mmap.c revision 2d8a17813ec817fa58addd2c92b4ca8cae5bafbb
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/backing-dev.h>
12#include <linux/mm.h>
13#include <linux/shm.h>
14#include <linux/mman.h>
15#include <linux/pagemap.h>
16#include <linux/swap.h>
17#include <linux/syscalls.h>
18#include <linux/capability.h>
19#include <linux/init.h>
20#include <linux/file.h>
21#include <linux/fs.h>
22#include <linux/personality.h>
23#include <linux/security.h>
24#include <linux/hugetlb.h>
25#include <linux/profile.h>
26#include <linux/export.h>
27#include <linux/mount.h>
28#include <linux/mempolicy.h>
29#include <linux/rmap.h>
30#include <linux/mmu_notifier.h>
31#include <linux/perf_event.h>
32#include <linux/audit.h>
33#include <linux/khugepaged.h>
34#include <linux/uprobes.h>
35#include <linux/rbtree_augmented.h>
36#include <linux/sched/sysctl.h>
37#include <linux/notifier.h>
38#include <linux/memory.h>
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/tlb.h>
43#include <asm/mmu_context.h>
44
45#include "internal.h"
46
47#ifndef arch_mmap_check
48#define arch_mmap_check(addr, len, flags)	(0)
49#endif
50
51#ifndef arch_rebalance_pgtables
52#define arch_rebalance_pgtables(addr, len)		(addr)
53#endif
54
55static void unmap_region(struct mm_struct *mm,
56		struct vm_area_struct *vma, struct vm_area_struct *prev,
57		unsigned long start, unsigned long end);
58
59/* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware.  The expected
61 * behavior is in parens:
62 *
63 * map_type	prot
64 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
65 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
66 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
67 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
68 *
69 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
70 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
71 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
72 *
73 */
74pgprot_t protection_map[16] = {
75	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77};
78
79pgprot_t vm_get_page_prot(unsigned long vm_flags)
80{
81	return __pgprot(pgprot_val(protection_map[vm_flags &
82				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83			pgprot_val(arch_vm_get_page_prot(vm_flags)));
84}
85EXPORT_SYMBOL(vm_get_page_prot);
86
87int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
89int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92/*
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
95 */
96struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98/*
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
104 * memory commitment.
105 */
106unsigned long vm_memory_committed(void)
107{
108	return percpu_counter_read_positive(&vm_committed_as);
109}
110EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112/*
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
116 *
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
119 *
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
122 *
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124 *
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
127 */
128int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129{
130	unsigned long free, allowed, reserve;
131
132	vm_acct_memory(pages);
133
134	/*
135	 * Sometimes we want to use more memory than we have
136	 */
137	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138		return 0;
139
140	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141		free = global_page_state(NR_FREE_PAGES);
142		free += global_page_state(NR_FILE_PAGES);
143
144		/*
145		 * shmem pages shouldn't be counted as free in this
146		 * case, they can't be purged, only swapped out, and
147		 * that won't affect the overall amount of available
148		 * memory in the system.
149		 */
150		free -= global_page_state(NR_SHMEM);
151
152		free += get_nr_swap_pages();
153
154		/*
155		 * Any slabs which are created with the
156		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157		 * which are reclaimable, under pressure.  The dentry
158		 * cache and most inode caches should fall into this
159		 */
160		free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162		/*
163		 * Leave reserved pages. The pages are not for anonymous pages.
164		 */
165		if (free <= totalreserve_pages)
166			goto error;
167		else
168			free -= totalreserve_pages;
169
170		/*
171		 * Reserve some for root
172		 */
173		if (!cap_sys_admin)
174			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176		if (free > pages)
177			return 0;
178
179		goto error;
180	}
181
182	allowed = (totalram_pages - hugetlb_total_pages())
183	       	* sysctl_overcommit_ratio / 100;
184	/*
185	 * Reserve some for root
186	 */
187	if (!cap_sys_admin)
188		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189	allowed += total_swap_pages;
190
191	/*
192	 * Don't let a single process grow so big a user can't recover
193	 */
194	if (mm) {
195		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196		allowed -= min(mm->total_vm / 32, reserve);
197	}
198
199	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200		return 0;
201error:
202	vm_unacct_memory(pages);
203
204	return -ENOMEM;
205}
206
207/*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211		struct file *file, struct address_space *mapping)
212{
213	if (vma->vm_flags & VM_DENYWRITE)
214		atomic_inc(&file_inode(file)->i_writecount);
215	if (vma->vm_flags & VM_SHARED)
216		mapping->i_mmap_writable--;
217
218	flush_dcache_mmap_lock(mapping);
219	if (unlikely(vma->vm_flags & VM_NONLINEAR))
220		list_del_init(&vma->shared.nonlinear);
221	else
222		vma_interval_tree_remove(vma, &mapping->i_mmap);
223	flush_dcache_mmap_unlock(mapping);
224}
225
226/*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230void unlink_file_vma(struct vm_area_struct *vma)
231{
232	struct file *file = vma->vm_file;
233
234	if (file) {
235		struct address_space *mapping = file->f_mapping;
236		mutex_lock(&mapping->i_mmap_mutex);
237		__remove_shared_vm_struct(vma, file, mapping);
238		mutex_unlock(&mapping->i_mmap_mutex);
239	}
240}
241
242/*
243 * Close a vm structure and free it, returning the next.
244 */
245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246{
247	struct vm_area_struct *next = vma->vm_next;
248
249	might_sleep();
250	if (vma->vm_ops && vma->vm_ops->close)
251		vma->vm_ops->close(vma);
252	if (vma->vm_file)
253		fput(vma->vm_file);
254	mpol_put(vma_policy(vma));
255	kmem_cache_free(vm_area_cachep, vma);
256	return next;
257}
258
259static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261SYSCALL_DEFINE1(brk, unsigned long, brk)
262{
263	unsigned long rlim, retval;
264	unsigned long newbrk, oldbrk;
265	struct mm_struct *mm = current->mm;
266	unsigned long min_brk;
267	bool populate;
268
269	down_write(&mm->mmap_sem);
270
271#ifdef CONFIG_COMPAT_BRK
272	/*
273	 * CONFIG_COMPAT_BRK can still be overridden by setting
274	 * randomize_va_space to 2, which will still cause mm->start_brk
275	 * to be arbitrarily shifted
276	 */
277	if (current->brk_randomized)
278		min_brk = mm->start_brk;
279	else
280		min_brk = mm->end_data;
281#else
282	min_brk = mm->start_brk;
283#endif
284	if (brk < min_brk)
285		goto out;
286
287	/*
288	 * Check against rlimit here. If this check is done later after the test
289	 * of oldbrk with newbrk then it can escape the test and let the data
290	 * segment grow beyond its set limit the in case where the limit is
291	 * not page aligned -Ram Gupta
292	 */
293	rlim = rlimit(RLIMIT_DATA);
294	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295			(mm->end_data - mm->start_data) > rlim)
296		goto out;
297
298	newbrk = PAGE_ALIGN(brk);
299	oldbrk = PAGE_ALIGN(mm->brk);
300	if (oldbrk == newbrk)
301		goto set_brk;
302
303	/* Always allow shrinking brk. */
304	if (brk <= mm->brk) {
305		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306			goto set_brk;
307		goto out;
308	}
309
310	/* Check against existing mmap mappings. */
311	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312		goto out;
313
314	/* Ok, looks good - let it rip. */
315	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316		goto out;
317
318set_brk:
319	mm->brk = brk;
320	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321	up_write(&mm->mmap_sem);
322	if (populate)
323		mm_populate(oldbrk, newbrk - oldbrk);
324	return brk;
325
326out:
327	retval = mm->brk;
328	up_write(&mm->mmap_sem);
329	return retval;
330}
331
332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333{
334	unsigned long max, subtree_gap;
335	max = vma->vm_start;
336	if (vma->vm_prev)
337		max -= vma->vm_prev->vm_end;
338	if (vma->vm_rb.rb_left) {
339		subtree_gap = rb_entry(vma->vm_rb.rb_left,
340				struct vm_area_struct, vm_rb)->rb_subtree_gap;
341		if (subtree_gap > max)
342			max = subtree_gap;
343	}
344	if (vma->vm_rb.rb_right) {
345		subtree_gap = rb_entry(vma->vm_rb.rb_right,
346				struct vm_area_struct, vm_rb)->rb_subtree_gap;
347		if (subtree_gap > max)
348			max = subtree_gap;
349	}
350	return max;
351}
352
353#ifdef CONFIG_DEBUG_VM_RB
354static int browse_rb(struct rb_root *root)
355{
356	int i = 0, j, bug = 0;
357	struct rb_node *nd, *pn = NULL;
358	unsigned long prev = 0, pend = 0;
359
360	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361		struct vm_area_struct *vma;
362		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363		if (vma->vm_start < prev) {
364			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365			bug = 1;
366		}
367		if (vma->vm_start < pend) {
368			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369			bug = 1;
370		}
371		if (vma->vm_start > vma->vm_end) {
372			printk("vm_end %lx < vm_start %lx\n",
373				vma->vm_end, vma->vm_start);
374			bug = 1;
375		}
376		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377			printk("free gap %lx, correct %lx\n",
378			       vma->rb_subtree_gap,
379			       vma_compute_subtree_gap(vma));
380			bug = 1;
381		}
382		i++;
383		pn = nd;
384		prev = vma->vm_start;
385		pend = vma->vm_end;
386	}
387	j = 0;
388	for (nd = pn; nd; nd = rb_prev(nd))
389		j++;
390	if (i != j) {
391		printk("backwards %d, forwards %d\n", j, i);
392		bug = 1;
393	}
394	return bug ? -1 : i;
395}
396
397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398{
399	struct rb_node *nd;
400
401	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402		struct vm_area_struct *vma;
403		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404		BUG_ON(vma != ignore &&
405		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406	}
407}
408
409void validate_mm(struct mm_struct *mm)
410{
411	int bug = 0;
412	int i = 0;
413	unsigned long highest_address = 0;
414	struct vm_area_struct *vma = mm->mmap;
415	while (vma) {
416		struct anon_vma_chain *avc;
417		vma_lock_anon_vma(vma);
418		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419			anon_vma_interval_tree_verify(avc);
420		vma_unlock_anon_vma(vma);
421		highest_address = vma->vm_end;
422		vma = vma->vm_next;
423		i++;
424	}
425	if (i != mm->map_count) {
426		printk("map_count %d vm_next %d\n", mm->map_count, i);
427		bug = 1;
428	}
429	if (highest_address != mm->highest_vm_end) {
430		printk("mm->highest_vm_end %lx, found %lx\n",
431		       mm->highest_vm_end, highest_address);
432		bug = 1;
433	}
434	i = browse_rb(&mm->mm_rb);
435	if (i != mm->map_count) {
436		printk("map_count %d rb %d\n", mm->map_count, i);
437		bug = 1;
438	}
439	BUG_ON(bug);
440}
441#else
442#define validate_mm_rb(root, ignore) do { } while (0)
443#define validate_mm(mm) do { } while (0)
444#endif
445
446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449/*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454static void vma_gap_update(struct vm_area_struct *vma)
455{
456	/*
457	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458	 * function that does exacltly what we want.
459	 */
460	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461}
462
463static inline void vma_rb_insert(struct vm_area_struct *vma,
464				 struct rb_root *root)
465{
466	/* All rb_subtree_gap values must be consistent prior to insertion */
467	validate_mm_rb(root, NULL);
468
469	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470}
471
472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473{
474	/*
475	 * All rb_subtree_gap values must be consistent prior to erase,
476	 * with the possible exception of the vma being erased.
477	 */
478	validate_mm_rb(root, vma);
479
480	/*
481	 * Note rb_erase_augmented is a fairly large inline function,
482	 * so make sure we instantiate it only once with our desired
483	 * augmented rbtree callbacks.
