hugetlb.c revision fc1b8a73dd71226902a11928dd5500326e101df9
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26static unsigned long surplus_huge_pages;
27static unsigned long nr_overcommit_huge_pages;
28unsigned long max_huge_pages;
29unsigned long sysctl_overcommit_huge_pages;
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36static int hugetlb_next_nid;
37
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
42
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45	int i;
46
47	might_sleep();
48	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49		cond_resched();
50		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51	}
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
55			   unsigned long addr, struct vm_area_struct *vma)
56{
57	int i;
58
59	might_sleep();
60	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61		cond_resched();
62		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63	}
64}
65
66static void enqueue_huge_page(struct page *page)
67{
68	int nid = page_to_nid(page);
69	list_add(&page->lru, &hugepage_freelists[nid]);
70	free_huge_pages++;
71	free_huge_pages_node[nid]++;
72}
73
74static struct page *dequeue_huge_page(void)
75{
76	int nid;
77	struct page *page = NULL;
78
79	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80		if (!list_empty(&hugepage_freelists[nid])) {
81			page = list_entry(hugepage_freelists[nid].next,
82					  struct page, lru);
83			list_del(&page->lru);
84			free_huge_pages--;
85			free_huge_pages_node[nid]--;
86			break;
87		}
88	}
89	return page;
90}
91
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93				unsigned long address)
94{
95	int nid;
96	struct page *page = NULL;
97	struct mempolicy *mpol;
98	nodemask_t *nodemask;
99	struct zonelist *zonelist = huge_zonelist(vma, address,
100					htlb_alloc_mask, &mpol, &nodemask);
101	struct zone *zone;
102	struct zoneref *z;
103
104	for_each_zone_zonelist_nodemask(zone, z, zonelist,
105						MAX_NR_ZONES - 1, nodemask) {
106		nid = zone_to_nid(zone);
107		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108		    !list_empty(&hugepage_freelists[nid])) {
109			page = list_entry(hugepage_freelists[nid].next,
110					  struct page, lru);
111			list_del(&page->lru);
112			free_huge_pages--;
113			free_huge_pages_node[nid]--;
114			if (vma && vma->vm_flags & VM_MAYSHARE)
115				resv_huge_pages--;
116			break;
117		}
118	}
119	mpol_cond_put(mpol);
120	return page;
121}
122
123static void update_and_free_page(struct page *page)
124{
125	int i;
126	nr_huge_pages--;
127	nr_huge_pages_node[page_to_nid(page)]--;
128	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131				1 << PG_private | 1<< PG_writeback);
132	}
133	set_compound_page_dtor(page, NULL);
134	set_page_refcounted(page);
135	arch_release_hugepage(page);
136	__free_pages(page, HUGETLB_PAGE_ORDER);
137}
138
139static void free_huge_page(struct page *page)
140{
141	int nid = page_to_nid(page);
142	struct address_space *mapping;
143
144	mapping = (struct address_space *) page_private(page);
145	set_page_private(page, 0);
146	BUG_ON(page_count(page));
147	INIT_LIST_HEAD(&page->lru);
148
149	spin_lock(&hugetlb_lock);
150	if (surplus_huge_pages_node[nid]) {
151		update_and_free_page(page);
152		surplus_huge_pages--;
153		surplus_huge_pages_node[nid]--;
154	} else {
155		enqueue_huge_page(page);
156	}
157	spin_unlock(&hugetlb_lock);
158	if (mapping)
159		hugetlb_put_quota(mapping, 1);
160}
161
162/*
163 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
164 * balanced by operating on them in a round-robin fashion.
165 * Returns 1 if an adjustment was made.
166 */
167static int adjust_pool_surplus(int delta)
168{
169	static int prev_nid;
170	int nid = prev_nid;
171	int ret = 0;
172
173	VM_BUG_ON(delta != -1 && delta != 1);
174	do {
175		nid = next_node(nid, node_online_map);
176		if (nid == MAX_NUMNODES)
177			nid = first_node(node_online_map);
178
179		/* To shrink on this node, there must be a surplus page */
180		if (delta < 0 && !surplus_huge_pages_node[nid])
181			continue;
182		/* Surplus cannot exceed the total number of pages */
183		if (delta > 0 && surplus_huge_pages_node[nid] >=
184						nr_huge_pages_node[nid])
185			continue;
186
187		surplus_huge_pages += delta;
188		surplus_huge_pages_node[nid] += delta;
189		ret = 1;
190		break;
191	} while (nid != prev_nid);
192
193	prev_nid = nid;
194	return ret;
195}
196
197static struct page *alloc_fresh_huge_page_node(int nid)
198{
199	struct page *page;
200
201	page = alloc_pages_node(nid,
202		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
203						__GFP_REPEAT|__GFP_NOWARN,
204		HUGETLB_PAGE_ORDER);
205	if (page) {
206		if (arch_prepare_hugepage(page)) {
207			__free_pages(page, HUGETLB_PAGE_ORDER);
208			return NULL;
209		}
210		set_compound_page_dtor(page, free_huge_page);
211		spin_lock(&hugetlb_lock);
212		nr_huge_pages++;
213		nr_huge_pages_node[nid]++;
214		spin_unlock(&hugetlb_lock);
215		put_page(page); /* free it into the hugepage allocator */
216	}
217
218	return page;
219}
220
221static int alloc_fresh_huge_page(void)
222{
223	struct page *page;
224	int start_nid;
225	int next_nid;
226	int ret = 0;
227
228	start_nid = hugetlb_next_nid;
229
230	do {
231		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
232		if (page)
233			ret = 1;
234		/*
235		 * Use a helper variable to find the next node and then
236		 * copy it back to hugetlb_next_nid afterwards:
237		 * otherwise there's a window in which a racer might
238		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
239		 * But we don't need to use a spin_lock here: it really
240		 * doesn't matter if occasionally a racer chooses the
241		 * same nid as we do.  Move nid forward in the mask even
242		 * if we just successfully allocated a hugepage so that
243		 * the next caller gets hugepages on the next node.
