hugetlb.c revision f412c97abef71026d8192ca8efca231f1e3906b3
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/page-isolation.h>
25#include <linux/jhash.h>
26
27#include <asm/page.h>
28#include <asm/pgtable.h>
29#include <asm/tlb.h>
30
31#include <linux/io.h>
32#include <linux/hugetlb.h>
33#include <linux/hugetlb_cgroup.h>
34#include <linux/node.h>
35#include "internal.h"
36
37const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
38unsigned long hugepages_treat_as_movable;
39
40int hugetlb_max_hstate __read_mostly;
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
44__initdata LIST_HEAD(huge_boot_pages);
45
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
49static unsigned long __initdata default_hstate_size;
50
51/*
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
54 */
55DEFINE_SPINLOCK(hugetlb_lock);
56
57/*
58 * Serializes faults on the same logical page.  This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
64static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65{
66	bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68	spin_unlock(&spool->lock);
69
70	/* If no pages are used, and no other handles to the subpool
71	 * remain, free the subpool the subpool remain */
72	if (free)
73		kfree(spool);
74}
75
76struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77{
78	struct hugepage_subpool *spool;
79
80	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81	if (!spool)
82		return NULL;
83
84	spin_lock_init(&spool->lock);
85	spool->count = 1;
86	spool->max_hpages = nr_blocks;
87	spool->used_hpages = 0;
88
89	return spool;
90}
91
92void hugepage_put_subpool(struct hugepage_subpool *spool)
93{
94	spin_lock(&spool->lock);
95	BUG_ON(!spool->count);
96	spool->count--;
97	unlock_or_release_subpool(spool);
98}
99
100static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101				      long delta)
102{
103	int ret = 0;
104
105	if (!spool)
106		return 0;
107
108	spin_lock(&spool->lock);
109	if ((spool->used_hpages + delta) <= spool->max_hpages) {
110		spool->used_hpages += delta;
111	} else {
112		ret = -ENOMEM;
113	}
114	spin_unlock(&spool->lock);
115
116	return ret;
117}
118
119static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120				       long delta)
121{
122	if (!spool)
123		return;
124
125	spin_lock(&spool->lock);
126	spool->used_hpages -= delta;
127	/* If hugetlbfs_put_super couldn't free spool due to
128	* an outstanding quota reference, free it now. */
129	unlock_or_release_subpool(spool);
130}
131
132static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133{
134	return HUGETLBFS_SB(inode->i_sb)->spool;
135}
136
137static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138{
139	return subpool_inode(file_inode(vma->vm_file));
140}
141
142/*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 *                    across the pages in a mapping.
145 *
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
148 */
149struct file_region {
150	struct list_head link;
151	long from;
152	long to;
153};
154
155static long region_add(struct resv_map *resv, long f, long t)
156{
157	struct list_head *head = &resv->regions;
158	struct file_region *rg, *nrg, *trg;
159
160	spin_lock(&resv->lock);
161	/* Locate the region we are either in or before. */
162	list_for_each_entry(rg, head, link)
163		if (f <= rg->to)
164			break;
165
166	/* Round our left edge to the current segment if it encloses us. */
167	if (f > rg->from)
168		f = rg->from;
169
170	/* Check for and consume any regions we now overlap with. */
171	nrg = rg;
172	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173		if (&rg->link == head)
174			break;
175		if (rg->from > t)
176			break;
177
178		/* If this area reaches higher then extend our area to
179		 * include it completely.  If this is not the first area
180		 * which we intend to reuse, free it. */
181		if (rg->to > t)
182			t = rg->to;
183		if (rg != nrg) {
184			list_del(&rg->link);
185			kfree(rg);
186		}
187	}
188	nrg->from = f;
189	nrg->to = t;
190	spin_unlock(&resv->lock);
191	return 0;
192}
193
194static long region_chg(struct resv_map *resv, long f, long t)
195{
196	struct list_head *head = &resv->regions;
197	struct file_region *rg, *nrg = NULL;
198	long chg = 0;
199
200retry:
201	spin_lock(&resv->lock);
202	/* Locate the region we are before or in. */
203	list_for_each_entry(rg, head, link)
204		if (f <= rg->to)
205			break;
206
207	/* If we are below the current region then a new region is required.
208	 * Subtle, allocate a new region at the position but make it zero
209	 * size such that we can guarantee to record the reservation. */
210	if (&rg->link == head || t < rg->from) {
211		if (!nrg) {
212			spin_unlock(&resv->lock);
213			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214			if (!nrg)
215				return -ENOMEM;
216
217			nrg->from = f;
218			nrg->to   = f;
219			INIT_LIST_HEAD(&nrg->link);
220			goto retry;
221		}
222
223		list_add(&nrg->link, rg->link.prev);
224		chg = t - f;
225		goto out_nrg;
226	}
227
228	/* Round our left edge to the current segment if it encloses us. */
229	if (f > rg->from)
230		f = rg->from;
231	chg = t - f;
232
233	/* Check for and consume any regions we now overlap with. */
234	list_for_each_entry(rg, rg->link.prev, link) {
235		if (&rg->link == head)
236			break;
237		if (rg->from > t)
238			goto out;
239
240		/* We overlap with this area, if it extends further than
241		 * us then we must extend ourselves.  Account for its
242		 * existing reservation. */
243		if (rg->to > t) {
244			chg += rg->to - t;
245			t = rg->to;
246		}
247		chg -= rg->to - rg->from;
248	}
249
250out:
251	spin_unlock(&resv->lock);
252	/*  We already know we raced and no longer need the new region */
253	kfree(nrg);
254	return chg;
255out_nrg:
256	spin_unlock(&resv->lock);
257	return chg;
258}
259
260static long region_truncate(struct resv_map *resv, long end)
261{
262	struct list_head *head = &resv->regions;
263	struct file_region *rg, *trg;
264	long chg = 0;
265
266	spin_lock(&resv->lock);
267	/* Locate the region we are either in or before. */
268	list_for_each_entry(rg, head, link)
269		if (end <= rg->to)
270			break;
271	if (&rg->link == head)
272		goto out;
273
274	/* If we are in the middle of a region then adjust it. */
275	if (end > rg->from) {
276		chg = rg->to - end;
277		rg->to = end;
278		rg = list_entry(rg->link.next, typeof(*rg), link);
279	}
280
281	/* Drop any remaining regions. */
282	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283		if (&rg->link == head)
284			break;
285		chg += rg->to - rg->from;
286		list_del(&rg->link);
287		kfree(rg);
288	}
289
290out:
291	spin_unlock(&resv->lock);
292	return chg;
293}
294
295static long region_count(struct resv_map *resv, long f, long t)
296{
297	struct list_head *head = &resv->regions;
298	struct file_region *rg;
299	long chg = 0;
300
301	spin_lock(&resv->lock);
302	/* Locate each segment we overlap with, and count that overlap. */
303	list_for_each_entry(rg, head, link) {
304		long seg_from;
305		long seg_to;
306
307		if (rg->to <= f)
308			continue;
309		if (rg->from >= t)
310			break;
311
312		seg_from = max(rg->from, f);
313		seg_to = min(rg->to, t);
314
315		chg += seg_to - seg_from;
316	}
317	spin_unlock(&resv->lock);
318
319	return chg;
320}
321
322/*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
326static pgoff_t vma_hugecache_offset(struct hstate *h,
327			struct vm_area_struct *vma, unsigned long address)
328{
329	return ((address - vma->vm_start) >> huge_page_shift(h)) +
330			(vma->vm_pgoff >> huge_page_order(h));
331}
332
333pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334				     unsigned long address)
335{
336	return vma_hugecache_offset(hstate_vma(vma), vma, address);
337}
338
339/*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
343unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344{
345	struct hstate *hstate;
346
347	if (!is_vm_hugetlb_page(vma))
348		return PAGE_SIZE;
349
350	hstate = hstate_vma(vma);
351
352	return 1UL << huge_page_shift(hstate);
353}
354EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355
356/*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362#ifndef vma_mmu_pagesize
363unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364{
365	return vma_kernel_pagesize(vma);
366}
367#endif
368
369/*
370 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374#define HPAGE_RESV_OWNER    (1UL << 0)
375#define HPAGE_RESV_UNMAPPED (1UL << 1)
376#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377
378/*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping.  A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated.  A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
396 */
397static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398{
399	return (unsigned long)vma->vm_private_data;
400}
401
402static void set_vma_private_data(struct vm_area_struct *vma,
403							unsigned long value)
404{
405	vma->vm_private_data = (void *)value;
406}
407
408struct resv_map *resv_map_alloc(void)
409{
410	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411	if (!resv_map)
412		return NULL;
413
414	kref_init(&resv_map->refs);
415	spin_lock_init(&resv_map->lock);
416	INIT_LIST_HEAD(&resv_map->regions);
417
418	return resv_map;
419}
420
421void resv_map_release(struct kref *ref)
422{
423	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425	/* Clear out any active regions before we release the map. */
426	region_truncate(resv_map, 0);
427	kfree(resv_map);
428}
429
430static inline struct resv_map *inode_resv_map(struct inode *inode)
431{
432	return inode->i_mapping->private_data;
433}
434
435static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436{
437	VM_BUG_ON(!is_vm_hugetlb_page(vma));
438	if (vma->vm_flags & VM_MAYSHARE) {
439		struct address_space *mapping = vma->vm_file->f_mapping;
440		struct inode *inode = mapping->host;
441
442		return inode_resv_map(inode);
443
444	} else {
445		return (struct resv_map *)(get_vma_private_data(vma) &
446							~HPAGE_RESV_MASK);
447	}
448}
449
450static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451{
452	VM_BUG_ON(!is_vm_hugetlb_page(vma));
453	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
454
455	set_vma_private_data(vma, (get_vma_private_data(vma) &
456				HPAGE_RESV_MASK) | (unsigned long)map);
457}
458
459static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460{
461	VM_BUG_ON(!is_vm_hugetlb_page(vma));
462	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
463
464	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465}
466
467static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468{
469	VM_BUG_ON(!is_vm_hugetlb_page(vma));
470
471	return (get_vma_private_data(vma) & flag) != 0;
472}
473
474/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476{
477	VM_BUG_ON(!is_vm_hugetlb_page(vma));
478	if (!(vma->vm_flags & VM_MAYSHARE))
479		vma->vm_private_data = (void *)0;
480}
481
482/* Returns true if the VMA has associated reserve pages */
483static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484{
485	if (vma->vm_flags & VM_NORESERVE) {
486		/*
487		 * This address is already reserved by other process(chg == 0),
488		 * so, we should decrement reserved count. Without decrementing,
489		 * reserve count remains after releasing inode, because this
490		 * allocated page will go into page cache and is regarded as
491		 * coming from reserved pool in releasing step.  Currently, we
492		 * don't have any other solution to deal with this situation
493		 * properly, so add work-around here.
494		 */
495		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496			return 1;
497		else
498			return 0;
499	}
500
501	/* Shared mappings always use reserves */
502	if (vma->vm_flags & VM_MAYSHARE)
503		return 1;
504
505	/*
506	 * Only the process that called mmap() has reserves for
507	 * private mappings.
508	 */
509	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510		return 1;
511
512	return 0;
513}
514
515static void enqueue_huge_page(struct hstate *h, struct page *page)
516{
517	int nid = page_to_nid(page);
518	list_move(&page->lru, &h->hugepage_freelists[nid]);
519	h->free_huge_pages++;
520	h->free_huge_pages_node[nid]++;
521}
522
523static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524{
525	struct page *page;
526
527	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528		if (!is_migrate_isolate_page(page))
529			break;
530	/*
531	 * if 'non-isolated free hugepage' not found on the list,
532	 * the allocation fails.