484	 */
485	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486}
487
488/*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502static inline void
503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504{
505	struct anon_vma_chain *avc;
506
507	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509}
510
511static inline void
512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513{
514	struct anon_vma_chain *avc;
515
516	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518}
519
520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521		unsigned long end, struct vm_area_struct **pprev,
522		struct rb_node ***rb_link, struct rb_node **rb_parent)
523{
524	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526	__rb_link = &mm->mm_rb.rb_node;
527	rb_prev = __rb_parent = NULL;
528
529	while (*__rb_link) {
530		struct vm_area_struct *vma_tmp;
531
532		__rb_parent = *__rb_link;
533		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535		if (vma_tmp->vm_end > addr) {
536			/* Fail if an existing vma overlaps the area */
537			if (vma_tmp->vm_start < end)
538				return -ENOMEM;
539			__rb_link = &__rb_parent->rb_left;
540		} else {
541			rb_prev = __rb_parent;
542			__rb_link = &__rb_parent->rb_right;
543		}
544	}
545
546	*pprev = NULL;
547	if (rb_prev)
548		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549	*rb_link = __rb_link;
550	*rb_parent = __rb_parent;
551	return 0;
552}
553
554static unsigned long count_vma_pages_range(struct mm_struct *mm,
555		unsigned long addr, unsigned long end)
556{
557	unsigned long nr_pages = 0;
558	struct vm_area_struct *vma;
559
560	/* Find first overlaping mapping */
561	vma = find_vma_intersection(mm, addr, end);
562	if (!vma)
563		return 0;
564
565	nr_pages = (min(end, vma->vm_end) -
566		max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568	/* Iterate over the rest of the overlaps */
569	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570		unsigned long overlap_len;
571
572		if (vma->vm_start > end)
573			break;
574
575		overlap_len = min(end, vma->vm_end) - vma->vm_start;
576		nr_pages += overlap_len >> PAGE_SHIFT;
577	}
578
579	return nr_pages;
580}
581
582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583		struct rb_node **rb_link, struct rb_node *rb_parent)
584{
585	/* Update tracking information for the gap following the new vma. */
586	if (vma->vm_next)
587		vma_gap_update(vma->vm_next);
588	else
589		mm->highest_vm_end = vma->vm_end;
590
591	/*
592	 * vma->vm_prev wasn't known when we followed the rbtree to find the
593	 * correct insertion point for that vma. As a result, we could not
594	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595	 * So, we first insert the vma with a zero rb_subtree_gap value
596	 * (to be consistent with what we did on the way down), and then
597	 * immediately update the gap to the correct value. Finally we
598	 * rebalance the rbtree after all augmented values have been set.
599	 */
600	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601	vma->rb_subtree_gap = 0;
602	vma_gap_update(vma);
603	vma_rb_insert(vma, &mm->mm_rb);
604}
605
606static void __vma_link_file(struct vm_area_struct *vma)
607{
608	struct file *file;
609
610	file = vma->vm_file;
611	if (file) {
612		struct address_space *mapping = file->f_mapping;
613
614		if (vma->vm_flags & VM_DENYWRITE)
615			atomic_dec(&file_inode(file)->i_writecount);
616		if (vma->vm_flags & VM_SHARED)
617			mapping->i_mmap_writable++;
618
619		flush_dcache_mmap_lock(mapping);
620		if (unlikely(vma->vm_flags & VM_NONLINEAR))
621			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622		else
623			vma_interval_tree_insert(vma, &mapping->i_mmap);
624		flush_dcache_mmap_unlock(mapping);
625	}
626}
627
628static void
629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630	struct vm_area_struct *prev, struct rb_node **rb_link,
631	struct rb_node *rb_parent)
632{
633	__vma_link_list(mm, vma, prev, rb_parent);
634	__vma_link_rb(mm, vma, rb_link, rb_parent);
635}
636
637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638			struct vm_area_struct *prev, struct rb_node **rb_link,
639			struct rb_node *rb_parent)
640{
641	struct address_space *mapping = NULL;
642
643	if (vma->vm_file)
644		mapping = vma->vm_file->f_mapping;
645
646	if (mapping)
647		mutex_lock(&mapping->i_mmap_mutex);
648
649	__vma_link(mm, vma, prev, rb_link, rb_parent);
650	__vma_link_file(vma);
651
652	if (mapping)
653		mutex_unlock(&mapping->i_mmap_mutex);
654
655	mm->map_count++;
656	validate_mm(mm);
657}
658
659/*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree.  It has already been inserted into the interval tree.
662 */
663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664{
665	struct vm_area_struct *prev;
666	struct rb_node **rb_link, *rb_parent;
667
668	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669			   &prev, &rb_link, &rb_parent))
670		BUG();
671	__vma_link(mm, vma, prev, rb_link, rb_parent);
672	mm->map_count++;
673}
674
675static inline void
676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677		struct vm_area_struct *prev)
678{
679	struct vm_area_struct *next;
680
681	vma_rb_erase(vma, &mm->mm_rb);
682	prev->vm_next = next = vma->vm_next;
683	if (next)
684		next->vm_prev = prev;
685	if (mm->mmap_cache == vma)
686		mm->mmap_cache = prev;
687}
688
689/*
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary.  The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
695 */
696int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698{
699	struct mm_struct *mm = vma->vm_mm;
700	struct vm_area_struct *next = vma->vm_next;
701	struct vm_area_struct *importer = NULL;
702	struct address_space *mapping = NULL;
703	struct rb_root *root = NULL;
704	struct anon_vma *anon_vma = NULL;
705	struct file *file = vma->vm_file;
706	bool start_changed = false, end_changed = false;
707	long adjust_next = 0;
708	int remove_next = 0;
709
710	if (next && !insert) {
711		struct vm_area_struct *exporter = NULL;
712
713		if (end >= next->vm_end) {
714			/*
715			 * vma expands, overlapping all the next, and
716			 * perhaps the one after too (mprotect case 6).
717			 */
718again:			remove_next = 1 + (end > next->vm_end);
719			end = next->vm_end;
720			exporter = next;
721			importer = vma;
722		} else if (end > next->vm_start) {
723			/*
724			 * vma expands, overlapping part of the next:
725			 * mprotect case 5 shifting the boundary up.
726			 */
727			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728			exporter = next;
729			importer = vma;
730		} else if (end < vma->vm_end) {
731			/*
732			 * vma shrinks, and !insert tells it's not
733			 * split_vma inserting another: so it must be
734			 * mprotect case 4 shifting the boundary down.
735			 */
736			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737			exporter = vma;
738			importer = next;
739		}
740
741		/*
742		 * Easily overlooked: when mprotect shifts the boundary,
743		 * make sure the expanding vma has anon_vma set if the
744		 * shrinking vma had, to cover any anon pages imported.
745		 */
746		if (exporter && exporter->anon_vma && !importer->anon_vma) {
747			if (anon_vma_clone(importer, exporter))
748				return -ENOMEM;
749			importer->anon_vma = exporter->anon_vma;
750		}
751	}
752
753	if (file) {
754		mapping = file->f_mapping;
755		if (!(vma->vm_flags & VM_NONLINEAR)) {
756			root = &mapping->i_mmap;
757			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759			if (adjust_next)
760				uprobe_munmap(next, next->vm_start,
761							next->vm_end);
762		}
763
764		mutex_lock(&mapping->i_mmap_mutex);
765		if (insert) {
766			/*
767			 * Put into interval tree now, so instantiated pages
768			 * are visible to arm/parisc __flush_dcache_page
769			 * throughout; but we cannot insert into address
770			 * space until vma start or end is updated.
771			 */
772			__vma_link_file(insert);
773		}
774	}
775
776	vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778	anon_vma = vma->anon_vma;
779	if (!anon_vma && adjust_next)
780		anon_vma = next->anon_vma;
781	if (anon_vma) {
782		VM_BUG_ON(adjust_next && next->anon_vma &&
783			  anon_vma != next->anon_vma);
784		anon_vma_lock_write(anon_vma);
785		anon_vma_interval_tree_pre_update_vma(vma);
786		if (adjust_next)
787			anon_vma_interval_tree_pre_update_vma(next);
788	}
789
790	if (root) {
791		flush_dcache_mmap_lock(mapping);
792		vma_interval_tree_remove(vma, root);
793		if (adjust_next)
794			vma_interval_tree_remove(next, root);
795	}
796
797	if (start != vma->vm_start) {
798		vma->vm_start = start;
799		start_changed = true;
800	}
801	if (end != vma->vm_end) {
802		vma->vm_end = end;
803		end_changed = true;
804	}
805	vma->vm_pgoff = pgoff;
806	if (adjust_next) {
807		next->vm_start += adjust_next << PAGE_SHIFT;
808		next->vm_pgoff += adjust_next;
809	}
810
811	if (root) {
812		if (adjust_next)
813			vma_interval_tree_insert(next, root);
814		vma_interval_tree_insert(vma, root);
815		flush_dcache_mmap_unlock(mapping);
816	}
817
818	if (remove_next) {
819		/*
820		 * vma_merge has merged next into vma, and needs
821		 * us to remove next before dropping the locks.
822		 */
823		__vma_unlink(mm, next, vma);
824		if (file)
825			__remove_shared_vm_struct(next, file, mapping);
826	} else if (insert) {
827		/*
828		 * split_vma has split insert from vma, and needs
829		 * us to insert it before dropping the locks
830		 * (it may either follow vma or precede it).
831		 */
832		__insert_vm_struct(mm, insert);
833	} else {
834		if (start_changed)
835			vma_gap_update(vma);
836		if (end_changed) {
837			if (!next)
838				mm->highest_vm_end = end;
839			else if (!adjust_next)
840				vma_gap_update(next);
841		}
842	}
843
844	if (anon_vma) {
845		anon_vma_interval_tree_post_update_vma(vma);
846		if (adjust_next)
847			anon_vma_interval_tree_post_update_vma(next);
848		anon_vma_unlock_write(anon_vma);
849	}
850	if (mapping)
851		mutex_unlock(&mapping->i_mmap_mutex);
852
853	if (root) {
854		uprobe_mmap(vma);
855
856		if (adjust_next)
857			uprobe_mmap(next);
858	}
859
860	if (remove_next) {
861		if (file) {
862			uprobe_munmap(next, next->vm_start, next->vm_end);
863			fput(file);
864		}
865		if (next->anon_vma)
866			anon_vma_merge(vma, next);
867		mm->map_count--;
868		mpol_put(vma_policy(next));
869		kmem_cache_free(vm_area_cachep, next);
870		/*
871		 * In mprotect's case 6 (see comments on vma_merge),
872		 * we must remove another next too. It would clutter
873		 * up the code too much to do both in one go.
874		 */
875		next = vma->vm_next;
876		if (remove_next == 2)
877			goto again;
878		else if (next)
879			vma_gap_update(next);
880		else
881			mm->highest_vm_end = end;
882	}
883	if (insert && file)
884		uprobe_mmap(insert);
885
886	validate_mm(mm);
887
888	return 0;
889}
890
891/*
892 * If the vma has a ->close operation then the driver probably needs to release
893 * per-vma resources, so we don't attempt to merge those.
894 */
895static inline int is_mergeable_vma(struct vm_area_struct *vma,
896			struct file *file, unsigned long vm_flags)
897{
898	if (vma->vm_flags ^ vm_flags)
899		return 0;
900	if (vma->vm_file != file)
901		return 0;
902	if (vma->vm_ops && vma->vm_ops->close)
903		return 0;
904	return 1;
905}
906
907static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
908					struct anon_vma *anon_vma2,
909					struct vm_area_struct *vma)
910{
911	/*
912	 * The list_is_singular() test is to avoid merging VMA cloned from
913	 * parents. This can improve scalability caused by anon_vma lock.
914	 */
915	if ((!anon_vma1 || !anon_vma2) && (!vma ||
916		list_is_singular(&vma->anon_vma_chain)))
917		return 1;
918	return anon_vma1 == anon_vma2;
919}
920
921/*
922 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
923 * in front of (at a lower virtual address and file offset than) the vma.
924 *
925 * We cannot merge two vmas if they have differently assigned (non-NULL)
926 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927 *
928 * We don't check here for the merged mmap wrapping around the end of pagecache
929 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
930 * wrap, nor mmaps which cover the final page at index -1UL.