244		 */
245		next_nid = next_node(hugetlb_next_nid, node_online_map);
246		if (next_nid == MAX_NUMNODES)
247			next_nid = first_node(node_online_map);
248		hugetlb_next_nid = next_nid;
249	} while (!page && hugetlb_next_nid != start_nid);
250
251	if (ret)
252		count_vm_event(HTLB_BUDDY_PGALLOC);
253	else
254		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
255
256	return ret;
257}
258
259static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
260						unsigned long address)
261{
262	struct page *page;
263	unsigned int nid;
264
265	/*
266	 * Assume we will successfully allocate the surplus page to
267	 * prevent racing processes from causing the surplus to exceed
268	 * overcommit
269	 *
270	 * This however introduces a different race, where a process B
271	 * tries to grow the static hugepage pool while alloc_pages() is
272	 * called by process A. B will only examine the per-node
273	 * counters in determining if surplus huge pages can be
274	 * converted to normal huge pages in adjust_pool_surplus(). A
275	 * won't be able to increment the per-node counter, until the
276	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
277	 * no more huge pages can be converted from surplus to normal
278	 * state (and doesn't try to convert again). Thus, we have a
279	 * case where a surplus huge page exists, the pool is grown, and
280	 * the surplus huge page still exists after, even though it
281	 * should just have been converted to a normal huge page. This
282	 * does not leak memory, though, as the hugepage will be freed
283	 * once it is out of use. It also does not allow the counters to
284	 * go out of whack in adjust_pool_surplus() as we don't modify
285	 * the node values until we've gotten the hugepage and only the
286	 * per-node value is checked there.
287	 */
288	spin_lock(&hugetlb_lock);
289	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
290		spin_unlock(&hugetlb_lock);
291		return NULL;
292	} else {
293		nr_huge_pages++;
294		surplus_huge_pages++;
295	}
296	spin_unlock(&hugetlb_lock);
297
298	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
299					__GFP_REPEAT|__GFP_NOWARN,
300					HUGETLB_PAGE_ORDER);
301
302	spin_lock(&hugetlb_lock);
303	if (page) {
304		/*
305		 * This page is now managed by the hugetlb allocator and has
306		 * no users -- drop the buddy allocator's reference.
307		 */
308		put_page_testzero(page);
309		VM_BUG_ON(page_count(page));
310		nid = page_to_nid(page);
311		set_compound_page_dtor(page, free_huge_page);
312		/*
313		 * We incremented the global counters already
314		 */
315		nr_huge_pages_node[nid]++;
316		surplus_huge_pages_node[nid]++;
317		__count_vm_event(HTLB_BUDDY_PGALLOC);
318	} else {
319		nr_huge_pages--;
320		surplus_huge_pages--;
321		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
322	}
323	spin_unlock(&hugetlb_lock);
324
325	return page;
326}
327
328/*
329 * Increase the hugetlb pool such that it can accomodate a reservation
330 * of size 'delta'.
331 */
332static int gather_surplus_pages(int delta)
333{
334	struct list_head surplus_list;
335	struct page *page, *tmp;
336	int ret, i;
337	int needed, allocated;
338
339	needed = (resv_huge_pages + delta) - free_huge_pages;
340	if (needed <= 0) {
341		resv_huge_pages += delta;
342		return 0;
343	}
344
345	allocated = 0;
346	INIT_LIST_HEAD(&surplus_list);
347
348	ret = -ENOMEM;
349retry:
350	spin_unlock(&hugetlb_lock);
351	for (i = 0; i < needed; i++) {
352		page = alloc_buddy_huge_page(NULL, 0);
353		if (!page) {
354			/*
355			 * We were not able to allocate enough pages to
356			 * satisfy the entire reservation so we free what
357			 * we've allocated so far.