533	 */
534	if (&h->hugepage_freelists[nid] == &page->lru)
535		return NULL;
536	list_move(&page->lru, &h->hugepage_activelist);
537	set_page_refcounted(page);
538	h->free_huge_pages--;
539	h->free_huge_pages_node[nid]--;
540	return page;
541}
542
543/* Movability of hugepages depends on migration support. */
544static inline gfp_t htlb_alloc_mask(struct hstate *h)
545{
546	if (hugepages_treat_as_movable || hugepage_migration_support(h))
547		return GFP_HIGHUSER_MOVABLE;
548	else
549		return GFP_HIGHUSER;
550}
551
552static struct page *dequeue_huge_page_vma(struct hstate *h,
553				struct vm_area_struct *vma,
554				unsigned long address, int avoid_reserve,
555				long chg)
556{
557	struct page *page = NULL;
558	struct mempolicy *mpol;
559	nodemask_t *nodemask;
560	struct zonelist *zonelist;
561	struct zone *zone;
562	struct zoneref *z;
563	unsigned int cpuset_mems_cookie;
564
565	/*
566	 * A child process with MAP_PRIVATE mappings created by their parent
567	 * have no page reserves. This check ensures that reservations are
568	 * not "stolen". The child may still get SIGKILLed
569	 */
570	if (!vma_has_reserves(vma, chg) &&
571			h->free_huge_pages - h->resv_huge_pages == 0)
572		goto err;
573
574	/* If reserves cannot be used, ensure enough pages are in the pool */
575	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576		goto err;
577
578retry_cpuset:
579	cpuset_mems_cookie = read_mems_allowed_begin();
580	zonelist = huge_zonelist(vma, address,
581					htlb_alloc_mask(h), &mpol, &nodemask);
582
583	for_each_zone_zonelist_nodemask(zone, z, zonelist,
584						MAX_NR_ZONES - 1, nodemask) {
585		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586			page = dequeue_huge_page_node(h, zone_to_nid(zone));
587			if (page) {
588				if (avoid_reserve)
589					break;
590				if (!vma_has_reserves(vma, chg))
591					break;
592
593				SetPagePrivate(page);
594				h->resv_huge_pages--;
595				break;
596			}
597		}
598	}
599
600	mpol_cond_put(mpol);
601	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602		goto retry_cpuset;
603	return page;
604
605err:
606	return NULL;
607}
608
609static void update_and_free_page(struct hstate *h, struct page *page)
610{
611	int i;
612
613	VM_BUG_ON(h->order >= MAX_ORDER);
614
615	h->nr_huge_pages--;
616	h->nr_huge_pages_node[page_to_nid(page)]--;
617	for (i = 0; i < pages_per_huge_page(h); i++) {
618		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
619				1 << PG_referenced | 1 << PG_dirty |
620				1 << PG_active | 1 << PG_reserved |
621				1 << PG_private | 1 << PG_writeback);
622	}
623	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
624	set_compound_page_dtor(page, NULL);
625	set_page_refcounted(page);
626	arch_release_hugepage(page);
627	__free_pages(page, huge_page_order(h));
628}
629
630struct hstate *size_to_hstate(unsigned long size)
631{
632	struct hstate *h;
633
634	for_each_hstate(h) {
635		if (huge_page_size(h) == size)
636			return h;
637	}
638	return NULL;
639}
640
641static void free_huge_page(struct page *page)
642{
643	/*
644	 * Can't pass hstate in here because it is called from the
645	 * compound page destructor.
646	 */
647	struct hstate *h = page_hstate(page);
648	int nid = page_to_nid(page);
649	struct hugepage_subpool *spool =
650		(struct hugepage_subpool *)page_private(page);
651	bool restore_reserve;
652
653	set_page_private(page, 0);
654	page->mapping = NULL;
655	BUG_ON(page_count(page));
656	BUG_ON(page_mapcount(page));
657	restore_reserve = PagePrivate(page);
658	ClearPagePrivate(page);
659
660	spin_lock(&hugetlb_lock);
661	hugetlb_cgroup_uncharge_page(hstate_index(h),
662				     pages_per_huge_page(h), page);
663	if (restore_reserve)
664		h->resv_huge_pages++;
665
666	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
667		/* remove the page from active list */
668		list_del(&page->lru);
669		update_and_free_page(h, page);
670		h->surplus_huge_pages--;
671		h->surplus_huge_pages_node[nid]--;
672	} else {
673		arch_clear_hugepage_flags(page);
674		enqueue_huge_page(h, page);
675	}
676	spin_unlock(&hugetlb_lock);
677	hugepage_subpool_put_pages(spool, 1);
678}
679
680static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
681{
682	INIT_LIST_HEAD(&page->lru);
683	set_compound_page_dtor(page, free_huge_page);
684	spin_lock(&hugetlb_lock);
685	set_hugetlb_cgroup(page, NULL);
686	h->nr_huge_pages++;
687	h->nr_huge_pages_node[nid]++;
688	spin_unlock(&hugetlb_lock);
689	put_page(page); /* free it into the hugepage allocator */
690}
691
692static void __init prep_compound_gigantic_page(struct page *page,
693					       unsigned long order)
694{
695	int i;
696	int nr_pages = 1 << order;
697	struct page *p = page + 1;
698
699	/* we rely on prep_new_huge_page to set the destructor */
700	set_compound_order(page, order);
701	__SetPageHead(page);
702	__ClearPageReserved(page);
703	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
704		__SetPageTail(p);
705		/*
706		 * For gigantic hugepages allocated through bootmem at
707		 * boot, it's safer to be consistent with the not-gigantic
708		 * hugepages and clear the PG_reserved bit from all tail pages
709		 * too.  Otherwse drivers using get_user_pages() to access tail
710		 * pages may get the reference counting wrong if they see
711		 * PG_reserved set on a tail page (despite the head page not
712		 * having PG_reserved set).  Enforcing this consistency between
713		 * head and tail pages allows drivers to optimize away a check
714		 * on the head page when they need know if put_page() is needed
715		 * after get_user_pages().
716		 */
717		__ClearPageReserved(p);
718		set_page_count(p, 0);
719		p->first_page = page;
720	}
721}
722
723/*
724 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
725 * transparent huge pages.  See the PageTransHuge() documentation for more
726 * details.
727 */
728int PageHuge(struct page *page)
729{
730	if (!PageCompound(page))
731		return 0;
732
733	page = compound_head(page);
734	return get_compound_page_dtor(page) == free_huge_page;
735}
736EXPORT_SYMBOL_GPL(PageHuge);
737
738/*
739 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
740 * normal or transparent huge pages.
741 */
742int PageHeadHuge(struct page *page_head)
743{
744	if (!PageHead(page_head))
745		return 0;
746
747	return get_compound_page_dtor(page_head) == free_huge_page;
748}
749
750pgoff_t __basepage_index(struct page *page)
751{
752	struct page *page_head = compound_head(page);
753	pgoff_t index = page_index(page_head);
754	unsigned long compound_idx;
755
756	if (!PageHuge(page_head))
757		return page_index(page);
758
759	if (compound_order(page_head) >= MAX_ORDER)
760		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
761	else
762		compound_idx = page - page_head;
763
764	return (index << compound_order(page_head)) + compound_idx;
765}
766
767static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
768{
769	struct page *page;
770
771	if (h->order >= MAX_ORDER)
772		return NULL;
773
774	page = alloc_pages_exact_node(nid,
775		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
776						__GFP_REPEAT|__GFP_NOWARN,
777		huge_page_order(h));
778	if (page) {
779		if (arch_prepare_hugepage(page)) {
780			__free_pages(page, huge_page_order(h));
781			return NULL;
782		}
783		prep_new_huge_page(h, page, nid);
784	}
785
786	return page;
787}
788
789/*
790 * common helper functions for hstate_next_node_to_{alloc|free}.
791 * We may have allocated or freed a huge page based on a different
792 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
793 * be outside of *nodes_allowed.  Ensure that we use an allowed
794 * node for alloc or free.
795 */
796static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
797{
798	nid = next_node(nid, *nodes_allowed);
799	if (nid == MAX_NUMNODES)
800		nid = first_node(*nodes_allowed);
801	VM_BUG_ON(nid >= MAX_NUMNODES);
802
803	return nid;
804}
805
806static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
807{
808	if (!node_isset(nid, *nodes_allowed))
809		nid = next_node_allowed(nid, nodes_allowed);
810	return nid;
811}
812
813/*
814 * returns the previously saved node ["this node"] from which to
815 * allocate a persistent huge page for the pool and advance the
816 * next node from which to allocate, handling wrap at end of node
817 * mask.
818 */
819static int hstate_next_node_to_alloc(struct hstate *h,
820					nodemask_t *nodes_allowed)
821{
822	int nid;
823
824	VM_BUG_ON(!nodes_allowed);
825
826	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
827	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
828
829	return nid;
830}
831
832/*
833 * helper for free_pool_huge_page() - return the previously saved
834 * node ["this node"] from which to free a huge page.  Advance the
835 * next node id whether or not we find a free huge page to free so
836 * that the next attempt to free addresses the next node.
837 */
838static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
839{
840	int nid;
841
842	VM_BUG_ON(!nodes_allowed);
843
844	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
845	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
846
847	return nid;
848}
849
850#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
851	for (nr_nodes = nodes_weight(*mask);				\
852		nr_nodes > 0 &&						\
853		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
854		nr_nodes--)
855
856#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
857	for (nr_nodes = nodes_weight(*mask);				\
858		nr_nodes > 0 &&						\
859		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
860		nr_nodes--)
861
862static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
863{
864	struct page *page;
865	int nr_nodes, node;
866	int ret = 0;
867
868	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
869		page = alloc_fresh_huge_page_node(h, node);
870		if (page) {
871			ret = 1;
872			break;
873		}
874	}
875
876	if (ret)
877		count_vm_event(HTLB_BUDDY_PGALLOC);
878	else
879		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
880
881	return ret;
882}
883
884/*
885 * Free huge page from pool from next node to free.
886 * Attempt to keep persistent huge pages more or less
887 * balanced over allowed nodes.
888 * Called with hugetlb_lock locked.
889 */
890static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
891							 bool acct_surplus)
892{
893	int nr_nodes, node;
894	int ret = 0;
895
896	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
897		/*
898		 * If we're returning unused surplus pages, only examine
899		 * nodes with surplus pages.
900		 */
901		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
902		    !list_empty(&h->hugepage_freelists[node])) {
903			struct page *page =
904				list_entry(h->hugepage_freelists[node].next,
905					  struct page, lru);
906			list_del(&page->lru);
907			h->free_huge_pages--;
908			h->free_huge_pages_node[node]--;
909			if (acct_surplus) {
910				h->surplus_huge_pages--;
911				h->surplus_huge_pages_node[node]--;
912			}
913			update_and_free_page(h, page);
914			ret = 1;
915			break;
916		}
917	}
918
919	return ret;
920}
921
922/*
923 * Dissolve a given free hugepage into free buddy pages. This function does
924 * nothing for in-use (including surplus) hugepages.
925 */
926static void dissolve_free_huge_page(struct page *page)
927{
928	spin_lock(&hugetlb_lock);
929	if (PageHuge(page) && !page_count(page)) {
930		struct hstate *h = page_hstate(page);
931		int nid = page_to_nid(page);
932		list_del(&page->lru);
933		h->free_huge_pages--;
934		h->free_huge_pages_node[nid]--;
935		update_and_free_page(h, page);
936	}
937	spin_unlock(&hugetlb_lock);
938}
939
940/*
941 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
942 * make specified memory blocks removable from the system.
943 * Note that start_pfn should aligned with (minimum) hugepage size.
944 */
945void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
946{
947	unsigned int order = 8 * sizeof(void *);
948	unsigned long pfn;
949	struct hstate *h;
950
951	/* Set scan step to minimum hugepage size */
952	for_each_hstate(h)
953		if (order > huge_page_order(h))
954			order = huge_page_order(h);
955	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
956	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
957		dissolve_free_huge_page(pfn_to_page(pfn));
958}
959
960static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
961{
962	struct page *page;
963	unsigned int r_nid;
964
965	if (h->order >= MAX_ORDER)
966		return NULL;
967
968	/*
969	 * Assume we will successfully allocate the surplus page to
970	 * prevent racing processes from causing the surplus to exceed
971	 * overcommit
972	 *
973	 * This however introduces a different race, where a process B
974	 * tries to grow the static hugepage pool while alloc_pages() is
975	 * called by process A. B will only examine the per-node
976	 * counters in determining if surplus huge pages can be
977	 * converted to normal huge pages in adjust_pool_surplus(). A
978	 * won't be able to increment the per-node counter, until the
979	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
980	 * no more huge pages can be converted from surplus to normal
981	 * state (and doesn't try to convert again). Thus, we have a
982	 * case where a surplus huge page exists, the pool is grown, and
983	 * the surplus huge page still exists after, even though it
984	 * should just have been converted to a normal huge page. This
985	 * does not leak memory, though, as the hugepage will be freed
986	 * once it is out of use. It also does not allow the counters to
987	 * go out of whack in adjust_pool_surplus() as we don't modify
988	 * the node values until we've gotten the hugepage and only the
989	 * per-node value is checked there.
990	 */
991	spin_lock(&hugetlb_lock);
992	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
993		spin_unlock(&hugetlb_lock);
994		return NULL;
995	} else {
996		h->nr_huge_pages++;
997		h->surplus_huge_pages++;
998	}
999	spin_unlock(&hugetlb_lock);
1000
1001	if (nid == NUMA_NO_NODE)
1002		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1003				   __GFP_REPEAT|__GFP_NOWARN,
1004				   huge_page_order(h));
1005	else
1006		page = alloc_pages_exact_node(nid,
1007			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1008			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1009
1010	if (page && arch_prepare_hugepage(page)) {
1011		__free_pages(page, huge_page_order(h));
1012		page = NULL;
1013	}
1014
1015	spin_lock(&hugetlb_lock);
1016	if (page) {
1017		INIT_LIST_HEAD(&page->lru);
1018		r_nid = page_to_nid(page);
1019		set_compound_page_dtor(page, free_huge_page);
1020		set_hugetlb_cgroup(page, NULL);
1021		/*
1022		 * We incremented the global counters already
1023		 */
1024		h->nr_huge_pages_node[r_nid]++;
1025		h->surplus_huge_pages_node[r_nid]++;
1026		__count_vm_event(HTLB_BUDDY_PGALLOC);
1027	} else {
1028		h->nr_huge_pages--;
1029		h->surplus_huge_pages--;
1030		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1031	}
1032	spin_unlock(&hugetlb_lock);
1033
1034	return page;
1035}
1036
1037/*
1038 * This allocation function is useful in the context where vma is irrelevant.
1039 * E.g. soft-offlining uses this function because it only cares physical
1040 * address of error page.