931 */
932static int
933can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
934	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
935{
936	if (is_mergeable_vma(vma, file, vm_flags) &&
937	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
938		if (vma->vm_pgoff == vm_pgoff)
939			return 1;
940	}
941	return 0;
942}
943
944/*
945 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
946 * beyond (at a higher virtual address and file offset than) the vma.
947 *
948 * We cannot merge two vmas if they have differently assigned (non-NULL)
949 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950 */
951static int
952can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
953	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
954{
955	if (is_mergeable_vma(vma, file, vm_flags) &&
956	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
957		pgoff_t vm_pglen;
958		vm_pglen = vma_pages(vma);
959		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
960			return 1;
961	}
962	return 0;
963}
964
965/*
966 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
967 * whether that can be merged with its predecessor or its successor.
968 * Or both (it neatly fills a hole).
969 *
970 * In most cases - when called for mmap, brk or mremap - [addr,end) is
971 * certain not to be mapped by the time vma_merge is called; but when
972 * called for mprotect, it is certain to be already mapped (either at
973 * an offset within prev, or at the start of next), and the flags of
974 * this area are about to be changed to vm_flags - and the no-change
975 * case has already been eliminated.
976 *
977 * The following mprotect cases have to be considered, where AAAA is
978 * the area passed down from mprotect_fixup, never extending beyond one
979 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
980 *
981 *     AAAA             AAAA                AAAA          AAAA
982 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
983 *    cannot merge    might become    might become    might become
984 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
985 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
986 *    mremap move:                                    PPPPNNNNNNNN 8
987 *        AAAA
988 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
989 *    might become    case 1 below    case 2 below    case 3 below
990 *
991 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
992 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
993 */
994struct vm_area_struct *vma_merge(struct mm_struct *mm,
995			struct vm_area_struct *prev, unsigned long addr,
996			unsigned long end, unsigned long vm_flags,
997		     	struct anon_vma *anon_vma, struct file *file,
998			pgoff_t pgoff, struct mempolicy *policy)
999{
1000	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1001	struct vm_area_struct *area, *next;
1002	int err;
1003
1004	/*
1005	 * We later require that vma->vm_flags == vm_flags,
1006	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1007	 */
1008	if (vm_flags & VM_SPECIAL)
1009		return NULL;
1010
1011	if (prev)
1012		next = prev->vm_next;
1013	else
1014		next = mm->mmap;
1015	area = next;
1016	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1017		next = next->vm_next;
1018
1019	/*
1020	 * Can it merge with the predecessor?
1021	 */
1022	if (prev && prev->vm_end == addr &&
1023  			mpol_equal(vma_policy(prev), policy) &&
1024			can_vma_merge_after(prev, vm_flags,
1025						anon_vma, file, pgoff)) {
1026		/*
1027		 * OK, it can.  Can we now merge in the successor as well?
1028		 */
1029		if (next && end == next->vm_start &&
1030				mpol_equal(policy, vma_policy(next)) &&
1031				can_vma_merge_before(next, vm_flags,
1032					anon_vma, file, pgoff+pglen) &&
1033				is_mergeable_anon_vma(prev->anon_vma,
1034						      next->anon_vma, NULL)) {
1035							/* cases 1, 6 */
1036			err = vma_adjust(prev, prev->vm_start,
1037				next->vm_end, prev->vm_pgoff, NULL);
1038		} else					/* cases 2, 5, 7 */
1039			err = vma_adjust(prev, prev->vm_start,
1040				end, prev->vm_pgoff, NULL);
1041		if (err)
1042			return NULL;
1043		khugepaged_enter_vma_merge(prev);
1044		return prev;
1045	}
1046
1047	/*
1048	 * Can this new request be merged in front of next?
1049	 */
1050	if (next && end == next->vm_start &&
1051 			mpol_equal(policy, vma_policy(next)) &&
1052			can_vma_merge_before(next, vm_flags,
1053					anon_vma, file, pgoff+pglen)) {
1054		if (prev && addr < prev->vm_end)	/* case 4 */
1055			err = vma_adjust(prev, prev->vm_start,
1056				addr, prev->vm_pgoff, NULL);
1057		else					/* cases 3, 8 */
1058			err = vma_adjust(area, addr, next->vm_end,
1059				next->vm_pgoff - pglen, NULL);
1060		if (err)
1061			return NULL;
1062		khugepaged_enter_vma_merge(area);
1063		return area;
1064	}
1065
1066	return NULL;
1067}
1068
1069/*
1070 * Rough compatbility check to quickly see if it's even worth looking
1071 * at sharing an anon_vma.
1072 *
1073 * They need to have the same vm_file, and the flags can only differ
1074 * in things that mprotect may change.
1075 *
1076 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1077 * we can merge the two vma's. For example, we refuse to merge a vma if
1078 * there is a vm_ops->close() function, because that indicates that the
1079 * driver is doing some kind of reference counting. But that doesn't
1080 * really matter for the anon_vma sharing case.
1081 */
1082static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1083{
1084	return a->vm_end == b->vm_start &&
1085		mpol_equal(vma_policy(a), vma_policy(b)) &&
1086		a->vm_file == b->vm_file &&
1087		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1088		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1089}
1090
1091/*
1092 * Do some basic sanity checking to see if we can re-use the anon_vma
1093 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1094 * the same as 'old', the other will be the new one that is trying
1095 * to share the anon_vma.
1096 *
1097 * NOTE! This runs with mm_sem held for reading, so it is possible that
1098 * the anon_vma of 'old' is concurrently in the process of being set up
1099 * by another page fault trying to merge _that_. But that's ok: if it
1100 * is being set up, that automatically means that it will be a singleton
1101 * acceptable for merging, so we can do all of this optimistically. But
1102 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1103 *
1104 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1105 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1106 * is to return an anon_vma that is "complex" due to having gone through
1107 * a fork).
1108 *
1109 * We also make sure that the two vma's are compatible (adjacent,
1110 * and with the same memory policies). That's all stable, even with just
1111 * a read lock on the mm_sem.
1112 */
1113static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1114{
1115	if (anon_vma_compatible(a, b)) {
1116		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1117
1118		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1119			return anon_vma;
1120	}
1121	return NULL;
1122}
1123
1124/*
1125 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1126 * neighbouring vmas for a suitable anon_vma, before it goes off
1127 * to allocate a new anon_vma.  It checks because a repetitive
1128 * sequence of mprotects and faults may otherwise lead to distinct
1129 * anon_vmas being allocated, preventing vma merge in subsequent
1130 * mprotect.
1131 */
1132struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1133{
1134	struct anon_vma *anon_vma;
1135	struct vm_area_struct *near;
1136
1137	near = vma->vm_next;
1138	if (!near)
1139		goto try_prev;
1140
1141	anon_vma = reusable_anon_vma(near, vma, near);
1142	if (anon_vma)
1143		return anon_vma;
1144try_prev:
1145	near = vma->vm_prev;
1146	if (!near)
1147		goto none;
1148
1149	anon_vma = reusable_anon_vma(near, near, vma);
1150	if (anon_vma)
1151		return anon_vma;
1152none:
1153	/*
1154	 * There's no absolute need to look only at touching neighbours:
1155	 * we could search further afield for "compatible" anon_vmas.
1156	 * But it would probably just be a waste of time searching,
1157	 * or lead to too many vmas hanging off the same anon_vma.
1158	 * We're trying to allow mprotect remerging later on,
1159	 * not trying to minimize memory used for anon_vmas.
1160	 */
1161	return NULL;
1162}
1163
1164#ifdef CONFIG_PROC_FS
1165void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1166						struct file *file, long pages)
1167{
1168	const unsigned long stack_flags
1169		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1170
1171	mm->total_vm += pages;
1172
1173	if (file) {
1174		mm->shared_vm += pages;
1175		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1176			mm->exec_vm += pages;
1177	} else if (flags & stack_flags)
1178		mm->stack_vm += pages;
1179}
1180#endif /* CONFIG_PROC_FS */
1181
1182/*
1183 * If a hint addr is less than mmap_min_addr change hint to be as
1184 * low as possible but still greater than mmap_min_addr
1185 */
1186static inline unsigned long round_hint_to_min(unsigned long hint)
1187{
1188	hint &= PAGE_MASK;
1189	if (((void *)hint != NULL) &&
1190	    (hint < mmap_min_addr))
1191		return PAGE_ALIGN(mmap_min_addr);
1192	return hint;
1193}
1194
1195/*
1196 * The caller must hold down_write(&current->mm->mmap_sem).
1197 */
1198
1199unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1200			unsigned long len, unsigned long prot,
1201			unsigned long flags, unsigned long pgoff,
1202			unsigned long *populate)
1203{
1204	struct mm_struct * mm = current->mm;
1205	vm_flags_t vm_flags;
1206
1207	*populate = 0;
1208
1209	/*
1210	 * Does the application expect PROT_READ to imply PROT_EXEC?
1211	 *
1212	 * (the exception is when the underlying filesystem is noexec
1213	 *  mounted, in which case we dont add PROT_EXEC.)
1214	 */
1215	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1216		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1217			prot |= PROT_EXEC;
1218
1219	if (!len)
1220		return -EINVAL;
1221
1222	if (!(flags & MAP_FIXED))
1223		addr = round_hint_to_min(addr);
1224
1225	/* Careful about overflows.. */
1226	len = PAGE_ALIGN(len);
1227	if (!len)
1228		return -ENOMEM;
1229
1230	/* offset overflow? */
1231	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1232               return -EOVERFLOW;
1233
1234	/* Too many mappings? */
1235	if (mm->map_count > sysctl_max_map_count)
1236		return -ENOMEM;
1237
1238	/* Obtain the address to map to. we verify (or select) it and ensure
1239	 * that it represents a valid section of the address space.
1240	 */
1241	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1242	if (addr & ~PAGE_MASK)
1243		return addr;
1244
1245	/* Do simple checking here so the lower-level routines won't have
1246	 * to. we assume access permissions have been handled by the open
1247	 * of the memory object, so we don't do any here.
1248	 */
1249	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1250			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1251
1252	if (flags & MAP_LOCKED)
1253		if (!can_do_mlock())
1254			return -EPERM;
1255
1256	/* mlock MCL_FUTURE? */
1257	if (vm_flags & VM_LOCKED) {
1258		unsigned long locked, lock_limit;
1259		locked = len >> PAGE_SHIFT;
1260		locked += mm->locked_vm;
1261		lock_limit = rlimit(RLIMIT_MEMLOCK);
1262		lock_limit >>= PAGE_SHIFT;
1263		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1264			return -EAGAIN;
1265	}
1266
1267	if (file) {
1268		struct inode *inode = file_inode(file);
1269
1270		switch (flags & MAP_TYPE) {
1271		case MAP_SHARED:
1272			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1273				return -EACCES;
1274
1275			/*
1276			 * Make sure we don't allow writing to an append-only
1277			 * file..
1278			 */
1279			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1280				return -EACCES;
1281
1282			/*
1283			 * Make sure there are no mandatory locks on the file.
1284			 */
1285			if (locks_verify_locked(inode))
1286				return -EAGAIN;
1287
1288			vm_flags |= VM_SHARED | VM_MAYSHARE;
1289			if (!(file->f_mode & FMODE_WRITE))
1290				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1291
1292			/* fall through */
1293		case MAP_PRIVATE:
1294			if (!(file->f_mode & FMODE_READ))
1295				return -EACCES;
1296			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1297				if (vm_flags & VM_EXEC)
1298					return -EPERM;
1299				vm_flags &= ~VM_MAYEXEC;
1300			}
1301
1302			if (!file->f_op || !file->f_op->mmap)
1303				return -ENODEV;
1304			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1305				return -EINVAL;
1306			break;
1307
1308		default:
1309			return -EINVAL;
1310		}
1311	} else {
1312		switch (flags & MAP_TYPE) {
1313		case MAP_SHARED:
1314			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1315				return -EINVAL;
1316			/*
1317			 * Ignore pgoff.