358			 */
359			spin_lock(&hugetlb_lock);
360			needed = 0;
361			goto free;
362		}
363
364		list_add(&page->lru, &surplus_list);
365	}
366	allocated += needed;
367
368	/*
369	 * After retaking hugetlb_lock, we need to recalculate 'needed'
370	 * because either resv_huge_pages or free_huge_pages may have changed.
371	 */
372	spin_lock(&hugetlb_lock);
373	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
374	if (needed > 0)
375		goto retry;
376
377	/*
378	 * The surplus_list now contains _at_least_ the number of extra pages
379	 * needed to accomodate the reservation.  Add the appropriate number
380	 * of pages to the hugetlb pool and free the extras back to the buddy
381	 * allocator.  Commit the entire reservation here to prevent another
382	 * process from stealing the pages as they are added to the pool but
383	 * before they are reserved.
384	 */
385	needed += allocated;
386	resv_huge_pages += delta;
387	ret = 0;
388free:
389	/* Free the needed pages to the hugetlb pool */
390	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
391		if ((--needed) < 0)
392			break;
393		list_del(&page->lru);
394		enqueue_huge_page(page);
395	}
396
397	/* Free unnecessary surplus pages to the buddy allocator */
398	if (!list_empty(&surplus_list)) {
399		spin_unlock(&hugetlb_lock);
400		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
401			list_del(&page->lru);
402			/*
403			 * The page has a reference count of zero already, so
404			 * call free_huge_page directly instead of using
405			 * put_page.  This must be done with hugetlb_lock
406			 * unlocked which is safe because free_huge_page takes
407			 * hugetlb_lock before deciding how to free the page.
408			 */
409			free_huge_page(page);
410		}
411		spin_lock(&hugetlb_lock);
412	}
413
414	return ret;
415}
416
417/*
418 * When releasing a hugetlb pool reservation, any surplus pages that were
419 * allocated to satisfy the reservation must be explicitly freed if they were
420 * never used.
421 */
422static void return_unused_surplus_pages(unsigned long unused_resv_pages)
423{
424	static int nid = -1;
425	struct page *page;
426	unsigned long nr_pages;
427
428	/*
429	 * We want to release as many surplus pages as possible, spread
430	 * evenly across all nodes. Iterate across all nodes until we
431	 * can no longer free unreserved surplus pages. This occurs when
432	 * the nodes with surplus pages have no free pages.
433	 */
434	unsigned long remaining_iterations = num_online_nodes();
435
436	/* Uncommit the reservation */
437	resv_huge_pages -= unused_resv_pages;
438
439	nr_pages = min(unused_resv_pages, surplus_huge_pages);
440
441	while (remaining_iterations-- && nr_pages) {
442		nid = next_node(nid, node_online_map);
443		if (nid == MAX_NUMNODES)
444			nid = first_node(node_online_map);
445
446		if (!surplus_huge_pages_node[nid])
447			continue;
448
449		if (!list_empty(&hugepage_freelists[nid])) {
450			page = list_entry(hugepage_freelists[nid].next,
451					  struct page, lru);
452			list_del(&page->lru);
453			update_and_free_page(page);
454			free_huge_pages--;
455			free_huge_pages_node[nid]--;
456			surplus_huge_pages--;
457			surplus_huge_pages_node[nid]--;
458			nr_pages--;
459			remaining_iterations = num_online_nodes();
460		}
461	}
462}
463
464
465static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
466						unsigned long addr)
467{
468	struct page *page;
469
470	spin_lock(&hugetlb_lock);
471	page = dequeue_huge_page_vma(vma, addr);
472	spin_unlock(&hugetlb_lock);
473	return page ? page : ERR_PTR(-VM_FAULT_OOM);
474}
475
476static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
477						unsigned long addr)
478{
479	struct page *page = NULL;
480
481	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
482		return ERR_PTR(-VM_FAULT_SIGBUS);
483
484	spin_lock(&hugetlb_lock);
485	if (free_huge_pages > resv_huge_pages)
486		page = dequeue_huge_page_vma(vma, addr);
487	spin_unlock(&hugetlb_lock);
488	if (!page) {
489		page = alloc_buddy_huge_page(vma, addr);
490		if (!page) {
491			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