1041 */
1042struct page *alloc_huge_page_node(struct hstate *h, int nid)
1043{
1044	struct page *page = NULL;
1045
1046	spin_lock(&hugetlb_lock);
1047	if (h->free_huge_pages - h->resv_huge_pages > 0)
1048		page = dequeue_huge_page_node(h, nid);
1049	spin_unlock(&hugetlb_lock);
1050
1051	if (!page)
1052		page = alloc_buddy_huge_page(h, nid);
1053
1054	return page;
1055}
1056
1057/*
1058 * Increase the hugetlb pool such that it can accommodate a reservation
1059 * of size 'delta'.
1060 */
1061static int gather_surplus_pages(struct hstate *h, int delta)
1062{
1063	struct list_head surplus_list;
1064	struct page *page, *tmp;
1065	int ret, i;
1066	int needed, allocated;
1067	bool alloc_ok = true;
1068
1069	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1070	if (needed <= 0) {
1071		h->resv_huge_pages += delta;
1072		return 0;
1073	}
1074
1075	allocated = 0;
1076	INIT_LIST_HEAD(&surplus_list);
1077
1078	ret = -ENOMEM;
1079retry:
1080	spin_unlock(&hugetlb_lock);
1081	for (i = 0; i < needed; i++) {
1082		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1083		if (!page) {
1084			alloc_ok = false;
1085			break;
1086		}
1087		list_add(&page->lru, &surplus_list);
1088	}
1089	allocated += i;
1090
1091	/*
1092	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1093	 * because either resv_huge_pages or free_huge_pages may have changed.
1094	 */
1095	spin_lock(&hugetlb_lock);
1096	needed = (h->resv_huge_pages + delta) -
1097			(h->free_huge_pages + allocated);
1098	if (needed > 0) {
1099		if (alloc_ok)
1100			goto retry;
1101		/*
1102		 * We were not able to allocate enough pages to
1103		 * satisfy the entire reservation so we free what
1104		 * we've allocated so far.
1105		 */
1106		goto free;
1107	}
1108	/*
1109	 * The surplus_list now contains _at_least_ the number of extra pages
1110	 * needed to accommodate the reservation.  Add the appropriate number
1111	 * of pages to the hugetlb pool and free the extras back to the buddy
1112	 * allocator.  Commit the entire reservation here to prevent another
1113	 * process from stealing the pages as they are added to the pool but
1114	 * before they are reserved.
1115	 */
1116	needed += allocated;
1117	h->resv_huge_pages += delta;
1118	ret = 0;
1119
1120	/* Free the needed pages to the hugetlb pool */
1121	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1122		if ((--needed) < 0)
1123			break;
1124		/*
1125		 * This page is now managed by the hugetlb allocator and has
1126		 * no users -- drop the buddy allocator's reference.
1127		 */
1128		put_page_testzero(page);
1129		VM_BUG_ON_PAGE(page_count(page), page);
1130		enqueue_huge_page(h, page);
1131	}
1132free:
1133	spin_unlock(&hugetlb_lock);
1134
1135	/* Free unnecessary surplus pages to the buddy allocator */
1136	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1137		put_page(page);
1138	spin_lock(&hugetlb_lock);
1139
1140	return ret;
1141}
1142
1143/*
1144 * When releasing a hugetlb pool reservation, any surplus pages that were
1145 * allocated to satisfy the reservation must be explicitly freed if they were
1146 * never used.
1147 * Called with hugetlb_lock held.
1148 */
1149static void return_unused_surplus_pages(struct hstate *h,
1150					unsigned long unused_resv_pages)
1151{
1152	unsigned long nr_pages;
1153
1154	/* Uncommit the reservation */
1155	h->resv_huge_pages -= unused_resv_pages;
1156
1157	/* Cannot return gigantic pages currently */
1158	if (h->order >= MAX_ORDER)
1159		return;
1160
1161	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1162
1163	/*
1164	 * We want to release as many surplus pages as possible, spread
1165	 * evenly across all nodes with memory. Iterate across these nodes
1166	 * until we can no longer free unreserved surplus pages. This occurs
1167	 * when the nodes with surplus pages have no free pages.
1168	 * free_pool_huge_page() will balance the the freed pages across the
1169	 * on-line nodes with memory and will handle the hstate accounting.
1170	 */
1171	while (nr_pages--) {
1172		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1173			break;
1174	}
1175}
1176
1177/*
1178 * Determine if the huge page at addr within the vma has an associated
1179 * reservation.  Where it does not we will need to logically increase
1180 * reservation and actually increase subpool usage before an allocation
1181 * can occur.  Where any new reservation would be required the
1182 * reservation change is prepared, but not committed.  Once the page
1183 * has been allocated from the subpool and instantiated the change should
1184 * be committed via vma_commit_reservation.  No action is required on
1185 * failure.
1186 */
1187static long vma_needs_reservation(struct hstate *h,
1188			struct vm_area_struct *vma, unsigned long addr)
1189{
1190	struct resv_map *resv;
1191	pgoff_t idx;
1192	long chg;
1193
1194	resv = vma_resv_map(vma);
1195	if (!resv)
1196		return 1;
1197
1198	idx = vma_hugecache_offset(h, vma, addr);
1199	chg = region_chg(resv, idx, idx + 1);
1200
1201	if (vma->vm_flags & VM_MAYSHARE)
1202		return chg;
1203	else
1204		return chg < 0 ? chg : 0;
1205}
1206static void vma_commit_reservation(struct hstate *h,
1207			struct vm_area_struct *vma, unsigned long addr)
1208{
1209	struct resv_map *resv;
1210	pgoff_t idx;
1211
1212	resv = vma_resv_map(vma);
1213	if (!resv)
1214		return;
1215
1216	idx = vma_hugecache_offset(h, vma, addr);
1217	region_add(resv, idx, idx + 1);
1218}
1219
1220static struct page *alloc_huge_page(struct vm_area_struct *vma,
1221				    unsigned long addr, int avoid_reserve)
1222{
1223	struct hugepage_subpool *spool = subpool_vma(vma);
1224	struct hstate *h = hstate_vma(vma);
1225	struct page *page;
1226	long chg;
1227	int ret, idx;
1228	struct hugetlb_cgroup *h_cg;
1229
1230	idx = hstate_index(h);
1231	/*
1232	 * Processes that did not create the mapping will have no
1233	 * reserves and will not have accounted against subpool
1234	 * limit. Check that the subpool limit can be made before
1235	 * satisfying the allocation MAP_NORESERVE mappings may also
1236	 * need pages and subpool limit allocated allocated if no reserve
1237	 * mapping overlaps.
1238	 */
1239	chg = vma_needs_reservation(h, vma, addr);
1240	if (chg < 0)
1241		return ERR_PTR(-ENOMEM);
1242	if (chg || avoid_reserve)
1243		if (hugepage_subpool_get_pages(spool, 1))
1244			return ERR_PTR(-ENOSPC);
1245
1246	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1247	if (ret) {
1248		if (chg || avoid_reserve)
1249			hugepage_subpool_put_pages(spool, 1);
1250		return ERR_PTR(-ENOSPC);
1251	}
1252	spin_lock(&hugetlb_lock);
1253	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1254	if (!page) {
1255		spin_unlock(&hugetlb_lock);
1256		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1257		if (!page) {
1258			hugetlb_cgroup_uncharge_cgroup(idx,
1259						       pages_per_huge_page(h),
1260						       h_cg);
1261			if (chg || avoid_reserve)
1262				hugepage_subpool_put_pages(spool, 1);
1263			return ERR_PTR(-ENOSPC);
1264		}
1265		spin_lock(&hugetlb_lock);
1266		list_move(&page->lru, &h->hugepage_activelist);
1267		/* Fall through */
1268	}
1269	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1270	spin_unlock(&hugetlb_lock);
1271
1272	set_page_private(page, (unsigned long)spool);
1273
1274	vma_commit_reservation(h, vma, addr);
1275	return page;
1276}
1277
1278/*
1279 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1280 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1281 * where no ERR_VALUE is expected to be returned.
1282 */
1283struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1284				unsigned long addr, int avoid_reserve)
1285{
1286	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1287	if (IS_ERR(page))
1288		page = NULL;
1289	return page;
1290}
1291
1292int __weak alloc_bootmem_huge_page(struct hstate *h)
1293{
1294	struct huge_bootmem_page *m;
1295	int nr_nodes, node;
1296
1297	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1298		void *addr;
1299
1300		addr = memblock_virt_alloc_try_nid_nopanic(
1301				huge_page_size(h), huge_page_size(h),
1302				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1303		if (addr) {
1304			/*
1305			 * Use the beginning of the huge page to store the
1306			 * huge_bootmem_page struct (until gather_bootmem
1307			 * puts them into the mem_map).
1308			 */
1309			m = addr;
1310			goto found;
1311		}
1312	}
1313	return 0;
1314
1315found:
1316	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1317	/* Put them into a private list first because mem_map is not up yet */
1318	list_add(&m->list, &huge_boot_pages);
1319	m->hstate = h;
1320	return 1;
1321}
1322
1323static void __init prep_compound_huge_page(struct page *page, int order)
1324{
1325	if (unlikely(order > (MAX_ORDER - 1)))
1326		prep_compound_gigantic_page(page, order);
1327	else
1328		prep_compound_page(page, order);
1329}
1330
1331/* Put bootmem huge pages into the standard lists after mem_map is up */
1332static void __init gather_bootmem_prealloc(void)
1333{
1334	struct huge_bootmem_page *m;
1335
1336	list_for_each_entry(m, &huge_boot_pages, list) {
1337		struct hstate *h = m->hstate;
1338		struct page *page;
1339
1340#ifdef CONFIG_HIGHMEM
1341		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1342		memblock_free_late(__pa(m),
1343				   sizeof(struct huge_bootmem_page));
1344#else
1345		page = virt_to_page(m);
1346#endif
1347		WARN_ON(page_count(page) != 1);
1348		prep_compound_huge_page(page, h->order);
1349		WARN_ON(PageReserved(page));
1350		prep_new_huge_page(h, page, page_to_nid(page));
1351		/*
1352		 * If we had gigantic hugepages allocated at boot time, we need
1353		 * to restore the 'stolen' pages to totalram_pages in order to
1354		 * fix confusing memory reports from free(1) and another
1355		 * side-effects, like CommitLimit going negative.
1356		 */
1357		if (h->order > (MAX_ORDER - 1))
1358			adjust_managed_page_count(page, 1 << h->order);
1359	}
1360}
1361
1362static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1363{
1364	unsigned long i;
1365
1366	for (i = 0; i < h->max_huge_pages; ++i) {
1367		if (h->order >= MAX_ORDER) {
1368			if (!alloc_bootmem_huge_page(h))
1369				break;
1370		} else if (!alloc_fresh_huge_page(h,
1371					 &node_states[N_MEMORY]))
1372			break;
1373	}
1374	h->max_huge_pages = i;
1375}
1376
1377static void __init hugetlb_init_hstates(void)
1378{
1379	struct hstate *h;
1380
1381	for_each_hstate(h) {
1382		/* oversize hugepages were init'ed in early boot */
1383		if (h->order < MAX_ORDER)
1384			hugetlb_hstate_alloc_pages(h);
1385	}
1386}
1387
1388static char * __init memfmt(char *buf, unsigned long n)
1389{
1390	if (n >= (1UL << 30))
1391		sprintf(buf, "%lu GB", n >> 30);
1392	else if (n >= (1UL << 20))
1393		sprintf(buf, "%lu MB", n >> 20);
1394	else
1395		sprintf(buf, "%lu KB", n >> 10);
1396	return buf;
1397}
1398
1399static void __init report_hugepages(void)
1400{
1401	struct hstate *h;
1402
1403	for_each_hstate(h) {
1404		char buf[32];
1405		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1406			memfmt(buf, huge_page_size(h)),
1407			h->free_huge_pages);
1408	}
1409}
1410
1411#ifdef CONFIG_HIGHMEM
1412static void try_to_free_low(struct hstate *h, unsigned long count,
1413						nodemask_t *nodes_allowed)
1414{
1415	int i;
1416
1417	if (h->order >= MAX_ORDER)
1418		return;
1419
1420	for_each_node_mask(i, *nodes_allowed) {
1421		struct page *page, *next;
1422		struct list_head *freel = &h->hugepage_freelists[i];
1423		list_for_each_entry_safe(page, next, freel, lru) {
1424			if (count >= h->nr_huge_pages)
1425				return;
1426			if (PageHighMem(page))
1427				continue;
1428			list_del(&page->lru);
1429			update_and_free_page(h, page);
1430			h->free_huge_pages--;
1431			h->free_huge_pages_node[page_to_nid(page)]--;
1432		}
1433	}
1434}
1435#else
1436static inline void try_to_free_low(struct hstate *h, unsigned long count,
1437						nodemask_t *nodes_allowed)
1438{
1439}
1440#endif
1441
1442/*
1443 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1444 * balanced by operating on them in a round-robin fashion.
1445 * Returns 1 if an adjustment was made.