1318			 */
1319			pgoff = 0;
1320			vm_flags |= VM_SHARED | VM_MAYSHARE;
1321			break;
1322		case MAP_PRIVATE:
1323			/*
1324			 * Set pgoff according to addr for anon_vma.
1325			 */
1326			pgoff = addr >> PAGE_SHIFT;
1327			break;
1328		default:
1329			return -EINVAL;
1330		}
1331	}
1332
1333	/*
1334	 * Set 'VM_NORESERVE' if we should not account for the
1335	 * memory use of this mapping.
1336	 */
1337	if (flags & MAP_NORESERVE) {
1338		/* We honor MAP_NORESERVE if allowed to overcommit */
1339		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1340			vm_flags |= VM_NORESERVE;
1341
1342		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1343		if (file && is_file_hugepages(file))
1344			vm_flags |= VM_NORESERVE;
1345	}
1346
1347	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1348	if (!IS_ERR_VALUE(addr) &&
1349	    ((vm_flags & VM_LOCKED) ||
1350	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1351		*populate = len;
1352	return addr;
1353}
1354
1355SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1356		unsigned long, prot, unsigned long, flags,
1357		unsigned long, fd, unsigned long, pgoff)
1358{
1359	struct file *file = NULL;
1360	unsigned long retval = -EBADF;
1361
1362	if (!(flags & MAP_ANONYMOUS)) {
1363		audit_mmap_fd(fd, flags);
1364		file = fget(fd);
1365		if (!file)
1366			goto out;
1367		if (is_file_hugepages(file))
1368			len = ALIGN(len, huge_page_size(hstate_file(file)));
1369		retval = -EINVAL;
1370		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1371			goto out_fput;
1372	} else if (flags & MAP_HUGETLB) {
1373		struct user_struct *user = NULL;
1374		struct hstate *hs;
1375
1376		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1377		if (!hs)
1378			return -EINVAL;
1379
1380		len = ALIGN(len, huge_page_size(hs));
1381		/*
1382		 * VM_NORESERVE is used because the reservations will be
1383		 * taken when vm_ops->mmap() is called
1384		 * A dummy user value is used because we are not locking
1385		 * memory so no accounting is necessary
1386		 */
1387		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1388				VM_NORESERVE,
1389				&user, HUGETLB_ANONHUGE_INODE,
1390				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1391		if (IS_ERR(file))
1392			return PTR_ERR(file);
1393	}
1394
1395	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1396
1397	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1398out_fput:
1399	if (file)
1400		fput(file);
1401out:
1402	return retval;
1403}
1404
1405#ifdef __ARCH_WANT_SYS_OLD_MMAP
1406struct mmap_arg_struct {
1407	unsigned long addr;
1408	unsigned long len;
1409	unsigned long prot;
1410	unsigned long flags;
1411	unsigned long fd;
1412	unsigned long offset;
1413};
1414
1415SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1416{
1417	struct mmap_arg_struct a;
1418
1419	if (copy_from_user(&a, arg, sizeof(a)))
1420		return -EFAULT;
1421	if (a.offset & ~PAGE_MASK)
1422		return -EINVAL;
1423
1424	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1425			      a.offset >> PAGE_SHIFT);
1426}
1427#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1428
1429/*
1430 * Some shared mappigns will want the pages marked read-only
1431 * to track write events. If so, we'll downgrade vm_page_prot
1432 * to the private version (using protection_map[] without the
1433 * VM_SHARED bit).
1434 */
1435int vma_wants_writenotify(struct vm_area_struct *vma)
1436{
1437	vm_flags_t vm_flags = vma->vm_flags;
1438
1439	/* If it was private or non-writable, the write bit is already clear */
1440	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1441		return 0;
1442
1443	/* The backer wishes to know when pages are first written to? */
1444	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1445		return 1;
1446
1447	/* The open routine did something to the protections already? */
1448	if (pgprot_val(vma->vm_page_prot) !=
1449	    pgprot_val(vm_get_page_prot(vm_flags)))
1450		return 0;
1451
1452	/* Specialty mapping? */
1453	if (vm_flags & VM_PFNMAP)
1454		return 0;
1455
1456	/* Can the mapping track the dirty pages? */
1457	return vma->vm_file && vma->vm_file->f_mapping &&
1458		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1459}
1460
1461/*
1462 * We account for memory if it's a private writeable mapping,
1463 * not hugepages and VM_NORESERVE wasn't set.
1464 */
1465static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1466{
1467	/*
1468	 * hugetlb has its own accounting separate from the core VM
1469	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1470	 */
1471	if (file && is_file_hugepages(file))
1472		return 0;
1473
1474	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1475}
1476
1477unsigned long mmap_region(struct file *file, unsigned long addr,
1478		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1479{
1480	struct mm_struct *mm = current->mm;
1481	struct vm_area_struct *vma, *prev;
1482	int error;
1483	struct rb_node **rb_link, *rb_parent;
1484	unsigned long charged = 0;
1485
1486	/* Check against address space limit. */
1487	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1488		unsigned long nr_pages;
1489
1490		/*
1491		 * MAP_FIXED may remove pages of mappings that intersects with
1492		 * requested mapping. Account for the pages it would unmap.
1493		 */
1494		if (!(vm_flags & MAP_FIXED))
1495			return -ENOMEM;
1496
1497		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1498
1499		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1500			return -ENOMEM;
1501	}
1502
1503	/* Clear old maps */
1504	error = -ENOMEM;
1505munmap_back:
1506	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1507		if (do_munmap(mm, addr, len))
1508			return -ENOMEM;
1509		goto munmap_back;
1510	}
1511
1512	/*
1513	 * Private writable mapping: check memory availability
1514	 */
1515	if (accountable_mapping(file, vm_flags)) {
1516		charged = len >> PAGE_SHIFT;
1517		if (security_vm_enough_memory_mm(mm, charged))
1518			return -ENOMEM;
1519		vm_flags |= VM_ACCOUNT;
1520	}
1521
1522	/*
1523	 * Can we just expand an old mapping?
1524	 */
1525	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1526	if (vma)
1527		goto out;
1528
1529	/*
1530	 * Determine the object being mapped and call the appropriate
1531	 * specific mapper. the address has already been validated, but
1532	 * not unmapped, but the maps are removed from the list.
1533	 */
1534	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1535	if (!vma) {
1536		error = -ENOMEM;
1537		goto unacct_error;
1538	}
1539
1540	vma->vm_mm = mm;
1541	vma->vm_start = addr;
1542	vma->vm_end = addr + len;
1543	vma->vm_flags = vm_flags;
1544	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1545	vma->vm_pgoff = pgoff;
1546	INIT_LIST_HEAD(&vma->anon_vma_chain);
1547
1548	if (file) {
1549		if (vm_flags & VM_DENYWRITE) {
1550			error = deny_write_access(file);
1551			if (error)
1552				goto free_vma;
1553		}
1554		vma->vm_file = get_file(file);
1555		error = file->f_op->mmap(file, vma);
1556		if (error)
1557			goto unmap_and_free_vma;
1558
1559		/* Can addr have changed??
1560		 *
1561		 * Answer: Yes, several device drivers can do it in their
1562		 *         f_op->mmap method. -DaveM
1563		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1564		 *      be updated for vma_link()
1565		 */
1566		WARN_ON_ONCE(addr != vma->vm_start);
1567
1568		addr = vma->vm_start;
1569		vm_flags = vma->vm_flags;
1570	} else if (vm_flags & VM_SHARED) {
1571		error = shmem_zero_setup(vma);
1572		if (error)
1573			goto free_vma;
1574	}
1575
1576	if (vma_wants_writenotify(vma)) {
1577		pgprot_t pprot = vma->vm_page_prot;
1578
1579		/* Can vma->vm_page_prot have changed??
1580		 *
1581		 * Answer: Yes, drivers may have changed it in their
1582		 *         f_op->mmap method.
1583		 *
1584		 * Ensures that vmas marked as uncached stay that way.
1585		 */
1586		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1587		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1588			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1589	}
1590
1591	vma_link(mm, vma, prev, rb_link, rb_parent);
1592	/* Once vma denies write, undo our temporary denial count */
1593	if (vm_flags & VM_DENYWRITE)
1594		allow_write_access(file);
1595	file = vma->vm_file;
1596out:
1597	perf_event_mmap(vma);
1598
1599	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1600	if (vm_flags & VM_LOCKED) {
1601		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1602					vma == get_gate_vma(current->mm)))
1603			mm->locked_vm += (len >> PAGE_SHIFT);
1604		else
1605			vma->vm_flags &= ~VM_LOCKED;
1606	}
1607
1608	if (file)
1609		uprobe_mmap(vma);
1610
1611	/*
1612	 * New (or expanded) vma always get soft dirty status.
1613	 * Otherwise user-space soft-dirty page tracker won't
1614	 * be able to distinguish situation when vma area unmapped,
1615	 * then new mapped in-place (which must be aimed as
1616	 * a completely new data area).
1617	 */
1618	vma->vm_flags |= VM_SOFTDIRTY;
1619
1620	return addr;
1621
1622unmap_and_free_vma:
1623	if (vm_flags & VM_DENYWRITE)
1624		allow_write_access(file);
1625	vma->vm_file = NULL;
1626	fput(file);
1627
1628	/* Undo any partial mapping done by a device driver. */
1629	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1630	charged = 0;
1631free_vma:
1632	kmem_cache_free(vm_area_cachep, vma);
1633unacct_error:
1634	if (charged)
1635		vm_unacct_memory(charged);
1636	return error;
1637}
1638
1639unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1640{
1641	/*
1642	 * We implement the search by looking for an rbtree node that
1643	 * immediately follows a suitable gap. That is,
1644	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1645	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1646	 * - gap_end - gap_start >= length
1647	 */
1648
1649	struct mm_struct *mm = current->mm;
1650	struct vm_area_struct *vma;
1651	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1652
1653	/* Adjust search length to account for worst case alignment overhead */
1654	length = info->length + info->align_mask;
1655	if (length < info->length)
1656		return -ENOMEM;
1657
1658	/* Adjust search limits by the desired length */
1659	if (info->high_limit < length)
1660		return -ENOMEM;
1661	high_limit = info->high_limit - length;
1662
1663	if (info->low_limit > high_limit)
1664		return -ENOMEM;
1665	low_limit = info->low_limit + length;
1666
1667	/* Check if rbtree root looks promising */
1668	if (RB_EMPTY_ROOT(&mm->mm_rb))
1669		goto check_highest;
1670	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1671	if (vma->rb_subtree_gap < length)
1672		goto check_highest;
1673
1674	while (true) {
1675		/* Visit left subtree if it looks promising */
1676		gap_end = vma->vm_start;
1677		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1678			struct vm_area_struct *left =
1679				rb_entry(vma->vm_rb.rb_left,
1680					 struct vm_area_struct, vm_rb);
1681			if (left->rb_subtree_gap >= length) {
1682				vma = left;
1683				continue;
1684			}
1685		}
1686
1687		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1688check_current:
1689		/* Check if current node has a suitable gap */
1690		if (gap_start > high_limit)
1691			return -ENOMEM;
1692		if (gap_end >= low_limit && gap_end - gap_start >= length)
1693			goto found;
1694
1695		/* Visit right subtree if it looks promising */
1696		if (vma->vm_rb.rb_right) {
1697			struct vm_area_struct *right =
1698				rb_entry(vma->vm_rb.rb_right,
1699					 struct vm_area_struct, vm_rb);
1700			if (right->rb_subtree_gap >= length) {
1701				vma = right;
1702				continue;
1703			}
1704		}
1705
1706		/* Go back up the rbtree to find next candidate node */
1707		while (true) {
1708			struct rb_node *prev = &vma->vm_rb;
1709			if (!rb_parent(prev))
1710				goto check_highest;
1711			vma = rb_entry(rb_parent(prev),
1712				       struct vm_area_struct, vm_rb);
1713			if (prev == vma->vm_rb.rb_left) {
1714				gap_start = vma->vm_prev->vm_end;
1715				gap_end = vma->vm_start;
1716				goto check_current;
1717			}
1718		}
1719	}
1720
1721check_highest:
1722	/* Check highest gap, which does not precede any rbtree node */
1723	gap_start = mm->highest_vm_end;
1724	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1725	if (gap_start > high_limit)
1726		return -ENOMEM;
1727
1728found:
1729	/* We found a suitable gap. Clip it with the original low_limit. */
1730	if (gap_start < info->low_limit)
1731		gap_start = info->low_limit;
1732
1733	/* Adjust gap address to the desired alignment */
1734	gap_start += (info->align_offset - gap_start) & info->align_mask;
1735
1736	VM_BUG_ON(gap_start + info->length > info->high_limit);
1737	VM_BUG_ON(gap_start + info->length > gap_end);
1738	return gap_start;
1739}
1740
1741unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1742{
1743	struct mm_struct *mm = current->mm;
1744	struct vm_area_struct *vma;
1745	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1746
1747	/* Adjust search length to account for worst case alignment overhead */
1748	length = info->length + info->align_mask;
1749	if (length < info->length)
1750		return -ENOMEM;
1751
1752	/*
1753	 * Adjust search limits by the desired length.