492			return ERR_PTR(-VM_FAULT_OOM);
493		}
494	}
495	return page;
496}
497
498static struct page *alloc_huge_page(struct vm_area_struct *vma,
499				    unsigned long addr)
500{
501	struct page *page;
502	struct address_space *mapping = vma->vm_file->f_mapping;
503
504	if (vma->vm_flags & VM_MAYSHARE)
505		page = alloc_huge_page_shared(vma, addr);
506	else
507		page = alloc_huge_page_private(vma, addr);
508
509	if (!IS_ERR(page)) {
510		set_page_refcounted(page);
511		set_page_private(page, (unsigned long) mapping);
512	}
513	return page;
514}
515
516static int __init hugetlb_init(void)
517{
518	unsigned long i;
519
520	if (HPAGE_SHIFT == 0)
521		return 0;
522
523	for (i = 0; i < MAX_NUMNODES; ++i)
524		INIT_LIST_HEAD(&hugepage_freelists[i]);
525
526	hugetlb_next_nid = first_node(node_online_map);
527
528	for (i = 0; i < max_huge_pages; ++i) {
529		if (!alloc_fresh_huge_page())
530			break;
531	}
532	max_huge_pages = free_huge_pages = nr_huge_pages = i;
533	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
534	return 0;
535}
536module_init(hugetlb_init);
537
538static int __init hugetlb_setup(char *s)
539{
540	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
541		max_huge_pages = 0;
542	return 1;
543}
544__setup("hugepages=", hugetlb_setup);
545
546static unsigned int cpuset_mems_nr(unsigned int *array)
547{
548	int node;
549	unsigned int nr = 0;
550
551	for_each_node_mask(node, cpuset_current_mems_allowed)
552		nr += array[node];
553
554	return nr;
555}
556
557#ifdef CONFIG_SYSCTL
558#ifdef CONFIG_HIGHMEM
559static void try_to_free_low(unsigned long count)
560{
561	int i;
562
563	for (i = 0; i < MAX_NUMNODES; ++i) {
564		struct page *page, *next;
565		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
566			if (count >= nr_huge_pages)
567				return;
568			if (PageHighMem(page))
569				continue;
570			list_del(&page->lru);
571			update_and_free_page(page);
572			free_huge_pages--;
573			free_huge_pages_node[page_to_nid(page)]--;
574		}
575	}
576}
577#else
578static inline void try_to_free_low(unsigned long count)
579{
580}
581#endif
582
583#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
584static unsigned long set_max_huge_pages(unsigned long count)
585{
586	unsigned long min_count, ret;
587
588	/*
589	 * Increase the pool size
590	 * First take pages out of surplus state.  Then make up the
591	 * remaining difference by allocating fresh huge pages.
592	 *
593	 * We might race with alloc_buddy_huge_page() here and be unable
594	 * to convert a surplus huge page to a normal huge page. That is
595	 * not critical, though, it just means the overall size of the
596	 * pool might be one hugepage larger than it needs to be, but
597	 * within all the constraints specified by the sysctls.
598	 */
599	spin_lock(&hugetlb_lock);
600	while (surplus_huge_pages && count > persistent_huge_pages) {
601		if (!adjust_pool_surplus(-1))
602			break;
603	}
604
605	while (count > persistent_huge_pages) {
606		/*
607		 * If this allocation races such that we no longer need the
608		 * page, free_huge_page will handle it by freeing the page
609		 * and reducing the surplus.
610		 */
611		spin_unlock(&hugetlb_lock);
612		ret = alloc_fresh_huge_page();
613		spin_lock(&hugetlb_lock);
614		if (!ret)
615			goto out;
616
617	}
618
619	/*
620	 * Decrease the pool size
621	 * First return free pages to the buddy allocator (being careful
622	 * to keep enough around to satisfy reservations).  Then place
623	 * pages into surplus state as needed so the pool will shrink
624	 * to the desired size as pages become free.
625	 *
626	 * By placing pages into the surplus state independent of the
627	 * overcommit value, we are allowing the surplus pool size to
628	 * exceed overcommit. There are few sane options here. Since
629	 * alloc_buddy_huge_page() is checking the global counter,
630	 * though, we'll note that we're not allowed to exceed surplus
631	 * and won't grow the pool anywhere else. Not until one of the
632	 * sysctls are changed, or the surplus pages go out of use.