1446 */
1447static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1448				int delta)
1449{
1450	int nr_nodes, node;
1451
1452	VM_BUG_ON(delta != -1 && delta != 1);
1453
1454	if (delta < 0) {
1455		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1456			if (h->surplus_huge_pages_node[node])
1457				goto found;
1458		}
1459	} else {
1460		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461			if (h->surplus_huge_pages_node[node] <
1462					h->nr_huge_pages_node[node])
1463				goto found;
1464		}
1465	}
1466	return 0;
1467
1468found:
1469	h->surplus_huge_pages += delta;
1470	h->surplus_huge_pages_node[node] += delta;
1471	return 1;
1472}
1473
1474#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1476						nodemask_t *nodes_allowed)
1477{
1478	unsigned long min_count, ret;
1479
1480	if (h->order >= MAX_ORDER)
1481		return h->max_huge_pages;
1482
1483	/*
1484	 * Increase the pool size
1485	 * First take pages out of surplus state.  Then make up the
1486	 * remaining difference by allocating fresh huge pages.
1487	 *
1488	 * We might race with alloc_buddy_huge_page() here and be unable
1489	 * to convert a surplus huge page to a normal huge page. That is
1490	 * not critical, though, it just means the overall size of the
1491	 * pool might be one hugepage larger than it needs to be, but
1492	 * within all the constraints specified by the sysctls.
1493	 */
1494	spin_lock(&hugetlb_lock);
1495	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1496		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1497			break;
1498	}
1499
1500	while (count > persistent_huge_pages(h)) {
1501		/*
1502		 * If this allocation races such that we no longer need the
1503		 * page, free_huge_page will handle it by freeing the page
1504		 * and reducing the surplus.
1505		 */
1506		spin_unlock(&hugetlb_lock);
1507		ret = alloc_fresh_huge_page(h, nodes_allowed);
1508		spin_lock(&hugetlb_lock);
1509		if (!ret)
1510			goto out;
1511
1512		/* Bail for signals. Probably ctrl-c from user */
1513		if (signal_pending(current))
1514			goto out;
1515	}
1516
1517	/*
1518	 * Decrease the pool size
1519	 * First return free pages to the buddy allocator (being careful
1520	 * to keep enough around to satisfy reservations).  Then place
1521	 * pages into surplus state as needed so the pool will shrink
1522	 * to the desired size as pages become free.
1523	 *
1524	 * By placing pages into the surplus state independent of the
1525	 * overcommit value, we are allowing the surplus pool size to
1526	 * exceed overcommit. There are few sane options here. Since
1527	 * alloc_buddy_huge_page() is checking the global counter,
1528	 * though, we'll note that we're not allowed to exceed surplus
1529	 * and won't grow the pool anywhere else. Not until one of the
1530	 * sysctls are changed, or the surplus pages go out of use.
1531	 */
1532	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1533	min_count = max(count, min_count);
1534	try_to_free_low(h, min_count, nodes_allowed);
1535	while (min_count < persistent_huge_pages(h)) {
1536		if (!free_pool_huge_page(h, nodes_allowed, 0))
1537			break;
1538	}
1539	while (count < persistent_huge_pages(h)) {
1540		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1541			break;
1542	}
1543out:
1544	ret = persistent_huge_pages(h);
1545	spin_unlock(&hugetlb_lock);
1546	return ret;
1547}
1548
1549#define HSTATE_ATTR_RO(_name) \
1550	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1551
1552#define HSTATE_ATTR(_name) \
1553	static struct kobj_attribute _name##_attr = \
1554		__ATTR(_name, 0644, _name##_show, _name##_store)
1555
1556static struct kobject *hugepages_kobj;
1557static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1558
1559static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1560
1561static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1562{
1563	int i;
1564
1565	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1566		if (hstate_kobjs[i] == kobj) {
1567			if (nidp)
1568				*nidp = NUMA_NO_NODE;
1569			return &hstates[i];
1570		}
1571
1572	return kobj_to_node_hstate(kobj, nidp);
1573}
1574
1575static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1576					struct kobj_attribute *attr, char *buf)
1577{
1578	struct hstate *h;
1579	unsigned long nr_huge_pages;
1580	int nid;
1581
1582	h = kobj_to_hstate(kobj, &nid);
1583	if (nid == NUMA_NO_NODE)
1584		nr_huge_pages = h->nr_huge_pages;
1585	else
1586		nr_huge_pages = h->nr_huge_pages_node[nid];
1587
1588	return sprintf(buf, "%lu\n", nr_huge_pages);
1589}
1590
1591static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1592			struct kobject *kobj, struct kobj_attribute *attr,
1593			const char *buf, size_t len)
1594{
1595	int err;
1596	int nid;
1597	unsigned long count;
1598	struct hstate *h;
1599	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1600
1601	err = kstrtoul(buf, 10, &count);
1602	if (err)
1603		goto out;
1604
1605	h = kobj_to_hstate(kobj, &nid);
1606	if (h->order >= MAX_ORDER) {
1607		err = -EINVAL;
1608		goto out;
1609	}
1610
1611	if (nid == NUMA_NO_NODE) {
1612		/*
1613		 * global hstate attribute
1614		 */
1615		if (!(obey_mempolicy &&
1616				init_nodemask_of_mempolicy(nodes_allowed))) {
1617			NODEMASK_FREE(nodes_allowed);
1618			nodes_allowed = &node_states[N_MEMORY];
1619		}
1620	} else if (nodes_allowed) {
1621		/*
1622		 * per node hstate attribute: adjust count to global,
1623		 * but restrict alloc/free to the specified node.
1624		 */
1625		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1626		init_nodemask_of_node(nodes_allowed, nid);
1627	} else
1628		nodes_allowed = &node_states[N_MEMORY];
1629
1630	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1631
1632	if (nodes_allowed != &node_states[N_MEMORY])
1633		NODEMASK_FREE(nodes_allowed);
1634
1635	return len;
1636out:
1637	NODEMASK_FREE(nodes_allowed);
1638	return err;
1639}
1640
1641static ssize_t nr_hugepages_show(struct kobject *kobj,
1642				       struct kobj_attribute *attr, char *buf)
1643{
1644	return nr_hugepages_show_common(kobj, attr, buf);
1645}
1646
1647static ssize_t nr_hugepages_store(struct kobject *kobj,
1648	       struct kobj_attribute *attr, const char *buf, size_t len)
1649{
1650	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1651}
1652HSTATE_ATTR(nr_hugepages);
1653
1654#ifdef CONFIG_NUMA
1655
1656/*
1657 * hstate attribute for optionally mempolicy-based constraint on persistent
1658 * huge page alloc/free.
1659 */
1660static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1661				       struct kobj_attribute *attr, char *buf)
1662{
1663	return nr_hugepages_show_common(kobj, attr, buf);
1664}
1665
1666static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1667	       struct kobj_attribute *attr, const char *buf, size_t len)
1668{
1669	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1670}
1671HSTATE_ATTR(nr_hugepages_mempolicy);
1672#endif
1673
1674
1675static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1676					struct kobj_attribute *attr, char *buf)
1677{
1678	struct hstate *h = kobj_to_hstate(kobj, NULL);
1679	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1680}
1681
1682static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1683		struct kobj_attribute *attr, const char *buf, size_t count)
1684{
1685	int err;
1686	unsigned long input;
1687	struct hstate *h = kobj_to_hstate(kobj, NULL);
1688
1689	if (h->order >= MAX_ORDER)
1690		return -EINVAL;
1691
1692	err = kstrtoul(buf, 10, &input);
1693	if (err)
1694		return err;
1695
1696	spin_lock(&hugetlb_lock);
1697	h->nr_overcommit_huge_pages = input;
1698	spin_unlock(&hugetlb_lock);
1699
1700	return count;
1701}
1702HSTATE_ATTR(nr_overcommit_hugepages);
1703
1704static ssize_t free_hugepages_show(struct kobject *kobj,
1705					struct kobj_attribute *attr, char *buf)
1706{
1707	struct hstate *h;
1708	unsigned long free_huge_pages;
1709	int nid;
1710
1711	h = kobj_to_hstate(kobj, &nid);
1712	if (nid == NUMA_NO_NODE)
1713		free_huge_pages = h->free_huge_pages;
1714	else
1715		free_huge_pages = h->free_huge_pages_node[nid];
1716
1717	return sprintf(buf, "%lu\n", free_huge_pages);
1718}
1719HSTATE_ATTR_RO(free_hugepages);
1720
1721static ssize_t resv_hugepages_show(struct kobject *kobj,
1722					struct kobj_attribute *attr, char *buf)
1723{
1724	struct hstate *h = kobj_to_hstate(kobj, NULL);
1725	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1726}
1727HSTATE_ATTR_RO(resv_hugepages);
1728
1729static ssize_t surplus_hugepages_show(struct kobject *kobj,
1730					struct kobj_attribute *attr, char *buf)
1731{
1732	struct hstate *h;
1733	unsigned long surplus_huge_pages;
1734	int nid;
1735
1736	h = kobj_to_hstate(kobj, &nid);
1737	if (nid == NUMA_NO_NODE)
1738		surplus_huge_pages = h->surplus_huge_pages;
1739	else
1740		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1741
1742	return sprintf(buf, "%lu\n", surplus_huge_pages);
1743}
1744HSTATE_ATTR_RO(surplus_hugepages);
1745
1746static struct attribute *hstate_attrs[] = {
1747	&nr_hugepages_attr.attr,
1748	&nr_overcommit_hugepages_attr.attr,
1749	&free_hugepages_attr.attr,
1750	&resv_hugepages_attr.attr,
1751	&surplus_hugepages_attr.attr,
1752#ifdef CONFIG_NUMA
1753	&nr_hugepages_mempolicy_attr.attr,
1754#endif
1755	NULL,
1756};
1757
1758static struct attribute_group hstate_attr_group = {
1759	.attrs = hstate_attrs,
1760};
1761
1762static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1763				    struct kobject **hstate_kobjs,
1764				    struct attribute_group *hstate_attr_group)
1765{
1766	int retval;
1767	int hi = hstate_index(h);
1768
1769	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1770	if (!hstate_kobjs[hi])
1771		return -ENOMEM;
1772
1773	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1774	if (retval)
1775		kobject_put(hstate_kobjs[hi]);
1776
1777	return retval;
1778}
1779
1780static void __init hugetlb_sysfs_init(void)
1781{
1782	struct hstate *h;
1783	int err;
1784
1785	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1786	if (!hugepages_kobj)
1787		return;
1788
1789	for_each_hstate(h) {
1790		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1791					 hstate_kobjs, &hstate_attr_group);
1792		if (err)
1793			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1794	}
1795}
1796
1797#ifdef CONFIG_NUMA
1798
1799/*
1800 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801 * with node devices in node_devices[] using a parallel array.  The array
1802 * index of a node device or _hstate == node id.
1803 * This is here to avoid any static dependency of the node device driver, in
1804 * the base kernel, on the hugetlb module.
1805 */
1806struct node_hstate {
1807	struct kobject		*hugepages_kobj;
1808	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1809};
1810struct node_hstate node_hstates[MAX_NUMNODES];
1811
1812/*
1813 * A subset of global hstate attributes for node devices
1814 */
1815static struct attribute *per_node_hstate_attrs[] = {
1816	&nr_hugepages_attr.attr,
1817	&free_hugepages_attr.attr,
1818	&surplus_hugepages_attr.attr,
1819	NULL,
1820};
1821
1822static struct attribute_group per_node_hstate_attr_group = {
1823	.attrs = per_node_hstate_attrs,
1824};
1825
1826/*
1827 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828 * Returns node id via non-NULL nidp.
1829 */
1830static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831{
1832	int nid;
1833
1834	for (nid = 0; nid < nr_node_ids; nid++) {
1835		struct node_hstate *nhs = &node_hstates[nid];
1836		int i;
1837		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1838			if (nhs->hstate_kobjs[i] == kobj) {
1839				if (nidp)
1840					*nidp = nid;
1841				return &hstates[i];
1842			}
1843	}
1844
1845	BUG();
1846	return NULL;
1847}
1848
1849/*
1850 * Unregister hstate attributes from a single node device.
1851 * No-op if no hstate attributes attached.
1852 */
1853static void hugetlb_unregister_node(struct node *node)
1854{
1855	struct hstate *h;
1856	struct node_hstate *nhs = &node_hstates[node->dev.id];
1857
1858	if (!nhs->hugepages_kobj)
1859		return;		/* no hstate attributes */
1860
1861	for_each_hstate(h) {
1862		int idx = hstate_index(h);
1863		if (nhs->hstate_kobjs[idx]) {
1864			kobject_put(nhs->hstate_kobjs[idx]);
1865			nhs->hstate_kobjs[idx] = NULL;
1866		}
1867	}
1868
1869	kobject_put(nhs->hugepages_kobj);
1870	nhs->hugepages_kobj = NULL;
1871}
1872
1873/*
1874 * hugetlb module exit:  unregister hstate attributes from node devices
1875 * that have them.
1876 */
1877static void hugetlb_unregister_all_nodes(void)
1878{
1879	int nid;
1880
1881	/*
1882	 * disable node device registrations.
1883	 */
1884	register_hugetlbfs_with_node(NULL, NULL);
1885
1886	/*
1887	 * remove hstate attributes from any nodes that have them.
1888	 */
1889	for (nid = 0; nid < nr_node_ids; nid++)
1890		hugetlb_unregister_node(node_devices[nid]);
1891}
1892
1893/*
1894 * Register hstate attributes for a single node device.
1895 * No-op if attributes already registered.
