3386	struct hstate *h = hstate_inode(inode);
3387	struct hugepage_subpool *spool = subpool_inode(inode);
3388	struct resv_map *resv_map;
3389
3390	/*
3391	 * Only apply hugepage reservation if asked. At fault time, an
3392	 * attempt will be made for VM_NORESERVE to allocate a page
3393	 * without using reserves
3394	 */
3395	if (vm_flags & VM_NORESERVE)
3396		return 0;
3397
3398	/*
3399	 * Shared mappings base their reservation on the number of pages that
3400	 * are already allocated on behalf of the file. Private mappings need
3401	 * to reserve the full area even if read-only as mprotect() may be
3402	 * called to make the mapping read-write. Assume !vma is a shm mapping
3403	 */
3404	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3405		resv_map = inode_resv_map(inode);
3406
3407		chg = region_chg(resv_map, from, to);
3408
3409	} else {
3410		resv_map = resv_map_alloc();
3411		if (!resv_map)
3412			return -ENOMEM;
3413
3414		chg = to - from;
3415
3416		set_vma_resv_map(vma, resv_map);
3417		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3418	}
3419
3420	if (chg < 0) {
3421		ret = chg;
3422		goto out_err;
3423	}
3424
3425	/* There must be enough pages in the subpool for the mapping */
3426	if (hugepage_subpool_get_pages(spool, chg)) {
3427		ret = -ENOSPC;
3428		goto out_err;
3429	}
3430
3431	/*
3432	 * Check enough hugepages are available for the reservation.
3433	 * Hand the pages back to the subpool if there are not
3434	 */
3435	ret = hugetlb_acct_memory(h, chg);
3436	if (ret < 0) {
3437		hugepage_subpool_put_pages(spool, chg);
3438		goto out_err;
3439	}
3440
3441	/*
3442	 * Account for the reservations made. Shared mappings record regions
3443	 * that have reservations as they are shared by multiple VMAs.
3444	 * When the last VMA disappears, the region map says how much
3445	 * the reservation was and the page cache tells how much of
3446	 * the reservation was consumed. Private mappings are per-VMA and
3447	 * only the consumed reservations are tracked. When the VMA
3448	 * disappears, the original reservation is the VMA size and the
3449	 * consumed reservations are stored in the map. Hence, nothing
3450	 * else has to be done for private mappings here
3451	 */
3452	if (!vma || vma->vm_flags & VM_MAYSHARE)
3453		region_add(resv_map, from, to);
3454	return 0;
3455out_err:
3456	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3457		kref_put(&resv_map->refs, resv_map_release);
3458	return ret;
3459}
3460
3461void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3462{
3463	struct hstate *h = hstate_inode(inode);
3464	struct resv_map *resv_map = inode_resv_map(inode);
3465	long chg = 0;
3466	struct hugepage_subpool *spool = subpool_inode(inode);
3467
3468	if (resv_map)
3469		chg = region_truncate(resv_map, offset);
3470	spin_lock(&inode->i_lock);
3471	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3472	spin_unlock(&inode->i_lock);
3473
3474	hugepage_subpool_put_pages(spool, (chg - freed));
3475	hugetlb_acct_memory(h, -(chg - freed));
3476}
3477
3478#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3479static unsigned long page_table_shareable(struct vm_area_struct *svma,
3480				struct vm_area_struct *vma,
3481				unsigned long addr, pgoff_t idx)
3482{
3483	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3484				svma->vm_start;
3485	unsigned long sbase = saddr & PUD_MASK;
3486	unsigned long s_end = sbase + PUD_SIZE;
3487
3488	/* Allow segments to share if only one is marked locked */
3489	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3490	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3491
3492	/*
3493	 * match the virtual addresses, permission and the alignment of the
3494	 * page table page.