1754	 * See implementation comment at top of unmapped_area().
1755	 */
1756	gap_end = info->high_limit;
1757	if (gap_end < length)
1758		return -ENOMEM;
1759	high_limit = gap_end - length;
1760
1761	if (info->low_limit > high_limit)
1762		return -ENOMEM;
1763	low_limit = info->low_limit + length;
1764
1765	/* Check highest gap, which does not precede any rbtree node */
1766	gap_start = mm->highest_vm_end;
1767	if (gap_start <= high_limit)
1768		goto found_highest;
1769
1770	/* Check if rbtree root looks promising */
1771	if (RB_EMPTY_ROOT(&mm->mm_rb))
1772		return -ENOMEM;
1773	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1774	if (vma->rb_subtree_gap < length)
1775		return -ENOMEM;
1776
1777	while (true) {
1778		/* Visit right subtree if it looks promising */
1779		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1780		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1781			struct vm_area_struct *right =
1782				rb_entry(vma->vm_rb.rb_right,
1783					 struct vm_area_struct, vm_rb);
1784			if (right->rb_subtree_gap >= length) {
1785				vma = right;
1786				continue;
1787			}
1788		}
1789
1790check_current:
1791		/* Check if current node has a suitable gap */
1792		gap_end = vma->vm_start;
1793		if (gap_end < low_limit)
1794			return -ENOMEM;
1795		if (gap_start <= high_limit && gap_end - gap_start >= length)
1796			goto found;
1797
1798		/* Visit left subtree if it looks promising */
1799		if (vma->vm_rb.rb_left) {
1800			struct vm_area_struct *left =
1801				rb_entry(vma->vm_rb.rb_left,
1802					 struct vm_area_struct, vm_rb);
1803			if (left->rb_subtree_gap >= length) {
1804				vma = left;
1805				continue;
1806			}
1807		}
1808
1809		/* Go back up the rbtree to find next candidate node */
1810		while (true) {
1811			struct rb_node *prev = &vma->vm_rb;
1812			if (!rb_parent(prev))
1813				return -ENOMEM;
1814			vma = rb_entry(rb_parent(prev),
1815				       struct vm_area_struct, vm_rb);
1816			if (prev == vma->vm_rb.rb_right) {
1817				gap_start = vma->vm_prev ?
1818					vma->vm_prev->vm_end : 0;
1819				goto check_current;
1820			}
1821		}
1822	}
1823
1824found:
1825	/* We found a suitable gap. Clip it with the original high_limit. */
1826	if (gap_end > info->high_limit)
1827		gap_end = info->high_limit;
1828
1829found_highest:
1830	/* Compute highest gap address at the desired alignment */
1831	gap_end -= info->length;
1832	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1833
1834	VM_BUG_ON(gap_end < info->low_limit);
1835	VM_BUG_ON(gap_end < gap_start);
1836	return gap_end;
1837}
1838
1839/* Get an address range which is currently unmapped.
1840 * For shmat() with addr=0.
1841 *
1842 * Ugly calling convention alert:
1843 * Return value with the low bits set means error value,
1844 * ie
1845 *	if (ret & ~PAGE_MASK)
1846 *		error = ret;
1847 *
1848 * This function "knows" that -ENOMEM has the bits set.
1849 */
1850#ifndef HAVE_ARCH_UNMAPPED_AREA
1851unsigned long
1852arch_get_unmapped_area(struct file *filp, unsigned long addr,
1853		unsigned long len, unsigned long pgoff, unsigned long flags)
1854{
1855	struct mm_struct *mm = current->mm;
1856	struct vm_area_struct *vma;
1857	struct vm_unmapped_area_info info;
1858
1859	if (len > TASK_SIZE)
1860		return -ENOMEM;
1861
1862	if (flags & MAP_FIXED)
1863		return addr;
1864
1865	if (addr) {
1866		addr = PAGE_ALIGN(addr);
1867		vma = find_vma(mm, addr);
1868		if (TASK_SIZE - len >= addr &&
1869		    (!vma || addr + len <= vma->vm_start))
1870			return addr;
1871	}
1872
1873	info.flags = 0;
1874	info.length = len;
1875	info.low_limit = TASK_UNMAPPED_BASE;
1876	info.high_limit = TASK_SIZE;
1877	info.align_mask = 0;
1878	return vm_unmapped_area(&info);
1879}
1880#endif
1881
1882/*
1883 * This mmap-allocator allocates new areas top-down from below the
1884 * stack's low limit (the base):
1885 */
1886#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1887unsigned long
1888arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1889			  const unsigned long len, const unsigned long pgoff,
1890			  const unsigned long flags)
1891{
1892	struct vm_area_struct *vma;
1893	struct mm_struct *mm = current->mm;
1894	unsigned long addr = addr0;
1895	struct vm_unmapped_area_info info;
1896
1897	/* requested length too big for entire address space */
1898	if (len > TASK_SIZE)
1899		return -ENOMEM;
1900
1901	if (flags & MAP_FIXED)
1902		return addr;
1903
1904	/* requesting a specific address */
1905	if (addr) {
1906		addr = PAGE_ALIGN(addr);
1907		vma = find_vma(mm, addr);
1908		if (TASK_SIZE - len >= addr &&
1909				(!vma || addr + len <= vma->vm_start))
1910			return addr;
1911	}
1912
1913	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1914	info.length = len;
1915	info.low_limit = PAGE_SIZE;
1916	info.high_limit = mm->mmap_base;
1917	info.align_mask = 0;
1918	addr = vm_unmapped_area(&info);
1919
1920	/*
1921	 * A failed mmap() very likely causes application failure,
1922	 * so fall back to the bottom-up function here. This scenario
1923	 * can happen with large stack limits and large mmap()
1924	 * allocations.
1925	 */
1926	if (addr & ~PAGE_MASK) {
1927		VM_BUG_ON(addr != -ENOMEM);
1928		info.flags = 0;
1929		info.low_limit = TASK_UNMAPPED_BASE;
1930		info.high_limit = TASK_SIZE;
1931		addr = vm_unmapped_area(&info);
1932	}
1933
1934	return addr;
1935}
1936#endif
1937
1938unsigned long
1939get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1940		unsigned long pgoff, unsigned long flags)
1941{
1942	unsigned long (*get_area)(struct file *, unsigned long,
1943				  unsigned long, unsigned long, unsigned long);
1944
1945	unsigned long error = arch_mmap_check(addr, len, flags);
1946	if (error)
1947		return error;
1948
1949	/* Careful about overflows.. */
1950	if (len > TASK_SIZE)
1951		return -ENOMEM;
1952
1953	get_area = current->mm->get_unmapped_area;
1954	if (file && file->f_op && file->f_op->get_unmapped_area)
1955		get_area = file->f_op->get_unmapped_area;
1956	addr = get_area(file, addr, len, pgoff, flags);
1957	if (IS_ERR_VALUE(addr))
1958		return addr;
1959
1960	if (addr > TASK_SIZE - len)
1961		return -ENOMEM;
1962	if (addr & ~PAGE_MASK)
1963		return -EINVAL;
1964
1965	addr = arch_rebalance_pgtables(addr, len);
1966	error = security_mmap_addr(addr);
1967	return error ? error : addr;
1968}
1969
1970EXPORT_SYMBOL(get_unmapped_area);
1971
1972/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1973struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1974{
1975	struct vm_area_struct *vma = NULL;
1976
1977	/* Check the cache first. */
1978	/* (Cache hit rate is typically around 35%.) */
1979	vma = ACCESS_ONCE(mm->mmap_cache);
1980	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1981		struct rb_node *rb_node;
1982
1983		rb_node = mm->mm_rb.rb_node;
1984		vma = NULL;
1985
1986		while (rb_node) {
1987			struct vm_area_struct *vma_tmp;
1988
1989			vma_tmp = rb_entry(rb_node,
1990					   struct vm_area_struct, vm_rb);
1991
1992			if (vma_tmp->vm_end > addr) {
1993				vma = vma_tmp;
1994				if (vma_tmp->vm_start <= addr)
1995					break;
1996				rb_node = rb_node->rb_left;
1997			} else
1998				rb_node = rb_node->rb_right;
1999		}
2000		if (vma)
2001			mm->mmap_cache = vma;
2002	}
2003	return vma;
2004}
2005
2006EXPORT_SYMBOL(find_vma);
2007
2008/*
2009 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2010 */
2011struct vm_area_struct *
2012find_vma_prev(struct mm_struct *mm, unsigned long addr,
2013			struct vm_area_struct **pprev)
2014{
2015	struct vm_area_struct *vma;
2016
2017	vma = find_vma(mm, addr);
2018	if (vma) {
2019		*pprev = vma->vm_prev;
2020	} else {
2021		struct rb_node *rb_node = mm->mm_rb.rb_node;
2022		*pprev = NULL;
2023		while (rb_node) {
2024			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2025			rb_node = rb_node->rb_right;
2026		}
2027	}
2028	return vma;
2029}
2030
2031/*
2032 * Verify that the stack growth is acceptable and
2033 * update accounting. This is shared with both the
2034 * grow-up and grow-down cases.
2035 */
2036static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2037{
2038	struct mm_struct *mm = vma->vm_mm;
2039	struct rlimit *rlim = current->signal->rlim;
2040	unsigned long new_start;
2041
2042	/* address space limit tests */
2043	if (!may_expand_vm(mm, grow))
2044		return -ENOMEM;
2045
2046	/* Stack limit test */
2047	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2048		return -ENOMEM;
2049
2050	/* mlock limit tests */
2051	if (vma->vm_flags & VM_LOCKED) {
2052		unsigned long locked;
2053		unsigned long limit;
2054		locked = mm->locked_vm + grow;
2055		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2056		limit >>= PAGE_SHIFT;
2057		if (locked > limit && !capable(CAP_IPC_LOCK))
2058			return -ENOMEM;
2059	}
2060
2061	/* Check to ensure the stack will not grow into a hugetlb-only region */
2062	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2063			vma->vm_end - size;
2064	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2065		return -EFAULT;
2066
2067	/*
2068	 * Overcommit..  This must be the final test, as it will
2069	 * update security statistics.
2070	 */
2071	if (security_vm_enough_memory_mm(mm, grow))
2072		return -ENOMEM;
2073
2074	/* Ok, everything looks good - let it rip */
2075	if (vma->vm_flags & VM_LOCKED)
2076		mm->locked_vm += grow;
2077	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2078	return 0;
2079}
2080
2081#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2082/*
2083 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2084 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2085 */
2086int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2087{
2088	int error;
2089
2090	if (!(vma->vm_flags & VM_GROWSUP))
2091		return -EFAULT;
2092
2093	/*
2094	 * We must make sure the anon_vma is allocated
2095	 * so that the anon_vma locking is not a noop.