1896 */
1897static void hugetlb_register_node(struct node *node)
1898{
1899	struct hstate *h;
1900	struct node_hstate *nhs = &node_hstates[node->dev.id];
1901	int err;
1902
1903	if (nhs->hugepages_kobj)
1904		return;		/* already allocated */
1905
1906	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1907							&node->dev.kobj);
1908	if (!nhs->hugepages_kobj)
1909		return;
1910
1911	for_each_hstate(h) {
1912		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1913						nhs->hstate_kobjs,
1914						&per_node_hstate_attr_group);
1915		if (err) {
1916			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1917				h->name, node->dev.id);
1918			hugetlb_unregister_node(node);
1919			break;
1920		}
1921	}
1922}
1923
1924/*
1925 * hugetlb init time:  register hstate attributes for all registered node
1926 * devices of nodes that have memory.  All on-line nodes should have
1927 * registered their associated device by this time.
1928 */
1929static void hugetlb_register_all_nodes(void)
1930{
1931	int nid;
1932
1933	for_each_node_state(nid, N_MEMORY) {
1934		struct node *node = node_devices[nid];
1935		if (node->dev.id == nid)
1936			hugetlb_register_node(node);
1937	}
1938
1939	/*
1940	 * Let the node device driver know we're here so it can
1941	 * [un]register hstate attributes on node hotplug.
1942	 */
1943	register_hugetlbfs_with_node(hugetlb_register_node,
1944				     hugetlb_unregister_node);
1945}
1946#else	/* !CONFIG_NUMA */
1947
1948static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1949{
1950	BUG();
1951	if (nidp)
1952		*nidp = -1;
1953	return NULL;
1954}
1955
1956static void hugetlb_unregister_all_nodes(void) { }
1957
1958static void hugetlb_register_all_nodes(void) { }
1959
1960#endif
1961
1962static void __exit hugetlb_exit(void)
1963{
1964	struct hstate *h;
1965
1966	hugetlb_unregister_all_nodes();
1967
1968	for_each_hstate(h) {
1969		kobject_put(hstate_kobjs[hstate_index(h)]);
1970	}
1971
1972	kobject_put(hugepages_kobj);
1973	kfree(htlb_fault_mutex_table);
1974}
1975module_exit(hugetlb_exit);
1976
1977static int __init hugetlb_init(void)
1978{
1979	int i;
1980
1981	/* Some platform decide whether they support huge pages at boot
1982	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1983	 * there is no such support
1984	 */
1985	if (HPAGE_SHIFT == 0)
1986		return 0;
1987
1988	if (!size_to_hstate(default_hstate_size)) {
1989		default_hstate_size = HPAGE_SIZE;
1990		if (!size_to_hstate(default_hstate_size))
1991			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1992	}
1993	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1994	if (default_hstate_max_huge_pages)
1995		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1996
1997	hugetlb_init_hstates();
1998	gather_bootmem_prealloc();
1999	report_hugepages();
2000
2001	hugetlb_sysfs_init();
2002	hugetlb_register_all_nodes();
2003	hugetlb_cgroup_file_init();
2004
2005#ifdef CONFIG_SMP
2006	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2007#else
2008	num_fault_mutexes = 1;
2009#endif
2010	htlb_fault_mutex_table =
2011		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2012	BUG_ON(!htlb_fault_mutex_table);
2013
2014	for (i = 0; i < num_fault_mutexes; i++)
2015		mutex_init(&htlb_fault_mutex_table[i]);
2016	return 0;
2017}
2018module_init(hugetlb_init);
2019
2020/* Should be called on processing a hugepagesz=... option */
2021void __init hugetlb_add_hstate(unsigned order)
2022{
2023	struct hstate *h;
2024	unsigned long i;
2025
2026	if (size_to_hstate(PAGE_SIZE << order)) {
2027		pr_warning("hugepagesz= specified twice, ignoring\n");
2028		return;
2029	}
2030	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2031	BUG_ON(order == 0);
2032	h = &hstates[hugetlb_max_hstate++];
2033	h->order = order;
2034	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2035	h->nr_huge_pages = 0;
2036	h->free_huge_pages = 0;
2037	for (i = 0; i < MAX_NUMNODES; ++i)
2038		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2039	INIT_LIST_HEAD(&h->hugepage_activelist);
2040	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2041	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2042	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2043					huge_page_size(h)/1024);
2044
2045	parsed_hstate = h;
2046}
2047
2048static int __init hugetlb_nrpages_setup(char *s)
2049{
2050	unsigned long *mhp;
2051	static unsigned long *last_mhp;
2052
2053	/*
2054	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2055	 * so this hugepages= parameter goes to the "default hstate".
2056	 */
2057	if (!hugetlb_max_hstate)
2058		mhp = &default_hstate_max_huge_pages;
2059	else
2060		mhp = &parsed_hstate->max_huge_pages;
2061
2062	if (mhp == last_mhp) {
2063		pr_warning("hugepages= specified twice without "
2064			   "interleaving hugepagesz=, ignoring\n");
2065		return 1;
2066	}
2067
2068	if (sscanf(s, "%lu", mhp) <= 0)
2069		*mhp = 0;
2070
2071	/*
2072	 * Global state is always initialized later in hugetlb_init.
2073	 * But we need to allocate >= MAX_ORDER hstates here early to still
2074	 * use the bootmem allocator.
2075	 */
2076	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2077		hugetlb_hstate_alloc_pages(parsed_hstate);
2078
2079	last_mhp = mhp;
2080
2081	return 1;
2082}
2083__setup("hugepages=", hugetlb_nrpages_setup);
2084
2085static int __init hugetlb_default_setup(char *s)
2086{
2087	default_hstate_size = memparse(s, &s);
2088	return 1;
2089}
2090__setup("default_hugepagesz=", hugetlb_default_setup);
2091
2092static unsigned int cpuset_mems_nr(unsigned int *array)
2093{
2094	int node;
2095	unsigned int nr = 0;
2096
2097	for_each_node_mask(node, cpuset_current_mems_allowed)
2098		nr += array[node];
2099
2100	return nr;
2101}
2102
2103#ifdef CONFIG_SYSCTL
2104static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2105			 struct ctl_table *table, int write,
2106			 void __user *buffer, size_t *length, loff_t *ppos)
2107{
2108	struct hstate *h = &default_hstate;
2109	unsigned long tmp;
2110	int ret;
2111
2112	tmp = h->max_huge_pages;
2113
2114	if (write && h->order >= MAX_ORDER)
2115		return -EINVAL;
2116
2117	table->data = &tmp;
2118	table->maxlen = sizeof(unsigned long);
2119	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2120	if (ret)
2121		goto out;
2122
2123	if (write) {
2124		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2125						GFP_KERNEL | __GFP_NORETRY);
2126		if (!(obey_mempolicy &&
2127			       init_nodemask_of_mempolicy(nodes_allowed))) {
2128			NODEMASK_FREE(nodes_allowed);
2129			nodes_allowed = &node_states[N_MEMORY];
2130		}
2131		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2132
2133		if (nodes_allowed != &node_states[N_MEMORY])
2134			NODEMASK_FREE(nodes_allowed);
2135	}
2136out:
2137	return ret;
2138}
2139
2140int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2141			  void __user *buffer, size_t *length, loff_t *ppos)
2142{
2143
2144	return hugetlb_sysctl_handler_common(false, table, write,
2145							buffer, length, ppos);
2146}
2147
2148#ifdef CONFIG_NUMA
2149int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2150			  void __user *buffer, size_t *length, loff_t *ppos)
2151{
2152	return hugetlb_sysctl_handler_common(true, table, write,
2153							buffer, length, ppos);
2154}
2155#endif /* CONFIG_NUMA */
2156
2157int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2158			void __user *buffer,
2159			size_t *length, loff_t *ppos)
2160{
2161	struct hstate *h = &default_hstate;
2162	unsigned long tmp;
2163	int ret;
2164
2165	tmp = h->nr_overcommit_huge_pages;
2166
2167	if (write && h->order >= MAX_ORDER)
2168		return -EINVAL;
2169
2170	table->data = &tmp;
2171	table->maxlen = sizeof(unsigned long);
2172	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2173	if (ret)
2174		goto out;
2175
2176	if (write) {
2177		spin_lock(&hugetlb_lock);
2178		h->nr_overcommit_huge_pages = tmp;
2179		spin_unlock(&hugetlb_lock);
2180	}
2181out:
2182	return ret;
2183}
2184
2185#endif /* CONFIG_SYSCTL */
2186
2187void hugetlb_report_meminfo(struct seq_file *m)
2188{
2189	struct hstate *h = &default_hstate;
2190	seq_printf(m,
2191			"HugePages_Total:   %5lu\n"
2192			"HugePages_Free:    %5lu\n"
2193			"HugePages_Rsvd:    %5lu\n"
2194			"HugePages_Surp:    %5lu\n"
2195			"Hugepagesize:   %8lu kB\n",
2196			h->nr_huge_pages,
2197			h->free_huge_pages,
2198			h->resv_huge_pages,
2199			h->surplus_huge_pages,
2200			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2201}
2202
2203int hugetlb_report_node_meminfo(int nid, char *buf)
2204{
2205	struct hstate *h = &default_hstate;
2206	return sprintf(buf,
2207		"Node %d HugePages_Total: %5u\n"
2208		"Node %d HugePages_Free:  %5u\n"
2209		"Node %d HugePages_Surp:  %5u\n",
2210		nid, h->nr_huge_pages_node[nid],
2211		nid, h->free_huge_pages_node[nid],
2212		nid, h->surplus_huge_pages_node[nid]);
2213}
2214
2215void hugetlb_show_meminfo(void)
2216{
2217	struct hstate *h;
2218	int nid;
2219
2220	for_each_node_state(nid, N_MEMORY)
2221		for_each_hstate(h)
2222			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2223				nid,
2224				h->nr_huge_pages_node[nid],
2225				h->free_huge_pages_node[nid],
2226				h->surplus_huge_pages_node[nid],
2227				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2228}
2229
2230/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2231unsigned long hugetlb_total_pages(void)
2232{
2233	struct hstate *h;
2234	unsigned long nr_total_pages = 0;
2235
2236	for_each_hstate(h)
2237		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2238	return nr_total_pages;
2239}
2240
2241static int hugetlb_acct_memory(struct hstate *h, long delta)
2242{
2243	int ret = -ENOMEM;
2244
2245	spin_lock(&hugetlb_lock);
2246	/*
2247	 * When cpuset is configured, it breaks the strict hugetlb page
2248	 * reservation as the accounting is done on a global variable. Such
2249	 * reservation is completely rubbish in the presence of cpuset because
2250	 * the reservation is not checked against page availability for the
2251	 * current cpuset. Application can still potentially OOM'ed by kernel
2252	 * with lack of free htlb page in cpuset that the task is in.
2253	 * Attempt to enforce strict accounting with cpuset is almost
2254	 * impossible (or too ugly) because cpuset is too fluid that
2255	 * task or memory node can be dynamically moved between cpusets.
2256	 *
2257	 * The change of semantics for shared hugetlb mapping with cpuset is
2258	 * undesirable. However, in order to preserve some of the semantics,
2259	 * we fall back to check against current free page availability as
2260	 * a best attempt and hopefully to minimize the impact of changing
2261	 * semantics that cpuset has.
2262	 */
2263	if (delta > 0) {
2264		if (gather_surplus_pages(h, delta) < 0)
2265			goto out;
2266
2267		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2268			return_unused_surplus_pages(h, delta);
2269			goto out;
2270		}
2271	}
2272
2273	ret = 0;
2274	if (delta < 0)
2275		return_unused_surplus_pages(h, (unsigned long) -delta);
2276
2277out:
2278	spin_unlock(&hugetlb_lock);
2279	return ret;
2280}
2281
2282static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2283{
2284	struct resv_map *resv = vma_resv_map(vma);
2285
2286	/*
2287	 * This new VMA should share its siblings reservation map if present.
2288	 * The VMA will only ever have a valid reservation map pointer where
2289	 * it is being copied for another still existing VMA.  As that VMA
2290	 * has a reference to the reservation map it cannot disappear until
2291	 * after this open call completes.  It is therefore safe to take a
2292	 * new reference here without additional locking.
2293	 */
2294	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2295		kref_get(&resv->refs);
2296}
2297
2298static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2299{
2300	struct hstate *h = hstate_vma(vma);
2301	struct resv_map *resv = vma_resv_map(vma);
2302	struct hugepage_subpool *spool = subpool_vma(vma);
2303	unsigned long reserve, start, end;
2304
2305	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2306		return;
2307
2308	start = vma_hugecache_offset(h, vma, vma->vm_start);
2309	end = vma_hugecache_offset(h, vma, vma->vm_end);
2310
2311	reserve = (end - start) - region_count(resv, start, end);
2312
2313	kref_put(&resv->refs, resv_map_release);
2314
2315	if (reserve) {
2316		hugetlb_acct_memory(h, -reserve);
2317		hugepage_subpool_put_pages(spool, reserve);
2318	}
2319}
2320
2321/*
2322 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2323 * handle_mm_fault() to try to instantiate regular-sized pages in the
2324 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2325 * this far.
