mempool.c revision eb9a3c62a0b6064c7f7e5b961ce00c646d21cb78
1/*
2 *  linux/mm/mempool.c
3 *
4 *  memory buffer pool support. Such pools are mostly used
5 *  for guaranteed, deadlock-free memory allocations during
6 *  extreme VM load.
7 *
8 *  started by Ingo Molnar, Copyright (C) 2001
9 */
10
11#include <linux/mm.h>
12#include <linux/slab.h>
13#include <linux/export.h>
14#include <linux/mempool.h>
15#include <linux/blkdev.h>
16#include <linux/writeback.h>
17
18static void add_element(mempool_t *pool, void *element)
19{
20	BUG_ON(pool->curr_nr >= pool->min_nr);
21	pool->elements[pool->curr_nr++] = element;
22}
23
24static void *remove_element(mempool_t *pool)
25{
26	BUG_ON(pool->curr_nr <= 0);
27	return pool->elements[--pool->curr_nr];
28}
29
30/**
31 * mempool_destroy - deallocate a memory pool
32 * @pool:      pointer to the memory pool which was allocated via
33 *             mempool_create().
34 *
35 * Free all reserved elements in @pool and @pool itself.  This function
36 * only sleeps if the free_fn() function sleeps.
37 */
38void mempool_destroy(mempool_t *pool)
39{
40	while (pool->curr_nr) {
41		void *element = remove_element(pool);
42		pool->free(element, pool->pool_data);
43	}
44	kfree(pool->elements);
45	kfree(pool);
46}
47EXPORT_SYMBOL(mempool_destroy);
48
49/**
50 * mempool_create - create a memory pool
51 * @min_nr:    the minimum number of elements guaranteed to be
52 *             allocated for this pool.
53 * @alloc_fn:  user-defined element-allocation function.
54 * @free_fn:   user-defined element-freeing function.
55 * @pool_data: optional private data available to the user-defined functions.
56 *
57 * this function creates and allocates a guaranteed size, preallocated
58 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
59 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
60 * functions might sleep - as long as the mempool_alloc() function is not called
61 * from IRQ contexts.
62 */
63mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
64				mempool_free_t *free_fn, void *pool_data)
65{
66	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
67				   GFP_KERNEL, NUMA_NO_NODE);
68}
69EXPORT_SYMBOL(mempool_create);
70
71mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
72			       mempool_free_t *free_fn, void *pool_data,
73			       gfp_t gfp_mask, int node_id)
74{
75	mempool_t *pool;
76	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
77	if (!pool)
78		return NULL;
79	pool->elements = kmalloc_node(min_nr * sizeof(void *),
80				      gfp_mask, node_id);
81	if (!pool->elements) {
82		kfree(pool);
83		return NULL;
84	}
85	spin_lock_init(&pool->lock);
86	pool->min_nr = min_nr;
87	pool->pool_data = pool_data;
88	init_waitqueue_head(&pool->wait);
89	pool->alloc = alloc_fn;
90	pool->free = free_fn;
91
92	/*
93	 * First pre-allocate the guaranteed number of buffers.
94	 */
95	while (pool->curr_nr < pool->min_nr) {
96		void *element;
97
98		element = pool->alloc(gfp_mask, pool->pool_data);
99		if (unlikely(!element)) {
100			mempool_destroy(pool);
101			return NULL;
102		}
103		add_element(pool, element);
104	}
105	return pool;
106}
107EXPORT_SYMBOL(mempool_create_node);
108
109/**
110 * mempool_resize - resize an existing memory pool
111 * @pool:       pointer to the memory pool which was allocated via
112 *              mempool_create().
113 * @new_min_nr: the new minimum number of elements guaranteed to be
114 *              allocated for this pool.
115 * @gfp_mask:   the usual allocation bitmask.
116 *
117 * This function shrinks/grows the pool. In the case of growing,
118 * it cannot be guaranteed that the pool will be grown to the new
119 * size immediately, but new mempool_free() calls will refill it.
120 *
121 * Note, the caller must guarantee that no mempool_destroy is called
122 * while this function is running. mempool_alloc() & mempool_free()
123 * might be called (eg. from IRQ contexts) while this function executes.