633	 */
634	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
635	min_count = max(count, min_count);
636	try_to_free_low(min_count);
637	while (min_count < persistent_huge_pages) {
638		struct page *page = dequeue_huge_page();
639		if (!page)
640			break;
641		update_and_free_page(page);
642	}
643	while (count < persistent_huge_pages) {
644		if (!adjust_pool_surplus(1))
645			break;
646	}
647out:
648	ret = persistent_huge_pages;
649	spin_unlock(&hugetlb_lock);
650	return ret;
651}
652
653int hugetlb_sysctl_handler(struct ctl_table *table, int write,
654			   struct file *file, void __user *buffer,
655			   size_t *length, loff_t *ppos)
656{
657	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
658	max_huge_pages = set_max_huge_pages(max_huge_pages);
659	return 0;
660}
661
662int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
663			struct file *file, void __user *buffer,
664			size_t *length, loff_t *ppos)
665{
666	proc_dointvec(table, write, file, buffer, length, ppos);
667	if (hugepages_treat_as_movable)
668		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
669	else
670		htlb_alloc_mask = GFP_HIGHUSER;
671	return 0;
672}
673
674int hugetlb_overcommit_handler(struct ctl_table *table, int write,
675			struct file *file, void __user *buffer,
676			size_t *length, loff_t *ppos)
677{
678	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
679	spin_lock(&hugetlb_lock);
680	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
681	spin_unlock(&hugetlb_lock);
682	return 0;
683}
684
685#endif /* CONFIG_SYSCTL */
686
687int hugetlb_report_meminfo(char *buf)
688{
689	return sprintf(buf,
690			"HugePages_Total: %5lu\n"
691			"HugePages_Free:  %5lu\n"
692			"HugePages_Rsvd:  %5lu\n"
693			"HugePages_Surp:  %5lu\n"
694			"Hugepagesize:    %5lu kB\n",
695			nr_huge_pages,
696			free_huge_pages,
697			resv_huge_pages,
698			surplus_huge_pages,
699			HPAGE_SIZE/1024);
700}
701
702int hugetlb_report_node_meminfo(int nid, char *buf)
703{
704	return sprintf(buf,
705		"Node %d HugePages_Total: %5u\n"
706		"Node %d HugePages_Free:  %5u\n"
707		"Node %d HugePages_Surp:  %5u\n",
708		nid, nr_huge_pages_node[nid],
709		nid, free_huge_pages_node[nid],
710		nid, surplus_huge_pages_node[nid]);
711}
712
713/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
714unsigned long hugetlb_total_pages(void)
715{
716	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
717}
718
719static int hugetlb_acct_memory(long delta)
720{
721	int ret = -ENOMEM;
722
723	spin_lock(&hugetlb_lock);
724	/*
725	 * When cpuset is configured, it breaks the strict hugetlb page
726	 * reservation as the accounting is done on a global variable. Such
727	 * reservation is completely rubbish in the presence of cpuset because
728	 * the reservation is not checked against page availability for the
729	 * current cpuset. Application can still potentially OOM'ed by kernel
730	 * with lack of free htlb page in cpuset that the task is in.
731	 * Attempt to enforce strict accounting with cpuset is almost
732	 * impossible (or too ugly) because cpuset is too fluid that
733	 * task or memory node can be dynamically moved between cpusets.
734	 *
735	 * The change of semantics for shared hugetlb mapping with cpuset is
736	 * undesirable. However, in order to preserve some of the semantics,
737	 * we fall back to check against current free page availability as
738	 * a best attempt and hopefully to minimize the impact of changing
739	 * semantics that cpuset has.
740	 */
741	if (delta > 0) {
742		if (gather_surplus_pages(delta) < 0)
743			goto out;
744
745		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
746			return_unused_surplus_pages(delta);
747			goto out;
748		}
749	}
750
751	ret = 0;
752	if (delta < 0)
753		return_unused_surplus_pages((unsigned long) -delta);
754
755out:
756	spin_unlock(&hugetlb_lock);
757	return ret;
758}
759
760/*
761 * We cannot handle pagefaults against hugetlb pages at all.  They cause
762 * handle_mm_fault() to try to instantiate regular-sized pages in the
763 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
764 * this far.
765 */
766static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
767{
768	BUG();
769	return 0;
770}
771
772struct vm_operations_struct hugetlb_vm_ops = {
773	.fault = hugetlb_vm_op_fault,
774};
775
776static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
777				int writable)
778{
779	pte_t entry;
780
781	if (writable) {
782		entry =
783		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
784	} else {
785		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
786	}
787	entry = pte_mkyoung(entry);
788	entry = pte_mkhuge(entry);
789
790	return entry;
791}
792
793static void set_huge_ptep_writable(struct vm_area_struct *vma,
794				   unsigned long address, pte_t *ptep)
795{
796	pte_t entry;
797
798	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
799	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
800		update_mmu_cache(vma, address, entry);
801	}
802}
803
804
805int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
806			    struct vm_area_struct *vma)
807{
808	pte_t *src_pte, *dst_pte, entry;
809	struct page *ptepage;
810	unsigned long addr;
811	int cow;
812
813	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
814
815	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
816		src_pte = huge_pte_offset(src, addr);
817		if (!src_pte)
818			continue;
819		dst_pte = huge_pte_alloc(dst, addr);
820		if (!dst_pte)
821			goto nomem;
822
823		/* If the pagetables are shared don't copy or take references */
824		if (dst_pte == src_pte)
825			continue;
826
827		spin_lock(&dst->page_table_lock);
828		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
829		if (!huge_pte_none(huge_ptep_get(src_pte))) {
830			if (cow)
831				huge_ptep_set_wrprotect(src, addr, src_pte);
832			entry = huge_ptep_get(src_pte);
833			ptepage = pte_page(entry);
834			get_page(ptepage);
835			set_huge_pte_at(dst, addr, dst_pte, entry);
836		}
837		spin_unlock(&src->page_table_lock);
838		spin_unlock(&dst->page_table_lock);
839	}
840	return 0;
841
842nomem:
843	return -ENOMEM;
844}
845
846void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
847			    unsigned long end)
848{
849	struct mm_struct *mm = vma->vm_mm;
850	unsigned long address;
851	pte_t *ptep;
852	pte_t pte;
853	struct page *page;
854	struct page *tmp;
855	/*
856	 * A page gathering list, protected by per file i_mmap_lock. The
857	 * lock is used to avoid list corruption from multiple unmapping
858	 * of the same page since we are using page->lru.