2096	 */
2097	if (unlikely(anon_vma_prepare(vma)))
2098		return -ENOMEM;
2099	vma_lock_anon_vma(vma);
2100
2101	/*
2102	 * vma->vm_start/vm_end cannot change under us because the caller
2103	 * is required to hold the mmap_sem in read mode.  We need the
2104	 * anon_vma lock to serialize against concurrent expand_stacks.
2105	 * Also guard against wrapping around to address 0.
2106	 */
2107	if (address < PAGE_ALIGN(address+4))
2108		address = PAGE_ALIGN(address+4);
2109	else {
2110		vma_unlock_anon_vma(vma);
2111		return -ENOMEM;
2112	}
2113	error = 0;
2114
2115	/* Somebody else might have raced and expanded it already */
2116	if (address > vma->vm_end) {
2117		unsigned long size, grow;
2118
2119		size = address - vma->vm_start;
2120		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2121
2122		error = -ENOMEM;
2123		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2124			error = acct_stack_growth(vma, size, grow);
2125			if (!error) {
2126				/*
2127				 * vma_gap_update() doesn't support concurrent
2128				 * updates, but we only hold a shared mmap_sem
2129				 * lock here, so we need to protect against
2130				 * concurrent vma expansions.
2131				 * vma_lock_anon_vma() doesn't help here, as
2132				 * we don't guarantee that all growable vmas
2133				 * in a mm share the same root anon vma.
2134				 * So, we reuse mm->page_table_lock to guard
2135				 * against concurrent vma expansions.
2136				 */
2137				spin_lock(&vma->vm_mm->page_table_lock);
2138				anon_vma_interval_tree_pre_update_vma(vma);
2139				vma->vm_end = address;
2140				anon_vma_interval_tree_post_update_vma(vma);
2141				if (vma->vm_next)
2142					vma_gap_update(vma->vm_next);
2143				else
2144					vma->vm_mm->highest_vm_end = address;
2145				spin_unlock(&vma->vm_mm->page_table_lock);
2146
2147				perf_event_mmap(vma);
2148			}
2149		}
2150	}
2151	vma_unlock_anon_vma(vma);
2152	khugepaged_enter_vma_merge(vma);
2153	validate_mm(vma->vm_mm);
2154	return error;
2155}
2156#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2157
2158/*
2159 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2160 */
2161int expand_downwards(struct vm_area_struct *vma,
2162				   unsigned long address)
2163{
2164	int error;
2165
2166	/*
2167	 * We must make sure the anon_vma is allocated
2168	 * so that the anon_vma locking is not a noop.
2169	 */
2170	if (unlikely(anon_vma_prepare(vma)))
2171		return -ENOMEM;
2172
2173	address &= PAGE_MASK;
2174	error = security_mmap_addr(address);
2175	if (error)
2176		return error;
2177
2178	vma_lock_anon_vma(vma);
2179
2180	/*
2181	 * vma->vm_start/vm_end cannot change under us because the caller
2182	 * is required to hold the mmap_sem in read mode.  We need the
2183	 * anon_vma lock to serialize against concurrent expand_stacks.
2184	 */
2185
2186	/* Somebody else might have raced and expanded it already */
2187	if (address < vma->vm_start) {
2188		unsigned long size, grow;
2189
2190		size = vma->vm_end - address;
2191		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2192
2193		error = -ENOMEM;
2194		if (grow <= vma->vm_pgoff) {
2195			error = acct_stack_growth(vma, size, grow);
2196			if (!error) {
2197				/*
2198				 * vma_gap_update() doesn't support concurrent
2199				 * updates, but we only hold a shared mmap_sem
2200				 * lock here, so we need to protect against
2201				 * concurrent vma expansions.
2202				 * vma_lock_anon_vma() doesn't help here, as
2203				 * we don't guarantee that all growable vmas
2204				 * in a mm share the same root anon vma.
2205				 * So, we reuse mm->page_table_lock to guard
2206				 * against concurrent vma expansions.
2207				 */
2208				spin_lock(&vma->vm_mm->page_table_lock);
2209				anon_vma_interval_tree_pre_update_vma(vma);
2210				vma->vm_start = address;
2211				vma->vm_pgoff -= grow;
2212				anon_vma_interval_tree_post_update_vma(vma);
2213				vma_gap_update(vma);
2214				spin_unlock(&vma->vm_mm->page_table_lock);
2215
2216				perf_event_mmap(vma);
2217			}
2218		}
2219	}
2220	vma_unlock_anon_vma(vma);
2221	khugepaged_enter_vma_merge(vma);
2222	validate_mm(vma->vm_mm);
2223	return error;
2224}
2225
2226/*
2227 * Note how expand_stack() refuses to expand the stack all the way to
2228 * abut the next virtual mapping, *unless* that mapping itself is also
2229 * a stack mapping. We want to leave room for a guard page, after all
2230 * (the guard page itself is not added here, that is done by the
2231 * actual page faulting logic)
2232 *
2233 * This matches the behavior of the guard page logic (see mm/memory.c:
2234 * check_stack_guard_page()), which only allows the guard page to be
2235 * removed under these circumstances.
2236 */
2237#ifdef CONFIG_STACK_GROWSUP
2238int expand_stack(struct vm_area_struct *vma, unsigned long address)
2239{
2240	struct vm_area_struct *next;
2241
2242	address &= PAGE_MASK;
2243	next = vma->vm_next;
2244	if (next && next->vm_start == address + PAGE_SIZE) {
2245		if (!(next->vm_flags & VM_GROWSUP))
2246			return -ENOMEM;
2247	}
2248	return expand_upwards(vma, address);
2249}
2250
2251struct vm_area_struct *
2252find_extend_vma(struct mm_struct *mm, unsigned long addr)
2253{
2254	struct vm_area_struct *vma, *prev;
2255
2256	addr &= PAGE_MASK;
2257	vma = find_vma_prev(mm, addr, &prev);
2258	if (vma && (vma->vm_start <= addr))
2259		return vma;
2260	if (!prev || expand_stack(prev, addr))
2261		return NULL;
2262	if (prev->vm_flags & VM_LOCKED)
2263		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2264	return prev;
2265}
2266#else
2267int expand_stack(struct vm_area_struct *vma, unsigned long address)
2268{
2269	struct vm_area_struct *prev;
2270
2271	address &= PAGE_MASK;
2272	prev = vma->vm_prev;
2273	if (prev && prev->vm_end == address) {
2274		if (!(prev->vm_flags & VM_GROWSDOWN))
2275			return -ENOMEM;
2276	}
2277	return expand_downwards(vma, address);
2278}
2279
2280struct vm_area_struct *
2281find_extend_vma(struct mm_struct * mm, unsigned long addr)
2282{
2283	struct vm_area_struct * vma;
2284	unsigned long start;
2285
2286	addr &= PAGE_MASK;
2287	vma = find_vma(mm,addr);
2288	if (!vma)
2289		return NULL;
2290	if (vma->vm_start <= addr)
2291		return vma;
2292	if (!(vma->vm_flags & VM_GROWSDOWN))
2293		return NULL;
2294	start = vma->vm_start;
2295	if (expand_stack(vma, addr))
2296		return NULL;
2297	if (vma->vm_flags & VM_LOCKED)
2298		__mlock_vma_pages_range(vma, addr, start, NULL);
2299	return vma;
2300}
2301#endif
2302
2303/*
2304 * Ok - we have the memory areas we should free on the vma list,
2305 * so release them, and do the vma updates.
2306 *
2307 * Called with the mm semaphore held.
2308 */
2309static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2310{
2311	unsigned long nr_accounted = 0;
2312
2313	/* Update high watermark before we lower total_vm */
2314	update_hiwater_vm(mm);
2315	do {
2316		long nrpages = vma_pages(vma);
2317
2318		if (vma->vm_flags & VM_ACCOUNT)
2319			nr_accounted += nrpages;
2320		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2321		vma = remove_vma(vma);
2322	} while (vma);
2323	vm_unacct_memory(nr_accounted);
2324	validate_mm(mm);
2325}
2326
2327/*
2328 * Get rid of page table information in the indicated region.
2329 *
2330 * Called with the mm semaphore held.
2331 */
2332static void unmap_region(struct mm_struct *mm,
2333		struct vm_area_struct *vma, struct vm_area_struct *prev,
2334		unsigned long start, unsigned long end)
2335{
2336	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2337	struct mmu_gather tlb;
2338
2339	lru_add_drain();
2340	tlb_gather_mmu(&tlb, mm, start, end);
2341	update_hiwater_rss(mm);
2342	unmap_vmas(&tlb, vma, start, end);
2343	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2344				 next ? next->vm_start : USER_PGTABLES_CEILING);
2345	tlb_finish_mmu(&tlb, start, end);
2346}
2347
2348/*
2349 * Create a list of vma's touched by the unmap, removing them from the mm's
2350 * vma list as we go..
2351 */
2352static void
2353detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2354	struct vm_area_struct *prev, unsigned long end)
2355{
2356	struct vm_area_struct **insertion_point;
2357	struct vm_area_struct *tail_vma = NULL;
2358
2359	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2360	vma->vm_prev = NULL;
2361	do {
2362		vma_rb_erase(vma, &mm->mm_rb);
2363		mm->map_count--;
2364		tail_vma = vma;
2365		vma = vma->vm_next;
2366	} while (vma && vma->vm_start < end);
2367	*insertion_point = vma;
2368	if (vma) {
2369		vma->vm_prev = prev;
2370		vma_gap_update(vma);
2371	} else
2372		mm->highest_vm_end = prev ? prev->vm_end : 0;
2373	tail_vma->vm_next = NULL;
2374	mm->mmap_cache = NULL;		/* Kill the cache. */
2375}
2376
2377/*
2378 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2379 * munmap path where it doesn't make sense to fail.
2380 */
2381static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2382	      unsigned long addr, int new_below)
2383{
2384	struct vm_area_struct *new;
2385	int err = -ENOMEM;
2386
2387	if (is_vm_hugetlb_page(vma) && (addr &
2388					~(huge_page_mask(hstate_vma(vma)))))
2389		return -EINVAL;
2390
2391	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2392	if (!new)
2393		goto out_err;
2394
2395	/* most fields are the same, copy all, and then fixup */
2396	*new = *vma;
2397
2398	INIT_LIST_HEAD(&new->anon_vma_chain);
2399
2400	if (new_below)
2401		new->vm_end = addr;
2402	else {
2403		new->vm_start = addr;
2404		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2405	}
2406
2407	err = vma_dup_policy(vma, new);
2408	if (err)
2409		goto out_free_vma;
2410
2411	if (anon_vma_clone(new, vma))
2412		goto out_free_mpol;
2413
2414	if (new->vm_file)
2415		get_file(new->vm_file);
2416
2417	if (new->vm_ops && new->vm_ops->open)
2418		new->vm_ops->open(new);
2419
2420	if (new_below)
2421		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2422			((addr - new->vm_start) >> PAGE_SHIFT), new);
2423	else
2424		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2425
2426	/* Success. */
2427	if (!err)
2428		return 0;
2429
2430	/* Clean everything up if vma_adjust failed. */
2431	if (new->vm_ops && new->vm_ops->close)
2432		new->vm_ops->close(new);
2433	if (new->vm_file)
2434		fput(new->vm_file);
2435	unlink_anon_vmas(new);
2436 out_free_mpol:
2437	mpol_put(vma_policy(new));
2438 out_free_vma:
2439	kmem_cache_free(vm_area_cachep, new);
2440 out_err:
2441	return err;
2442}
2443
2444/*
2445 * Split a vma into two pieces at address 'addr', a new vma is allocated
2446 * either for the first part or the tail.
2447 */
2448int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2449	      unsigned long addr, int new_below)
2450{
2451	if (mm->map_count >= sysctl_max_map_count)
2452		return -ENOMEM;
2453
2454	return __split_vma(mm, vma, addr, new_below);
2455}
2456
2457/* Munmap is split into 2 main parts -- this part which finds
2458 * what needs doing, and the areas themselves, which do the
2459 * work.  This now handles partial unmappings.