2326 */
2327static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2328{
2329	BUG();
2330	return 0;
2331}
2332
2333const struct vm_operations_struct hugetlb_vm_ops = {
2334	.fault = hugetlb_vm_op_fault,
2335	.open = hugetlb_vm_op_open,
2336	.close = hugetlb_vm_op_close,
2337};
2338
2339static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2340				int writable)
2341{
2342	pte_t entry;
2343
2344	if (writable) {
2345		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2346					 vma->vm_page_prot)));
2347	} else {
2348		entry = huge_pte_wrprotect(mk_huge_pte(page,
2349					   vma->vm_page_prot));
2350	}
2351	entry = pte_mkyoung(entry);
2352	entry = pte_mkhuge(entry);
2353	entry = arch_make_huge_pte(entry, vma, page, writable);
2354
2355	return entry;
2356}
2357
2358static void set_huge_ptep_writable(struct vm_area_struct *vma,
2359				   unsigned long address, pte_t *ptep)
2360{
2361	pte_t entry;
2362
2363	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2364	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2365		update_mmu_cache(vma, address, ptep);
2366}
2367
2368
2369int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2370			    struct vm_area_struct *vma)
2371{
2372	pte_t *src_pte, *dst_pte, entry;
2373	struct page *ptepage;
2374	unsigned long addr;
2375	int cow;
2376	struct hstate *h = hstate_vma(vma);
2377	unsigned long sz = huge_page_size(h);
2378	unsigned long mmun_start;	/* For mmu_notifiers */
2379	unsigned long mmun_end;		/* For mmu_notifiers */
2380	int ret = 0;
2381
2382	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2383
2384	mmun_start = vma->vm_start;
2385	mmun_end = vma->vm_end;
2386	if (cow)
2387		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2388
2389	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2390		spinlock_t *src_ptl, *dst_ptl;
2391		src_pte = huge_pte_offset(src, addr);
2392		if (!src_pte)
2393			continue;
2394		dst_pte = huge_pte_alloc(dst, addr, sz);
2395		if (!dst_pte) {
2396			ret = -ENOMEM;
2397			break;
2398		}
2399
2400		/* If the pagetables are shared don't copy or take references */
2401		if (dst_pte == src_pte)
2402			continue;
2403
2404		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2405		src_ptl = huge_pte_lockptr(h, src, src_pte);
2406		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2407		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2408			if (cow)
2409				huge_ptep_set_wrprotect(src, addr, src_pte);
2410			entry = huge_ptep_get(src_pte);
2411			ptepage = pte_page(entry);
2412			get_page(ptepage);
2413			page_dup_rmap(ptepage);
2414			set_huge_pte_at(dst, addr, dst_pte, entry);
2415		}
2416		spin_unlock(src_ptl);
2417		spin_unlock(dst_ptl);
2418	}
2419
2420	if (cow)
2421		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2422
2423	return ret;
2424}
2425
2426static int is_hugetlb_entry_migration(pte_t pte)
2427{
2428	swp_entry_t swp;
2429
2430	if (huge_pte_none(pte) || pte_present(pte))
2431		return 0;
2432	swp = pte_to_swp_entry(pte);
2433	if (non_swap_entry(swp) && is_migration_entry(swp))
2434		return 1;
2435	else
2436		return 0;
2437}
2438
2439static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2440{
2441	swp_entry_t swp;
2442
2443	if (huge_pte_none(pte) || pte_present(pte))
2444		return 0;
2445	swp = pte_to_swp_entry(pte);
2446	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2447		return 1;
2448	else
2449		return 0;
2450}
2451
2452void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2453			    unsigned long start, unsigned long end,
2454			    struct page *ref_page)
2455{
2456	int force_flush = 0;
2457	struct mm_struct *mm = vma->vm_mm;
2458	unsigned long address;
2459	pte_t *ptep;
2460	pte_t pte;
2461	spinlock_t *ptl;
2462	struct page *page;
2463	struct hstate *h = hstate_vma(vma);
2464	unsigned long sz = huge_page_size(h);
2465	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2466	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2467
2468	WARN_ON(!is_vm_hugetlb_page(vma));
2469	BUG_ON(start & ~huge_page_mask(h));
2470	BUG_ON(end & ~huge_page_mask(h));
2471
2472	tlb_start_vma(tlb, vma);
2473	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2474again:
2475	for (address = start; address < end; address += sz) {
2476		ptep = huge_pte_offset(mm, address);
2477		if (!ptep)
2478			continue;
2479
2480		ptl = huge_pte_lock(h, mm, ptep);
2481		if (huge_pmd_unshare(mm, &address, ptep))
2482			goto unlock;
2483
2484		pte = huge_ptep_get(ptep);
2485		if (huge_pte_none(pte))
2486			goto unlock;
2487
2488		/*
2489		 * HWPoisoned hugepage is already unmapped and dropped reference
2490		 */
2491		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2492			huge_pte_clear(mm, address, ptep);
2493			goto unlock;
2494		}
2495
2496		page = pte_page(pte);
2497		/*
2498		 * If a reference page is supplied, it is because a specific
2499		 * page is being unmapped, not a range. Ensure the page we
2500		 * are about to unmap is the actual page of interest.
2501		 */
2502		if (ref_page) {
2503			if (page != ref_page)
2504				goto unlock;
2505
2506			/*
2507			 * Mark the VMA as having unmapped its page so that
2508			 * future faults in this VMA will fail rather than
2509			 * looking like data was lost
2510			 */
2511			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2512		}
2513
2514		pte = huge_ptep_get_and_clear(mm, address, ptep);
2515		tlb_remove_tlb_entry(tlb, ptep, address);
2516		if (huge_pte_dirty(pte))
2517			set_page_dirty(page);
2518
2519		page_remove_rmap(page);
2520		force_flush = !__tlb_remove_page(tlb, page);
2521		if (force_flush) {
2522			spin_unlock(ptl);
2523			break;
2524		}
2525		/* Bail out after unmapping reference page if supplied */
2526		if (ref_page) {
2527			spin_unlock(ptl);
2528			break;
2529		}
2530unlock:
2531		spin_unlock(ptl);
2532	}
2533	/*
2534	 * mmu_gather ran out of room to batch pages, we break out of
2535	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2536	 * and page-free while holding it.
2537	 */
2538	if (force_flush) {
2539		force_flush = 0;
2540		tlb_flush_mmu(tlb);
2541		if (address < end && !ref_page)
2542			goto again;
2543	}
2544	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2545	tlb_end_vma(tlb, vma);
2546}
2547
2548void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2549			  struct vm_area_struct *vma, unsigned long start,
2550			  unsigned long end, struct page *ref_page)
2551{
2552	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2553
2554	/*
2555	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2556	 * test will fail on a vma being torn down, and not grab a page table
2557	 * on its way out.  We're lucky that the flag has such an appropriate
2558	 * name, and can in fact be safely cleared here. We could clear it
2559	 * before the __unmap_hugepage_range above, but all that's necessary
2560	 * is to clear it before releasing the i_mmap_mutex. This works
2561	 * because in the context this is called, the VMA is about to be
2562	 * destroyed and the i_mmap_mutex is held.
2563	 */
2564	vma->vm_flags &= ~VM_MAYSHARE;
2565}
2566
2567void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2568			  unsigned long end, struct page *ref_page)
2569{
2570	struct mm_struct *mm;
2571	struct mmu_gather tlb;
2572
2573	mm = vma->vm_mm;
2574
2575	tlb_gather_mmu(&tlb, mm, start, end);
2576	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2577	tlb_finish_mmu(&tlb, start, end);
2578}
2579
2580/*
2581 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2582 * mappping it owns the reserve page for. The intention is to unmap the page
2583 * from other VMAs and let the children be SIGKILLed if they are faulting the
2584 * same region.
2585 */
2586static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2587				struct page *page, unsigned long address)
2588{
2589	struct hstate *h = hstate_vma(vma);
2590	struct vm_area_struct *iter_vma;
2591	struct address_space *mapping;
2592	pgoff_t pgoff;
2593
2594	/*
2595	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2596	 * from page cache lookup which is in HPAGE_SIZE units.
2597	 */
2598	address = address & huge_page_mask(h);
2599	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2600			vma->vm_pgoff;
2601	mapping = file_inode(vma->vm_file)->i_mapping;
2602
2603	/*
2604	 * Take the mapping lock for the duration of the table walk. As
2605	 * this mapping should be shared between all the VMAs,
2606	 * __unmap_hugepage_range() is called as the lock is already held
2607	 */
2608	mutex_lock(&mapping->i_mmap_mutex);
2609	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2610		/* Do not unmap the current VMA */
2611		if (iter_vma == vma)
2612			continue;
2613
2614		/*
2615		 * Unmap the page from other VMAs without their own reserves.
2616		 * They get marked to be SIGKILLed if they fault in these
2617		 * areas. This is because a future no-page fault on this VMA
2618		 * could insert a zeroed page instead of the data existing
2619		 * from the time of fork. This would look like data corruption
2620		 */
2621		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2622			unmap_hugepage_range(iter_vma, address,
2623					     address + huge_page_size(h), page);
2624	}
2625	mutex_unlock(&mapping->i_mmap_mutex);
2626
2627	return 1;
2628}
2629
2630/*
2631 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2632 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2633 * cannot race with other handlers or page migration.
2634 * Keep the pte_same checks anyway to make transition from the mutex easier.
2635 */
2636static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2637			unsigned long address, pte_t *ptep, pte_t pte,
2638			struct page *pagecache_page, spinlock_t *ptl)
2639{
2640	struct hstate *h = hstate_vma(vma);
2641	struct page *old_page, *new_page;
2642	int outside_reserve = 0;
2643	unsigned long mmun_start;	/* For mmu_notifiers */
2644	unsigned long mmun_end;		/* For mmu_notifiers */
2645
2646	old_page = pte_page(pte);
2647
2648retry_avoidcopy:
2649	/* If no-one else is actually using this page, avoid the copy
2650	 * and just make the page writable */
2651	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2652		page_move_anon_rmap(old_page, vma, address);
2653		set_huge_ptep_writable(vma, address, ptep);
2654		return 0;
2655	}
2656
2657	/*
2658	 * If the process that created a MAP_PRIVATE mapping is about to
2659	 * perform a COW due to a shared page count, attempt to satisfy
2660	 * the allocation without using the existing reserves. The pagecache
2661	 * page is used to determine if the reserve at this address was
2662	 * consumed or not. If reserves were used, a partial faulted mapping
2663	 * at the time of fork() could consume its reserves on COW instead
2664	 * of the full address range.
2665	 */
2666	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2667			old_page != pagecache_page)
2668		outside_reserve = 1;
2669
2670	page_cache_get(old_page);
2671
2672	/* Drop page table lock as buddy allocator may be called */
2673	spin_unlock(ptl);
2674	new_page = alloc_huge_page(vma, address, outside_reserve);
2675
2676	if (IS_ERR(new_page)) {
2677		long err = PTR_ERR(new_page);
2678		page_cache_release(old_page);
2679
2680		/*
2681		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2682		 * it is due to references held by a child and an insufficient
2683		 * huge page pool. To guarantee the original mappers
2684		 * reliability, unmap the page from child processes. The child
2685		 * may get SIGKILLed if it later faults.
2686		 */
2687		if (outside_reserve) {
2688			BUG_ON(huge_pte_none(pte));
2689			if (unmap_ref_private(mm, vma, old_page, address)) {
2690				BUG_ON(huge_pte_none(pte));
2691				spin_lock(ptl);
2692				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2693				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2694					goto retry_avoidcopy;
2695				/*
2696				 * race occurs while re-acquiring page table
2697				 * lock, and our job is done.
2698				 */
2699				return 0;
2700			}
2701			WARN_ON_ONCE(1);
2702		}
2703
2704		/* Caller expects lock to be held */
2705		spin_lock(ptl);
2706		if (err == -ENOMEM)
2707			return VM_FAULT_OOM;
2708		else
2709			return VM_FAULT_SIGBUS;
2710	}
2711
2712	/*
2713	 * When the original hugepage is shared one, it does not have
2714	 * anon_vma prepared.
2715	 */
2716	if (unlikely(anon_vma_prepare(vma))) {
2717		page_cache_release(new_page);
2718		page_cache_release(old_page);
2719		/* Caller expects lock to be held */
2720		spin_lock(ptl);
2721		return VM_FAULT_OOM;
2722	}
2723
2724	copy_user_huge_page(new_page, old_page, address, vma,
2725			    pages_per_huge_page(h));
2726	__SetPageUptodate(new_page);
2727
2728	mmun_start = address & huge_page_mask(h);
2729	mmun_end = mmun_start + huge_page_size(h);
2730	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2731	/*
2732	 * Retake the page table lock to check for racing updates
2733	 * before the page tables are altered
2734	 */
2735	spin_lock(ptl);
2736	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2737	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2738		ClearPagePrivate(new_page);
2739
2740		/* Break COW */
2741		huge_ptep_clear_flush(vma, address, ptep);
2742		set_huge_pte_at(mm, address, ptep,
2743				make_huge_pte(vma, new_page, 1));
2744		page_remove_rmap(old_page);
2745		hugepage_add_new_anon_rmap(new_page, vma, address);
2746		/* Make the old page be freed below */
2747		new_page = old_page;
2748	}
2749	spin_unlock(ptl);
2750	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2751	page_cache_release(new_page);
2752	page_cache_release(old_page);
2753
2754	/* Caller expects lock to be held */
2755	spin_lock(ptl);
2756	return 0;
2757}
2758
2759/* Return the pagecache page at a given address within a VMA */
2760static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2761			struct vm_area_struct *vma, unsigned long address)
2762{
2763	struct address_space *mapping;
2764	pgoff_t idx;
2765
2766	mapping = vma->vm_file->f_mapping;
2767	idx = vma_hugecache_offset(h, vma, address);
2768
2769	return find_lock_page(mapping, idx);
2770}
2771
2772/*
2773 * Return whether there is a pagecache page to back given address within VMA.