124 */
125int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
126{
127	void *element;
128	void **new_elements;
129	unsigned long flags;
130
131	BUG_ON(new_min_nr <= 0);
132
133	spin_lock_irqsave(&pool->lock, flags);
134	if (new_min_nr <= pool->min_nr) {
135		while (new_min_nr < pool->curr_nr) {
136			element = remove_element(pool);
137			spin_unlock_irqrestore(&pool->lock, flags);
138			pool->free(element, pool->pool_data);
139			spin_lock_irqsave(&pool->lock, flags);
140		}
141		pool->min_nr = new_min_nr;
142		goto out_unlock;
143	}
144	spin_unlock_irqrestore(&pool->lock, flags);
145
146	/* Grow the pool */
147	new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
148	if (!new_elements)
149		return -ENOMEM;
150
151	spin_lock_irqsave(&pool->lock, flags);
152	if (unlikely(new_min_nr <= pool->min_nr)) {
153		/* Raced, other resize will do our work */
154		spin_unlock_irqrestore(&pool->lock, flags);
155		kfree(new_elements);
156		goto out;
157	}
158	memcpy(new_elements, pool->elements,
159			pool->curr_nr * sizeof(*new_elements));
160	kfree(pool->elements);
161	pool->elements = new_elements;
162	pool->min_nr = new_min_nr;
163
164	while (pool->curr_nr < pool->min_nr) {
165		spin_unlock_irqrestore(&pool->lock, flags);
166		element = pool->alloc(gfp_mask, pool->pool_data);
167		if (!element)
168			goto out;
169		spin_lock_irqsave(&pool->lock, flags);
170		if (pool->curr_nr < pool->min_nr) {
171			add_element(pool, element);
172		} else {
173			spin_unlock_irqrestore(&pool->lock, flags);
174			pool->free(element, pool->pool_data);	/* Raced */
175			goto out;
176		}
177	}
178out_unlock:
179	spin_unlock_irqrestore(&pool->lock, flags);
180out:
181	return 0;
182}
183EXPORT_SYMBOL(mempool_resize);
184
185/**
186 * mempool_alloc - allocate an element from a specific memory pool
187 * @pool:      pointer to the memory pool which was allocated via
188 *             mempool_create().
189 * @gfp_mask:  the usual allocation bitmask.
190 *
191 * this function only sleeps if the alloc_fn() function sleeps or
192 * returns NULL. Note that due to preallocation, this function
193 * *never* fails when called from process contexts. (it might
194 * fail if called from an IRQ context.)
195 */
196void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
197{
198	void *element;
199	unsigned long flags;
200	wait_queue_t wait;
201	gfp_t gfp_temp;
202
203	might_sleep_if(gfp_mask & __GFP_WAIT);
204
205	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
206	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
207	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
208
209	gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
210
211repeat_alloc:
212
213	element = pool->alloc(gfp_temp, pool->pool_data);
214	if (likely(element != NULL))
215		return element;
216
217	spin_lock_irqsave(&pool->lock, flags);
218	if (likely(pool->curr_nr)) {
219		element = remove_element(pool);
220		spin_unlock_irqrestore(&pool->lock, flags);
221		/* paired with rmb in mempool_free(), read comment there */
222		smp_wmb();
223		return element;
224	}
225
226	/*
227	 * We use gfp mask w/o __GFP_WAIT or IO for the first round.  If
228	 * alloc failed with that and @pool was empty, retry immediately.
229	 */
230	if (gfp_temp != gfp_mask) {
231		spin_unlock_irqrestore(&pool->lock, flags);
232		gfp_temp = gfp_mask;
233		goto repeat_alloc;
234	}
235
236	/* We must not sleep if !__GFP_WAIT */
237	if (!(gfp_mask & __GFP_WAIT)) {
238		spin_unlock_irqrestore(&pool->lock, flags);
239		return NULL;
240	}
241
242	/* Let's wait for someone else to return an element to @pool */
243	init_wait(&wait);
244	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
245
246	spin_unlock_irqrestore(&pool->lock, flags);
247
248	/*
249	 * FIXME: this should be io_schedule().  The timeout is there as a
250	 * workaround for some DM problems in 2.6.18.