2460 * Jeremy Fitzhardinge <jeremy@goop.org>
2461 */
2462int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2463{
2464	unsigned long end;
2465	struct vm_area_struct *vma, *prev, *last;
2466
2467	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2468		return -EINVAL;
2469
2470	if ((len = PAGE_ALIGN(len)) == 0)
2471		return -EINVAL;
2472
2473	/* Find the first overlapping VMA */
2474	vma = find_vma(mm, start);
2475	if (!vma)
2476		return 0;
2477	prev = vma->vm_prev;
2478	/* we have  start < vma->vm_end  */
2479
2480	/* if it doesn't overlap, we have nothing.. */
2481	end = start + len;
2482	if (vma->vm_start >= end)
2483		return 0;
2484
2485	/*
2486	 * If we need to split any vma, do it now to save pain later.
2487	 *
2488	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2489	 * unmapped vm_area_struct will remain in use: so lower split_vma
2490	 * places tmp vma above, and higher split_vma places tmp vma below.
2491	 */
2492	if (start > vma->vm_start) {
2493		int error;
2494
2495		/*
2496		 * Make sure that map_count on return from munmap() will
2497		 * not exceed its limit; but let map_count go just above
2498		 * its limit temporarily, to help free resources as expected.
2499		 */
2500		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2501			return -ENOMEM;
2502
2503		error = __split_vma(mm, vma, start, 0);
2504		if (error)
2505			return error;
2506		prev = vma;
2507	}
2508
2509	/* Does it split the last one? */
2510	last = find_vma(mm, end);
2511	if (last && end > last->vm_start) {
2512		int error = __split_vma(mm, last, end, 1);
2513		if (error)
2514			return error;
2515	}
2516	vma = prev? prev->vm_next: mm->mmap;
2517
2518	/*
2519	 * unlock any mlock()ed ranges before detaching vmas
2520	 */
2521	if (mm->locked_vm) {
2522		struct vm_area_struct *tmp = vma;
2523		while (tmp && tmp->vm_start < end) {
2524			if (tmp->vm_flags & VM_LOCKED) {
2525				mm->locked_vm -= vma_pages(tmp);
2526				munlock_vma_pages_all(tmp);
2527			}
2528			tmp = tmp->vm_next;
2529		}
2530	}
2531
2532	/*
2533	 * Remove the vma's, and unmap the actual pages
2534	 */
2535	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2536	unmap_region(mm, vma, prev, start, end);
2537
2538	/* Fix up all other VM information */
2539	remove_vma_list(mm, vma);
2540
2541	return 0;
2542}
2543
2544int vm_munmap(unsigned long start, size_t len)
2545{
2546	int ret;
2547	struct mm_struct *mm = current->mm;
2548
2549	down_write(&mm->mmap_sem);
2550	ret = do_munmap(mm, start, len);
2551	up_write(&mm->mmap_sem);
2552	return ret;
2553}
2554EXPORT_SYMBOL(vm_munmap);
2555
2556SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2557{
2558	profile_munmap(addr);
2559	return vm_munmap(addr, len);
2560}
2561
2562static inline void verify_mm_writelocked(struct mm_struct *mm)
2563{
2564#ifdef CONFIG_DEBUG_VM
2565	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2566		WARN_ON(1);
2567		up_read(&mm->mmap_sem);
2568	}
2569#endif
2570}
2571
2572/*
2573 *  this is really a simplified "do_mmap".  it only handles
2574 *  anonymous maps.  eventually we may be able to do some
2575 *  brk-specific accounting here.
2576 */
2577static unsigned long do_brk(unsigned long addr, unsigned long len)
2578{
2579	struct mm_struct * mm = current->mm;
2580	struct vm_area_struct * vma, * prev;
2581	unsigned long flags;
2582	struct rb_node ** rb_link, * rb_parent;
2583	pgoff_t pgoff = addr >> PAGE_SHIFT;
2584	int error;
2585
2586	len = PAGE_ALIGN(len);
2587	if (!len)
2588		return addr;
2589
2590	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2591
2592	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2593	if (error & ~PAGE_MASK)
2594		return error;
2595
2596	/*
2597	 * mlock MCL_FUTURE?
2598	 */
2599	if (mm->def_flags & VM_LOCKED) {
2600		unsigned long locked, lock_limit;
2601		locked = len >> PAGE_SHIFT;
2602		locked += mm->locked_vm;
2603		lock_limit = rlimit(RLIMIT_MEMLOCK);
2604		lock_limit >>= PAGE_SHIFT;
2605		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2606			return -EAGAIN;
2607	}
2608
2609	/*
2610	 * mm->mmap_sem is required to protect against another thread
2611	 * changing the mappings in case we sleep.
2612	 */
2613	verify_mm_writelocked(mm);
2614
2615	/*
2616	 * Clear old maps.  this also does some error checking for us
2617	 */
2618 munmap_back:
2619	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2620		if (do_munmap(mm, addr, len))
2621			return -ENOMEM;
2622		goto munmap_back;
2623	}
2624
2625	/* Check against address space limits *after* clearing old maps... */
2626	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2627		return -ENOMEM;
2628
2629	if (mm->map_count > sysctl_max_map_count)
2630		return -ENOMEM;
2631
2632	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2633		return -ENOMEM;
2634
2635	/* Can we just expand an old private anonymous mapping? */
2636	vma = vma_merge(mm, prev, addr, addr + len, flags,
2637					NULL, NULL, pgoff, NULL);
2638	if (vma)
2639		goto out;
2640
2641	/*
2642	 * create a vma struct for an anonymous mapping
2643	 */
2644	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2645	if (!vma) {
2646		vm_unacct_memory(len >> PAGE_SHIFT);
2647		return -ENOMEM;
2648	}
2649
2650	INIT_LIST_HEAD(&vma->anon_vma_chain);
2651	vma->vm_mm = mm;
2652	vma->vm_start = addr;
2653	vma->vm_end = addr + len;
2654	vma->vm_pgoff = pgoff;
2655	vma->vm_flags = flags;
2656	vma->vm_page_prot = vm_get_page_prot(flags);
2657	vma_link(mm, vma, prev, rb_link, rb_parent);
2658out:
2659	perf_event_mmap(vma);
2660	mm->total_vm += len >> PAGE_SHIFT;
2661	if (flags & VM_LOCKED)
2662		mm->locked_vm += (len >> PAGE_SHIFT);
2663	vma->vm_flags |= VM_SOFTDIRTY;
2664	return addr;
2665}
2666
2667unsigned long vm_brk(unsigned long addr, unsigned long len)
2668{
2669	struct mm_struct *mm = current->mm;
2670	unsigned long ret;
2671	bool populate;
2672
2673	down_write(&mm->mmap_sem);
2674	ret = do_brk(addr, len);
2675	populate = ((mm->def_flags & VM_LOCKED) != 0);
2676	up_write(&mm->mmap_sem);
2677	if (populate)
2678		mm_populate(addr, len);
2679	return ret;
2680}
2681EXPORT_SYMBOL(vm_brk);
2682
2683/* Release all mmaps. */
2684void exit_mmap(struct mm_struct *mm)
2685{
2686	struct mmu_gather tlb;
2687	struct vm_area_struct *vma;
2688	unsigned long nr_accounted = 0;
2689
2690	/* mm's last user has gone, and its about to be pulled down */
2691	mmu_notifier_release(mm);
2692
2693	if (mm->locked_vm) {
2694		vma = mm->mmap;
2695		while (vma) {
2696			if (vma->vm_flags & VM_LOCKED)
2697				munlock_vma_pages_all(vma);
2698			vma = vma->vm_next;
2699		}
2700	}
2701
2702	arch_exit_mmap(mm);
2703
2704	vma = mm->mmap;
2705	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2706		return;
2707
2708	lru_add_drain();
2709	flush_cache_mm(mm);
2710	tlb_gather_mmu(&tlb, mm, 0, -1);
2711	/* update_hiwater_rss(mm) here? but nobody should be looking */
2712	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2713	unmap_vmas(&tlb, vma, 0, -1);
2714
2715	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2716	tlb_finish_mmu(&tlb, 0, -1);
2717
2718	/*
2719	 * Walk the list again, actually closing and freeing it,
2720	 * with preemption enabled, without holding any MM locks.
2721	 */
2722	while (vma) {
2723		if (vma->vm_flags & VM_ACCOUNT)
2724			nr_accounted += vma_pages(vma);
2725		vma = remove_vma(vma);
2726	}
2727	vm_unacct_memory(nr_accounted);
2728
2729	WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2730}
2731
2732/* Insert vm structure into process list sorted by address
2733 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2734 * then i_mmap_mutex is taken here.
2735 */
2736int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2737{
2738	struct vm_area_struct *prev;
2739	struct rb_node **rb_link, *rb_parent;
2740
2741	/*
2742	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2743	 * until its first write fault, when page's anon_vma and index
2744	 * are set.  But now set the vm_pgoff it will almost certainly
2745	 * end up with (unless mremap moves it elsewhere before that
2746	 * first wfault), so /proc/pid/maps tells a consistent story.
2747	 *
2748	 * By setting it to reflect the virtual start address of the
2749	 * vma, merges and splits can happen in a seamless way, just
2750	 * using the existing file pgoff checks and manipulations.
2751	 * Similarly in do_mmap_pgoff and in do_brk.
2752	 */
2753	if (!vma->vm_file) {
2754		BUG_ON(vma->anon_vma);
2755		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2756	}
2757	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2758			   &prev, &rb_link, &rb_parent))
2759		return -ENOMEM;
2760	if ((vma->vm_flags & VM_ACCOUNT) &&
2761	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2762		return -ENOMEM;
2763
2764	vma_link(mm, vma, prev, rb_link, rb_parent);
2765	return 0;
2766}
2767
2768/*
2769 * Copy the vma structure to a new location in the same mm,
2770 * prior to moving page table entries, to effect an mremap move.
2771 */
2772struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2773	unsigned long addr, unsigned long len, pgoff_t pgoff,
2774	bool *need_rmap_locks)
2775{
2776	struct vm_area_struct *vma = *vmap;
2777	unsigned long vma_start = vma->vm_start;
2778	struct mm_struct *mm = vma->vm_mm;
2779	struct vm_area_struct *new_vma, *prev;
2780	struct rb_node **rb_link, *rb_parent;
2781	bool faulted_in_anon_vma = true;
2782
2783	/*
2784	 * If anonymous vma has not yet been faulted, update new pgoff
2785	 * to match new location, to increase its chance of merging.
2786	 */
2787	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2788		pgoff = addr >> PAGE_SHIFT;
2789		faulted_in_anon_vma = false;
2790	}
2791
2792	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2793		return NULL;	/* should never get here */
2794	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2795			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2796	if (new_vma) {
2797		/*
2798		 * Source vma may have been merged into new_vma
2799		 */
2800		if (unlikely(vma_start >= new_vma->vm_start &&
2801			     vma_start < new_vma->vm_end)) {
2802			/*
2803			 * The only way we can get a vma_merge with
2804			 * self during an mremap is if the vma hasn't
2805			 * been faulted in yet and we were allowed to
2806			 * reset the dst vma->vm_pgoff to the
2807			 * destination address of the mremap to allow
2808			 * the merge to happen. mremap must change the
2809			 * vm_pgoff linearity between src and dst vmas
2810			 * (in turn preventing a vma_merge) to be
2811			 * safe. It is only safe to keep the vm_pgoff
2812			 * linear if there are no pages mapped yet.