3495	 */
3496	if (pmd_index(addr) != pmd_index(saddr) ||
3497	    vm_flags != svm_flags ||
3498	    sbase < svma->vm_start || svma->vm_end < s_end)
3499		return 0;
3500
3501	return saddr;
3502}
3503
3504static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3505{
3506	unsigned long base = addr & PUD_MASK;
3507	unsigned long end = base + PUD_SIZE;
3508
3509	/*
3510	 * check on proper vm_flags and page table alignment
3511	 */
3512	if (vma->vm_flags & VM_MAYSHARE &&
3513	    vma->vm_start <= base && end <= vma->vm_end)
3514		return 1;
3515	return 0;
3516}
3517
3518/*
3519 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3520 * and returns the corresponding pte. While this is not necessary for the
3521 * !shared pmd case because we can allocate the pmd later as well, it makes the
3522 * code much cleaner. pmd allocation is essential for the shared case because
3523 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3524 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3525 * bad pmd for sharing.
3526 */
3527pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3528{
3529	struct vm_area_struct *vma = find_vma(mm, addr);
3530	struct address_space *mapping = vma->vm_file->f_mapping;
3531	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3532			vma->vm_pgoff;
3533	struct vm_area_struct *svma;
3534	unsigned long saddr;
3535	pte_t *spte = NULL;
3536	pte_t *pte;
3537	spinlock_t *ptl;
3538
3539	if (!vma_shareable(vma, addr))
3540		return (pte_t *)pmd_alloc(mm, pud, addr);
3541
3542	mutex_lock(&mapping->i_mmap_mutex);
3543	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3544		if (svma == vma)
3545			continue;
3546
3547		saddr = page_table_shareable(svma, vma, addr, idx);
3548		if (saddr) {
3549			spte = huge_pte_offset(svma->vm_mm, saddr);
3550			if (spte) {
3551				get_page(virt_to_page(spte));
3552				break;
3553			}
3554		}
3555	}
3556
3557	if (!spte)
3558		goto out;
3559
3560	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3561	spin_lock(ptl);
3562	if (pud_none(*pud))
3563		pud_populate(mm, pud,
3564				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3565	else
3566		put_page(virt_to_page(spte));
3567	spin_unlock(ptl);
3568out:
3569	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3570	mutex_unlock(&mapping->i_mmap_mutex);
3571	return pte;
3572}
3573
3574/*
3575 * unmap huge page backed by shared pte.
3576 *
3577 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3578 * indicated by page_count > 1, unmap is achieved by clearing pud and
3579 * decrementing the ref count. If count == 1, the pte page is not shared.
3580 *
3581 * called with page table lock held.
3582 *
3583 * returns: 1 successfully unmapped a shared pte page
3584 *	    0 the underlying pte page is not shared, or it is the last user
3585 */
3586int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3587{
3588	pgd_t *pgd = pgd_offset(mm, *addr);
3589	pud_t *pud = pud_offset(pgd, *addr);
3590
3591	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3592	if (page_count(virt_to_page(ptep)) == 1)
3593		return 0;
3594
3595	pud_clear(pud);
3596	put_page(virt_to_page(ptep));
3597	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3598	return 1;
3599}
3600#define want_pmd_share()	(1)
3601#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3602pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3603{
3604	return NULL;
3605}
3606#define want_pmd_share()	(0)
3607#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3608
3609#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3610pte_t *huge_pte_alloc(struct mm_struct *mm,
3611			unsigned long addr, unsigned long sz)
3612{
3613	pgd_t *pgd;
3614	pud_t *pud;
3615	pte_t *pte = NULL;
3616
3617	pgd = pgd_offset(mm, addr);
3618	pud = pud_alloc(mm, pgd, addr);
3619	if (pud) {
3620		if (sz == PUD_SIZE) {
3621			pte = (pte_t *)pud;
3622		} else {
3623			BUG_ON(sz != PMD_SIZE);
3624			if (want_pmd_share() && pud_none(*pud))
3625				pte = huge_pmd_share(mm, addr, pud);
3626			else
3627				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3628		}