859	 */
860	LIST_HEAD(page_list);
861
862	WARN_ON(!is_vm_hugetlb_page(vma));
863	BUG_ON(start & ~HPAGE_MASK);
864	BUG_ON(end & ~HPAGE_MASK);
865
866	spin_lock(&mm->page_table_lock);
867	for (address = start; address < end; address += HPAGE_SIZE) {
868		ptep = huge_pte_offset(mm, address);
869		if (!ptep)
870			continue;
871
872		if (huge_pmd_unshare(mm, &address, ptep))
873			continue;
874
875		pte = huge_ptep_get_and_clear(mm, address, ptep);
876		if (huge_pte_none(pte))
877			continue;
878
879		page = pte_page(pte);
880		if (pte_dirty(pte))
881			set_page_dirty(page);
882		list_add(&page->lru, &page_list);
883	}
884	spin_unlock(&mm->page_table_lock);
885	flush_tlb_range(vma, start, end);
886	list_for_each_entry_safe(page, tmp, &page_list, lru) {
887		list_del(&page->lru);
888		put_page(page);
889	}
890}
891
892void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
893			  unsigned long end)
894{
895	/*
896	 * It is undesirable to test vma->vm_file as it should be non-null
897	 * for valid hugetlb area. However, vm_file will be NULL in the error
898	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
899	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
900	 * to clean up. Since no pte has actually been setup, it is safe to
901	 * do nothing in this case.
902	 */
903	if (vma->vm_file) {
904		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
905		__unmap_hugepage_range(vma, start, end);
906		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
907	}
908}
909
910static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
911			unsigned long address, pte_t *ptep, pte_t pte)
912{
913	struct page *old_page, *new_page;
914	int avoidcopy;
915
916	old_page = pte_page(pte);
917
918	/* If no-one else is actually using this page, avoid the copy
919	 * and just make the page writable */
920	avoidcopy = (page_count(old_page) == 1);
921	if (avoidcopy) {
922		set_huge_ptep_writable(vma, address, ptep);
923		return 0;
924	}
925
926	page_cache_get(old_page);
927	new_page = alloc_huge_page(vma, address);
928
929	if (IS_ERR(new_page)) {
930		page_cache_release(old_page);
931		return -PTR_ERR(new_page);
932	}
933
934	spin_unlock(&mm->page_table_lock);
935	copy_huge_page(new_page, old_page, address, vma);
936	__SetPageUptodate(new_page);
937	spin_lock(&mm->page_table_lock);
938
939	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
940	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
941		/* Break COW */
942		huge_ptep_clear_flush(vma, address, ptep);
943		set_huge_pte_at(mm, address, ptep,
944				make_huge_pte(vma, new_page, 1));
945		/* Make the old page be freed below */
946		new_page = old_page;
947	}
948	page_cache_release(new_page);
949	page_cache_release(old_page);
950	return 0;
951}
952
953static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
954			unsigned long address, pte_t *ptep, int write_access)
955{
956	int ret = VM_FAULT_SIGBUS;
957	unsigned long idx;
958	unsigned long size;
959	struct page *page;
960	struct address_space *mapping;
961	pte_t new_pte;
962
963	mapping = vma->vm_file->f_mapping;
964	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
965		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
966
967	/*
968	 * Use page lock to guard against racing truncation
969	 * before we get page_table_lock.