2774 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2775 */
2776static bool hugetlbfs_pagecache_present(struct hstate *h,
2777			struct vm_area_struct *vma, unsigned long address)
2778{
2779	struct address_space *mapping;
2780	pgoff_t idx;
2781	struct page *page;
2782
2783	mapping = vma->vm_file->f_mapping;
2784	idx = vma_hugecache_offset(h, vma, address);
2785
2786	page = find_get_page(mapping, idx);
2787	if (page)
2788		put_page(page);
2789	return page != NULL;
2790}
2791
2792static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2793			   struct address_space *mapping, pgoff_t idx,
2794			   unsigned long address, pte_t *ptep, unsigned int flags)
2795{
2796	struct hstate *h = hstate_vma(vma);
2797	int ret = VM_FAULT_SIGBUS;
2798	int anon_rmap = 0;
2799	unsigned long size;
2800	struct page *page;
2801	pte_t new_pte;
2802	spinlock_t *ptl;
2803
2804	/*
2805	 * Currently, we are forced to kill the process in the event the
2806	 * original mapper has unmapped pages from the child due to a failed
2807	 * COW. Warn that such a situation has occurred as it may not be obvious
2808	 */
2809	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2810		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2811			   current->pid);
2812		return ret;
2813	}
2814
2815	/*
2816	 * Use page lock to guard against racing truncation
2817	 * before we get page_table_lock.
2818	 */
2819retry:
2820	page = find_lock_page(mapping, idx);
2821	if (!page) {
2822		size = i_size_read(mapping->host) >> huge_page_shift(h);
2823		if (idx >= size)
2824			goto out;
2825		page = alloc_huge_page(vma, address, 0);
2826		if (IS_ERR(page)) {
2827			ret = PTR_ERR(page);
2828			if (ret == -ENOMEM)
2829				ret = VM_FAULT_OOM;
2830			else
2831				ret = VM_FAULT_SIGBUS;
2832			goto out;
2833		}
2834		clear_huge_page(page, address, pages_per_huge_page(h));
2835		__SetPageUptodate(page);
2836
2837		if (vma->vm_flags & VM_MAYSHARE) {
2838			int err;
2839			struct inode *inode = mapping->host;
2840
2841			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2842			if (err) {
2843				put_page(page);
2844				if (err == -EEXIST)
2845					goto retry;
2846				goto out;
2847			}
2848			ClearPagePrivate(page);
2849
2850			spin_lock(&inode->i_lock);
2851			inode->i_blocks += blocks_per_huge_page(h);
2852			spin_unlock(&inode->i_lock);
2853		} else {
2854			lock_page(page);
2855			if (unlikely(anon_vma_prepare(vma))) {
2856				ret = VM_FAULT_OOM;
2857				goto backout_unlocked;
2858			}
2859			anon_rmap = 1;
2860		}
2861	} else {
2862		/*
2863		 * If memory error occurs between mmap() and fault, some process
2864		 * don't have hwpoisoned swap entry for errored virtual address.
2865		 * So we need to block hugepage fault by PG_hwpoison bit check.
2866		 */
2867		if (unlikely(PageHWPoison(page))) {
2868			ret = VM_FAULT_HWPOISON |
2869				VM_FAULT_SET_HINDEX(hstate_index(h));
2870			goto backout_unlocked;
2871		}
2872	}
2873
2874	/*
2875	 * If we are going to COW a private mapping later, we examine the
2876	 * pending reservations for this page now. This will ensure that
2877	 * any allocations necessary to record that reservation occur outside
2878	 * the spinlock.
2879	 */
2880	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2881		if (vma_needs_reservation(h, vma, address) < 0) {
2882			ret = VM_FAULT_OOM;
2883			goto backout_unlocked;
2884		}
2885
2886	ptl = huge_pte_lockptr(h, mm, ptep);
2887	spin_lock(ptl);
2888	size = i_size_read(mapping->host) >> huge_page_shift(h);
2889	if (idx >= size)
2890		goto backout;
2891
2892	ret = 0;
2893	if (!huge_pte_none(huge_ptep_get(ptep)))
2894		goto backout;
2895
2896	if (anon_rmap) {
2897		ClearPagePrivate(page);
2898		hugepage_add_new_anon_rmap(page, vma, address);
2899	}
2900	else
2901		page_dup_rmap(page);
2902	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2903				&& (vma->vm_flags & VM_SHARED)));
2904	set_huge_pte_at(mm, address, ptep, new_pte);
2905
2906	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2907		/* Optimization, do the COW without a second fault */
2908		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2909	}
2910
2911	spin_unlock(ptl);
2912	unlock_page(page);
2913out:
2914	return ret;
2915
2916backout:
2917	spin_unlock(ptl);
2918backout_unlocked:
2919	unlock_page(page);
2920	put_page(page);
2921	goto out;
2922}
2923
2924#ifdef CONFIG_SMP
2925static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2926			    struct vm_area_struct *vma,
2927			    struct address_space *mapping,
2928			    pgoff_t idx, unsigned long address)
2929{
2930	unsigned long key[2];
2931	u32 hash;
2932
2933	if (vma->vm_flags & VM_SHARED) {
2934		key[0] = (unsigned long) mapping;
2935		key[1] = idx;
2936	} else {
2937		key[0] = (unsigned long) mm;
2938		key[1] = address >> huge_page_shift(h);
2939	}
2940
2941	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2942
2943	return hash & (num_fault_mutexes - 1);
2944}
2945#else
2946/*
2947 * For uniprocesor systems we always use a single mutex, so just
2948 * return 0 and avoid the hashing overhead.
2949 */
2950static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2951			    struct vm_area_struct *vma,
2952			    struct address_space *mapping,
2953			    pgoff_t idx, unsigned long address)
2954{
2955	return 0;
2956}
2957#endif
2958
2959int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2960			unsigned long address, unsigned int flags)
2961{
2962	pte_t *ptep, entry;
2963	spinlock_t *ptl;
2964	int ret;
2965	u32 hash;
2966	pgoff_t idx;
2967	struct page *page = NULL;
2968	struct page *pagecache_page = NULL;
2969	struct hstate *h = hstate_vma(vma);
2970	struct address_space *mapping;
2971
2972	address &= huge_page_mask(h);
2973
2974	ptep = huge_pte_offset(mm, address);
2975	if (ptep) {
2976		entry = huge_ptep_get(ptep);
2977		if (unlikely(is_hugetlb_entry_migration(entry))) {
2978			migration_entry_wait_huge(vma, mm, ptep);
2979			return 0;
2980		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2981			return VM_FAULT_HWPOISON_LARGE |
2982				VM_FAULT_SET_HINDEX(hstate_index(h));
2983	}
2984
2985	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2986	if (!ptep)
2987		return VM_FAULT_OOM;
2988
2989	mapping = vma->vm_file->f_mapping;
2990	idx = vma_hugecache_offset(h, vma, address);
2991
2992	/*
2993	 * Serialize hugepage allocation and instantiation, so that we don't
2994	 * get spurious allocation failures if two CPUs race to instantiate
2995	 * the same page in the page cache.
2996	 */
2997	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
2998	mutex_lock(&htlb_fault_mutex_table[hash]);
2999
3000	entry = huge_ptep_get(ptep);
3001	if (huge_pte_none(entry)) {
3002		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3003		goto out_mutex;
3004	}
3005
3006	ret = 0;
3007
3008	/*
3009	 * If we are going to COW the mapping later, we examine the pending
3010	 * reservations for this page now. This will ensure that any
3011	 * allocations necessary to record that reservation occur outside the
3012	 * spinlock. For private mappings, we also lookup the pagecache
3013	 * page now as it is used to determine if a reservation has been
3014	 * consumed.
3015	 */
3016	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3017		if (vma_needs_reservation(h, vma, address) < 0) {
3018			ret = VM_FAULT_OOM;
3019			goto out_mutex;
3020		}
3021
3022		if (!(vma->vm_flags & VM_MAYSHARE))
3023			pagecache_page = hugetlbfs_pagecache_page(h,
3024								vma, address);
3025	}
3026
3027	/*
3028	 * hugetlb_cow() requires page locks of pte_page(entry) and
3029	 * pagecache_page, so here we need take the former one
3030	 * when page != pagecache_page or !pagecache_page.
3031	 * Note that locking order is always pagecache_page -> page,
3032	 * so no worry about deadlock.
3033	 */
3034	page = pte_page(entry);
3035	get_page(page);
3036	if (page != pagecache_page)
3037		lock_page(page);
3038
3039	ptl = huge_pte_lockptr(h, mm, ptep);
3040	spin_lock(ptl);
3041	/* Check for a racing update before calling hugetlb_cow */
3042	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3043		goto out_ptl;
3044
3045
3046	if (flags & FAULT_FLAG_WRITE) {
3047		if (!huge_pte_write(entry)) {
3048			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3049					pagecache_page, ptl);
3050			goto out_ptl;
3051		}
3052		entry = huge_pte_mkdirty(entry);
3053	}
3054	entry = pte_mkyoung(entry);
3055	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3056						flags & FAULT_FLAG_WRITE))
3057		update_mmu_cache(vma, address, ptep);
3058
3059out_ptl:
3060	spin_unlock(ptl);
3061
3062	if (pagecache_page) {
3063		unlock_page(pagecache_page);
3064		put_page(pagecache_page);
3065	}
3066	if (page != pagecache_page)
3067		unlock_page(page);
3068	put_page(page);
3069
3070out_mutex:
3071	mutex_unlock(&htlb_fault_mutex_table[hash]);
3072	return ret;
3073}
3074
3075long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3076			 struct page **pages, struct vm_area_struct **vmas,
3077			 unsigned long *position, unsigned long *nr_pages,
3078			 long i, unsigned int flags)
3079{
3080	unsigned long pfn_offset;
3081	unsigned long vaddr = *position;
3082	unsigned long remainder = *nr_pages;
3083	struct hstate *h = hstate_vma(vma);
3084
3085	while (vaddr < vma->vm_end && remainder) {
3086		pte_t *pte;
3087		spinlock_t *ptl = NULL;
3088		int absent;
3089		struct page *page;
3090
3091		/*
3092		 * Some archs (sparc64, sh*) have multiple pte_ts to
3093		 * each hugepage.  We have to make sure we get the
3094		 * first, for the page indexing below to work.
3095		 *
3096		 * Note that page table lock is not held when pte is null.
3097		 */
3098		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3099		if (pte)
3100			ptl = huge_pte_lock(h, mm, pte);
3101		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3102
3103		/*
3104		 * When coredumping, it suits get_dump_page if we just return
3105		 * an error where there's an empty slot with no huge pagecache
3106		 * to back it.  This way, we avoid allocating a hugepage, and
3107		 * the sparse dumpfile avoids allocating disk blocks, but its
3108		 * huge holes still show up with zeroes where they need to be.
3109		 */
3110		if (absent && (flags & FOLL_DUMP) &&
3111		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3112			if (pte)
3113				spin_unlock(ptl);
3114			remainder = 0;
3115			break;
3116		}
3117
3118		/*
3119		 * We need call hugetlb_fault for both hugepages under migration
3120		 * (in which case hugetlb_fault waits for the migration,) and
3121		 * hwpoisoned hugepages (in which case we need to prevent the
3122		 * caller from accessing to them.) In order to do this, we use
3123		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3124		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3125		 * both cases, and because we can't follow correct pages
3126		 * directly from any kind of swap entries.
3127		 */
3128		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3129		    ((flags & FOLL_WRITE) &&
3130		      !huge_pte_write(huge_ptep_get(pte)))) {
3131			int ret;
3132
3133			if (pte)
3134				spin_unlock(ptl);
3135			ret = hugetlb_fault(mm, vma, vaddr,
3136				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3137			if (!(ret & VM_FAULT_ERROR))
3138				continue;
3139
3140			remainder = 0;
3141			break;
3142		}
3143
3144		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3145		page = pte_page(huge_ptep_get(pte));
3146same_page:
3147		if (pages) {
3148			pages[i] = mem_map_offset(page, pfn_offset);
3149			get_page_foll(pages[i]);
3150		}
3151
3152		if (vmas)
3153			vmas[i] = vma;
3154
3155		vaddr += PAGE_SIZE;
3156		++pfn_offset;
3157		--remainder;
3158		++i;
3159		if (vaddr < vma->vm_end && remainder &&
3160				pfn_offset < pages_per_huge_page(h)) {
3161			/*
3162			 * We use pfn_offset to avoid touching the pageframes
3163			 * of this compound page.