3629	}
3630	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3631
3632	return pte;
3633}
3634
3635pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3636{
3637	pgd_t *pgd;
3638	pud_t *pud;
3639	pmd_t *pmd = NULL;
3640
3641	pgd = pgd_offset(mm, addr);
3642	if (pgd_present(*pgd)) {
3643		pud = pud_offset(pgd, addr);
3644		if (pud_present(*pud)) {
3645			if (pud_huge(*pud))
3646				return (pte_t *)pud;
3647			pmd = pmd_offset(pud, addr);
3648		}
3649	}
3650	return (pte_t *) pmd;
3651}
3652
3653struct page *
3654follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3655		pmd_t *pmd, int write)
3656{
3657	struct page *page;
3658
3659	page = pte_page(*(pte_t *)pmd);
3660	if (page)
3661		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3662	return page;
3663}
3664
3665struct page *
3666follow_huge_pud(struct mm_struct *mm, unsigned long address,
3667		pud_t *pud, int write)
3668{
3669	struct page *page;
3670
3671	page = pte_page(*(pte_t *)pud);
3672	if (page)
3673		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3674	return page;
3675}
3676
3677#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3678
3679/* Can be overriden by architectures */
3680struct page * __weak
3681follow_huge_pud(struct mm_struct *mm, unsigned long address,
3682	       pud_t *pud, int write)
3683{
3684	BUG();
3685	return NULL;
3686}
3687
3688#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3689
3690#ifdef CONFIG_MEMORY_FAILURE
3691
3692/* Should be called in hugetlb_lock */
3693static int is_hugepage_on_freelist(struct page *hpage)
3694{
3695	struct page *page;
3696	struct page *tmp;
3697	struct hstate *h = page_hstate(hpage);
3698	int nid = page_to_nid(hpage);
3699
3700	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3701		if (page == hpage)
3702			return 1;
3703	return 0;
3704}
3705
3706/*
3707 * This function is called from memory failure code.
3708 * Assume the caller holds page lock of the head page.
3709 */
3710int dequeue_hwpoisoned_huge_page(struct page *hpage)
3711{
3712	struct hstate *h = page_hstate(hpage);
3713	int nid = page_to_nid(hpage);
3714	int ret = -EBUSY;
3715
3716	spin_lock(&hugetlb_lock);
3717	if (is_hugepage_on_freelist(hpage)) {
3718		/*
3719		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3720		 * but dangling hpage->lru can trigger list-debug warnings
3721		 * (this happens when we call unpoison_memory() on it),
3722		 * so let it point to itself with list_del_init().
3723		 */
3724		list_del_init(&hpage->lru);
3725		set_page_refcounted(hpage);
3726		h->free_huge_pages--;
3727		h->free_huge_pages_node[nid]--;
3728		ret = 0;
3729	}
3730	spin_unlock(&hugetlb_lock);
3731	return ret;
3732}
3733#endif
3734
3735bool isolate_huge_page(struct page *page, struct list_head *list)
3736{
3737	VM_BUG_ON_PAGE(!PageHead(page), page);
3738	if (!get_page_unless_zero(page))
3739		return false;
3740	spin_lock(&hugetlb_lock);
3741	list_move_tail(&page->lru, list);
3742	spin_unlock(&hugetlb_lock);
3743	return true;
3744}
3745
3746void putback_active_hugepage(struct page *page)
3747{
3748	VM_BUG_ON_PAGE(!PageHead(page), page);
3749	spin_lock(&hugetlb_lock);
3750	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3751	spin_unlock(&hugetlb_lock);
3752	put_page(page);
3753}
3754
3755bool is_hugepage_active(struct page *page)
3756{
3757	VM_BUG_ON_PAGE(!PageHuge(page), page);
3758	/*
3759	 * This function can be called for a tail page because the caller,
3760	 * scan_movable_pages, scans through a given pfn-range which typically
3761	 * covers one memory block. In systems using gigantic hugepage (1GB
3762	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3763	 * support migrating such large hugepages for now, so return false
3764	 * when called for tail pages.
3765	 */
3766	if (PageTail(page))
3767		return false;
3768	/*
3769	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3770	 * so we should return false for them.
3771	 */
3772	if (unlikely(PageHWPoison(page)))
3773		return false;
3774	return page_count(page) > 0;
3775}
3776