970	 */
971retry:
972	page = find_lock_page(mapping, idx);
973	if (!page) {
974		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
975		if (idx >= size)
976			goto out;
977		page = alloc_huge_page(vma, address);
978		if (IS_ERR(page)) {
979			ret = -PTR_ERR(page);
980			goto out;
981		}
982		clear_huge_page(page, address);
983		__SetPageUptodate(page);
984
985		if (vma->vm_flags & VM_SHARED) {
986			int err;
987			struct inode *inode = mapping->host;
988
989			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
990			if (err) {
991				put_page(page);
992				if (err == -EEXIST)
993					goto retry;
994				goto out;
995			}
996
997			spin_lock(&inode->i_lock);
998			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
999			spin_unlock(&inode->i_lock);
1000		} else
1001			lock_page(page);
1002	}
1003
1004	spin_lock(&mm->page_table_lock);
1005	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1006	if (idx >= size)
1007		goto backout;
1008
1009	ret = 0;
1010	if (!huge_pte_none(huge_ptep_get(ptep)))
1011		goto backout;
1012
1013	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1014				&& (vma->vm_flags & VM_SHARED)));
1015	set_huge_pte_at(mm, address, ptep, new_pte);
1016
1017	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1018		/* Optimization, do the COW without a second fault */
1019		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
1020	}
1021
1022	spin_unlock(&mm->page_table_lock);
1023	unlock_page(page);
1024out:
1025	return ret;
1026
1027backout:
1028	spin_unlock(&mm->page_table_lock);
1029	unlock_page(page);
1030	put_page(page);
1031	goto out;
1032}
1033
1034int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1035			unsigned long address, int write_access)
1036{
1037	pte_t *ptep;
1038	pte_t entry;
1039	int ret;
1040	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1041
1042	ptep = huge_pte_alloc(mm, address);
1043	if (!ptep)
1044		return VM_FAULT_OOM;
1045
1046	/*
1047	 * Serialize hugepage allocation and instantiation, so that we don't
1048	 * get spurious allocation failures if two CPUs race to instantiate
1049	 * the same page in the page cache.
1050	 */
1051	mutex_lock(&hugetlb_instantiation_mutex);
1052	entry = huge_ptep_get(ptep);
1053	if (huge_pte_none(entry)) {
1054		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1055		mutex_unlock(&hugetlb_instantiation_mutex);
1056		return ret;
1057	}
1058
1059	ret = 0;
1060
1061	spin_lock(&mm->page_table_lock);
1062	/* Check for a racing update before calling hugetlb_cow */
1063	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1064		if (write_access && !pte_write(entry))
1065			ret = hugetlb_cow(mm, vma, address, ptep, entry);
1066	spin_unlock(&mm->page_table_lock);
1067	mutex_unlock(&hugetlb_instantiation_mutex);
1068
1069	return ret;
1070}
1071
1072int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1073			struct page **pages, struct vm_area_struct **vmas,
1074			unsigned long *position, int *length, int i,
1075			int write)
1076{
1077	unsigned long pfn_offset;
1078	unsigned long vaddr = *position;
1079	int remainder = *length;
1080
1081	spin_lock(&mm->page_table_lock);
1082	while (vaddr < vma->vm_end && remainder) {
1083		pte_t *pte;
1084		struct page *page;
1085
1086		/*
1087		 * Some archs (sparc64, sh*) have multiple pte_ts to
1088		 * each hugepage.  We have to make * sure we get the
1089		 * first, for the page indexing below to work.
1090		 */
1091		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1092
1093		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1094		    (write && !pte_write(huge_ptep_get(pte)))) {
1095			int ret;
1096
1097			spin_unlock(&mm->page_table_lock);
1098			ret = hugetlb_fault(mm, vma, vaddr, write);
1099			spin_lock(&mm->page_table_lock);
1100			if (!(ret & VM_FAULT_ERROR))
1101				continue;
1102
1103			remainder = 0;
1104			if (!i)
1105				i = -EFAULT;
1106			break;
1107		}
1108
1109		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1110		page = pte_page(huge_ptep_get(pte));
1111same_page:
1112		if (pages) {
1113			get_page(page);
1114			pages[i] = page + pfn_offset;
1115		}
1116
1117		if (vmas)
1118			vmas[i] = vma;
1119
1120		vaddr += PAGE_SIZE;
1121		++pfn_offset;
1122		--remainder;
1123		++i;
1124		if (vaddr < vma->vm_end && remainder &&
1125				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1126			/*
1127			 * We use pfn_offset to avoid touching the pageframes
1128			 * of this compound page.