251	 */
252	io_schedule_timeout(5*HZ);
253
254	finish_wait(&pool->wait, &wait);
255	goto repeat_alloc;
256}
257EXPORT_SYMBOL(mempool_alloc);
258
259/**
260 * mempool_free - return an element to the pool.
261 * @element:   pool element pointer.
262 * @pool:      pointer to the memory pool which was allocated via
263 *             mempool_create().
264 *
265 * this function only sleeps if the free_fn() function sleeps.
266 */
267void mempool_free(void *element, mempool_t *pool)
268{
269	unsigned long flags;
270
271	if (unlikely(element == NULL))
272		return;
273
274	/*
275	 * Paired with the wmb in mempool_alloc().  The preceding read is
276	 * for @element and the following @pool->curr_nr.  This ensures
277	 * that the visible value of @pool->curr_nr is from after the
278	 * allocation of @element.  This is necessary for fringe cases
279	 * where @element was passed to this task without going through
280	 * barriers.
281	 *
282	 * For example, assume @p is %NULL at the beginning and one task
283	 * performs "p = mempool_alloc(...);" while another task is doing
284	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
285	 * may end up using curr_nr value which is from before allocation
286	 * of @p without the following rmb.
287	 */
288	smp_rmb();
289
290	/*
291	 * For correctness, we need a test which is guaranteed to trigger
292	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
293	 * without locking achieves that and refilling as soon as possible
294	 * is desirable.
295	 *
296	 * Because curr_nr visible here is always a value after the
297	 * allocation of @element, any task which decremented curr_nr below
298	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
299	 * incremented to min_nr afterwards.  If curr_nr gets incremented
300	 * to min_nr after the allocation of @element, the elements
301	 * allocated after that are subject to the same guarantee.
302	 *
303	 * Waiters happen iff curr_nr is 0 and the above guarantee also
304	 * ensures that there will be frees which return elements to the
305	 * pool waking up the waiters.
306	 */
307	if (unlikely(pool->curr_nr < pool->min_nr)) {
308		spin_lock_irqsave(&pool->lock, flags);
309		if (likely(pool->curr_nr < pool->min_nr)) {
310			add_element(pool, element);
311			spin_unlock_irqrestore(&pool->lock, flags);
312			wake_up(&pool->wait);
313			return;
314		}
315		spin_unlock_irqrestore(&pool->lock, flags);
316	}
317	pool->free(element, pool->pool_data);
318}
319EXPORT_SYMBOL(mempool_free);
320
321/*
322 * A commonly used alloc and free fn.
323 */
324void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
325{
326	struct kmem_cache *mem = pool_data;
327	return kmem_cache_alloc(mem, gfp_mask);
328}
329EXPORT_SYMBOL(mempool_alloc_slab);
330
331void mempool_free_slab(void *element, void *pool_data)
332{
333	struct kmem_cache *mem = pool_data;
334	kmem_cache_free(mem, element);
335}
336EXPORT_SYMBOL(mempool_free_slab);
337
338/*
339 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
340 * specified by pool_data
341 */
342void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
343{
344	size_t size = (size_t)pool_data;
345	return kmalloc(size, gfp_mask);
346}
347EXPORT_SYMBOL(mempool_kmalloc);
348
349void mempool_kfree(void *element, void *pool_data)
350{
351	kfree(element);
352}
353EXPORT_SYMBOL(mempool_kfree);
354
355/*
356 * A simple mempool-backed page allocator that allocates pages
357 * of the order specified by pool_data.
358 */
359void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
360{
361	int order = (int)(long)pool_data;
362	return alloc_pages(gfp_mask, order);
363}
364EXPORT_SYMBOL(mempool_alloc_pages);
365
366void mempool_free_pages(void *element, void *pool_data)
367{
368	int order = (int)(long)pool_data;
369	__free_pages(element, order);
370}
371EXPORT_SYMBOL(mempool_free_pages);
372