3164			 */
3165			goto same_page;
3166		}
3167		spin_unlock(ptl);
3168	}
3169	*nr_pages = remainder;
3170	*position = vaddr;
3171
3172	return i ? i : -EFAULT;
3173}
3174
3175unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3176		unsigned long address, unsigned long end, pgprot_t newprot)
3177{
3178	struct mm_struct *mm = vma->vm_mm;
3179	unsigned long start = address;
3180	pte_t *ptep;
3181	pte_t pte;
3182	struct hstate *h = hstate_vma(vma);
3183	unsigned long pages = 0;
3184
3185	BUG_ON(address >= end);
3186	flush_cache_range(vma, address, end);
3187
3188	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3189	for (; address < end; address += huge_page_size(h)) {
3190		spinlock_t *ptl;
3191		ptep = huge_pte_offset(mm, address);
3192		if (!ptep)
3193			continue;
3194		ptl = huge_pte_lock(h, mm, ptep);
3195		if (huge_pmd_unshare(mm, &address, ptep)) {
3196			pages++;
3197			spin_unlock(ptl);
3198			continue;
3199		}
3200		if (!huge_pte_none(huge_ptep_get(ptep))) {
3201			pte = huge_ptep_get_and_clear(mm, address, ptep);
3202			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3203			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3204			set_huge_pte_at(mm, address, ptep, pte);
3205			pages++;
3206		}
3207		spin_unlock(ptl);
3208	}
3209	/*
3210	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3211	 * may have cleared our pud entry and done put_page on the page table:
3212	 * once we release i_mmap_mutex, another task can do the final put_page
3213	 * and that page table be reused and filled with junk.
3214	 */
3215	flush_tlb_range(vma, start, end);
3216	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3217
3218	return pages << h->order;
3219}
3220
3221int hugetlb_reserve_pages(struct inode *inode,
3222					long from, long to,
3223					struct vm_area_struct *vma,
3224					vm_flags_t vm_flags)
3225{
3226	long ret, chg;
3227	struct hstate *h = hstate_inode(inode);
3228	struct hugepage_subpool *spool = subpool_inode(inode);
3229	struct resv_map *resv_map;
3230
3231	/*
3232	 * Only apply hugepage reservation if asked. At fault time, an
3233	 * attempt will be made for VM_NORESERVE to allocate a page
3234	 * without using reserves
3235	 */
3236	if (vm_flags & VM_NORESERVE)
3237		return 0;
3238
3239	/*
3240	 * Shared mappings base their reservation on the number of pages that
3241	 * are already allocated on behalf of the file. Private mappings need
3242	 * to reserve the full area even if read-only as mprotect() may be
3243	 * called to make the mapping read-write. Assume !vma is a shm mapping
3244	 */
3245	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3246		resv_map = inode_resv_map(inode);
3247
3248		chg = region_chg(resv_map, from, to);
3249
3250	} else {
3251		resv_map = resv_map_alloc();
3252		if (!resv_map)
3253			return -ENOMEM;
3254
3255		chg = to - from;
3256
3257		set_vma_resv_map(vma, resv_map);
3258		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3259	}
3260
3261	if (chg < 0) {
3262		ret = chg;
3263		goto out_err;
3264	}
3265
3266	/* There must be enough pages in the subpool for the mapping */
3267	if (hugepage_subpool_get_pages(spool, chg)) {
3268		ret = -ENOSPC;
3269		goto out_err;
3270	}
3271
3272	/*
3273	 * Check enough hugepages are available for the reservation.
3274	 * Hand the pages back to the subpool if there are not
3275	 */
3276	ret = hugetlb_acct_memory(h, chg);
3277	if (ret < 0) {
3278		hugepage_subpool_put_pages(spool, chg);
3279		goto out_err;
3280	}
3281
3282	/*
3283	 * Account for the reservations made. Shared mappings record regions
3284	 * that have reservations as they are shared by multiple VMAs.
3285	 * When the last VMA disappears, the region map says how much
3286	 * the reservation was and the page cache tells how much of
3287	 * the reservation was consumed. Private mappings are per-VMA and
3288	 * only the consumed reservations are tracked. When the VMA
3289	 * disappears, the original reservation is the VMA size and the
3290	 * consumed reservations are stored in the map. Hence, nothing
3291	 * else has to be done for private mappings here
3292	 */
3293	if (!vma || vma->vm_flags & VM_MAYSHARE)
3294		region_add(resv_map, from, to);
3295	return 0;
3296out_err:
3297	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3298		kref_put(&resv_map->refs, resv_map_release);
3299	return ret;
3300}
3301
3302void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3303{
3304	struct hstate *h = hstate_inode(inode);
3305	struct resv_map *resv_map = inode_resv_map(inode);
3306	long chg = 0;
3307	struct hugepage_subpool *spool = subpool_inode(inode);
3308
3309	if (resv_map)
3310		chg = region_truncate(resv_map, offset);
3311	spin_lock(&inode->i_lock);
3312	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3313	spin_unlock(&inode->i_lock);
3314
3315	hugepage_subpool_put_pages(spool, (chg - freed));
3316	hugetlb_acct_memory(h, -(chg - freed));
3317}
3318
3319#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3320static unsigned long page_table_shareable(struct vm_area_struct *svma,
3321				struct vm_area_struct *vma,
3322				unsigned long addr, pgoff_t idx)
3323{
3324	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3325				svma->vm_start;
3326	unsigned long sbase = saddr & PUD_MASK;
3327	unsigned long s_end = sbase + PUD_SIZE;
3328
3329	/* Allow segments to share if only one is marked locked */
3330	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3331	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3332
3333	/*
3334	 * match the virtual addresses, permission and the alignment of the
3335	 * page table page.
3336	 */
3337	if (pmd_index(addr) != pmd_index(saddr) ||
3338	    vm_flags != svm_flags ||
3339	    sbase < svma->vm_start || svma->vm_end < s_end)
3340		return 0;
3341
3342	return saddr;
3343}
3344
3345static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3346{
3347	unsigned long base = addr & PUD_MASK;
3348	unsigned long end = base + PUD_SIZE;
3349
3350	/*
3351	 * check on proper vm_flags and page table alignment
3352	 */
3353	if (vma->vm_flags & VM_MAYSHARE &&
3354	    vma->vm_start <= base && end <= vma->vm_end)
3355		return 1;
3356	return 0;
3357}
3358
3359/*
3360 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3361 * and returns the corresponding pte. While this is not necessary for the
3362 * !shared pmd case because we can allocate the pmd later as well, it makes the
3363 * code much cleaner. pmd allocation is essential for the shared case because
3364 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3365 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3366 * bad pmd for sharing.
3367 */
3368pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3369{
3370	struct vm_area_struct *vma = find_vma(mm, addr);
3371	struct address_space *mapping = vma->vm_file->f_mapping;
3372	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3373			vma->vm_pgoff;
3374	struct vm_area_struct *svma;
3375	unsigned long saddr;
3376	pte_t *spte = NULL;
3377	pte_t *pte;
3378	spinlock_t *ptl;
3379
3380	if (!vma_shareable(vma, addr))
3381		return (pte_t *)pmd_alloc(mm, pud, addr);
3382
3383	mutex_lock(&mapping->i_mmap_mutex);
3384	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3385		if (svma == vma)
3386			continue;
3387
3388		saddr = page_table_shareable(svma, vma, addr, idx);
3389		if (saddr) {
3390			spte = huge_pte_offset(svma->vm_mm, saddr);
3391			if (spte) {
3392				get_page(virt_to_page(spte));
3393				break;
3394			}
3395		}
3396	}
3397
3398	if (!spte)
3399		goto out;
3400
3401	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3402	spin_lock(ptl);
3403	if (pud_none(*pud))
3404		pud_populate(mm, pud,
3405				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3406	else
3407		put_page(virt_to_page(spte));
3408	spin_unlock(ptl);
3409out:
3410	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3411	mutex_unlock(&mapping->i_mmap_mutex);
3412	return pte;
3413}
3414
3415/*
3416 * unmap huge page backed by shared pte.
3417 *
3418 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3419 * indicated by page_count > 1, unmap is achieved by clearing pud and
3420 * decrementing the ref count. If count == 1, the pte page is not shared.
3421 *
3422 * called with page table lock held.
3423 *
3424 * returns: 1 successfully unmapped a shared pte page
3425 *	    0 the underlying pte page is not shared, or it is the last user
3426 */
3427int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3428{
3429	pgd_t *pgd = pgd_offset(mm, *addr);
3430	pud_t *pud = pud_offset(pgd, *addr);
3431
3432	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3433	if (page_count(virt_to_page(ptep)) == 1)
3434		return 0;
3435
3436	pud_clear(pud);
3437	put_page(virt_to_page(ptep));
3438	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3439	return 1;
3440}
3441#define want_pmd_share()	(1)
3442#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3443pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3444{
3445	return NULL;
3446}
3447#define want_pmd_share()	(0)
3448#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3449
3450#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3451pte_t *huge_pte_alloc(struct mm_struct *mm,
3452			unsigned long addr, unsigned long sz)
3453{
3454	pgd_t *pgd;
3455	pud_t *pud;
3456	pte_t *pte = NULL;
3457
3458	pgd = pgd_offset(mm, addr);
3459	pud = pud_alloc(mm, pgd, addr);
3460	if (pud) {
3461		if (sz == PUD_SIZE) {
3462			pte = (pte_t *)pud;
3463		} else {
3464			BUG_ON(sz != PMD_SIZE);
3465			if (want_pmd_share() && pud_none(*pud))
3466				pte = huge_pmd_share(mm, addr, pud);
3467			else
3468				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3469		}
3470	}
3471	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3472
3473	return pte;
3474}
3475
3476pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3477{
3478	pgd_t *pgd;
3479	pud_t *pud;
3480	pmd_t *pmd = NULL;
3481
3482	pgd = pgd_offset(mm, addr);
3483	if (pgd_present(*pgd)) {
3484		pud = pud_offset(pgd, addr);
3485		if (pud_present(*pud)) {
3486			if (pud_huge(*pud))
3487				return (pte_t *)pud;
3488			pmd = pmd_offset(pud, addr);
3489		}
3490	}
3491	return (pte_t *) pmd;
3492}
3493
3494struct page *
3495follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3496		pmd_t *pmd, int write)
3497{
3498	struct page *page;
3499
3500	page = pte_page(*(pte_t *)pmd);
3501	if (page)
3502		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3503	return page;
3504}
3505
3506struct page *
3507follow_huge_pud(struct mm_struct *mm, unsigned long address,
3508		pud_t *pud, int write)
3509{
3510	struct page *page;
3511
3512	page = pte_page(*(pte_t *)pud);
3513	if (page)
3514		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3515	return page;
3516}
3517
3518#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3519
3520/* Can be overriden by architectures */
3521__attribute__((weak)) struct page *
3522follow_huge_pud(struct mm_struct *mm, unsigned long address,
3523	       pud_t *pud, int write)
3524{
3525	BUG();
3526	return NULL;
3527}
3528
3529#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3530
3531#ifdef CONFIG_MEMORY_FAILURE
3532
3533/* Should be called in hugetlb_lock */
3534static int is_hugepage_on_freelist(struct page *hpage)
3535{
3536	struct page *page;
3537	struct page *tmp;
3538	struct hstate *h = page_hstate(hpage);
3539	int nid = page_to_nid(hpage);
3540
3541	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3542		if (page == hpage)
3543			return 1;
3544	return 0;
3545}
3546
3547/*
3548 * This function is called from memory failure code.
3549 * Assume the caller holds page lock of the head page.
3550 */
3551int dequeue_hwpoisoned_huge_page(struct page *hpage)
3552{
3553	struct hstate *h = page_hstate(hpage);
3554	int nid = page_to_nid(hpage);
3555	int ret = -EBUSY;
3556
3557	spin_lock(&hugetlb_lock);
3558	if (is_hugepage_on_freelist(hpage)) {
3559		/*
3560		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3561		 * but dangling hpage->lru can trigger list-debug warnings
3562		 * (this happens when we call unpoison_memory() on it),
3563		 * so let it point to itself with list_del_init().
3564		 */
3565		list_del_init(&hpage->lru);
3566		set_page_refcounted(hpage);
3567		h->free_huge_pages--;
3568		h->free_huge_pages_node[nid]--;
3569		ret = 0;
3570	}
3571	spin_unlock(&hugetlb_lock);
3572	return ret;
3573}
3574#endif
3575
3576bool isolate_huge_page(struct page *page, struct list_head *list)
3577{
3578	VM_BUG_ON_PAGE(!PageHead(page), page);
3579	if (!get_page_unless_zero(page))
3580		return false;
3581	spin_lock(&hugetlb_lock);
3582	list_move_tail(&page->lru, list);
3583	spin_unlock(&hugetlb_lock);
3584	return true;
3585}
3586
3587void putback_active_hugepage(struct page *page)
3588{
3589	VM_BUG_ON_PAGE(!PageHead(page), page);
3590	spin_lock(&hugetlb_lock);
3591	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3592	spin_unlock(&hugetlb_lock);
3593	put_page(page);
3594}
3595
3596bool is_hugepage_active(struct page *page)
3597{
3598	VM_BUG_ON_PAGE(!PageHuge(page), page);
3599	/*
3600	 * This function can be called for a tail page because the caller,
3601	 * scan_movable_pages, scans through a given pfn-range which typically
3602	 * covers one memory block. In systems using gigantic hugepage (1GB
3603	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3604	 * support migrating such large hugepages for now, so return false
3605	 * when called for tail pages.
3606	 */
3607	if (PageTail(page))
3608		return false;
3609	/*
3610	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3611	 * so we should return false for them.
3612	 */
3613	if (unlikely(PageHWPoison(page)))
3614		return false;
3615	return page_count(page) > 0;
3616}
3617