2813			 */
2814			VM_BUG_ON(faulted_in_anon_vma);
2815			*vmap = vma = new_vma;
2816		}
2817		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2818	} else {
2819		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2820		if (new_vma) {
2821			*new_vma = *vma;
2822			new_vma->vm_start = addr;
2823			new_vma->vm_end = addr + len;
2824			new_vma->vm_pgoff = pgoff;
2825			if (vma_dup_policy(vma, new_vma))
2826				goto out_free_vma;
2827			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2828			if (anon_vma_clone(new_vma, vma))
2829				goto out_free_mempol;
2830			if (new_vma->vm_file)
2831				get_file(new_vma->vm_file);
2832			if (new_vma->vm_ops && new_vma->vm_ops->open)
2833				new_vma->vm_ops->open(new_vma);
2834			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2835			*need_rmap_locks = false;
2836		}
2837	}
2838	return new_vma;
2839
2840 out_free_mempol:
2841	mpol_put(vma_policy(new_vma));
2842 out_free_vma:
2843	kmem_cache_free(vm_area_cachep, new_vma);
2844	return NULL;
2845}
2846
2847/*
2848 * Return true if the calling process may expand its vm space by the passed
2849 * number of pages
2850 */
2851int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2852{
2853	unsigned long cur = mm->total_vm;	/* pages */
2854	unsigned long lim;
2855
2856	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2857
2858	if (cur + npages > lim)
2859		return 0;
2860	return 1;
2861}
2862
2863
2864static int special_mapping_fault(struct vm_area_struct *vma,
2865				struct vm_fault *vmf)
2866{
2867	pgoff_t pgoff;
2868	struct page **pages;
2869
2870	/*
2871	 * special mappings have no vm_file, and in that case, the mm
2872	 * uses vm_pgoff internally. So we have to subtract it from here.
2873	 * We are allowed to do this because we are the mm; do not copy
2874	 * this code into drivers!
2875	 */
2876	pgoff = vmf->pgoff - vma->vm_pgoff;
2877
2878	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2879		pgoff--;
2880
2881	if (*pages) {
2882		struct page *page = *pages;
2883		get_page(page);
2884		vmf->page = page;
2885		return 0;
2886	}
2887
2888	return VM_FAULT_SIGBUS;
2889}
2890
2891/*
2892 * Having a close hook prevents vma merging regardless of flags.
2893 */
2894static void special_mapping_close(struct vm_area_struct *vma)
2895{
2896}
2897
2898static const struct vm_operations_struct special_mapping_vmops = {
2899	.close = special_mapping_close,
2900	.fault = special_mapping_fault,
2901};
2902
2903/*
2904 * Called with mm->mmap_sem held for writing.
2905 * Insert a new vma covering the given region, with the given flags.
2906 * Its pages are supplied by the given array of struct page *.
2907 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2908 * The region past the last page supplied will always produce SIGBUS.
2909 * The array pointer and the pages it points to are assumed to stay alive
2910 * for as long as this mapping might exist.
2911 */
2912int install_special_mapping(struct mm_struct *mm,
2913			    unsigned long addr, unsigned long len,
2914			    unsigned long vm_flags, struct page **pages)
2915{
2916	int ret;
2917	struct vm_area_struct *vma;
2918
2919	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2920	if (unlikely(vma == NULL))
2921		return -ENOMEM;
2922
2923	INIT_LIST_HEAD(&vma->anon_vma_chain);
2924	vma->vm_mm = mm;
2925	vma->vm_start = addr;
2926	vma->vm_end = addr + len;
2927
2928	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2929	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2930
2931	vma->vm_ops = &special_mapping_vmops;
2932	vma->vm_private_data = pages;
2933
2934	ret = insert_vm_struct(mm, vma);
2935	if (ret)
2936		goto out;
2937
2938	mm->total_vm += len >> PAGE_SHIFT;
2939
2940	perf_event_mmap(vma);
2941
2942	return 0;
2943
2944out:
2945	kmem_cache_free(vm_area_cachep, vma);
2946	return ret;
2947}
2948
2949static DEFINE_MUTEX(mm_all_locks_mutex);
2950
2951static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2952{
2953	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2954		/*
2955		 * The LSB of head.next can't change from under us
2956		 * because we hold the mm_all_locks_mutex.
2957		 */
2958		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2959		/*
2960		 * We can safely modify head.next after taking the
2961		 * anon_vma->root->rwsem. If some other vma in this mm shares
2962		 * the same anon_vma we won't take it again.
2963		 *
2964		 * No need of atomic instructions here, head.next
2965		 * can't change from under us thanks to the
2966		 * anon_vma->root->rwsem.
2967		 */
2968		if (__test_and_set_bit(0, (unsigned long *)
2969				       &anon_vma->root->rb_root.rb_node))
2970			BUG();
2971	}
2972}
2973
2974static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2975{
2976	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2977		/*
2978		 * AS_MM_ALL_LOCKS can't change from under us because
2979		 * we hold the mm_all_locks_mutex.
2980		 *
2981		 * Operations on ->flags have to be atomic because
2982		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2983		 * mm_all_locks_mutex, there may be other cpus
2984		 * changing other bitflags in parallel to us.
2985		 */
2986		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2987			BUG();
2988		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2989	}
2990}
2991
2992/*
2993 * This operation locks against the VM for all pte/vma/mm related
2994 * operations that could ever happen on a certain mm. This includes
2995 * vmtruncate, try_to_unmap, and all page faults.
2996 *
2997 * The caller must take the mmap_sem in write mode before calling
2998 * mm_take_all_locks(). The caller isn't allowed to release the
2999 * mmap_sem until mm_drop_all_locks() returns.
3000 *
3001 * mmap_sem in write mode is required in order to block all operations
3002 * that could modify pagetables and free pages without need of
3003 * altering the vma layout (for example populate_range() with
3004 * nonlinear vmas). It's also needed in write mode to avoid new
3005 * anon_vmas to be associated with existing vmas.
3006 *
3007 * A single task can't take more than one mm_take_all_locks() in a row
3008 * or it would deadlock.
3009 *
3010 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3011 * mapping->flags avoid to take the same lock twice, if more than one
3012 * vma in this mm is backed by the same anon_vma or address_space.
3013 *
3014 * We can take all the locks in random order because the VM code
3015 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3016 * takes more than one of them in a row. Secondly we're protected
3017 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3018 *
3019 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3020 * that may have to take thousand of locks.
3021 *
3022 * mm_take_all_locks() can fail if it's interrupted by signals.
3023 */
3024int mm_take_all_locks(struct mm_struct *mm)
3025{
3026	struct vm_area_struct *vma;
3027	struct anon_vma_chain *avc;
3028
3029	BUG_ON(down_read_trylock(&mm->mmap_sem));
3030
3031	mutex_lock(&mm_all_locks_mutex);
3032
3033	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3034		if (signal_pending(current))
3035			goto out_unlock;
3036		if (vma->vm_file && vma->vm_file->f_mapping)
3037			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3038	}
3039
3040	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3041		if (signal_pending(current))
3042			goto out_unlock;
3043		if (vma->anon_vma)
3044			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3045				vm_lock_anon_vma(mm, avc->anon_vma);
3046	}
3047
3048	return 0;
3049
3050out_unlock:
3051	mm_drop_all_locks(mm);
3052	return -EINTR;
3053}
3054
3055static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3056{
3057	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3058		/*
3059		 * The LSB of head.next can't change to 0 from under
3060		 * us because we hold the mm_all_locks_mutex.
3061		 *
3062		 * We must however clear the bitflag before unlocking
3063		 * the vma so the users using the anon_vma->rb_root will
3064		 * never see our bitflag.
3065		 *
3066		 * No need of atomic instructions here, head.next
3067		 * can't change from under us until we release the
3068		 * anon_vma->root->rwsem.
3069		 */
3070		if (!__test_and_clear_bit(0, (unsigned long *)
3071					  &anon_vma->root->rb_root.rb_node))
3072			BUG();
3073		anon_vma_unlock_write(anon_vma);
3074	}
3075}
3076
3077static void vm_unlock_mapping(struct address_space *mapping)
3078{
3079	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3080		/*
3081		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3082		 * because we hold the mm_all_locks_mutex.
3083		 */
3084		mutex_unlock(&mapping->i_mmap_mutex);
3085		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3086					&mapping->flags))
3087			BUG();
3088	}
3089}
3090
3091/*
3092 * The mmap_sem cannot be released by the caller until
3093 * mm_drop_all_locks() returns.
3094 */
3095void mm_drop_all_locks(struct mm_struct *mm)
3096{
3097	struct vm_area_struct *vma;
3098	struct anon_vma_chain *avc;
3099
3100	BUG_ON(down_read_trylock(&mm->mmap_sem));
3101	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3102
3103	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3104		if (vma->anon_vma)
3105			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3106				vm_unlock_anon_vma(avc->anon_vma);
3107		if (vma->vm_file && vma->vm_file->f_mapping)
3108			vm_unlock_mapping(vma->vm_file->f_mapping);
3109	}
3110
3111	mutex_unlock(&mm_all_locks_mutex);
3112}
3113
3114/*
3115 * initialise the VMA slab
3116 */
3117void __init mmap_init(void)
3118{
3119	int ret;
3120
3121	ret = percpu_counter_init(&vm_committed_as, 0);
3122	VM_BUG_ON(ret);
3123}
3124
3125/*
3126 * Initialise sysctl_user_reserve_kbytes.
3127 *
3128 * This is intended to prevent a user from starting a single memory hogging
3129 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3130 * mode.
3131 *
3132 * The default value is min(3% of free memory, 128MB)
3133 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3134 */
3135static int init_user_reserve(void)
3136{
3137	unsigned long free_kbytes;
3138
3139	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3140
3141	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3142	return 0;
3143}
3144module_init(init_user_reserve)
3145
3146/*
3147 * Initialise sysctl_admin_reserve_kbytes.
3148 *
3149 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3150 * to log in and kill a memory hogging process.
3151 *
3152 * Systems with more than 256MB will reserve 8MB, enough to recover
3153 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3154 * only reserve 3% of free pages by default.
3155 */
3156static int init_admin_reserve(void)
3157{
3158	unsigned long free_kbytes;
3159
3160	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3161
3162	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3163	return 0;
3164}
3165module_init(init_admin_reserve)
3166
3167/*
3168 * Reinititalise user and admin reserves if memory is added or removed.
3169 *
3170 * The default user reserve max is 128MB, and the default max for the
3171 * admin reserve is 8MB. These are usually, but not always, enough to
3172 * enable recovery from a memory hogging process using login/sshd, a shell,
3173 * and tools like top. It may make sense to increase or even disable the
3174 * reserve depending on the existence of swap or variations in the recovery
3175 * tools. So, the admin may have changed them.
3176 *
3177 * If memory is added and the reserves have been eliminated or increased above
3178 * the default max, then we'll trust the admin.
3179 *
3180 * If memory is removed and there isn't enough free memory, then we
3181 * need to reset the reserves.
3182 *
3183 * Otherwise keep the reserve set by the admin.
3184 */
3185static int reserve_mem_notifier(struct notifier_block *nb,
3186			     unsigned long action, void *data)
3187{
3188	unsigned long tmp, free_kbytes;
3189
3190	switch (action) {
3191	case MEM_ONLINE:
3192		/* Default max is 128MB. Leave alone if modified by operator. */
3193		tmp = sysctl_user_reserve_kbytes;
3194		if (0 < tmp && tmp < (1UL << 17))
3195			init_user_reserve();
3196
3197		/* Default max is 8MB.  Leave alone if modified by operator. */
3198		tmp = sysctl_admin_reserve_kbytes;
3199		if (0 < tmp && tmp < (1UL << 13))
3200			init_admin_reserve();
3201
3202		break;
3203	case MEM_OFFLINE:
3204		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3205
3206		if (sysctl_user_reserve_kbytes > free_kbytes) {
3207			init_user_reserve();
3208			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3209				sysctl_user_reserve_kbytes);
3210		}
3211
3212		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3213			init_admin_reserve();
3214			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3215				sysctl_admin_reserve_kbytes);
3216		}
3217		break;
3218	default:
3219		break;
3220	}
3221	return NOTIFY_OK;
3222}
3223
3224static struct notifier_block reserve_mem_nb = {
3225	.notifier_call = reserve_mem_notifier,
3226};
3227
3228static int __meminit init_reserve_notifier(void)
3229{
3230	if (register_hotmemory_notifier(&reserve_mem_nb))
3231		printk("Failed registering memory add/remove notifier for admin reserve");
3232
3233	return 0;
3234}
3235module_init(init_reserve_notifier)
3236