1129			 */
1130			goto same_page;
1131		}
1132	}
1133	spin_unlock(&mm->page_table_lock);
1134	*length = remainder;
1135	*position = vaddr;
1136
1137	return i;
1138}
1139
1140void hugetlb_change_protection(struct vm_area_struct *vma,
1141		unsigned long address, unsigned long end, pgprot_t newprot)
1142{
1143	struct mm_struct *mm = vma->vm_mm;
1144	unsigned long start = address;
1145	pte_t *ptep;
1146	pte_t pte;
1147
1148	BUG_ON(address >= end);
1149	flush_cache_range(vma, address, end);
1150
1151	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1152	spin_lock(&mm->page_table_lock);
1153	for (; address < end; address += HPAGE_SIZE) {
1154		ptep = huge_pte_offset(mm, address);
1155		if (!ptep)
1156			continue;
1157		if (huge_pmd_unshare(mm, &address, ptep))
1158			continue;
1159		if (!huge_pte_none(huge_ptep_get(ptep))) {
1160			pte = huge_ptep_get_and_clear(mm, address, ptep);
1161			pte = pte_mkhuge(pte_modify(pte, newprot));
1162			set_huge_pte_at(mm, address, ptep, pte);
1163		}
1164	}
1165	spin_unlock(&mm->page_table_lock);
1166	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1167
1168	flush_tlb_range(vma, start, end);
1169}
1170
1171struct file_region {
1172	struct list_head link;
1173	long from;
1174	long to;
1175};
1176
1177static long region_add(struct list_head *head, long f, long t)
1178{
1179	struct file_region *rg, *nrg, *trg;
1180
1181	/* Locate the region we are either in or before. */
1182	list_for_each_entry(rg, head, link)
1183		if (f <= rg->to)
1184			break;
1185
1186	/* Round our left edge to the current segment if it encloses us. */
1187	if (f > rg->from)
1188		f = rg->from;
1189
1190	/* Check for and consume any regions we now overlap with. */
1191	nrg = rg;
1192	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1193		if (&rg->link == head)
1194			break;
1195		if (rg->from > t)
1196			break;
1197
1198		/* If this area reaches higher then extend our area to
1199		 * include it completely.  If this is not the first area
1200		 * which we intend to reuse, free it. */
1201		if (rg->to > t)
1202			t = rg->to;
1203		if (rg != nrg) {
1204			list_del(&rg->link);
1205			kfree(rg);
1206		}
1207	}
1208	nrg->from = f;
1209	nrg->to = t;
1210	return 0;
1211}
1212
1213static long region_chg(struct list_head *head, long f, long t)
1214{
1215	struct file_region *rg, *nrg;
1216	long chg = 0;
1217
1218	/* Locate the region we are before or in. */
1219	list_for_each_entry(rg, head, link)
1220		if (f <= rg->to)
1221			break;
1222
1223	/* If we are below the current region then a new region is required.
1224	 * Subtle, allocate a new region at the position but make it zero
1225	 * size such that we can guarantee to record the reservation. */
1226	if (&rg->link == head || t < rg->from) {
1227		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1228		if (!nrg)
1229			return -ENOMEM;
1230		nrg->from = f;
1231		nrg->to   = f;
1232		INIT_LIST_HEAD(&nrg->link);
1233		list_add(&nrg->link, rg->link.prev);
1234
1235		return t - f;
1236	}
1237
1238	/* Round our left edge to the current segment if it encloses us. */
1239	if (f > rg->from)
1240		f = rg->from;
1241	chg = t - f;
1242
1243	/* Check for and consume any regions we now overlap with. */
1244	list_for_each_entry(rg, rg->link.prev, link) {
1245		if (&rg->link == head)
1246			break;
1247		if (rg->from > t)
1248			return chg;
1249
1250		/* We overlap with this area, if it extends futher than
1251		 * us then we must extend ourselves.  Account for its
1252		 * existing reservation. */
1253		if (rg->to > t) {
1254			chg += rg->to - t;
1255			t = rg->to;
1256		}
1257		chg -= rg->to - rg->from;
1258	}
1259	return chg;
1260}
1261
1262static long region_truncate(struct list_head *head, long end)
1263{
1264	struct file_region *rg, *trg;
1265	long chg = 0;
1266
1267	/* Locate the region we are either in or before. */
1268	list_for_each_entry(rg, head, link)
1269		if (end <= rg->to)
1270			break;
1271	if (&rg->link == head)
1272		return 0;
1273
1274	/* If we are in the middle of a region then adjust it. */
1275	if (end > rg->from) {
1276		chg = rg->to - end;
1277		rg->to = end;
1278		rg = list_entry(rg->link.next, typeof(*rg), link);
1279	}
1280
1281	/* Drop any remaining regions. */
1282	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1283		if (&rg->link == head)
1284			break;
1285		chg += rg->to - rg->from;
1286		list_del(&rg->link);
1287		kfree(rg);
1288	}
1289	return chg;
1290}
1291
1292int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1293{
1294	long ret, chg;
1295
1296	chg = region_chg(&inode->i_mapping->private_list, from, to);
1297	if (chg < 0)
1298		return chg;
1299
1300	if (hugetlb_get_quota(inode->i_mapping, chg))
1301		return -ENOSPC;
1302	ret = hugetlb_acct_memory(chg);
1303	if (ret < 0) {
1304		hugetlb_put_quota(inode->i_mapping, chg);
1305		return ret;
1306	}
1307	region_add(&inode->i_mapping->private_list, from, to);
1308	return 0;
1309}
1310
1311void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1312{
1313	long chg = region_truncate(&inode->i_mapping->private_list, offset);
1314
1315	spin_lock(&inode->i_lock);
1316	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1317	spin_unlock(&inode->i_lock);
1318
1319	hugetlb_put_quota(inode->i_mapping, (chg - freed));
1320	hugetlb_acct_memory(-(chg - freed));
1321}
1322